Sample records for high-pressure lattice dynamic

  1. The effect of high pressure on the lattice structure and dynamics of phenacenes (United States)

    Capitani, F.; Höppner, M.; Malavasi, L.; Marini, C.; Dore, P.; Boeri, L.; Postorino, Paolo


    We studied the effect of high pressure on three phenacenes, aromatic molecules with a zig-zag configuration of the benzene rings. The lattice structure and vibrational dynamics of crystalline phenanthrene (C14H10, three benzene rings), chrysene (C18H12, four), and picene (C22H14, five) were investigated by means of X-ray diffraction and Raman measurements. Raman spectra were compared with theoretical ones obtained from ab-initio Density Functional Theory calculations. Experimental and theoretical results allowed to identify the onset of a structural transition in phenanthrene at 7.8 GPa under hydrostatic conditions and at 5.7 GPa under non-hydrostatic conditions. We found that this transition is related to a reorientantion of the molecules in the ab plane. On the contrary, chrysene and picene do not undergo any phase transition in the investigated pressure range, thus suggesting that molecular size plays an important role in the occurence of pressure induced structural modifications in aromatic compounds.

  2. Calculated high-pressure structural properties, lattice dynamics and quasi particle band structures of perovskite fluorides KZnF3, CsCaF3 and BaLiF3. (United States)

    Vaitheeswaran, G; Kanchana, V; Zhang, Xinxin; Ma, Yanming; Svane, A; Christensen, N E


    A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent [Formula: see text] approximation. The [Formula: see text] calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.

  3. Lattice thermal conductivity of silicate glasses at high pressures (United States)

    Chang, Y. Y.; Hsieh, W. P.


    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  4. Lattice stability and high pressure melting mechanism of dense hydrogen up to 1.5 TPa

    CERN Document Server

    Geng, Hua Y; Wu, Q


    Lattice stability and metastability, as well as melting, are important features of the physics and chemistry of dense hydrogen. Using ab initio molecular dynamics (AIMD), the classical superheating limit and melting line of metallic hydrogen are investigated up to 1.5 TPa. The computations show that the classical superheating degree is about 100 K, and the classical melting curve becomes flat at a level of 350 K when beyond 500 GPa. This information allows us to estimate the well depth and the potential barriers that must be overcome when the crystal melts. Inclusion of nuclear quantum effects (NQE) using path integral molecular dynamics (PIMD) predicts that both superheating limit and melting temperature are lowered to below room temperature, but the latter never reach absolute zero. Detailed analysis indicates that the melting is thermally activated, rather than driven by pure zero-point motion (ZPM). This argument was further supported by extensive PIMD simulations, demonstrating the stability of Fddd stru...

  5. Rotational dynamics of confined C60 from near-infrared Raman studies under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yonggang; Liu, Bingbing; Wang, Liancheng; Liu, Dedi; Yu, Shidan; Wang, Peng; Li, Xianglin; Wang, Tianyi; Yao, Mingguang; Li, Quanjun; Zou, Bo; Cui, Tian; Zou, Guangtian; Wågberg, Thomas; Sundq, Bertil; Mao, Ho-kwang


    Peapods present a model system for studying the properties of dimensionally constrained crystal structures, whose dynamical properties are very important. We have recently studied the rotational dynamics of C60 molecules confined inside single walled carbon nanotube (SWNT) by analyzing the intermediate frequency mode lattice vibrations using near-infrared Raman spectroscopy. The rotation of C60 was tuned to a known state by applying high pressure, at which condition C60 first forms dimers at low pressure and then forms a single-chain, nonrotating, polymer structure at high pressure. In the latter state the molecules form chains with a 2-fold symmetry. We propose that the C60 molecules in SWNT exhibit an unusual type of ratcheted rotation due to the interaction between C60 and SWNT in the “hexagon orientation,” and the characteristic vibrations of ratcheted rotation becomes more obvious with decreasing temperature.

  6. Macroscopic Lattice Dynamics (United States)

    Miller, Peter David

    The modulational behavior of exact oscillatory solutions to a family of non-linear systems of coupled differential equations is studied both numerically and analytically. The family of lattice systems investigated has applications ranging from theoretical biology to numerical methods. The goal is to obtain a description, given by a system of partial differential equations valid on long spatial and temporal scales, of the microscopic vibrations in the lattice. A theory of simple harmonic plane wave modulation is given for the entire family of microscopic systems, and the structure of the corresponding modulation equations is analyzed; particular utility is gained by casting the modulation equations in Riemann invariant form. Although difficulties are encountered in extending this theory to more complicated oscillatory modes in general, the special case of the integrable Ablowitz-Ladik system allows the program of describing more complicated modulated oscillations to be carried out virtually to completion. An infinite hierarchy of multiphase wavetrain solutions to these equations is obtained exactly using methods of algebraic geometry, and the complete set of equations describing the modulational behavior of each kind of multiphase wavetrain is written down using the same machinery. The distinguishing features of modulation theory in the presence of resonance are described, and an unusual set of modulation equations is derived in this case. The results of this dissertation can be interpreted in the context of nonequilibrium thermodynamics of regular oscillations in nonlinear lattices; instabilities in the modulation equations correspond to predictable phase transitions.

  7. Lattice dynamics of lithium oxide

    Indian Academy of Sciences (India)

    Li2O finds several important technological applications, as it is used in solid-state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures around 1200 ...

  8. Lattice dynamics of strontium tungstate

    Indian Academy of Sciences (India)


    Nov 27, 2015 ... We report here measurements of the phonon density of states and the lattice dynamics calculations of strontium tungstate (SrWO4). At ambient conditions this compound crystallizes to a body-centred tetragonal unit cell (space group I41/a) called scheelite structure. We have developed transferable ...

