WorldWideScience

Sample records for high-pressure raman spectra

  1. Measurement and Simulation of Spontaneous Raman Scattering Spectra in High-Pressure, Fuel-Rich H2-Air Flames

    Science.gov (United States)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    Rotational vibrational spontaneous Raman spectra (SRS) of H2, N2, and H2O have been measured in H2-air flames at pressures up to 30 atm as a first stem towards establishing a comprehensive Raman spectral database for temperatures and species in high-pressure combustion. A newly developed high-pressure burner facility provides steady, reproducible flames with a high degree of flow precision. We have obtained an initial set of measurements that indicate the spectra are of sufficient quality in terms of spectral resolution, wavelength coverage, and signal-to-noise ratio for use in future reference standards. The fully resolved Stokes and anti-Stokes shifted SRS spectra were collected in the visible wavelength range (400-700 nm) using pulse-stretched 532 nm excitation and a non-intensified CCD spectrograph with a high-speed shutter. Reasonable temperatures were determined via the intensity distribution of rotational H2 lines at stoichiometry and fuel-rich conditions. Theoretical Raman spectra of H2 were computed using a semi-classical harmonic-oscillator model with recent pressure broadening data and were compared with experimental results. The data and simulation indicated that high-J rotational lines of H2 might interfere with the N2 vibrational Q-branch lines, and this could lead to errors in N2-Raman thermometry based on the line-fitting method. From a comparison of N2 Q-branch spectra in lean H2 low-pressure (1.2 atm) and high-pressure (30 atm) flames, we found no significant line-narrowing or -broadening effects at the current spectrometer resolution of 0.04 nm.

  2. High-pressure Raman spectra and DFT calculations of L-tyrosine hydrochloride crystal

    Science.gov (United States)

    dos Santos, C. A. A. S. S.; Carvalho, J. O.; da Silva Filho, J. G.; Rodrigues, J. L.; Lima, R. J. C.; Pinheiro, G. S.; Freire, P. T. C.; Façanha Filho, P. F.

    2018-02-01

    High-pressure Raman spectra of L-tyrosine hydrochloride crystal were obtained from 1.0 atm to 7.0 GPa in the 90-1800 cm-1 spectral region. At atmospheric pressure, the Raman spectrum was obtained in the 50-3200 cm-1 spectral range and the assignment of the normal modes based on density functional theory calculations was provided. We found good correspondence between the calculated and the observed intramolecular geometry parameters. This confirms the correct assignment of the normal modes, since it was crucial to understand the meaning of the changes observed in particular Raman active modes. Here we show that bands associated with internal modes undergo slight modifications during compression. However, an inversion of the relative intensity of bands around 125 cm-1 as well as a change of slope dω/dP from 1.0 to 1.5 GPa was understood as a conformational change involving a torsion of the L-tyrosine molecule. As a consequence, it is possible to conclude that the crystal remained in the same monoclinic structure in the 1 atm-7.0 GPa interval, although conformational change of the molecule was verified. A comparison of our results with other selected studies provided insights about the role of the amino acid side chain on the arrangement of hydrogen bonds. Finally, when the pressure was released back to 1 atm, the Raman spectrum was recovered and no hysteresis was observed.

  3. High-pressure measuring cell for Raman spectroscopic studies of natural gas

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2001-01-01

    A system for obtaining Raman spectra of gases at high pressure has been constructed. In order to ensure that a natural gas sample is totally representative, a high-pressure gas-measuring cell has been developed, built up by stainless steel fittings and a sapphire tube. The design and construction...... of this cell are described. A perfect pressure seal has been demonstrated up to 15.0 MPaA (MPa absolute). The cell has been successfully used to obtain Raman spectra of natural gas samples. Some of these spectra are presented and assigned. The most remarkable observation in the spectra is that it is possible...... to detect hydrogen sulfide at concentrations of 1-3 mg H2S/Nm(3). An attempt to make a quantitative analysis of natural gas by the so-called "ratio method" is presented. In addition to this, the relative normalized differential Raman scattering cross sections for ethane and i-butane molecules at 8.0 MPa...

  4. Pressure-induced change in the Raman spectra of ionic liquid [DEME][BF4]-H2O mixtures

    International Nuclear Information System (INIS)

    Imai, Y; Abe, H; Goto, T; Miyashita, T; Yoshimura, Y

    2010-01-01

    We have measured Raman spectral changes of N,N,diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF 4 ]-H 2 O mixtures under high pressure. All the Raman spectra of mixtures of water concentrations below 50.0 mol% H 2 O changed at around 1 GPa at room temperature. The spectrum at high pressure is completely different from that obtained by cooling the sample at a normal pressure.

  5. Coherent Raman scattering in high-pressure/high-temperature fluids: An overview

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.

    1990-01-01

    The present understanding of high-pressure/high-temperature dense-fluid behavior is derived almost exclusively from hydrodynamic and thermodynamic measurements. Such results average over the microscopic aspects of the materials and are, therefore, insufficient for a complete understanding of fluid behavior. At the present, dense-fluid models can be verified only to the extend that they agree with the macroscopic measurements. Recently, using stimulated Raman scattering, Raman induced Kerr effect scattering, and coherent anti-Stokes Raman scattering, we have been able to probe some of the microscopic phenomenology of these dense fluids. In this paper, we discuss primarily the use of CARS in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N 2 , O 2 , CO, their mixtures, CH 3 NO 2 , and N 2 O. These experimental spectra are compared to synthetic spectra calculated using a semiclassical model for CARS intensities and best fit vibrational frequencies, peak Raman susceptibilities, and Raman linewidths. For O 2 , the possibility of resonance enhancement from collision-induced absorption is addressed. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. The derived parameters suggest thermal equilibrium of the vibrational levels is established less than a few nanoseconds after shock passage. Vibrational temperatures are obtained that agree with those derived from equation-of-state calculations. Measured linewidths suggest that vibrational dephasing times have decreased to subpicosecond values at the highest shock pressures

  6. Raman spectra of MgB2 at high pressure and topological electronic transition

    International Nuclear Information System (INIS)

    Meletov, K.P.; Kulakov, M.P.; Kolesnikov, N.N.; Arvanitidis, J.; Kourouklis, G.A.

    2002-01-01

    Raman spectra of the MgB 2 ceramic samples were measured as a function of pressure up to 32 GPa at room temperature. The spectrum at normal conditions contains a very broad peak at ∼ 590 cm -1 related to the E 2g phonon mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa, whereas beyond this region the slope of the pressure-induced frequency shift is reduced by about a factor of two. The pressure dependence of the phonon mode up to ∼ 5 GPa exhibits a change in the slope as well as a hysteresis effect in the frequency vs. pressure behavior. These singularities in the E 2g mode behavior under pressure support the suggestion that MgB 2 may undergo a pressure-induced topological electronic transition [ru

  7. Raman spectroscopic studies of the polymorphism in ZrO2 at high pressures

    International Nuclear Information System (INIS)

    Arashi, H.; Ishigame, M.

    1982-01-01

    The Raman spectra of ZrO 2 at high pressures are measured at room temperature using a diamondanvil pressure-cell. Two kinds of pressure transmitting medium, methanol and NaCl, are used to see the effect of stress components on the phase transformation. The pressure of phase transformation shows a considerable difference between the two media. In the case of methanol, a phase transformation is observed at 3.5 GPa, while in the case of NaCl, at 5.4 GPa. In the high-pressure phase, 19 Raman bands are observed. This number of bands far exceeds that which is expected for the tetragonal phase, D/sub 4h/ 15 in space group. From the relation between the number of Raman bands and the crystal structure, it is more reasonable to consider that the high-pressure phase belongs to a orthorhombic system. The space group of the high-pressure phase is discussed on the basis of the observed number of Raman bands. (author)

  8. Combined use of infrared and Raman spectra in the characterization of orthoclase under various hydrostatic pressures.

    Science.gov (United States)

    Liu, Rui; Wang, Zhi-Hua; Xu, Qiang; Yu, Na; Cao, Miao-Cong

    2014-02-01

    Colorless and pink orthoclase from Balikun granite body, East Zhunger in Xinjiang, served as the samples for the research on hydrostatic pressure experiment. The in-situ hydrostatic pressure test for orthoclases was conducted at the room temperature and pressures from 100 to 600 MPa using cubic zirconia anvil cell, with quartz as pressure gauge. The water located in the orthoclases for the conditions of different hydrostatic pressures was characterized through the methods of Fourier transform infrared (FTIR) and Raman spectra. The results showed that there was a linear correlation between the shifting of Raman bands and hydrostatic pressure applied to the feldspar. All of vibration peaks of M-O structural groups in orthoclases, the bending vibration peaks of Si(Al(IV))-O-Si bond and tetrahedron groups of [SiO4] in Raman spectra shifted toward the higher frequency regularly, the drift distance is 2, 2.19 and less than 2 cm(-1) respectively. The spectra of FTIR suggested that there was more water in colorless orthoclases than the pink one under certain conditions of hydrostatic pressure. The intensity and integral area centered at 3420 cm(-1) in FTIR spectra increased with the rising of hydrostatic pressure. The integral area for colorless and pink feldspar in FTIR spectra rose from 120, 1383 cm(-1) under normal pressure to 1570, 2001 cm(-1) at 600 MPa respectively. The experimental results might indicate that the water in the earth crust could enter the orthoclases in certain condition of the aqueous confining pressure.

  9. High-pressure Raman study of vibrational spectra in crystalline acetanilide

    Science.gov (United States)

    Sakai, Masamichi; Kuroda, Noritaka; Nishina, Yuichiro

    1993-01-01

    We have studied the effect of pressure on the low-frequency lattice modes and the amide-I (N-CO stretching) vibrational modes in crystalline acetanilide (C6H5NHCOCH3) in the temperature range 80-300 K by means of Raman spectroscopy. The Raman intensity of the 1650-cm-1 band, which appears upon cooling, is enhanced by applying pressure. The energy difference between the amide-I phonon (Ag mode) and the 1650-cm-1 bands does not change appreciably under pressure up to at least 4 GPa. These results are analyzed in terms of the self-trapped model in which a single lattice mode couples with the amide-I excitation by taking into account the effect of pressure on the low-frequency lattice modes and on the dipole-dipole interactions associated with the amide-I vibration. A band is observed at 30 cm-1 below the amide-I phonon band at low temperatures with a pressure above ~2 GPa.

  10. In Situ Raman Study of Liquid Water at High Pressure.

    Science.gov (United States)

    Romanenko, Alexandr V; Rashchenko, Sergey V; Goryainov, Sergey V; Likhacheva, Anna Yu; Korsakov, Andrey V

    2018-06-01

    A pressure shift of Raman band of liquid water (H 2 O) may be an important tool for measuring residual pressures in mineral inclusions, in situ barometry in high-pressure cells, and as an indicator of pressure-induced structural transitions in H 2 O. However, there was no consensus as to how the broad and asymmetric water Raman band should be quantitatively described, which has led to fundamental inconsistencies between reported data. In order to overcome this issue, we measured Raman spectra of H 2 O in situ up to 1.2 GPa using a diamond anvil cell, and use them to test different approaches proposed for the description of the water Raman band. We found that the most physically meaningful description of water Raman band is the decomposition into a linear background and three Gaussian components, associated with differently H-bonded H 2 O molecules. Two of these components demonstrate a pronounced anomaly in pressure shift near 0.4 GPa, supporting ideas of structural transition in H 2 O at this pressure. The most convenient approach for pressure calibration is the use of "a linear background + one Gaussian" decomposition (the pressure can be measured using the formula P (GPa) = -0.0317(3)·Δν G (cm -1 ), where Δν G represents the difference between the position of water Raman band, fitted as a single Gaussian, in measured spectrum and spectrum at ambient pressure).

  11. High-pressure raman study on single crystalline methane hydrate surrounded by methane in a diamond anvil cell

    International Nuclear Information System (INIS)

    Ohno, Y; Sasaki, S; Kume, T; Shimizu, H

    2008-01-01

    High-pressure Raman measurements have been performed for single crystalline methane hydrate (MH) surrounded by fluid or solid methane in a diamond anvil cell. We successfully obtained the pure O-H stretching and lattice vibration spectra in MH-sI and MH-II phases. In these Raman spectra, there is no Raman band from water or ice-VI. The observed pressure of phase transformation from MH-sI to MH-II is 0.9 GPa, which is the same result as methane hydrate surrounded by water

  12. Phonon-induced anomalous Raman spectra in undoped high-Tc cuprates

    International Nuclear Information System (INIS)

    Lee, J.D.; Min, B.I.

    1997-01-01

    In order to describe a shoulder peak structure near 4J in the magnon Raman spectra of undoped high-T c cuprates, we have explored the phonon contribution to the Raman spectra. Incorporating the magnon-phonon Hamiltonian in the spin-wave theory, we have evaluated the two-magnon Raman spectral function originating from the lowest-order magnon-phonon-magnon scattering. It is found that phonons induce a shoulder peak near 4J besides the dominant two-magnon peak near 3J, in agreement with experiments. (orig.)

  13. Raman Spectroscopy of Serpentine and Reaction Products at High Pressure Using a Diamond Anvil Cell

    Science.gov (United States)

    Burgess, K.; Zinin, P.; Odake, S.; Fryer, P.; Hellebrand, E.

    2012-12-01

    Serpentine is one of the most abundant hydrous phases in the altered subducting plate, and contributes a large portion of the water flux in subduction zones. Measuring and understanding the structural changes in serpentine with pressure aids our understanding of the processes ongoing in oceanic crust and subduction zones. We have conducted high-pressure/high-temperature experiments on serpentine and its dehydration reaction products using a diamond anvil cell. We used the multifunctional in-situ measurement system equipped with a Raman device and laser heating system at the University of Hawaii. Well-characterized natural serpentinite was used in the study. Pressure was determined using the shift of the fluorescence line of a ruby placed next to the sample. Raman spectra of serpentine were obtained at higher pressures than previously published, up to 15 GPa; the peak shift with pressure fits the model determined by Auzende et al. [2004] at lower pressures. Heating was done at several different pressures up to 20 GPa, and reaction products were identified using Raman. Micro-Raman techniques allow us to determine reaction progress and heterogeneity within natural samples containing olivine and serpentine. Auzende, A-L., I. Daniel, B. Reynard, C. Lemaire, F. Guyot (2004). High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Phys. Chem. Minerals 31 269-277.

  14. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  15. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    Science.gov (United States)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  16. Raman studies of hexagonal MoO{sub 3} at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.C.; Zhang, Z.M.; Dai, R.C.; Zhang, J.W.; Ding, Z.J. [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, L. [Department of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Z.P. [The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-05-15

    The transition-metal oxide MoO{sub 3} is an important semiconductor and has various technological applications in catalysts, electrochromic and photochromic devices, gas sensors, and battery electrodes. In this study, the hexagonal MoO{sub 3} prepared by a hydrothermal method is in morphology of microrod with diameter of 0.8-1.2 {mu}m and length of 2.0-4.3 {mu}m. Its structural stability was investigated by an in situ Raman scattering method in a diamond anvil cell up to 28.7 GPa at room temperature. The new Raman peak around 1000 cm{sup -1} implies that a phase transition from hexagonal to amorphous starts at 5.6 GPa, and the evolution of the Raman spectra indicates that the structural transition is completed at about 13.2 GPa. After releasing pressure to ambient condition, the Raman spectrum pattern of the high pressure phase was retained, revealing that the phase transition is irreversible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Study of high-temperature multiplex HCl coherent anti-Stokes Raman spectroscopy spectra.

    Science.gov (United States)

    Singh, J P; Yueh, F Y; Kao, W; Cook, R L

    1993-02-20

    A feasibility study of temperature measurement with multiplex HCl coherent anti-Stokes Raman spectroscopy (CARS) is investigated. The HCl CARS spectra of a 100% HCl gas sample are recorded in a quartz sample cell placed in a furnace at 1 atm pressure and at different temperatures. The nonlinear susceptibility of HCl (chi(nr)(HCl)), which is measured with the present CARS experimental setup, is reported. The experimental spectra are fit by using a library of simulated HCl CARS spectra with a least-squares-fitting program to infer the temperature. The inferred temperatures from HCl CARS spectra are in agreement with thermocouple temperatures.

  18. Pressure effect on the Raman and photoluminescence spectra of Eu3+-doped Na2Ti6O13 nanorods

    Science.gov (United States)

    Zeng, Q. G.; Yang, G. T.; Chen, F.; Luo, J. Y.; Zhang, Z. M.; Leung, C. W.; Ding, Z. J.; Sheng, Y. Q.

    2013-12-01

    Eu3+-doped Na2Ti6O13 (Na2Ti6O13:Eu) nanorods with diameters of 30 nm and lengths 400 nm were synthesized by hydrothermal and heat treatment methods. Raman spectra at ambient conditions indicated a pure monoclinic phase (space group C2/m) of the nanorods. The relations between structural and optical properties of Na2Ti6O13:Eu nanorods under high pressures were obtained by photoluminescence and Raman spectra. Two structural transition points at 1.39 and 15.48 GPa were observed when the samples were pressurized. The first transition point was attributed to the crystalline structural distortion. The later transition point was the result of pressure-induced amorphization, and the high-density amorphous (HDA) phase formed after 15.48 GPa was structurally related to the monoclinic baddeleyite structured TiO2 (P21/c). However, the site symmetry of the local environment around the Eu3+ ions in Na2Ti6O13 increased with the rising pressure. These above results indicate the occurrence of short-range order for the local asymmetry around the Eu3+ ions and long-range disorder for the crystalline structure of Na2Ti6O13:Eu nanorods by applying pressure. After releasing the pressure from 22.74 GPa, the HDA phase is transformed to low-density amorphous form, which is attributed to be structurally related to the α-PbO2-type TiO2.

  19. Raman study of opal at high pressure

    Science.gov (United States)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  20. The stability and Raman spectra of ikaite, CaCO3·6H2O, at high pressure and temperature

    Science.gov (United States)

    Shahar, Anat; Bassett, William A.; Mao, Ho-kwang; Chou, I-Ming; Mao, Wendy

    2005-01-01

    Raman analyses of single crystals of ikaite, CaCO3·6H2O, synthesized in a diamond-anvil cell at ambient temperature yield spectra from 0.14 to 4.08 GPa; the most intense peaks are at 228 and 1081 cm−1 corresponding to Eg(external) and A1g (internal) modes of vibrations in CO2− 3 ions, respectively. These are in good agreement with Raman spectra previously published for ikaite in powder form at ambient temperature and pressure. Visual observations of a sample consisting initially of a mixture of calcite + water in a hydrothermal diamond-anvil cell yielded a P-T phase diagram up to 2 GPa and 120 °C; the boundary for the reaction ikaite ↔ aragonite + water has a positive slope and is curved convexly toward the aragonite + water field similar to typical melt curves. This curvature can be explained in terms of the Clapeyron equation for a boundary between a solid phase and a more compressible liquid phase or largely liquid phase assemblage.

  1. Vibrational properties of ZnTe at high pressures

    International Nuclear Information System (INIS)

    Camacho, J.; Loa, I.; Syassen, K.; Cantarero, A.

    2002-01-01

    Raman spectra of ZnTe were measured under hydrostatic pressures up to 15 GPa at T=300 K. Results for the frequencies of first- and second-order Raman features of the zincblende phase (0-9.5 GPa) are used to set up a rigid-ion model of the phonon dispersion relations under pressure. Calculated phonon densities of states, mode Grueneisen parameters and the thermal expansion coefficient as a function of pressure are discussed. The effect of pressure on the widths and intensities of Raman spectral features is considered. Raman spectra of high-pressure phases of ZnTe are reported. These spectra indicate the possible existence of a new phase near 13 GPa, intermediate between the cinnabar and orthorhombic (Cmcm) phases of ZnTe. (author)

  2. Vibrational properties of ZnTe at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, J. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany) and Instituto de Ciencia de Materiales, Universidad de Valencia, Valencia (Spain)]. E-mail: Juana.Camacho@uv.es; Loa, I.; Syassen, K. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Cantarero, A. [Instituto de Ciencia de Materiales, Universidad de Valencia, Valencia (Spain)

    2002-02-04

    Raman spectra of ZnTe were measured under hydrostatic pressures up to 15 GPa at T=300 K. Results for the frequencies of first- and second-order Raman features of the zincblende phase (0-9.5 GPa) are used to set up a rigid-ion model of the phonon dispersion relations under pressure. Calculated phonon densities of states, mode Grueneisen parameters and the thermal expansion coefficient as a function of pressure are discussed. The effect of pressure on the widths and intensities of Raman spectral features is considered. Raman spectra of high-pressure phases of ZnTe are reported. These spectra indicate the possible existence of a new phase near 13 GPa, intermediate between the cinnabar and orthorhombic (Cmcm) phases of ZnTe. (author)

  3. High-Resolution Infrared and Raman Spectra of the Polycrystalline Sinomenine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Liu Xiao-Dong

    2016-01-01

    Full Text Available High-resolution infrared and Raman spectra of the polycrystalline sinomenine (SM hydrochloride have been measured to work out its whole really existing vibrational spectral bands. Except for the hydroxyl stretching modes and IR active bands less than 400 cm−1, most normal modes (about 34 are both IR and Raman active. In addition, 8 Raman bands less than 400 cm−1 are tentatively assigned, for the first time to our knowledge, to stretching/bending modes of the aromatic-ring−methoxyls and (SMH+–Cl− ions, respectively.

  4. Raman spectroscopic studies on CeVO4 at high pressures

    International Nuclear Information System (INIS)

    Rao, Rekha; Garg, Alka B.; Wani, B.N.

    2011-01-01

    Raman scattering investigations of CeVO 4 at high pressures is reported. Polycrystalline CeVO 4 was prepared by solid state reaction of CeO 2 and V 2 O 5 . High pressure Raman spectroscopic measurements were carried out as per experimental details given

  5. High-pressure Raman investigation of the semiconductor antimony oxide

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Aihui; Cao, Lihua [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130012 Changchun (China); Wan, Chunming [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Ma, Yanmei [Department of Agronomy, Jilin University, 130062 Changchun (China)

    2011-05-15

    The in situ high-pressure behavior of the semiconductor antimony trioxide (Sb{sub 2}O{sub 3}) has been investigated by Raman spectroscopy techniques in a diamond anvil cell up to 20 GPa at room temperature. New peaks in the external lattice mode range emerged at a pressure above 8.6-15 GPa, suggesting that the structural phase transition occurred. The pressure dependence of Raman frequencies was obtained. The band at 139 cm{sup -1} (assigned to group mode) has a pressure dependence of -0.475 cm{sup -1}/GPa and reveals significant softening at high pressure. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Normal state Raman spectra of high-Tc cuprates

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2003-01-01

    We present a microscopic theory to explain Raman spectra of high-T c cuprates R 2-x M x CuO 4 in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green function technique of Zubarev at zero wave vector and finite (room) temperature limit. Parameter dependence of Raman active phonon frequencies are studied by varying model parameters of the system i.e. the position of f-level (ε f ), the effective electron-phonon coupling strength (g), the staggered magnetic field (h 1 ), and the hybridization parameter (v). The four Raman active peaks (P 1 to P 4 ) represent the electronic states of the atomic sub-systems of the cuprate systems. They show up as phonon excitations due to the coupling of the phonon to the electrons and the anti-ferromagnetic gap. (author)

  7. Hydrostatic pressure and temperature effect on the Raman spectra of the molecular crystal 2-amine-1,3,4-thiadiazole

    Science.gov (United States)

    de Toledo, T. A.; da Costa, R. C.; Bento, R. R. F.; Pizani, P. S.

    2018-03-01

    The structural, thermal and vibrational properties of the molecular crystal 2-amine-1,3,4-thiadiazole (ATD) were investigated combining X-ray diffraction, infrared spectroscopy, Raman scattering (in solid and in solution) and thermal analysis as experimental techniques and first principle calculations based on density functional theory using PZ, BLYP in condensed-phase and B3LYP/cc-pVTZ in isolated molecule methods. The structural stability and phonon anharmonicity were also studied using Raman spectroscopy at different temperatures and hydrostatic pressures. A reasonable agreement was obtained between calculated and experimental results. The main difference between experimental and computed structural and vibrational spectra occurred in the intermolecular bond distance Nsbnd H⋯N and stretching modes of NH2. The vibrational spectra were interpreted and assigned based on group theory and functional group analysis assisted by theoretical results, which led to a more comprehensive knowledge about external and internal modes at different thermodynamic conditions. As temperature increases, it was observed the line-width increases and red-shifts, indicating a phonon anharmonicity without a temperature-induced phase transition in the range 10-413 K. However, ATD crystal undergoes a phase transition in the temperature range 413-475 K, as indicated by thermal analysis curve and Raman spectra. Furthermore, increasing pressure from ambient to 3.1 GPa, it was observed the splitting of the external Raman bands centered at 122 cm-1 (at 0.2 GPa), 112 cm-1 (1.1 GPa), 93 cm-1 (2.4 GPa) in two components as well as the appearance of new band near 50 cm-1 at 1.1 GPa, indicating a possible phase-transition. The blue-shift of the Raman bands was associated to anharmonicity of the interatomic potential caused by unit cell contraction.

  8. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  9. Polarized Raman spectroscopic study of relaxed high density amorphous ices under pressure.

    Science.gov (United States)

    Suzuki, Yoshiharu; Tominaga, Yasunori

    2010-10-28

    We have made high density amorphous ice (HDA) by the pressure-induced amorphization of hexagonal ice at 77 K and measured the volume change on isobaric heating in a pressure range between 0.1 and 1.5 GPa. The volume of HDA on heating below ∼0.35 GPa increases, while the volume of HDA on heating above ∼0.35 GPa decreases. The polarized OH-stretching Raman spectra of the relaxed HDAs are compared with that of the unannealed HDA. The relaxed HDAs are prepared at 0.2 GPa at 130 K and 1.5 GPa at 160 K. It is found that the relatively strong totally symmetric OH-stretching vibration mode around 3100 cm(-1) exists in the depolarized reduced Raman spectrum χ(VH)(") of the unannealed HDA and that its intensity rapidly decreases by relaxation. The χ(VH)(") profiles of the relaxed HDA are similar to those of liquid water. These results indicate that the HDA reaches a nearly equilibrium state by annealing and the intrinsic state of HDA relates to a liquid state. The pressure-volume curve of the relaxed HDA at 140 K seems to be smooth in the pressure range below 1.5 GPa.

  10. First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa

    International Nuclear Information System (INIS)

    Liu Lei; Lv Chao-Jia; Yi Li; Liu Hong; Du Jian-Guo; Zhuang Chun-Qiang

    2015-01-01

    The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants (a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si–O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507–511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177–212]. The most striking changes are of inter-tetrahedral O–O distances and Si–O–Si angles. The volume of the tetrahedron decreased by 0.9% (from 0 to 5 GPa), which suggests that it is relatively rigid. Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the tetrahedron and the changes in the Si–O–Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa. The pressure derivatives (dν i /dP) of the 12 Raman frequencies are obtained at 0 GPa–5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth. (paper)

  11. Raman Spectra from Pesticides on the Surface of Fruits

    International Nuclear Information System (INIS)

    Zhang, P X; Zhou Xiaofang; Cheng, Andrew Y S; Fang Yan

    2006-01-01

    Raman spectra of several vegetables and fruits were studied by micro-Raman spectrometer (514.5 nm) and Near-infrared Fourier Transform Raman spectrometer (FTRaman). It is shown that at 514.5 nm excitation, most of the spectra are from that of carotene with some very strong fluorescence in some cases. While at 1064 nm wavelength excitation, the spectra from the different samples demonstrate different characteristic Raman spectra without fluorescence. We discuss the spectroscopic difference by the two excitation wavelengths, and the application of Raman spectra for detection of pesticides left on the surface of vegetables and fruits. Raman spectra of fruits and pesticides were successfully recorded, and using the FT-Raman spectra the pesticides left on the surface of the fruits can be detected conveniently

  12. In-situ Raman spectroscopic study of aluminate speciation in H2O-KOH solutions at high pressures and temperatures

    Science.gov (United States)

    Mookherjee, M.; Keppler, H.; Manning, C. E.

    2009-12-01

    The solubility of corundum in H2O is low even at high pressure and temperatures. Therefore, it is commonly assumed that alumina remains essentially immobile during fluid-rock interaction. However, field and experimental evidence suggests that alumina solubility is strongly enhanced in the presence of silica as well as in alkaline solutions. In order to understand what controls the alumina solubility and how it is enhanced as a function of fluid composition, we conducted Raman-spectroscopic study of Al speciation in aqueous fluids at high pressure and temperature. Experiments were carried out in an externally heated hydrothermal diamond-anvil cell equipped with low-fluorescence diamonds and iridium gaskets. Raman spectra were collected with a Horiba Jobin-Yvon Labram HR spectrometer using the 514 nm line of an argon laser for excitation. In a first series of experiments, the speciation of alumina was studied in a 1 M KOH solution in equilibrium with corundum up to 700 oC and ~1 GPa. The Raman spectra show a prominent band at 618 cm-1 interpreted to arise from Al-O stretching vibrations associated with the tetrahedral [Al(OH)4]1- species. At higher pressure and temperature, an additional vibrational mode appears in the spectra at 374 cm-1 (full width at half maximum ~ 20 cm-1). This feature is tentatively attributed to [(OH)3Al-O-Al(OH)3]2- (Moolenaar et al. 1970, Jour. Phys. Chem., 74, 3629-3636). No evidence for KAl(OH)4 was observed, consistent with piston cylinder experiments at 700 oC and 1 GPa (Wohlers & Manning, 2009, Chem. Geol., 262, 310). Upon cooling from high-pressure and high temperature, slow kinetics of corundum regrowth lead to oversaturation in the solutions, as evidenced by sharp peaks at 930 and 1066 cm-1 observed upon cooling. These features are probably due to colloidal aluminum hydroxide. The results provide the first evidence for aluminate polymerization at high pressure and temperature, and offer insights into the causes for enhancement of

  13. High pressure Raman scattering study on the phase stability of LuVO4

    International Nuclear Information System (INIS)

    Rao, Rekha; Garg, Alka B.; Sakuntala, T.; Achary, S.N.; Tyagi, A.K.

    2009-01-01

    High pressure Raman spectroscopic investigations have been carried out on rare earth orthovanadate LuVO 4 upto 26 GPa. Changes in the Raman spectrum around 8 GPa across the reported zircon to scheelite transition are investigated in detail and compared with those observed in other vanadates. Co-existence of the zircon and scheelite phases is observed over a pressure range of about 8-13 GPa. The zircon to scheelite transition is irreversible upon pressure release. Subtle changes are observed in the Raman spectrum above 16 GPa which could be related to scheelite ↔ fergusonite transition. Pressure dependencies of the Raman active modes in the zircon and the scheelite phases are reported. - Graphical abstract: Study of scheelite-fergusonite transition in RVO 4 by Raman spectroscopy is rare. Here we report Raman spectroscopic investigations of LuVO 4 at high pressure to obtain insight into nature of post-scheelite phases.

  14. Effect of hormonal variation on in vivo high wavenumber Raman spectra improves cervical precancer detection

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, A.; Huang, Zhiwei

    2012-03-01

    Raman spectroscopy is a unique analytical probe for molecular vibration and is capable of providing specific spectroscopic fingerprints of molecular compositions and structures of biological tissues. The aim of this study is to improve the classification accuracy of cervical precancer by characterizing the variations in the normal high wavenumber (HW - 2800-3700cm-1) Raman spectra arising from the menopausal status of the cervix. A rapidacquisition near-infrared (NIR) Raman spectroscopic system was used for in vivo tissue Raman measurements at 785 nm excitation. Individual HW Raman spectrum was measured with a 5s exposure time from both normal and precancer tissue sites of 15 patients recruited. The acquired Raman spectra were stratified based on the menopausal status of the cervix before the data analysis. Significant differences were noticed in Raman intensities of prominent band at 2924 cm-1 (CH3 stretching of proteins) and the broad water Raman band (in the 3100-3700 cm-1 range) with a peak at 3390 cm-1 in normal and dysplasia cervical tissue sites. Multivariate diagnostic decision algorithm based on principal component analysis (PCA) and linear discriminant analysis (LDA) was utilized to successfully differentiate the normal and precancer cervical tissue sites. By considering the variations in the Raman spectra of normal cervix due to the hormonal or menopausal status of women, the diagnostic accuracy was improved from 71 to 91%. By incorporating these variations prior to tissue classification, we can significantly improve the accuracy of cervical precancer detection using HW Raman spectroscopy.

  15. Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water.

    Science.gov (United States)

    Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2017-12-11

    355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

  16. Raman spectra of MgSiO3 . 10% Al2O3-perovskite at various pressures and temperatures

    International Nuclear Information System (INIS)

    Liu Lingun; Irifune, T.

    1995-01-01

    Variations of Raman spectra of MgSiO 3 . 10% Al 2 O 3 -perovskite were investigated up to about 270 kbar at room temperature and in the range 108-425 K at atmospheric pressure. Like MgSiO 3 -perovskite, the Raman frequencies of MgSiO 3 . 10% Al 2 O 3 -perovskite increase nonlinearly with increasing pressure and decrease linearly with increasing temperature within the experimental uncertainties and the range investigated. A comparison of these data with those of MgSiO 3 -perovskite suggests that MgSiO 3 . 10% Al 2 O 3 -perovskite is slightly more compressible than MgSiO 3 -perovskite, and that the volume thermal expansion for MgSiO 3 . 10% Al 2 O 3 -perovskite is also slightly greater than that for MgSiO 3 -perovskite. (orig.)

  17. Raman spectra of ordinary and deuterated liquid ammonias; Spectres Raman des ammoniacs ordinaire et deuteries liquides

    Energy Technology Data Exchange (ETDEWEB)

    Ceccaldi, M; Leicknam, J P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, direction des materiaux et des combustibles nucleaires, departement de physico-chimie, service des isotopes stables, service de spectrometrie de masse

    1968-12-01

    The three deuterated ammonia molecules, as well as ordinary ammonia, have been examined in the liquid state by Raman spectroscopy using a high-pressure cell described elsewhere. This work thus completes the infrared spectrometry studies. We have examined the NH and ND valency absorption regions. The polarization measurements and isotope effect considerations make it possible to confirm most of the attributions recently proposed for interpreting the infrared spectra of the four isotopic molecules: the apparent disagreement between the NH{sub 3} and ND{sub 3} spectra obtained in this region by infrared and Raman spectroscopy is discussed: by the first technique the number of bands in the spectra corresponds well to the theoretically expected number, and the relative intensities conform more or less to expectations; the Raman spectra however have a strong supplementary band in the same region, produced by a Fermi resonance; it is possible to explain, from theoretical considerations, why this resonance appears so easily in the Raman spectrum, whereas it is detected in the infrared only by a very detailed analysis of the effects of solvents on the ammonia. (authors) [French] Les trois ammoniacs deuteries, ainsi que l'ammoniac ordinaire, sont examines a l'etat liquide par spectrometrie Raman, a l'aide d'une cuve haute pression decrite par ailleurs. Ce travail complete donc les etudes effectuees par spectrometrie infra-rouge. Nous avons examine les regions d'absorption de valence NH et ND. Les mesures de polarisation et des considerations sur les effets isotopiques permettent de confirmer la plupart des attributions proposees recemment pour interpreter les spectres infra-rouges des quatre molecules isotopiques: on discute egalement l'apparent desaccord entre les spectres de NH{sub 3} et de ND{sub 3} obtenus dans cette region par infra-rouge et Raman: par la premiere technique le nombre de bandes relevees sur les spectres correspond bien au nombre theoriquement attendu et

  18. Vibronic spectra of Gd3+ in metaphosphate glasses: Comparison with Raman and infrared spectra

    International Nuclear Information System (INIS)

    Hall, D.W.; Brawer, S.A.; Weber, M.J.

    1982-01-01

    Vibronic sidebands associated with the 6 P/sub 7/2/→ 8 S/sub 7/2/ transition of Gd 3+ -doped metaphosphate glasses are observed using line-narrowed fluorescence techniques. Glasses having metal cations of different mass and charge (La,Al,Mg,Ba) are examined. Vibronic spectra, which probe vibrations about the rare-earth element site, are compared with polarized Raman scattering data and the infrared dielectric constant obtained from near-normal reflectance measurements. Results indicate that in metaphosphate glasses vibronic selection rules are similar to HV (vertical height) Raman selection rules. The wavelengths and relative intensities of peaks in the high-frequency portion of the vibronic spectra change with respect to corresponding peaks in the Raman spectra when the mass and/or charge of Gd 3+ differs significantly from that of the metal cation

  19. Raman spectra of graphene ribbons

    International Nuclear Information System (INIS)

    Saito, R; Furukawa, M; Dresselhaus, G; Dresselhaus, M S

    2010-01-01

    Raman spectra of graphene nanoribbons with zigzag and armchair edges are calculated within non-resonant Raman theory. Depending on the edge structure and polarization direction of the incident and scattered photon beam relative to the edge direction, a symmetry selection rule for the phonon type appears. These Raman selection rules will be useful for the identification of the edge structure of graphene nanoribbons.

  20. Study of Raman Spectroscopy on Phase Relations of CaCO3 at High Temperature and High Pressure

    Science.gov (United States)

    Li, M.; Zheng, H.; Duan, T.

    2006-05-01

    Laser Raman Spectroscopy was used to study phase relations between calcite I, calcite II and aragonite at high pressure and high temperature. The experiment was performed in an externally heated Basselt type diamond anvil cell (DAC). Natural calcite (calcite I) was used as starting mineral. The sample and a small chip of quartz were loaded in a cavity (300 μm in diameter and 250 μm in depth) in a rhenium gasket. The Na2CO3 aqueous solution of 1mol/L was also loaded as a pressure medium to yield hydrostatic pressure. The whole assembly was pressurized first and then heated stepwise to 400°C. Pressure and temperature in the chamber were determined by the shift of Raman band at 464 cm-1 of quartz and by NiCr-NiSi thermocouple, respectively. The Raman spectra were measured by a Renishaw 1000 spetrometer with 50 mW of 514.5nm argon-ion laser as the excitation light source. The slit width was 50 μm and the corresponding resolution was ±1 cm-1. From the experiments, we observed the phase transitions between calcite I and calcite II, calcite I and aragonite, calcite II and aragonite, respectively. Our data showed a negative slope for the boundary between calcite I and calcite II, which was similar to Bridgman's result, although Hess et al. gave a positive slope. The boundary with a negative slope for calcite II and aragonite was also defined, which had never been done before. And all these data can yield a more complete phase diagram of CaCO3 than the studies of Hess et al. and Suito et al.Reference:Bridgeman P. W.(1939) Journal: American Journal of Science, Vol. 237, p. 7-18Bassett W. A. et al. (1993) Journal: Review of Scientific Instruments, Vol. 64, p. 2340-2345Suito K. et al. (2001) Journal: American Mineralogist, Vol. 86, p. 997- 1002Hess N. J. et al. (1991) In A. K. Singh, Ed., Recent Trends in High Pressure Research; Proc. X IIIth AIRAPT International Conference on High Pressure Science and Technology, p. 236-241. Oxford & IBH Publishing Co. Pvt, Ltd., New

  1. Raman spectra of filled carbon nanotubes

    International Nuclear Information System (INIS)

    Bose, S.M.; Behera, S.N.; Sarangi, S.N.; Entel, P.

    2004-01-01

    The Raman spectra of a metallic carbon nanotube filled with atoms or molecules have been investigated theoretically. It is found that there will be a three way splitting of the main Raman lines due to the interaction of the nanotube phonon with the collective excitations (plasmons) of the conduction electrons of the nanotube as well as its coupling with the phonon of the filling material. The positions and relative strengths of these Raman peaks depend on the strength of the electron-phonon interaction, phonon frequency of the filling atom and the strength of interaction of the nanotube phonon and the phonon of the filling atoms. Careful experimental studies of the Raman spectra of filled nanotubes should show these three peaks. It is also shown that in a semiconducting nanotube the Raman line will split into two and should be observed experimentally

  2. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT-molecular orbi......Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  3. Electronic Raman spectra in iron-based superconductors with two-orbital model

    International Nuclear Information System (INIS)

    Lu Hongyan; Wang Da; Chen San; Wang Wei; Gong Pifeng

    2011-01-01

    Electronic Raman spectra were calculated in orbital space in a microscopic theory. Both Raman spectra and spectra weight were presented. Raman spectra for the gap symmetries are different from each other. The results can help decide the gap symmetry by comparing with experiments. Electronic Raman spectra in iron-based superconductors with two-orbital model is discussed. In the orbital space, some possible pairing symmetries of the gap are selected. To further discriminate them, electronic Raman spectra and spectra weight at Fermi surface (FS) which helps understand the Raman spectra are calculated in each case. From the low energy threshold, the number of Raman peaks, and the low frequency power law behavior, we can judge whether it is full gap or nodal gap, and even one gap or multi-gaps. The results provide useful predictions for comparison with experiments.

  4. Raman spectra of lignin model compounds

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Ashok K. Pandey; Sally A. Ralph; Kolby C. Hirth; Rajai H. Atalla

    2005-01-01

    To fully exploit the value of Raman spectroscopy for analyzing lignins and lignin containing materials, a detailed understanding of lignins’ Raman spectra needs to be achieved. Although advances made thus far have led to significant growth in application of Raman techniques, further developments are needed to improve upon the existing knowledge. Considering that lignin...

  5. Raman spectra of thiolated arsenicals with biological importance.

    Science.gov (United States)

    Yang, Mingwei; Sun, Yuzhen; Zhang, Xiaobin; McCord, Bruce; McGoron, Anthony J; Mebel, Alexander; Cai, Yong

    2018-03-01

    Surface enhanced Raman scattering (SERS) has great potential as an alternative tool for arsenic speciation in biological matrices. SERS measurements have advantages over other techniques due to its ability to maintain the integrity of arsenic species and its minimal requirements for sample preparation. Up to now, very few Raman spectra of arsenic compounds have been reported. This is particularly true for thiolated arsenicals, which have recently been found to be widely present in humans. The lack of data for Raman spectra in arsenic speciation hampers the development of new tools using SERS. Herein, we report the results of a study combining the analysis of experimental Raman spectra with that obtained from density functional calculations for some important arsenic metabolites. The results were obtained with a hybrid functional B3LYP approach using different basis sets to calculate Raman spectra of the selected arsenicals. By comparing experimental and calculated spectra of dimethylarsinic acid (DMA V ), the basis set 6-311++G** was found to provide computational efficiency and precision in vibrational frequency prediction. The Raman frequencies for the rest of organoarsenicals were studied using this basis set, including monomethylarsonous acid (MMA III ), dimethylarsinous acid (DMA III ), dimethylmonothioarinic acid (DMMTA V ), dimethyldithioarsinic acid (DMDTA V ), S-(Dimethylarsenic) cysteine (DMA III (Cys)) and dimethylarsinous glutathione (DMA III GS). The results were compared with fingerprint Raman frequencies from As─O, As─C, and As─S obtained under different chemical environments. These fingerprint vibrational frequencies should prove useful in future measurements of different species of arsenic using SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Amans, C.; Hébert, P., E-mail: philippe.hebert@cea.fr; Doucet, M. [CEA, DAM, Le RIPAULT, F-37620 Monts (France); Resseguier, T. de [Institut P' , UPR CNRS 3346, ENSMA, Université de Poitiers, F-86961 Futuroscope, Chasseneuil (France)

    2015-01-14

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  7. RAMAN-SPECTRA OF HUMAN DENTAL CALCULUS

    NARCIS (Netherlands)

    TSUDA, H; ARENDS, J

    1993-01-01

    Raman spectra of human dental calculus have been observed for the first time by use of micro-Raman spectroscopy. The spectral features of calculus were influenced easily by heating caused by laser irradiation. Therefore, the measurements were carried out at relatively low power (5 mW, 1-mu m spot

  8. High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4

    Science.gov (United States)

    Zhai, Shuangmeng; Yin, Yuan; Shieh, Sean R.; Shan, Shuangming; Xue, Weihong; Wang, Ching-Pao; Yang, Ke; Higo, Yuji

    2016-04-01

    In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0' = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.

  9. L-tyrosine hydrochloride crystals under high pressures via Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C.A.A.S.; Facanha Filho, P.F.; Santos, A.O. dos; Ribeiro, L.H.L.; Victor, F.M.S.; Abreu, D.C.; Carvalho, J.O.; Soares, R.A.; Sousa, J.C.F.; Lima, R.C.; Cavaignac, A.O. [Universidade Federal do Maranhao (UFMA), MA (Brazil)

    2016-07-01

    Full text: Amino acid single crystals have been attracted researchers in recent years due to their potential applications as second harmonic generator. The goal of this work is to produce semi organic single crystals of L-tyrosine hydrochloride (LTHCl) and verify the behavior of their vibrational normal modes under high pressures and the stability of material in these conditions extremes. The LTHCl single crystals were produced for solubilization of amino acid L-tyrosine in hydrochloric acid by slow evaporation technique of the solvent in room temperature. The technique of X-ray diffraction (XRD) and the refinement of structure by the Rietveld method were used to confirm the crystal structure. The LTHCl crystal belongs to the monoclinic crystal system having two molecules per unit cell. The refinement by the Rietveld method showed good results with Rwp = 8.49% and Rp = 6.29% with S = 1.13. Raman scattering measurements as a function of pressure was performed in a piece of crystal from the ambient pressure to 7.2 GPa and Nujol was used as pressure medium. It was observed the appearance of a weak band around 163 cm-1 between pressures of 0.5 and 1.0 GPa, which characterize an phase transition undergone by the crystal. Moreover, this band gains intensity as pressure increases while gradual decreasing relative intensity of the very strong band at 123 cm-1 for all range of pressure also was observed. In fact, almost all bands of the spectra have undergone strong decreasing up to 7.2 GPa. However, on release of pressure the crystal has reached the original phase again. Therefore, the results showed this material cannot be suitable for the application (NLO) in this range of pressure. (author)

  10. High-temperature and high-pressure cubic zirconia anvil cell for Raman spectroscopy.

    Science.gov (United States)

    Chen, Jinyang; Zheng, Haifei; Xiao, Wansheng; Zeng, Yishan

    2003-10-01

    A simple and inexpensive cubic zirconia anvil cell has been developed for the performance of in situ Raman spectroscopy up to the conditions of 500 degrees C and 30 kbar pressure. The design and construction of this cell are fully described, as well as its applications for Raman spectroscopy. Molybdenum heater wires wrapped around ceramic tubes encircling two cubic zirconia anvils are used to heat samples, and the temperatures are measured and controlled by a Pt-PtRh thermocouple adhered near the sample chamber and an intelligent digital control apparatus. With this cell, Raman spectroscopic measurements have been satisfactorily performed on water at 6000 bar pressure to 455 degrees C and on ice of room temperature to 24 kbar, in which the determinations of pressures make use of changes of the A1 Raman modes of quartz and the shift of the sharpline (R-line) luminescence of ruby, respectively.

  11. Raman spectra of SDW superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C. [Condensed Matter Physics Group, Department of Physics, Government Science College, Chatrapur, Orissa 761 020 (India)]. E-mail: gcr@iopb.res.in; Bishoyi, K.C. [P.G. Department of Physics, F.M. College (Autonomous), Balasore, Orissa 756 001 (India); Behera, S.N. [Institute of Physics, Bhubaneswar 751 005 (India)

    2005-03-15

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations.

  12. Raman spectra of SDW superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Bishoyi, K.C.; Behera, S.N.

    2005-01-01

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations

  13. High-pressure Raman spectroscopy of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Zalden, Peter [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen (Germany); JARA – Fundamentals of Future Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, PULSE Institute, Menlo Park, California 94025 (United States)

    2013-11-04

    We used high-pressure Raman spectroscopy to study the evolution of vibrational frequencies of the phase change materials (PCMs) Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 4}, and SnSb{sub 2}Te{sub 4}. We found that the critical pressure for triggering amorphization in the PCMs decreases with increasing vacancy concentration, demonstrating that the presence of vacancies, rather than differences in the atomic covalent radii, is crucial for pressure-induced amorphization in PCMs. Compared to the as-deposited amorphous phase, the pressure-induced amorphous phase has a similar vibrational spectrum but requires much lower laser power to transform into the crystalline phase, suggesting different kinetics of crystallization, which may have implications for applications of PCMs in non-volatile data storage.

  14. Boron-purity-dependent Raman spectra of CaB6

    International Nuclear Information System (INIS)

    Song, M.; Yang, I. S.; Kim, J. Y.; Cho, B. K.

    2006-01-01

    We report significant differences in the Raman spectra of two different kinds of CaB 6 single crystals grown from boron with a purity of 99.9 % (3N) or 99.9999 % (6N). Our Raman spectra of CaB 6 (3N) show peaks around 781 (T 2g ), 1141 (E g ), and 1283 cm -1 (A 1g ), and they are very similar to previous Raman spectra of CaB 6 . The E g mode shows a characteristic double-peak feature due to an additional weak broad peak centered around 1158 cm -1 . However, the Raman spectra of CaB 6 (6N) show sharp peaks around 771 (T 2g ), 1137 (E g ), and 1266 cm -1 (A 1g ). The peak frequencies are down shifted as much as ∼17 cm -1 . In addition, no additional peak feature is observed for the E g mode so that the mode is symmetric in the case of CaB 6 (6N). The X-ray powder diffraction patterns for both CaB 6 (3N) and CaB 6 (6N) show that the lattice parameters are essentially the same. The majority of the impurity in the 99.9 %-pure (3N) boron is C. Thus, we doped CaB 6 (6N) with C, making Ca(B 0.995 C 0.005 ) 6 , and looked for differences in the Raman spectra. The Raman spectra of Ca(B 0.995 C 0.005 ) 6 are nearly identical to those of CaB 6 (6N), indicating that the differences between the Raman spectra of CaB 6 (3N) and CaB 6 (6N) are not due to a C impurity. The Raman results show that the presence of impurities, not the amount of them, is enough to trigger local symmetry breaking in CaB 6 . The broadening of T 2g , the additional E g2 mode and the asymmetry of A 1g in CaB 6 (3N) can be understood in terms of the symmetry of the arrangements of the boron octahedra lowered by local symmetry breaking.

  15. [Micro-Raman and fluorescence spectra of several agrochemicals].

    Science.gov (United States)

    Xiao, Yi-lin; Zhang, Peng-xiang; Qian, Xiao-fan

    2004-05-01

    Raman and fluorescence spectra from several agrochemicals were measured, which are sold for the use in vegetables, fruits and grains. Characteristic vibration Raman peaks from some of the agrochemicals were recorded, hence the spectra can be used for their identification. Other marketed agrochemicals demonstrated strong fluorescence under 514.5 nm excitation. It was found that the fluorescence spectra of the agrochemicals are very different. According to these results one can detect the trace amount of agrochemicals left on the surface of fruits, vegetables and grains in situ and conveniently.

  16. Estimating and suppressing background in Raman spectra with an artificial neural network

    DEFF Research Database (Denmark)

    Sigurdsson, Sigurdur; Larsen, Jan; Philipsen, Peter Alshede

    2003-01-01

    In this report we address the problem of skin fluorescence in feature extraction from Raman spectra of skin lesions. We apply a highly automated neural network method for suppressing skin fluorescence from Raman spectrum of skin lesions before dimension reduction with principal components analysi...

  17. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa

    Directory of Open Access Journals (Sweden)

    JianJun Jiang

    2016-03-01

    Full Text Available The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC, to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E 2 g 1 ,A1g, and 2LA(M. Over our experimental temperature and pressure range (300–600 K and 1 atm−18.5 GPa, the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3–4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  18. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa)

    Science.gov (United States)

    Jiang, JianJun; Li, HePing; Dai, LiDong; Hu, HaiYing; Zhao, ChaoShuai

    2016-03-01

    The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC), to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E2 g 1 ,A1g, and 2LA(M)). Over our experimental temperature and pressure range (300-600 K and 1 atm-18.5 GPa), the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3-4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  19. Raman Spectra of Nitrogen, Carbon Dioxide, and Hydrogen in a Methane Environment

    Science.gov (United States)

    Petrov, D. V.; Matrosov, I. I.; Sedinkin, D. O.; Zaripov, A. R.

    2018-01-01

    Changes in the Raman spectra of N2, H2, and CO2 are studied in the range of 200-3800 cm-1 depending on the concentration of surrounding CH4 molecules at a fixed medium pressure of 25 atm and temperature of 300 K. It has been found that changes in the spectral characteristics of purely rotational H2 lines in a CH4 medium are negligible, while the Q-branches of the v 1/2 v 2 Fermi dyad in CO2 become narrower and wavenumbers of its high-frequency component and v 1 band of N2 decrease. In addition, under these conditions, the ratio of intensities of the CO2 Fermi dyad Q-branch varies in proportion to the concentration of surrounding molecules of CH4. The obtained data will be used in diagnosing the composition of natural gas using Raman spectroscopy.

  20. High-pressure Raman and optical absorption studies on lead pyroniobate (Pb2Nb2O7) and pressure-induced phase transitions

    International Nuclear Information System (INIS)

    Jayaraman, A.; Kourouklis, G.A.; Cooper, A.S.; Espinosa, G.P.

    1990-01-01

    High-pressure Raman scattering and optical absorption studies have been carried out on lead pyroniobate (Pb 2 Nb 2 O 7 ) up to 33 GPa, using a gasketed diamond anvil cell. The Raman study reveals the occurrence of two, possibly three, pressure-induced phase changes; a rather subtle change is indicated near 4.5 GPa. The transition near 13 GPa is attributed to a structural transition from the rhombohedral to the cubic pyrochlore structure. The third phase change occurs near 20 GPa. From the broad Raman feature that is observed at about 800 cm -1 , it is concluded that the system turns amorphous at pressures above 20 GPa. The amorphous phase recrystallizes to the original rhombohedral phase, on release of pressure. The broad Raman peaks of the recrystallized phase indicate a high degree of disorder in the material. Lead pyroniobate turns deep red near 30 GPa, from light yellow at ambient pressure. Semi quantitative absorption measurements show that the energy gap shifts red at a rate of 30 meV/GPa. This shift is attributed to the downward motion of the 5d (es) conduction band of Pb

  1. Excited-state Raman spectroscopy with and without actinic excitation: S1 Raman spectra of trans-azobenzene

    International Nuclear Information System (INIS)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-01-01

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S 1 and S 0 spectra of trans-azobenzene in n-hexane. The S 1 spectra were also measured conventionally, upon nπ* (S 0 → S 1 ) actinic excitation. The results are discussed and compared to earlier reports

  2. High-pressure X-ray diffraction, Raman, and computational studies of MgCl2 up to 1 Mbar: Extensive pressure stability of the β-MgCl2 layered structure.

    Science.gov (United States)

    Stavrou, Elissaios; Yao, Yansun; Zaug, Joseph M; Bastea, Sorin; Kalkan, Bora; Konôpková, Zuzana; Kunz, Martin

    2016-08-12

    Magnesium chloride (MgCl2) with the rhombohedral layered CdCl2-type structure (α-MgCl2) has been studied experimentally using synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy using a diamond-anvil cell up to 100 GPa at room temperature and theoretically using first-principles density functional calculations. The results reveal a pressure-induced second-order structural phase transition to a hexagonal layered CdI2-type structure (β-MgCl2) at 0.7 GPa: the stacking sequence of the Cl anions are altered resulting in a reduction of the c-axis length. Theoretical calculations confirm this phase transition sequence and the calculated transition pressure is in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phase. According to our experimental results MgCl2 remains in a 2D layered phase up to 100 GPa and further, the 6-fold coordination of Mg cations is retained. Theoretical calculations of relative enthalpy suggest that this extensive pressure stability is due to a low enthalpy of the layered structure ruling out kinetic barrier effects. This observation is unusual, as it contradicts with the general structural behavior of highly compressed AB2 compounds.

  3. Temperature Dependence of Polarized Low Wavenumber Raman Spectra of Aminopropylsilanetriol Polymer

    International Nuclear Information System (INIS)

    V, Volovsek; L, Bistrcic; K, Furic; V, Daanic; I, Movre Sapic

    2006-01-01

    Low wavenumber polarized Raman spectra of aminopropylsilanetriol (APST) polymer deposited on PVC substrate were measured in the temperature range from 300 K to 78 K. In the low wavenumber Raman spectra of these samples a very strong Bose band was observed. The best results in modeling the low wavenumber Raman spectra were achieved with the exponential correlation function of disorder G dis (ν) = exp(-r/R c )using three contributions: transversal and longitudinal acoustic phonons and molecular vibration. Results suggest medium range ordered ladder structure, stacked in layers with different orientations of ladders

  4. Modeling and measurements of XRD spectra of extended solids under high pressure

    Science.gov (United States)

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  5. Raman Spectra of Nanodiamonds: New Treatment Procedure Directed for Improved Raman Signal Marker Detection

    Directory of Open Access Journals (Sweden)

    Raoul R. Nigmatullin

    2013-01-01

    Full Text Available Detonation nanodiamonds (NDs have shown to be promising agents in several industries, ranging from electronic to biomedical applications. These NDs are characterized by small particle size ranging from 3 to 6 nm, while having a reactive surface and a stable inert core. Nanodiamonds can exhibit novel intrinsic properties such as fluorescence, high refractive index, and unique Raman signal making them very attractive imaging agents. In this work, we used several nanodiamond preparations for Raman spectroscopic studies. We exposed these nanodiamonds to increasing temperature treatments at constant heating rates (425–575°C aiding graphite release. We wanted to correlate changes in the nanodiamond surface and properties with Raman signal which could be used as a detection marker. These observations would hold potential utility in biomedical imaging applications. First, the procedure of optimal linear smoothing was applied successfully to eliminate the high-frequency fluctuations and to extract the smoothed Raman spectra. After that we applied the secondary Fourier transform as the fitting function based on some significant set of frequencies. The remnant noise was described in terms of the beta-distribution function. We expect this data treatment to provide better results in biomolecule tracking using nanodiamond base Raman labeling.

  6. Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications

    KAUST Repository

    Magnotti, G.

    2015-05-09

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  7. Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications

    KAUST Repository

    Magnotti, G.; KC, Utsav; Varghese, P.L.; Barlow, R.S.

    2015-01-01

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  8. High-pressure Raman investigations of phase transformations in pentaerythritol (C(CH sub 2 OH) sub 4)

    CERN Document Server

    Bhattacharya, T

    2002-01-01

    Our high-pressure Raman scattering experiments on pentaerythritol (C(CH sub 2 OH) sub 4) show that this compound undergoes at least three phase transformations up to 25 GPa. Splitting of various modes at approx 6.3, approx 8.2 and 10 GPa suggests that these phase transformations result in lowering of crystalline symmetry. A very small discontinuous change in slope of most of the Raman-active modes is observed at 0.3 GPa. However, no other signature of a phase transition was observed at this pressure. The observed correlation of the pressures for the onset of the two phase transformations with the limiting values of the distances between various non-bonded atoms in the parent phase suggests that the molecular rearrangements across the phase transformations are not very drastic. In addition, our earlier Fourier transform infrared and present Raman investigations indicate that high-pressure compression leads to increase in strength of the hydrogen bond present in this compound.

  9. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    Science.gov (United States)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  10. Raman spectra studies of dipeptides

    International Nuclear Information System (INIS)

    Blanchard, Simone.

    1977-10-01

    This work deals with the homogenous and heterogeneous dipeptides derived from alanine and glycine, in the solid state or in aqueous solutions, in the zwitterions or chlorhydrates form. The Raman spectra comparative study of these various forms of hydrogenated or deuterated compounds allows to specify some of the attributions which are necessary in the conformational study of the like tripeptides. These compounds contain only one peptidic group; therefore there is no possibility of intramolecular hydrogen bond which caracterise vibrations of non bonded peptidic groups and end groups. Infrared spectra of solid dipeptides will be presented and discussed in the near future [fr

  11. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  12. Comparison of the Raman spectra of ion irradiated soot and collected extraterrestrial carbon

    Science.gov (United States)

    Brunetto, R.; Pino, T.; Dartois, E.; Cao, A.-T.; d'Hendecourt, L.; Strazzulla, G.; Bréchignac, Ph.

    2009-03-01

    We use a low pressure flame to produce soot by-products as possible analogues of the carbonaceous dust present in diverse astrophysical environments, such as circumstellar shells, diffuse interstellar medium, planetary disks, as well as in our own Solar System. Several soot samples, displaying an initial chemical diversity from aromatic to aliphatic dominated material, are irradiated with 200-400 keV H +, He +, and Ar ++ ions, with fluences comprised between 10 14 and 10 16 ions/cm 2, to simulate expected radiation induced modification on extraterrestrial carbon. The evolution of the samples is monitored using Raman spectroscopy, before, during, and after irradiation. A detailed analysis of the first- and second-order Raman spectra is performed, using a fitting combination of Lorentzian and/or Gaussian-shaped bands. Upon irradiation, the samples evolve toward an amorphous carbon phase. The results suggest that the observed variations are more related to vacancy formation than ionization processes. A comparison with Raman spectra of extraterrestrial organic matter and other irradiation experiments of astrophysically relevant carbonaceous materials is presented. The results are consistent with previous experiments showing mostly amorphization of various carbonaceous materials. Irradiated soots have Raman spectra similar to those of some meteorites, IDPs, and Comet Wild 2 grains collected by the Stardust mission. Since the early-Sun expected irradiation fluxes sufficient for amorphization are compatible with accretion timescales, our results support the idea that insoluble organic matter (IOM) observed in primitive meteorites has experienced irradiation-induced amorphization prior to the accretion of the parent bodies, emphasizing the important role played by early solar nebula processing.

  13. [Raman spectra of monkey cerebral cortex tissue].

    Science.gov (United States)

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  14. Raman studies of pressure and temperature induced phase transformations in calcite

    International Nuclear Information System (INIS)

    Exarhos, G.J.; Hess, N.J.

    1992-01-01

    This patent describes phase stability in the calcium carbonate system investigated as a simultaneous function of pressure and temperature up to 40 kbar and several hundred degrees Kelvin. Micro-Raman techniques were used to interrogate samples constrained within a resistively heated diamond anvil cell. Measured spectra allow unequivocal identification of crystalline phases and are used to refine the P,T phase diagram. Calcium carbonate was found to exhibit both reversible and irreversible transformation phenomena among the four known phases which exist under these conditions. Time-dependent Raman intensity variations as the material is perturbed from its equilibrium state allow real-time kinetics measurements to be performed. Evidence suggests that the order of certain observed transformations may be pressure dependent. The utility of Raman spectroscopy to follow transformation phenomena and to estimate fundamental thermophysical properties from the stress dependence of vibrational mode frequencies is demonstrated

  15. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  16. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  17. Transport properties and Raman spectra of impurity substituted MgB2

    International Nuclear Information System (INIS)

    Masui, T.

    2007-01-01

    Recent advances in the study of MgB 2 are reviewed, with focus on the transport properties and Raman scattering measurements for impurity substituted crystals. Carbon and Aluminium substitution change band filling, introduce intraband and interband scattering. These effects are seen in the temperature dependence of resistivity, Hall coefficients, and phonon peak of Raman spectra. Manganese substitution introduces magnetic scattering, that increases resistivity but gives little change in Raman spectra. The effect of disorder in neutron irradiated samples is also discussed

  18. Resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers, E-mail: amkelley@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States); Dai, Quanqin; Jiang, Zhong-jie; Baker, Joshua A.; Kelley, David F. [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States)

    2013-08-30

    Highlights: ► Very similar resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals. ► First absolute resonance Raman cross-sections reported for CdSe nanocrystals. ► LO overtones suggest slightly stronger electron–phonon coupling in wurtzite form. - Abstract: Resonance Raman spectra and absolute differential Raman cross-sections have been measured for CdSe nanocrystals in both the wurtzite and zincblende crystal forms at four excitation wavelengths from 457.9 to 514.5 nm. The frequency and bandshape of the longitudinal optical (LO) phonon fundamental is essentially identical for both crystal forms at each excitation wavelength. The LO phonon overtone to fundamental intensity ratio appears to be slightly higher for the wurtzite form, which may suggest slightly stronger exciton–phonon coupling from the Fröhlich mechanism in the wurtzite form. The LO fundamental Raman cross-sections are very similar for both crystal forms at each excitation wavelength.

  19. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  20. Infrared spectra of hexamethylbenzene—tetracyanoethylene complexes at high pressures

    Science.gov (United States)

    Yamada, Haruka; Saheki, Masao

    Infrared spectra of hexamethylbenzene(HMB)—tetracyanoethylene(TCNE), 1:1 and 2:1, complexes were measured under high pressures, 11˜4,000 bar. It was found that the CC stretching (A g) band of TCNE became much stronger at high pressures than at 1 bar and that the intensity increase of this band was especially large for both of the complexes. Based on these facts the strong appearance of the CC band at 1 bar, which is inconsistent with the symmetry consideration derived from X-ray analysis, can be discussed.

  1. High-pressure behavior of amorphous selenium from ultrasonic measurements and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.; Liu, X. R.; Hong, S. M., E-mail: hpswjtu@gmail.com, E-mail: smhong@home.swjtu.edu.cn [Laboratory of High Pressure Physics, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Wang, Z. G. [National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China); Zhu, H. Y. [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Peng, J. P. [School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-07-07

    The high-pressure behavior of melt-quenched amorphous selenium (a-Se) has been investigated via ultrasonic measurements and Raman scattering at room temperature. The ultrasonic measurements were conducted on a-Se in a multi-anvil apparatus with two different sample assemblies at pressures of up to 4.5 and 4.8 GPa. We discovered that similar kinks occur in the slopes of the pressure dependence characteristics of the travel time and the sound velocity in both shear and longitudinal waves in the 2.0–2.5 GPa range. These kinks are independent of the sample assemblies, indicating an intrinsic transformation of the a-Se. Additionally, we deduced the pressure-volume relationship of a-Se from the sound velocity characteristics using the Birch–Murnaghan equation of state, and the results agreed well with those of previous reports. In situ high-pressure Raman scattering measurements of a-Se were conducted in a diamond anvil cell with an 830 nm excitation line up to a pressure of 4.3 GPa. We found that the characteristic band of a-Se at ∼250 cm{sup −1} experienced a smooth shift to a lower frequency with pressure, but a sharp slope change in the band intensity versus pressure occurred near 2.5 GPa. The results of X-ray diffraction and differential scanning calorimetry measurements indicate that the samples remain in their amorphous states after decompression. Thus, we proposed that the abnormal compression behavior of a-Se in the 2.0–2.5 GPa range can be attributed to pressure-induced local atomic reconfiguration, implying an amorphous-amorphous transition of the elementary selenium.

  2. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)

    2014-10-07

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  3. Raman spectra of zinc phthalocyanine monolayers absorbed on glassy carbon and gold electrodes by application of a confocal Raman microspectrometer

    NARCIS (Netherlands)

    Palys-Staron, B.J.; Palys, B.J.; Puppels, G.J.; Puppels, G.J.; van den Ham, D.M.W.; van den Ham, D.M.W.; Feil, D.; Feil, D.

    1992-01-01

    Raman spectra of zinc phthalocyanine monolayers, adsorbed on gold and on glassy carbon surfaces (electrodes), are presented. These spectra have been recorded with the electrodes inside and outside an electrochemical cell filled with an aqueous electrolyte. A confocal Raman microspectrometer was

  4. Atomic substitution in selected high-temperature superconductors: Elucidating the nature of Raman spectra excitations

    Science.gov (United States)

    Hewitt, Kevin Cecil

    2000-10-01

    In this thesis, the effects of atomic substitution on the vibrational and electronic excitations found in the Raman spectra of selected high-temperature superconductors (HTS) are studied. In particular, atomic and isotopic substitution methods have been used to determine the character of features observed in the Raman spectra of Bi2Sr2Ca n-1CunO2 n+4+delta (n = 1 - Bi2201, n = 2 - Bi2212) and YBa2Cu3O7-delta (Y123). In Bi2201, Pb substitution for Bi (and Sr) has led to the reduction and eventual removal of the structural modulation, characteristic of all members of the Bi-family of HTS. The high quality single crystals and our sensitive triple spectrometer enabled identification of a pair of low frequency modes. The modes are determined to arise from shear and compressional rigid-layer vibrations. The normal state of underdoped cuprates is characterized by a pseudogap of unknown origin. In crystals of underdoped Bi2212 a spectral peak found at 590 cm-1, previously attributed to the pairing of quasiparticles (above Tc) and hence to the formation of a normal state pseudogap, has been found to soften by 3.8% with oxygen isotope exchange. In addition, the feature is absent in fully oxygenated and yttrium underdoped crystals. In this study, the first of its kind on underdoped and isotope substituted Bi2212, the feature has been assigned to stretching vibrations of oxygen in the a-b plane. Bi2212 crystals with varying hole concentrations (0.07 Raman scattering experiments that sample the diagonal (B 2g) and principal axes (B1 g) of the BZ have led us to conclude that the superconducting gap possesses dx2-y2 symmetry, in the underdoped and overdoped regimes. It is found that the magnitude of the superconducting gap (Delta(k)) is sensitive to changes in p. Studies of the pair-breaking peak found in the B1g spectra allow us to conclude that the magnitude of the maximum gap (Deltamax) decreases monotonically with increasing hole doping, for p > 0.13. The pair

  5. Stability of Hydrogen-Bonded Supramolecular Architecture under High Pressure Conditions: Pressure-Induced Amorphization in Melamine-Boric Acid Adduct

    International Nuclear Information System (INIS)

    Wang, K.; Duan, D.; Wang, R.; Lin, A.; Cui, Q.; Liu, B.; Cui, T.; Zou, B.; Zhang, X.

    2009-01-01

    The effects of high pressure on the structural stability of the melamine-boric acid adduct (C3N6H6 2H3BO3, M 2B), a three-dimensional hydrogen-bonded supramolecular architecture, were studied by in situ synchrotron X-ray diffraction (XRD) and Raman spectroscopy. M 2B exhibited a high compressibility and a strong anisotropic compression, which can be explained by the layerlike crystal packing. Furthermore, evolution of XRD patterns and Raman spectra indicated that the M 2B crystal undergoes a reversible pressure-induced amorphization (PIA) at 18 GPa. The mechanism for the PIA was attributed to the competition between close packing and long-range order. Ab initio calculations were also performed to account for the behavior of hydrogen bonding under high pressure.

  6. Raman vibrational spectra of thymol blue dyed polyvinyl alcohol (PVA) film dosimeters

    International Nuclear Information System (INIS)

    Lepit, A.; Saion, E.B.; Susilawati; Doyan, A.; Wan Yusoff, W.M.D.

    2002-01-01

    Radiation-sensitive dyed polyvinyl alcohol (PVA) film indicators containing chloral hydrate and acid-sensitive thymol blue dye have been studied for routine food irradiation dosimeters. The free standing dyed film dosimeters of different chloral hydrate concentrations (0.1, 0.5, 1.0, 2.0 and 2.5 g) were irradiated with the absorbed dose ranges from 1 kGy to 12 kGy using gamma rays from Co-60 teletherapy. Upon exposure the dosimeters undergo chemical change and become more acidic, resulting in colour change from yellow to red at the critical doses depending on the chloral hydrate concentrations. The radiation-induced change in colour was analysed using UV-Vis spectrometer that the absorption spectra produced two maximal of the visible bands peaking at 445 nm for low doses and 554 nm for high doses. Spectra of inelastic Raman scattering photons corresponding to Raman shift frequency of unirradiated and irradiated films were measured using a dispersive Raman spectrometer. The spectral intensity of C=C, C-0 and S-H molecular vibration peaks for their respective Raman shifts were studied which provide the dose response to the change of dye molecular structure of the dosimeters. (Author)

  7. Raman Spectra and Bulk Modulus of Nanodiamond in a Size Interval of 2-5 nm

    Science.gov (United States)

    Popov, Mikhail; Churkin, Valentin; Kirichenko, Alexey; Denisov, Viktor; Ovsyannikov, Danila; Kulnitskiy, Boris; Perezhogin, Igor; Aksenenkov, Viktor; Blank, Vladimir

    2017-10-01

    Nanodiamond in a 2-5-nm size interval (which is typical for an appearance of quantum confinement effect) show Raman spectra composed of 3 bands at 1325, 1600, and 1500 cm-1 (at the 458-nm laser excitation) which shifts to 1630 cm-1 at the 257-nm laser excitation. Contrary to sp2-bonded carbon, relative intensities of the bands do not depend on the 458- and 257-nm excitation wavelengths, and a halfwidth and the intensity of the 1600 cm-1 band does not change visibly under pressure at least up to 50 GPa. Bulk modulus of the 2-5-nm nanodiamond determined from the high-pressure study is around 560 GPa. Studied 2-5-nm nanodiamond was purified from contamination layers and dispersed in Si or NaCl.

  8. Vibrational spectroscopy at very high pressures. Part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure

    DEFF Research Database (Denmark)

    Adams, David M.; Berg, Rolf W.; Williams, Alan D.

    1981-01-01

    Raman and far-IR mode frequency shifts with pressure have been observed under hydrostatic conditions in a gasketed diamond anvil cell (d.a.c.). Using compressibilities calculated from unit cell constants and lattice energies, Grüneisen parameters gammai have been obtained for all observed modes...... pressure curves for K2SnCl6 and [(CH3)4N]2MCl6 (M=Sn, Te, Pt) are discussed in relation to their structures. Shifts of nu-tilde i with temperature for K2ReCl6 and K2PtCl6 are analyzed into explicit and implicit anharmonic contributions. The Journal of Chemical Physics is copyrighted by The American...

  9. Analysis of soda-lime glasses using non-negative matrix factor deconvolution of Raman spectra

    OpenAIRE

    Woelffel , William; Claireaux , Corinne; Toplis , Michael J.; Burov , Ekaterina; Barthel , Etienne; Shukla , Abhay; Biscaras , Johan; Chopinet , Marie-Hélène; Gouillart , Emmanuelle

    2015-01-01

    International audience; Novel statistical analysis and machine learning algorithms are proposed for the deconvolution and interpretation of Raman spectra of silicate glasses in the Na 2 O-CaO-SiO 2 system. Raman spectra are acquired along diffusion profiles of three pairs of glasses centered around an average composition of 69. 9 wt. % SiO 2 , 12. 7 wt. % CaO , 16. 8 wt. % Na 2 O. The shape changes of the Raman spectra across the compositional domain are analyzed using a combination of princi...

  10. Contrastive Analysis of the Raman Spectra of Polychlorinated Benzene: Hexachlorobenzene and Benzene

    Directory of Open Access Journals (Sweden)

    Zhengjun Zhang

    2011-12-01

    Full Text Available Detection of persistent pollutants such as polychlorinated benzene in environment in trace amounts is challenging, but important. It is more difficult to distinguish homologues and isomers of organic pollutantd when present in trace amounts because of their similar physical and chemical properties. In this work we simulate the Raman spectra of hexachlorobenzene and benzene, and figure out the vibration mode of each main peak. The effect on the Raman spectrum of changing substituents from H to Cl is analyzed to reveal the relations between the Raman spectra of homologues and isomers of polychlorinated benzene, which should be helpful for distinguishing one kind of polychlorinated benzene from its homologues and isomers by surface enhanced Raman scattering.

  11. High-pressure effects in hydrofullerene C60H36 studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Meletov, K.P.; Rossijskaya Akademiya Nauk, Chernogolovka; Tsilika, I.; Assimopoulos, S.; Kourouklis, G.A.; Ves, S.; Bashkin, I.O.; Kulakov, V.I.; Khasanov, S.S.

    2001-01-01

    The effect of hydrostatic pressure on the Raman spectrum of hydrofullerene C 60 H 36 , at room temperature has been investigated up to 12 GPa. The samples were synthesized by means of high-pressure hydrogenation. The pressure dependence of the phonon frequencies exhibits two reversible changes one at ∝0.6 GPa and another one at ∝6 GPa. The first may be probably related to a phase transition from the initial orientationally disordered bcc structure to an orientationally ordered one. The second one, at ∝6 GPa, is probably driven by pressure-induced bonding of hydrogen to a carbon atom of a neighboring hydrofullerene cage. (orig.)

  12. The Raman and SERS spectra of indigo and indigo-Ag2 complex: DFT calculation and comparison with experiment.

    Science.gov (United States)

    Ricci, Marilena; Lofrumento, Cristiana; Becucci, Maurizio; Castellucci, Emilio M

    2018-01-05

    Using time-dependent density functional theory in conjunction with B3LYP functional and LANL2DZ/6-31+g(d,p) basis sets, static and pre-resonance Raman spectra of the indigo-Ag 2 complex have been calculated. Structure optimization, excitation energies and pre-resonance Raman spectra of the indigo molecule have been obtained at the same level of theory. The available experimental Raman spectra at 1064, 785 and 514nm and the SERS spectra at 785 and 514nm have been well reproduced by the calculation. Experimental SERS spectra are confronted with the calculated pre-resonance Raman spectra obtained for the indigo-Ag 2 complex. The Raman activities calculated under the infinite lifetime approximation show a strong dependence upon the proximity to the energy and the oscillator strength of the excitation electronic transition. The comparison of the integrated EFs for indigo and indigo-Ag 2 calculated Raman spectra, gave some hints as to the enhancement mechanisms acting for the different excitation wavelengths. Whereas for excitation at a wavelength corresponding to 785nm, the enhancement mechanism for the Raman spectrum of the metal complex seems the chemical one, the strong increment (ten times) of the integrated EF of the Raman spectra of the complex in the case of 514nm excitation, suggests the onset of other enhancement mechanisms. Assuming that intra-cluster transitions with high oscillator strength can be thought of as to mimic surface plasmons excitations, we suggest the onset of the electromagnetic mechanisms (EM) as the origin of the Raman spectrum enhancement. Nevertheless, other enhancement effects cannot be ruled out, as a new molecular transition gains strength in the proximity of the excitation wavelength, as a consequence of the symmetry lowering of the molecule in the complex. A large variation across vibrational modes, by a factor of at least 10 4 , was found for the EFs. This large variation in the EFs can indicate that B-term Herzberg-Teller scattering

  13. [A new peak detection algorithm of Raman spectra].

    Science.gov (United States)

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  14. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  15. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  16. Structural changes and intermolecular interactions of filled ice Ic structure for hydrogen hydrate under high pressure

    International Nuclear Information System (INIS)

    Machida, S; Hirai, H; Kawamura, T; Yamamoto, Y; Yagi, T

    2010-01-01

    High-pressure experiments of hydrogen hydrate were performed using a diamond anvil cell under conditions of 0.1-44.2 GPa and at room temperature. Also, high pressure Raman studies of solid hydrogen were performed in the pressure range of 0.1-43.7 GPa. X-ray diffractometry (XRD) for hydrogen hydrate revealed that a known high-pressure structure, filled ice Ic structure, of hydrogen hydrate transformed to a new high-pressure structure at approximately 35-40 GPa. A comparison of the Raman spectroscopy of a vibron for hydrogen molecules between hydrogen hydrate and solid hydrogen revealed that the extraction of hydrogen molecules from hydrogen hydrate occurred above 20 GPa. Also, the Raman spectra of a roton revealed that the rotation of hydrogen molecules in hydrogen hydrate was suppressed at around 20 GPa and that the rotation recovered under higher pressure. These results indicated that remarkable intermolecular interactions in hydrogen hydrate between neighboring hydrogen molecules and between guest hydrogen molecules and host water molecules might occur. These intermolecular interactions could produce the stability of hydrogen hydrate.

  17. Synthesis and high (pressure, temperature) stability of ZnTiO3 polymorphs studied by Raman spectroscopy

    Science.gov (United States)

    Bernert, T.; Ruiz-Fuertes, J.; Bayarjargal, L.; Winkler, B.

    2015-05-01

    The phase-purity of ilmenite-type ZnTiO3 prepared by the ceramic method was investigated in dependence of the conditions during ball milling. The previously proposed addition of 2 ml ethanol to the starting materials led to a significant contamination of the product phase after a subsequent sintering process at 1073 K. However, by omitting ethanol this synthesis route led to a phase-pure sample of ZnTiO3 as confirmed by X-ray powder diffraction and Raman spectroscopy. High-temperature high-pressure experiments gave an ilmenite-type to perovskite-type phase boundary with a slope of dT/dP∼-135 K GPa-1 crossing ambient temperature conditions at ∼ 24 GPa in good agreement with previous calculations. Room-temperature high-pressure Raman spectroscopy experiments have shown the stability of the ilmenite-type phase up to a pressure of at least 38.5 GPa, the highest pressure applied in this study, indicating the presence of a kinetic barrier in this phase transition. The synthesis of ferroelectric LiNbO3-type ZnTiO3 was confirmed by second harmonic generation.

  18. Calculated isotropic Raman spectra from interacting H2-rare-gas pairs

    International Nuclear Information System (INIS)

    Gustafsson, M; Głaz, W; Bancewicz, T; Godet, J-L; Maroulis, G; Haskapoulos, A

    2014-01-01

    We report on a theoretical study of the H 2 -He and H 2 -Ar pair trace-polarizability and the corresponding isotropic Raman spectra. The conventional quantum mechanical approach for calculations of interaction-induced spectra, which is based on an isotropic interaction potential, is employed. This is compared with a close-coupling approach, which allows for inclusion of the full, anisotropic potential. It is established that the anisotropy of the potential plays a minor role for these spectra. The computed isotropic collision-induced Raman intensity, which is due to dissimilar pairs in H 2 -He and H 2 -Ar gas mixtures, is comparable to the intensities due to similar pairs (H 2 -H 2 , He-He, and Ar-Ar), which have been studied previously

  19. Pressure-induced phase transformation of HfO2

    International Nuclear Information System (INIS)

    Arashi, H.

    1992-01-01

    This paper reports on the pressure dependence of the Raman spectra of HfO 2 that was measured by a micro-Raman technique using a single-crystal specimen in the pressure range from 0 to 10 GPa at room temperature. The symmetry assignment of Raman bands of the monoclinic phase was experimentally accomplished from the polarization measurements for the single crystal. With increased pressure, a phase transformation for the monoclinic phase took place at 4.3 ± 0.3 GPa. Nineteen Raman bands were observed for the high-pressure phase. The spectral structure of the Raman bands for the high-pressure phase was similar with those reported previously for ZrO 2 . The space group for the high pressure phase of HfO 2 was determined as Pbcm, which was the same as that of the high-pressure phase for ZrO 2 on the basis of the number and the spectral structure of the Raman bands

  20. Raman Spectra and Bulk Modulus of Nanodiamond in a Size Interval of 2-5 nm.

    Science.gov (United States)

    Popov, Mikhail; Churkin, Valentin; Kirichenko, Alexey; Denisov, Viktor; Ovsyannikov, Danila; Kulnitskiy, Boris; Perezhogin, Igor; Aksenenkov, Viktor; Blank, Vladimir

    2017-10-10

    Nanodiamond in a 2-5-nm size interval (which is typical for an appearance of quantum confinement effect) show Raman spectra composed of 3 bands at 1325, 1600, and 1500 cm -1 (at the 458-nm laser excitation) which shifts to 1630 cm -1 at the 257-nm laser excitation. Contrary to sp 2 -bonded carbon, relative intensities of the bands do not depend on the 458- and 257-nm excitation wavelengths, and a halfwidth and the intensity of the 1600 cm -1 band does not change visibly under pressure at least up to 50 GPa. Bulk modulus of the 2-5-nm nanodiamond determined from the high-pressure study is around 560 GPa. Studied 2-5-nm nanodiamond was purified from contamination layers and dispersed in Si or NaCl.

  1. Development of a multiplexing fingerprint and high wavenumber Raman spectroscopy technique for real-time in vivo tissue Raman measurements at endoscopy

    Science.gov (United States)

    Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei

    2013-03-01

    We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm-1 1750 to 3600 cm-1) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm-1 within 1.0 s with a spectral resolution of 3 to 6 cm-1 during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.

  2. RAMPAC: a Program for Analysis of Complicated Raman Spectra

    NARCIS (Netherlands)

    de Mul, F.F.M.; Greve, Jan

    1993-01-01

    A computer program for the analysis of complicated (e.g. multi-line) Raman spectra is described. The program includes automatic peak search, various procedures for background determination, peak fit and spectrum deconvolution and extensive spectrum handling procedures.

  3. Single crystal growth, characterization and high-pressure Raman spectroscopy of impurity-free magnesite (MgCO3)

    Science.gov (United States)

    Liang, Wen; Li, Zeming; Yin, Yuan; Li, Rui; Chen, Lin; He, Yu; Dong, Haini; Dai, Lidong; Li, Heping

    2018-05-01

    The understanding of the physical and chemical properties of magnesite (MgCO3) under deep-mantle conditions is highly important to capture the essence of deep-carbon storage in Earth's interior. To develop standard rating scales, the impurity-free magnesite single crystal, paying particular attention to the case of avoiding adverse impacts of Ca2+, Fe2+, and Mn2+ impurities in natural magnesite, is undoubtedly necessary for all research of magnesite, including crystalline structural phase transitions, anisotropic elasticity and conductivity, and equation of state (EoS). Thus, a high-quality single crystal of impurity-free magnesite was grown successfully for the first time using the self-flux method under high pressure-temperature conditions. The size of the magnesite single crystal, observed in a plane-polarized microscope, exceeds 200 μm, and the crystal exhibits a rhombohedral structure to cleave along the (101) plane. In addition, its composition of Mg0.999 ± 0.001CO3 was quantified through electron probing analysis. The structural property was investigated by means of single crystal X-ray diffraction and the unit cell dimensions obtained in the rhombohedral symmetry of the R\\bar {3}c space group are a = 4.6255 (3) and c = 14.987 (2), and the final R = 0.0243 for 718 reflections. High-pressure Raman spectroscopy of the magnesite single crystal was performed up to 27 GPa at ambient temperature. All Raman active bands, ν i, without any splitting increased almost linearly with increasing pressure. In combination with the high-pressure Raman results {{d/ν _i}}{{{d}P}} and the bulk modulus K T (103 GPa) reported from magnesite EoS studies, the mode Grüneisen parameters (1.49, 1.40, 0.26, and 0.27) of each vibration ( T, L, ν 4, and ν 1) were calculated.

  4. A Probabilistic Framework for Detection of Skin Cancer by Raman Spectra

    DEFF Research Database (Denmark)

    Sigurdsson, Sigurdur

    2003-01-01

    . These identified important features are shown to originate from molecular structure changes in lipids and proteins. While the theme of this dissertation is skin cancer diagnosis from Raman spectra, the dimension reduction and the neural network classifier can be applied in general to other types of pattern...... melanoma. The neural network classifier visualization showed that frequency bands, previously identified by visual inspection of Raman spectra by medical experts, were considered important for classification. Moreover, frequency band not previously used for skin lesion classification were identified...... brugt til diagnosering af hudkræft. Disse vigtige frekvensbånd stammer fra forskel i molekyle struktur i lipider og proteiner. Selv om temaet for denne afhandling er hudkræft diagnosering fra Raman spektra, kan dimensions reduceringen og det neurale netværk bruges til andre mønster genkendelses...

  5. Determination of iron redox ratio in borosilicate glasses and melts from Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cochain, B. [SCDV-Laboratoire d' Etudes de Base sur les Verres, CEA Valrho, Centre de Marcoule, 30207 Bagnols-sur-ceze (France); Physique des Mineraux et des Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris Cedex05 (France); Neuville, D.R.; Richet, P. [Physique des Mineraux et des Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris Cedex05 (France); Henderson, G.S. [Dept of Geology, University of Toronto, 22 Russell Street, Toronto (Canada); Pinet, O. [SCDV-Laboratoire d' Etudes de Base sur les Verres, CEA Valrho, Centre de Marcoule, 30207 Bagnols-sur-ceze (France)

    2008-07-01

    A method is presented to determine the redox ratio of iron in borosilicate glasses and melts relevant to nuclear waste storage from an analysis of Raman spectra recorded at room or high temperature. The basis of this method is the strong variation of the spectral feature observed between 800 and 1200 cm{sup -1}, in which it is possible to assign a band to vibrational modes involving ferric iron in tetrahedral coordination whose intensity increases with iron content and iron oxidation. After baseline correction and normalization, fits to the Raman spectra made with Gaussian bands enable us to determine the proportion of ferric iron provided the redox ratio is known independently for at least two redox states for a given glass composition. This method is particularly useful for in situ determinations of the kinetics and mechanisms of redox reactions. (authors)

  6. Determination of iron redox ratio in borosilicate glasses and melts from Raman spectra

    International Nuclear Information System (INIS)

    Cochain, B.; Neuville, D.R.; Richet, P.; Henderson, G.S.; Pinet, O.

    2008-01-01

    A method is presented to determine the redox ratio of iron in borosilicate glasses and melts relevant to nuclear waste storage from an analysis of Raman spectra recorded at room or high temperature. The basis of this method is the strong variation of the spectral feature observed between 800 and 1200 cm -1 , in which it is possible to assign a band to vibrational modes involving ferric iron in tetrahedral coordination whose intensity increases with iron content and iron oxidation. After baseline correction and normalization, fits to the Raman spectra made with Gaussian bands enable us to determine the proportion of ferric iron provided the redox ratio is known independently for at least two redox states for a given glass composition. This method is particularly useful for in situ determinations of the kinetics and mechanisms of redox reactions. (authors)

  7. Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges

    International Nuclear Information System (INIS)

    Donnelly, Vincent M; Belostotskiy, Sergey G; Economou, Demetre J; Sadeghi, Nader

    2010-01-01

    Laser scattering experiments were performed in high pressure (100s of Torr) parallel-plate, slot-type DC microdischarges operating in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (n e ) and electron temperature (T e ). For 50 mA current and over the pressure range of 300 - 700 Torr, LTS yielded T e = 0.9 ± 0.3 eV and n e = (6 ± 3)·10 13 cm -3 , in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (T g ) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with T g values obtained by optical emission spectroscopy.

  8. In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids

    Science.gov (United States)

    Daniel, Isabelle; Gillet, Philippe; Poe, Brent T.; McMillan, Paul F.

    1995-03-01

    We have measured in-situ Raman spectra of aluminosilicate glasses and liquids with albite (NaAlSi3 O8) and anorthite (CaAl2Si2O8) compositions at high temperatures, through their glass transition range up to 1700 and 2000 K, respectively. For these experiments, we have used a wire-loop heating device coupled with micro-Raman spectroscopy, in order to achieve effective spatial filtering of the extraneous thermal radiation. A major concern in this work is the development of methodology for reliably extracting the first and second order contributions to the Raman scattering spectra of aluminosilicate glasses and liquids from the high temperature experimental data, and analyzing these in terms of vibrational (anharmonic) and configurational changes. The changes in the first order Raman spectra with temperature are subtle. The principal low frequency band remains nearly constant with increasing temperature, indicating little change in the T-O-T angle, and that the angle bending vibration is quite harmonic. This is in contrast to vitreous SiO2, studied previously. Above Tg, intensity changes in the 560 590 cm-1 regions of both sets of spectra indicate configurational changes in the supercooled liquids, associated with formation of additional Al-O-Al linkages, or 3-membered (Al, Si)-containing rings. Additional intensity at 800 cm-1 reflects also some rearrangement of the Si-O-Al network.

  9. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydratio...

  10. Electronic and local atomistic structure of MgSiO3 glass under pressure: a study of X-ray Raman scattering at the silicon and magnesium L-edges

    Science.gov (United States)

    Fukui, Hiroshi; Hiraoka, Nozomu

    2018-02-01

    We applied X-ray Raman scattering technique to MgSiO3 glass, a precursor to magnesium silicate melts, with respect to magnesium and silicon under high-pressure conditions as well as some polycrystalline phases of MgSiO3 at ambient conditions. We also performed ab initio calculations to interpret the X-ray Raman spectra. Experimentally obtained silicon L-edge spectra indicate that the local environment around silicon started changing at pressure above 10 GPa, where the electronic structure of oxygen is known to change. In contrast, the shape of the magnesium L-edge spectrum changed below 10 GPa. This indicates that the magnesium sites in MgSiO3 glass first distort and that the local structure around magnesium shows a wide variation under pressure. The framework structure consisting of silicon and oxygen changed above 10 GPa, where the coordination number of silicon was more than four. Our results imply that 6-oxygen-coordinated silicon was formed above 20 GPa.

  11. Investigation of hydrogen isotope exchange reaction rate in mixed gas (H2 and D2) at pressure up to 200 MPa using Raman spectroscopy

    International Nuclear Information System (INIS)

    Tikhonov, V.V.; Yukhimchuk, A.A.; Musyayev, R.K.; Gurkin, A.I.

    2015-01-01

    Raman spectroscopy is a relevant method for obtaining objective data on isotopic exchange rate in a gaseous mix of hydrogen isotopes, since it allows one to determine a gaseous mix composition in real time without sampling. We have developed a high-pressure fiber-optic probe to be used for obtaining protium Raman spectra under pressures up to 400 MPa and we have recorded spectral line broadening induced by molecule collisions starting from ∼ 40 MPa. Using this fiber-optic probe we have performed experiments to study isotopic exchange kinetics in a gaseous mix of hydrogen isotopes (protium-deuterium) at pressures up to 200 MPa. Preliminary results show that the dependence of the average isotopic exchange rate related to pressure take unexpected values at the very beginning of the time evolution. More work is required to understand this inconsistency

  12. Infrared and Raman spectra, DFT-calculations and spectral assignments of germacyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Aleksa, V., E-mail: valdemaras.aleksa@ff.vu.lt; Ozerenskis, D.; Pucetaite, M.; Sablinskas, V. [Faculty of Physics, Vilnius University, Sauletekio av. 9, block 3, Vilnius, LT-10222 (Lithuania); Cotter, C.; Guirgis, G. A. [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States)

    2015-03-30

    Raman spectra of germacyclohexane in liquid and solid states were recorded and depolarization data obtained. Infrared absorption spectra of the vapor and liquid have been studied. The wavenumbers of the vibrational modes were derived in the harmonic and anharmonic approximation in B3LYP/ccpVTZ calculations. According to the calculations, germacyclohexane exists in the stable chair conformation, whereas a possible twist form should have more than 15 kJ·mol{sup -1} higher enthalpy of formation what makes this conformer experimentally not observable. The 27 A' and 21 A'' fundamentals were assigned on the basis of the calculations and infrared and Raman band intensities, contours of gas phase infrared spectral bands and Raman depolarization measurements. An average discrepancy of ca. 0.77 % was found between the observed and the calculated anharmonic wavenumbers for the 48 modes. Substitution of carbon atom with Ge atom in the cyclohexane ring is reasoning flattening of the ring.

  13. An Investigation on Micro-Raman Spectra and Wavelet Data Analysis for Pemphigus Vulgaris Follow-up Monitoring.

    Science.gov (United States)

    Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria

    2008-06-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications.

  14. An Investigation on Micro-Raman Spectra and Wavelet Data Analysis for Pemphigus Vulgaris Follow-up Monitoring.

    Directory of Open Access Journals (Sweden)

    Maria Lepore

    2008-06-01

    Full Text Available A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications.

  15. Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH.

    Science.gov (United States)

    Walrafen, George E; Douglas, Rudolph T W

    2006-03-21

    High-temperature, high-pressure Raman spectra were obtained from aqueous NaOH solutions up to 2NaOHH2O, with X(NaOH)=0.667 at 480 K. The spectra corresponding to the highest compositions, X(NaOH)> or =0.5, are dominated by H3O2-. An IR xi-function dispersion curve for aqueous NaOH, at 473 K and 1 kbar, calculated from the data of Franck and Charuel indicates that the OH- ion forms H3O2- by preferential H bonding with nonhydrogen-bonded OH groups. Raman spectra from wet to anhydrous, solid LiOH, NaOH, and KOH yield sharp, symmetric OH- stretching peaks at 3664, 3633, and 3596 cm(-1), respectively, plus water-related, i.e., H3O2-, peaks near LiOH, 3562 cm(-1), NaOH, 3596 cm(-1), and, KOH, 3500 cm(-1). Absence of H3O2- peaks from the solid assures that the corresponding melt is anhydrous. Raman spectra from the anhydrous melts yield OH- stretching peak frequencies: LiOH, 3614+/-4 cm(-1), 873 K; NaOH, 3610+/-2 cm(-1), 975 K; and, KOH, 3607+/-2 cm(-1), 773 K, but low-frequency asymmetry due to ion-pair interactions is present which is centered near 3550 cm(-1). The ion-pair-related asymmetry corresponds to the sole IR maximum near 3550 cm(-1) from anhydrous molten NaOH, at 623 K. Bose-Einstein correction of published low-frequency Raman data from molten LiOH revealed an acoustic phonon, near 205 cm(-1), related to restricted translation of OH- versus Li+, and an optical phonon, at 625 cm(-1) and tau approximately 0.05 ps, due to protonic precession and/or pendular motion. Strong H bonding between water and the O atom of OH- forms H3O2-, but the proton of OH- does not bond with H significantly. Large Raman bandwidths (aqueous solutions) are explained in terms of inhomogeneous broadening due to proton transfer in a double well. Vibrational assignments are presented for H3O2-.

  16. Wavelet data analysis of micro-Raman spectra for follow-up monitoring in oral pathologies

    Science.gov (United States)

    Camerlingo, C.; Zenone, F.; Perna, G.; Capozzi, V.; Cirillo, N.; Gaeta, G. M.; Lepore, M.

    2008-02-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra from human biological samples. In particular, measurements have been performed on some samples of oral tissue and blood serum from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. The disease is characterized histologically by intradermal blisters and immunopathologically by the finding of tissue bound and circulating immunoglobulin G (IgG) antibody directed against the cell surface of keratinocytes. More than 150 spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. The results indicate that appropriate data processing can contribute to enlarge the medical applications of micro-Raman spectroscopy.

  17. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    International Nuclear Information System (INIS)

    Klick, D.I.

    1977-01-01

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu + and Ag + and the heavy-metal ions In + and Tl + was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  18. Pressure-induced crystallization and phase transformation of amorphous selenium: Raman spectroscopy and x-ray diffraction studies

    International Nuclear Information System (INIS)

    Yang Kaifeng; Cui Qiliang; Hou Yuanyuan; Liu Bingbing; Zhou Qiang; Hu Jingzhu; Mao, H-K; Zou Guangtian

    2007-01-01

    High-pressure Raman spectroscopy studies have been carried out on amorphous Se (a-Se) at room temperature in a diamond anvil cell with an 830 nm exciting line. Raman evidence for the pressure-induced crystallization of a-Se and the coexistence of the unknown high-pressure phase with the hexagonal phase is presented for the first time. Further experimental proof of high-pressure angle-dispersive x-ray diffraction studies for a-Se indicates that the unknown high-pressure phase is also a mixture phase of the tetragonal I4 1 /acd and Se IV structure. Our Raman and x-ray diffraction results suggest that hexagonal Se I undergoes a direct transition to triclinic Se III at about 19 GPa, which is in good agreement with the theoretical prediction

  19. Speciation in Aqueous MgSO4 Fluid at High Pressures and Temperatures Studied by First-Principles Modeling and Raman Spectroscopy

    Science.gov (United States)

    Jahn, S.; Schmidt, C.

    2008-12-01

    Aqueous fluids play an essential role in mass and energy transfer in the lithosphere. Their presence has also a large effect on physical properties of rocks, e.g. the electrical conductivity. Many chemical and physical properties of aqueous fluids strongly depend on the speciation, but very little is known about this fundamental parameter at high pressures and temperatures, e.g. at subduction zone conditions. Here we use a combined approach of first-principles molecular dynamics simulation and Raman spectroscopy to study the molecular structure of aqueous 2~mol/kg MgSO4 fluids up to pressures of 3~GPa and temperatures of 750~°C. MgSO4-H2O is selected as a model system for sulfate bearing subduction zone fluids. The simulations are performed using Car-Parrinello dynamics, a system size of 120 water and four MgSO4 molecules with production runs of at least 10~ps at each P and T. Raman spectra were obtained in situ using a Bassett-type hydrothermal diamond anvil cell with external heating. Both simulation and spectroscopic data show a dynamic co-existence of various associated molecular species as well as dissociated Mg2+ and SO42- in the single phase fluid. Fitting the Raman signal in the frequency range of the ν1-SO42- stretching mode yields the P-T dependence of the relative proportions of different peaks. The latter can be assigned to species based on literature data and related to the species found in the simulation. The dominant associated species found in the P-T range of interest here are Mg-SO4 ion pairs with one (monodentate) and two (bidentate) binding sites. At the highest P and T, an additional peak is identified. At low pressures and high temperature (T>230~°C), kieserite, MgSO4·H2O, nucleated in the experiment. At the same conditions the simulations show a clustering of Mg, which is interpreted as a precursor of precipitation. In conclusion, the speciation of aqueous MgSO4 fluid shows a complex behavior at high P and T that cannot be extrapolated

  20. Raman Microspectroscopic Mapping with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) Applied to the High-Pressure Polymorph of Titanium Dioxide, TiO2-II.

    Science.gov (United States)

    Smith, Joseph P; Smith, Frank C; Ottaway, Joshua; Krull-Davatzes, Alexandra E; Simonson, Bruce M; Glass, Billy P; Booksh, Karl S

    2017-08-01

    The high-pressure, α-PbO 2 -structured polymorph of titanium dioxide (TiO 2 -II) was recently identified in micrometer-sized grains recovered from four Neoarchean spherule layers deposited between ∼2.65 and ∼2.54 billion years ago. Several lines of evidence support the interpretation that these layers represent distal impact ejecta layers. The presence of shock-induced TiO 2 -II provides physical evidence to further support an impact origin for these spherule layers. Detailed characterization of the distribution of TiO 2 -II in these grains may be useful for correlating the layers, estimating the paleodistances of the layers from their source craters, and providing insight into the formation of the TiO 2 -II. Here we report the investigation of TiO 2 -II-bearing grains from these four spherule layers using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping. Raman spectra provide evidence of grains consisting primarily of rutile (TiO 2 ) and TiO 2 -II, as shown by Raman bands at 174 cm -1 (TiO 2 -II), 426 cm -1 (TiO 2 -II), 443 cm -1 (rutile), and 610 cm -1 (rutile). Principal component analysis (PCA) yielded a predominantly three-phase system comprised of rutile, TiO 2 -II, and substrate-adhesive epoxy. Scanning electron microscopy (SEM) suggests heterogeneous grains containing polydispersed micrometer- and submicrometer-sized particles. Multivariate curve resolution-alternating least squares applied to the Raman microspectroscopic mapping yielded up to five distinct chemical components: three phases of TiO 2 (rutile, TiO 2 -II, and anatase), quartz (SiO 2 ), and substrate-adhesive epoxy. Spectral profiles and spatially resolved chemical maps of the pure chemical components were generated using MCR-ALS applied to the Raman microspectroscopic maps. The spatial resolution of the Raman microspectroscopic maps was enhanced in comparable, cost-effective analysis times by limiting spectral resolution

  1. Preliminary observations on differences in the Raman spectra of cancerous and noncancerous cells and connective tissue of human skin

    Science.gov (United States)

    Short, Michael A.; Lui, Harvey; McLean, David I.; Zeng, Haishan; Alajlan, Abdulmajeed; Chen, Michael X.