  9. Lattice dynamics of ferromagnetic superconductor UGe2

    Indian Academy of Sciences (India)

    This paper reports the lattice dynamical study of the UGe2 using a lattice dynamical model theory based ... the phonon spectrum by using BvK lattice dynamical model with ad hoc force constants. However, they did .... [9] J C Marmeggi, R Currat, A Bouvet and G H Londa, Physica B263, 624 (1999). [10] G Oomi, T Kagayama, ...

  10. Dynamic High-Pressure Behavior of Hierarchical Heterogeneous Geological Materials (United States)


    Taylor, N. E., Jardine, A. P., Behaviour of sand during release from a shocked state, Applied Physics Letters 103, 154103 (2013); doi: 10.1063...V., and M. N. Pavlovskii (1971), Response of clay and clay shale to heavy dynamic loading, Journal of Applied Mechanics and Technical Physics , 1, 161...multiple mechanisms in simulations 15.  SUBJECT TERMS High-rate Deformation, Heterogeneous Materials, Shock Physics Standard Form 298 (Rev. 8/98

  11. Lattice model calculation of elastic and thermodynamic properties at high pressure and temperature. [for alkali halides in NaCl lattice (United States)

    Demarest, H. H., Jr.


    The elastic constants and the entire frequency spectrum were calculated up to high pressure for the alkali halides in the NaCl lattice, based on an assumed functional form of the inter-atomic potential. The quasiharmonic approximation is used to calculate the vibrational contribution to the pressure and the elastic constants at arbitrary temperature. By explicitly accounting for the effect of thermal and zero point motion, the adjustable parameters in the potential are determined to a high degree of accuracy from the elastic constants and their pressure derivatives measured at zero pressure. The calculated Gruneisen parameter, the elastic constants and their pressure derivatives are in good agreement with experimental results up to about 600 K. The model predicts that for some alkali halides the Grunesen parameter may decrease monotonically with pressure, while for others it may increase with pressure, after an initial decrease.

  12. Lattice gas with molecular dynamics collision operator (United States)

    Parsa, M. Reza; Wagner, Alexander J.


    We introduce a lattice gas implementation that is based on coarse-graining a molecular dynamics (MD) simulation. Such a lattice gas is similar to standard lattice gases, but its collision operator is informed by an underlying MD simulation. This can be considered an optimal lattice gas implementation because it allows for the representation of any system that can be simulated with MD. We show here that equilibrium behavior of the popular lattice Boltzmann algorithm is consistent with this optimal lattice gas. This comparison allows us to make a more accurate identification of the expressions for temperature and pressure in lattice Boltzmann simulations, which turn out to be related not only to the physical temperature and pressure but also to the lattice discretization. We show that for any spatial discretization, we need to choose a particular temporal discretization to recover the lattice Boltzmann equilibrium.

  13. Fractional random walk lattice dynamics (United States)

    Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.


    We analyze time-discrete and time-continuous ‘fractional’ random walks on undirected regular networks with special focus on cubic periodic lattices in n  =  1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices {{L}\\fracα{2}}} where α =2 recovers the normal walk. First we demonstrate that the interval 0<α ≤slant 2 is admissible for the fractional random walk. We derive analytical expressions for the transition matrix of the fractional random walk and closely related the average return probabilities. We further obtain the fundamental matrix {{Z}(α )} , and the mean relaxation time (Kemeny constant) for the fractional random walk. The representation for the fundamental matrix {{Z}(α )} relates fractional random walks with normal random walks. We show that the matrix elements of the transition matrix of the fractional random walk exihibit for large cubic n-dimensional lattices a power law decay of an n-dimensional infinite space Riesz fractional derivative type indicating emergence of Lévy flights. As a further footprint of Lévy flights in the n-dimensional space, the transition matrix and return probabilities of the fractional random walk are dominated for large times t by slowly relaxing long-wave modes leading to a characteristic {{t}-\\frac{n{α}} -decay. It can be concluded that, due to long range moves of fractional random walk, a small world property is emerging increasing the efficiency to explore the lattice when instead of a normal random walk a fractional random walk is chosen.

  14. Lattice dynamics of ferromagnetic superconductor UGe2

    Indian Academy of Sciences (India)


    Nov 27, 2015 ... This paper reports the lattice dynamical study of the UGe2 using a lattice dynamical model theory based on pairwise interactions under the framework of the shell model. The calculated phonon dispersion curves and phonon density of states are in good agreement with the measured data.

  15. Application backwards characteristics analysis method to dynamic response of metals under high pressure

    Directory of Open Access Journals (Sweden)

    Pan Hao


    Full Text Available Dynamic yield strength of metals/alloys depends on loading pressure and rates sensitively. With the development of laser interferometer measurement system, extracting strength information from window/free surface velocity profiles in shock and ramp loading experiments is becoming an important method to investigate materials’ dynamic response under high pressure and high strain rates. Backwards characteristics analysis method (BCAM can analyze the velocity profiles more reasonable because it accounts for bending of the incoming characteristics due to impedance mismatch between the sample and window. Synthetic analyses of reverse impact experiment and graded-density impactor loading-releasing experiment suggest that BCAM can give more accurate results including sound speed-particle velocity and yield strength at high pressure than incremental impedance matching method. We use BCAM to analyze velocity profiles of Sn in shock-release experiments and obtain its shear modulus and yield strength at different shock pressure and investigate its phase transition and dynamic unloading response.

  16. Lattice stability and high-pressure melting mechanism of dense hydrogen up to 1.5 TPa

    KAUST Repository

    Geng, Hua Y.