    2005-04-01

    A less invasive method of reliably detecting skin cancers is required. Raman spectroscopy is just one of several spectroscopic methods that look promising, but are not yet sufficiently reliable. More information is needed on how and why the Raman spectra of cancerous skin tissue is different from its normal counterpart. We have used confocal micro-Raman spectroscopy with a spatial resolution of about a micron to obtain spectra of unstained thin sections of human skin. We found that there were clear differences in the Raman spectra between cancerous and non-cancerous tissue both in cells and in the connective tissue. The DNA contribution to the spectra was generally stronger in malignant cells than normal ones. In regions of the dermis far away from the tumor one obtains the usual collagen spectra of normal skin, but adjacent to the tumor the spectra no longer appeared to be those of native collagen.

  2. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    International Nuclear Information System (INIS)

    Kirillov, D.; Bozovic, I.; Geballe, T.H.; Kapitulnik, A.; Mitzi, D.B.

    1988-01-01

    Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 was found

  3. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    Science.gov (United States)

    Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.

    1988-12-01

    Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.

  4. Raman spectra of Pm2O3, PmF3, PmCl3, PmBr3 and PmI3

    International Nuclear Information System (INIS)

    Wilmarth, W.R.; Peterson, J.R.

    1988-01-01

    Raman spectral data are presented for the sesquioxide and the trihalides (F, Cl, Br and I) of promethium. The Raman spectra of these lanthanide compounds are reported for the first time and are compared with those of the homologous lanthanide compounds. Tentative symmetry assignments have been made for the observed Raman-active bands based on factor group analysis of their respective crystal structures and comparisons with the assigned Raman spectra of other lanthanide compounds. The characteristic band patterns of the Raman phonon spectra have been found to be very useful in determining the crystal structure of the respective promethium compounds. (author)

  5. Raman spectra of ruthenium and tantalum trimers in argon matrices

    Science.gov (United States)

    Fang, Li; Shen, Xiaole; Chen, Xiaoyu; Lombardi, John R.

    2000-12-01

    The resonance Raman spectra of ruthenium trimers (Ru 3) in argon matrices have been obtained. Three resonance Raman transitions were observed between 570 and 590 nm. Two of them (303.4 and 603.7 cm -1) are assigned to the totally symmetric vibrational progression, giving k e=1.86 mdyne/ Å. The line at 581.5 cm-1 is assigned as the origin of a low-lying electronic state. We also report on the observation of a resonance Raman spectrum of tantalum trimers (Ta 3). Observed lines include 251.2 and 501.9 cm-1 which we assign to the fundamental and the first overtone of the symmetric stretch in Ta 3. This gives k e=2.25 mdyne/ Å.

  6. Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra

    International Nuclear Information System (INIS)

    Dolenko, T A; Burikov, S A; Patsaeva, S V; Yuzhakov, V I

    2011-01-01

    Spectra of Raman scattering of light by aqueous ethanol solutions in the range of concentrations from pure water to 96% alcohol are studied. For water, 25%, and 40% solutions of ethanol in water, as well as for 96% alcohol the Raman spectra are measured at temperatures from the freezing point to nearly the boiling point. The changes in the shape of the stretching OH band are interpreted in terms of strengthening or weakening of hydrogen bonds between the molecules in the solution. The strongest hydrogen bonding of hydroxyl groups is observed at the ethanol content from 20 to 25 volume percent, which is explained by formation of ethanol hydrates of a definite type at the mentioned concentrations of alcohol. This is confirmed by means of the method of multivariate curve resolution, used to analyse the Raman spectra of aqueous ethanol solutions. With growing temperature the weakening of hydrogen bonding occurs in all studied systems, which consists in reducing the number of OH groups, linked by strong hydrogen bonds. (laser applications and other problems in quantum electronics)

  7. Investigation of hydrogen isotope exchange reaction rate in mixed gas (H{sub 2} and D{sub 2}) at pressure up to 200 MPa using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonov, V.V.; Yukhimchuk, A.A.; Musyayev, R.K.; Gurkin, A.I. [Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics, Sarov (Russian Federation)

    2015-03-15

    Raman spectroscopy is a relevant method for obtaining objective data on isotopic exchange rate in a gaseous mix of hydrogen isotopes, since it allows one to determine a gaseous mix composition in real time without sampling. We have developed a high-pressure fiber-optic probe to be used for obtaining protium Raman spectra under pressures up to 400 MPa and we have recorded spectral line broadening induced by molecule collisions starting from ∼ 40 MPa. Using this fiber-optic probe we have performed experiments to study isotopic exchange kinetics in a gaseous mix of hydrogen isotopes (protium-deuterium) at pressures up to 200 MPa. Preliminary results show that the dependence of the average isotopic exchange rate related to pressure take unexpected values at the very beginning of the time evolution. More work is required to understand this inconsistency.

  8. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    Science.gov (United States)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  9. Raman Spectroscopic Studies of Methane-Ethane Mixtures as a Function of Pressure

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2001-01-01

    Raman spectra of methane and methane-ethane mixtures (100, 85, and 49 mole % CH4) have been obtained as a function of pressure in the pressure range 0.1 to 15.3 MPaA (MPa absolute). For these mixtures methane nu (1) (symmetric C-H stretching) band positions are given as a function of pressure......; for pure methane they are in agreement with previous results. The new data on the methane nu (1) band position of ethane-containing mixtures clearly depend on the kind of molecules surrounding the vibrating methane molecule. The nu (1) band position decreases with increasing pressure; the stronger...... the dependency, the higher the content of ethane. The ethane nu (1) band position in the two mixtures showed the same kind of dependency, A qualitative explanation for this behavior is attempted, relating it to changes in van der Waals-type interactions on pressure....

  10. Difference Raman spectroscopy of DNA molecules

    International Nuclear Information System (INIS)

    Anokhin, Andrey S; Yuzyuk, Yury I; Gorelik, Vladimir S; Dovbeshko, Galina I; Pyatyshev, Alexander Yu

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm −1 ) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule

  11. Variation of Raman spectra of CdSe/ZnS quantum dots at the bioconjugation

    Energy Technology Data Exchange (ETDEWEB)

    Macotela, L.G.V.; Douda, J. [UPIITA - Instituto Politecnico Nacional, Mexico (Mexico); Torchynska, T.V. [ESFM - Instituto Politecnico Nacional, Mexico (Mexico); Sierra, R.P. [CINVESTAV del IPN, Mexico (Mexico)

    2010-04-15

    This paper presents the results of comparative analysis of Raman scattering spectra of CdSe/ZnS QDs covered by polymer with and without bio-conjugation to the mouse anti PSA (Prostate-Specific Antigen) antibodies (mab). Commercial CdSe/ZnS QDs used in the study are characterized by the color emission with the maximum at 565 nm (2.19 eV) at 300 K. Raman scattering spectra measured at room temperature demonstrate two groups of peaks: (i) related to the Si substrate at 230-460, 522, 610, 670, 940-1040 cm{sup -1} and (2) to polymer on the QD surface in the spectral range 1268-3310 cm{sup -1}. It is revealed that the QD bio-conjugation to the anti PSA mab is accompanied by the variation dramatically in the intensity of Raman lines of both types. The explanation of Raman peak stimulation in bio-conjugated QDs has been proposed on the base of surface enhanced Raman scattering (SERS) effect (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. High pressure study of nanostructured Cu2Sb by X-ray Diffraction, Extended X-ray Absorption fine structure and Raman measurements

    International Nuclear Information System (INIS)

    Souza, Sergio Michielon de; Triches, Daniela Menegon; Lima, Joao Cardoso de; Polian, Alain

    2016-01-01

    Full text: Nanostructured tetragonal Cu 2 Sb was prepared by mechanical alloying and its stability was studied as a function of pressure using synchrotron X-ray diffraction (XRD) Extended X-Ray Absorption Fine Structure (EXAFS) and Raman spectroscopy. The high pressure XRD data were collected at 0.6, 1.1, 2.2, 3.4, 5.0, 7.1, 8.0, 9.9, 14.8, 18.7, 23.2, 29.3 and 40.6 GPa in the ELETTRA synchrotron (Italy) with λ = 0.68881 Å. The high pressure EXAFS measurements were carried out in the Soleil synchrotron (France) in 0.6, 1.8, 3.0, 4.5, 6.1, 8.0, 10.3, 12.7, 15.5, 18.0, 19.0, 20.0, 22.1, 23.9, 26.3 and 29.4 GPa and the high pressure Raman spectroscopy in the Institut de Mineralogie et de Physique des Milieux Condenses (France) collected at 0.1, 1.6, 3.7, 6.7, 11.2, 15.1, 19.4, 24.5, 30.8, 36.3, 41.3 and 44.5 GPa. The results show high structural and optical phase stability. The moduli bulk and its derivatives were obtained by using the Birch-Murnaghan equation of states to the XRD and EXAFS results. The evolution of the Raman modes and the bulk moduli were used to obtain the Grueneisen parameters. (author)

  13. An in situ Raman spectroscopy system for long-term corrosion experiments in high temperature water up to 673 K

    International Nuclear Information System (INIS)

    Domae, Masafumi; Tani, Jun-ichi; Fujiwara, Kazutoshi; Katsumura, Yosuke

    2006-01-01

    A Raman spectroscopy system has been developed, in order to identify oxides formed on the surfaces of metals and steels in high temperature water up to 673 K. A supercritical water loop system including a Raman cell was installed. The design of the loop system is up to 673 K and 40 MPa. The Raman cell has a diamond window without window-to-metal packing. Raman spectrum of alumina plate was measured at room temperature, at 523 and at 673 K under pressure of 25 MPa. A long-term measurement was also performed at 523 K and 25 MPa for 117.5 h. In all cases intense Raman peaks attributed to alumina were observed. Raman spectrum of anatase particles in suspension was measured at 673 K and 25 MPa. The results show that the Raman spectroscopy system developed in the present study works well not only for plate sample but also for suspension. Raman spectra observed for titanium plate in high temperature water of 673 K and 25 MPa show growth of several Raman peaks with time up to 257 h. The peaks disappeared after cooled down to room temperature. The experimental results have demonstrated importance of in situ Raman spectroscopy. (author)

  14. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.

    Science.gov (United States)

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W; Popp, Jürgen

    2017-07-27

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.

  15. Time-dependent density functional methods for Raman spectra in open-shell systems.

    Science.gov (United States)

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra.

  16. Temperature dependence of low-frequency polarized Raman scattering spectra in TlInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paucar, Raul; Wakita, Kazuki [Electronics and Computer Engineering, Chiba Institute of Technology, Chiba (Japan); Shim, YongGu; Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Osaka (Japan); Alekperov, Oktay; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2017-06-15

    In this work, we examined phase transitions in the layered ternary thallium chalcogenide TlInS{sub 2} by studying the temperature dependence of polarized Raman spectra with the aid of the Raman confocal microscope system. The Raman spectra were measured over the temperature range of 77-320 K (which includes the range of successive phase transitions) in the low-frequency region of 35-180 cm{sup -1}. The optical phonons that showed strong temperature dependence were identified as interlayer vibrations related to phase transitions, while the phonons that showed weak temperature dependence were identified as intralayer vibrations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy

    International Nuclear Information System (INIS)

    Shi Yulei; Wang Li

    2005-01-01

    Terahertz time-domain spectroscopy is used to investigate the absorption and dispersion of polycrystalline α- and γ-glycine in the spectral region 0.5-3.0 THz. The spectra exhibit distinct features in these two crystalline phases. The observed far-infrared responses are attributed to intermolecular vibrational modes mediated by hydrogen bonds. We also measure the Raman spectra of the polycrystalline and dissolved glycine in the frequency range 28-3900 cm -1 . The results show that all the vibrational modes below 200 cm -1 are nonlocalized but are of a collective (phonon-like) nature. Furthermore, the temperature dependence of the Raman spectra of α-glycine agrees with the anharmonicity mechanism of the vibrational potentials

  18. Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals

    Science.gov (United States)

    Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T.

    2012-07-01

    Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.

  19. Raman spectroscopy on simple molecular systems at very high density

    International Nuclear Information System (INIS)

    Schiferl, D.; LeSar, R.S.; Moore, D.S.

    1988-01-01

    We present an overview of how Raman spectroscopy is done on simple molecular substances at high pressures. Raman spectroscopy is one of the most powerful tools for studying these substances. It is often the quickest means to explore changes in crystal and molecular structures, changes in bond strength, and the formation of new chemical species. Raman measurements have been made at pressures up to 200 GPa (2 Mbar). Even more astonishing is the range of temperatures (4-5200/degree/K) achieved in various static and dynamic (shock-wave) pressure experiments. One point we particularly wish to emphasize is the need for a good theoretical understanding to properly interpret and use experimental results. This is particularly true at ultra-high pressures, where strong crystal field effects can be misinterpreted as incipient insulator-metal transitions. We have tried to point out apparatus, techniques, and results that we feel are particularly noteworthy. We have also included some of the /open quotes/oral tradition/close quotes/ of high pressure Raman spectroscopy -- useful little things that rarely or never appear in print. Because this field is rapidly expanding, we discuss a number of exciting new techniques that have been informally communicated to us, especially those that seem to open new possibilities. 58 refs., 18 figs

  20. Kernel principal component analysis residual diagnosis (KPCARD): An automated method for cosmic ray artifact removal in Raman spectra

    International Nuclear Information System (INIS)

    Li, Boyan; Calvet, Amandine; Casamayou-Boucau, Yannick; Ryder, Alan G.

    2016-01-01

    A new, fully automated, rapid method, referred to as kernel principal component analysis residual diagnosis (KPCARD), is proposed for removing cosmic ray artifacts (CRAs) in Raman spectra, and in particular for large Raman imaging datasets. KPCARD identifies CRAs via a statistical analysis of the residuals obtained at each wavenumber in the spectra. The method utilizes the stochastic nature of CRAs; therefore, the most significant components in principal component analysis (PCA) of large numbers of Raman spectra should not contain any CRAs. The process worked by first implementing kernel PCA (kPCA) on all the Raman mapping data and second accurately estimating the inter- and intra-spectrum noise to generate two threshold values. CRA identification was then achieved by using the threshold values to evaluate the residuals for each spectrum and assess if a CRA was present. CRA correction was achieved by spectral replacement where, the nearest neighbor (NN) spectrum, most spectroscopically similar to the CRA contaminated spectrum and principal components (PCs) obtained by kPCA were both used to generate a robust, best curve fit to the CRA contaminated spectrum. This best fit spectrum then replaced the CRA contaminated spectrum in the dataset. KPCARD efficacy was demonstrated by using simulated data and real Raman spectra collected from solid-state materials. The results showed that KPCARD was fast ( 1 million) Raman datasets. - Highlights: • New rapid, automatable method for cosmic ray artifact correction of Raman spectra. • Uses combination of kernel PCA and noise estimation for artifact identification. • Implements a best fit spectrum replacement correction approach.

  1. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films.

    Science.gov (United States)

    Vishwas, M; Narasimha Rao, K; Chakradhar, R P S

    2012-12-01

    Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Raman spectra of zirconium tetrachloride in molten and evaporational states

    International Nuclear Information System (INIS)

    Salyuev, A.B.; Kornyakova, I.D.

    1994-01-01

    For the first time raman spectra of ZrCl 4 are obtained in the temperature range of its existence in molten state as well as in vapors near the critical point. It is shown, that rupture of zigzag chains is taking place when ZrCl 4 is melting

  3. High-Pressure Synthesis and Study of NO+NO3− and NO2+NO3− Ionic Solids

    Directory of Open Access Journals (Sweden)

    A. Yu. Kuznetsov

    2009-01-01

    Full Text Available Nitrosonium-nitrate NO+NO3− and dinitrogen pentoxide NO2+NO3− ionic crystals were synthesized by laser heating of a condensed oxygen-rich O2-N2 mixture compressed to different pressures, up to 40 GPa, in a diamond anvil cell (DAC. High-pressure/high-temperature Raman and X-ray diffraction studies of synthesized samples disclosed a transformation of NO+NO3− compound to NO2+NO3− crystal at temperatures above ambient and pressures below 9 GPa. High-pressure experiments revealed previously unreported bands in Raman spectra of NO+NO3− and NO2+NO3− ionic crystals. Structural properties of both ionic compounds are analyzed. Obtained experimental results support a hypothesis of a rotational disorder of NO+ complexes in NO+NO3− and indicate a rotational disorder of ionic complexes in NO2+NO3− solid.

  4. Second-order Raman spectra of LiHxD1-x crystals

    International Nuclear Information System (INIS)

    Plekhanov, V.G.

    1994-01-01

    High-resolution Raman spectra of LiH x D 1-x cubic crystals were measured for the first time in a wide concentration range (0≤x≤1) at room temperature. The results agree well with data on inelastic neutron scattering and direct calculations of the lattice dynamics for LiH and LiD crystals. This allows one to assign the observed spectral features to the phonon excitations in X-, W-, L-, and K-points of the Brillouin zone. Spectra of LiD exhibit the high-frequency maximum with a pronounced doubled structure. This fact and the dependence of the maximum intensity on the excitation laser frequency provide clear evidence that the maximum is due to excitation of LO(Γ)-phonons in pure or mixed crystals. In the x approx-lt 0.4 range, the LO-phonons manifest themselves in the spectra of both pure LiD and mixed LiH x D 1-x crystals, which demonstrates for the first time their two-mode character in this concentration range. This conclusion is in contradiction with predictions of the coherent potential model. In this paper, causes of this conflict are briefly discussed. 36 refs., 5 figs., 2 tabs

  5. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    Science.gov (United States)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  6. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions

    Czech Academy of Sciences Publication Activity Database

    Daněček, Petr; Kapitán, Josef; Baumruk, V.; Bednárová, Lucie; Kopecký, V.; Bouř, Petr

    2007-01-01

    Roč. 126, č. 22 (2007), s. 224513-1 ISSN 0021-9606 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : IR * Raman * ROA spectra * Anharmonic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.044, year: 2007

  7. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate

    Science.gov (United States)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.

  8. Synthesis and properties of selenium trihydride at high pressures

    Science.gov (United States)

    Zhang, Xiao; Xu, Wan; Wang, Yu; Jiang, Shuqing; Gorelli, Federico A.; Greenberg, Eran; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2018-02-01

    The chemical reaction products of molecular hydrogen (H2) with selenium (Se) are studied by synchrotron x-ray diffraction (XRD) and Raman spectroscopy at high pressures. We find that a common H2Se is synthesized at 0.3 GPa using laser heating. Upon compression at 300 K, a crystal of the theoretically predicted Cccm H3Se has been grown at 4.6 GPa. At room temperature, H3Se shows a reversible phase decomposition after laser irradiation above 8.6 GPa, but remains stable up to 21 GPa. However, at 170 K Cccm H3Se persists up to 39.5 GPa based on XRD measurements, while low-temperature Raman spectra weaken and broaden above 23.1 GPa. At these conditions, the sample is visually nontransparent and shiny suggesting that metallization occurred.

  9. The Utilization of Low Frequency Raman Spectra of Gases for the Study of Molecules with Large Amplitude Vibration

    Institute of Scientific and Technical Information of China (English)

    James R. Durig; Sarah Xiao-hua Zhou; Joshua Klaassen; Arindam Ganguly

    2009-01-01

    The utilization of the Raman spectra of the low frequency bending mode for three quasi-linear molecules, disiloxane, (SiH3)2 O; methylisocyanate, CH3NCO; and dimethy lisocyanate, (CH3)2SiHNCO for observing the low frequency anharmonic bending vibration is demonstrated which is superior to the corresponding far infrared spectra. From the observed frequencies from the Raman spectra the potential function governing the heavy atom motion to linearity has been obtained from which the barrier has been determined. These experimental values are compared to the ab ini-tio predicted values. Also low frequency Raman spectra of the ring puckering vibration of chlorocy-clobutane, c-C4H7Cl, bromocyclobutane, c-C4H7Br, and aminocyclobutane, c-C4H7NH2, have been utilized to obtain the potential function governing the ring inversion for these molecules. The deter-mined barriers to planarity are compared to those obtained from MP2 (full) ab initio and density functional theory B3LYP calculations by utilizing a variety of basis sets. For all of these studies it is shown that the Raman spectra are superior to the infrared spectra for determining the frequencies of the excited state transitions.

  10. Polytypism in n-fatty acids and low-frequency Raman spectra: Stearic acid B form

    Science.gov (United States)

    Kobayashi, Masamichi; Kobayashi, Tohru; Itoh, Yuzo; Sato, Kiyotaka

    1984-03-01

    Single crystals of single-layered (mon) and double-layered (orth II) polytypes of stearic acid B form were obtained and their structures were investigated by the x-ray diffraction and vibrational spectroscopic methods. Two polytypes exhibited quite different Raman spectra in the frequency range from 65 to 2 cm-1. The Raman bands appeared as singlets in mon, while they split into doublets with different polarization in orth II through the interlamellar interactions between two successive layers contained in the unit cell. The frequencies of the phonon modes in orth II were found to be lower than the corresponding ones in mon, indicating that orth II (or mon) was the high-temperature (low-temperature) stable form.

  11. High-Pressure Raman Scattering in the Layered Antiferromagnet NiPS_3

    Science.gov (United States)

    Rosenblum, S.; Merlin, R.; Francis, A. H.

    1996-03-01

    We report on two-magnon and vibrational Raman scattering from NiPS3 for pressures up to 30 GPa and temperatures between 110 and 300 K. NiPS3 is an S=1, two-dimensional antiferromagnet with TN = 150 K. It is the only known S=1 compound with a relative two-magnon linewidth comparable in magnitude to that of the parent compounds of the high temperature superconductors.(Rosenblum et al., Phys. Rev. B 49), 4352 (1994) In the cuprates, this anomalous linewidth is well described by phonon-magnon coupling.(Knoll et al.), Phys. Rev.B 42, 4842 (1990).^,(Nori et al., Phys. Rev. Lett. 75), 553 (1995). Here, we will look at the measured Grüneisen parameters of the vibrational and magnetic excitations and relate them to the magnetostrictive model.

  12. An Investigation on Micro-Raman Spectra and Wavelet Data Analysis for Pemphigus Vulgaris Follow-up Monitoring

    OpenAIRE

    Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria

    2008-01-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has...

  13. High-pressure phase transition in Ho2O3

    International Nuclear Information System (INIS)

    Lonappan, Dayana; Shekar, N.V. Chandra; Ravindran, T.R.; Sahu, P. Ch.

    2010-01-01

    High-pressure X-ray diffraction and Raman studies on holmium sesquioxide (Ho 2 O 3 ) have been carried out up to a pressure of ∼17 GPa in a diamond-anvil cell at room temperature. Holmium oxide, which has a cubic or bixbyite structure under ambient conditions, undergoes an irreversible structural phase transition at around 9.5 GPa. The high-pressure phase has been identified to be low symmetry monoclinic type. The two phases coexist to up to about 16 GPa, above which the parent phase disappears. The high-pressure laser-Raman studies have revealed that the prominent Raman band ∼370 cm -1 disappears around the similar transition pressure. The bulk modulus of the parent phase is reported.

  14. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.

    Science.gov (United States)

    Chen, Kun; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2014-08-20

    In this paper, we propose an improved subtraction algorithm for rapid recovery of Raman spectra that can substantially reduce the computation time. This algorithm is based on an improved Savitzky-Golay (SG) iterative smoothing method, which involves two key novel approaches: (a) the use of the Gauss-Seidel method and (b) the introduction of a relaxation factor into the iterative procedure. By applying a novel successive relaxation (SG-SR) iterative method to the relaxation factor, additional improvement in the convergence speed over the standard Savitzky-Golay procedure is realized. The proposed improved algorithm (the RIA-SG-SR algorithm), which uses SG-SR-based iteration instead of Savitzky-Golay iteration, has been optimized and validated with a mathematically simulated Raman spectrum, as well as experimentally measured Raman spectra from non-biological and biological samples. The method results in a significant reduction in computing cost while yielding consistent rejection of fluorescence and noise for spectra with low signal-to-fluorescence ratios and varied baselines. In the simulation, RIA-SG-SR achieved 1 order of magnitude improvement in iteration number and 2 orders of magnitude improvement in computation time compared with the range-independent background-subtraction algorithm (RIA). Furthermore the computation time of the experimentally measured raw Raman spectrum processing from skin tissue decreased from 6.72 to 0.094 s. In general, the processing of the SG-SR method can be conducted within dozens of milliseconds, which can provide a real-time procedure in practical situations.

  15. Vibrational assignments for the Raman and the phosphorescence spectra of 9,10-anthraquinone and 9,10-anthraquinone-d81

    International Nuclear Information System (INIS)

    Lehmann, K.K.; Smolarek, J.; Khalil, O.S.; Goodman, L.

    1979-01-01

    The Raman spectra of 9,10-anthraquinone (AQ) and 9,10-anthraquinone-d/sub 8/ are examined. Raman band assignments are made from this data and from a published normal coordinate analysis. The Raman spectra of AQ at 5K is reported and vibrational assignments for the phosphorescence spectra of AQ in n-hexane at 4.2 K are reexamined in light of new 3 B 1 /sub g/ → 1 A/sub g/ phosphorescence data. Contrary to previous work from this laboratory, it is concluded that although higher order vibronic interactions may be operative between the two closely spaced 3 A/sub u/- 3 B 1 /sub g/ electronic states, these interactions are not manifested in the phosphorescence spectra of AQ in n-hexane at 4.2 K

  16. Persistence of Mixed and Non-intermediate Valence in the High-Pressure Structure of Silver(I,III) Oxide, AgO: A Combined Raman, X-ray Diffraction (XRD), and Density Functional Theory (DFT) Study.

    Science.gov (United States)

    Grzelak, Adam; Gawraczyński, Jakub; Jaroń, Tomasz; Somayazulu, Maddury; Derzsi, Mariana; Struzhkin, Viktor; Grochala, Wojciech

    2017-05-15

    The X-ray diffraction data collected up to ca. 56 GPa and the Raman spectra measured up to 74.8 GPa for AgO, or Ag I Ag III O 2 , which is a prototypical mixed valence (disproportionated) oxide, indicate that two consecutive phase transitions occur: the first-order phase transition occurs between 16.1 GPa and 19.7 GPa, and a second-order phase transition occurs at ca. 40 GPa. All polymorphic forms host the square planar [Ag III O 4 ] units typical of low-spin Ag III . The disproportionated Imma form persists at least up to 74.8 GPa, as indicated by Raman spectra. Theoretical hybrid density functional theory (DFT) calculations show that the first-order transition is phonon-driven. AgO stubbornly remains disproportionated up to at least 100 GPa-in striking contrast to its copper analogue-and the fundamental band gap of AgO is ∼0.3 eV at this pressure and is weakly pressure-dependent. Metallization of AgO is yet to be achieved.

  17. Combining Raman Microprobe and XPS to Study High Temperature Oxidation of Metals

    International Nuclear Information System (INIS)

    Windisch, Charles F.; Henager, Charles H.; Engelhard, Mark H.; Bennett, Wendy D.

    2011-01-01

    Raman microprobe spectroscopy was applied in studies of high-temperature air oxidation of a ferritic alloy (HT-9) in the absence and presence of zirconia coatings with the objective of evaluating the technique as a way to quickly screen candidate cladding materials and actinide-based mixed oxide fuel mixtures for advanced nuclear reactors. When oxidation was relatively uniform, Raman spectra collected using microscope optics with low spatial resolution were found to be similar to those collected with conventional Raman spectroscopy. These spectra could be used to identify major oxide corrosion products and follow changes in the composition of the oxides due to heating. However, when the oxidation films were comprised of multiple layers of varying composition, or with layers containing metallic phases, techniques with higher depth resolution and sensitivity to zero-valence metals were necessary. The requirements were met by combining Raman microprobe using different optical configurations and x-ray photoelectron spectroscopy.

  18. Blood analysis by Raman spectroscopy.

    Science.gov (United States)

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  19. Wavelet data processing of micro-Raman spectra of biological samples

    Science.gov (United States)

    Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.

    2006-02-01

    A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.

  20. Resonant Raman and FTIR spectra of carbon doped GaN

    Science.gov (United States)

    Ito, S.; Kobayashi, H.; Araki, K.; Suzuki, K.; Sawaki, N.; Yamashita, K.; Honda, Y.; Amano, H.

    2015-03-01

    Intentionally carbon (C) doped (0 0 0 1)GaN was grown using C2H2 on a sapphire substrate by metalorganic vapor phase epitaxy. Optical spectra of the heavily doped samples were investigated at room temperature. In Raman spectra excited by the 325 nm line of a He-Cd laser, multiple LO phonon scattering signals up to 7th order were observed, and the A1(LO) phonon energy was determined to be 737.5 cm-1 (91.45 meV). In infrared reflectance spectra, on the other hand, a local vibration mode was found at 777.5 cm-1, which is attributed to a Ga-C bond in the GaN matrix suggesting that the C sits on an N site (CN). In spite of the strong suggestion of CN, the samples did not show p-type conduction. Possible origin of the carrier compensation is discussed in relation to the enhancement of defect related yellow luminescence in the photoluminescence spectra.

  1. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  2. Spatially Resolved Gas Temperature Measurements in an Atmospheric Pressure DC Glow Microdischarge with Raman Scattering

    Science.gov (United States)

    Belostotskiy, S.; Wang, Q.; Donnelly, V.; Economou, D.; Sadeghi, N.

    2006-10-01

    Spatially resolved rotational Raman spectroscopy of ground state nitrogen N2(X^1σg^+) was used to measure the gas temperature (Tg) in a nitrogen dc glow microdischarge (gap between electrodes d˜500 μm). An original backscattering, confocal optical system was developed for collecting Raman spectra. Stray laser light and Raleigh scattering were blocked by using a triple grating monochromator and spatial filters, designed specifically for these experiments. The optical system provided a spatial resolution of electrodes, Tg increased linearly with jd, reaching 500 K at 1000 mA/cm^2 jd for a pressure of 720 Torr. Spatially resolved gas temperature measurements will also be presented and discussed in combination with a mathematical model for gas heating in the microplasma. This work is supported by DoE/NSF.

  3. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Nityananda; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2016-03-21

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 3{sub 10}- and α-helix of acetyl(alanine){sub n}NH{sub 2} (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm{sup −1} is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine){sub 20} and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  4. Raman Frequencies Calculated at Various Pressures in Phase I of Benzene

    Energy Technology Data Exchange (ETDEWEB)

    Tari, Ozlem; Yurtseven, Hamit [Istanbul Arel Univ., Ankara (Turkmenistan)

    2013-04-15

    We calculate in this study the pressure dependence of the frequencies for the Raman modes of A (A{sub g}), B (A{sub g}, B{sub 2g}) and C (B{sub 1g}, B{sub 3g}) at constant temperatures of 274 and 294K (room temperature) for the solid phase I of benzene. Using the mode Gruneisen parameter of each lattice mode, which correlates the pressure dependence of the crystal volume and the frequency, the Raman frequencies of those modes are computed for phase I of benzene. Our results show that the Raman frequencies of the three lattice modes (A, B and C) increase as the pressure increases, as expected. The temperature effect on the Raman frequencies is not significant, which can be explained by the experimental measurements.

  5. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.

    Science.gov (United States)

    Danecek, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bour, Petr

    2007-06-14

    The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800 cm(-1)) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third

  6. Pressure-induced phase transitions in acentric BaHf(BO{sub 3}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Szymborska-Małek, Katarzyna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Sousa Pinheiro, Gardenia de [Departamento de Física, Universidade Federal do Piauí, Teresina, PI 64049-550 (Brazil); Cavalcante Freire, Paulo Tarso [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza CE-60455-970 (Brazil); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warszawa (Poland)

    2015-08-15

    High-pressure Raman scattering studies revealed that BaHf(BO{sub 3}){sub 2} is more compressible than calcite-type orthoborates and calcite, aragonite or dolomite carbonates. It undergoes a first-order reversible pressure-induced phase transition in the 3.9–4.4 GPa pressure range. Second structural change is observed at 9.2 GPa. The intermediate phase is most likely trigonal. However, Raman results suggest increase in the number of distinct BO{sub 3} groups from two in the ambient pressure phase to at least three in the intermediate phase. This intermediate phase is also strongly compressible and strong pressure dependence of the lattice modes proves that the main changes under pressure occur within the layers built from BaO{sub 6} and HfO{sub 6} octahedra. The second phase transition leads most likely to lowering of the trigonal symmetry, as evidenced by significant increase of the number of observed bands. The pressure coefficients of the Raman bands of the high-pressure phase are relatively small, suggesting more dense arrangement of the metal–oxygen polyhedra and BO{sub 3} groups in this phase. It is worth noting that the high-pressure phase was not reached in the second compression experiment up to 10 GPa. This behavior can be most likely attributed to worse hydrostatic conditions of the first experiment. - Graphical abstract: Raman spectra of BaHf(BO{sub 3}){sub 2} recorded at different pressures during compression showing onset of pressure-induced phase transitions. - Highlights: • High-pressure Raman spectra were measured for BaHf(BO{sub 3}){sub 2.} • BaHf(BO{sub 3}){sub 2} undergoes a reversible first-order phase transition at 3.9–4.4 GPa into a trigonal phase. • The intermediate trigonal phase is strongly compressible second structural transformation is observed at 9.2 GPa under non-perfect hydrostatic conditions.

  7. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  8. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  9. Fraction of boroxol rings in vitreous boron oxide from a first-principles analysis of Raman and NMR spectra.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2005-09-23

    We determine the fraction f of B atoms belonging to boroxol rings in vitreous boron oxide through a first-principles analysis. After generating a model structure of vitreous B2O3 by first-principles molecular dynamics, we address a large set of properties, including the neutron structure factor, the neutron density of vibrational states, the infrared spectra, the Raman spectra, and the 11B NMR spectra, and find overall good agreement with corresponding experimental data. From the analysis of Raman and 11B NMR spectra, we yield consistently for both probes a fraction f of approximately 0.75. This result indicates that the structure of vitreous boron oxide is largely dominated by boroxol rings.

  10. How to determine the pressure of a methane-containing gas mixture by means of two weak Raman bands, v(3) and 2v(2)

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2002-01-01

    . Surprisingly it is observed that the ratio at a fixed pressure is independent of the composition and thereby of the surroundings in which the methane molecule is vibrating. A model function to predict the pressure is given. From a practical point of view, the present results could be useful for determining...... directly the total pressure in methane mixtures the composition of which is not known.......Raman spectra of a pure CH4 sample, two CH4-C2H6 mixtures and a CH4-N2 mixture were obtained as a function of pressure at pressures up to 39.6 MPaA (MPa absolute). These spectra are presented in the region 3120-2980 cm-1. A clear pressure dependence of the area ratio between two weak methane bands...

  11. Resonance Raman spectra of phthalocyanine monolayers on different supports. A normal mode analysis of zinc phthalocyanine by means of the MNDO method

    NARCIS (Netherlands)

    Palys, Barbara J.; van den Ham, Dirk M.W.; van den Ham, D.M.W.; Briels, Willem J.; Feil, D.; Feil, Dirk

    1995-01-01

    Resonance Raman spectra of monolayers of transition metal phthalocyanines reveal specific interaction with the support. To elucidate its mechanism, Raman spectra of zinc phthalocyanine monolayers were studied. The analysis was based largely on the results of MNDO calculations. Calculated wavenumbers

  12. Raman spectra of Au nanoparticles in polycrystalline LiF film

    International Nuclear Information System (INIS)

    Kurbatova, N.V.; Galyautdinov, M.F.; Stepanov, A.L.; Ivanov, N.A.; Kolesnikov, S.S.; Papernyj, V.L.

    2011-01-01

    The modification of the size of gold nanoparticles in LiF matrix during laser annealing was studied fort he first time by Raman spectroscopy. Laser annealing was carried out at the wavelength of the plasmon absorption of gold nanoparticles. The experimental spectra were compared with the calculated modes of in-phase bending vibrations in nanoparticles. The observed effects were discussed from the standpoint of the size quantization of acoustic vibrations in nanostructures. (authors)

  13. Efficient "on-the-fly" calculation of Raman spectra from ab-initio molecular dynamics: Application to hydrophobic/hydrophilic solutes in bulk water.

    Science.gov (United States)

    Partovi-Azar, Pouya; Kühne, Thomas D

    2015-11-05

    We present a novel computational method to accurately calculate Raman spectra from first principles. Together with an extension of the second-generation Car-Parrinello method of Kühne et al. (Phys. Rev. Lett. 2007, 98, 066401) to propagate maximally localized Wannier functions together with the nuclei, a speed-up of one order of magnitude can be observed. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of ab-initio molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra. © 2015 Wiley Periodicals, Inc.

  14. Compressibility measurements and phonon spectra of hexagonal transition-metal nitrides at high pressure: ε-TaN, δ-MoN, and Cr2N

    International Nuclear Information System (INIS)

    Soignard, Emmanuel; Shebanova, Olga; McMillan, Paul F.

    2007-01-01

    We report compressibility measurements for three transition metal nitrides (ε-TaN, δ-MoN, Cr 2 N) that have structures based on hexagonal arrangements of the metal atoms. The studies were performed using monochromatic synchrotron x-ray diffraction at high pressure in a diamond anvil cell. The three nitride compounds are well-known high hardness materials, and they are found to be highly incompressible. The bulk modulus values measured for ε-TaN, Cr 2 N, and δ-MoN are K 0 =288(6) GPa, 275(23) GPa, and 345(9) GPa, respectively. The data were analyzed using a linearized plot of reduced pressure (F) vs the Eulerian finite strain variable f within a third-order Birch-Murnaghan equation of state formulation. The K 0 ' values for ε-TaN and δ-MoN were 4.7(0.5) and 3.5(0.3), respectively, close to the value of K 0 ' =4 that is typically assumed in fitting compressibility data in equation of state studies using a Birch-Murnaghan equation. However, Cr 2 N was determined to have a much smaller value, K 0 ' =2.0(2.0), indicating a significantly smaller degree of structural stiffening with increased pressure. We also present Raman data for ε-TaN and δ-MoN at high pressure in order to characterize the phonon behavior in these materials. All of the Raman active modes for ε-TaN were identified using polarized spectroscopy. Peaks at low frequency are due to Ta motions, whereas modes at higher wave number contain a large component of N motion. The high frequency modes associated with Ta-N stretching vibrations are more sensitive to compression than the metal displacements occurring at lower wave number. The mode assignments can be generally extended to δ-MoN, that has a much more complex Raman spectrum. The x-ray and Raman data for ε-TaN show evidence for structural disordering occurring above 20 GPa, whereas no such change is observed for δ-MoN

  15. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.

    Science.gov (United States)

    Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R

    2010-01-01

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can

  16. Infrared and Raman Spectra of and Isotopomers: A DFT-PT2 Anharmonic Study

    Directory of Open Access Journals (Sweden)

    Andrea Alparone

    2013-01-01

    Full Text Available IR and Raman spectra of selenophene and of its perdeuterated isotopomer have been obtained in gas phase through density-functional theory (DFT computations. Vibrational wavenumbers have been calculated using harmonic and anharmonic second-order perturbation theory (PT2 procedures with the B3LYP method and the 6-311 basis set. Anharmonic overtones have been determined by means of the PT2 method. The introduction of anharmonic terms decreases the harmonic wavenumbers, giving a significantly better agreement with the experimental data. The most significant anharmonic effects occur for the C–H and C–D stretching modes, the observed H/D isotopic wavenumber redshifts being satisfactorily reproduced by the PT2 computations within 6–20 cm−1 (1–3%. In the spectral region between 500 cm−1 and 1500 cm−1, the IR spectra are dominated by the out-of-plane C–H (C–D bending transition, whereas the Raman spectra are mainly characterized by a strong peak mainly attributed to the C=C + C–C bonds stretching vibration with the contribution of the in-plane C–H (C–D bending deformation. The current results confirm that the PT2 approach combined with the B3LYP/6-311 level of calculation is a satisfactory choice for predicting vibrational spectra of cyclic molecules.

  17. [Ultrastructure and Raman Spectral Characteristics of Two Kinds of Acute Myeloid Leukemia Cells].

    Science.gov (United States)

    Liang, Hao-Yue; Cheng, Xue-Lian; Dong, Shu-Xu; Zhao, Shi-Xuan; Wang, Ying; Ru, Yong-Xin

    2018-02-01

    To investigate the Raman spectral characteristics of leukemia cells from 4 patients with acute promyelocytic leukemia (M 3 ) and 3 patients with acute monoblastic leukemia (M 5 ), establish a novel Raman label-free method to distinguish 2 kinds of acute myeloid leukemia cells so as to provide basis for clinical research. Leukemia cells were collected from bone marrow of above-mentioned patients. Raman spectra were acquired by Horiba Xplora Raman spectrometer and Raman spectra of 30-50 cells from each patient were recorded. The diagnostic model was established according to principle component analysis (PCA), discriminant function analysis (DFA) and cluster analysis, and the spectra of leukemia cells from 7 patients were analyzed and classified. Characteristics of Raman spectra were analyzed combining with ultrastructure of leukemia cells. There were significant differences between Raman spectra of 2 kinds of leukemia cells. Compared with acute monoblastic leukemia cells, the spectra of acute promyelocytic leukemia cells showed stronger peaks in 622, 643, 757, 852, 1003, 1033, 1117, 1157, 1173, 1208, 1340, 1551, 1581 cm -1 . The diagnostic models established by PCA-DFA and cluster analysis could successfully classify these Raman spectra of different samples with a high accuracy of 100% (233/233). The model was evaluated by "Leave-one-out" cross-validation and reached a high accuracy of 97% (226/233). The level of macromolecules of M 3 cells is higher than that of M 5 . The diagnostic models established by PCA-DFA can classify these Raman spectra of different cells with a high accuracy. Raman spectra shows consistent result with ultrastructure by TEM.

  18. Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra

    International Nuclear Information System (INIS)

    Hehlen, B

    2010-01-01

    Relative Raman scattering intensities are obtained in three samples of vitreous silica of increasing density. The variation of the intensity upon densification is very different for bending and stretching modes. For the former we find a Raman coupling-to-light coefficient C B ∝ω 2 . A comparative intensity and frequency dependence of the Raman spectral lines in the three glasses is performed. Provided the Raman spectra are normalized by C B , there exists a simple relation between the Si-O-Si bond angle and the frequency of all O-bending motions, including those of fourfold (n = 4) and threefold (n = 3) rings. For 20% densification we find a reduction of ∼5.7 deg. of the maximum of the network angle distribution, a value in very close agreement with previous NMR experiments. The threefold and fourfold rings are weakly perturbed by the densification, with a bond angle reduction of ∼0.5 deg. for the former.

  19. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  20. Utilizing Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy to investigate healthy and cancerous colon samples

    International Nuclear Information System (INIS)

    Barzegar, A.; Rezaei, H.; Malekfar, R.

    2012-01-01

    In this study, spontaneous Raman scattering and surface-enhanced Raman scattering, Surface-Enhanced Raman Spectroscopy spectra have been investigated. The samples which were kept in the formalin solution selected from the human's healthy and cancerous colon tissues. The Surface-Enhanced Raman Spectroscopy spectra were collected by adding colloidal solution contained silver nanoparticles to the top of the samples. The recorded spectra were compared for the spontaneous Raman spectra of healthy and cancerous colon samples. The spontaneous and surface enhanced Raman scattering data were also collected and compared for both healthy and damaged samples.

  1. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  2. Study of thermal pressure and phase transitions in H2O using optical pressure sensors in the diamond anvil cell

    International Nuclear Information System (INIS)

    Sundberg, Sara; Lazor, Peter

    2004-01-01

    We present results of a study on the phase equilibria and pressure-volume-temperature relations for water and ice VII using an optical system designed for Raman spectroscopy and pressure-temperature measurements. The study shows that the strontium borate sensor represents an important tool for high-pressure-high-temperature manometry for temperatures below 600 K. In the pressure-temperature ranges 0-5 GPa and 240-600 K we detected phase transformations between four phases of H 2 O as documented by Raman spectra, pressure-temperature scans, and visual observations. Analysis of the interference fringes and comparison of the experimental data on thermal pressure with the published equations of state (EOSs) show that the heating/cooling cycles were carried out under quasi-isochoric conditions. The experimental results are discussed/analysed on the basis of different EOSs for water and ice

  3. Thermal dissociation of molten KHSO4: Temperature dependence of Raman spectra and thermodynamics

    DEFF Research Database (Denmark)

    Knudsen, Christian B.; Kalampounias, Angelos G.; Fehrmann, Rasmus

    2008-01-01

    Raman spectroscopy is used to study the thermal dissociation of molten KHSO4 at temperatures of 240-450 degrees C under static equilibrium conditions. Raman spectra obtained at 10 different temperatures for the molten phase and for the vapors thereof exhibit vibrational wavenumbers and relative...... process taking place to a significant extent in the temperature range of the investigation and for determining its enthalpy to be Delta H degrees = 64.9 +/- 2.9 kJ mol(-1). The importance of these findings for the understanding of the performance of the industrially important sulfuric acid catalyst. under...

  4. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-01-01

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N + and C 4+ ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C 4+ irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes

  5. FT-Raman and FTIR spectra of photoactive aminobenzazole derivatives in the solid state: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Rodrigo Martins [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil); Rodembusch, Fabiano Severo [Universidade Federal do Rio Grande do Sul, Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS (Brazil); Habis, Charles [Northern Virginia Community College, Manassas, VA (United States); Moreira, Eduardo Ceretta, E-mail: eduardomoreira@unipampa.edu.br [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil)

    2014-12-15

    This study reports the experimental investigation of two photoactive aminobenzazole derivatives in the solid state by FT-Raman and Infrared Spectroscopies (FTIR) and its comparison with theoretical models. The optimized molecular structure, vibrational frequencies, and corresponding vibrational assignments of these compounds have been investigated experimentally and theoretically using Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) and Gaussian03 Software Package. The FT-Raman and FTIR spectra were acquired with high resolution and emission frequencies identified by simulating the vibrational modes. The most intense peak observed in the FT-Raman spectra is the in-plane deformation vibrational of O–H bond that could be related to the vibrational region responsible for the stabilization of the enol conformer in the ground state which undergoes ESIPT to form a keto tautomer in the excited state. Additionally, the position of the amino group played an important role on the vibrational characteristics of the studied compounds. Also, the simulations proved to be a good approach in undertaking the FTIR and FT-Raman experiments. The use of graphic correlations helps us to determine the method and basis that best fit the experimental results. - Highlights: • Structural and vibrational properties of two aminobenzazoles were reported. • Comparison between experimental techniques and theoretical models. • The position of the amino group played an important role on the vibrational characteristics of the studied compounds.

  6. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  7. Characterization of Y1-xCaxBa2Cu4O8 (x=0.0˜ 0.1) with Double Cu-O Chains by Raman Spectra

    Science.gov (United States)

    Kodama, Yasuharu; Tanemura, Sakae; Ikeda, Teruki

    1991-08-01

    Raman spectra of Y1-xCaxBa2Cu4O8 (x=0.0, 0.02, 0.05 and 0.1) ceramic samples synthesized under high oxygen pressure were investigated. Seven clear peaks assigned to Ag modes were observed for the sample with x=0. With increasing x, the peaks at 238 cm-1, 332 cm-1, 430 cm-1 and 590 cm-1 were broadened. The origin of the broadening of the peaks at 238 cm-1 and 590 cm-1 is considered to be the destruction of the double Cu-O chains due to the substitution of Ca for Y.

  8. High-pressure condition of SiH{sub 4}+Ar+H{sub 2} plasma for deposition of hydrogenated nanocrystalline silicon film

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, A.; Kumar, Sushil; Dixit, P.N.; Gope, Jhuma; Rauthan, C.M.S. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Hashmi, S.A. [Department of Physics and Astro Physics, University of Delhi, Delhi 110007 (India)

    2008-10-15

    The characteristics of 13.56-MHz discharged SiH{sub 4}+Ar+H{sub 2} plasma at high pressure (2-8 Torr), used for the deposition of hydrogenated nanocrystalline silicon (nc-Si:H) films in a capacitively coupled symmetric PECVD system, has been investigated. Plasma parameters such as average electron density, sheath field and bulk field are extracted from equivalent circuit model of the plasma using outputs (current, voltage and phase) of RF V-I probe under different pressure conditions. The conditions of growth in terms of plasma parameters are correlated with properties of the hydrogenated nanocrystalline silicon films characterized by Raman, AFM and dc conductivity. The film deposited at 4 Torr of pressure, where relatively low sheath/bulk field ratio is observed, exhibits high crystallinity and conductivity. The crystalline volume fraction of the films estimated from the Raman spectra is found to vary from 23% to 79%, and the trend of variation is similar to the RF real plasma impedance data. (author)

  9. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film

    Energy Technology Data Exchange (ETDEWEB)

    Xia Minggang [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, 710049 (China); Center on Experimental Physics, School of Science, Xi' an Jiaotong University, 710049 (China); Su Zhidan; Zhang Shengli [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, 710049 (China)

    2012-09-15

    The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  10. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate thin film

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2012-09-01

    Full Text Available The Raman spectra of bilayer graphene covered with poly(methyl methacrylate (PMMA were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  11. Investigation of various factors influencing Raman spectra interpretation with the use of likelihood ratio approach.

    Science.gov (United States)

    Michalska, Aleksandra; Martyna, Agnieszka; Zadora, Grzegorz

    2018-01-01

    The main aim of this study was to verify whether selected analytical parameters may affect solving the comparison problem of Raman spectra with the use of the likelihood ratio (LR) approach. Firstly the LR methodologies developed for Raman spectra of blue automotive paints obtained with the use of 785nm laser source (results published by the authors previously) were implemented for good quality spectra recorded for these paints with the use of 514.5nm laser source. For LR models construction two types of variables were used i.e. areas under selected pigments bands and coefficients derived from discrete wavelet transform procedure (DWT). Few experiments were designed for 785nm and 514.5nm Raman spectra databases after constructing well performing LR models (low rates of false positive and false negative answers and acceptable results of empirical cross entropy approach). In order to verify whether objective magnification described by its numerical aperture affects spectra interpretation, three objective magnifications -20×(N.A.=0.4.), 50×(N.A.=0.75) and 100×(N.A.=0.85) within each of the applied laser sources (514.5nm and 785nm) were tested for a group of blue solid and metallic automotive paints having the same sets of pigments depending on the applied laser source. The findings obtained by two types of LR models indicate the importance of this parameter for solving the comparison problem of both solid and metallic automotive paints regardless of the laser source used for measuring Raman signal. Hence, the same objective magnification, preferably 50× (established based on the analysis of within- and between-samples variability and F-factor value), should be used when focusing the laser on samples during Raman measurements. Then the influence of parameters (laser power and time of irradiation) of one of the recommended fluorescence suppression techniques, namely photobleaching, was under investigation. Analysis performed on a group of solid automotive paint

  12. Raman spectroscopy and magnetic properties of KMCr(CN).sub.6./sub. under pressure

    Czech Academy of Sciences Publication Activity Database

    Zentková, M.; Vavra, M.; Mihalik, M.; Mihalik jr., M.; Lazurová, J.; Arnold, Zdeněk; Kamarád, Jiří; Kamenev, K.; Míšek, Martin

    2015-01-01

    Roč. 35, č. 1 (2015), 22-27 ISSN 0895-7959 Institutional support: RVO:68378271 Keywords : Raman spectroscopy * magnetic phase transition * high pressure * diamond anvil cell Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.014, year: 2015

  13. Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition

    International Nuclear Information System (INIS)

    Goncharov, A.F.; Struzhkin, V.V.