    © 2015 American Physical Society. Lattice stability and metastability, as well as melting, are important features of the physics and chemistry of dense hydrogen. Using ab initio molecular dynamics (AIMD), the classical superheating limit and melting line of metallic hydrogen are investigated up to 1.5 TPa. The computations show that the classical superheating degree is about 100 K, and the classical melting curve becomes flat at a level of 350 K when beyond 500 GPa. This information allows us to estimate the well depth and the potential barriers that must be overcome when the crystal melts. Inclusion of nuclear quantum effects (NQE) using path integral molecular dynamics (PIMD) predicts that both superheating limit and melting temperature are lowered to below room temperature, but the latter never reaches absolute zero. Detailed analysis indicates that the melting is thermally activated, rather than driven by pure zero-point motion (ZPM). This argument was further supported by extensive PIMD simulations, demonstrating the stability of Fddd structure against liquefaction at low temperatures.

  17. Study on the dynamic characteristics, refrigerant and lubricating oil in the high-pressure hermetic compressor. (United States)

    Okada, Tetsuji

    The dynamics characteristics and refrigerant and lubricating oil in the high-pressure hermeti compressor has been studied. The compressor is 1 HP for the air conditioner of home use. The experiment and the analytic simulation have been researched. As a result, the theoretic compressor model was proposed. This model has three processes inside of compressor. They are the suction process, the compression process, and the discharge process. In each process, mass equations and energy equations are considered. Also, the inlet refrigerant conditions (2-phase refrigerant) were simulated and the dynamic characteristics of refrigerant and refrigerant and lubricating oil at starting was obtaied.

  18. Coherent collisional spin dynamics in optical lattices. (United States)

    Widera, Artur; Gerbier, Fabrice; Fölling, Simon; Gericke, Tatjana; Mandel, Olaf; Bloch, Immanuel


    We report on the observation of coherent, purely collisionally driven spin dynamics of neutral atoms in an optical lattice. For high lattice depths, atom pairs confined to the same lattice site show weakly damped Rabi-type oscillations between two-particle Zeeman states of equal magnetization, induced by spin-changing collisions. Moreover, measurement of the oscillation frequency allows for precise determination of the spin-changing collisional coupling strengths, which are directly related to fundamental scattering lengths describing interatomic collisions at ultracold temperatures.

  19. Dynamical thermalization of disordered nonlinear lattices (United States)

    Mulansky, Mario; Ahnert, Karsten; Pikovsky, Arkady; Shepelyansky, Dima L.


    We study numerically how the energy spreads over a finite disordered nonlinear one-dimensional lattice, where all linear modes are exponentially localized by disorder. We establish emergence of dynamical thermalization characterized as an ergodic chaotic dynamical state with a Gibbs distribution over the modes. Our results show that the fraction of thermalizing modes is finite and grows with the nonlinearity strength.

  20. The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: A high precission static compression study

    CERN Document Server

    Ullrich, A; Miletich, R; 10.1007/s00269-009-0300-8


    The high-pressure behavior of the lattice elasticity of spodumene, LiAlSi2O6, was studied by static compression in a diamond-anvil cell up to 9.3 GPa. Investigations by means of single-crystal XRD and Raman spectroscopy within the hydrostatic limits of the pressure medium focus on the pressure ranges around similar to 3.2 and similar to 7.7 GPa, which have been reported previously to comprise two independent structural phase transitions. While our measurements confirm the well-established first-order C2/c-P2(1)/c transformation at 3.19 GPa (with 1.2% volume discontinuity and a hysteresis between 0.02 and 0.06 GPa), both unit-cell dimensions and the spectral changes observed in high-pressure Raman spectra give no evidence for structural changes related to a second phase transition. Monoclinic lattice parameters and unit-cell volumes at in total 59 different pressure points have been used to re-calculate the lattice-related properties of spontaneous strain, volume strain, and the bulk moduli as a function of pr...

  1. Trimethylamine-N-oxide's effect on polypeptide solvation at high pressure: a molecular dynamics simulation study. (United States)

    Sarma, Rahul; Paul, Sandip


    The solvation characteristics of a 15-residue polypeptide and also the structure of the solution in the presence and absence of trimethylamine-N-oxide (TMAO), one of the strongest known protein stabilizers among the natural osmolytes both at low and high pressures, are investigated under high pressure conditions by employing the molecular dynamics simulation technique. The goal is to provide a molecular level understanding of how TMAO protects proteins at elevated pressures. Two different conformations of the polypeptide are used: helix and extended. Analysis of peptide hydration characteristics reveals that the pressure-induced enhancement of hydration number is higher for the extended state as compared to the helix. TMAO shows an opposite effect and causes more dehydration of the extended state. The total number of atomic sites that solvate peptide residues increases in the presence of TMAO, whereas the number of hydrogen bonds formed by peptide with solution species reduces due to the inability of TMAO to donate its hydrogen to peptide hydrogen bonding sites. In solution, both hydrophobic and hydrogen bonding sites of TMAO are found to be well solvated by water molecules and solvation of TMAO enhances water structure and reduces the number of nearest identical neighbors for water. Pressure and TMAO are seen to have counteracting effects on water structural properties. Implications of these results for counteracting mechanism of TMAO are discussed.

  2. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gato, L.M.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail:; Henriques, J.C.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail:


    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas.