    2003-01-01

    We overview recent high-pressure studies of high-temperature superconductor MgB 2 by Raman scattering technique combined with measurements of superconducting critical temperature T c and lattice parameters up to 57 GPa. An anomalously broadened Raman band at 620 cm -1 is observed and assigned to the in-plane boron stretching E 2g mode. It exhibits a large Grueneisen parameter indicating that the vibration is highly anharmonic. The pressure dependencies of the E 2g mode and T c reveal anomalies at 15-22 GPa (isotope dependent). The anharmonic character of the E 2g phonon mode, its anomalous pressure dependence, and also that for T c are interpreted as a result of a phonon-assisted Lifshitz electronic topological transition

  14. High wavenumber Raman spectroscopic characterization of normal and oral cancer using blood plasma

    Science.gov (United States)

    Pachaiappan, Rekha; Prakasarao, Aruna; Suresh Kumar, Murugesan; Singaravelu, Ganesan

    2017-02-01

    Blood plasma possesses the biomolecules released from cells/tissues after metabolism and reflects the pathological conditions of the subjects. The analysis of biofluids for disease diagnosis becomes very attractive in the diagnosis of cancers due to the ease in the collection of samples, easy to transport, multiple sampling for regular screening of the disease and being less invasive to the patients. Hence, the intention of this study was to apply near-infrared (NIR) Raman spectroscopy in the high wavenumber (HW) region (2500-3400 cm-1) for the diagnosis of oral malignancy using blood plasma. From the Raman spectra it is observed that the biomolecules protein and lipid played a major role in the discrimination between groups. The diagnostic algorithms based on principal components analysis coupled with linear discriminant analysis (PCA-LDA) with the leave-one-patient-out cross-validation method on HW Raman spectra yielded a promising results in the identification of oral malignancy. The details of results will be discussed.

  15. Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics.

    Science.gov (United States)

    Gao, Fei; Xu, Lingzhi; Zhang, Yuejing; Yang, Zengling; Han, Lujia; Liu, Xian

    2018-02-01

    The objectives of the current study were to explore the correlation between Raman spectroscopy and lipid characteristics and to assess the potential of Raman spectroscopic methods for distinguishing the different sources of animal-originated feed based on lipid characteristics. A total of 105 lipid samples derived from five animal species have been analyzed by gas chromatography (GC) and FT-Raman spectroscopy. High correlations (r 2 >0.94) were found between the characteristic peak ratio of the Raman spectra (1654/1748 and 1654/1445) and the degree of unsaturation of the animal lipids. The results of FT-Raman data combined with chemometrics showed that the fishmeal, poultry, porcine and ruminant (bovine and ovine) MBMs could be well separated based on their lipid spectral characteristics. This study demonstrated that FT-Raman spectroscopy can mostly exhibit the lipid structure specificity of different species of animal-originated feed and can be used to discriminate different animal-originated feed samples. Copyright © 2017. Published by Elsevier Ltd.

  16. Studies of the Raman Spectra of Cyclic and Acyclic Molecules: Combination and Prediction Spectrum Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taijin; Assary, Rajeev S.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2012-04-02

    A combination of Raman spectroscopy and density functional methods was employed to investigate the spectral features of selected molecules: furfural, 5-hydroxymethyl furfural (HMF), methanol, acetone, acetic acid, and levulinic acid. The computed spectra and measured spectra are in excellent agreement, consistent with previous studies. Using the combination and prediction spectrum method (CPSM), we were able to predict the important spectral features of two platform chemicals, HMF and levulinic acid.The results have shown that CPSM is a useful alternative method for predicting vibrational spectra of complex molecules in the biomass transformation process.

  17. High pressure Raman spectroscopy of single-walled carbon nanotubes: Effect of chemical environment on individual nanotubes and the nanotube bundle

    Science.gov (United States)

    Proctor, John E.; Halsall, Matthew P.; Ghandour, Ahmad; Dunstan, David J.

    2006-12-01

    The pressure-induced tangential mode Raman peak shifts for single-walled carbon nanotubes (SWNTs) have been studied using a variety of different solvents as hydrostatic pressure-transmitting media. The variation in the nanotube response to hydrostatic pressure with different pressure transmitting media is evidence that the common solvents used are able to penetrate the interstitial spaces in the nanotube bundle. With hexane, we find the surprising result that the individual nanotubes appear unaffected by hydrostatic pressures (i.e. a flat Raman response) up to 0.7 GPa. Qualitatively similar results have been obtained with butanol. Following the approach of Amer et al. [J. Chem. Phys. 121 (2004) 2752], we speculate that this is due to the inability of SWNTs to adsorb some solvents onto their surface at lower pressures. We also find that the role of cohesive energy density in the solvent nanotube interaction is more complex than previously thought.

  18. Resonance Raman Spectra of the Transient Cl2 and Br2 Radical Anions

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Sillesen, Alfred Hegaard

    1984-01-01

    The resonance Raman spectra of the short-lived radical anions ClImage 2− and BrImage − in aqueous solution are reported. The observed wavenumbers of 279 cm−1 for ClImage − and 177 cm−1 for BrImage − are about 10% higher than those published for the corresponding species isolated in solid argon ma...

  19. Pressure Monitoring Using Hybrid fs/ps Rotational CARS

    Science.gov (United States)

    Kearney, Sean P.; Danehy, Paul M.

    2015-01-01

    We investigate the feasibility of gas-phase pressure measurements at kHz-rates using fs/ps rotational CARS. Femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is then probed by a high-energy 6-ps pulse introduced at a time delay from the Raman preparation. Rotational CARS spectra were recorded in N2 contained in a room-temperature gas cell for pressures from 0.1 to 3 atm and probe delays ranging from 10-330 ps. Using published self-broadened collisional linewidth data for N2, both the spectrally integrated coherence decay rate and the spectrally resolved decay were investigated as means for detecting pressure. Shot-averaged and single-laser-shot spectra were interrogated for pressure and the accuracy and precision as a function of probe delay and cell pressure are discussed. Single-shot measurement accuracies were within 0.1 to 6.5% when compared to a transducer values, while the precision was generally between 1% and 6% of measured pressure for probe delays of 200 ps or more, and better than 2% as the delay approached 300 ps. A byproduct of the pressure measurement is an independent but simultaneous measurement of the gas temperature.

  20. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    Science.gov (United States)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  1. Nanodiamonds and silicate minerals in ordinary chondrites as determined by micro-Raman spectroscopy

    Science.gov (United States)

    Saikia, Bhaskar J.; Parthasarathy, Gopalakrishnarao; Borah, Rashmi R.

    2017-06-01

    We present here the Raman spectroscopic study of silicate and carbonaceous minerals in three ordinary chondrites with the aim to improve our understanding the impact process including the peak metamorphic pressures present in carbon-bearing ordinary chondites. The characteristic Raman vibrational peaks of olivines, pyroxenes, and plagioclase have been determined on three ordinary chondrites from India, Dergaon (H5), Mahadevpur (H4/5), and Kamargaon (L6). The Raman spectra of these meteorite samples show the presence of nanodiamonds at 1334-1345 cm-1 and 1591-1619 cm-1. The full-width at half maximum (FWHM) of Raman peaks for Mahadevpur and Dergaon reflect the nature of shock metamorphism in these meteorites. The frequency shift in Raman spectra might be because of shock effects during the formation of the diamond/graphite grains.

  2. FTIR and FT-Raman spectra and density functional computations of the vibrational spectra, molecular geometry and atomic charges of the biomolecule: 5-bromouracil

    Czech Academy of Sciences Publication Activity Database

    Rastogi, V.K.; Palafox, M. A.; Mittal, L.; Peica, N.; Keifer, W.; Lang, Kamil; Ojha, S.P.

    2007-01-01

    Roč. 38, č. 10 (2007), s. 1227-1241 ISSN 0377-0486 Institutional research plan: CEZ:AV0Z40320502 Keywords : FTIR and FT-Raman spectra * density functional computations * molecular geometry Subject RIV: CA - Inorganic Chemistry Impact factor: 3.514, year: 2007

  3. High-pressure behavior of CaMo O4

    Science.gov (United States)

    Panchal, V.; Garg, N.; Poswal, H. K.; Errandonea, D.; Rodríguez-Hernández, P.; Muñoz, A.; Cavalli, E.

    2017-09-01

    We report a high-pressure study of tetragonal scheelite-type CaMo O4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMo O4 . We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active and infrared-active modes. In addition, based on calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMo O4 . The reported results are of interest for the many technological applications of this oxide.

  4. Comparative study of pressure-induced polymerization in C60 nanorods and single crystals

    International Nuclear Information System (INIS)

    Hou Yuanyuan; Liu Bingbing; Wang Lin; Yu Shidan; Yao Mingguang; Chen Ao; Liu Dedi; Zou Yonggang; Li Zepeng; Zou Bo; Cui Tian; Zou Guangtian; Iwasiewicz-Wabnig, Agnieszka; Sundqvist, Bertil

    2007-01-01

    In this paper, we report a comparative study of pressure-induced polymerization in C 60 nanorods and bulk single crystals, treated simultaneously under various pressures and temperatures in the same experiment. For both materials, orthorhombic, tetragonal and rhombohedral phases have been produced under high pressure and high temperature. The structures have been identified and compared between the two sample types by Raman and photoluminescence spectroscopy. There are differences between the Raman and photoluminescence spectra from the two types of materials for all polymeric phases, but especially for the tetragonal phase. From the comparison between nanorods and bulk samples, we tentatively assign photoluminescence peaks for various polymeric phases

  5. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400 1400 cm 1

    Science.gov (United States)

    2015-11-24

    Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400...1400 cm‐1 R. L. Aggarwal, L. W. Farrar, S. Di Cecca, and T. H. Jeys MIT Lincoln Laboratory, Lexington, MA 02420‐9108 Raman spectra of...region 400‐1400 cm‐1. A relatively compact (< 2’x2’x2’), sensitive, 532 nm 10 W CW Raman system with double‐pass

  6. Raman Spectra and Cross Sections of Ammonia, Chlorine, Hydrogen Sulfide, Phosgene, and Sulfur Dioxide Toxic Gases in the Fingerprint Region 400-1400 cm-1

    Science.gov (United States)

    2015-12-14

    Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400...1400 cm‐1 R. L. Aggarwal, L. W. Farrar, S. Di Cecca, and T. H. Jeys MIT Lincoln Laboratory, Lexington, MA 02420‐9108 Raman spectra of...region 400‐1400 cm‐1. A relatively compact (< 2’x2’x2’), sensitive, 532 nm 10 W CW Raman system with double‐pass

  7. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  8. Signal-to-Noise Contribution of Principal Component Loads in Reconstructed Near-Infrared Raman Tissue Spectra

    NARCIS (Netherlands)

    Grimbergen, M. C. M.; van Swol, C. F. P.; Kendall, C.; Verdaasdonk, R. M.; Stone, N.; Bosch, J. L. H. R.

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device

  9. Raman tweezers spectroscopy of live, single red and white blood cells.

    Directory of Open Access Journals (Sweden)

    Aseefhali Bankapur

    Full Text Available An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC and white blood cells (WBC under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW. Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip.

  10. Raman Spectra of Luminescent Graphene Oxide (GO-Phosphor Hybrid Nanoscrolls

    Directory of Open Access Journals (Sweden)

    Janardhanan. R. Rani

    2015-12-01

    Full Text Available Graphene oxide (GO-phosphor hybrid nanoscrolls were synthesized using a simple chemical method. The GO-phosphor ratio was varied to find the optimum ratio for enhanced optical characteristics of the hybrid. A scanning electron microscope analysis revealed that synthesized GO scrolls achieved a length of over 20 μm with interior cavities. The GO-phosphor hybrid is extensively analyzed using Raman spectroscopy, suggesting that various Raman combination modes are activated with the appearance of a low-frequency radial breathing-like mode (RBLM of the type observed in carbon nanotubes. All of the synthesized GO-phosphor hybrids exhibit an intense luminescent emission around 540 nm along with a broad emission at approximately 400 nm, with the intensity ratio varying with the GO-phosphor ratio. The photoluminescence emissions were gauged using Commission Internationale d'Eclairage (CIE coordinates and at an optimum ratio. The coordinates shift to the white region of the color spectra. Our study suggests that the GO-phosphor hybrid nanoscrolls are suitable candidates for light-emitting applications.

  11. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    Science.gov (United States)

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained.

  12. Effect of pressure on the second-order Raman scattering intensities of zincblende semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Trallero-Giner, C.; Syassen, K. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2010-01-15

    A microscopic description of the two-phonon scattering intensities in direct-gap zincblende-type semiconductors as a function of hydrostatic pressure and for non-resonant excitation is presented. The calculations were performed according to the electron-two-phonon deformation potential interaction for the {gamma}{sub 1} and {gamma}{sub 15} components of the Raman tensor. It is shown that the effect of pressure on the Raman scattering cross-section exhibits a complex behavior according to the contribution of the acoustical or optical phonons to the overtones and combinations. Second-order scattering intensities via acoustical modes could decrease or increase with increasing hydrostatic pressure, while for combinations or overtones of optical phonons a decreasing intensity is obtained. Calculations of the effect of pressure on second-order Raman intensities are compared to experimental results for ZnTe. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Long-duration nano-second single pulse lasers for observation of spectra from bulk liquids at high hydrostatic pressures

    International Nuclear Information System (INIS)

    Thornton, Blair; Sakka, Tetsuo; Masamura, Tatsuya; Tamura, Ayaka; Takahashi, Tomoko; Matsumoto, Ayumu

    2014-01-01

    The influence of laser pulse duration on the spectral emissions observed from bulk ionic solutions has been investigated for hydrostatic pressures between 0.1 and 30 MPa. Transient pressure, shadowgraph imaging and spectroscopic measurements were performed for single pulses of duration 20 and 150 ns. The transient pressure measurements show that for hydrostatic pressures up to 30 MPa, propagation of the high-pressure shockwave generated by the focused laser causes the local pressure to reduce below ambient levels during the time frame that spectroscopic measurements can be made. The pressure impulse and subsequent reduction in pressure are larger, with the latter lasting longer for the 150 ns pulse compared to a 20 ns pulse of the same energy. The 150 ns pulse generates larger cavities with significant enhancement of the spectral emissions observed compared to the 20 ns duration pulse for pressures up to 30 MPa. The results demonstrate that laser-induced breakdown using a long ns duration pulse offers an advantage over conventional, short ns duration pulses for the analysis of bulk ionic solutions at hydrostatic pressures between 0.1 and 30 MPa. - Highlights: • Long-ns-duration laser pulses enhance the spectra observed from bulk solutions. • Laser-induced shockwaves momentarily reduce pressures to below ambient levels. • 150 ns pulses generate larger cavities than 20 ns pulses of the same energy. • Hydrostatic pressures < 30 MPa have no significant effect on the observed spectra

  14. Coherent anti-Stokes Raman spectroscopy temperature measurements in an internal combustion engine

    Science.gov (United States)

    Ball, Don; Driver, H. Steve T.; Hutcheon, Richard J.; Lockett, Russel J.; Robertson, Gerald N.

    1994-09-01

    Part of a project to investigate the physics and chemistry of alternative fuels in internal combustion engines is reported. Coherent anti-Stokes Raman spectroscopy (CARS) is used to probe the fuel-air mixture in the cylinder of a Richardo E6 variable compression ratio research engine. The laser system comprises a passively Q- switched single-longitudinal-mode frequency-doubled Nd:YAG laser and a broadband dye laser, both with a pulse length of 15 ns. A crankshaft encoder and electronic delay are used to fire the lasers at specified times during the engine cycle, and CARS spectra are acquired using a 0.75 m spectrometer and a 1024 optical multichannel analyzer. Because of the uncertainties associated with collisional narrowing in the theoretical modeling of high-pressure CARS spectra, temperatures are determined by comparing the engine spectra with a library of experimental CARS spectra from a calibrated high-pressure, high- temperature cell. This purely experimental technique is shown to be superior to two theoretical models under the considered conditions, giving temperatures during the compression stroke of the engine with standard deviations of typically 10 K and a possible systematic error of 15 K. Together with pressure records, this information is used as input data for chemical kinetic modeling of the combustion process.

  15. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    Science.gov (United States)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm -1 and 50-3500 cm -1, respectively. In addition, the IR spectra in CCl 4 at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.

  16. Anomalous perovskite PbRuO3 stabilized under high pressure

    Science.gov (United States)

    Cheng, J.-G.; Kweon, K. E.; Zhou, J.-S.; Alonso, J. A.; Kong, P.-P.; Liu, Y.; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S. A.; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.

    2013-01-01

    Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc. PMID:24277807

  17. Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers

    International Nuclear Information System (INIS)

    Farrow, R.L.; Rahn, L.A.

    1985-01-01

    We report comparisons of coherent anti-Stokes Raman spectroscopy (CARS) measurements using single-axial-and multiaxial-mode Nd:YAG lasers. Our results demonstrate the validity of a recently proposed convolution expression for unresolved CARS spectra. The results also support the use of a relative delay of several coherence lengths between pump-beam paths for reducing the effects of pump-field statistics on the CARS spectral profile

  18. FT-Raman spectra of cellulose and lignocellulose materials : “self-absorption” phenomenon and its implications for quantitative work

    Science.gov (United States)

    Umesh Agarwal; Nancy Kawai

    2003-01-01

    The phenomenon of “self-absorption” was found to exist in the FT-Raman spectra of cellulose and thermomechanical pulp (TMP), but not in the spectrum of milled wood lignin. For cellulose and TMP, the effect was responsible for reducing the intensity of the Raman bands in the C-H stretch region. Several factors including sampling position, sample thickness, and moisture...

  19. Raman spectra of human dentin mineral

    NARCIS (Netherlands)

    Tsuda, H; Ruben, J; Arends, J

    Human dentin mineral has been investigated by using micro-Raman spectroscopy. Fluorescence and thermal problems were largely avoided by preparing dentin samples by grinding and ultrasonic agitation in acetone. The Raman spectral features were consistent with those of impure hydroxyapatite containing

  20. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei

    2015-12-09

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  1. Digital dewaxing of Raman signals: discrimination between nevi and melanoma spectra obtained from paraffin-embedded skin biopsies.

    Science.gov (United States)

    Tfayli, Ali; Gobinet, Cyril; Vrabie, Valeriu; Huez, Regis; Manfait, Michel; Piot, Olivier

    2009-05-01

    Malignant melanoma (MM) is the most severe tumor affecting the skin and accounts for three quarters of all skin cancer deaths. Raman spectroscopy is a promising nondestructive tool that has been increasingly used for characterization of the molecular features of cancerous tissues. Different multivariate statistical analysis techniques are used in order to extract relevant information that can be considered as functional spectroscopic descriptors of a particular pathology. Paraffin embedding (waxing) is a highly efficient process used to conserve biopsies in tumor banks for several years. However, the use of non-dewaxed formalin-fixed paraffin-embedded tissues for Raman spectroscopic investigations remains very restricted, limiting the development of the technique as a routine analytical tool for biomedical purposes. This is due to the highly intense signal of paraffin, which masks important vibrations of the biological tissues. In addition to being time consuming and chemical intensive, chemical dewaxing methods are not efficient and they leave traces of the paraffin in tissues, which affects the Raman signal. In the present study, we use independent component analysis (ICA) on Raman spectral images collected on melanoma and nevus samples. The sources obtained from these images are then used to eliminate, using non-negativity constrained least squares (NCLS), the paraffin contribution from each individual spectrum of the spectral images of nevi and melanomas. Corrected spectra of both types of lesion are then compared and classified into dendrograms using hierarchical cluster analysis (HCA).

  2. Micro-Raman spectroscopy of plagioclase and maskelynite in Martian meteorites: Evidence of progressive shock metamorphism

    OpenAIRE

    Fritz,Jorg; Greshake,Ansgar; Stoffler,Dieter

    2005-01-01

    We present the first systematic Micro-Raman spectroscopic investigation of plagioclase of different degree of shock metamorphism in Martian meteorites. The equilibrium shock pressure of all plagioclase phases of seventeen unpaired Martian meteorites was determined by measuring the shock-induced reduction of the refractive index. Systematic variations in the recorded Raman spectra of the plagioclase phases correlate with increasing shock pressure. In general, the shock induced deformation of t...

  3. Temperature dependence of Raman spectra of Basub(0.25)Srsub(0.75)Nbsub(2)Osub(6) crystal

    International Nuclear Information System (INIS)

    Rustamov, Kh.Sh.; Gorelik, V.S.; Kuz'minov, Yu.S.; Peregudov, G.V.; Sushchinskij, M.M.

    1976-01-01

    The nature of the changes is studied in the Raman spectra in a crystal of Basub(x)Srsub(1-x)Nasub(2)Osub(6) (x=0.25) with the temperature range of 80 to 373 K. Normal procedure was applied with the use of an argon laser (Λ=4880 A) and a DFS-12 spectrometer. It has been established that at low temperatures the spectrum becomes more clear-cut; in the low-frequency range some sharp lines appear in the immediate vicinity of the exciting line. On heating of the crystal one observes a redistribution of the intensity in the Raman spectrum and a general displacement of the low-frequency Raman spectrum and a general displacement of the low-frequency Raman spectrum toward the exciting line. The nature of the frequency shifts some Raman maxima was investigated, and certain anomalies were observed in the vicinity of the phase transition point

  4. Combining surface enhanced Raman scattering (SERS) and high-performance thin-layer chromatography (HPTLC)

    Science.gov (United States)

    Koglin, E.

    A new method for preparing SERS active surfaces using silver colloidal spheres deposited on HPTLC plates, used for thin-layer chromatography, is discussed in detail. The sensitivity of these activated HPTLC plates is so high that in-situ vibrational investigations of chromatogram spots are possible at the nanogram level. The HPTLC/SERS spectra of purine, benzoic acid and 1-nitro-pyrene adsorbed on silver colloidal activated silica gel plates are measured in the nanogram region. In addition we also report in this paper on the results of a feasibility study performed to evaluate the analytical potential of micro-Raman spectroscopy (triple monochromator, multichannel detection system) in SERS/HPTLC spot characterization. It permits the acquisition of Raman spectra from HPTLC spots down to 1 μm in size or other forms of microsamples approaching the picogram level in mass.

  5. Time resolved resonance Raman spectra of anilino radical and aniline radical cation

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.; Schuler, R.H.

    1987-01-01

    We report, in this paper, submicrosecond time resolved resonance Raman spectra of anilino radical and its radical cation as observed in pulse radiolytic studies of the oxidation of aniline in aqueous solution. By excitation in resonance with the broad and weak electronic transition of anilino radical at 400 nm (ε--1250 M -1 cm -1 ) we have observed, for the first time, the vibrational features of this radical. The Wilson ν 8 /sub a/ ring stretching mode at 1560 cm -1 is most strongly resonance enhanced. The ν 7 /sub a/ CN stretching band at 1505 cm -1 , which is shifted to higher frequency by 231 cm -1 with respect to aniline, is also prominent. The frequency of this latter mode indicates that the CN bond in the radical has considerable double bond character. The Raman spectrum of aniline radical cation, excited in resonance with the --425 nm electronic absorption (ε--4000 M -1 cm -1 ), shows features which are similar to phenoxyl radical. Most of the observed frequencies of this radical in solution are in good agreement with vibrational energies determined by recent laser photoelectron spectroscopic studies in the vapor phase. The bands most strongly enhanced in the resonance Raman spectrum are, however, weak in the photoelectron spectrum. While the vibrational frequencies observed for anilino radical and its isoelectronic cation are quite similar, the resonance enhancement patterns are very different. In particular the ν 14 b 2 mode of anilino radical observed at 1324 cm -1 is highly resonance enhanced because of strong vibronic coupling between the 400 nm 2 A 2 -- 2 B 1 and the higher 2 B 1 -- 2 B 1 electronic transitions

  6. Mid-infrared emission and Raman spectra analysis of Er(3+)-doped oxyfluorotellurite glasses.

    Science.gov (United States)

    Chen, Fangze; Xu, Shaoqiong; Wei, Tao; Wang, Fengchao; Cai, Muzhi; Tian, Ying; Xu, Shiqing

    2015-04-10

    This paper reports on the spectroscopic and structural properties in Er(3+)-doped oxyfluorotellurite glasses. The compositional variation accounts for the evolutions of Raman spectra, Judd-Ofelt parameters, radiative properties, and fluorescent emission. It is found that, when maximum phonon energy changes slightly, phonon density plays a crucial role in quenching the 2.7 μm emission generated by the Er(3+):(4)I11/2→(4)I13/2 transition. The comparative low phonon density contributes strong 2.7 μm emission intensity. The high branching ratio (18.63%) and large emission cross section (0.95×10(-20)  cm(2)) demonstrate that oxyfluorotellurite glass contained with 50 mol.% TeO2 has potential application in the mid-infrared region laser.

  7. A SIGNAL ENHANCED PORTABLE RAMAN PROBE FOR ANESTHETIC GAS MONITORING

    Directory of Open Access Journals (Sweden)

    S. Schlüter

    2015-03-01

    Full Text Available The spontaneous Raman scattering technique is an excellent tool for a quantitative analysis of multi-species gas mixtures. It is a noninvasive optical method for species identification and gas phase concentration measurement of all Raman active molecules, since the intensity of the species specific Raman signal is linearly dependent on the concentration. Applying a continuous wave (CW laser it typically takes a few seconds to capture a gas phase Raman spectrum at room temperature. Nevertheless in contrast to these advantages the weak Raman signal intensity is a major drawback. Thus, it is still challenging to detect gas phase Raman spectra in alow-pressure regime with a temporal resolution of only a few 100 ms. In this work a fully functional gas phase Raman system for measurements in the low-pressure regime (p ≥ 980 hPa (absolute is presented. It overcomes the drawback of a weak Raman signal by using a multipass cavity. A description of the sensor setup and of the multipass arrangement will be presented. Moreover the complete functionality of the sensor system will be demonstrated by measurements at an anesthesia simulator under clinical relevant conditions and in comparison to a conventional gas monitor.

  8. Crystalline and amorphous phases in carbon nitride films produced by intense high-pressure plasma

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Orlov, A.V.; Bursill, L.A.; JuLin, P.; Nugent, K.W.; Chon, J.W.; Prawer, S.

    1997-01-01

    Carbon-nitride films are prepared using a high-intensity pulsed plasma deposition technique. A wide range of nitrogen pressure and discharge intensity are used to investigate their effect on the morphology, nitrogen content, structure, bonding, phase composition and mechanical characteristics of the CN films deposited. Increasing the nitrogen pressure from 0.1 atm to 10 atm results in an increase of nitrogen incorporation into CN films to maximum of 45 at %. Under the high-energy density deposition conditions which involve ablation of the quartz substrate the CN films are found to incorporate in excess of 60 at %N. Raman spectra of these films contain sharp peaks characteristic of a distinct crystalline CN phase. TEM diffraction patterns for the films deposited below 1 atm unambiguously show the presence of micron-sized crystals displaying a cubic symmetry. (authors)

  9. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  10. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study

    Science.gov (United States)

    Chariton, Stella; Cerantola, Valerio; Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Kupenko, Ilya; McCammon, Catherine; Dubrovinsky, Leonid

    2018-01-01

    Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure ({R}\\bar{3}{c}) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K' = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).

  12. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  13. Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors.

    Science.gov (United States)

    Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng

    2016-07-06

    Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of 80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.

  14. Terbium oxide at high pressures

    International Nuclear Information System (INIS)

    Dogra, Sugandha; Sharma, Nita Dilawar; Singh, Jasveer; Bandhyopadhyay, A.K.

    2011-01-01

    In this work we report the behaviour of terbium oxide at high pressures. The as received sample was characterized at ambient by X-ray diffraction and Raman spectroscopy. The X-ray diffraction showed the sample to be predominantly cubic Tb 4 O 7 , although a few peaks also match closely with Tb 2 O 3 . In fact in a recent study done on the same sample, the sample has been shown to be a mixture of Tb 4 O 7 and Tb 2 O 3 . The sample was subjected to high pressures using a Mao-Bell type diamond anvil cell upto a pressure of about 42 GPa with ruby as pressure monitor

  15. Influence of a photoexcited electron-hole plasma on the Raman scattering spectra of YBa2Cu3Ox single crystals

    International Nuclear Information System (INIS)

    Goncharov, A.F.; Denisov, V.N.; Mavrin, B.N.; Podobedov, V.B.

    1988-01-01

    The Raman spectra of tetragonal YBa 2 Cu 3 O x crystals in the region of ∼500 cm -1 were determined using different power densities I 0 of the exciting radiation of wavelengths 4,880, 5,145, 5,321, and 6,471 angstrom at temperatures 80-300 K. An increase in I 0 revealed changes in the spectra due to interference of the electron continuum with a 470 cm -1 phonon and also due to activation of 560-590 cm -1 dipole vibrations because of interaction of photocarriers with the crystal lattice. An analysis of the spectra yielded the electron-phonon interaction constant. The changes in the spectra were of resonant nature, but they were absent in the case of the excitation wavelengths 5,321 and 6,471 angstrom. A triple multichannel Raman spectrometer, developed by the authors, made it possible to record simultaneously a spectral interval of 500 cm -1 in the range ≥ 25 cm -1 on excitation with cw laser radiation

  16. High-pressure behavior of α-boron studied on single crystals by X-ray diffraction, Raman and IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chuvashova, Irina, E-mail: irina.chuvashova@gmail.com [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany); Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth (Germany); Bykova, Elena; Bykov, Maxim [Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth (Germany); Svitlyk, Volodymyr [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Gasharova, Biliana [Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); IBPT, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Mathis, Yves-Laurent [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); IBPT, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Caracas, Razvan [CNRS, Laboratoire de Géologie de Lyon, ENS de Lyon, UCBL Lyon 1, Université de Lyon (France); Dubrovinsky, Leonid [Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth (Germany); Dubrovinskaia, Natalia [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany)

    2017-01-15

    In the present study single crystals of rhombohedral α-B were investigated under pressure to 60 GPa by means of single-crystal X-ray diffraction. The bulk modulus of α-B was found to be K=224(7) GPa (K′=3.0(3)). Measurements of interatomic distances as a function of pressure revealed that the intericosahedral two-center two-electron (2c–2e) bonds are almost as stiff as some of intraicosahedral ones. The three-center two-electron (3c–2e) intericosahedral bonds show much higher compliance compared to other bonds in α-B. The vibrational properties of α-B under pressure were investigated by Raman spectroscopy at pressures up to 160 GPa and IR spectroscopy at pressures up to 53 GPa. - Graphical abstract: The rhombohedral α-B is highly incompressible and extremely stable: it maintains its crystal structure up to 160 GPa and its intericosahedral 2e2c bonds are almost as stiff as some of intraicosahedral ones. - Highlights: • Structural stability of α-B has been investigated up to 160 GPa on single crystals. • Single-crystal x-ray diffraction reveals that α-B is highly incompressible. • Compressibility of B{sub 12} icosahedra is considerably lower than that of the bulk material. • Intericosahedral 2e2c bonds are almost as stiff as some of intraicosahedral ones.

  17. Pressure dependence of conductivity

    International Nuclear Information System (INIS)

    Bracewell, B.L.; Hochheimer, H.D.

    1993-01-01

    The overall objectives of this work were to attempt the following: (1) Measure the pressure dependence of the electrical conductivity of several quasi-one-dimensional, charge-density-wave solids, including measurements along various crystal directions. (2) Measure photocurrents in selected MX solids at ambient and elevated pressures. (3) Measure the resonance Raman spectra for selected MX solids as a function of pressure

  18. Coherent anti-Stokes Raman scattering for quantitative temperature and concentration measurements in a high-pressure gas turbine combustor rig

    Science.gov (United States)

    Thariyan, Mathew Paul

    Dual-pump coherent anti-Stokes Raman scattering (DP-CARS) temperature and major species (CO2/N2) concentration measurements have been performed in an optically-accessible high-pressure gas turbine combustor facility (GTCF) and for partially-premixed and non-premixed flames in a laminar counter-flow burner. A window assembly incorporating pairs of thin and thick fused silica windows on three sides was designed, fabricated, and assembled in the GTCF for advanced laser diagnostic studies. An injection-seeded optical parametric oscillator (OPO) was used as a narrowband pump laser source in the dual-pump CARS system. Large prisms on computer-controlled translation stages were used to direct the CARS beams either into the main optics leg for measurements in the GTCF or to a reference optics leg for measurements of the nonresonant CARS spectrum and for aligning the CARS system. Combusting flows were stabilized with liquid fuel injection only for the central injector of a 9-element lean direct injection (LDI) device developed at NASA Glenn Research Center. The combustor was operated using Jet A fuel at inlet air temperatures up to 725 K and combustor pressures up to 1.03 MPa. Single-shot DP-CARS spectra were analyzed using the Sandia CARSFT code in the batch operation mode to yield instantaneous temperature and CO2/N2 concentration ratio values. Spatial maps of mean and standard deviations of temperature and CO2/N2 concentrations were obtained in the high-pressure LDI flames by translating the CARS probe volume in axial and vertical directions inside the combustor rig. The mean temperature fields demonstrate the effect of the combustor conditions on the overall flame length and the average flame structure. The temperature relative standard deviation values indicate thermal fluctuations due to the presence of recirculation zones and/or flame brush fluctuations. The correlation between the temperature and relative CO 2 concentration data has been studied at various combustor

  19. Nitric oxide concentration measurements in atmospheric pressure flames using electronic-resonance-enhanced coherent anti-Stokes Raman scattering

    Science.gov (United States)

    Chai, N.; Kulatilaka, W. D.; Naik, S. V.; Laurendeau, N. M.; Lucht, R. P.; Kuehner, J. P.; Roy, S.; Katta, V. R.; Gord, J. R.

    2007-06-01

    We report the application of electronic-resonance-enhanced coherent anti-Stokes Raman scattering (ERE-CARS) for measurements of nitric oxide concentration ([NO]) in three different atmospheric pressure flames. Visible pump (532 nm) and Stokes (591 nm) beams are used to probe the Q-branch of the Raman transition. A significant resonance enhancement is obtained by tuning an ultraviolet probe beam (236 nm) into resonance with specific rotational transitions in the (v’=0, v”=1) vibrational band of the A2Σ+-X2Π electronic system of NO. ERE-CARS spectra are recorded at various heights within a hydrogen-air flame producing relatively low concentrations of NO over a Hencken burner. Good agreement is obtained between NO ERE-CARS measurements and the results of flame computations using UNICORN, a two-dimensional flame code. Excellent agreement between measured and calculated NO spectra is also obtained when using a modified version of the Sandia CARSFT code for heavily sooting acetylene-air flames (φ=0.8 to φ=1.6) on the same Hencken burner. Finally, NO concentration profiles are measured using ERE-CARS in a laminar, counter-flow, non-premixed hydrogen-air flame. Spectral scans are recorded by probing the Q1 (9.5), Q1 (13.5) and Q1 (17.5) Raman transitions. The measured shape of the [NO] profile is in good agreement with that predicted using the OPPDIF code, even without correcting for collisional effects. These comparisons between [NO] measurements and predictions establish the utility of ERE-CARS for detection of NO in flames with large temperature and concentration gradients as well as in sooting environments.

  20. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations.

    Science.gov (United States)

    Mohamed, Tarek A; Shaltout, I; Al Yahyaei, K M

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO2+5%Fe2O3+10%TMO], where transition metal oxides (TMO) are TiO2, V2O5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm(-1)) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO4(4-) triagonal bipyramid (C2v) and Te2O7(6-) bridged tetrahedra (Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO3+1 binds to TeO3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  1. DFT study of structure, IR and Raman spectra of the fluorescent "Janus" dendron built from cyclotriphosphazene core

    Science.gov (United States)

    Furer, V. L.; Vandyukova, I. I.; Vandyukov, A. E.; Fuchs, S.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2011-11-01

    The FTIR and FT-Raman spectra of the zero generation dendron, possessing five fluorescent dansyl terminal groups, cyclotriphosphazene core, and one carbamate function G0v were studied. The structural optimization and normal mode analysis were performed for G0v dendron on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendron molecule G0v has a concave lens structure with slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G0v dendron were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The frequency of ν(N-H) band in the IR spectrum reveal the presence of H-bonds in the G0v dendron.

  2. High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles

    NARCIS (Netherlands)

    Huotari, Simo; Suljoti, Edlira; Sahle, Christoph J.; Raedel, Stephanie; Monaco, Giulio; de Groot, Frank M. F.

    2015-01-01

    We report high-resolution x-ray Raman scattering studies of high-order multipole spectra of rare earth 4d -> 4f excitations (the N-4,N-5 absorption edge) in nanoparticles of the phosphates LaPO4, CePO4, PrPO4, and NdPO4. We also present corresponding data for La 5p -> 5d excitations (the O-2,O-3

  3. High pressure Raman spectroscopic study of the effects of n-ethylamines and water on the 2-nitropropane/Nitric acid system

    Energy Technology Data Exchange (ETDEWEB)

    Gobin, Cedric; Petitet, Jean Pierre [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS, Institut Galilee, Universite Paris XIII, 99 av. J-B Clement, 93430 Villetaneuse (France)

    2005-12-01

    High pressure Raman spectroscopy measurements in a diamond anvil cell (0-10 GPa) on 2-nitropropane/nitric acid/X (X=triethylamine, diethylamine, and water) ternary systems and 2-nitropropane/nitric acid/water/Y (Y=triethylamine and diethylamine) quaternary systems are reported. The modifications of the chemical behavior of the 2-nitropropane/nitric acid model system, induced by the presence of triethylamine, diethylamine, and/or water, were studied at ambient and high pressure. At ambient pressure, the ionization of the nitric acid has been observed with each of the additives. Moreover, in the case of ethylamines, new peaks have been observed and the hypothesis of a 2-nitropropane/ethylamine complex is advanced. At high pressure, the decomposition of the 2-nitropropane/nitric acid system, with an oxygen balance near zero, has been observed only in presence of triethylamine. The role of each additive to the 2-nitropropane/nitric acid system in the modification of the respective reducing and oxidizing character of the components, and in the reactivity of the system, is discussed. Several hypotheses are advanced concerning the sensitizing effect of the additives on the 2-nitropropane/nitric acid system. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  4. High pressure Raman and single crystal X-ray diffraction of the alkali/calcium carbonate, shortite

    Science.gov (United States)

    Williams, Q. C.; Vennari, C.; O'Bannon, E. F., III

    2015-12-01

    Raman and synchrotron-based single crystal x-ray diffraction data have been collected on shortite (Na2Ca2(CO3)3) up to 10 GPa at 300 K. Shortite is of geological importance due to its presence in the ground-mass of kimberlites, and the alkaline-/carbon-rich character of kimberlitic eruptions. This investigation focuses on shortite's high pressure behavior and is relevant to the behavior of alkali-carbonate systems within Earth's upper mantle. X-ray data demonstrate that shortite's symmetry remains stable at high pressures—retaining orthorhombic C crystal system (Amm2) up to 10 GPa; diffraction data show a 12% volume decrease from room pressure, and a bulk modulus of 71.0(3) GPa. These also demonstrate that the c-axis is twice as compressible as the a- and b-axes. This anisotropic compression is likely due to the orientation of the relatively stiff carbonate groups, a third of which are oriented close to the plane of the a- and b-axes, c axis compression primarily involves the compaction of the 9-fold coordinate sodium and calcium polyhedral. The two distinct carbonate sites within the unit cell give rise to two Raman symmetric stretching modes of the symmetric stretch; the carbonate group stretching vibration which is close to in plane with the a- and b-axes shifts at 3.75 cm-1/GPa as opposed to the carbonate groups which is closer to in plane with the b- and c-axes which shift at 4.25 cm-1/GPa. This furthers evidence for anisotropic compression observed using x-ray diffraction--as the carbonate in plane with the a- and b-axes is compressed, the strength of oxygen bonds along the c-axis with the cations increases, thus decreasing the pressure shift of the mode. The out of plane bending vibration shifts at -0.48 cm-1/GPa, indicating an enhanced interaction of the oxygens with the cations. The multiple in plane bending modes all shift positively, as do at the low frequency lattice modes, indicating that major changes in bonding do not occur up to 10 GPa. The data

  5. The electron–phonon coupling of fundamental, overtone, and combination modes and its effects on the resonance Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zhanlong; Wang, Shenghan; Gao, Shuqin [College of Physics, Jilin University, Changchun 130012 (China); Sun, Chenglin, E-mail: chenglin@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zuowei [College of Physics, Jilin University, Changchun 130012 (China)

    2015-12-15

    Highlights: • The Huang–Rhys factors and electron–phonon coupling constants are calculated. • The changes of overtone mode are larger than those of fundamental mode. • The variation pattern of electron–phonon coupling well interprets the changes of spectra. - Abstract: External field plays a very important role in the interaction between the π-electron transition and atomic vibration of polyenes. It has significant effects on both the Huang–Rhys factor and the electron–phonon coupling. In this paper, the visible absorption and resonance Raman spectra of all-trans-β-carotene are measured in the 345–295 K temperature range and it is found that the changes of the 0–1 and 0–2 vibration bands of the absorption spectra with the temperature lead to the different electron–phonon coupling of fundamental, overtone, and combination modes. The electron-phonon coupling constants of all the modes are calculated and analyzed under different temperatures. The variation law of the electron–phonon coupling with the temperature well interprets the changes of the resonance Raman spectra, such as the shift, intensity and line width of the overtone and combination modes, which are all greater than those of the fundamental modes.

  6. Combined experimental and theoretical study on the Raman and Raman optical activity signatures of pentamethylundecane diastereoisomers.

    Science.gov (United States)

    Drooghaag, Xavier; Marchand-Brynaert, Jacqueline; Champagne, Benoît; Liégeois, Vincent

    2010-09-16

    The synthesis and the separation of the four stereoisomers of 2,4,6,8,10-pentamethylundecane (PMU) are described together with their characterization by Raman spectroscopy. In parallel, theoretical calculations of the Raman and vibrational Raman optical activity (VROA) spectra are reported and analyzed in relation with the recorded spectra. A very good agreement is found between the experimental and theoretical spectra. The Raman spectra are also shown to be less affected by the change of configuration than the VROA spectra. Nevertheless, by studying the overlap between the theoretical Raman spectra, we show clear relationships between the spectral fingerprints and the structures displaying a mixture of the TGTGTGTG conformation of the (4R,6s,8S)-PMU (isotactic compound) with the TTTTTTTT conformation of the (4R,6r,8S)-PMU (syndiotactic compound). Then, the fingerprints of the VROA spectra of the five conformers of the (4R,8R)-PMU have been related to the fingerprints of the regular (TG)(N) isotactic compound as a function of the torsion angles. Since the (TT)(N) syndiotactic compound has no VROA signatures, the VROA spectroscopy is very sensitive to the helical structures, as demonstrated here.

  7. A pseudo-Voigt component model for high-resolution recovery of constituent spectra in Raman spectroscopy

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Schmidt, Mikkel Nørgaard; Rindzevicius, Tomas

    2017-01-01

    Raman spectroscopy is a well-known analytical technique for identifying and analyzing chemical species. Since Raman scattering is a weak effect, surface-enhanced Raman spectroscopy (SERS) is often employed to amplify the signal. SERS signal surface mapping is a common method for detecting trace...... to directly and reliably identify the Raman modes, with overall performance similar to the state of the art non-negative matrix factorization approach. However, the model provides better interpretation and is a step towards enabling the use of SERS in detection of trace amounts of molecules in real-life...

  8. Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra

    Science.gov (United States)

    Luce, R.; Hildebrandt, P.; Kuhlmann, U.; Liesen, J.

    2016-09-01

    The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for non-negative matrix factorization which is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.

  9. Comparison of Surface-enhanced Raman Scattering Spectra of Two Kinds of Silver Nanoplate Films

    Institute of Scientific and Technical Information of China (English)

    TAO Jin-long; TANG Bin; XU Shu-ping; PAN Ling-yun; XU Wei-qing

    2012-01-01

    Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate self-assembled films at different excitation wavelengths were fairly compared.Shape conversion from silver nanoprisms to nanodisks on slides was in situ carried out.The SERS spectra of 4-mercaptopyridine(4-MPY) on these anisotropic silver nanoparticle self-assembled films present that strong enhancement appeared when the excitation line and the surface plasmon resonance(SPR) band of silver substrate overlapped.In this model,the influence of the crystal planes of silver nanoplates on SERS enhancement could be ignored because the basal planes were nearly unchanged in two kinds of silver nanoplate self-assembled films.

  10. Corrosion product characterisation by fibre optic raman spectroscopy

    International Nuclear Information System (INIS)

    Guzonas, D.A.; Rochefort, P.A.; Turner, C.W.

    1998-01-01

    Fibre optic Raman spectroscopy has been used to characterise secondary-side deposits removed from CANDU steam generators. The deposits examined were in the form of powders, millimetre-sized flakes, and deposits on the surfaces of pulled steam generator tubes. The compositions of the deposits obtained using Raman spectroscopy are similar to the compositions obtained using other ex-situ analytical techniques. A semi-quantitative estimate of amounts of the major components can be obtained from the spectra. It was noted that the signal-to-noise ratio of the Raman spectra decreased as the amount of magnetite in the deposit increased, as a result of absorption of the laser light by the magnetite. The conversion of magnetite to hematite by the laser beam was observed when high laser powers were used. The Raman spectra of larger flake samples clearly illustrate the inhomogeneous nature of the deposits. (author)

  11. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  12. Infrared and Raman spectra of uric acid and its 15N and D labelled compounds

    International Nuclear Information System (INIS)

    Majoube, Michel

    Infrared and Raman spectra of polycrystalline uric acid (2, 6, 8-trioxypurine) 1.3, 7 and 9- 15 N and deuterated analogues have been determined. Band shifts with 15 N substitution and with deuteration are discussed. An assignment of fundamental vibrations of uric acid is proposed from the comparison of the eight isotopically substituted analogues [fr

  13. Pressure dependence of Raman modes in the chalcopyrite quaternary alloy AgxCu1-xGaS2

    International Nuclear Information System (INIS)

    Choi, In-Hwan; Yu, Peter Y.

    2000-01-01

    Raman scattering in the chalcopyrite quaternary alloy Ag x Cu 1-x GaS 2 has been studied under high pressure (up to 7 GPa) and at low temperature (50 K) using a diamond anvil high pressure cell for alloy concentrations x=1, 0.75, 0.5, 0.25 and 0. This has allowed us to determine the dependence of their zone-center phonon modes on both pressure and alloy concentration. The resultant phonon pressure coefficients are helpful in understanding the nature of the phonon modes in these chalcopyrites

  14. Theoretical Study of Infrared and Raman Spectra of Hydrated Magnesium Sulfate Salts

    Science.gov (United States)

    Chaban, Galina M.; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Harmonic and anharmonic vibrational frequencies, as well as infrared and Raman intensities, are calculated for MgSO4.nH20 (n=1-3). Electronic structure theory at the second order Moller-Plesset perturbation theory (MP2) level with a triple-zeta + polarization (TZP) basis set is used to determine the geometry, properties, and vibrational spectra of pure and hydrated MgSO4 salts. The direct vibrational self-consistent field (VSCF) method and its correlation corrected (CC-VSCF) extension are used to determine anharmonic corrections to vibrational frequencies and intensities for the pure MgSO4 and its complex with one water molecule. Very significant differences are found between vibrational of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies are shifted to the red very significantly (by up to 1500-2000/cm) upon complexation with magnesium sulfate. They should be observed between 1700 and 3000/cm in a region very different from the corresponding O-H stretch frequency region of pure water (3700-3800/cm). In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. They can serve as unique identifiers for the presence of sulfate salts. The predicted infrared and Raman spectra should be of valuable help in the design of future missions and analysis of observed data from the ice surface of Jupiter's moon Europa that possibly contains hydrated MgSO4 salts.

  15. Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy

    Science.gov (United States)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.

  16. Micro-Raman scattering in ZnTe thin films

    International Nuclear Information System (INIS)

    Larramendi, E. M.; Gutierrez Z-B, K.; Hernandez, E.; Melo, O. de; Berth, G.; Wiedemeier, V.; Lischka, K; Schikora, D.; Woggon, U.

    2008-01-01

    In this work we present micro-raman measurements on ZnTe thin films grown by isothermal closed space sublimation on GaAs(001) substrates in helium and nitrogen atmospheres. Micro-raman spectra were recorded at room temperature using the backscattering geometry (illuminated spot: 3 μm2, 0.3 cm-1 of resolution and the line 532 nm of a DPSSL as power excitation). Up to four order LO-phonon replicas and no peak from TO phonon were observed in the micro-raman spectra as evidence of the epitaxial character and good quality of the films (the TO mode is forbidden according to the selection rules for backscattering along [001] of this heterostructure). The micro-raman spectra also revealed two features at low energy, which have been assigned incorrectly in recent works. We demonstrate that these raman peaks can be associated to the presence of few monolayers of crystalline tellurium or its oxides on the surface of the films. These features were not observed in micro-raman spectra of as grown ZnTe films terminated in a Zn surface. However, they were detected after a prolonged exposure of the samples to air. In addition, it is shown that this effect is accelerated under a high power laser excitation (laser annealing) as used in conventional micro-Raman measurement setups. Preliminary results that suggest the inclusion of nitrogen in ZnTe structure are also shown. (Full text)

  17. High-pressure phase transitions of strontianite

    Science.gov (United States)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  18. Pressure induced polymorphism in ammonium azide (NH{sub 4}N{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, S.A., E-mail: s.medvedev@mpic.de [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Institute fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Eremets, M.I. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Evers, J.; Klapoetke, T.M. [Energetic Materials Research, Ludwig-Maximilian University Munich (LMU), Butenandtstrasse 5-13(D), D-81377 Munich (Germany); Palasyuk, T. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany); Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Trojan, I.A. [Max-Planck-Institute for Chemistry, Postfach 3060, D-55020 Mainz (Germany)

    2011-07-28

    Graphical abstract: Polymorph phase transition is observed in NH{sub 4}N{sub 3} at {approx}3 GPa by pressure dependent Raman studies. The strength of hydrogen bond appears to be modified at the phase transition as illustrated by dependence of N-H stretching frequency on pressure shown on figure. Highlights: {yields} Ammonium azide (NH{sub 4}N{sub 3}) studied at high pressures by Raman spectroscopy. {yields} Phase transition is observed at pressure {approx}3 GPa. {yields} Strength of hydrogen bond appears to be modified at the phase transition. {yields} NH{sub 4}N{sub 3} remain in molecular form up to pressures above 50 GPa. - Abstract: Pressure-dependent Raman spectroscopy studies reveal polymorph phase transition in simple molecular ionic crystal NH{sub 4}N{sub 3} at pressure {approx}3 GPa unobserved by recent abinitio evolutionary structure searches. Hydrogen bonding is spectroscopically evident in both low- and high-pressure phases. The strength of hydrogen bond appears to be modified at the phase transition: in the low-pressure phase NH{sub 4}N{sub 3} behaves as system with very strong hydrogen bonding whereas changes of spectra with pressure in the high-pressure phase are indicative of weak or medium-strength hydrogen bonds. The high pressure phase is most likely thermodynamically stable at least up to pressure {approx}55 GPa contradicting the abinitio studies predicting transformation of NH{sub 4}N{sub 3} to nonmolecular hydronitrogen solid at 36 GPa.

  19. Radio frequency energy coupling to high-pressure optically pumped nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Plonjes, Elke; Palm, Peter; Lee, Wonchul; Lempert, Walter R.; Adamovich, Igor V.

    2001-01-01

    This article presents an experimental demonstration of a high-pressure unconditionally stable nonequilibrium molecular plasma sustained by a combination of a continuous wave CO laser and a sub-breakdown radio frequency (rf) electric field. The plasma is sustained in a CO/N 2 mixture containing trace amounts of NO or O 2 at pressures of P=0.4 - 1.2atm. The initial ionization of the gases is produced by an associative ionization mechanism in collisions of two CO molecules excited to high vibrational levels by resonance absorption of the CO laser radiation with subsequent vibration-vibration (V-V) pumping. Further vibrational excitation of both CO and N 2 is produced by free electrons heated by the applied rf field, which in turn produces additional ionization of these species by the associative ionization mechanism. In the present experiments, the reduced electric field, E/N, is sufficiently low to preclude field-induced electron impact ionization. Unconditional stability of the resultant cold molecular plasma is enabled by the negative feedback between gas heating and the associative ionization rate. Trace amounts of nitric oxide or oxygen added to the baseline CO/N 2 gas mixture considerably reduce the electron - ion dissociative recombination rate and thereby significantly increase the initial electron density. This allows triggering of the rf power coupling to the vibrational energy modes of the gas mixture. Vibrational level populations of CO and N 2 are monitored by infrared emission spectroscopy and spontaneous Raman spectroscopy. The experiments demonstrate that the use of a sub-breakdown rf field in addition to the CO laser allows an increase of the plasma volume by about an order of magnitude. Also, CO infrared emission spectra show that with the rf voltage turned on the number of vibrationally excited CO molecules along the line of sight increase by a factor of 3 - 7. Finally, spontaneous Raman spectra of N 2 show that with the rf voltage the vibrational

  20. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks.