  3. Appraisal of the realistic accuracy of molecular dynamics of high-pressure hydrogen

    Directory of Open Access Journals (Sweden)

    Graeme J. Ackland


    Full Text Available Molecular dynamics (MD is a powerful method for studying the behaviour of materials at high temperature. In practice, however, its effectiveness in representing real systems is limited by the accuracy of the forces, finite size effects, quantization and equilibration methods. In this paper, we report and discuss some calculations carried out using MD on high-pressure hydrogen, reviewing a number of sources of error, of which the neglect of zero-point vibrations is quantitatively the largest. We show that simulations using ab initio MD with the PBE functional predict a large stability field for the molecular Cmca4 structure at pressures just above those achieved in current experiments above the stability range of the mixed molecular layered Phase IV. However, the various errors in the simulation all point towards a much smaller stability range, and the likelihood of a non-molecular phase based on low-coordination networks or chains of atoms.

  4. Crystal lattice and phase transitions in Na4TiP2O9 (NTP) and Na4.5FeP2O8(O,F) (NFP) superionic conductors as a function of high pressures and temperatures. (United States)

    Maximov; Sirota; Werner; Schulz


    The lattice dynamics of Na(4)TiP(2)O(9) (tetrasodium titanium diphosphorus nonaoxide, NTP) and Na(4.5)FeP(2)O(8)(O,F) (nonasodium diiron tetraphosphorus difluoride octadecaoxide, NFP) crystals, which are superionic conductors with Na(+)-ion conductivity, were studied under high pressures. Lattice constants as a function of hydrostatic pressure were measured on a four-circle diffractometer using a high-pressure cell with diamond anvils. At 1.78 +/- 0.15 GPa NTP undergoes a reversible phase transition from the modulated monoclinic (pseudo-orthorhombic) modification which is stable under atmospheric conditions. A similar phase transition in NTP is observed at 523 K. For NFP, it may be assumed that at least three phase transitions occur when the pressure increases from atmospheric to 12 GPa, at 1.39 +/- 0.08, 4.52 +/- 0.32, and 6.02 +/- 0.02 GPa, as concluded from the change in the unit-cell parameters and in the color of the crystals: the color changes from ginger (dark orange) to pink at ~1.5-2.0 GPa pressure and to violet at ~6.0 GPa.

  5. Nonlinear dynamics of bistable lattices with defects (United States)

    Hwang, Myungwon; Arrieta, Andres F.


    Heterogeneity in a lattice system has gained continued attention from researchers due to its ability to support interesting localized dynamics and engineering applications. Most studies on the influence of the defects have been done in a one-dimensional monoatomic chain with both linear and nonlinear interactions. However, analysis of defect dynamics in a lattice under on-site potential is still a rare finding. Recently, extreme wave propagation has been demonstrated theoretically and experimentally on a bi-stable lattice with magnetic inter-site force, featuring quartic on-site potential. In this work, the nonlinear dynamics of introducing engineered defects in the form of mass impurities and inter-site forcing disparities on lattices of bi-stable elements are studied. We investigate the effect of the defect presence on the local wave propagation speed and identify the critical conditions that governs the stable propagation of transition waves. With the control of damping, we further observe a special satellite region, where stable transition of wave with intermediate jumps between the stable states of the local unit cell occurs.

  6. The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: a high-precision static compression study (United States)

    Ullrich, Angela; Schranz, Wilfried; Miletich, Ronald


    The high-pressure behavior of the lattice elasticity of spodumene, LiAlSi2O6, was studied by static compression in a diamond-anvil cell up to 9.3 GPa. Investigations by means of single-crystal XRD and Raman spectroscopy within the hydrostatic limits of the pressure medium focus on the pressure ranges around ~3.2 and ~7.7 GPa, which have been reported previously to comprise two independent structural phase transitions. While our measurements confirm the well-established first-order C2/ c- P21/ c transformation at 3.19 GPa (with 1.2% volume discontinuity and a hysteresis between 0.02 and 0.06 GPa), both unit-cell dimensions and the spectral changes observed in high-pressure Raman spectra give no evidence for structural changes related to a second phase transition. Monoclinic lattice parameters and unit-cell volumes at in total 59 different pressure points have been used to re-calculate the lattice-related properties of spontaneous strain, volume strain, and the bulk moduli as a function of pressure across the transition. A modified Landau free energy expansion in terms of a one component order parameter has been developed and tested against these experimentally determined data. The Landau solution provides a much better reproduction of the observed anomalies than any equation-of-state fit to data sets truncated below and above P tr, thus giving Landau parameters of K 0 = 138.3(2) GPa, K' = 7.46(5), λ V = 33.6(2) GPa, a = 0.486(3), b = -29.4(6) GPa and c = 551(11) GPa.

  7. Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic

    CERN Document Server

    Coulombe, S


    A probabilistic modelling approach for the study of the cathode spot displacement dynamic in high-pressure arc systems is developed in an attempt to interpret the observed voltage fluctuations. The general framework of the model allows to define simple, probabilistic displacement rules, the so-called cathode spot dynamic rules, for various possible surface states (un-arced metal, arced, contaminated) and to study the resulting dynamic of the cathode spot displacements over one or several arc passages. The displacements of the type-A cathode spot (macro-spot) in a magnetically rotating arc using concentric electrodes made up of either clean or contaminated metal surfaces is considered. Experimental observations for this system revealed a 1/f sup - sup t sup i sup l sup d sup e sup 1 signature in the frequency power spectrum (FPS) of the arc voltage for anchoring arc conditions on the cathode (e.g. clean metal surface), while it shows a 'white noise' signature for conditions favouring a smooth movement (e.g. ox...