    Science.gov (United States)

    Geiman, Irina; Leona, Marco; Lombardi, John R

    2009-07-01

    The applicability of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to the analysis of synthetic dyes commonly found in ballpoint inks was investigated in a comparative study. Spectra of 10 dyes were obtained using a dispersive system (633 nm, 785 nm lasers) and a Fourier transform system (1064 nm laser) under different analytical conditions (e.g., powdered pigments, solutions, thin layer chromatography [TLC] spots). While high fluorescence background and poor spectral quality often characterized the normal Raman spectra of the dyes studied, SERS was found to be generally helpful. Additionally, dye standards and a single ballpoint ink were developed on a TLC plate following a typical ink analysis procedure. SERS spectra were successfully collected directly from the TLC plate, thus demonstrating a possible forensic application for the technique.

  1. Raman spectra of terbium trichloride, phosphorus pentachloride and their molten mixtures

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Zakir'yanova, I.D.

    2008-01-01

    Raman spectroscopy was used to study in situ the behavior of individual terbium trichloride and phosphorus pentachloride in different aggregative states as a function of temperature, and of solutions of PCl 5 vapors in molten TbCl 3 . A conclusion is drawn about their structure and the nature of phase transformations and chemical reactions in wide ranges of temperature and saturated vapor pressures [ru

  2. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

    Science.gov (United States)

    Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N

    2018-01-01

    A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

  3. Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires

    Science.gov (United States)

    Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel

    2017-06-01

    We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.

  4. FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method.

    Science.gov (United States)

    Subashchandrabose, S; Saleem, H; Erdogdu, Y; Rajarajan, G; Thanikachalam, V

    2011-11-01

    FT-Raman and FT-IR spectra were recorded for 3-pentyl-2,6-diphenylpiperidin-4-one (PDPO) sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, infrared and the Raman scattering intensities were computed using DFT/6-31G(d,p) level. Results obtained at this level of theory were used for a detailed interpretation of the infrared and Raman spectra, based on the total energy distribution (TED) of the normal modes. Molecular parameters such as bond lengths, bond angles and dihedral angles were calculated and compared with X-ray diffraction data. This comparison was good agreement. The intra-molecular charge transfer was calculated by means of natural bond orbital analysis (NBO). Hyperconjugative interaction energy was more during the π-π* transition. Energy gap of the molecule was found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable. Atomic charges of the carbon, nitrogen and oxygen were calculated using same level of calculation. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy improves in vivo diagnosis of esophageal squamous cell carcinoma at endoscopy

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Yu Ho, Khek; Teh, Ming; Guan Yeoh, Khay; Huang, Zhiwei

    2015-08-01

    This work aims to evaluate clinical value of a fiber-optic Raman spectroscopy technique developed for in vivo diagnosis of esophageal squamous cell carcinoma (ESCC) during clinical endoscopy. We have developed a rapid fiber-optic Raman endoscopic system capable of simultaneously acquiring both fingerprint (FP)(800-1800 cm-1) and high-wavenumber (HW)(2800-3600 cm-1) Raman spectra from esophageal tissue in vivo. A total of 1172 in vivo FP/HW Raman spectra were acquired from 48 esophageal patients undergoing endoscopic examination. The total Raman dataset was split into two parts: 80% for training; while 20% for testing. Partial least squares-discriminant analysis (PLS-DA) and leave-one patient-out, cross validation (LOPCV) were implemented on training dataset to develop diagnostic algorithms for tissue classification. PLS-DA-LOPCV shows that simultaneous FP/HW Raman spectroscopy on training dataset provides a diagnostic sensitivity of 97.0% and specificity of 97.4% for ESCC classification. Further, the diagnostic algorithm applied to the independent testing dataset based on simultaneous FP/HW Raman technique gives a predictive diagnostic sensitivity of 92.7% and specificity of 93.6% for ESCC identification, which is superior to either FP or HW Raman technique alone. This work demonstrates that the simultaneous FP/HW fiber-optic Raman spectroscopy technique improves real-time in vivo diagnosis of esophageal neoplasia at endoscopy.

  6. Spectra of turbulent static pressure fluctuations in jet mixing layers

    Science.gov (United States)

    Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.

    1977-01-01

    Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.

  7. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Yan, Jinyuan; Ewing, Rodney C.; Mao, Wendy L.

    2017-01-28

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A2B2O7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionic radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu2Zr2O7 as compared with the initially defect-fluorite structured Dy2Zr2O7.

  8. Spectroscopic studies of sulfite-based polyoxometalates at high temperature and high pressure

    International Nuclear Information System (INIS)

    Quesada Cabrera, Raul; Firth, Steven; Blackman, Christopher S.; Long, De-Liang; Cronin, Leroy; McMillan, Paul F.

    2012-01-01

    Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. - Graphical abstract: Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. Highlights: ► Spectroscopy studies of non-conventional Wells–Dawson polyoxometalates (POMs) at high temperature and high pressure. ► Discussion on the stability of two POM isomers. ► Local formation of bronze-like materials: possibilities for a new synthetic method at high pressure from POM precursors.

  9. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  10. High pressure monoclinic phases of Sb{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Souza, S.M.; Poffo, C.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, S/N, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Polian, A.; Gauthier, M. [Physique des Milieux Denses, IMPMC, CNRS-UMR 7590, Universite Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2012-09-15

    The effect of pressure on nanostructured rhombohedral {alpha}-Sb{sub 2}Te{sub 3} (phase I) was investigated using X-ray diffraction (XRD) and Raman spectroscopy (RS) up to 19.2 and 25.5 GPa, respectively. XRD patterns showed two new high pressure phases (named phases II and III). From a Rietveld refinement of XRD patterns of {alpha}-Sb{sub 2}Te{sub 3}, the unit cell volume as a function of pressure was obtained and the values were fitted to a Birch-Murnaghan equation of state (BM-EOS). The best fit was obtained for bulk modulus B{sub 0}=36.1{+-}0.9 GPa and its derivative B{sub 0}{sup Prime }=6.2{+-}0.4 (not fixed). Using the refined structural data for {alpha}-Sb{sub 2}Te{sub 3}, for pressures up to 9.8 GPa, changes in the angle of succession [Te-Sb-Te-Sb-Te], in the interaromic distances of Sb and Te atoms belonging to this angle of succession and in the interatomic distances of atoms located on the c axis were examined. This analysis revealed an electronic topological transition (ETT) along the a and c axes at close to 3.7 GPa. From the RS spectra, the full widths at half maximum (FWHM) of the Raman active modes of {alpha}-Sb{sub 2}Te{sub 3} were plotted as functions of pressure and showed an ETT along the a and c axes at close to 3.2 GPa. The XRD patterns of phases II and III were well reproduced assuming {beta}-Bi{sub 2}Te{sub 3} and {gamma}-Bi{sub 2}Te{sub 3} structures similar to those reported in the literature for {alpha}-Bi{sub 2}Te{sub 3}.

  11. FT-IR, FT-Raman and UV-visible spectra of potassium 3-furoyltrifluoroborate salt

    Science.gov (United States)

    Iramain, Maximiliano A.; Davies, Lilian; Brandán, Silvia Antonia

    2018-04-01

    The potassium 3-furoyltrifluoroborate salt has been experimentally characterized by means of FT-IR, FT-Raman and UV-Visible spectroscopies. Here, the predicted FT-IR, FT-Raman and UV-visible spectra by using theoretical B3LYP/6-31G* and 6-311++G** calculations show very good correlations with the corresponding experimental ones. The solvation energies were predicted by using both levels of calculations. The NBO analyses reveal the high stability of the salt by using the B3LYP/6-31G* level of theory while the AIM studies evidence the ionic characteristics of the salt in both media. The strong blue colour observed on the K atom by using the molecular electrostatic potential mapped suggests that this region act as typical electrophilic site. The gap values have revealed that the salt in gas phase is more reactive than in solution, as was reported in the literature while, the F13⋯H6 interaction together with the Ksbnd O bond observed by the studies of their charges could probably modulate the reactivities of this salt in aqueous solution. The force fields were computed with the SQMFF methodology and the Molvib program to perform the complete vibrational analysis. Then, the 39 vibration normal modes classified as 26 A'+ 13 A″ were completely assigned and their force constants are also reported.

  12. Resonance Raman study of benzyl radical

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Bajdor, K.; Wilbrandt, R.

    1992-01-01

    Time-resolved resonance Raman spectra are obtained of benzyl radicals created by laser flash photolysis of benzylchloride and diphenylacetone in solution. The spectra are obtained in resonance with the intense 2 2A2-1 B-2(2) transition of benzyl. The strong Raman bands are assigned to totally...... symmetric a1 modes. The remaining observed bands are tentatively assigned to fundamental modes of b1, a2, and b2 symmetry, and to overtones and combinations. The resonance Raman spectra are found to be quite different from previous fluorescence spectra of benzyl, and the origins of these differences...

  13. Resonance Raman and surface-enhanced resonance Raman spectra of LH2 antenna complex from Rhodobacter sphaeroides and Ectothiorhodospira sp. excited in the Qx and Qy transitions.

    Science.gov (United States)

    Chumanov, G; Picorel, R; Ortiz de Zarate, I; Cotton, T M; Seibert, M

    2000-05-01

    Well-resolved vibrational spectra of LH2 complex isolated from two photosynthetic bacteria, Rhodobacter sphaeroides and Ectothiorhodospira sp., were obtained using surface-enhanced resonance Raman scattering (SERRS) exciting into the Qx and the Qy transitions of bacteriochlorophyll a. High-quality SERRS spectra in the Qy region were accessible because the strong fluorescence background was quenched near the roughened Ag surface. A comparison of the spectra obtained with 590 nm and 752 nm excitation in the mid- and low-frequency regions revealed spectral differences between the two LH2 complexes as well as between the LH2 complexes and isolated bacteriochlorophyll a. Because peripheral modes of pigments contribute mainly to the low-frequency spectral region, frequencies and intensities of many vibrational bands in this region are affected by interactions with the protein. The results demonstrate that the microenvironment surrounding the pigments within the two LH2 complexes is somewhat different, despite the fact that the complexes exhibit similar electronic absorption spectra. These differences are most probably due to specific pigment-pigment and pigment-protein interactions within the LH2 complexes, and the approach might be useful for addressing subtle static and dynamic structural variances between pigment-protein complexes from different sources or in complexes altered chemically or genetically.

  14. Comparative study of human blood Raman spectra and biochemical analysis of patients with cancer

    Science.gov (United States)

    Shamina, Lyudmila A.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Myakinin, Oleg O.; Moryatov, Alexander A.; Orlov, Andrey E.; Kozlov, Sergey V.; Zakharov, Valery P.

    2018-04-01

    In this study we measured spectral features of blood by Raman spectroscopy. Correlation of the obtained spectral data and biochemical studies results is investigated. Analysis of specific spectra allows for identification of informative spectral bands proportional to components whose content is associated with body fluids homeostasis changes at various pathological conditions. Regression analysis of the obtained spectral data allows for discriminating the lung cancer from other tumors with a posteriori probability of 88.3%. The potentiality of applying surface-enhanced Raman spectroscopy with utilized experimental setup for further studies of the body fluids component composition was estimated. The greatest signal amplification was achieved for the gold substrate with a surface roughness of 1 μm. In general, the developed approach of body fluids analysis provides the basis of a useful and minimally invasive method of pathologies screening.

  15. Resonance Raman spectra of the copper-sulfur chromophores in Achromobacter cycloclastes nitrite reductase.

    Science.gov (United States)

    Dooley, D M; Moog, R S; Liu, M Y; Payne, W J; LeGall, J

    1988-10-15

    Resonance Raman spectroscopy at ambient temperature and 77 K has been used to probe the structures of the copper sites in Achromobacter cycloclastes nitrite reductase. This enzyme contains three copper ions per protein molecule and has two principal electronic absorption bands with lambda max values of 458 and 585 nm. Comparisons between the resonance Raman spectra of nitrite reductase and blue copper proteins establish that both the 458 and 585 nm bands are associated with Cu(II)-S(Cys) chromophores. A histidine ligand probably is also present. Different sets of vibrational frequencies are observed with 457.9 nm (ambient) or 476.1 nm (77 K) excitation as compared with 590 nm (ambient) or 593 nm (77 K) excitation. Excitation profiles indicate that the 458 and 585 nm absorption bands are associated with separate [Cu(II)-S(Cys)N(His)] sites or with inequivalent and uncoupled cysteine ligands in the same site. The former possibility is considered to be more likely.

  16. Near-infrared Raman spectroscopy using a diode laser and CCD detector for tissue diagnostics

    International Nuclear Information System (INIS)

    Gustafsson, U.

    1993-09-01

    This paper surveys the possibility to observe high-quality NIR Raman spectra of both fluorescent and non-fluorescent samples with the use of a diode laser, a fibre optic sample, a single spectrometer and a charge-coupled device (CCD) detector. A shifted excitation difference technique was implemented for removing the broad-band fluorescence emission from Raman spectra of the highly fluorescent samples. Raman spectra of 1.4-dioxane, toluene, rhodamine 6G, and HITCI in the 640 to 1840 cm -1 spectral region and 1.4-dioxane and toluene in the 400 to 3400 cm -1 spectral region have been recorded. The results open the field of sensitive tissue characterisation and the possibility of optical biopsy in vivo by using NIR Raman spectroscopy with fibre optic sampling, a single spectrometer, and a CCD detector

  17. The use of UV, FT-IR and Raman spectra for the identification of the newest penem analogs: solutions based on mathematic procedure and the density functional theory.

    Science.gov (United States)

    Cielecka-Piontek, J; Lewandowska, K; Barszcz, B; Paczkowska, M

    2013-02-15

    The application of ultraviolet, FT-IR and Raman spectra was proposed for identification studies of the newest penem analogs (doripenem, biapenem and faropenem). An identification of the newest penem analogs based on their separation from related substances was achieved after the application of first derivative of direct spectra in ultraviolet which permitted elimination of overlapping effects. A combination of experimental and theoretical studies was performed for analyzing the structure and vibrational spectra (FT-IR and Raman spectra) of doripenem, biapenem and faropenem. The calculations were conducted using the density functional theory with the B3LYP hybrid functional and 6-31G(d,p) basis set. The confirmation of the applicability of the DFT methodology for interpretation of vibrational IR and Raman spectra of the newest penem analogs contributed to determination of changes of vibrations in the area of the most labile bonds. By employing the theoretical approach it was possible to eliminate necessity of using reference standards which - considering the instability of penem analogs - require that correction coefficients are factored in. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Vibrational analysis of various irotopes of L-alanyl-L-alanine in aqueous solution: Vibrational Absorption (VA), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) Spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R.M.; Knapp-Mohammady, M.

    2003-01-01

    . DFT Becke3LYP/6-31G* theory has been used to determine the geometry, Hessian, atomic polar tensors (APT), and atomic axial tensors (AAT), and the electric dipole-electric dipole polarizability derivatives (EDEDPD), which are required for us to simulate the VA, VCD, and Raman spectra. The electric...

  19. Spin Crossover and the Magnetic P- T Phase Diagram of Hematite at High Hydrostatic Pressures and Cryogenic Temperatures

    Science.gov (United States)

    Gavriliuk, A. G.; Struzhkin, V. V.; Mironovich, A. A.; Lyubutin, I. S.; Troyan, I. A.; Chow, P.; Xiao, Y.

    2018-02-01

    The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0-72 GPa and the temperature range of 36-300 K in order to study the magnetic properties at a phase transition near a critical pressure of 50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0-77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of 48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS-LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic P- T phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.

  20. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    Science.gov (United States)

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A high-resolution two-pulse coherent anti-Stokes Raman scattering spectrum using a spectral amplitude modulation

    International Nuclear Information System (INIS)

    Lu, Chenhui; Zhang, Shian; Wu, Meizhen; Jia, Tianqing; Sun, Zhenrong; Qiu, Jianrong

    2013-01-01

    Femtosecond coherent anti-Stokes Raman scattering (CARS) spectra suffer from low spectral resolution because of the broadband laser spectrum. In this paper, we propose a feasible scheme to achieve a high-resolution two-pulse CARS spectrum by shaping both the pump and probe pulses using rectangular amplitude modulation. We show that a narrowband hole in the CARS spectrum can be created by the amplitude-shaped laser pulse, the position of which is correlated with the Raman resonant frequency of the molecule. Thus, by observing holes in the CARS spectrum, we are able to obtain a high-resolution CARS spectrum and the energy-level diagram of the molecule. (paper)

  2. Raman spectroscopy for diagnosis of glioblastoma multiforme

    Science.gov (United States)

    Clary, Candace Elise

    Glioblastoma multiforme (GBM), the most common and most fatal malignant brain tumor, is highly infiltrative and incurable. Although improved prognosis has been demonstrated by surgically resecting the bulk tumor, a lack of clear borders at the tumor margins complicates the selection decision during surgery. This dissertation investigates the potential of Raman spectroscopy for distinguishing between normal and malignant brain tissue and sets the groundwork for a surgical diagnostic guide for resection of gross malignant gliomas. These studies revealed that Raman spectroscopy was capable of discriminating between normal scid mouse brain tissue and human xenograft tumors induced in those mice. The spectra of normal and malignant tissue were normalized by dividing by the respective magnitudes of the peaks near 1440 cm -1. Spectral differences include the shape of the broad peaks near 1440 cm-1 and 1660 cm-1 and the relative magnitudes of the peaks at 1264 cm-1, 1287 cm-1, 1297 cm-1, 1556 cm -1, 1586 cm-1, 1614 cm-1, and 1683 cm-1. From these studies emerged questions regarding how to objectively normalize and compare spectra for future automation. Some differences in the Raman spectra were shown to be inherent in the disease states of the cells themselves via differences in the Raman spectra of normal human astrocytes in culture and cultured cells derived from GBM tumors. The spectra of astrocytes and glioma cells were normalized by dividing by the respective magnitudes of the peaks near 1450 cm-1. The differences between the Raman spectra of normal and transformed cells include the ratio of the 1450 cm-1/1650 cm-1 peaks and the relative magnitudes of the peaks at 1181 cm-1, 1191 cm-1, 1225 cm-1, 1263 cm -1, 1300 cm-1, 1336 cm-1, 1477 cm-1, 1494 cm-1, and 1695 cm -1. Previous Raman spectroscopic studies of biological cells have shown that the magnitude of the Raman signal decreases over time, indicating sample damage. Cells exposed to laser excitation at similar power

  3. Preliminary investigation on the relationship of Raman spectra of sheep meat with shear force and cooking loss.

    Science.gov (United States)

    Schmidt, Heinar; Scheier, Rico; Hopkins, David L

    2013-01-01

    A prototype handheld Raman system was used as a rapid non-invasive optical device to measure raw sheep meat to estimate cooked meat tenderness and cooking loss. Raman measurements were conducted on m. longissimus thoracis et lumborum samples from two sheep flocks from two different origins which had been aged for five days at 3-4°C before deep freezing and further analysis. The Raman data of 140 samples were correlated with shear force and cooking loss data using PLS regression. Both sample origins could be discriminated and separate correlation models yielded better correlations than the joint correlation model. For shear force, R(2)=0.79 and R(2)=0.86 were obtained for the two sites. Results for cooking loss were comparable: separate models yielded R(2)=0.79 and R(2)=0.83 for the two sites. The results show the potential usefulness of Raman spectra which can be recorded during meat processing for the prediction of quality traits such as tenderness and cooking loss. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao

    2015-01-14

    Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.

  5. Sensitivity of Raman spectroscopy to normal patient variability

    Science.gov (United States)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  6. Development and integration of block operations for data invariant automation of digital preprocessing and analysis of biological and biomedical Raman spectra.

    Science.gov (United States)

    Schulze, H Georg; Turner, Robin F B

    2015-06-01

    High-throughput information extraction from large numbers of Raman spectra is becoming an increasingly taxing problem due to the proliferation of new applications enabled using advances in instrumentation. Fortunately, in many of these applications, the entire process can be automated, yielding reproducibly good results with significant time and cost savings. Information extraction consists of two stages, preprocessing and analysis. We focus here on the preprocessing stage, which typically involves several steps, such as calibration, background subtraction, baseline flattening, artifact removal, smoothing, and so on, before the resulting spectra can be further analyzed. Because the results of some of these steps can affect the performance of subsequent ones, attention must be given to the sequencing of steps, the compatibility of these sequences, and the propensity of each step to generate spectral distortions. We outline here important considerations to effect full automation of Raman spectral preprocessing: what is considered full automation; putative general principles to effect full automation; the proper sequencing of processing and analysis steps; conflicts and circularities arising from sequencing; and the need for, and approaches to, preprocessing quality control. These considerations are discussed and illustrated with biological and biomedical examples reflecting both successful and faulty preprocessing.

  7. Detecting changes during pregnancy with Raman spectroscopy

    Science.gov (United States)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  8. Pressure-induced polymerization of P(CN){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Huiyang, E-mail: hgou@ciw.edu, E-mail: tstrobel@ciw.edu; Kim, Duck Young; Strobel, Timothy A., E-mail: hgou@ciw.edu, E-mail: tstrobel@ciw.edu [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, DC 20015 (United States); Yonke, Brendan L. [NRC Postdoctoral Associate, Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375 (United States); Epshteyn, Albert [Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375 (United States); Smith, Jesse S. [High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States)

    2015-05-21

    Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN){sub 3}, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder X-ray diffraction measurements taken during compression show that molecular P(CN){sub 3} is highly compressible, with a bulk modulus of 10.0 ± 0.3 GPa, and polymerizes into an amorphous solid above ∼10.0 GPa. Raman and IR spectra, together with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp{sup 2} character, similar to known carbon nitrides, resulting in a novel phosphorous carbon nitride (PCN) polymeric phase, which is recoverable to ambient pressure.

  9. Raman scattering investigation of the water-bridge phenomenon: Some preliminary results

    Directory of Open Access Journals (Sweden)

    Francesco Aliotta

    2010-09-01

    Full Text Available A floating water-bridge is formed if a high-voltage direct current is applied between two beakers filled of chemically pure water. Raman spectra of the OH-stretching region have been obtained at ambient condition of temperature and pressure. These preliminary results seem to indicate that the hydrogen-bond structure is only slightly modified by the presence of the electric field applied to form the floating water-bridge in agreement with recent neutron scattering investigation. In fact, the polarized Raman spectrum of the pure water and of the water-bridge is almost superimposable. We are planning to carry out further spectroscopic analysis, at different thermodynamic conditions, for better understanding the role played by the hydrogen-bond in driving the formation of the floating water-bridge.

  10. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    Science.gov (United States)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  11. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  12. Laser Raman spectra of mono-, oligo- and polysaccharides in solution

    Science.gov (United States)

    Barrett, T. W.

    We examined the Raman spectra of thirteen sugars—seven monosaccharides, two disaccharides, one trisaccharide and three polysaccharides—in the wavelength range 200—1700 cm -1 and (i) varied the phosphate buffered solution from pH 6.0 to 8.5 at constant ionic strength of 0.1 and (ii) varied HCl solutions from pH 0.8 to 5.0. As is to be expected with molecules containing COH groupings, all the molecular spectra are distinct. Of the thirteen sugars examined, only D-fructose 1,6-diphosphate (FDP) demonstrated spectral changes for the pH range 6.0—8.5 in phosphate buffer; but all exhibited band intensity enhancement in HCl at the lower pHs, but not band wavenumber changes. The results indicate that: (i) changes in the pH of the major intracellular buffer, phosphate, toward acidity, are able to hydrolyze the 1-phosphate group of FDP and the relative concentration of fructose 1-phosphate to fructose 6-phosphate is indicated by the intensity ratio of the 982 and 1080 cm -1 bands; (ii) it appears that all phosphate groups of FDP are hydrolyzed at pH 0.8 in HCl; and (iii) although conditions of extreme acidity are able to hydrolyze other sugars examined, there is no major degradation.

  13. Implementation of Deep Ultraviolet Raman Spectroscopy

    DEFF Research Database (Denmark)

    Liu, Chuan

    of the aromatics, Toluene and Naphthalene, in the gasoline. Chapter 6 shows examples of other applications of DUV Raman spectroscopy, for instance for the illegal red food additive: Sudan I. For this dye Raman spectra - useful to indicate an unwanted presence - could not be obtained with green or blue laser line...... Raman spectrometry was further applied to detect another illegal food additive, Melamine, in milk sample. It was shown that the DUV constitutes a more sensitive measurement method than traditional Raman spectrometry and realizes a direct detection in liquid milk. In another research field regarding...... spectra of the gasoline samples. It is virtually unimportant what the rest of the sample consisted of. The most intense characteristic band is located at 1381 cm-1. The Raman spectra of home-made artificial gasoline mixtures - with gradually increasing Naphthalene contents - can be used to determine...

  14. Ionic conductivity and Raman spectra of Na--Li, K--Li, and K--Sn β-Al2O3

    International Nuclear Information System (INIS)

    Kaneda, T.; Bates, J.B.; Wang, J.C.; Engstrom, H.

    1979-01-01

    The ionic conductivity and Raman spectra of Na, Na--Li, K, K--Li, and K--Sn β-Al 2 O 3 were measured in order to understand the mechanisms of mixed-ion conduction. It was observed that at 300 0 K, for example, the conductivity of a crystal with composition Na 0 . 82 Li 0 . 18 β-Al 2 O 3 was about one-fifth that of pure Na cyrstals, while the conductivity of K 0 . 80 Li 0 . 20 β-Al 2 O 3 was more than three orders of magnitude lower than that of pure K compounds. The results of a model calculation indicated that the Li + ions are the main carrier species in the Na--Li and K--Li mixed compounds. Features observed in the Raman spectra were attributed to paired- and single-ion vibrations. It is concluded that the K + ions which contribute to a band at 69 cm -1 in K β-Al 2 O 3 are the effective carriers for conduction

  15. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  16. Raman and FTIR spectra of CeO{sub 2} and Gd{sub 2}O{sub 3} in iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Yuanming, E-mail: laiyuanming@ipm.com.cn [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng; Yang, Shiyuan [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liu, Pei; Zeng, Yiming; Hu, Changyi [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2014-12-25

    Highlights: • The structure of the studied samples has been investigated by Raman and FTIR spectroscopy. • The structure for the all samples has similar features. • The structure consists of predominantly Q{sup 1} with a fraction of Q{sup 0} and Q{sup 2} units. • The Ce and Gd enters in the structure of studied glasses as a network modifier. - Abstract: In the present work, multicomponent oxide samples of composition x(CeO{sub 2} + Gd{sub 2}O{sub 3})–(40 − x)Fe{sub 2}O{sub 3}–60P{sub 2}O{sub 5} (0 ⩽ x ⩽ 8 mol%) were produced by conventional melting method. The samples were investigated to examine the effect of the CeO{sub 2} and Gd{sub 2}O{sub 3} composition on the structure of the iron phosphate glasses system. The X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) for the x ⩽ 6 mol% samples show all the samples formed homogeneous glass, but for the x = 8 mol% samples show the presence of randomly distributed crystalline phase embedded in an amorphous matrix. The x(CeO{sub 2} + Gd{sub 2}O{sub 3})–(40 − x)Fe{sub 2}O{sub 3}–60P{sub 2}O{sub 5} glass containing 8 mol% CeO{sub 2} and Gd{sub 2}O{sub 3} partially crystallized during annealing and Ce/Gd-rich were identified by EDS in the crystalline phase. The structure of the studied samples has been investigated using Raman and Fourier transform infrared spectroscopy (FTIR). The Raman and FTIR spectra for the samples have analogous spectral features. The Raman and FTIR spectra suggest that the structure is mainly constituted by the pyrophosphate glass based structure, with a part proportion of metaphosphate and orthophosphate structure. Raman and FTIR spectra allowed us to identify the structural units which appear in the structural network of these phosphate glasses and also the network modifier role of cerium and gadolinium ions.

  17. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂.

    Science.gov (United States)

    Late, Dattatray J; Shirodkar, Sharmila N; Waghmare, Umesh V; Dravid, Vinayak P; Rao, C N R

    2014-06-06

    We report the temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2 in the range 77-700 K. We observed linear variation in the peak positions and widths of the bands arising from contributions of anharmonicity and thermal expansion. After characterization using atomic force microscopy and high-resolution transmission electron microscopy, the temperature coefficients of the Raman modes were determined. Interestingly, the temperature coefficient of the A(2)(2u) mode is larger than that of the A(1g) mode, the latter being much smaller than the corresponding temperature coefficients of the same mode in single-layer MoS2 and of the G band of graphene. The temperature coefficients of the two modes in single-layer MoSe2 are larger than those of the same modes in single-layer WSe2. We have estimated thermal expansion coefficients and temperature dependence of the vibrational frequencies of MoS2 and MoSe2 within a quasi-harmonic approximation, with inputs from first-principles calculations based on density functional theory. We show that the contrasting temperature dependence of the Raman-active mode A(1g) in MoS2 and MoSe2 arises essentially from the difference in their strain-phonon coupling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Wavelength Selection For Laser Raman Spectroscopy of Putative Martian Habitats and Biomolecules

    Science.gov (United States)

    Wynn-Williams, D. D.; Newton, E. M. G.; Edwards, H. G. M.

    Pigments are key potential biomarkers for any former life on Mars because of the selective pressure of solar radiation on any biological system that could have evolved at its surface. We have found that the near -Infrared laser Raman spectrometer available to use was eminently suitable for diagnostic analysis of pigments because of their minimal autofluorescence at its 1064 nm excitation wav elength. However, we have now evaluated a diverse range of excitation wavelengths to confirm this choice, to ensure that we have the best technique to seek for pigments and their derivatives from any former surface life on Mars. The Raman is weak relative to fluorescence, which results in elevated baseline and concurrent swamping of Raman bands. We confirm the molecular information available from near-IR FT Raman spectra for two highly pigmented UV-tolerant epilithic Antarctic lichens (Acarospora chlorop hana and Caloplaca saxicola) from Victoria Land, a whole endolithic microbial community and endolithic cyanobacterium Chroococcidiopsis from within translucent sandstone of the Trans -Antarctic Mountains, and the free- living cyanobacterium Nostoc commune from Alexander Island, Antarctic Peninsula region. We also show that much of the information we require on biomolecules is not evident from lasers of shorter wavelengths. A miniature 1064 nm Raman spectrometer with an In-Ga-As detector sensitive to IR is being developed by Montana State University (now existing as a prototype) as the prime instrument for a proposed UK-led Mars rover mission (Vanguard). Preliminary spectra from this system confirm the suitability of the near-IR laser.

  19. Protonation–deprotonation of the glycine backbone as followed by Raman scattering and multiconformational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Belén; Pflüger, Fernando [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France); Kruglik, Sergei G. [Laboratoire Jean Perrin, FRE 3231, Université Pierre et Marie Curie (Paris 6), Case courrier 138, 75252 Paris Cedex 05 (France); Ghomi, Mahmoud, E-mail: mahmoud.ghomi@univ-paris13.fr [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France)

    2013-11-08

    Highlights: • New pH-dependent Raman spectra in the middle wavenumber region (1800-300 cm{sup −1}). • New quantum mechanical calculations for exploring the Gly conformational landscape. • Construction of muticonformation based theoretical Raman spectra. - Abstract: Because of the absence of the side chain in its chemical structure and its well defined Raman spectra, glycine was selected here to follow its backbone protonation–deprotonation. The scan of the recorded spectra in the 1800–300 cm{sup −1} region led us to assign those obtained at pH 1, 6 and 12 to the cationic, zwitterionic and anionic species, respectively. These data complete well those previously published by Bykov et al. (2008) [16] devoted to the high wavenumber Raman spectra (>2500 cm{sup −1}). To reinforce our discussion, DFT calculations were carried out on the clusters of glycine + 5H{sub 2}O, mimicking reasonably the first hydration shell of the amino acid. Geometry optimization of 141 initial clusters, reflecting plausible combinations of the backbone torsion angles, allowed exploration of the conformational features, as well as construction of the theoretical Raman spectra by considering the most stable clusters containing each glycine species.

  20. Raman spectra of the system TeCl4-SbCl5

    International Nuclear Information System (INIS)

    Brockner, W.; Demiray, A.F.

    1980-01-01

    Raman spectra of the solid and molten TeCl 4 . SbCl 5 addition compound and of some TeCl 4 -SbCl 5 mixtures have been recorded. Two modifications of the crystalline TeCl 4 -SbCl 5 compound have been found. The structure of the melt can be described by the equilibrium TeCl 3 + + SbCl 6 - reversible TeCl 4 + SbCl 5 lying on the left side. Mixtures with other stoichiometry contain the 1:1 adduct only and excess TeCl 4 or SbCl 5 , respectively. Such melts are built up by the ionic species TeCl 3 + and SbCl 6 - also and TeCl 4 or SbCl 5 according to stoichiometry. (author)

  1. Allergic reactions in red tattoos: Raman spectroscopy for 'fingerprint' detection of chemical risk spectra in tattooed skin and culprit tattoo inks.

    Science.gov (United States)

    Hutton Carlsen, K; Køcks, M; Sepehri, M; Serup, J

    2016-11-01

    The aim of this study was to assess the feasibility of Raman spectroscopy as a screening technique for chemical characterisation of tattoo pigments in pathologic reacting tattoos and tattoo ink stock products to depict unsafe pigments and metabolites of pigments. Twelve dermatome shave biopsies from allergic reactions in red tattoos were analysed with Raman spectroscopy (A 785-nm 300 mW diode laser). These were referenced to samples of 10 different standard tattoo ink stock products, three of these identified as the culprit inks used by the tattooist and thus by history the source of the allergy. Three primary aromatic amine (PAA) laboratory standards (aniline, o-anisidine and 3,3'-dichlorobenzidine) were also studied. Application of Raman spectroscopy to the shave biopsies was technically feasible. In addition, all ten inks and the three PAA standards could be discriminated. 10/12 shave biopsies provided clear fingerprint Raman signals which differed significantly from background skin, and Raman spectra from 8/12 biopsies perfectly matched spectra from the three culprit ink products. The spectrum of one red ink (a low cost product named 'Tattoo', claimed to originate from Taiwan, no other info on label) was identified in 5/12 biopsies. Strong indications of the inks 'Bright Red' and 'Crimson Red' were seen in three biopsies. The three PAA's could not be unambiguously identified. This study, although on a small-scale, demonstrated Raman spectroscopy to be feasible for chemical analysis of red pigments in allergic reactions. Raman spectroscopy has a major potential for fingerprint screening of problematic tattoo pigments in situ in skin, ex vivo in skin biopsies and in tattoo ink stock products, thus, to eliminate unsafe ink products from markets. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Preventing Raman Lasing in High-Q WGM Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute

    2007-01-01

    A generic design has been conceived to suppress the Raman effect in whispering- gallery-mode (WGM) optical resonators that have high values of the resonance quality factor (Q). Although it is possible to exploit the Raman effect (even striving to maximize the Raman gain to obtain Raman lasing), the present innovation is intended to satisfy a need that arises in applications in which the Raman effect inhibits the realization of the full potential of WGM resonators as frequency-selection components. Heretofore, in such applications, it has been necessary to operate high-Q WGM resonators at unattractively low power levels to prevent Raman lasing. (The Raman-lasing thresholds of WGM optical resonators are very low and are approximately proportional to Q(sup -2)). Heretofore, two ways of preventing Raman lasting at high power levels have been known, but both entail significant disadvantages: A resonator can be designed so that the optical field is spread over a relatively large mode volume to bring the power density below the threshold. For any given combination of Q and power level, there is certain mode volume wherein Raman lasing does not start. Unfortunately, a resonator that has a large mode volume also has a high spectral density, which is undesirable in a typical photonic application. A resonator can be cooled to the temperature of liquid helium, where the Raman spectrum is narrower and, therefore, the Raman gain is lower. However, liquid-helium cooling is inconvenient. The present design overcomes these disadvantages, making it possible to operate a low-spectral-density (even a single-mode) WGM resonator at a relatively high power level at room temperature, without risk of Raman lasing.

  3. High-density volatiles in the system C-O-H-N for the calibration of a laser Raman microprobe

    Science.gov (United States)

    Chou, I.-Ming; Pasteris, J.D.; Seitz, J.C.

    1990-01-01

    Three methods have been used to produce high-density volatiles in the system C-O-H-N for the calibration of a laser Raman microprobe (LRM): synthetic fluid-inclusion, sealed fused-quartz-tube, and high-pressure-cell methods. Because quantitative interpretation of a Raman spectrum of mixed-volatile fluid inclusions requires accurate knowledge of pressure- and composition-sensitive Raman scattering efficiencies or quantification factors for each species, calibrations of these parameters for mixtures of volatiles of known composition and pressure are necessary. Two advantages of the synthetic fluid-inclusion method are that the inclusions can be used readily in complementary microthermometry (MT) studies and that they have sizes and optical properties like those in natural samples. Some disadvantages are that producing H2O-free volatile mixtures is difficult, the composition may vary from one inclusion to another, the exact composition and density of the inclusions are difficult to obtain, and the experimental procedures are complicated. The primary advantage of the method using sealed fused-quartz tubes is its simplicity. Some disadvantages are that exact compositions for complex volatile mixtures are difficult to predict, densities can be approximated only, and complementary MT studies on the tubes are difficult to conduct. The advantages of the high-pressure-cell method are that specific, known compositions of volatile mixtures can be produced and that their pressures can be varied easily and are monitored during calibration. Some disadvantages are that complementary MT analysis is impossible, and the setup is bulky. Among the three methods for the calibration of an LRM, the high-pressure-cell method is the most reliable and convenient for control of composition and total pressure. We have used the high-pressure cell to obtain preliminary data on 1. (1) the ratio of the Raman quantification factors for CH4 and N2 in an equimolar CH4N2 mixture and 2. (2) the

  4. Strong spin-phonon coupling in infrared and Raman spectra of SrMnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Goian, Veronica; Skoromets, Volodymyr; Hejtmánek, Jiří; Bovtun, Viktor; Kempa, Martin; Borodavka, Fedir; Vaněk, Přemysl; Belik, A.A.; Lee, J.H.; Pacherová, Oliva; Rabe, K.M.

    2014-01-01

    Roč. 89, č. 6 (2014), "064308-1"-"064308-9" ISSN 1098-0121 R&D Projects: GA MŠk LH13048; GA ČR GAP204/12/1163; GA MŠk LD12026; GA ČR GP14-14122P Institutional support: RVO:68378271 Keywords : multiferroics * spin-phonon coupling * infrared and Raman spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  5. High resolution resonant Raman scattering in InP and GaAs

    International Nuclear Information System (INIS)

    Kernohan, E.T.M.

    1996-04-01

    Previous studies of III-V semiconductors using resonant Raman scattering have concentrated on measuring the variations in scattering intensity under different excitation conditions. The shape of the Raman line also contains important information, but this has usually been lost because the low signal strengths mean that resolution has been sacrificed for sensitivity. It might therefore be expected that further insights into the processes involved in Raman scattering could be obtained by using high resolution methods. In this thesis I have measured single- and multiple- phonon scattering from bulk GaAs and InP with a spectral resolution better than the intrinsic widths of the Raman lines. For scattering in the region of one longitudinal optic (LO) phonon energy, it is found that in InP the scattering in the allowed and forbidden configurations occur at different Raman shifts, above and below the zone-centre phonon energy respectively. These shifts are used to determine the scattering processes involved, and how they differ between InP and GaAs. The lineshapes obtained in multiple-phonon scattering are found to depend strongly on the excitation energy used, providing evidence for the presence of intermediate resonances. The measured spectra are used to provide information about the phonon dispersion of InP, whose dispersion it is difficult to measure in any other way, and the first evidence is found for an upward dispersion of the LO mode. Raman lineshapes are measured for InP in a magnetic field. The field alters the electronic bandstructure, leading to a series of strong resonances in the Raman efficiency due to interband magneto-optical transitions between Landau levels. This allows multiphonon processes up to sixth-order to be investigated. (author)

  6. Study on the noncoincidence effect phenomenon using matrix isolated Raman spectra and the proposed structural organization model of acetone in condense phase

    Science.gov (United States)

    Xu, Wenwen; Wu, Fengqi; Zhao, Yanying; Zhou, Ran; Wang, Huigang; Zheng, Xuming; Ni, Bukuo

    2017-03-01

    The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature.

  7. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Esam M.A. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)], E-mail: h.g.m.edwards@bradford.ac.uk; Hargreaves, Michael D.; Scowen, Ian J. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)

    2008-05-12

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 {mu}m. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.

  8. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    International Nuclear Information System (INIS)

    Ali, Esam M.A.; Edwards, Howell G.M.; Hargreaves, Michael D.; Scowen, Ian J.

    2008-01-01

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 μm. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material

  9. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    International Nuclear Information System (INIS)

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-01-01

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT

  10. The effect of nonlocal dielectric response on the surface-enhanced Raman and fluorescence spectra of molecular systems

    Science.gov (United States)

    Wei, Yong; Pei, Huan; Li, Li; Zhu, Yanying

    2018-06-01

    We present a theoretical study on the influence of the nonlocal dielectric response on surface-enhanced resonant Raman scattering (SERRS) and fluorescence (SEF) spectra of a model molecule confined in the center of a Ag nanoparticle (NP) dimer. In the simulations, the nonlocal dielectric response caused by the electron–hole pair generation in Ag NPs was computed with the d-parameter theory, and the scattering spectra of a model molecule representing the commonly used fluorescent dye rhodamine 6G (R6G) were obtained by density-matrix calculations. The influence of the separation between Ag NP dimers on the damping rate and scattering spectra with and without the nonlocal response were systematically analyzed. The results show that the nonlocal dielectric response is very sensitive to the gap distance of the NP dimers, and it undergoes much faster decay with the increase of the separation than the radiative and energy transfer rates. The Raman and fluorescence peaks as simulated with the nonlocal dielectric response are relative weaker than that without the nonlocal effect for smaller NP separations because the extra decay rates of the nonlocal effect could reduce both the population of the excited state and the interband coherence between the ground and excited states. Our result also indicates that the nonlocal effect is more prominent on the SEF process than the SERRS process.

  11. Comparison of several chemometric methods of libraries and classifiers for the analysis of expired drugs based on Raman spectra.

    Science.gov (United States)

    Gao, Qun; Liu, Yan; Li, Hao; Chen, Hui; Chai, Yifeng; Lu, Feng

    2014-06-01

    Some expired drugs are difficult to detect by conventional means. If they are repackaged and sold back into market, they will constitute a new public health challenge. For the detection of repackaged expired drugs within specification, paracetamol tablet from a manufacturer was used as a model drug in this study for comparison of Raman spectra-based library verification and classification methods. Raman spectra of different batches of paracetamol tablets were collected and a library including standard spectra of unexpired batches of tablets was established. The Raman spectrum of each sample was identified by cosine and correlation with the standard spectrum. The average HQI of the suspicious samples and the standard spectrum were calculated. The optimum threshold values were 0.997 and 0.998 respectively as a result of ROC and four evaluations, for which the accuracy was up to 97%. Three supervised classifiers, PLS-DA, SVM and k-NN, were chosen to establish two-class classification models and compared subsequently. They were used to establish a classification of expired batches and an unexpired batch, and predict the suspect samples. The average accuracy was 90.12%, 96.80% and 89.37% respectively. Different pre-processing techniques were tried to find that first derivative was optimal for methods of libraries and max-min normalization was optimal for that of classifiers. The results obtained from these studies indicated both libraries and classifier methods could detect the expired drugs effectively, and they should be used complementarily in the fast-screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Application of Raman spectroscopy to forensic fibre cases.

    Science.gov (United States)

    Lepot, L; De Wael, K; Gason, F; Gilbert, B

    2008-09-01

    Five forensic fibre cases in which Raman spectroscopy proved to be a good complementary method for microspectrophotometry (MSP) are described. Absorption spectra in the visible range are indeed sometimes characteristic ofa certain dye but this one can be subsequently identified unambiguously by Raman spectroscopy using a spectral library. In other cases the comparison of Raman spectra of reference fibres and suspect fibres led to an improvement of the discrimination power. The Raman measurements have been performed directly on mounted fibres and the spectra showed only little interference from the mounting resin and glass. Raman spectroscopy is therefore a powerful method that can be applied in routine fibre analysis following optical microscopy and MSP measurements.

  13. Phonon populations by nanosecond-pulsed Raman scattering in Si

    International Nuclear Information System (INIS)

    Compaan, A.; Lee, M.C.; Trott, G.J.

    1985-01-01

    Since the first time-resolved Raman studies of phonon populations under pulsed-laser-annealing conditions, a number of cw Raman studies have been performed which provide a much improved basis for interpreting the pulsed Raman data. Here we present new pulsed Raman results and interpret them with reference to temperature-dependent resonance effects, high-carrier-density effects, phonon anharmonicity, and laser-induced strain effects. The pulsed Raman data: Stokes to anti-Stokes ratios, shift and shape of the first-order peak, and second-order spectra: indicate the existence of a phase in which the Raman signal disappears followed by a rapidly cooling solid which begins within 300 K of the 1685 K normal melting temperature of Si. We identify a major difficulty in pulsed Raman studies in Si to be the decrease in Raman intensity at high temperatures

  14. Effects of high pressure on the fluorescence spectra of Cr sup 3 sup + in GdAlO sub 3

    CERN Document Server

    Jovanic, B R

    1998-01-01

    The effect of high hydrostatic pressure, up to 100 kbar, on the emission spectra of Cr sup 3 sup + ions in GdAlO sub 3 hosts was studied. A linear shifting (red-shift) of the single-ion line (the R line), the left-hand side (LS) line, right-hand side (RS) line and the neighbouring-pair line (NPL) was observed. The R line shows a pressure-induced shift of 0.082 nm kbar sup - sup 1 , nearly 2.25 times that of ruby. The LS line, RS line and NPL show pressure-induced shifts of 0.0779 nm kbar sup - sup 1 , 0.0864 nm kbar sup - sup 1 and 0.0933 nm kbar sup - sup 1 , respectively. (author)

  15. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  16. Diagnosing basal cell carcinoma in vivo by near-infrared Raman spectroscopy: a Principal Components Analysis discrimination algorithm

    Science.gov (United States)

    Silveira, Landulfo, Jr.; Silveira, Fabrício L.; Bodanese, Benito; Pacheco, Marcos Tadeu T.; Zângaro, Renato A.

    2012-02-01

    This work demonstrated the discrimination among basal cell carcinoma (BCC) and normal human skin in vivo using near-infrared Raman spectroscopy. Spectra were obtained in the suspected lesion prior resectional surgery. After tissue withdrawn, biopsy fragments were submitted to histopathology. Spectra were also obtained in the adjacent, clinically normal skin. Raman spectra were measured using a Raman spectrometer (830 nm) with a fiber Raman probe. By comparing the mean spectra of BCC with the normal skin, it has been found important differences in the 800-1000 cm-1 and 1250-1350 cm-1 (vibrations of C-C and amide III, respectively, from lipids and proteins). A discrimination algorithm based on Principal Components Analysis and Mahalanobis distance (PCA/MD) could discriminate the spectra of both tissues with high sensitivity and specificity.

  17. Use of radiochromic film as a high-spatial resolution dosimeter by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Jamal Ahmad; Park, Hyeonsuk [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of); Park, So-Yeon [Interdisciplinary Program in Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Ye, Sung-Joon, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-08-15

    Purpose: Due to increasing demand for high-spatial resolution dosimetry, radiochromic films have been investigated as potential candidates but are often limited by the scanning system, e.g., flatbed optical scanner. In this study, Raman spectroscopy in conjunction with a microscope was selected as an alternative method for high-spatial resolution dosimetry of radiochromic film. Methods: Unlaminated Gafchromic™ EBT3 films were irradiated with doses between 0 and 50 Gy using 6 MV x-rays of a clinical linear accelerator. Depth profiling from the surface of unlaminated film was performed to acquire the maximum Raman intensity peaks of C≡C and C=C stretching bands of diacetylene polymer. The Raman mapping technique for a region of interest (200 × 200, 30 × 30 μm{sup 2}) was developed to reduce a large variation in a Raman spectrum produced with a sampling resolution of a few μm. The preprocessing of Raman spectra was carried out to determine a dosimetric relationship with the amount of diacetylene polymerization. Results: Due to partial diacetylene polymerization upon irradiation, two Raman peaks of C=C and C≡C stretching bands were observed around 1447 and 2060 cm{sup −1}, respectively. The maximum intensities of the two peaks were obtained by positioning a focused laser spot on the surface of unlaminated film. For the dose range of 0–50 Gy, the band heights of both C≡C and C=C peaks increase asymptotically with increasing doses and can be fit with an exponential function of two components. The relative standard deviation in Raman mapping was found to be less than ±5%. By using this technique, dose uniformity was found to be within ±2%. Conclusions: The Raman intensity for C=C and C≡C peaks increases with an increase in the amount of diacetylene polymerization due to an increase in dose. This study shows the potential of Raman spectroscopy as an alternative for absolute dosimetry verifications with a high-spatial resolution of a few μm, but these

  18. Competition and coexistence of polar and non-polar states in Sr1-x Ca x TiO3: an investigation using pressure dependent Raman spectroscopy

    Science.gov (United States)

    Tyagi, Shekhar; Sharma, Gaurav; Sathe, Vasant G.

    2018-03-01

    The competition and cooperation between ferroelectric and anti-ferro-distortion (AFD) instabilities are studied using pressure dependent Raman spectroscopy on polycrystalline powder samples of Sr1-x Ca x TiO3(x  =  0.0, 0.06, 0.25, 0.35). For x  =  0.0 composition, a broad polar mode is detected in the Raman spectra above 6 GPa, while for x  =  0.06 composition, the polar modes appear well above 9 GPa where the AFD modes showed strong suppression. In x  =  0.25 and 0.35 composition, the application of small pressure resulted in the appearance of strong AFD modes suppressing the polar modes. At elevated pressures, re-entrant polar modes are observed along with the broad AFD modes and some new peaks are also observed, signifying the lowering of local symmetry. The reappearance of polar modes is found to be related to pressure induced symmetry disorder at local level, suggesting its electronic origin. The re-entrant polar modes observed at higher pressure values are found to be significantly broad and asymmetric in nature, signifying the development of ferroelectric micro regions/nano domains coexisting with AFD. The lower symmetry at local length scale provides a conducive atmosphere for coexisting AFD and FE instabilities.

  19. Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure

    Science.gov (United States)

    Shang, Linbo; Chou, I-Ming; Burruss, Robert; Hu, Ruizhong; Bi, Xianwu

    2014-01-01

    The positions of the CH4 Raman ν1 symmetric stretching bands were measured in a wide range of temperature (from −180 °C to 350 °C) and density (up to 0.45 g/cm3) using high-pressure optical cell and fused silica capillary capsule. The results show that the Raman band shift is a function of both methane density and temperature; the band shifts to lower wavenumbers as the density increases and the temperature decreases. An equation representing the observed relationship among the CH4 ν1 band position, temperature, and density can be used to calculate the density in natural or synthetic CH4-bearing inclusions.

  20. On the use of spectra from portable Raman and ATR-IR instruments in synthesis route attribution of a chemical warfare agent by multivariate modeling.