  8. Dynamical Defects in Rotating Magnetic Skyrmion Lattices. (United States)

    Pöllath, S; Wild, J; Heinen, L; Meier, T N G; Kronseder, M; Tutsch, L; Bauer, A; Berger, H; Pfleiderer, C; Zweck, J; Rosch, A; Back, C H


    The chiral magnet Cu_{2}OSeO_{3} hosts a Skyrmion lattice that may be equivalently described as a superposition of plane waves or a lattice of particlelike topological objects. A thermal gradient may break up the Skyrmion lattice and induce rotating domains, raising the question of which of these scenarios better describes the violent dynamics at the domain boundaries. Here, we show that in an inhomogeneous temperature gradient caused by illumination in a Lorentz transmission electron microscope different parts of the Skyrmion lattice can be set into motion with different angular velocities. Tracking the time dependence, we show that the constant rearrangement of domain walls is governed by dynamic 5-7 defects arranging into lines. An analysis of the associated defect density is described by Frank's equation and agrees well with classical 2D Monte Carlo simulations. Fluctuations of boundaries show a surgelike rearrangement of Skyrmion clusters driven by defect rearrangement consistent with simulations treating Skyrmions as point particles. Our findings underline the particle character of the Skyrmion.

  9. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G. [LANL; Sandberg, R. L. [LANL; Lalone, B. M. [NSTec; Marshall, B. R. [NSTec; Grover, M. [NSTec; Stevens, G. D. [NSTec; Udd, E. [Columbia Gorge Research


    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  10. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    Directory of Open Access Journals (Sweden)

    ZIANE, M.


    Full Text Available The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on "channel" approximation of the high pressure mercury (HPM gas-discharge lamp, is developed to determine the physical and electric magnitudes, which characterize the dynamic behavior of the couple "lamp-electrical power system". The evolution of the lamp properties when principal parameters of the discharge (pressure of mercury, voltage supply, frequency are varying were studied and analyzed. We show the concordance between simulation, calculations and measurements for electric, energetic or irradiative characteristics. The model reproduces well the evolution of properties of the supply when principal parameters of the discharge vary.

  11. Complex Dynamical System for Toda Lattice (United States)

    Konno, Kimiaki


    Extending an independent variable into complex and introducing an auxiliary function, we investigate nonlinear interactions between solitons for the Toda lattice by observing behavior of zeros of the function. The Newton’s method calculating them is identified with a complex dynamical system. We present numerical results of the Fatou set on the dynamics. According to motion of solitons, the set changes surprisingly. Since soliton solutions include the exponential function, the Fatou set is different from that of the polynomial and the rational functions.

  12. Effect of dynamic high pressure on functional and structural properties of bovine serum albumin. (United States)

    Maresca, Paola; Ferrari, Giovanna; Leite Júnior, Bruno Ricardo de Castro; Zanphorlin, Leticia Maria; Ribeiro, Luma Rossi; Murakami, Mário Tyago; Cristianini, Marcelo


    Dynamic high pressure (DHP) has been investigated as an innovative suitable method to induce protein modifications. This work evaluated the effect of DHP (up to three passes at 100, 150 and 200MPa, with an inlet temperature of 20°C) on functional and structural properties of bovine serum albumin (BSA). Results indicated that DHP process applied up to an energy limit of 100MPa increased the protein foaming capacity (FC) (pstructure. DHP did not affect tryptophan microenvironment in BSA; however, this process induced the rearrangement of secondary structure elements. In the first cycle, the pressure increase resulted in a loss of secondary structure, while in the second and third cycles the DHP process resulted in the gain of secondary structure elements. These results indicated that the second and third passes triggered a molecular rearrangement of the protein structure, giving rise to a novel and more stable conformational state. This conclusion was also supported by thermal unfolding studies (melting temperature reduction from 67.5 to 54.6°C after 1 pass at 200MPa), in which the additional cycles of DHP caused the occurrence of an initial denaturation at high temperatures, compared to the first cycle. Copyright © 2017. Published by Elsevier Ltd.

  13. High-pressure NMR techniques for the study of protein dynamics, folding and aggregation (United States)

    Nguyen, Luan M.; Roche, Julien


    High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein stability. In addition, pressure perturbation is generally reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility of monitoring at an atomic resolution the structural transitions occurring upon unfolding and determining the kinetic properties of the process. The recent development of commercially available high-pressure sample cells greatly increased the potential applications for high-pressure NMR experiments that can now be routinely performed. This review summarizes the recent applications and future directions of high-pressure NMR techniques for the characterization of protein conformational fluctuations, protein folding and the stability of protein complexes and aggregates.

  14. Integer lattice dynamics for Vlasov-Poisson (United States)

    Mocz, Philip; Succi, Sauro


    We revisit the integer lattice (IL) method to numerically solve the Vlasov-Poisson equations, and show that a slight variant of the method is a very easy, viable, and efficient numerical approach to study the dynamics of self-gravitating, collisionless systems. The distribution function lives in a discretized lattice phase-space, and each time-step in the simulation corresponds to a simple permutation of the lattice sites. Hence, the method is Lagrangian, conservative, and fully time-reversible. IL complements other existing methods, such as N-body/particle mesh (computationally efficient, but affected by Monte Carlo sampling noise and two-body relaxation) and finite volume (FV) direct integration schemes (expensive, accurate but diffusive). We also present improvements to the FV scheme, using a moving-mesh approach inspired by IL, to reduce numerical diffusion and the time-step criterion. Being a direct integration scheme like FV, IL is memory limited (memory requirement for a full 3D problem scales as N6, where N is the resolution per linear phase-space dimension). However, we describe a new technique for achieving N4 scaling. The method offers promise for investigating the full 6D phase-space of collisionless systems of stars and dark matter.

  15. Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.