    Science.gov (United States)

    Wiktelius, Daniel; Ahlinder, Linnea; Larsson, Andreas; Höjer Holmgren, Karin; Norlin, Rikard; Andersson, Per Ola

    2018-08-15

    Collecting data under field conditions for forensic investigations of chemical warfare agents calls for the use of portable instruments. In this study, a set of aged, crude preparations of sulfur mustard were characterized spectroscopically without any sample preparation using handheld Raman and portable IR instruments. The spectral data was used to construct Random Forest multivariate models for the attribution of test set samples to the synthetic method used for their production. Colored and fluorescent samples were included in the study, which made Raman spectroscopy challenging although fluorescence was diminished by using an excitation wavelength of 1064 nm. The predictive power of models constructed with IR or Raman data alone, as well as with combined data was investigated. Both techniques gave useful data for attribution. Model performance was enhanced when Raman and IR spectra were combined, allowing correct classification of 19/23 (83%) of test set spectra. The results demonstrate that data obtained with spectroscopy instruments amenable for field deployment can be useful in forensic studies of chemical warfare agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  2. Response of conifer species from three latitudinal populations to light spectra generated by light-emitting diodes and high-pressure sodium lamps

    Science.gov (United States)

    Kent G. Apostol; Kas Dumroese; Jeremy Pinto; Anthony S. Davis

    2015-01-01

    Light-emitting diode (LED) technology shows promise for supplementing photosynthetically active radiation (PAR) in forest nurseries because of the potential reduction in energy consumption and an ability to supply discrete wavelengths to optimize seedling growth. Our objective was to examine the effects of light spectra supplied by LED and traditional high-pressure...

  3. Side-by-side comparison of Raman spectra of anchored and suspended carbon nanomaterials

    International Nuclear Information System (INIS)

    Sidorov, Anton N; Pabba, Santosh; Cohn, Robert W; Sumanasekera, G U; Hewaparakrama, Kapila P

    2008-01-01

    Raman spectra of ordered carbon nanomaterials are quite sensitive to surface perturbations, including trace residues, structural defects and residual stress. This is demonstrated by a series of experiments with carbon nanotubes and graphene. Their spectra change due to subtle changes in preparation and attachment to the substrate and to each other. Differences are most clearly seen by forming a material into an air bridge and probing it in the air gap and at the anchor points. A monolayer graphene sheet, shows a larger disorder band at the anchor points than in the air gap. However, a bundle or rope of parallel-aligned single-wall nanotubes shows a larger disorder band in the gap than at the anchor points. For the graphene sheet the substrate surface deforms the graphene, leading to increases in the disorder band. For the rope, the close proximity of the nanotubes to each other appears to produce a larger stress than the rope resting on the substrate

  4. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    Science.gov (United States)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  5. Discriminant analysis of Raman spectra for body fluid identification for forensic purposes.

    Science.gov (United States)

    Sikirzhytski, Vitali; Virkler, Kelly; Lednev, Igor K

    2010-01-01

    Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.

  6. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes

    Directory of Open Access Journals (Sweden)

    Vitali Sikirzhytski

    2010-03-01

    Full Text Available Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.

  7. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  8. Classifying low-grade and high-grade bladder cancer using label-free serum surface-enhanced Raman spectroscopy and support vector machine

    Science.gov (United States)

    Zhang, Yanjiao; Lai, Xiaoping; Zeng, Qiuyao; Li, Linfang; Lin, Lin; Li, Shaoxin; Liu, Zhiming; Su, Chengkang; Qi, Minni; Guo, Zhouyi

    2018-03-01

    This study aims to classify low-grade and high-grade bladder cancer (BC) patients using serum surface-enhanced Raman scattering (SERS) spectra and support vector machine (SVM) algorithms. Serum SERS spectra are acquired from 88 serum samples with silver nanoparticles as the SERS-active substrate. Diagnostic accuracies of 96.4% and 95.4% are obtained when differentiating the serum SERS spectra of all BC patients versus normal subjects and low-grade versus high-grade BC patients, respectively, with optimal SVM classifier models. This study demonstrates that the serum SERS technique combined with SVM has great potential to noninvasively detect and classify high-grade and low-grade BC patients.

  9. Clustering/anticlustering effects on the GeSi Raman spectra at moderate (Ge,Si) contents: Percolation scheme vs. ab initio calculations

    Science.gov (United States)

    Torres, V. J. B.; Hajj Hussein, R.; Pagès, O.; Rayson, M. J.

    2017-02-01

    We test a presumed ability behind the phenomenological percolation scheme used for the basic description of the multi-mode Raman spectra of mixed crystals at one dimension along the linear chain approximation, to determine, via the Raman intensities, the nature of the atom substitution, as to whether this is random or due to local clustering/anticlustering. For doing so, we focus on the model percolation-type GeySi1-y system characterized by six oscillators { 1 × ( G e - G e ) , 3 × ( G e - S i ) , 2 × ( S i - S i ) } and place the study around the critical compositions y ˜ (0.16, 0.71, and 0.84) corresponding to nearly matching of intensities between the like Raman modes from a given multiplet ( G e - S i triplet or S i - S i doublet). The interplay between the GeySi1-y Raman intensities predicted by the percolation scheme depending on a suitable order parameter κ of local clustering/anticlustering is found to be consistent with ab initio calculations of the GeySi1-y Raman spectra done with the Ab Initio Modeling PROgram code using large (64-, 216-, and 512-atoms) disordered cubic supercells matching the required ( y , κ ) values. The actual "percolation vs. ab initio" comparative insight at moderate/dilute-(Ge,Si) limits, with an emphasis on the κ -induced intra-bond transfer of oscillator strength, extends a pioneering one earlier achieved at an intermediate composition ( y ˜ 0.50) by using small (32-atom) supercells [O. Pagès et al., J. Appl. Phys. 114, 033513 (2013)], mainly concerned with the inter-bond transfer of oscillator strength, providing altogether a complete picture.

  10. FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid.

    Science.gov (United States)

    Karabacak, Mehmet; Cinar, Mehmet

    2012-02-01

    In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. The gem anvil cell: high-pressure behaviour of diamond and related materials

    International Nuclear Information System (INIS)

    Xu Jian; Mao Hokwang; Hemley, Russell J

    2002-01-01

    The moissanite anvil cell has been used to study the high-pressure behaviour of diamond. The first-order Raman shift of diamond shows a strong dependence on hydrostaticity, with very different pressure dependences observed under hydrostatic and non-hydrostatic conditions. The shift of the second-order Raman band under hydrostatic pressures was determined for the first time. Sapphire has almost no peaks above 1000 cm -1 in the Raman spectrum and no absorption in the ultraviolet range; it is therefore especially useful for studies in those spectral regions. A sapphire anvil cell was used in a study of graphite up to 24 GPa. A phase transition was found near 18 GPa, consistent with previous reports, and no peaks characteristic of diamond in the 1330 cm -1 range were found, indicating that the phase is not diamond

  12. The gem anvil cell: high-pressure behaviour of diamond and related materials

    CERN Document Server

    Xu Jian; Hemley, R J

    2002-01-01

    The moissanite anvil cell has been used to study the high-pressure behaviour of diamond. The first-order Raman shift of diamond shows a strong dependence on hydrostaticity, with very different pressure dependences observed under hydrostatic and non-hydrostatic conditions. The shift of the second-order Raman band under hydrostatic pressures was determined for the first time. Sapphire has almost no peaks above 1000 cm sup - sup 1 in the Raman spectrum and no absorption in the ultraviolet range; it is therefore especially useful for studies in those spectral regions. A sapphire anvil cell was used in a study of graphite up to 24 GPa. A phase transition was found near 18 GPa, consistent with previous reports, and no peaks characteristic of diamond in the 1330 cm sup - sup 1 range were found, indicating that the phase is not diamond.

  13. The effects of machine parameters on residual stress determined using micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    The effects of machine parameters on residual stresses in single point diamond turned silicon and germanium have been investigated using micro-Raman spectroscopy. Residual stresses were sampled across ductile feed cuts in < 100 > silicon and germanium which were single point diamond turned using a variety of feed rates, rake angles and clearance angles. High spatial resolution micro-Raman spectra (1{mu}m spot) were obtained in regions of ductile cutting where no visible surface damage was present. The use of both 514-5nm and 488.0nm excitation wavelengths, by virtue of their differing characteristic penetration depths in the materials, allowed determinations of stress profiles as a function of depth into the sample. Previous discussions have demonstrated that such Raman spectra will exhibit asymmetrically broadened peaks which are characteristic of the superposition of a continuum of Raman scatterers from the various depths probed. Depth profiles of residual stress were obtained using computer deconvolution of the resulting asymmetrically broadened raman spectra.

  14. Interpretation of IR and Raman spectra of dopamine neurotransmitter and effect of hydrogen bond in HCl

    Science.gov (United States)

    Yadav, T.; Mukherjee, V.

    2018-05-01

    The potential energy scanning with respect to the different dihedral angles were performed to search possible numbers of dopamine (neutral) conformers and further, fifteen conformers of dopamine were identified on the basis of energy minima. Vibrational frequencies were calculated for all the conformers of dopamine. Density functional theory was employed to carry out all the computations. The exchange correlation functional B3LYP and the basis set 6-31++G(d,p) were included in DFT calculation. The FTIR and FT-Raman spectra of dopamine hydrochloride were also recorded in the spectral region 400-4000 cm-1 and 50-4000 cm-1 respectively. The normal coordinate analysis was also performed to scale DFT calculated force constants and to calculate potential energy distributions. The detailed vibrational spectral analysis and the assignments of the bands, done on the best-fit basis comparison of the experimentally obtained and theoretically calculated IR and Raman spectra, match quite well indicating DFT calculations as very accurate source of normal mode assignments. The interaction of the most stable conformer of dopamine with HCl was also studied to know the effect of hydrogen bond on its geometry and dynamics. The stability of the dopamine in isolated and protonated forms arising from hyperconjugative interactions was also analyzed by natural bond orbital analysis.

  15. Characterization of excited electronic states of naphthalene by resonance Raman and hyper-Raman scattering

    International Nuclear Information System (INIS)

    Bonang, C.C.; Cameron, S.M.

    1992-01-01

    The first resonance Raman and hyper-Raman scattering from naphthalene are reported. Fourth harmonic of a mode-locked Nd:YAG laser is used to resonantly excite the 1 B 1u + transition, producing Raman spectra that confirm the dominance of the vibronically active ν 28 (b 3g ) mode and the Franck--Condon active a g modes, ν 5 and ν 3 . A synchronously pumped stilbene dye laser and its second harmonic are employed as the excitation sources for hyper-Raman and Raman scattering from the overlapping 1 B 2 u + and 1 A g - states. The Raman spectra indicate that the equilibrium geometry of naphthalene is distorted primarily along ν 5 , ν 8 , and ν 7 normal coordinates upon excitation to 1 B 2 u + . The hyper-Raman spectrum shows that ν 25 (b 2u ) is the mode principally responsible for vibronic coupling between the 1 A g - and 1 B 2u + states. The results demonstrate the advantageous features of resonance hyper-Raman scattering for the case of overlapping one- and two-photon allowed transitions. Calculations based on simple molecular orbital configurations are shown to qualitatively agree with the experimental results

  16. Effect of pressure on Zircon's (ZrSiO4) Raman active modes: a first-principles study

    Science.gov (United States)

    Sheremetyeva, Natalya; Cherniak, Daniele; Watson, Bruce; Meunier, Vincent

    Zircon is a mineral commonly found in the Earth crust. Its remarkable properties have given rise to considerable attention. This includes possible inclusion of radioactive elements in natural samples, which allows for geochronological investigations. Subsequently, Zircon was proposed as possible host material for radioactive waste management. Internal radiation damage in zircon leads to the destruction of its crystal structure (an effect known as metamictization) which is subject to ongoing research. Recently, the effect of pressure and temperature on synthetic zircon has been analyzed experimentally using Raman spectroscopy which led to the calibration of zircon as a pressure sensor in diamond-anvil cell experiments. While there have been a number of theoretical studies, the effect of pressure on the Raman active modes of zircon has not been investigated theoretically. Here we present a first-principles pressure calibration of the Raman active modes in Zircon employing density-functional theory (DFT). We find excellent quantitative agreement of the slopes ∂ω / ∂P with the experimental ones and are able to rationalize the ω vs. P behavior based on the details of the vibrational modes.

  17. Overview of the use of theory to understand infrared and Raman spectra and images of biomolecules: colorectal cancer as an example

    DEFF Research Database (Denmark)

    Piva, J. A. A. C.; Silva, J. L. R.; Raniero, L.

    2011-01-01

    In this work, we present the state of the art in the use of theory (first principles, molecular dynamics, and statistical methods) for interpreting and understanding the infrared (vibrational) absorption and Raman scattering spectra. It is discussed how they can be used in combination with purely...... of biomolecules are very sensitive to their environment and aggregation state, the combined use of infrared and Raman spectroscopy and imaging and theoretical simulations are clearly fields, which can benefit from their joint and mutual development....

  18. Coherent Raman scattering: Applications in imaging and sensing

    Science.gov (United States)

    Cui, Meng

    In this thesis, I discuss the theory, implementation and applications of coherent Raman scattering to imaging and sensing. A time domain interferometric method has been developed to collect high resolution shot-noise-limited Raman spectra over the Raman fingerprint regime and completely remove the electronic background signal in coherent Raman scattering. Compared with other existing coherent Raman microscopy methods, this time domain approach is proved to be simpler and more robust in rejecting background signal. We apply this method to image polymers and biological samples and demonstrate that the same setup can be used to collect two photon fluorescence and self phase modulation signals. A signal to noise ratio analysis is performed to show that this time domain method has a comparable signal to noise ratio to spectral domain methods, which we confirm experimentally. The coherent Raman method is also compared with spontaneous Raman scattering. The conditions under which coherent methods provide signal enhancement are discussed and experiments are performed to compare coherent Raman scattering with spontaneous Raman scattering under typical biological imaging conditions. A critical power, above which coherent Raman scattering is more sensitive than spontaneous Raman scattering, is experimentally determined to be ˜1mW in samples of high molecule concentration with a 75MHz laser system. This finding is contrary to claims that coherent methods provide many orders of magnitude enhancement under comparable conditions. In addition to the far field applications, I also discuss the combination of our time domain coherent Raman method with near field enhancement to explore the possibility of sensing and near field imaging. We report the first direct time-resolved coherent Raman measurement performed on a nanostructured substrate for molecule sensing. The preliminary results demonstrate that sub 20 fs pulses can be used to obtain coherent Raman spectra from a small number

  19. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  20. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  1. Characterization of Materials by Raman Scattering

    Science.gov (United States)

    Kozielski, M.

    2007-03-01

    The paper reports on the use of phonon spectra obtained with the Raman spectroscopy for characterization of different materials. The Raman scattering spectra obtained for zinc selenide crystals, mixed crystals zinc selenide admixtured with magnesium or beryllium, oxide crystals including strontium lanthanum gallate, molecular crystals of triammonium hydrogen diseleniate and a homologous series of polyoxyethylene glycols are analysed.

  2. High temperature phase transition by Raman scattering in SmAlO3

    International Nuclear Information System (INIS)

    Alain, P.; Piriou, B.

    1975-01-01

    Data on the Raman phonon spectra are summarized. Experimental procedure is given. Frequencies and damping coefficients are reported. In spite of coloration and blackbody radiation from the sample, experiments were carried out up to 1,500K [fr

  3. The application of chemometrics on Infrared and Raman spectra as a tool for the forensic analysis of paints.

    Science.gov (United States)

    Muehlethaler, Cyril; Massonnet, Genevieve; Esseiva, Pierre

    2011-06-15

    The aim of this work is to evaluate the capabilities and limitations of chemometric methods and other mathematical treatments applied on spectroscopic data and more specifically on paint samples. The uniqueness of the spectroscopic data comes from the fact that they are multivariate - a few thousands variables - and highly correlated. Statistical methods are used to study and discriminate samples. A collection of 34 red paint samples was measured by Infrared and Raman spectroscopy. Data pretreatment and variable selection demonstrated that the use of Standard Normal Variate (SNV), together with removal of the noisy variables by a selection of the wavelengths from 650 to 1830 cm(-1) and 2730-3600 cm(-1), provided the optimal results for infrared analysis. Principal component analysis (PCA) and hierarchical clusters analysis (HCA) were then used as exploratory techniques to provide evidence of structure in the data, cluster, or detect outliers. With the FTIR spectra, the Principal Components (PCs) correspond to binder types and the presence/absence of calcium carbonate. 83% of the total variance is explained by the four first PCs. As for the Raman spectra, we observe six different clusters corresponding to the different pigment compositions when plotting the first two PCs, which account for 37% and 20% respectively of the total variance. In conclusion, the use of chemometrics for the forensic analysis of paints provides a valuable tool for objective decision-making, a reduction of the possible classification errors, and a better efficiency, having robust results with time saving data treatments. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism

    Science.gov (United States)

    Valley, Nicholas; Jensen, Lasse; Autschbach, Jochen; Schatz, George C.

    2010-08-01

    Hyper-Raman spectra for pyridine and pyridine on the surface of a tetrahedral 20 silver atom cluster are calculated using static hyperpolarizability derivatives obtained from time dependent density functional theory. The stability of the results with respect to choice of exchange-correlation functional and basis set is verified by comparison with experiment and with Raman spectra calculated for the same systems using the same methods. Calculated Raman spectra were found to match well with experiment and previous theoretical calculations. The calculated normal and surface enhanced hyper-Raman spectra closely match experimental results. The chemical enhancement factors for hyper-Raman are generally larger than for Raman (102-104 versus 101-102). Integrated hyper-Raman chemical enhancement factors are presented for a set of substituted pyridines. A two-state model is developed to predict these chemical enhancement factors and this was found to work well for the majority of the molecules considered, providing a rationalization for the difference between hyper-Raman and Raman enhancement factors.

  5. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    Science.gov (United States)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  6. Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure: a re-evaluation of the effects of pH and chloride concentration

    Science.gov (United States)

    Murphy, P. J.; LaGrange, M. S.

    1998-11-01

    Previous work on gold chloride and hydroxide speciation in fluids has shown differences in opinion as to the relative importance of gold (I) and gold (III) species, as well as for the Raman peak assignments for the various species. In addition, previous experimental work has not been consistent with theoretical predictions either of the number or of the frequencies of the peaks in the Raman spectrum. In order to re-evaluate the effect of pH on Raman spectra and speciation, solutions containing gold (III) chloride were analysed by Raman spectroscopy at ambient temperature and pressure, over a range of pH from 1 to 11. Total gold concentrations were from 0.001 to 0.02 M, with total chloride concentrations of 0.004-0.5 M. The spectra obtained are consistent with the hydrolysis sequence of square-planar Au(III) complex ions [AuCl x(OH) 4-x] -, where x = 0-4. The Au-Cl stretching peaks obtained were 348/325 Rcm -1 for [AuCl 4] -, 348/335/325 Rcm -1 for [AuCl 3(OH)] -, 337/355 Rcm -1 for [AuCl 2(OH) 2] -, and 355 Rcm -1 for [AuCl(OH) 3] -. [Au(OH) 4] - probably occurred, alongside [AuCl(OH) 3] - at pH values above 11. A dark purplish-grey precipitate (Au(I)OH) formed at high pH values. No evidence for Au(I) species was found. The spectra are more consistent with theory than previous data and show the predicted number of peaks for Au-Cl and Au-OH stretches for each species. However, the peak frequencies do not fit precisely with the predictions of Tossell (1996), particularly for Au-OH stretches. Hydrolysis of the simple chloride species occurs at lower pH values than found previously, and both gold and chloride concentration were found to affect the pH ranges of stability for the various chloro-hydroxy species. Decreasing gold concentration resulted in hydrolysis occurring at lower pH values. This is especially important in the absence of excess chloride (ΣCl = 4ΣAu). Substantial hydrolysis occurred below pH = 4 for 0.02 M Au /0.08 M Cl -, and below pH = 2 for 0.001 M

  7. Raman Investigation of The Uranium Compounds U3O8, UF4, UH3 and UO3 under Pressure at Room Temperature

    International Nuclear Information System (INIS)

    Lipp, M.J.; Jenei, Z.; Park-Klepeis, J.; Evans, W.J.

    2011-01-01

    Our current state-of-the-art X-ray diffraction experiments are primarily sensitive to the position of the uranium atom. While the uranium - low-Z element bond (such as U-H or U-F) changes under pressure and temperature the X-ray diffraction investigations do not reveal information about the bonding or the stoichiometry. Questions that can be answered by Raman spectroscopy are (i) whether the bonding strength changes under pressure, as observed by either blue- or red-shifted peaks of the Raman active bands in the spectrum and (ii) whether the low-Z element will eventually be liberated and leave the host lattice, i.e. do the fluorine, oxygen, or hydrogen atoms form dimers after breaking the bond to the uranium atom. Therefore Raman spectra were also collected in the range where those decomposition products would appear. Raman is particularly well suited to these types of investigations due to its sensitivity to trace amounts of materials. One challenge for Raman investigations of the uranium compounds is that they are opaque to visible light. They absorb the incoming radiation and quickly heat up to the point of decomposition. This has been dealt with in the past by keeping the incoming laser power to very low levels on the tens of milliWatt range consequently affecting signal to noise. Recent modern investigations also used very small laser spot sizes (micrometer range) but ran again into the problem of heating and chemical sensitivity to the environment. In the studies presented here (in contrast to all other studies that were performed at ambient conditions only) we employ micro-Raman spectroscopy of samples situated in a diamond anvil cell. This increases the trustworthiness of the obtained data in several key-aspects: (a) We surrounded the samples in the DAC with neon as a pressure transmitting medium, a noble gas that is absolutely chemically inert. (b) Through the medium the sample is thermally heat sunk to the diamond anvils, diamond of course possessing the

  8. Self-diffusion of polycrystalline ice Ih under confining pressure: Hydrogen isotope analysis using 2-D Raman imaging

    Science.gov (United States)

    Noguchi, Naoki; Kubo, Tomoaki; Durham, William B.; Kagi, Hiroyuki; Shimizu, Ichiko

    2016-08-01

    We have developed a high-resolution technique based on micro Raman spectroscopy to measure hydrogen isotope diffusion profiles in ice Ih. The calibration curve for quantitative analysis of deuterium in ice Ih was constructed using micro Raman spectroscopy. Diffusion experiments using diffusion couples composed of dense polycrystalline H2O and D2O ice were carried out under a gas confining pressure of 100 MPa (to suppress micro-fracturing and pore formation) at temperatures from 235 K to 245 K and diffusion times from 0.2 to 94 hours. Two-dimensional deuterium profiles across the diffusion couples were determined by Raman imaging. The location of small spots of frost from room air could be detected from the shapes of the Raman bands of OH and OD stretching modes, which change because of the effect of the molar ratio of deuterium on the molecular coupling interaction. We emphasize the validity for screening the impurities utilizing the coupling interaction. Some recrystallization and grain boundary migration occurred in recovered diffusion couples, but analysis of two-dimensional diffusion profiles of regions not affected by grain boundary migration allowed us to measure a volume diffusivity for ice at 100 MPa of (2.8 ± 0.4) ×10-3exp[ -57.0 ± 15.4kJ /mol RT ] m2 /s (R is the gas constant, T is temperature). Based on ambient pressure diffusivity measurements by others, this value indicates a high (negative) activation volume for volume diffusivity of -29.5 cm3/mol or more. We can also constrain the value of grain boundary diffusivity in ice at 100 MPa to be volume diffusivity.

  9. Composition and Structure of Microalgae Indicated in Raman and Hyperspectral Spectra and Scanning Electron Microscopy: from Cyanobacteria to Isolates from Coal-bed Methane Water Ponds

    Science.gov (United States)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2017-12-01

    Microalgae can be used for many potential applications for human's benefits. These potential applications included biofuel production from microalgae, biofiltering to cleaning water, chemical extraction as nutrients, etc. However, exploration for such applications is still in the early stages. For instance, many species and strains of microalgae have been investigated for their lipid content and growing conditions for efficient productions of lipids, but no specific species have yet been chosen as a fuel source for commercial production because of the huge biodiversity and subsequently a wide range of species that can potentially be exploited for biodiesel production, the great variability between species in their fuel precursor producing capabilities. Numerous coal-bed methane water ponds were established in the world as a consequence of coal-bed methane production from deep coal seams. Microalgae were isolated from such ponds and potentially these ponds can be used as venues for algal production. In this study, we characterized chemical composition and structure of the Cyanobacteria Anabaena cylindrica (UTEX # 1611) and isolates from coal-bed methane ponds Nannochloropsis gaditana and PW95 using Laser Raman Spectroscopy (LRS), hyperspectral spectra, and Scanning Electron Microscope (SEM). The objective is to seek bio-indicators for potential applications of these microalgae species. For instance, indicator of rich content lips shows the great potential for biofuel production. Fig.1 shows an example of the Raman spectra of the three species in desiccated form. The spectral peaks were isolated and the corresponding composition was identified. The insert at the right hand of the Raman spectrum of each species is the micrograph of the cell morphology under a microscope. The Raman spectra of cells in aquatic solutions were also obtained and compared with the desiccated form. The hyperspectral reflectances of the three species show quite different characteristics and

  10. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    Science.gov (United States)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa

  11. Low-frequency Raman spectra of sub- and supercritical CO2: qualitative analysis of the diffusion coefficient behavior.

    Science.gov (United States)

    Idrissi, A; Longelin, S; Damay, P; Leclercq, F

    2005-09-01

    We report the results of the low-frequency Raman experiments on CO(2) which were carried out in a wide density range, along the liquid-gas coexistence curve in a temperature range of 293-303 K, and on the critical isochore of 94.4 cm(3) mol(-1) in a temperature range of 304-315 K. In our approach, the qualitative behavior of the diffusion coefficient D is predicted, assuming the following: first, that the low-frequency Raman spectra can be interpreted in terms of the translation rotation motions; second, that the random force could be replaced by the total force to calculate the friction coefficient; and finally, that the Einstein frequency is associated with the position of the maximum of the low-frequency Raman spectrum. The results show that the diffusion coefficient increases along the coexistence curve, and its values are almost constant on the critical isochore. The predicted values reproduce qualitatively those obtained by other techniques. The values of D were also calculated by molecular-dynamics simulation and they qualitatively reproduce the behavior of D.

  12. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    Science.gov (United States)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  13. In vivo Raman spectroscopy of cervix cancers

    Science.gov (United States)

    Rubina, S.; Sathe, Priyanka; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Krishna, C. Murali

    2014-03-01

    Cervix-cancer is the third most common female cancer worldwide. It is the leading cancer among Indian females with more than million new diagnosed cases and 50% mortality, annually. The high mortality rates can be attributed to late diagnosis. Efficacy of Raman spectroscopy in classification of normal and pathological conditions in cervix cancers on diverse populations has already been demonstrated. Our earlier ex vivo studies have shown the feasibility of classifying normal and cancer cervix tissues as well as responders/non-responders to Concurrent chemoradiotherapy (CCRT). The present study was carried out to explore feasibility of in vivo Raman spectroscopic methods in classifying normal and cancerous conditions in Indian population. A total of 182 normal and 132 tumor in vivo Raman spectra, from 63 subjects, were recorded using a fiberoptic probe coupled HE-785 spectrometer, under clinical supervision. Spectra were acquired for 5 s and averaged over 3 times at 80 mW laser power. Spectra of normal conditions suggest strong collagenous features and abundance of non-collagenous proteins and DNA in case of tumors. Preprocessed spectra were subjected to Principal Component-Linear Discrimination Analysis (PCLDA) followed by leave-one-out-cross-validation. Classification efficiency of ~96.7% and 100% for normal and cancerous conditions respectively, were observed. Findings of the study corroborates earlier studies and suggest applicability of Raman spectroscopic methods in combination with appropriate multivariate tool for objective, noninvasive and rapid diagnosis of cervical cancers in Indian population. In view of encouraging results, extensive validation studies will be undertaken to confirm the findings.

  14. Raman scattering of Cisplatin near silver nanoparticles

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  15. Raman spectroscopy for highly accurate estimation of the age of refrigerated porcine muscle

    Science.gov (United States)

    Timinis, Constantinos; Pitris, Costas

    2016-03-01

    The high water content of meat, combined with all the nutrients it contains, make it vulnerable to spoilage at all stages of production and storage even when refrigerated at 5 °C. A non-destructive and in situ tool for meat sample testing, which could provide an accurate indication of the storage time of meat, would be very useful for the control of meat quality as well as for consumer safety. The proposed solution is based on Raman spectroscopy which is non-invasive and can be applied in situ. For the purposes of this project, 42 meat samples from 14 animals were obtained and three Raman spectra per sample were collected every two days for two weeks. The spectra were subsequently processed and the sample age was calculated using a set of linear differential equations. In addition, the samples were classified in categories corresponding to the age in 2-day steps (i.e., 0, 2, 4, 6, 8, 10, 12 or 14 days old), using linear discriminant analysis and cross-validation. Contrary to other studies, where the samples were simply grouped into two categories (higher or lower quality, suitable or unsuitable for human consumption, etc.), in this study, the age was predicted with a mean error of ~ 1 day (20%) or classified, in 2-day steps, with 100% accuracy. Although Raman spectroscopy has been used in the past for the analysis of meat samples, the proposed methodology has resulted in a prediction of the sample age far more accurately than any report in the literature.

  16. Raman band intensities of tellurite glasses.

    Science.gov (United States)

    Plotnichenko, V G; Sokolov, V O; Koltashev, V V; Dianov, E M; Grishin, I A; Churbanov, M F

    2005-05-15

    Raman spectra of TeO2-based glasses doped with WO3, ZnO, GeO2, TiO2, MoO3, and Sb2O3 are measured. The intensity of bands in the Raman spectra of MoO3-TeO2 and MoO3-WO3-TeO2 glasses is shown to be 80-95 times higher than that for silica glass. It is shown that these glasses can be considered as one of the most promising materials for Raman fiber amplifiers.

  17. Electron enhanced Raman scattering and its applications in solution chemistry

    International Nuclear Information System (INIS)

    Yui, Hiroharu

    2007-01-01

    The present review describes a new enhancement technique for Raman scattering in aqueous solutions. Raman scattering spectroscopy has an inherent ability to distinguish between molecules with great similarity and provides useful information on local physical and chemical environments at their functional groups' level. Since the Raman scattering signals from water molecules are quite weak, Raman spectroscopy has great advantage for detection or discrimination of a trace amount of analytes in aqueous environments. However, Raman scattering cross-sections are inherently small and it generally requires high power excitation and long acquisition times to obtain high-quality Raman spectra. These conditions create disadvantages for the analyses for living cells and real-time monitoring for environmental analyses. Here, I describe a new Raman enhancement technique, namely electron enhanced Raman scattering (EERS)', where artificially generated electrons additionally affect the polarizability of target molecular systems and enhance their inherent Raman cross-section. Principles of the EERS and its applications to aqueous solution are presented. (author)

  18. High Fidelity Raman Chemical Imaging of Materials

    Science.gov (United States)

    Bobba, Venkata Nagamalli Koteswara Rao

    The development of high fidelity Raman imaging systems is important for a number of application areas including material science, bio-imaging, bioscience and healthcare, pharmaceutical analysis, and semiconductor characterization. The use of Raman imaging as a characterization tool for detecting the amorphous and crystalline regions in the biopolymer poly-L-lactic acid (PLLA) is the precis of my thesis. In the first chapter, a brief insight about the basics of Raman spectroscopy, Raman chemical imaging, Raman mapping, and Raman imaging techniques has been provided. The second chapter contains details about the successful development of tailored sample of PLLA. Biodegradable polymers are used in areas of tissue engineering, agriculture, packaging, and in medical field for drug delivery, implant devices, and surgical sutures. Detailed information about the sample preparation and characterization of these cold-drawn PLLA polymer substrates has been provided. Wide-field Raman hyperspectral imaging using an acousto-optic tunable filter (AOTF) was demonstrated in the early 1990s. The AOTF contributed challenges such as image walk, distortion, and image blur. A wide-field AOTF Raman imaging system has been developed as part of my research and methods to overcome some of the challenges in performing AOTF wide-field Raman imaging are discussed in the third chapter. This imaging system has been used for studying the crystalline and amorphous regions on the cold-drawn sample of PLLA. Of all the different modalities that are available for performing Raman imaging, Raman point-mapping is the most extensively used method. The ease of obtaining the Raman hyperspectral cube dataset with a high spectral and spatial resolution is the main motive of performing this technique. As a part of my research, I have constructed a Raman point-mapping system and used it for obtaining Raman hyperspectral image data of various minerals, pharmaceuticals, and polymers. Chapter four offers

  19. Excitation wavelength selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy.

    Science.gov (United States)

    Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma

    2018-08-30

    The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to β-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus.

    Science.gov (United States)

    Zeise, Ingrid; Heiner, Zsuzsanna; Holz, Sabine; Joester, Maike; Büttner, Carmen; Kneipp, Janina

    2018-01-25

    Raman microspectra combine information on chemical composition of plant tissues with spatial information. The contributions from the building blocks of the cell walls in the Raman spectra of plant tissues can vary in the microscopic sub-structures of the tissue. Here, we discuss the analysis of 55 Raman maps of root, stem, and leaf tissues of Cucumis sativus , using different spectral contributions from cellulose and lignin in both univariate and multivariate imaging methods. Imaging based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) indicates different substructures in the xylem cell walls of the different tissues. Using specific signals from the cell wall spectra, analysis of the whole set of different tissue sections based on the Raman images reveals differences in xylem tissue morphology. Due to the specifics of excitation of the Raman spectra in the visible wavelength range (532 nm), which is, e.g., in resonance with carotenoid species, effects of photobleaching and the possibility of exploiting depletion difference spectra for molecular characterization in Raman imaging of plants are discussed. The reported results provide both, specific information on the molecular composition of cucumber tissue Raman spectra, and general directions for future imaging studies in plant tissues.

  1. Measurement of the human esophageal cancer in an early stage with Raman spectroscopy

    Science.gov (United States)

    Maeda, Yasuhiro; Ishigaki, Mika; Taketani, Akinori; Andriana, Bibin B.; Ishihara, Ryu; Sato, Hidetoshi

    2014-02-01

    The esophageal cancer has a tendency to transfer to another part of the body and the surgical operation itself sometimes gives high risk in vital function because many delicate organs exist near the esophagus. So the esophageal cancer is a disease with a high mortality. So, in order to lead a higher survival rate five years after the cancer's treatment, the investigation of the diagnosis methods or techniques of the cancer in an early stage and support the therapy are required. In this study, we performed the ex vivo experiments to obtain the Raman spectra from normal and early-stage tumor (stage-0) human esophageal sample by using Raman spectroscopy. The Raman spectra are collected by the homemade Raman spectrometer with the wavelength of 785 nm and Raman probe with 600-um-diameter. The principal component analysis (PCA) is performed after collection of spectra to recognize which materials changed in normal part and cancerous pert. After that, the linear discriminant analysis (LDA) is performed to predict the tissue type. The result of PCA indicates that the tumor tissue is associated with a decrease in tryptophan concentration. Furthermore, we can predict the tissue type with 80% accuracy by LDA which model is made by tryptophan bands.

  2. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy.

    Science.gov (United States)

    Larkin, Peter J; Dabros, Marta; Sarsfield, Beth; Chan, Eric; Carriere, James T; Smith, Brian C

    2014-01-01

    Polymorph detection, identification, and quantitation in crystalline materials are of great importance to the pharmaceutical industry. Vibrational spectroscopic techniques used for this purpose include Fourier transform mid-infrared (FT-MIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, Raman spectroscopy, and terahertz (THz) and far-infrared (FIR) spectroscopy. Typically, the fundamental molecular vibrations accessed using high-frequency Raman and MIR spectroscopy or the overtone and combination of bands in the NIR spectra are used to monitor the solid-state forms of active pharmaceutical ingredients (APIs). The local environmental sensitivity of the fundamental molecular vibrations provides an indirect probe of the long-range order in molecular crystals. However, low-frequency vibrational spectroscopy provides access to the lattice vibrations of molecular crystals and, hence, has the potential to more directly probe intermolecular interactions in the solid state. Recent advances in filter technology enable high-quality, low-frequency Raman spectra to be acquired using a single-stage spectrograph. This innovation enables the cost-effective collection of high-quality Raman spectra in the 200-10 cm(-1) region. In this study, we demonstrate the potential of low-frequency Raman spectroscopy for the polymorphic characterization of APIs. This approach provides several benefits over existing techniques, including ease of sampling and more intense, information-rich band structures that can potentially discriminate among crystalline forms. An improved understanding of the relationship between the crystalline structure and the low-frequency vibrational spectrum is needed for the more widespread use of the technique.

  3. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes.

    Science.gov (United States)

    Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten

    2014-07-01

    The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.

  4. Raman spectra of iodine-derivatives of tyrosine and thyronine

    International Nuclear Information System (INIS)

    Loh, E.

    1974-01-01

    The Raman spectra of the iodine derivatives of tyrosine and thyronine in the form of compressed crystalline powders have been excited by 4880 A Argon laser on rotating samples at room temperature. The strong peaks in the low-frequency, -1 , region may be described by analogous vibrations of benzene as: I. the C-I out-of-plane bendings of E 1 sub(g) mode from 100 cm -1 to 180 cm -1 ; II. the C-I in-plane bendings of E 2 sub(g) and A 2 sub(g) mode from 190 cm -1 to 330 cm -1 and III. the C-I stretchings of E 2 sub(g) mode from 330 cm -1 to 400 cm -1 . In 3,3',5-triiodo-derivatives, the number of both the C-I in-plane bendings and C-I stretchings on the inner phenyl ring approximately doubles from thet of diiodo-derivatives. This doubling in number of peaks is presumably due to the modulation caused by the libration, which is associated with the C-I out-of-plane bending at position 3', of the outer phenyl ring

  5. Infrared dispersion analysis and Raman scattering spectra of taurine single crystals

    Science.gov (United States)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Dias, Anderson

    2018-01-01

    A comprehensive set of optical vibrational modes of monoclinic taurine crystals was determined by Raman scattering, and infrared reflectivity and transmission spectroscopies. By using appropriate scattering/reflection geometries, the vibrational modes were resolved by polarization and the most relevant modes of the crystal could be assigned. In particular, we were able to review the symmetry of the gerade modes and to resolve ambiguities in the literature. Owing to the non-orthogonal character of Bu modes in monoclinic crystals (lying on the optic axial plane), we carried out a generalized Lorentz dispersion analysis consisting of simultaneous adjust of infrared-reflectivity spectra at various light polarization angles. The Au modes (parallel to the C2-axis) were treated within the classical Lorentz model. The behavior of off-diagonal and diagonal terms of the complex dielectric tensors and the presence of anomalous dispersion were discussed as consequences of the low symmetry of the crystal.

  6. Construction of coherent antistokes Raman spectroscopy (CARS)

    International Nuclear Information System (INIS)

    Zidan, M. D.; Jazmati, A.

    2007-01-01

    Coherent Antistokes Raman Spectroscopy (CARS) has been built. It consists of a Raman cell, which is filled with CO 2 gas at 5 atm pressure and a frequency doubled Nd-YAG laser pumped dye laser. The two beams are focused by means of a bi-convex lens into Raman cell. The Antistokes signals (CARS signals) are generated due to Four-wave mixing process. The antistokes signals were directed to monochrometer entrance slit by prism . The signals are detected by photomultiplier detector which is fixed on the exit slit and connected to data acquisition card located inside the computed case. The dye laser frequency has to be tuned to satisfy the energy difference between the ν 1 beam (Nd- YAG laser beam) and the ν 2 beam (the stokes beam or the dye laser beam) exactly corresponds to a vibrational - rotational Raman resonance (ν 2 - ν 1 = ν M ) in the 12 CO 2 or 13 CO 2 molecule, then the antistokes signals (ν 3 ) will be generated. The spectra of the CARS signals have been recorded to determine the isotope shift of 12 CO 2 , 13 CO 2 , which is 18.3 cm -1 . (author)

  7. Raman spectroscopic study of reaction dynamics

    Science.gov (United States)

    MacPhail, R. A.

    1990-12-01

    The Raman spectra of reacting molecules in liquids can yield information about various aspects of the reaction dynamics. The author discusses the analysis of Raman spectra for three prototypical unimolecular reactions, the rotational isomerization of n-butane and 1,2-difluoroethane, and the barrierless exchange of axial and equatorial hydrogens in cyclopentane via pseudorotation. In the first two cases the spectra are sensitive to torsional oscillations of the gauche conformer, and yield estimates of the torsional solvent friction. In the case of cyclopentane, the spectra can be used to discriminate between different stochastic models of the pseudorotation dynamics, and to determine the relevant friction coefficients.

  8. Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Micro-Raman Spectroscopy

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.

    2015-01-01

    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using micro-Raman spectroscopy.

  9. Raman spectroscopy as a tool for the characterization and classification of pollen; Raman-Spektroskopie als Werkzeug fuer die Charakterisierung und Klassifizierung von Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Franziska

    2010-09-20

    The chemical composition of pollen, the physiological containers that produce the male gametophytes of seed plants, has been a subject of research of plant physiologists, biochemists, and lately even material scientists for various reasons. The aim of this work was the analysis of whole pollen grains and pollen components by Raman Spectroscopy. These experiments were complemented by other techniques such as Enviromental Scanning Electron Microscopy (ESEM), High-Performance- Thin-Layer-Chromatography (HPTLC), Infrared Spectroscopy (IR) and Nuclear-Magnetic-Resonance Spectroscopy (NMR). As reported here, individual fresh pollen grains and their morphological constituents can be characterized and also classified in situ without prior preparation. Classification of pollen is based on their biochemical fingerprint revealed in their Raman spectrum. Raman spectroscopy is nondestructive and can be carried out with single pollen grains or fragments. It could be shown that the biochemical makeup of the pollen (as a part of the recognition/mating system) is altered during formation of a new biological species and that the species-specific chemical similarities and dissimilarities indeed reflect in the Raman spectral fingerprint. On the basis of the chemical information, unsupervised multivariate analysis consisting of hierarchical clustering revealed in most cases chemical similarities between species that were indicative of both phylogenetic relationship and matin behavior. Therefore experiments were conducted that gave the in situ Raman spectroscopic signatures ot the carotenoid molecules. As the data indicates, the in situ Raman spectra of the carotenoid molecules measured in single intact pollen grains provide in situ evidence of interspecies variations in pollen carotenoid content, structure, and/or assembly without prior purification. Results from HPTLC confirmed that carotenoid composition varied greatly between species and that the different in situ spectral

  10. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid

    DEFF Research Database (Denmark)

    Rodier, Marion; Li, Qingfeng; Berg, Rolf W.

    2016-01-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed...... with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available...... in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case...

  11. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    Science.gov (United States)

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy

    Science.gov (United States)

    Lin, Kan; Zheng, Wei; Lim, Chwee Ming; Huang, Zhiwei

    2016-01-01

    We assess the clinical utility of a unique simultaneous fingerprint (FP) (i.e., 800-1800 cm−1) and high-wavenumber (HW) (i.e., 2800-3600 cm−1) fiber-optic Raman spectroscopy for in vivo diagnosis of laryngeal cancer at endoscopy. A total of 2124 high-quality in vivo FP/HW Raman spectra (normal = 1321; cancer = 581) were acquired from 101 tissue sites (normal = 71; cancer = 30) of 60 patients (normal = 44; cancer = 16) undergoing routine endoscopic examination. FP/HW Raman spectra differ significantly between normal and cancerous laryngeal tissue that could be attributed to changes of proteins, lipids, nucleic acids, and the bound water content in the larynx. Partial least squares-discriminant analysis and leave-one tissue site-out, cross-validation were employed on the in vivo FP/HW tissue Raman spectra acquired, yielding a diagnostic accuracy of 91.1% (sensitivity: 93.3% (28/30); specificity: 90.1% (64/71)) for laryngeal cancer identification, which is superior to using either FP (accuracy: 86.1%; sensitivity: 86.7% (26/30); specificity: 85.9% (61/71)) or HW (accuracy: 84.2%; sensitivity: 76.7% (23/30); specificity: 87.3% (62/71)) Raman technique alone. Further receiver operating characteristic analysis reconfirms the best performance of the simultaneous FP/HW Raman technique for laryngeal cancer diagnosis. We demonstrate for the first time that the simultaneous FP/HW Raman spectroscopy technique can be used for improving real-time in vivo diagnosis of laryngeal carcinoma during endoscopic examination. PMID:27699131

  13. Macro and micro Raman spectroscopy of YBa2Cu3O7 films and microbridges

    International Nuclear Information System (INIS)

    Bock, A.

    1993-01-01

    In the present work Raman spectroscopy is used as a method to characterize the properties of YBa 2 Cu 3 O 7 -films. This is done in the usual (macro-)Raman set-up as well as in the micro-Raman set-up where the spatial resolution is about one micron. To obtain comparable results the Raman spectra have to be corrected for the spectral response of the spectrometer. Therefore a calibration of the set-up was performed. The calibration can be used to determine spot temperatures by comparing Stokes and Anti-Stokes spectra. Two different methods are developed to correct for the straylight which is additionally observed in Raman-spectra of YBa 2 Cu 3 O 7 -films. Macro- as well as micro-Raman measurements are used to characterize the film properties, where care has been taken to avoid damages by the laser itself. The macro-Raman set-up is used to identify the properties of the film, such as orientation, oxygen-content and morphology. Outgrowths and other particles on the surface are on the other hand investigated by micro-Raman spectroscopy. The surface morphology is additionally characterized by scanning-electron-microscopy. This is compared to the Raman data. Raman spectra of epitaxial YBa 2 Cu 3 O 7 -films are taken as a function of the temperature and exciting wavelength. The influence on the phonons and on the electronic background is discussed separately. The obtained results are analyzed by comparison with single-crystal measurements. The investigation of YBa 2 Cu 3 O 7 -microbridges in the macro-Raman set-up allows a correlation between the local optical and electrical properties of the bridge. A method is presented which can account for the heating in the laser spot with high accuracy. This method allows to determine local critical current densities as well as local critical temperatures on the microbridge. It provides also the possibility to take Raman spectra at precise spot temperatures. (orig./WL)

  14. Use of Raman spectroscopy in the analysis of nickel allergy

    Science.gov (United States)

    Alda, Javier; Castillo-Martinez, Claudio; Valdes-Rodriguez, Rodrigo; Hernández-Blanco, Diana; Moncada, Benjamin; González, Francisco J.

    2013-06-01

    Raman spectra of the skin of subjects with nickel allergy are analyzed and compared to the spectra of healthy subjects to detect possible biochemical differences in the structure of the skin that could help diagnose metal allergies in a noninvasive manner. Results show differences between the two groups of Raman spectra. These spectral differences can be classified using principal component analysis. Based on these findings, a novel computational technique to make a fast evaluation and classification of the Raman spectra of the skin is presented and proposed as a noninvasive technique for the detection of nickel allergy.

  15. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.

    Science.gov (United States)

    Turunen, Mikael J; Saarakkala, Simo; Rieppo, Lassi; Helminen, Heikki J; Jurvelin, Jukka S; Isaksson, Hanna

    2011-06-01

    The molecular composition of the organic and inorganic matrices of bone undergoes alterations during maturation. The aim of this study was to compare Fourier transform infrared (FT-IR) and near-infrared (NIR) Raman microspectroscopy techniques for characterization of the composition of growing and developing bone from young to skeletally mature rabbits. Moreover, the specificity and differences of the techniques for determining bone composition were clarified. The humeri of female New Zealand White rabbits, with age range from young to skeletally mature animals (four age groups, n = 7 per group), were studied. Spectral peak areas, intensities, and ratios related to organic and inorganic matrices of bone were analyzed and compared between the age groups and between FT-IR and Raman microspectroscopic techniques. Specifically, the degree of mineralization, type-B carbonate substitution, crystallinity of hydroxyapatite (HA), mineral content, and collagen maturity were examined. Significant changes during maturation were observed in various compositional parameters with one or both techniques. Overall, the compositional parameters calculated from the Raman spectra correlated with analogous parameters calculated from the IR spectra. Collagen cross-linking (XLR), as determined through peak fitting and directly from the IR spectra, were highly correlated. The mineral/matrix ratio in the Raman spectra was evaluated with multiple different peaks representing the organic matrix. The results showed high correlation with each other. After comparison with the bone mineral density (BMD) values from micro-computed tomography (micro-CT) imaging measurements and crystal size from XRD measurements, it is suggested that Raman microspectroscopy is more sensitive than FT-IR microspectroscopy for the inorganic matrix of the bone. In the literature, similar spectroscopic parameters obtained with FT-IR and NIR Raman microspectroscopic techniques are often compared. According to the present

  16. Characterisation of Oil-Gas Mixtures by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    . The present project deals with development of a technique for quick analysis of oil-gas mixtures. The main emphasis is laid on characterisation of gas phases in equilibrium with oil at high pressures and high temperatures by Raman spectroscopy. The Raman technique has a great potential of being useful, due...

  17. Fluid temperature measurement technique by using Raman scattering

    International Nuclear Information System (INIS)

    An, Jeong Soo; Yang, Sun Kyu; Min, Kyung Ho; Chung, Moon Ki; Choi, Young Don

    1999-06-01

    Temperature measurement technique by using Raman scattering was developed for the liquid water at temperature of 20 - 90 degree C and atmospheric pressure. Strong relationship between Raman scattering characteristics and liquid temperature change was observed. Various kinds of measurement techniques, such as Peak Intensity, Peak Wavelength, FWHM (Full Width at Half Maximum), PMCR ( Polymer Monomer Concentration RAte), TSIR (Temperature Sensitive Intensity Ratio), IDIA (Integral Difference Intensity Area) were tested. TSIR has the highest accuracy in mean error or 0.1 deg C and standard deviation of 0.1248 deg C. This report is one of the results in developing process of Raman temperature measurement technique. Next research step is to develop Raman temperature measurement technique at the high temperature and high pressure conditions in single or two phase flows. (author). 13 refs., 3 tabs., 38 figs

  18. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods

    Science.gov (United States)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  19. Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers

    Directory of Open Access Journals (Sweden)

    Samuel Mañas-Valero

    2016-09-01

    Full Text Available In the race towards two-dimensional electronic and optoelectronic devices, semiconducting transition metal dichalcogenides (TMDCs from group VIB have been intensively studied in recent years due to the indirect to direct band-gap transition from bulk to the monolayer. However, new materials still need to be explored. For example, semiconducting TMDCs from group IVB have been predicted to have larger mobilities than their counterparts from group VIB in the monolayer limit. In this work we report the mechanical exfoliation of ZrX2 (X = S, Se from bulk down to the monolayer and we study the dimensionality dependence of the Raman spectra in ambient conditions. We observe Raman signal from bulk to few layers and no shift in the peak positions is found when decreasing the dimensionality. While a Raman signal can be observed from bulk to a bilayer for ZrS2, we could only detect signal down to five layers for flakes of ZrSe2. These results show the possibility of obtaining atomically thin layers of ZrX2 by mechanical exfoliation and represent one of the first steps towards the investigation of the properties of these materials, still unexplored in the two-dimensional limit.