    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

  16. Categorical Equivalence Between Orthomodular Dynamic Algebras and Complete Orthomodular Lattices (United States)

    Kishida, Kohei; Rafiee Rad, Soroush; Sack, Joshua; Zhong, Shengyang


    This paper provides a categorical equivalence between two types of quantum structures. One is a complete orthomodular lattice, which is used for reasoning about testable properties of a quantum system. The other is an orthomodular dynamic algebra, which is a quantale used for reasoning about quantum actions. The result extends to more restrictive lattices than orthomodular lattices, and includes Hilbert lattices of closed subspaces of a Hilbert space. These other lattice structures have connections to a wide range of different quantum structures; hence our equivalence establishes a categorical connection between quantales and a great variety of quantum structures.

  17. Probing of Fast Chemical Dynamics at High Pressures and Temperatures using Pulsed Laser Techniques (United States)


    The Journal of Chemical Physics , (08 2011): 1. doi: 10.1063/1.3626860 13.00 23.00 20.00 18.00 17.00 16.00 15.00 24.00 38.00 08/30/2011 08/30/2011...diagram, The Journal of Chemical Physics , (05 2011): 1. doi: 10.1063/1.3574009 Andrew Kung, Alexander F. Goncharov, Chang sheng Zha, Peter Eng...Wendy L. Mao. Compressional, temporal, and compositional behavior of H2-O2 compound formed by high pressure x-ray irradiation, The

  18. The dynamic response of high pressure phase of Si using phase contrast imaging and X-ray diffraction (United States)

    Lee, H. J.; Galtier, E.; Xing, Z.; Gleason, A.; Granados, E.; Tavella, F.; Schropp, A.; Seiboth, F.; Schroer, C.; Higginbotham, A.; Brown, S.; Arnold, B.; Curiel, R.; Peterswright, D.; Fry, A.; Nagler, B.


    Static compression studies have revealed that crystalline silicon undergoes phase transitions from a cubic diamond structure to a variety of phases including body-centered tetragonal phase, an orthorhombic phase, and a hexagonal primitive phase. However, the dynamic response of silicon at high pressure is not well understood. Phase contrast imaging has proven to be a powerful tool for probing density changes caused by the shock propagation into a material. With respect to the elastic and plastic compression, we image shock waves in Si with high spatial resolution using the LCLS X-ray free electron laser and Matter in Extreme Conditions instrument. In this study, the long pulse optical laser with pseudoflat top shape creates high pressures up to 60 GPa. We also measure the crystal structure by observing the X-ray diffraction orthogonal to the shock propagation direction over a range of pressure. In this talk, we will present the capability of simultaneously performing phase contrast imaging and in situ X-ray diffraction during shock loading and will discuss the dynamic response of Si in high pressure phases

  19. Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: II. Rydberg molecules kinetics (United States)

    Carbone, Emile A. D.; Schregel, Christian-Georg; Czarnetzki, Uwe


    In this paper, we discuss the experimental results presented in Schregel et al (2016 Plasma Sources Sci. Technol. 25 054003) on a high pressure micro-discharge operated in helium and driven by nanosecond voltage pulses. A simple global plasma chemistry model is developed to describe the ions, excited atomic and molecular species dynamics in the ignition and early afterglow regimes. The existing experimental data on high pressure helium kinetics is reviewed and critically discussed. It is highlighted that several inconsistencies in the branching ratio of neutral assisted associative and dissociative processes currently exist in the literature and need further clarification. The model allows to pinpoint the mechanisms responsible for the large amounts of Rydberg molecules produced in the discharge and for the helium triplet metastable state in the afterglow. The main losses of electrons are also identified. The fast quenching of excited He (n  >  3) states appears to be a significant source of Rydberg molecules which has been previously neglected. The plasma model finally draws a simplified, but still accurate description of high pressure helium discharges based on available experimental data for ion and neutral helium species.

  20. Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

    Directory of Open Access Journals (Sweden)

    Janani Murallidharan


    Full Text Available Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI model and, within this model, the bubble is characterized using three main parameters: departure diameter (D, nucleation site density (N, and departure frequency (f. Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

  1. Vaginal High Pressure Zone Assessed by Dynamic 3-Dimensional Ultrasound Images of the Pelvic Floor (United States)

    JUNG, Sung-Ae; PRETORIUS, Dolores H.; PADDA, Bikram S.; WEINSTEIN, Milena M.; NAGER, Charles W.; den BOER, Derkina J.; MITTAL, Ravinder K.


    Objective To study the shape and characteristics of the vaginal high pressure zone (HPZ) by imaging a compliant fluid-filled bag placed in the vaginal HPZ with the 3-dimensional ultrasound (3D US) system. Study Design Nine nulliparous asymptomatic women underwent 3D US imaging and vaginal pressure measurements. A compliant bag was placed in the vagina and filled with various volumes of water. 3D US volumes of the pelvic floor were obtained at each bag volume while the subjects were at rest and during pelvic floor contraction. Results At low volumes, the bag was collapsed for a longitudinal extent of approximately 3.3 ± 0.2 cm (length of vaginal HPZ). With increasing bag volume, there was opening of the vaginal HPZ in the lateral dimension before the anterior-posterior (AP) dimension. Pelvic floor contraction produced a decrease in the AP dimension but not the lateral dimension of the bag in the region of the vaginal HPZ. Conclusion We propose that the shape and characteristics of the vaginal HPZ are consistent with the hypothesis that the puborectalis muscle is responsible for the genesis of the vaginal HPZ. PMID:17618755

  2. Neutronographic investigations of lattice dynamics of mercury telluride

    Energy Technology Data Exchange (ETDEWEB)

    Kepa, H.; Giebultowicz, T. (Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej)


    The lattice dynamics of mercury telluride was investigated. The relation of acustics phonons dispersion was studied by neutron diffraction. The measurements of the relation were performed and the results are presented.

  3. Structure and Dynamics of Low-Density and High-Density Liquid Water at High Pressure. (United States)

    Fanetti, Samuele; Lapini, Andrea; Pagliai, Marco; Citroni, Margherita; Di Donato, Mariangela; Scandolo, Sandro; Righini, Roberto; Bini, Roberto


    Liquid water has a primary role in ruling life on Earth in a wide temperature and pressure range as well as a plethora of chemical, physical, geological, and environmental processes. Nevertheless, a full understanding of its dynamical and structural properties is still lacking. Water molecules are associated through hydrogen bonds, with the resulting extended network characterized by a local tetrahedral arrangement. Two different local structures of the liquid, called low-density (LDW) and high-density (HDW) water, have been identified to potentially affect many different chemical, biological, and physical processes. By combining diamond anvil cell technology, ultrafast pump-probe infrared spectroscopy, and classical molecular dynamics simulations, we show that the liquid structure and orientational dynamics are intimately connected, identifying the P-T range of the LDW and HDW regimes. The latter are defined in terms of the speeding up of the orientational dynamics, caused by the increasing probability of breaking and reforming the hydrogen bonds.

  4. SRB Measures for Lattice Dynamical Systems

    CERN Document Server

    Jiang, M


    For weakly coupled expanding maps on the unit circle, Bricmont and Kupiainen showed that the Sinai-Ruelle-Bowen (SRB) measure exists as a Gibbs state. Via thermodynamic formalism, we prove that this SRB measure is indeed the unique equilibrium state for a H\\"older continuous potential function on the infinite dimensional phase space. For a more general class of lattice systems that are small perturbations of the uncoupled map lattice, we present the variational principle, the entropy formula, and the formula for the potential function for the SRB measures. For coupled map lattices with nearest neighbor interactions, we give an explicit formula of the potential function for the SRB measure and consequently, obtain the entropy in terms of coupling parameters.

  5. Topology in dynamical lattice QCD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Florian


    Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.

  6. High pressure study of molecular dynamics of protic ionic liquid lidocaine hydrochloride (United States)

    Swiety-Pospiech, A.; Wojnarowska, Z.; Pionteck, J.; Pawlus, S.; Grzybowski, A.; Hensel-Bielowka, S.; Grzybowska, K.; Szulc, A.; Paluch, M.


    In this paper, we investigate the effect of pressure on the molecular dynamics of protic ionic liquid lidocaine hydrochloride, a commonly used pharmaceutical, by means of dielectric spectroscopy and pressure-temperature-volume methods. We observed that near Tg the pressure dependence of conductivity relaxation times reveals a peculiar behavior, which can be treated as a manifestation of decoupling between ion migration and structural relaxation times. Moreover, we discuss the validity of thermodynamic scaling in lidocaine HCl. We also employed the temperature-volume Avramov model to determine the value of pressure coefficient of glass transition temperature, dTg/dP|P = 0.1. Finally, we investigate the role of thermal and density fluctuations in controlling of molecular dynamics of the examined compound.

  7. Finite-element lattice Boltzmann simulations of contact line dynamics (United States)

    Matin, Rastin; Krzysztof Misztal, Marek; Hernández-García, Anier; Mathiesen, Joachim


    The lattice Boltzmann method has become one of the standard techniques for simulating a wide range of fluid flows. However, the intrinsic coupling of momentum and space discretization restricts the traditional lattice Boltzmann method to regular lattices. Alternative off-lattice Boltzmann schemes exist for both single- and multiphase flows that decouple the velocity discretization from the underlying spatial grid. The current study extends the applicability of these off-lattice methods by introducing a finite element formulation that enables simulating contact line dynamics for partially wetting fluids. This work exemplifies the implementation of the scheme and furthermore presents benchmark experiments that show the scheme reduces spurious currents at the liquid-vapor interface by at least two orders of magnitude compared to a nodal implementation and allows for predicting the equilibrium states accurately in the range of moderate contact angles.

  8. Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement

    Directory of Open Access Journals (Sweden)

    Elkarous Lamine


    Full Text Available The development of a dynamic calibration standard for high-amplitude pressure piezoelectric transducers implies the implementation of a system which can provide reference pressure values with known characteristics and uncertainty. The reference pressure must be issued by a sensor, as a part of a measuring chain, with a guaranteed traceability to an international standard. However, this operation has not been completely addressed yet until today and is still calling further investigations. In this paper, we introduce an experimental study carried out in order to contribute to current efforts for the establishment of a reference dynamic calibration method. A suitable practical calibration method based on the calculation of the reference pressure by measurement of the displacement of the piston in contact with an oil-filled cylindrical chamber is presented. This measurement was achieved thanks to a high speed camera and an accelerometer. Both measurements are then compared. In the first way, pressure was generated by impacting the piston with a free falling weight and, in the second way, with strikers of known weights and accelerated to the impact velocities with an air gun. The aim of the experimental setup is to work out a system which may generate known hydraulic pressure pulses with high-accuracy and known uncertainty. Moreover, physical models were also introduced to consolidate the experimental study. The change of striker’s velocities and masses allows tuning the reference pressure pulses with different shapes and, therefore, permits to sweep a wide range of magnitudes and frequencies.

  9. High pressures in room evacuation processes and a first approach to the dynamics around unconscious pedestrians (United States)

    Cornes, F. E.; Frank, G. A.; Dorso, C. O.