  20. Instant detection and identification of concealed explosive-related compounds: Induced Stokes Raman versus infrared.

    Science.gov (United States)

    Elbasuney, Sherif; El-Sherif, Ashraf F

    2017-01-01

    The instant detection of explosives and explosive-related compounds has become an urgent priority in recent years for homeland security and counter-terrorism applications. Modern techniques should offer enhancement in selectivity, sensitivity, and standoff distances. Miniaturisation, portability, and field-ruggedisation are crucial requirements. This study reports on instant and standoff identification of concealed explosive-related compounds using customized Raman technique. Stokes Raman spectra of common explosive-related compounds were generated and spectrally resolved to create characteristic finger print spectra. The scattered Raman emissions over the band 400:2000cm -1 were compared to infrared absorption using FTIR. It has been demonstrated that the two vibrational spectroscopic techniques were opposite and completing each other. Molecular vibrations with strong absorption in infrared (those involve strong change in dipole moments) induced weak signals in Raman and vice versa. The tailored Raman offered instant detection, high sensitivity, and standoff detection capabilities. Raman demonstrated characteristic fingerprint spectra with stable baseline and sharp intense peaks. Complete correlations of absorption/scattered signals to certain molecular vibrations were conducted to generate an entire spectroscopic profile of explosive-related compounds. This manuscript shades the light on Raman as one of the prevailing technologies for instantaneous detection of explosive-related compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2012-07-17

    Raman spectroscopy is a vibrational spectroscopic technique capable of nondestructively probing endogenous biomolecules and their changes associated with dysplastic transformation in the tissue. The main objectives of this study are (i) to develop a simultaneous fingerprint (FP) and high-wavenumber (HW) confocal Raman spectroscopy and (ii) to investigate its diagnostic utility for improving in vivo diagnosis of cervical precancer (dysplasia). We have successfully developed an integrated FP/HW confocal Raman diagnostic system with a ball-lens Raman probe for simultaneous acquistion of FP/HW Raman signals of the cervix in vivo within 1 s. A total of 476 in vivo FP/HW Raman spectra (356 normal and 120 precancer) are acquired from 44 patients at clinical colposcopy. The distinctive Raman spectral differences between normal and dysplastic cervical tissue are observed at ~854, 937, 1001, 1095, 1253, 1313, 1445, 1654, 2946, and 3400 cm(-1) mainly related to proteins, lipids, glycogen, nucleic acids and water content in tissue. Multivariate diagnostic algorithms developed based on partial least-squares-discriminant analysis (PLS-DA) together with the leave-one-patient-out, cross-validation yield the diagnostic sensitivities of 84.2%, 76.7%, and 85.0%, respectively; specificities of 78.9%, 73.3%, and 81.7%, respectively; and overall diagnostic accuracies of 80.3%, 74.2%, and 82.6%, respectively, using FP, HW, and integrated FP/HW Raman spectroscopic techniques for in vivo diagnosis of cervical precancer. Receiver operating characteristic (ROC) analysis further confirms the best performance of the integrated FP/HW confocal Raman technique, compared to FP or HW Raman spectroscopy alone. This work demonstrates, for the first time, that the simultaneous FP/HW confocal Raman spectroscopy has the potential to be a clinically powerful tool for improving early diagnosis and detection of cervical precancer in vivo during clinical colposcopic examination.

  2. Fiber-optic Raman spectroscopy for in vivo diagnosis of gastric dysplasia.

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan; Huang, Zhiwei

    2016-06-23

    This study aims to assess the clinical utility of a rapid fiber-optic Raman spectroscopy technique developed for enhancing in vivo diagnosis of gastric precancer during endoscopic examination. We have developed a real-time fiber-optic Raman spectroscopy system capable of simultaneously acquiring both fingerprint (FP) (i.e., 800-1800 cm(-1)) and high-wavenumber (HW) (i.e., 2800-3600 cm(-1)) Raman spectra from gastric tissue in vivo at endoscopy. A total of 5792 high-quality in vivo FP/HW Raman spectra (normal (n = 5160); dysplasia (n = 155), and adenocarcinoma (n = 477)) were acquired in real-time from 441 tissue sites (normal (n = 396); dysplasia (n = 11), and adenocarcinoma (n = 34)) of 191 gastric patients (normal (n = 172); dysplasia (n = 6), and adenocarcinoma (n = 13)) undergoing routine endoscopic examinations. Partial least squares discriminant analysis (PLS-DA) together with leave-one-patient-out cross validation (LOPCV) were implemented to develop robust spectral diagnostic models. The FP/HW Raman spectra differ significantly between normal, dysplasia and adenocarcinoma of the stomach, which can be attributed to changes in proteins, lipids, nucleic acids, and the bound water content. PLS-DA and LOPCV show that the fiber-optic FP/HW Raman spectroscopy provides diagnostic sensitivities of 96.0%, 81.8% and 88.2%, and specificities of 86.7%, 95.3% and 95.6%, respectively, for the classification of normal, dysplastic and cancerous gastric tissue, superior to either the FP or HW Raman techniques alone. Further dichotomous PLS-DA analysis yields a sensitivity of 90.9% (10/11) and specificity of 95.9% (380/396) for the detection of gastric dysplasia using FP/HW Raman spectroscopy, substantiating its clinical advantages over white light reflectance endoscopy (sensitivity: 90.9% (10/11), and specificity: 51.0% (202/396)). This work demonstrates that the fiber-optic FP/HW Raman spectroscopy technique has great promise for enhancing in vivo diagnosis of gastric

  3. Analysis of root surface properties by fluorescence/Raman intensity ratio.

    Science.gov (United States)

    Nakamura, Shino; Ando, Masahiro; Hamaguchi, Hiro-O; Yamamoto, Matsuo

    2017-11-01

    The aim of this study is to evaluate the existence of residual calculus on root surfaces by determining the fluorescence/Raman intensity ratio. Thirty-two extracted human teeth, partially covered with calculus on the root surface, were evaluated by using a portable Raman spectrophotometer, and a 785-nm, 100-mW laser was applied for fluorescence/Raman excitation. The collected spectra were normalized to the hydroxyapatite Raman band intensity at 960 cm -1 . Raman spectra were recorded from the same point after changing the focal distance of the laser and the target radiating angle. In seven teeth, the condition of calculus, cementum, and dentin were evaluated. In 25 teeth, we determined the fluorescence/Raman intensity ratio following three strokes of debridement. Raman spectra collected from the dentin, cementum, and calculus were different. After normalization, spectra values were constant. The fluorescence/Raman intensity ratio of calculus region showed significant differences compared to the cementum and dentin (p Raman intensity ratio decreased with calculus debridement. For this analysis, the delta value was defined as the difference between the values before and after three strokes, with the final 2 delta values close to zero, indicating a gradual asymptotic curve and the change in intensity ratio approximating that of individual constants. Fluorescence/Raman intensity ratio was effectively used to cancel the angle- and distance-dependent fluctuations of fluorescence collection efficiency during measurement. Changes in the fluorescence/Raman intensity ratio near zero suggested that cementum or dentin was exposed, and calculus removed.

  4. Phase discrimination in CdSe structures by means of Raman scattering

    International Nuclear Information System (INIS)

    Cusco, R.; Artus, L.; Consonni, V.; Bellet-Amalric, E.; Andre, R.

    2017-01-01

    Raman spectra of epitaxial layers of CdSe grown by molecular beam epitaxy have been measured for the cubic (zincblende) and hexagonal (wurtzite) phases. The Raman spectra are examined in the light of density functional calculations for these two highly similar structures. Characteristic Raman frequencies and spectral features associated with the different symmetry are discussed and reliable criteria for phase discrimination based on Raman spectroscopy are proposed. Although LO frequencies are virtually identical in both structures and may be affected by size effects, the observation of a low energy E 2 mode at 33 cm -1 unambiguously identifies the wurtzite structure and can be used as a specific fingerprint to distinguish between these two phases in CdSe-based nanostructures. The slightly lower LO frequency measured in the zincblende epitaxial layer is ascribed to residual tensile strain. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Phase discrimination in CdSe structures by means of Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cusco, R.; Artus, L. [Institut Jaume Almera (ICTJA-CSIC), Consejo Superior de Investigaciones Cientificas, Lluis Sole i Sabaris s.n., 08028 Barcelona (Spain); Consonni, V. [Universite Grenoble Alpes and CNRS, LMGP, 38016 Grenoble (France); Bellet-Amalric, E. [Universite Grenoble Alpes and CEA, INAC-PHEILQS, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France); Andre, R. [Universite Grenoble Alpes and CNRS, Institut Neel, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France)

    2017-05-15

    Raman spectra of epitaxial layers of CdSe grown by molecular beam epitaxy have been measured for the cubic (zincblende) and hexagonal (wurtzite) phases. The Raman spectra are examined in the light of density functional calculations for these two highly similar structures. Characteristic Raman frequencies and spectral features associated with the different symmetry are discussed and reliable criteria for phase discrimination based on Raman spectroscopy are proposed. Although LO frequencies are virtually identical in both structures and may be affected by size effects, the observation of a low energy E{sub 2} mode at 33 cm{sup -1} unambiguously identifies the wurtzite structure and can be used as a specific fingerprint to distinguish between these two phases in CdSe-based nanostructures. The slightly lower LO frequency measured in the zincblende epitaxial layer is ascribed to residual tensile strain. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    NARCIS (Netherlands)

    Vries, de N.; Zhu, Xiao-Yan; Kieft, E.R.; Mullen, van der J.J.A.M.

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine ne and Te from the measured

  7. Significant enhancement of thermoelectric properties and metallization of Al-doped Mg2Si under pressure

    International Nuclear Information System (INIS)

    Morozova, Natalia V.; Korobeinikov, Igor V.; Karkin, Alexander E.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.; Takarabe, Ken-ichi; Mori, Yoshihisa; Nakamura, Shigeyuki

    2014-01-01

    We report results of investigations of electronic transport properties and lattice dynamics of Al-doped magnesium silicide (Mg 2 Si) thermoelectrics at ambient and high pressures to and beyond 15 GPa. High-quality samples of Mg 2 Si doped with 1 at. % of Al were prepared by spark plasma sintering technique. The samples were extensively examined at ambient pressure conditions by X-ray diffraction studies, Raman spectroscopy, electrical resistivity, magnetoresistance, Hall effect, thermoelectric power (Seebeck effect), and thermal conductivity. A Kondo-like feature in the electrical resistivity curves at low temperatures indicates a possible magnetism in the samples. The absolute values of the thermopower and electrical resistivity, and Raman spectra intensity of Mg 2 Si:Al dramatically diminished upon room-temperature compression. The calculated thermoelectric power factor of Mg 2 Si:Al raised with pressure to 2–3 GPa peaking in the maximum the values as high as about 8 × 10 −3 W/(K 2 m) and then gradually decreased with further compression. Raman spectroscopy studies indicated the crossovers near ∼5–7 and ∼11–12 GPa that are likely related to phase transitions. The data gathered suggest that Mg 2 Si:Al is metallized under moderate pressures between ∼5 and 12 GPa.

  8. Laser Raman and resonance Raman spectroscopies of natural semiconductor mineral cinnabar, α-HgS, from various mines

    International Nuclear Information System (INIS)

    Gotoshia, Sergo V; Gotoshia, Lamara V

    2008-01-01

    Natural minerals α-HgS from various mines have been studied by laser Raman spectroscopy and resonance Raman spectroscopy. The crystals differ from each other in the content of selenium impurity, included in samples from some mines. Based on the Raman spectra and the factor-group analysis the classification of the first order phonons and then the comparison of the results with the results from other works were carried out. The Raman spectra analysis of minerals from various mines show the selenium impurity gap vibration at 203 cm -1 and 226 cm -1 frequencies, respectively. On the basis of statistical measurements of the Raman spectra one can conclude that impurity frequencies of α-HgS may be generally used for the identification of the mine. Resonance Raman scattering for pure minerals has been studied by a dye laser. Phonon resonance in the indirect semiconductor α-HgS is found to be far more intense than the indirect resonance detected until now in various semiconductors in the proximity of the first indirect band E g , for instance, in GaP. In our opinion, this may be conditioned by cinnabar band structure peculiarities. Low resonance has also been fixed in 'dirty' minerals at the spectral band frequency of 203 cm -1 characterizing gap vibration of isomorphic impurity Se in cinnabar

  9. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  10. Raman spectroscopy of glasses in the As–Te system

    International Nuclear Information System (INIS)

    Tverjanovich, A.; Rodionov, K.; Bychkov, E.

    2012-01-01

    For the first time, the Raman spectra of As x Te 1−x glasses, 0.2≤x≤0.6, have been measured over the entire glass-forming range. The spectra exhibit three broad spectral features attributed to vibrations of structural units having Te–Te, As–Te and As–As bonds. The observed chemical disorder in the glasses is discussed on the basis of partial bond fractions derived from the integrated intensity of the Raman modes. The underlying structural model suggests a dissociation of AsTe- or As 2 Te 3 -related units in the glass melt. The spectra of glasses quenched from different temperatures, as well as those of the annealed vitreous alloys, are consistent with predictions of the model. - Graphical abstract: Raman spectra of the As x Te 1−x glasses (0.2≤x≤0.4 and 0.4≤x≤0.6). Fractional concentrations of Te–Te, As–Te and As–As bonds in the As x Te 1−x glasses calculated using experimental Raman data. The solid lines represent predictions of the dissociation model assuming that the main chemically ordered structural units are related to AsTe. Highlights: ► For the first time, the Raman spectra of As x Te 1−x glasses, 0.2≤x≤0.6, were measured. ► The partial bond fractions were derived from the integrated intensity of the Raman modes. ► An empirical quantitative approach to the Raman data was proposed for the reaction modeling.

  11. Two-phonon absorption spectra in CuInSe2

    International Nuclear Information System (INIS)

    Sobotta, H.; Neumann, H.; Kissinger, W.; Riede, V.; Kuehn, G.

    1981-01-01

    An attempt was made to measure and to analyse phonon combination mode spectra of CuInSe 2 and in this way to determine the phonon mode frequencies unknown so far. Considering the absorption coefficient spectra, there are to well-pronounced peaks at 405 and 428 cm -1 at room temperature which are shifted to 412 and 433 cm -1 , respectively, at 105 K. Accounting for the fact that the absorption peaks at 405 and 428 cm -1 show the same temperature shift, it seems to be not unreasonable to assume that all the phonon modes participating in these absorption processes are characterized by the same temperature dependence of the mode frequencies. The corresponding mode Grueneisen parameters have been estimated using the thermal expansion coefficients for CuInSe 2 . Values of 1.7 to 2.0 were obtained being nearly of the same magnitude as the values of the high-energy zone-center modes in CuAlS 2 and CuGaS 2 derived from high-pressure Raman scattering studies

  12. Raman spectroscopy for forensic examination of β-ketophenethylamine "legal highs": reference and seized samples of cathinone derivatives.

    Science.gov (United States)

    Stewart, Samantha P; Bell, Steven E J; Fletcher, Nicholas C; Bouazzaoui, Samira; Ho, Yen Cheng; Speers, S James; Peters, K Laota

    2012-01-20

    Raman spectra of a representative range of β-ketophenethylamine (β-KP), the rapidly growing family of cathinone-related "legal high" recreational drugs, have been recorded. These spectra showed characteristic changes that were associated with the pattern of substitution on the aromatic rings, for example, the compounds carrying substituents at the 4- position could be distinguished from 3,4-methylenedioxy "ecstasy" derivatives. They also showed small but detectable changes with differences in substitution on the ethylamine substituent. These features allowed the β-KPs present in seized casework samples to be identified. The seized samples typically contained only small amounts of bulking agents, which meant that the band intensities of these components within averaged data were very small. In contrast, grid sampling normally gave at least some spectra which had a higher than average proportion of the bulking agent(s), which allowed them to also be identified. This study therefore demonstrates that Raman spectroscopy can be used both to provide a rapid, non-destructive technique for identification of this class of drugs in seized samples and to detect minor constituents, giving a composition profile which can be used for drugs intelligence work. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  13. The speciation of aqueous zinc(II) bromide solutions to 500 °C and 900 MPa determined using Raman spectroscopy

    Science.gov (United States)

    Mibe, Kenji; Chou, I-Ming; Anderson, Alan J.; Mayanovic, Robert A.; Bassett, William A.

    2009-01-01

    A Raman spectral study was carried out on 3 solutions of varying concentration and bromide/zinc ratios. Spectra were collected at 11 different temperature-pressure conditions ranging from ambient to 500????C-0.9??GPa. Raman band assignments for zinc(II) bromide species reported in previous studies were used to determine the relative concentrations of ZnBr42-, ZnBr3-, ZnBr2, and ZnBr+ species at various temperatures and pressures. Our results are in close agreement with X-ray absorption spectroscopic (XAS) data, and confirm that the tetrabromo zinc(II) complex, ZnBr42-, is the predominant species up to 500????C in solutions having high Zn concentrations (1??m) and high bromide/zinc molar ratios ([Br]/[Zn] = 8). In agreement with previous solubility and Raman spectroscopic experiments, our measurements indicate that species with a lower number of halide ligands and charge are favored with increasing temperature in dilute solutions, and solutions with low bromide/zinc ratios ([Br]/[Zn] Raman technique provides an independent experimental means of evaluating the quality of XAS analyses of data obtained from high temperature disordered systems. The combination of these two techniques provides complementary data on speciation and the structure of zinc(II) bromide complexes. The preponderance of the ZnBr42- species in highly saline brines at high temperature is consistent with the predominance of ZnCl42- in chloride-rich brines reported in previous XAS studies. Knowledge of Zn complexing in metal-rich highly saline brines is important for numerical models of ore deposition in high temperature systems such as skarns and porphyry-type deposits. ?? 2008 Elsevier B.V.

  14. Raman exfoliative cytology for oral precancer diagnosis

    Science.gov (United States)

    Sahu, Aditi; Gera, Poonam; Pai, Venkatesh; Dubey, Abhishek; Tyagi, Gunjan; Waghmare, Mandavi; Pagare, Sandeep; Mahimkar, Manoj; Murali Krishna, C.

    2017-11-01

    Oral premalignant lesions (OPLs) such as leukoplakia, erythroplakia, and oral submucous fibrosis, often precede oral cancer. Screening and management of these premalignant conditions can improve prognosis. Raman spectroscopy has previously demonstrated potential in the diagnosis of oral premalignant conditions (in vivo), detected viral infection, and identified cancer in both oral and cervical exfoliated cells (ex vivo). The potential of Raman exfoliative cytology (REC) in identifying premalignant conditions was investigated. Oral exfoliated samples were collected from healthy volunteers (n=20), healthy volunteers with tobacco habits (n=20), and oral premalignant conditions (n=27, OPL) using Cytobrush. Spectra were acquired using Raman microprobe. Spectral acquisition parameters were: λex: 785 nm, laser power: 40 mW, acquisition time: 15 s, and average: 3. Postspectral acquisition, cell pellet was subjected to Pap staining. Multivariate analysis was carried out using principal component analysis and principal component-linear discriminant analysis using both spectra- and patient-wise approaches in three- and two-group models. OPLs could be identified with ˜77% (spectra-wise) and ˜70% (patient-wise) sensitivity in the three-group model while with 86% (spectra-wise) and 83% (patient-wise) in the two-group model. Use of histopathologically confirmed premalignant cases and better sampling devices may help in development of improved standard models and also enhance the sensitivity of the method. Future longitudinal studies can help validate potential of REC in screening and monitoring high-risk populations and prognosis prediction of premalignant lesions.

  15. Independent component analysis-based algorithm for automatic identification of Raman spectra applied to artistic pigments and pigment mixtures.

    Science.gov (United States)

    González-Vidal, Juan José; Pérez-Pueyo, Rosanna; Soneira, María José; Ruiz-Moreno, Sergio

    2015-03-01

    A new method has been developed to automatically identify Raman spectra, whether they correspond to single- or multicomponent spectra. The method requires no user input or judgment. There are thus no parameters to be tweaked. Furthermore, it provides a reliability factor on the resulting identification, with the aim of becoming a useful support tool for the analyst in the decision-making process. The method relies on the multivariate techniques of principal component analysis (PCA) and independent component analysis (ICA), and on some metrics. It has been developed for the application of automated spectral analysis, where the analyzed spectrum is provided by a spectrometer that has no previous knowledge of the analyzed sample, meaning that the number of components in the sample is unknown. We describe the details of this method and demonstrate its efficiency by identifying both simulated spectra and real spectra. The method has been applied to artistic pigment identification. The reliable and consistent results that were obtained make the methodology a helpful tool suitable for the identification of pigments in artwork or in paint in general.

  16. Conformational states of N-acylalanine dithio esters: correlation of resonance Raman spectra with structures

    International Nuclear Information System (INIS)

    Lee, H.; Angus, R.H.; Storer, A.C.; Varughese, K.I.; Carey, P.R.

    1988-01-01

    The conformational states of N-acylalanine dithio esters, involving rotational isomers about the RC(=O)NH-CH(CH 3 ) and NHCH(CH 3 )-C(=S) bonds, are defined and compared to those of N-acylglycine dithio esters. The structure of N-(p-nitrobenzoyl)-DL-alanine ethyl dithio ester has been determined by X-ray crystallographic analysis; it is a B-type conformer with the amide N atom cis to the thiol sulfur. Raman and resonance Raman (RR) measurements on this compound and for the B conformers of solid N-benzoyl-DL-alanine ethyl dithio ester and N-(β-phenylpropionyl)-DL-alanine ethyl dithio ester and its NHCH(CD 3 )C(=S) and NHCH(CH 3 ) 13 C(=S) analogues are used to set up a library of RR data for alanine-based dithio esters in a B-conformer state. RR data for this solid material in its isotopically unsubstituted and CH(C-D 3 )C(=S) and CH(CH 3 ) 13 C(=S) forms provide information on the RR signatures of alanine dithio esters in A-like conformations. RR spectra are compared for the solid compounds, for N-(p-nitrobenzoyl)-DL-alanine, N-(β-phenylpropionyl)-DL-alanine, and (methyloxycarbonyl)-L-phenylalanyl-DL-alanine ethyl dithio ester, and for several 13 C=S- and CD 3 -substituted analogues in CCl 4 or aqueous solutions. The RR data demonstrate that the alanine-based dithio esters take up A, B, and C 5 conformations in solution. The RR spectra of these conformers are clearly distinguishable from those for the same conformers of N-acylglycine dithio esters. However, the crystallographic and spectroscopic results show that the results show that the conformational properties of N-acylglycine and N-acylalanine dithio esters are very similar

  17. [Influence of cations on the laser Raman spectra of silicate glasses].

    Science.gov (United States)

    Xiong, Yi; Zhao, Hong-xia; Gan, Fu-xi

    2012-04-01

    Na2O(K2O)-CaO(MgO)-SiO2, Na2O(K2O)-Al2O3-SiO2, Na2O(K2O)-B2O3-SiO2, Na2O(K2O)-PbO-SiO2 and PbO-BaO-SiO2 glass systems were investigated using laser Raman spectroscopic technique. The modification of short-range structure of glass caused by network modifier cations will influence Raman signature. Alkali and alkali-earth ions can weaken the bridging oxygen bond, thus lower the frequency of Si-O(b)-Si anti-symmetric stretching vibration. When coordina ted by oxygen ions, B3+ can form [BO4] tetrahedron and enter the silicon-oxygen network, but this effect had little impact on the frequency of Raman peaks located in the high-frequency region. Al3+ can also be coordinated by oxygen ions to form [AlO4] tetrahedron. [AlO4] will increase the disorder degree of network while entering network. Ba2+ can increase the density of electron cloud along the Si-O(nb) bond when it bonds with non-bridging oxygen, which will lead to a higher peak intensity of O-Si-O stretching vibration. The Raman peaks of alkli- and alkali-earth silicate glasses are mainly distributed in the region of 400 - 1 200 cm(-1), while in the spectrum of Na2O(K2O)-PbO-SiO2 glass system a 131 cm(-1) peak existed. The authors assigned it to the Pb-O symmetric stretching vibration. Some of the samples were produced in the laboratory according to the average compositions of ancient glasses, so this research is very significant to discriminating ancient silicate glasses of different systems by Laser Raman spectroscopic technique.

  18. Analysis of the in vivo confocal Raman spectral variability in human skin

    Science.gov (United States)

    Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.

    2015-06-01

    Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.

  19. High resolution infrared and Raman spectra of 13C12CD2: The CD stretching fundamentals and associated combination and hot bands

    International Nuclear Information System (INIS)

    Di Lonardo, G.; Fusina, L.; Canè, E.; Tamassia, F.; Martínez, R. Z.; Bermejo, D.

    2015-01-01

    Infrared and Raman spectra of mono 13 C fully deuterated acetylene, 13 C 12 CD 2 , have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm −1 in the region 1800–7800 cm −1 . Sixty new bands involving the ν 1 and ν 3 C—D stretching modes also associated with the ν 4 and ν 5 bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν 1 fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm −1 . The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ 4 + υ 5 up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling–Dennison interaction between υ 4 = 2 and υ 5 = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm −1 , of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν 2 manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling–Dennison constants can be valuable for understanding energy flows between independent vibrations

  20. Micro-Raman spectroscopy of chromosomes

    NARCIS (Netherlands)

    de Mul, F.F.M.; van Welle, A.G.M.; Otto, Cornelis; Greve, Jan

    1984-01-01

    Raman spectra of intact chromosomes (Chinese hamster), recorded with a microspectrometer, are reported. The spectra could be assigned to protein and DNA contributions. Protein and DNA conformations and the ratio of base pairs in DNA were determined.

  1. Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy

    Science.gov (United States)

    Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar

    2017-01-01

    The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.

  2. Raman spectra of TiO2 thin films deposited electrochemically and by spray pyrolysis

    International Nuclear Information System (INIS)

    Shishiyanu, S.; Vartic, V.; Shishiyanu, T.; Stratan, Gh.; Rusu, E.; Zarrelli, M.; Giordano, M.

    2013-01-01

    In this paper we present our experimental results concerning the fabrication of TiO 2 thin films by spray pyrolysis and electrochemical deposition method onto different substrates - Corning glass, Si and optical fibers. The surface morphology of the TiO 2 thin films have been investigated by Atomic Force Microscopy. Raman shift spectra measurements have been done for the optical characterization of the fabricated titania thin films. The post-growth rapid photothermal processing (RPP) at temperatures of 100-800 degrees Celsius for 1-3 min have been applied. Our experimental results prove that by the application of post-growth RPP is possible to essentially improve the crystallinity of the deposited TiO 2 films. (authors)

  3. Synchrotron radiation resonance Raman spectroscopy (SR3S)

    International Nuclear Information System (INIS)

    Hester, R.E.

    1979-01-01

    The use of normal Raman spectroscopy and resonance Raman spectroscopy to study the structure of molecular species and the nature of their chemical bonds is discussed. The availability of a fully tunable radiation source (the Synchrotron Radiation Source) extending into the ultraviolet raises the possibility of using synchrotron radiation resonance Raman spectroscopy as a sensitive and specific analytical probe. The pulsed nature of the SRS beam may be exploited for time-resolved resonance Raman spectroscopy and its high degree of polarization could be very helpful in the interpretation of spectra. The possibilities are considered under the headings: intensity requirements and comparison with other sources; some applications (e.g. structure of proteins; study of iron-porphyrin unit; study of chlorophylls). (U.K.)

  4. FT-Raman and QM/MM study of the interaction between histamine and DNA

    International Nuclear Information System (INIS)

    Ruiz-Chica, A.J.; Soriano, A.; Tunon, I.; Sanchez-Jimenez, F.M.; Silla, E.; Ramirez, F.J.

    2006-01-01

    The interaction between histamine and highly polymerized calf-thymus DNA has been investigated using FT-Raman spectroscopy and the hybrid QM/MM (quantum mechanics/molecular mechanics) methodology. Raman spectra of solutions containing histamine and calf-thymus DNA, at different molar ratios, were recorded. Solutions were prepared at physiological settings of pH and ionic strength, using both natural and heavy water as the solvent. The analysis of the spectral changes on the DNA Raman spectra when adding different concentrations of histamine allowed us to identify the reactive sites of DNA and histamine, which were used to built two minor groove and one intercalated binding models. They were further used as starting points of the QM/MM theoretical study. However, minimal energy points were only reached for the two minor groove models. For each optimized structure, we calculated analytical force constants of histamine molecule in order to perform the vibrational dynamics. Normal mode descriptions allowed us to compare calculated wavenumbers for DNA-interacting histamine to those measured in the Raman spectra of DNA-histamine solutions

  5. Vibrational spectra and boson-like excitations in different amorphous forms of ice

    International Nuclear Information System (INIS)

    Kolesnikov, A.I.; Li, J.C.; Uffindell, C.H.

    1999-01-01

    Complete text of publication follows. Glasses are very interesting objects in the physics of condensed matter, with many universal properties, such as low-energy excitations (LEE) coexisting with the sound waves and giving an excess of vibrational modes with respect to the crystalline spectrum (the so called 'boson' peak) in Raman and inelastic neutron scattering (INS). Recently it was discovered that films of hydrogenated amorphous silicon do not show such LEE, whereas films of amorphous silicon do [1]. Also, the resonant absorption by two-level systems was observed for the high-density amorphous (hda) ice but not for the low-density amorphous (lda) ice in the far infrared spectra [2]. Thus, the nature of these near universal LEE becomes rather puzzling. This report presents the results of INS studies for hda and lda ice produced by high-pressure treatment and for vapor-deposited lda ice. Clear LEE were observed in the spectra for hda and deposited lda ice unlike their crystalline analogues. (author)

  6. Raman spectroscopy of isotopically pure ({sup 12}C, {sup 13}C) and isotopically mixed ({sup 12.5}C) diamond single crystals at ultrahigh pressures

    Energy Technology Data Exchange (ETDEWEB)

    Enkovich, P. V., E-mail: enkovich@hppi.troitsk.ru; Brazhkin, V. V.; Lyapin, S. G.; Novikov, A. P. [Russian Academy of Sciences, Troitsk, Institute for High-Pressure Physics (Russian Federation); Kanda, H. [National Institute for Materials Science (Japan); Stishov, S. M. [Russian Academy of Sciences, Troitsk, Institute for High-Pressure Physics (Russian Federation)

    2016-09-15

    The Raman scattering by isotopically pure {sup 12}C and {sup 13}C diamond single crystals and by isotopically mixed {sup 12.5}C diamond single crystals is studied at a high accuracy. The studies are performed over a wide pressure range up to 73 GPa using helium as a hydrostatic pressure-transferring medium. It is found that the quantum effects, which determine the difference between the ratio of the Raman scattering frequencies in the {sup 12}C and {sup 13}C diamonds and the classical ratio (1.0408), increase to 30 GPa and then decrease. Thus, inversion in the sign of the quantum contribution to the physical properties of diamond during compression is detected. Our data suggest that the maximum possible difference between the bulk moduli of the {sup 12}C and {sup 13}C diamonds is 0.15%. The investigation of the isotopically mixed {sup 12.5}C diamond shows that the effective mass, which determines the Raman frequency, decreases during compression from 12.38 au at normal pressure to 12.33 au at 73 GPa.

  7. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation.

    Science.gov (United States)

    Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; Lentz, Rachel C F

    2009-08-01

    The authors have developed an integrated remote Raman and laser-induced breakdown spectroscopy (LIBS) system for measuring both the Raman and LIBS spectra of minerals with a single 532 nm laser line of 35 mJ/pulse and 20 Hz. The instrument has been used for analyzing both Raman and LIBS spectra of carbonates, sulfates, hydrous and anhydrous silicates, and iron oxide minerals in air. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10x beam expander to a 529-microm diameter spot on a mineral surface located at 9 m, it is possible to measure simultaneously both the remote Raman and LIBS spectra of calcite, gypsum and olivine by adjusting the laser power electronically. The spectra of calcite, gypsum, and olivine contain fingerprint Raman lines; however, it was not possible to measure the remote Raman spectra of magnetite and hematite at 9 m because of strong absorption of 532 nm laser radiation and low intensities of Raman lines from these minerals. The remote LIBS spectra of both magnetite and hematite contain common iron emission lines but show difference in the minor amount of Li present in these two minerals. Remote Raman and LIBS spectra of a number of carbonates, sulfates, feldspars and phyllosilicates at a distance of 9 m were measured with a 532-nm laser operating at 35 mJ/pulse and by changing photon flux density at the sample by varying the spot diameter from 10 mm for Raman to 530 microm for LIBS measurements. The complementary nature of these spectra is highlighted and discussed. The combined Raman and LIBS system can also be re-configured to perform micro-Raman and micro-LIBS analyses, which have applications in trace/residue analysis and analysis of very small samples in the nano-gram range.

  8. Polarization Raman spectroscopy of GaN nanorod bundles

    International Nuclear Information System (INIS)

    Tite, T.; Lee, C. J.; Chang, Y.-M.

    2010-01-01

    We performed polarization Raman spectroscopy on single wurtzite GaN nanorod bundles grown by plasma-assisted molecular beam epitaxy. The obtained Raman spectra were compared with those of GaN epilayer. The spectral difference between the GaN nanorod bundles and epilayer reveals the relaxation of Raman selection rules in these GaN nanorod bundles. The deviation of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules is attributed to both the orientation of the crystal axis with respect to the polarization vectors of incident and scattered light and the structural defects in the merging boundary of GaN nanorods. The presence of high defect density induced by local strain at the merging boundary was further confirmed by transmission electron microscopy. The averaged defect interspacing was estimated to be around 3 nm based on the spatial correlation model.

  9. Raman spectroscopic analysis of oral squamous cell carcinoma and oral dysplasia in the high-wavenumber region

    Science.gov (United States)

    Carvalho, Luis Felipe C. S.; Bonnier, Franck; O'Callaghan, Kate; O'Sullivan, Jeff; Flint, Stephen; Neto, Lazaro P. M.; Soto, Cláudio A. T.; dos Santos, Laurita; Martin, Airton A.; Byrne, Hugh J.; Lyng, Fiona M.

    2015-06-01

    Raman spectroscopy can provide a molecular-level signature of the biochemical composition and structure of cells with excellent spatial resolution and could be useful to monitor changes in composition for early stage and non-invasive cancer diagnosis, both ex-vivo and in vivo. In particular, the fingerprint spectral region (400-1,800 cm-1) has been shown to be very promising for optical biopsy purposes. However, limitations to discrimination of dysplastic and inflammatory processes based on the fingerprint region still persist. In addition, the Raman spectral signal of dysplastic cells is one important source of misdiagnosis of normal versus pathological tissues. The high wavenumber region (2,800-3,600 cm-1) provides more specific information based on N-H, O-H and C-H vibrations and can be used to identify the subtle changes which could be important for discrimination of samples. In this study, we demonstrate the potential of the highwavenumber spectral region by collecting Raman spectra of nucleoli, nucleus and cytoplasm from oral epithelial cancer (SCC-4) and dysplastic (DOK) cell lines and from normal oral epithelial primary cells, in vitro, which were then analyzed by area under the curve as a method to discriminate the spectra. In this region, we will show the discriminatory potential of the CH vibrational modes of nucleic acids, proteins and lipids. This technique demonstrated more efficient discrimination than the fingerprint region when we compared the cell cultures.

  10. Rapid in situ detection of street samples of drugs of abuse on textile substrates using microRaman spectroscopy

    Science.gov (United States)

    Ali, Esam M. A.; Edwards, Howell G. M.; Scowen, Ian J.

    2011-10-01

    Trace amounts of street samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine (MDMA) on natural and synthetic textiles were successfully detected in situ using confocal Raman microscopy. The presence of some excipient bands in the spectra of the drugs did not prevent the unambiguous identification of the drugs. Raman spectra of the drugs were readily obtained without significant interference from the fibre substrates. Interfering bands arising from the fibre natural or synthetic polymer structure and/or dye molecules did not overlap with the characteristic Raman bands of the drugs. If needed, interfering bands could be successfully removed by spectral subtraction. Also, Raman spectra could be acquired from drug particles trapped between the fibres of highly fluorescent textile specimens. The total acquisition time of the spectra of the drug particles was 90 s accomplished non-destructively and without detachment from their substrates. Sample preparation was not required and spectra of the drugs could be obtained non-invasively preserving the integrity of the evidential material for further analysis.

  11. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    Science.gov (United States)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  12. Investigation of Raman bands vapour of contours of trichloroethylene at high pressure

    International Nuclear Information System (INIS)

    Zaleskaya, G.A.; Ikramov, M.; Shukurov, T.

    1989-01-01

    Investigation of high-pressure extraneous gas on contour comb. band, spreading trichloroethylene steams are in given article. Increasing of extraneous gas pressure brings to decreasing free molecule circling time is shown

  13. Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS).

    Science.gov (United States)

    Guo, Shuxia; Chernavskaia, Olga; Popp, Jürgen; Bocklitz, Thomas

    2018-08-15

    Fluorescence emission is one of the major obstacles to apply Raman spectroscopy in biological investigations. It is usually several orders more intense than Raman scattering and hampers further analysis. In cases where the fluorescence emission is too intense to be efficiently removed via routine mathematical baseline correction algorithms, an alternative approach is needed. One alternative approach is shifted-excitation Raman difference spectroscopy (SERDS), where two Raman spectra are recorded with two slightly different excitation wavelengths. Ideally, the fluorescence emission at the two excitations does not change while the Raman spectrum shifts according to the excitation wavelength. Hence the fluorescence is removed in the difference of the two recorded Raman spectra. For better interpretability a spectral reconstruction procedure is necessary to recover the fluorescence-free Raman spectrum. This is challenging due to the intensity variations between the two recorded Raman spectra caused by unavoidable experimental changes as well as the presence of noise. Existent approaches suffer from drawbacks like spectral resolution loss, fluorescence residual, and artefacts. In this contribution, we proposed a reconstruction method based on non-negative least squares (NNLS), where the intensity variations between the two measurements are utilized in the reconstruction model. The method achieved fluorescence-free reconstruction on three real-world SERDS datasets without significant information loss. Thereafter, we quantified the performance of the reconstruction based on artificial datasets from four aspects: reconstructed spectral resolution, precision of reconstruction, signal-to-noise-ratio (SNR), and fluorescence residual. The artificial datasets were constructed with varied Raman to fluorescence intensity ratio (RFIR), SNR, full-width at half-maximum (FWHM), excitation wavelength shift, and fluorescence variation between the two spectra. It was demonstrated that

  14. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    International Nuclear Information System (INIS)

    Liu Chuan-Jiang; Zheng Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO 4 ) phase precipitates at 250–320°C in the pressure range of 1.0–1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO 4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T−0.7126 (250°C≤T≤320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature. (geophysics, astronomy, and astrophysics)

  15. An intraoperative diagnosis of parotid gland tumors using Raman spectroscopy and support vector machine

    International Nuclear Information System (INIS)

    Yan, Bing; Wen, Zhining; Li, Yi; Li, Longjiang; Xue, Lili

    2014-01-01

    The preoperative and intraoperative diagnosis of parotid gland tumors is difficult, but is important for their surgical management. In order to explore an intraoperative diagnostic method, Raman spectroscopy is applied to detect the normal parotid gland and tumors, including pleomorphic adenoma, Warthin’s tumor and mucoepidermoid carcinoma. In the 600–1800 cm −1 region of the Raman shift, there are numerous spectral differences between the parotid gland and tumors. Compared with Raman spectra of the normal parotid gland, the Raman spectra of parotid tumors show an increase of the peaks assigned to nucleic acids and proteins, but a decrease of the peaks related to lipids. Spectral differences also exist between the spectra of parotid tumors. Based on these differences, a remarkable classification and diagnosis of the parotid gland and tumors are carried out by support vector machine (SVM), with high accuracy (96.7∼100%), sensitivity (93.3∼100%) and specificity (96.7∼100%). Raman spectroscopy combined with SVM has a great potential to aid the intraoperative diagnosis of parotid tumors and could provide an accurate and rapid diagnostic approach. (paper)

  16. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  17. Using Raman spectroscopy to study the onset of labor: a pilot study

    Science.gov (United States)

    Vargis, Elizabeth; Webb, C. Nathan; Paria, B. C.; Bennett, Kelly; Reese, Jeff; Al-Hendy, Ayman; Mahadevan-Jansen, Anita

    2011-03-01

    Preterm birth is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy indicative of labor. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  18. An FT-Raman, FT-IR, and Quantum Chemical Investigation of Stanozolol and Oxandrolone

    Directory of Open Access Journals (Sweden)

    Tibebe Lemma

    2017-12-01

    Full Text Available We have studied the Fourier Transform Infrared (FT-IR and the Fourier transform Raman (FT-Raman spectra of stanozolol and oxandrolone, and we have performed quantum chemical calculations based on the density functional theory (DFT with a B3LYP/6-31G (d, p level of theory. The FT-IR and FT-Raman spectra were collected in a solid phase. The consistency between the calculated and experimental FT-IR and FT-Raman data indicates that the B3LYP/6-31G (d, p can generate reliable geometry and related properties of the title compounds. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compounds, which show agreement with the observed spectra.

  19. DFT study of IR and Raman spectra of phosphotrihydrazone dendrimer with terminal phenolic groups

    Science.gov (United States)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2017-09-01

    FT Raman and infrared spectra of phosphotrihydrazone (S)P[N(CH3)Ndbnd CHsbnd C6H4sbnd OH]3 (G0) were recorded. This compound is a zero generation phosphorus dendrimer with terminal phenolic groups. Optimal geometry and vibrational frequencies were calculated for G0 using the density functional theory (DFT). The molecule studied has C3 symmetry. In the molecule G0, each sbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P arm is flat. Optimized geometric parameters correspond to experimental data. The core of the dendrimer manifests itself as a band at 647 cm-1 in the Raman spectrum of G0 related to Pdbnd S stretching. Phenolic end functions exhibit a well-defined band at 3374 cm-1 in the experimental IR spectrum of G0. The observed frequency of the OH stretching vibrations of the phenolic groups is lower than the theoretical value due to the intermolecular Osbnd H⋯O hydrogen bond. This hydrogen bond is also responsible for the higher intensity of this band in the experimental IR spectrum compared with the theoretical value. DFT calculations suggest full assignment of normal modes. Global and local descriptors characterize the reactivity of the core and end groups.

  20. Evidence for anisotropic excitonlike enhancement of the Raman scattering from La2CuO4

    International Nuclear Information System (INIS)

    Weber, W.H.; Peters, C.R.; Wanklyn, B.M.; Chen, C.; Watts, B.E.

    1988-01-01

    Polarized Raman studies on oriented single crystals of La 2 CuO 4 yield α/sub z//sub z/ spectra with narrow lines at 429 and 228 cm/sup -1/ that are identified as the two A 1 /sub g/ modes expected for the tetragonal K 2 NiF 4 structure; α/sub x//sub z/ spectra with one line at 228 cm/sup -1/ that has E/sub g/ symmetry; and α/sub x//sub x/ spectra with numerous peaks that are due to normally forbidden phonon excitations. The α/sub x//sub x/ spectra also show strong second-order features, suggesting a highly anisotropic, excitonlike enhancement of the Raman scattering

  1. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  2. Pressure-induced amorphization and reactivity of solid dimethyl acetylene probed by in situ FTIR and Raman spectroscopy

    Science.gov (United States)

    Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang

    2018-06-01

    Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.

  3. All passive architecture for high efficiency cascaded Raman conversion

    Science.gov (United States)

    Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.

    2018-02-01

    Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.

  4. Surface-enhanced Raman scattering spectra revealing the inter-cultivar differences for Chinese ornamental Flos Chrysanthemum: a new promising method for plant taxonomy

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2017-10-01

    Full Text Available Abstract Background Flos Chrysanthemi, as a part of Chinese culture for a long history, is valuable for not only environmental decoration but also the medicine and food additive. Due to their voluminously various breeds and extensive distributions worldwide, it is burdensome to make recognition and classification among numerous cultivars with conventional methods which still rest on the level of morphologic observation and description. As a fingerprint spectrum for parsing molecular information, surface-enhanced Raman scattering (SERS could be a suitable candidate technique to characterize and distinguish the inter-cultivar differences at molecular level. Results SERS spectra were used to analyze the inter-cultivar differences among 26 cultivars of Chinese ornamental Flos Chrysanthemum. The characteristic peaks distribution patterns were abstracted from SERS spectra and varied from cultivars to cultivars. For the bands distributed in the pattern map, the similarities in general showed their commonality while in the finer scales, the deviations and especially the particular bands owned by few cultivars revealed their individualities. Since the Raman peaks could characterize specific chemical components, those diversity of patterns could indicate the inter-cultivar differences at the chemical level in fact. Conclusion In this paper, SERS technique is feasible for distinguishing the inter-cultivar differences among Flos Chrysanthemum. The Raman spectral library was built with SERS characteristic peak distribution patterns. A new method was proposed for Flos Chrysanthemum recognition and taxonomy.

  5. Raman spectroscopy: a structural probe of glycosaminoglycans

    International Nuclear Information System (INIS)

    Bansil, R.; Stanley, H.E.; Yannas, I.V.

    1978-01-01

    The authors report the first Raman spectroscopic study of the glycosaminoglycans chondroitin 4-sulfate, chondroitin 6-sulfate and hyaluronic acid, both in solution and in the solid state. To aid in spectral identification, infrared spectra were also recorded from films of these samples. Vibrational frequencies for important functional groups like the sulfate groups, glycosidic linkages, C-OH and the N-acetyl group can be identified from the Raman spectra. Certain differences in the spectra of the different glycosaminoglycans can be interpreted in terms of the geometry of the various substituents, while other differences can be related to differences in chemical composition. (Auth.)

  6. Detection of biologically active diterpenoic acids by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Talian, Ivan; Orinak, Andrej; Efremov, Evtim V.

    2010-01-01

    Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy is not su......Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy...... few enhanced Raman lines. SERS spectra with 514-nm excitation with Ag colloids were also relatively weak. The best SERS spectrawere obtained with 785-nm excitation on a novel nanostructured substrate, 'black silicon' coated with a 400-nm gold layer. The spectra showed clear differences...

  7. Raman spectroscopy of ZnMnO thin films grown by pulsed laser deposition

    Science.gov (United States)

    Orozco, S.; Riascos, H.; Duque, S.

    2016-02-01

    ZnMnO thin films were grown by Pulsed Laser Deposition (PLD) technique onto Silicon (100) substrates at different growth conditions. Thin films were deposited varying Mn concentration, substrate temperature and oxygen pressure. ZnMnO samples were analysed by using Raman Spectroscopy that shows a red shift for all vibration modes. Raman spectra revealed that nanostructure of thin films was the same of ZnO bulk, wurzite hexagonal structure. The structural disorder was manifested in the line width and shape variations of E2(high) and E2(low) modes located in 99 and 434cm-1 respectively, which may be due to the incorporation of Mn ions inside the ZnO crystal lattice. Around 570cm-1 was found a peak associated to E1(LO) vibration mode of ZnO. 272cm-1 suggest intrinsic host lattice defects. Additional mode centred at about 520cm-1 can be overlap of Si and Mn modes.

  8. Assignment of phantom bands in the solid-state infrared and Raman spectra of coronene: the importance of a minute out-of-plane distortion

    NARCIS (Netherlands)

    Todorov, P.D.; Jenneskens, L.W.; van Lenthe, J.H.

    2010-01-01

    The molecular geometry and the normal modes properties of coronene are investigated by means of DFT B3LYP and restricted/Hartree–Fock calculations utilizing basis sets of triple zeta +polarization quality. The interpretation of the infrared and Raman spectra of coronene, especially in solid state,

  9. A two-dimensionally coincident second difference cosmic ray spike removal method for the fully automated processing of Raman spectra.

    Science.gov (United States)

    Schulze, H Georg; Turner, Robin F B

    2014-01-01

    Charge-coupled device detectors are vulnerable to cosmic rays that can contaminate Raman spectra with positive going spikes. Because spikes can adversely affect spectral processing and data analyses, they must be removed. Although both hardware-based and software-based spike removal methods exist, they typically require parameter and threshold specification dependent on well-considered user input. Here, we present a fully automated spike removal algorithm that proceeds without requiring user input. It is minimally dependent on sample attributes, and those that are required (e.g., standard deviation of spectral noise) can be determined with other fully automated procedures. At the core of the method is the identification and location of spikes with coincident second derivatives along both the spectral and spatiotemporal dimensions of two-dimensional datasets. The method can be applied to spectra that are relatively inhomogeneous because it provides fairly effective and selective targeting of spikes resulting in minimal distortion of spectra. Relatively effective spike removal obtained with full automation could provide substantial benefits to users where large numbers of spectra must be processed.

  10. White-Beam X-ray Diffraction and Radiography Studies on High-Boron Containing Borosilicate Glass at High Pressures

    Science.gov (United States)

    Ham, Kathryn; Vohra, Yogesh; Kono, Yoshio; Wereszczak, Andrew; Patel, Parimal

    Multi-angle energy-dispersive x-ray diffraction studies and white-beam x-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron content borosilicate glass sample (17.6% B2O3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å-1, is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed an overall uniaxial compression of 22.5 % at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si-O, O-O, and Si-Si bond distances were measured as a function of pressure. Raman spectroscopy of pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and B3O6 boroxol rings. US Army Research Office under Grant No. W911NF-15-1-0614.

  11. Comparative study of the two-phonon Raman bands of silicene and graphene

    International Nuclear Information System (INIS)

    Popov, Valentin N; Lambin, Philippe

    2016-01-01

    We present a computational study of the two-phonon Raman spectra of silicene and graphene within a density-functional non-orthogonal tight-binding model. Due to the presence of linear bands close to the Fermi energy in the electronic structure of both structures, the Raman scattering by phonons is resonant. We find that the Raman spectra exhibit a crossover behavior for laser excitation close to the π-plasmon energy. This phenomenon is explained by the disappearance of certain paths for resonant Raman scattering and the appearance of other paths beyond this energy. Besides that, the electronic joint density of states (DOS) is divergent at this energy, which is reflected on the behavior of the Raman bands of the two structures in a qualitatively different way. Additionally, a number of Raman bands, originating from divergent phonon DOS at the M point and at points, inside the Brillouin zone, is also predicted. The calculated spectra for graphene are in excellent agreement with available experimental data. The obtained Raman bands can be used for structural characterization of silicene and graphene samples by Raman spectroscopy. (paper)

  12. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    Science.gov (United States)

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  13. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C., E-mail: mccribei@iq.usp.br [Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970 São Paulo, SP (Brazil); Ferreira, Fabio F.; Costa, Fanny N. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP (Brazil); Giles, Carlos [Depto. de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP (Brazil)

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  14. Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis

    Science.gov (United States)

    Shur, Vladimir Ya.; Zelenovskiy, Pavel; Bourson, Patrice

    2017-07-01

    Confocal Raman microscopy (CRM) is a powerful tool for investigation of ferroelectric domains. Mechanical stresses and electric fields existed in the vicinity of neutral and charged domain walls modify frequency, intensity and width of spectral lines [1], thus allowing to visualize micro- and nanodomain structures both at the surface and in the bulk of the crystal [2,3]. Stresses and fields are naturally coupled in ferroelectrics due to inverse piezoelectric effect and hardly can be separated in Raman spectra. PCA is a powerful statistical method for analysis of large data matrix providing a set of orthogonal variables, called principal components (PCs). PCA is widely used for classification of experimental data, for example, in crystallization experiments, for detection of small amounts of components in solid mixtures etc. [4,5]. In Raman spectroscopy PCA was applied for analysis of phase transitions and provided critical pressure with good accuracy [6]. In the present work we for the first time applied Principal Component Analysis (PCA) method for analysis of Raman spectra measured in periodically poled lithium niobate (PPLN). We found that principal components demonstrate different sensitivity to mechanical stresses and electric fields in the vicinity of the domain walls. This allowed us to separately visualize spatial distribution of fields and electric fields at the surface and in the bulk of PPLN.

  15. Effects of Zn doping on crystal structure, Raman spectra and superconductivity of SmBa2Cu3O7−δ systems

    International Nuclear Information System (INIS)

    Xue, Renzhong; Dai, Haiyang; Chen, Zhenping; Li, Tao; Xue, Yuncai

    2013-01-01

    Highlights: ► Zn ions affect significantly the lattice parameter of the SmBa 2 Cu 3−x Zn x O 7−δ (SBCZO) ceramic. ► Raman spectra of SBCZO samples obviously change with increasing Zn doping content. ► The superconducting transition temperature decreases with increasing Zn content. ► Induced lattice disorder and local magnetic moment in CuO 2 planes are related to suppression of T c . -- Abstract: Polycrystalline SmBa 2 Cu 3−x Zn x O 7−δ (SBCZO) (x = 0.0–0.4) samples are prepared by the usual solid-state reaction technique. The effects of Zn doping on the structure, the grain morphology, Raman spectra and electronic transport properties of SBCZO systems have been investigated. The orthorhombic structure of the samples does not change remarkably. The samples become denser and grain boundary becomes unclear with the increase of Zn content. Raman spectra exhibit different features with increasing Zn content which shows that Zn ions act as strong scattering centers to the charge carriers in the CuO 2 planes, enhance the disorder of the CuO 2 planes and increase oxygen depletion in Cu-O chains. The measurements of the resistivity show that the superconducting transition temperature T c decreases rapidly and the superconducting transition width increases gradually with increasing Zn contents. Furthermore, the changes of the samples’ normal state resistivity from metallic to semi-conducting behavior show the increase of heterogeneities with increasing Zn content which causes inter-grain or intra-grain disorders. All the results suggest that lattice disorder in the CuO 2 planes, the oxygen content change in Cu-O chains and local weak superconductivity regions due to the substitution of Zn for Cu are related to the suppression of T c in the SBCZO systems

  16. In-situ characterization of meat aging with diode-laser Raman spectroscopy

    Science.gov (United States)

    Schmidt, Heinar; Blum, Jenny; Sowoidnich, Kay; Sumpf, Bernd; Schwägele, Fredi; Kronfeldt, Heinz-Detlef

    2009-05-01

    Due to the narrow linewidth signals and its fingerprinting nature, Raman spectra provide information about the molecular structure and composition of the samples. In this paper, the applicability of Raman spectroscopy is shown for the in-situ characterization of the aging of meat. Miniaturized diode lasers are utilized as light sources with excitation wavelengths of 671 nm and 785 nm with a view to the development of a portable field device for meat. As test sample, musculus longissimus dorsi from pork was taken. The chops were stored refrigerated at 5 °C and Raman spectra were measured daily from slaughter up to three weeks. Throughout the entire period of one month, the Raman spectra preserve the basic spectral features identifying the samples as meat. More specific, the spectra exhibit gradual changes of the Raman signals and they show a time-dependent modification of the background signal which arises from a laser-induced fluorescence (LIF). To analyze the time-correlation of the complex spectra, multivariate statistical methods are employed. By means of principal components analysis (PCA) a distinction of spectra is found on the time scale between day 8 and 10. This corresponds to the transition from ripened meat to meat at and beyond the limit of inedibility. After ca. 10 days of storage at 5 °C the microbial load is overwhelming and LIF increases. The results of the Raman measurements depending on the storage time of meat are discussed in the context of reference analyses which have been performed in parallel.

  17. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  18. Raman spectroscopic studies of Nd{sub 0.75}Sm{sub 0.25}GaO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nithya, R., E-mail: nithya@igcar.gov.in; Ravindran, T. R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, TN (India); Daniel, D. J. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam-603110, TN (India)

    2015-06-24

    Single crystals of Nd{sub 1-x}Sm{sub x}GaO{sub 3} (x= 0 and 0.25) were grown by a four mirror IR image furnace using floating zone technique. The crystals are characterized by X-ray diffraction and Raman spectroscopic measurements. NGO adopts orthorhombic structure with Pbnm symmetry and samarium substituted compound also exhibited the same structure as that of the pristine compound without secondary phases. Polarized Raman spectra are measured at ambient temperature in a back scattering geometry. Spectra exhibit low intensity first-order Raman bands. In addition, several high intensity second-order Raman bands have been observed in the frequency range 2000 to 4000 cm{sup −1}.

  19. Micro-Raman spectroscopy studies of bulk and thin films of CuInTe2

    International Nuclear Information System (INIS)

    Ananthan, M R; Mohanty, Bhaskar Chandra; Kasiviswanathan, S

    2009-01-01

    Micro-Raman spectroscopy measurements were made on polycrystalline and amorphous thin films of CuInTe 2 as well as bulk polycrystalline CuInTe 2 . Various vibrational modes exhibited by the bulk and polycrystalline thin films were attributed to those expected for single crystal CuInTe 2 . Raman spectra of amorphous films presented a broad spectrum, decomposition of which revealed the presence of elemental tellurium on the film surface. Laser-induced changes on CuInTe 2 thin films were studied by acquiring spectra with higher laser beam power. Modes due to tellurium appeared when the spectra were acquired during laser–sample interaction, indicating tellurium segregation. The Raman spectra measured from polycrystalline films during high laser power irradiation did not show decrease in the intensity of the A 1 mode of CuInTe 2 in spite of loss of tellurium from the lattice. This has been interpreted as related to an increased contribution from the undistorted subsurface CuInTe 2 region at higher excitation power

  20. Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies

    Science.gov (United States)

    Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali

    2011-12-01

    Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.

  1. Quick detection of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Hao; Shi, Hong; Feng, Shangyuan; Lin, Juqiang; Chen, Weiwei; Yu, Yun; Lin, Duo; Xu, Qian; Chen, Rong

    2013-01-01

    A surface-enhanced Raman spectroscopy (SERS) method was developed for the analysis of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces (AMRP) for the first time with the aim to develop a quick method for traditional Chinese medicine detection. Both Raman spectra and SERS spectra were obtained from AMRP, and tentative assignments of the Raman bands in the measured spectra suggested that only a few weak Raman peaks could be observed in the regular Raman spectra, while primary Raman peaks at around 536, 555, 619, 648, 691, 733, 790, 958, 1004, 1031, 1112, 1244, 1324, 1395, 1469, 1574 and 1632 cm-1 could be observed in the SERS spectra, with the strongest signals at 619, 733, 958, 1324, 1395 and 1469 cm-1. This was due to a strong interaction between the silver colloids and the AMRP, which led to an extraordinary enhancement in the intensity of the Raman scattering in AMRP. This exploratory study suggests the SERS technique has great potential for providing a novel non-destructive method for effectively and accurately detecting traditional Chinese medicine without complicated separation and extraction.

  2. PCA-MLP SVM distinction of salivary Raman spectra of dengue fever infection.

    Science.gov (United States)

    Radzol, A R M; Lee, Khuan Y; Mansor, W; Wong, P S; Looi, I

    2017-07-01

    Dengue fever (DF) is a disease of major concern caused by flavivirus infection. Delayed diagnosis leads to severe stages, which could be deadly. Of recent, non-structural protein (NS1) has been acknowledged as a biomarker, alternative to immunoglobulins for early detection of dengue in blood. Further, non-invasive detection of NS1 in saliva makes the approach more appealing. However, since its concentration in saliva is less than blood, a sensitive and specific technique, Surface Enhanced Raman Spectroscopy (SERS), is employed. Our work here intends to define an optimal PCA-SVM (Principal Component Analysis-Support Vector Machine) with Multilayer Layer Perceptron (MLP) kernel model to distinct between positive and negative NS1 infected samples from salivary SERS spectra, which, to the best of our knowledge, has never been explored. Salivary samples of DF positive and negative subjects were collected, pre-processed and analyzed. PCA and SVM classifier were then used to differentiate the SERS analyzed spectra. Since performance of the model depends on the PCA criterion and MLP parameters, both are examined in tandem. Its performance is also compared to our previous works on simulated NS1 salivary samples. It is found that the best PCA-SVM (MLP) model can be defined by 95 PCs from CPV criterion with P1 and P2 values of 0.01 and -0.2 respectively. A classification performance of [76.88%, 85.92%, 67.83%] is achieved.

  3. Time-resolved resonance Raman spectroscopy of radiation-chemical processes

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures

  4. Raman spectroscopy and X-ray diffraction studies on celestite

    International Nuclear Information System (INIS)

    Chen Yenhua; Yu Shucheng; Huang, Eugene; Lee, P.-L.

    2010-01-01

    High-pressure Raman spectroscopy and X-ray diffraction studies of celestite (SrSO 4 ) were carried out in a diamond anvil cell at room temperature. Variation in the Raman vibrational frequency and change of lattice parameters with pressure indicate that a transformation occurs in celestite. This transformation caused an adjustment in the Sr-O polyhedra that affected the stretching-force constant of SO 4 . Moreover, compressibilities along the crystallographic axes decreased in the order a to c to b. From the compression data, the bulk modulus of the celestite was 87 GPa. Both X-ray and Raman data show that the transition in celestite is reversible.

  5. On the use of Raman spectroscopy and instrumented indentation for characterizing damage in machined carbide ceramics

    Science.gov (United States)

    Groth, Benjamin Peter

    Machining is a necessary post-processing step in the manufacturing of many ceramic materials. Parts are machined to meet specific dimensions, with tight tolerances, not attainable from forming alone, as well as to achieve a desired surface finish. However, the machining process is very harsh, often employing the use of high temperatures and pressures to achieve the wanted result. In the case of silicon carbide, a material with extremely high hardness and stiffness, machining is very difficult and requires machining conditions that are highly aggressive. This can leave behind residual stresses in the surface of the material, cause unwanted phase transformations, and produce sub-surface deformation that can lead to failure. This thesis seeks to determine the effect of various machining conditions on the Raman spectra and elastic properties of sintered silicon carbide materials. Sample sets examined included hot-pressed silicon carbide tiles with four different surface finishes, as well as "ideal" single crystal silicon carbide wafers. The surface finishes studied were as follows: an as-pressed finish; a grit blast finish; a harsh rotary ground finish; and a mirror polish. Each finish imparts a different amount, as well as type, of deformation to the sample and are each utilized for a specific application. The sample surfaces were evaluated using a combination of Raman spectroscopy, for phase identification and stress analysis, and nanoindentation, for obtaining elastic properties and imparting uniform controlled deformation to the samples. Raman spectroscopy was performed over each sample surface using 514- and 633-nm wavelength excitation, along with confocal and non-confocal settings to study depth variation. Surfaces stresses were determined using peak shift information extracted from Raman spectra maps, while other spectral variations were used to compare levels of machining damage. Elastic modulus, hardness, and plastic work of indentation maps were generated

  6. Raman microspectroscopy of nucleus and cytoplasm for human colon cancer diagnosis.

    Science.gov (United States)

    Liu, Wenjing; Wang, Hongbo; Du, Jingjing; Jing, Chuanyong

    2017-11-15

    Subcellular Raman analysis is a promising clinic tool for cancer diagnosis, but constrained by the difficulty of deciphering subcellular spectra in actual human tissues. We report a label-free subcellular Raman analysis for use in cancer diagnosis that integrates subcellular signature spectra by subtracting cytoplasm from nucleus spectra (Nuc.-Cyt.) with a partial least squares-discriminant analysis (PLS-DA) model. Raman mapping with the classical least-squares (CLS) model allowed direct visualization of the distribution of the cytoplasm and nucleus. The PLS-DA model was employed to evaluate the diagnostic performance of five types of spectral datasets, including non-selective, nucleus, cytoplasm, ratio of nucleus to cytoplasm (Nuc./Cyt.), and nucleus minus cytoplasm (Nuc.-Cyt.), resulting in diagnostic sensitivity of 88.3%, 84.0%, 98.4%, 84.5%, and 98.9%, respectively. Discriminating between normal and cancerous cells of actual human tissues through subcellular Raman markers is feasible, especially when using the nucleus-cytoplasm difference spectra. The subcellular Raman approach had good stability, and had excellent diagnostic performance for rectal as well as colon tissues. The insights gained from this study shed new light on the general applicability of subcellular Raman analysis in clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Laser-Raman spectroscopy of living cells

    International Nuclear Information System (INIS)

    Webb, S.J.

    1980-01-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1 , has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1 , from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in, vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced 'collective' Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell 'time clock' may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis. (orig.)

  8. High pressure experimental studies on Na3Fe(PO4)(CO3) and Na3Mn(PO4)(CO3): Extensive pressure behaviors of carbonophosphates family

    Science.gov (United States)

    Gao, Jing; Huang, Weifeng; Wu, Xiang; Qin, Shan

    2018-04-01

    Carbon-bearing phases in the Earth's interior have profound implications for the long-term Earth carbon cycle. Here we investigate high-pressure behaviors of carbonophosphates bonshtedtite Na3Fe(PO4)(CO3) and sidorenkite Na3Mn(PO4)(CO3) in diamond anvil cells up to ∼12 GPa at room temperature. Modifications in in situ synchrotron X-ray diffraction patterns and Raman spectra confirm the structural stability of carbonophosphates within the pressure region. Fitting the third-order Birch-Murnaghan equation of state to the volume compression curve, the isothermal bulk modulus parameters are obtained to be K0 = 56(1) GPa, K0' = 3.3(1), V0 = 303.3(3) Å3 for Na3Fe(PO4)(CO3) and K0 = 54(1) GPa, K0' = 3.4(1), V0 = 313.4(2) Å3 for Na3Mn(PO4)(CO3). Crystallographic axes exhibit an elastic anisotropy with a more compressible c-axis relative to the ab-plane. An inverse linear correlation between the K0 value and the ionic radius of M2+ (M = Mg, Fe, Mn) is well determined for carbonophosphates. The pressure-dependence responsiveness of [PO4] and [CO3] in carbonophosphates show a negative relationship to the M2+ radius. We also discussed the effect of [PO4] group on the structural variations and high-pressure behaviors of carbonates. Furthermore, the geochemical properties of carbonophosphates hold implications to diamond genesis.

  9. The pH dependent Raman spectroscopic study of caffeine

    Science.gov (United States)

    Kang, Jian; Gu, Huaimin; Zhong, Liang; Hu, Yongjun; Liu, Fang

    2011-02-01

    First of all the surface enhanced Raman spectroscopy (SERS) and normal Raman spectra of caffeine aqueous solution were obtained at different pH values. In order to obtain the detailed vibrational assignments of the Raman spectroscopy, the geometry of caffeine molecule was optimized by density functional theory (DFT) calculation. By comparing the SERS of caffeine with its normal spectra at different pH values; it is concluded that pH value can dramatically affect the SERS of caffeine, but barely affect the normal Raman spectrum of caffeine aqueous solution. It can essentially affect the reorientation of caffeine molecule to the Ag colloid surface, but cannot impact the vibration of functional groups and chemical bonds in caffeine molecule.

  10. Raman spectroscopic studies of hydrogen clathrate hydrates.

    Science.gov (United States)

    Strobel, Timothy A; Sloan, E Dendy; Koh, Carolyn A

    2009-01-07

    Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran+hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H(2) molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H(2) content as a function of pressure, and with D(2) isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H(2) vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H(2) within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para-H(2) occurs over a relatively slow time period (days). The rotational degeneracy of H(2) molecules within the clathrate cavities is lifted, observed directly in splitting of the para-H(2) roton band. Raman spectra from H(2) and D(2) hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D(2) is a suitable substitute for H(2). The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.

  11. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    Science.gov (United States)

    Lamsal, Nirmal; Angel, S Michael

    2017-06-01

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  12. High Pressure Physics at Brigham Young University

    Science.gov (United States)

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  13. Raman microscopy of freeze-dried mouse eyeball-slice in conjunction with the "in vivo cryotechnique".

    Science.gov (United States)

    Terada, Nobuo; Ohno, Nobuhiko; Saitoh, Sei; Fujii, Yasuhisa; Ohguro, Hiroshi; Ohno, Shinichi

    2007-07-01

    The wavelength of Raman-scattered light depends on the molecular composition of the substance. This is the first attempt to acquire Raman spectra of a mouse eyeball removed from a living mouse, in which the eyeball was preserved using the "in vivo cryotechnique" followed by freeze-drying. Eyeballs were cryofixed using a rapid freezing cryotechnique, and then sliced in the cryostat machine. The slices were sandwiched between glass slides, freeze-dried, and analyzed with confocal Raman microscopy. Important areas including various eyeball tissue layers were selected using bright-field microscopy, and then the Raman spectra were obtained at 240 locations. Four typical patterns of Raman spectra were electronically mapped on the specimen images obtained by the bright-field microscopy. Tissue organization was confirmed by embedding the same eyeball slice used for Raman spectra into epoxy resin and the thick sections were prepared with the inverted capsule method. Each Raman spectral pattern represents a different histological layer in the eyeball which was mapped by comparing the images of toluidine blue staining and Raman mapping with different colors. In the choroid and pigment cell layer, the Raman spectrum had two peaks, corresponding to melanin. Some of the peaks of the Raman spectra obtained from the blood vessels in sclera and the photoreceptor layer were similar to those obtained from the purified hemoglobin and rhodopsin proteins, respectively. Our experimental protocol can distinguish different tissue components with Raman microscopy; therefore, this method can be very useful for examining the distribution of a biological structures and/or chemical components in rapidly frozen freeze-dried tissue.

  14. In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2011-10-21

    This study aimed to evaluate the clinical utility of applying near-infrared (NIR) Raman spectroscopy and genetic algorithm-partial least squares-discriminant analysis (GA-PLS-DA) to identify biomolecular changes of cervical tissues associated with dysplastic transformation during colposcopic examination. A total of 105 in vivo Raman spectra were measured from 57 cervical sites (35 normal and 22 precancer sites) of 29 patients recruited, in which 65 spectra were from normal sites, while 40 spectra were from cervical precancerous lesions (i.e., 7 low-grade CIN and 33 high-grade CIN). The GA feature selection technique incorporated with PLS was utilized to study the significant biochemical Raman bands for differentiation between normal and precancer cervical tissues. The GA-PLS-DA algorithm with double cross-validation (dCV) identified seven diagnostically significant Raman bands in the ranges of 925-935, 979-999, 1080-1090, 1240-1260, 1320-1340, 1400-1420, and 1625-1645 cm(-1) related to proteins, nucleic acids and lipids in tissue, and yielded a diagnostic accuracy of 82.9% (sensitivity of 72.5% (29/40) and specificity of 89.2% (58/65)) for precancer detection. The results of this exploratory study suggest that Raman spectroscopy in conjunction with GA-PLS-DA and dCV methods has the potential to provide clinically significant discrimination between normal and precancer cervical tissues at the molecular level.

  15. IR and Raman spectra of LaH(SeO3)2 and FeH(SeO3)2

    International Nuclear Information System (INIS)

    Ratheesh, R.; Suresh, G.; Nayar, V.U.; Morris, R.E.

    1995-01-01

    The infrared and Raman spectra of LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals are recorded and analysed. Bands confirm the coexistence of HSeO 3 - and SeO 3 2- ions in both LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals. The Se-OH stretching vibrations are observed to be at lower wavenumbers in LaH(SeO 3 ) 2 than that in the iron compound in agreement with the short O-O distance in the former. Observed bands indicate that the SeO 3 2- ions are more angularly distorted in FeH(SeO 3 ) 2 crystal. ABC bands, characteristic of strong hydrogen bonded systems are observed in the infrared spectra of both the crystals. (author). 15 refs., 2 figs., 1 tab

  16. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    Science.gov (United States)

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  17. Water vapor pressure over molten KH_2PO_4 and demonstration of water electrolysis at ∼300 °C

    International Nuclear Information System (INIS)

    Berg, R.W.; Nikiforov, A.V.; Petrushina, I.M.; Bjerrum, N.J.

    2016-01-01

    Highlights: • The vapor pressure over molten KH_2PO_4 was measured by Raman spectroscopy to be about 8 bars at ∼300 °C. • Raman spectroscopy shows that molten KH_2PO_4 under its own vapor pressure contains much dissolved water. • It is demonstrated spectroscopically that water electrolysis is possible in KH_2PO_4 electrolyte forming H_2 and O_2 at 300 °C. • Molten KH_2PO_4 is a possible electrolyte for water electrolysis. - Abstract: A new potentially high-efficiency electrolyte for water electrolysis: molten monobasic potassium phosphate, KH_2PO_4 or KDP has been investigated at temperatures ∼275–325 °C. At these temperatures, KH_2PO_4 was found to dissociate into H_2O gas in equilibrium with a melt mixture of KH_2PO_4−K_2H_2P_2O_7−KPO_3−H_2O. The water vapor pressure above the melt, when contained in a closed ampoule, was determined quantitatively vs. temperature by use of Raman spectroscopy with methane or hydrogen gas as an internal calibration standard, using newly established relative ratios of Raman scattering cross sections of water and methane or hydrogen to be 0.40 ± 0.02 or 1.2 ± 0.03. At equilibrium the vapor pressure was much lower than the vapor pressure above liquid water at the same temperature. Electrolysis was realized by passing current through closed ampoules (vacuum sealed quartz glass electrolysis cells with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH_2PO_4 can be split by electrolysis via the reaction 2H_2O → 2H_2 + O_2 at temperatures ∼275–325 °C. At these temperatures, before the start of the electrolysis, the KH_2PO_4 melt gives off H_2O gas that pressurizes the cell according to the following dissociations: 2KH_2PO_4 ↔ K_2H_2P_2O_7 + H_2O ↔ 2KPO_3 + 2H_2O. The spectra show however that the water by

  18. Polarized Raman scattering of single ZnO nanorod

    International Nuclear Information System (INIS)

    Yu, J. L.; Lai, Y. F.; Wang, Y. Z.; Cheng, S. Y.; Chen, Y. H.

    2014-01-01

    Polarized Raman scattering measurement on single wurtzite c-plane (001) ZnO nanorod grown by hydrothermal method has been performed at room temperature. The polarization dependence of the intensity of the Raman scattering for the phonon modes A 1 (TO), E 1 (TO), and E 2 high in the ZnO nanorod are obtained. The deviations of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules are observed, which can be attributed to the structure defects in the ZnO nanorod as confirmed by the comparison of the transmission electron microscopy, photoluminescence spectra as well as the polarization dependent Raman signal of the annealed and unannealed ZnO nanorod. The Raman tensor elements of A 1 (TO) and E 1 (TO) phonon modes normalized to that of the E 2 high phonon mode are |a/d|=0.32±0.01, |b/d|=0.49±0.02, and |c/d|=0.23±0.01 for the unannealed ZnO nanorod, and |a/d|=0.33±0.01, |b/d|=0.45±0.01, and |c/d|=0.20±0.01 for the annealed ZnO nanorod, which shows strong anisotropy compared to that of bulk ZnO epilayer

  19. Bladder cancer diagnosis during cystoscopy using Raman spectroscopy

    Science.gov (United States)

    Grimbergen, M. C. M.; van Swol, C. F. P.; Draga, R. O. P.; van Diest, P.; Verdaasdonk, R. M.; Stone, N.; Bosch, J. H. L. R.

    2009-02-01

    Raman spectroscopy is an optical technique that can be used to obtain specific molecular information of biological tissues. It has been used successfully to differentiate normal and pre-malignant tissue in many organs. The goal of this study is to determine the possibility to distinguish normal tissue from bladder cancer using this system. The endoscopic Raman system consists of a 6 Fr endoscopic probe connected to a 785nm diode laser and a spectral recording system. A total of 107 tissue samples were obtained from 54 patients with known bladder cancer during transurethral tumor resection. Immediately after surgical removal the samples were placed under the Raman probe and spectra were collected and stored for further analysis. The collected spectra were analyzed using multivariate statistical methods. In total 2949 Raman spectra were recorded ex vivo from cold cup biopsy samples with 2 seconds integration time. A multivariate algorithm allowed differentiation of normal and malignant tissue with a sensitivity and specificity of 78,5% and 78,9% respectively. The results show the possibility of discerning normal from malignant bladder tissue by means of Raman spectroscopy using a small fiber based system. Despite the low number of samples the results indicate that it might be possible to use this technique to grade identified bladder wall lesions during endoscopy.

  20. X-ray Raman scattering study of MgSiO₃ glass at high pressure: Implication for triclustered MgSiO₃ melt in Earth's mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Keun; Lin, Jung-Fu; Cai, Yong Q.; Hiraoka, Nozomu; Eng, Peter J.; Okuchi, Takuo; Mao, Ho-kwang; Meng, Yue; Hu, Michael Y.; Chow, Paul; Shu, Jinfu; Li, Baosheng; Fukui, Hiroshi; Lee, Bum Han; Kim, Hyun Na; Yoo, Choong-Shik [SNU; (LLNL); (NSRRC); (Okayama); (UC); (CIW); (Wash State U); (Nagoya); (SBU)

    2015-02-09

    Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; [3]O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.

  1. [In Vivo Study of Chitin in Fungal Hyphae Based on Confocal Raman Microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Zhou, Bin-xiong; Hu, Xiao-qian; Sun, Chan-jun; He, Yong

    2016-01-01

    Chitin is an important structural polysaccharide of fungal cell wall. In this paper, aerial hyphae of Colletotrichum camelliae Massee was first studied by confocal Raman microscopy in vivo. Firstly, the optimal experimental parameters of hyphae for collecting the Raman spectra were determined, and the typical Raman spectra of hyphae, chitin standard and background were acquired. By comparing analysis, characteristic peaks of chitin were found in hyphae. Then, a region of interesting on hyphae was selected for Raman scanning. Through principal component analysis, the Raman signal of hyphae and background in the scanning area can be separated clearly. Combined with loading weight plot, two main characteristic peaks of hyphae were obtained, 1 622 cm(-1) was belong to chitin and 1 368 cm(-1) was assigned to pectic polysaccharide. Finally, two and three dimension chemical images of fungal hyphae were realized based on Raman fingerprint spectra of chitin in a nondestructive way.

  2. Anomalous compression behaviour in Nd2O3 studied by x-ray diffraction and Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sheng Jiang

    2018-02-01

    Full Text Available The structural stability of hexagonal Nd2O3 under pressure has been investigated by in situ synchrotron angle dispersive x-ray diffraction and Raman spectroscopy up to 53.1 GPa and 37.0 GPa, respectively. Rietveld analysis of the x-ray diffraction data indicate that the hexagonal Nd2O3 undergoes an isostructural phase transition in the pressure range from 10.2 to 20.3 GPa, accompanied by anomalous lattice compressibility and pressure-volume curve. A third-order Birch-Murnaghan fit based on the observed Pressure-Volume data yields zero pressure bulk moduli (B0 of 142(4 and 183(6 GPa for the low and high pressure hexagonal phases, respectively. Raman spectroscopy confirms this isostructural transition, the pressure dependence of the Raman modes display noticeable breaks in the pressure range of 9.7-20.9 GPa, which is consistent with the change of Nd-O bond length. The pressure coefficients of Raman peaks and the mode Grüneisen parameters of different Raman modes were also determined.

  3. Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Silva, Jose E. Pereira da; Temperini, Marcia L.A.; Torresi, Susana I. Cordoba de

    2005-01-01

    Raman and optical microscopy were used to investigate possible interactions between polyaniline (PANI) and different insulating polymers in conducting blends. Resonance Raman and optical micrographs were used to study the physical interaction in materials. Analysis Raman spectra was done investigating the relative intensity of bands at 574 and 607 cm -1 . A relationship between Raman bands and conductivity was also proposed. (author)

  4. Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Czarnetzki, Uwe

    2010-01-01

    Rapid formation of electric field profiles has been observed directly for the first time in nanosecond narrow-gap parallel-plate discharges at near-atmospheric pressure. The plasmas examined here are of hydrogen, and the field measurement is based on coherent Raman scattering (CRS) by hydrogen molecules. Combined with the observation of spatio-temporal light emission profiles by a high speed camera, it has been found that the rapid formation of a high-voltage thin cathode sheath is accompanied by fast propagation of an ionization front from a region near the anode. Unlike well-known parallel-plate discharges at low pressure, the discharge formation process at high pressure is almost entirely driven by electron dynamics as ions and neutral species are nearly immobile during the rapid process. (fast track communication)

  5. Raman Spectral Band Oscillations in Large Graphene Bubbles

    Science.gov (United States)

    Huang, Yuan; Wang, Xiao; Zhang, Xu; Chen, Xianjue; Li, Baowen; Wang, Bin; Huang, Ming; Zhu, Chongyang; Zhang, Xuewei; Bacsa, Wolfgang S.; Ding, Feng; Ruoff, Rodney S.

    2018-05-01

    Raman spectra of large graphene bubbles showed size-dependent oscillations in spectral intensity and frequency, which originate from optical standing waves formed in the vicinity of the graphene surface. At a high laser power, local heating can lead to oscillations in the Raman frequency and also create a temperature gradient in the bubble. Based on Raman data, the temperature distribution within the graphene bubble was calculated, and it is shown that the heating effect of the laser is reduced when moving from the center of a bubble to its edge. By studying graphene bubbles, both the thermal conductivity and chemical reactivity of graphene were assessed. When exposed to hydrogen plasma, areas with bubbles are found to be more reactive than flat graphene.

  6. Donor-related optical absorption spectra in GaAs-(Ga,Al)As quantum wells: hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Lopez, S.Y.; Duque, C.A.; Porras-Montenegro, N.

    2004-01-01

    Full text: Donor-related optical-absorption spectra for GaAs-(Ga,Al)As quantum wells under hydrostatic pressure are investigated. A variational procedure in the e effective-mass approximation is used in order to obtain binding energies and wave functions. As a general feature, we observe that the binding energy increases with the pressure and with the decreasing of the width of the well. The pressure-related Γ-X crossover has been taken into account in the whole calculation. For the low-pressure regime we observe a linear binding energy behavior, whereas for high pressure the main effect associated with the height of the barrier is the bending of the binding energy curves towards smaller values. Two special structures in the density of impurity states and in the donor-related optical-absorption spectra are observed: an edge associated with transitions involving impurities at the center of the well and a peak associated with transitions related to impurities at the edges of the quantum well. Also, we observe shifts to higher energies of the density of impurity states as a function of the binding energy, as well as changes in the intensity with a red shift of the absorption effect with the hydrostatic pressure. (author)

  7. Quantitative analysis of sugar composition in honey using 532-nm excitation Raman and Raman optical activity spectra

    Czech Academy of Sciences Publication Activity Database

    Šugar, Jan; Bouř, Petr

    2016-01-01

    Roč. 47, č. 11 (2016), s. 1298-1303 ISSN 0377-0486 R&D Projects: GA ČR GA15-09072S Institutional support: RVO:61388963 Keywords : honey * sugar mixtures * spectral decompositions * Raman spectroscopy * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.969, year: 2016

  8. Quick detection of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces by surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Huang, Hao; Shi, Hong; Chen, Weiwei; Yu, Yun; Lin, Duo; Xu, Qian; Feng, Shangyuan; Lin, Juqiang; Chen, Rong

    2013-01-01

    A surface-enhanced Raman spectroscopy (SERS) method was developed for the analysis of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces (AMRP) for the first time with the aim to develop a quick method for traditional Chinese medicine detection. Both Raman spectra and SERS spectra were obtained from AMRP, and tentative assignments of the Raman bands in the measured spectra suggested that only a few weak Raman peaks could be observed in the regular Raman spectra, while primary Raman peaks at around 536, 555, 619, 648, 691, 733, 790, 958, 1004, 1031, 1112, 1244, 1324, 1395, 1469, 1574 and 1632 cm −1 could be observed in the SERS spectra, with the strongest signals at 619, 733, 958, 1324, 1395 and 1469 cm −1 . This was due to a strong interaction between the silver colloids and the AMRP, which led to an extraordinary enhancement in the intensity of the Raman scattering in AMRP. This exploratory study suggests the SERS technique has great potential for providing a novel non-destructive method for effectively and accurately detecting traditional Chinese medicine without complicated separation and extraction. (paper)

  9. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  10. Elasticity of methane hydrate phases at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jennifer; Yang, Jing; Liu, Jin [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Liu, Chujie [Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lin, Jung-Fu, E-mail: afu@jsg.utexas.edu [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Center for High Pressure Science and Advanced Technology Research (HPSTAR), Shanghai 201203 (China)

    2016-04-21

    Determination of the full elastic constants (c{sub ij}) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases′ compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  11. Photoluminescence study of Congo red molecules under high pressure

    International Nuclear Information System (INIS)

    Wang, Z.P.; Zhang, Z.M.; Ding, Z.J.

    2007-01-01

    Pressure-induced changes on fluorescence spectra of Congo red molecules were examined up to 8.7 GPa using a diamond anvil cell at room temperature. The spectra changes are demonstrated to be sensitive to the pressure and solvent conditions. At hydrostatic pressure and with a solvent used as a pressure transmitting medium the fluorescence spectra show increase of intensity with elevated pressure up to about 2.3 GPa and then drop at higher pressures. For Congo red crystal under quasi-hydrostatic condition without solvent the fluorescence intensity decreases monotonically and the lower energy band becomes dominant with the pressure increasing. The three vibronic bands show red shifts with increase of pressure

  12. IR and Raman spectra of nitroanthracene isomers: substitional effects based on density functional theory study.

    Science.gov (United States)

    Alparone, Andrea; Librando, Vito

    2012-04-01

    Structure, IR and Raman spectra of 1-, 2- and 9-nitroanthracene isomers (1-NA, 2-NA and 9-NA) were calculated and analyzed through density functional theory computations using the B3LYP functional with the 6-311+G** basis set. Steric and π-conjugative effects determine the characteristic ONCC dihedral angles, which vary from 0° (2-NA) to 28-29° (1-NA) and 59° (9-NA), influencing the relative order of stability along the series 9-NA3000 cm(-1) and utility to discriminate the NA isomers. Structural and spectroscopic results suggest that the unknown mutagenic activity of 1-NA is expected to be between that of 9-NA and 2-NA. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Raman spectroscopy for the microbiological characterization and identification of medically relevant bacteria

    Science.gov (United States)

    Hamasha, Khozima Mahmoud

    The detection and identification of pathogenic bacteria has become more important than ever due to the increase of potential bioterrorism threats and the high mortality rate of bacterial infections worldwide. Raman spectroscopy has recently gained popularity as an attractive robust approach for the molecular characterization, rapid identification, and accurate classification of a wide range of bacteria. In this dissertation, Raman spectroscopy utilizing advanced statistical techniques was used to identify and discriminate between different pathogenic and non-pathogenic bacterial strains of E. coli and Staphylococcus aureus bacterial species by probing the molecular compositions of the cells. The five-carbon sugar xylitol, which cannot be metabolized by the oral and nasopharyngeal bacteria, had been recognized by clinicians as a preventive agents for dental caries and many studies have demonstrated that xylitol causes a reduction in otitis media (chronic inner ear infections) and other nasopharyngeal infections. Raman spectroscopy was used to characterize the uptake and metabolic activity of xylitol in pathogenic (viridans group Streptococcus) and nonpathogenic (E. coli) bacteria by taking their Raman spectra before xylitol exposure and after growing with xylitol and quantifying the significant differences in the molecular vibrational modes due to this exposure. The results of this study showed significant stable spectral changes in the S. viridians bacteria induced by xylitol and those changes were not the same as in some E. coli strains. Finally, Raman spectroscopy experiments were conducted to provide important information about the function of a certain protein (wag31) of Mycobacterium tuberculosis using a relative non-pathogenic bacterium called Mycobacterium smegmatis. Raman spectra of conditional mutants of bacteria expressing three different phosphorylation forms of wag31 were collected and analyzed. The results show that that the phosphorylation of wag31

  14. High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation

    Science.gov (United States)

    Nakano, S.; Nakayama, A.; Kikegawa, T.

    2008-07-01

    Lithium borohydride (LiBH4) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P42/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH4.

  15. High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, S [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Nakayama, A [Department of Materials Science and Engineering, Meijo University, Nagoya 468-8502 (Japan); Kikegawa, T [Photon Factory (PF), Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan)], E-mail: NAKANO.Satoshi@nims.go.jp

    2008-07-15

    Lithium borohydride (LiBH{sub 4}) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P4{sub 2}/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH{sub 4}.

  16. Stable and solid pellets of functionalized multi-walled carbon nanotubes produced under high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Pâmela Andréa Mantey dos [Universidade Federal do Rio Grande do Sul, UFRGS, Programa de Pós-Graduação em Ciência dos Materiais (Brazil); Gallas, Marcia Russman [Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Física (Brazil); Radtke, Cláudio; Benvenutti, Edilson Valmir [Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Química (Brazil); Elias, Ana Laura [The Pennsylvania State University, Department of Physics and Center for 2-D and Layered Materials (United States); Rajukumar, Lakshmy Pulickal [The Pennsylvania State University, Department of Materials Science and Engineering (United States); Terrones, Humberto [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy (United States); Endo, Morinobu [Shinshu University, Carbon Institute of Science and Technology (Japan); Terrones, Mauricio [The Pennsylvania State University, Department of Physics and Center for 2-D and Layered Materials (United States); Costa, Tania Maria Haas, E-mail: taniaha@iq.ufrgs.br, E-mail: taniahac@gmail.com [Universidade Federal do Rio Grande do Sul, UFRGS, Programa de Pós-Graduação em Ciência dos Materiais (Brazil)

    2015-06-15

    High pressure/temperature was applied on samples of pristine multi-walled carbon nanotubes (MWCNT), functionalized nanotubes (f-MWCNT), and nanotubes doped with nitrogen (CN{sub x}MWNT). Cylindrical compact pellets of f-MWCNT with diameters of about 6 mm were obtained under pressure of 4.0 GPa at room temperature and at 400 °C, using graphite as pressure transmitting medium. The best pellet samples were produced using nitric and sulfuric acids for the functionalization of MWCNT. The effect of high pressure/temperature on CNT was investigated by several spectroscopy and characterization techniques, such as Raman spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, N{sub 2} adsorption/desorption isotherms, and transmission electron microscopy. It was found that MWCNT maintain their main features in the compacted pellets, such as integrity, original morphology, and structure, demonstrating that high-pressure/temperature compaction can indeed be used to fabricate novel CNT self-supported materials. Additionally, the specific surface area and porosity are unchanged, which is important when using bulk CNT in adsorption processes. Raman analysis of the G’-band showed a shift to lower wavenumbers when f-MWCNT were processed under high pressure, suggesting that CNT are under tensile stress.

  17. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, R. [Dalton Cumbrian Facility, Dalton Nuclear Institute, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Whitehaven, Cumbria, CA24 3HA (United Kingdom); Jones, A.N., E-mail: Abbie.Jones@manchester.ac.uk [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom); McDermott, L.; Marsden, B.J. [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2015-12-15

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite

  18. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    International Nuclear Information System (INIS)

    Krishna, R.; Jones, A.N.; McDermott, L.; Marsden, B.J.

    2015-01-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite exhibits

  19. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Cavaignac, A.L.O. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Lima, R.J.C., E-mail: ricardo.lima.ufma@gmail.com [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Façanha Filho, P.F. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Moreno, A.J.D. [Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Bacabal, MA 65700-000 (Brazil); Freire, P.T.C. [Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE 60455-760 (Brazil)

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  20. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    International Nuclear Information System (INIS)

    Cavaignac, A.L.O.; Lima, R.J.C.; Façanha Filho, P.F.; Moreno, A.J.D.; Freire, P.T.C.

    2016-01-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  1. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d0 and Si-d3.

    Science.gov (United States)

    Durig, James R; Pan, Chunhua; Guirgis, Gamil A

    2003-03-15

    The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2

  2. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d 0 and Si-d 3

    Science.gov (United States)

    Durig, James R.; Pan, Chunhua; Guirgis, Gamil A.

    2003-03-01

    The infrared (3100-40 cm -1) and Raman (3100-20 cm -1) spectra of gaseous and solid n-propylsilane, CH 3CH 2CH 2SiH 3 and the Si-d 3 isotopomer, CH 3CH 2CH 2SiD 3, have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220±22 cm -1 (2.63±0.26 kJ mol -1) with the anti conformer the more stable form. A similar value of 234±23 cm -1 (2.80±0.28 kJ mol -1) was obtained for Δ H for the Si-d 3 isotopomer. At ambient temperature it is estimated that there is 30±2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm -1 for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d 0 and Si-d 3 molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d,p) and 6-311+G(2d,2p) basis sets. From the isolated

  3. Incipient crystallization of transition-metal tungstates under microwaves probed by Raman scattering and transmission electron microscopy

    International Nuclear Information System (INIS)

    Siqueira, Kisla P. F.; Dias, Anderson

    2011-01-01

    Microwave synthesis was used to produce nanosized transition-metal tungstates in environmentally friendly conditions not yet reported by the literature: 110 and 150 °C, for times of 10 and 20 min. X-ray diffraction evidenced incipient crystallized materials, while transmission electron microscopy indicates nanostructured regions of about 2–5 nm inside an amorphous matrix. Raman spectroscopy was used to probe short-range ordering in the achieved samples and also to obtain a reliable set of spectra containing all the Raman-active bands predicted by group-theory calculations. The vibrational spectra showed no extra feature, indicating that the microwave processing was able to produce short-range ordered materials without tetrahedral distortions. These distortions are frequently reported when commercially modified kitchen microwave units are employed. In this work, the syntheses were conducted in a commercial apparatus especially designed for fully controlled temperature–time–pressure conditions.

  4. Infrared and Raman Spectra of Magnesium Ammonium Phosphate Hexahydrate (Struvite) and its Isomorphous Analogues. VIII. Spectra of Protiated and Partially Deuterated Magnesium Rubidium Phosphate Hexahydrate and Magnesium Thallium Phosphate Hexahydrate.

    Science.gov (United States)

    Soptrajanov, Bojan; Cahil, Adnan; Najdoski, Metodija; Koleva, Violeta; Stefov, Viktor

    2011-09-01

    The infrared and Raman spectra of magnesium rubidium phosphate hexahydrate MgRbPO4 • 6H2O and magnesium thallium phosphate hexahydrate, MgTlPO4 • 6H2O were recorded at room temperature (RT) and the boiling temperature of liquid nitrogen (LNT). To facilitate their analysis, also recorded were the spectra of partially deuterated analogues with varying content of deuterium. The effects of deuteration and those of lowering the temperature were the basis of the conclusions drawn regarding the origin of the observed bands which were assigned to vibrations which are predominantly localized in the water molecules (four crystallographically different types of such molecules exist in the structures) and those with PO43- character. It was concluded that in some cases coupling of phosphate and water vibrations is likely to take place. The appearance of the infrared spectra in the O-H stretching regions of the infrared spectra is explained as being the result of an extensive overlap of bands due to components of the fundamental stretching modes of the H2O units with a possible participation of bands due to second-order transitions. A broad band reminiscent of the B band of the well-known ABC trio characteristic of spectra of substances containing strong hydrogen bonds in their structure was found around 2400 cm-1 in the infrared spectra of the two studied compounds.

  5. Detection of single bacteria - causative agents of meningitis using raman microscopy

    Science.gov (United States)

    Baikova, T. V.; Minaeva, S. A.; Sundukov, A. V.; Svistunova, T. S.; Bagratashvili, V. N.; Alushin, M. V.; Gonchukov, S. A.

    2015-03-01

    Early diagnostics of meningitis is a very topical problem as it is a fulminant disease with a high level of mortality. The progress of this disease is, as a rule, accompanied by the appearance of bacteria in the cerebrospinal fluid (CSF) composition. The examination of the CSF is well known to be the only reliable approach to the identification of meningitis. However, the traditional biochemical analyses are time consuming and not always reliable, simple, and inexpensive, whereas the optical methods are poorly developed. This work is devoted to the study of Raman spectra of several bacterial cultures which are mainly present during meningitis. Raman microscopy is a prompt and noninvasive technique capable of providing reliable information about molecular-level alterations of biological objects at their minimal quantity and size. It was shown that there are characteristic lines in Raman spectra which can be the reliable markers for determination of bacterial form of meningitis at a level of a single bacterium.

  6. The Raman spectrum of nano-structured onion-like fullerenes

    International Nuclear Information System (INIS)

    Wang Xiaomin; Xu Bingshe; Liu Xuguang; Jia Husheng; Hideki, Ichinose

    2005-01-01

    Onion-like fullerenes (OLFs) have been studied by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. With a precise control of current, high-quality OLFs with few defects are found on the redeposit rod on the cathode. The size of OLFs is found to be in the range of 15-40 nm. Metal particles are useful support crystal to realize the synthesis of high-quality OLFs. Raman spectra of OLFs show high degree of graphitization. Compared with that of highly oriented prolific graphite (HOPG), the strain of graphene planes due to curvature and uneven distribution of the diameter of OLFs has been estimated analytically and is used to account for the downward shift of the G peak

  7. Raman spectroscopy of garnet-group minerals

    Science.gov (United States)

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  8. UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser

    Science.gov (United States)

    Shirley, John A.

    1990-01-01

    Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.

  9. Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems

    International Nuclear Information System (INIS)

    Raj, B.K.; Panda, S.K.; Rout, G.C.

    2013-01-01

    Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T C systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ c ± Δ s ). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy

  10. Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems

    Energy Technology Data Exchange (ETDEWEB)

    Raj, B. K. [Dept. of Physics, Govt. Autonomous College, Angul, Orissa (India); Panda, S. K. [KD Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India); Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India)

    2013-09-15

    Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T{sub C} systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ{sub c} ± Δ{sub s}). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy.

  11. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  12. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  13. Effect of pressure on the Raman-active modes of zircon (ZrSiO4): a first-principles study

    Science.gov (United States)

    Sheremetyeva, Natalya; Cherniak, Daniele J.; Watson, E. Bruce; Meunier, Vincent

    2018-02-01

    Density-functional theory (DFT) was employed in a first-principles study of the effects of pressure on the Raman-active modes of zircon (ZrSiO4), using both the generalized gradient and local density approximations (GGA and LDA, respectively). Beginning with the equilibrium structure at zero pressure, we conducted a calibration of the effect of pressure in a manner procedurally similar to an experimental calibration. For pressures between 0 and 7 GPa, we find excellent qualitative agreement of frequency-pressure slopes partial ω /partial P calculated from GGA DFT with results of previous experimental studies. In addition, we were able to rationalize the ω vs. P behavior based on details of the vibrational modes and their atomic displacements. Most of the partial ω /partial P slopes are positive as expected, but the symmetry of the zircon lattice also results in two negative slopes for modes that involve slight shearing and rigid rotation of SiO4 tetrahedra. Overall, LDA yields absolute values of the frequencies of the Raman-active modes in good agreement with experimental values, while GGA reproduces the shift in frequency with pressure especially well.

  14. Using a Spectrofluorometer for Resonance Raman Spectra of Organic Molecules

    Directory of Open Access Journals (Sweden)

    Vadivel Masilamani

    2017-01-01

    Full Text Available Scattering (Rayleigh and Raman and fluorescence are two common light signals that frequently occur together, confusing the researchers and graduate students experimenting in molecular spectroscopy laboratories. This report is a brief study presenting a clear discrimination between the two signals mentioned, employing a common spectrofluorometer such as the PerkinElmer LS 55. Even better, the resonance Raman signal of a molecule (e.g., acetone can be obtained elegantly using the same instrument.

  15. Raman study of ? crystals

    Science.gov (United States)

    Pimenta, M. A.; Oliveira, M. A. S.; Bourson, P.; Crettez, J. M.

    1997-09-01

    In this work we present a polarized Raman study of 0953-8984/9/37/020/img7 single crystals for several values of the concentration 0953-8984/9/37/020/img8 made using different scattering geometries. The Raman spectra, composed of broad bands, have been fitted in accordance with a symmetry analysis which allowed us to assign the vibrational modes, and determine their frequencies and damping constants. The results are compatible with an average hexagonal symmetry for the solid solutions with x in the range 0953-8984/9/37/020/img9. In each of the spectra we found two bands at about 590 and 0953-8984/9/37/020/img10, probably associated with the existence of 0953-8984/9/37/020/img11 structures in the solid solutions.

  16. Quantitative Raman Spectroscopy to monitor microbial metabolism in situ under pressure

    Science.gov (United States)

    Picard, A.; Daniel, I.; Oger, P.

    2006-12-01

    Although high hydrostatic pressure (HHP) biotopes are ubiquitous on Earth, little is known about the metabolism of piezophile organisms. Cell culture under HHP can be technically challenging, and equipment- dependent. In addition, the depressurization step required for analysis can lead to erroneous data. Therefore, to understand how piezophile organisms react to pressure, it is crucial to be able to monitor their activity in situ under HHP. We developed the use of Quantitative Raman Spectroscopy (QRS, 1) to monitor in situ the metabolism of organic molecules. This technique is based on the specific spectral signature of an analyte from which its concentration can be deduced. An application of this technique to the monitoring of alcoholic fermentation by the piezotolerant micro-eucaryote Saccharomyces cerevisiae is presented. Ethanol fermentation from glucose was monitored during 24h from ambient P up to 100 MPa in the low- pressure Diamond Anvil Cell (lpDAC, 2). The experimental compression chamber consisted in a 300 μm-thick Ni gasket in which a 500 μm-diameter hole was drilled. Early-stationnary yeast cells were inoculated into fresh low-fluorescence medium containing 0.15 M of glucose. Ethanol concentration was determined in situ by QRS using the symmetric C-C stretching mode of ethanol at 878 cm-1 normalizing the data to the intensity of the sulfate S-O stretching mode at 980 cm-1. In our setup, the detection limit of ethanol is lower than 0.05 mM with a precision below 1%. At ambient P, ethanol production in the lpDAC and in control experiments proceeds with the same kinetics. Thus, yeast is not affected by its confinement. This is further confirmed by its ability to bud with a generation time similar to control experiments performed in glass tubes at ambient pressure inside the lpDAC. Ethanol production by yeast occurs to at least 65 MPa (3). At 10 MPa, fermentation proceeds 3 times faster than at ambient P. Fermentation rates decrease linearly from 20 to

  17. Optimizing laser crater enhanced Raman spectroscopy.

    Science.gov (United States)

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  18. Raman scattering temperature measurements for water vapor in nonequilibrium dispersed two-phase flow

    International Nuclear Information System (INIS)

    Anastasia, C.M.; Neti, S.; Smith, W.R.; Chen, J.C.

    1982-09-01

    The objective of this investigation was to determine the feasibility of using Raman scattering as a nonintrusive technique to measure vapor temperatures in dispersed two-phase flow. The Raman system developed for this investigation is described, including alignment of optics and optimization of the photodetector for photon pulse counting. Experimentally obtained Raman spectra are presented for the following single- and two-phase samples: liquid water, atmospheric nitrogen, superheated steam, nitrogen and water droplets in a high void fraction air/water mist, and superheated water vapor in nonequilibrium dispersed flow

  19. Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    Science.gov (United States)

    Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.

  20. [Study of alkaline lignin from Arundo donax linn based on FT Raman spectroscopy].

    Science.gov (United States)

    You, Ting-ting; Ma, Jian-feng; Guo, Si-qin; Xu, Feng

    2014-08-01

    Arundo donax linn, as a perennial energy crop, has promising application prospect. In the present study, Fourier transform Raman (FT Raman) spectroscopy was applied to determine the structural information of materials, milled wood lignin (MWL), and alkaline lignins (AL, under different treated time) from A. donax stem nondestructively. The results indicated that, extractable compounds in A. donax had negative contribution to the Raman spectra without rising new Raman peaks. FT Raman spectrum of MWL indicated that MWL from A. donax was HGS type lignins. Compared with the spectra of MWL from wood materials, the peak at 1173 cm(-1) was much higher in intensity for the MWL from A. donax stem, which may be assigned to hydroxycinnamic acid by analyzing the standard. With respect to FT Raman spectra of ALs, the relatively highest intensity of 1173 cm(-1) was found in alkaline lignin (AL2), which was treated for 40 min by alkaline. Moreover, the peak of coniferaldehyde/sinapaldehyde (1630 cm(-1)) was lowest in intensity while the band attributed to coniferyl alcohol/sinapyl alcohol (1660 cm(-1)) was almost disappeared in AL2. It could be inferred that AL2 demonstrated a highest content of phenolic acid, which may improve its potential application, such as for antioxidant activity. Furthermore, the results obtained by FT Raman spectra were verified by two dimensional heteronuclear singlequantum coherence nuclear magnetic resonance analyses. Above all, FT Raman spectroscopy provided alternative safe, rapid, accurate, and nondestructive technology for lignin structure determination.