    Clogging raises as the principal phenomenon during many evacuation processes of pedestrians in an emergency situation. As people push to escape from danger, compression forces may increase to harming levels. Many individuals might fall down, while others will try to dodge the fallen people, or, simply pass through them. We studied the dynamics of the crowd for these situations, in the context of the ;social force model;. We modeled the unconscious (fallen) pedestrians as inanimate bodies that can be dodged (or not) by the surrounding individuals. We found that new morphological structures appear along the evacuating crowd. Under specific conditions, these structures may enhance the evacuation performance. The pedestrian's willings for either dodging or passing through the unconscious individuals play a relevant role in the overall evacuation performance.

  10. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum (United States)

    Polsin, D. N.


    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Inelastic neutron scattering to very high pressures (United States)

    Klotz, S.; Braden, M.; Besson, J. M.


    Progress in high-pressure and neutron scattering methods has recently allowed measurements of phonon dispersion curves of simple solids at high pressures to 10 GPa. In this technique single crystals of 10 25 mm3 volume are compressed by the Paris-Edinburgh cell and the phonon frequencies are measured on high-flux triple axis spectrometers. Detailed studies of the lattice dynamics of low-compressible systems are feasible, including measurements of mode Grüneisen parameters, elastic constants, and precursor effects of phase transitions. We describe the experimental set-up and illustrate its potential by results on semiconductors (Ge and GaSb) and metals (Fe and Zn) obtained at the LLB (Saclay) and ILL (Grenoble) reactor sources.

  12. Kink dynamics in a topological straight phi4 lattice. (United States)

    Adib, A B; Almeida, C A


    Recently proposed was a discretization for nonlinear Klein-Gordon field theories in which the resulting lattice preserves the topological (Bogomol'nyi) lower bound on the kink energy and, as a consequence, has no Peierls-Nabarro barrier even for large spatial discretizations (h approximately 1.0). It was then suggested that these "topological discrete systems" are a natural choice for the numerical study of continuum kink dynamics. Giving particular emphasis to the straight phi(4) theory, we numerically investigate kink-antikink scattering and breather formation in these topological lattices. Our results indicate that, even though these systems are quite accurate for studying free kinks in coarse lattices, for legitimate dynamical kink problems the accuracy is rather restricted to fine lattices (h approximately 0.1). We suggest that this fact is related to the breaking of the Bogomol'nyi bound during the kink-antikink interaction, where the field profile loses its static property as required by the Bogomol'nyi argument. We conclude, therefore, that these lattices are not suitable for the study of more general kink dynamics, since a standard discretization is simpler and has effectively the same accuracy for such resolutions.

  13. Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics

    Directory of Open Access Journals (Sweden)

    Bruce L. Davis


    Full Text Available The concept of a phononic crystal can in principle be realized at the nanoscale whenever the conditions for coherent phonon transport exist. Under such conditions, the dispersion characteristics of both the constitutive material lattice (defined by a primitive cell and the phononic crystal lattice (defined by a supercell contribute to the value of the thermal conductivity. It is therefore necessary in this emerging class of phononic materials to treat the lattice dynamics at both periodicity levels. Here we demonstrate the utility of using supercell lattice dynamics to investigate the thermal transport behavior of three-dimensional nanoscale phononic crystals formed from silicon and cubic voids of vacuum. The periodicity of the voids follows a simple cubic arrangement with a lattice constant that is around an order of magnitude larger than that of the bulk crystalline silicon primitive cell. We consider an atomic-scale supercell which incorporates all the details of the silicon atomic locations and the void geometry. For this supercell, we compute the phonon band structure and subsequently predict the thermal conductivity following the Callaway-Holland model. Our findings dictate that for an analysis based on supercell lattice dynamics to be representative of the properties of the underlying lattice model, a minimum supercell size is needed along with a minimum wave vector sampling resolution. Below these minimum values, a thermal conductivity prediction of a bulk material based on a supercell will not adequately recover the value obtained based on a primitive cell. Furthermore, our results show that for the relatively small voids and void spacings we consider (where boundary scattering is dominant, dispersion at the phononic crystal unit cell level plays a noticeable role in determining the thermal conductivity.

  14. Optical spectra and lattice dynamics of molecular crystals

    CERN Document Server

    Zhizhin, GN


    The current volume is a single topic volume on the optical spectra and lattice dynamics of molecular crystals. The book is divided into two parts. Part I covers both the theoretical and experimental investigations of organic crystals. Part II deals with the investigation of the structure, phase transitions and reorientational motion of molecules in organic crystals. In addition appendices are given which provide the parameters for the calculation of the lattice dynamics of molecular crystals, procedures for the calculation of frequency eigenvectors of utilizing computers, and the frequencies and eigenvectors of lattice modes for several organic crystals. Quite a large amount of Russian literature is cited, some of which has previously not been available to scientists in the West.

  15. Lattice dynamical investigations on Zn diffusion in zinc oxide

    Indian Academy of Sciences (India)

    Abstract. Zinc self diffusion in bulk zinc oxide is studied by lattice dynamical approach here to get more insight into the diffusion in nano ZnO. The results reveal that only cationic self diffusion is dominant over anionic self diffusion and that too by single vacancy mechanism. The results are compared with the available ...

  16. Inelastic neutron scattering and lattice dynamics studies in complex ...

    Indian Academy of Sciences (India)

    At Trombay, lattice dynamics studies employing coherent inelastic neutron scattering (INS) experiments have been carried out at the two research reactors, CIRUS and Dhruva. While the early work at CIRUS involved many elemental solids and ionic molecular solids, recent experiments at Dhruva have focussed on certain ...

  17. Lattice dynamical calculations for bcc caesium chloride | Taura ...

    African Journals Online (AJOL)

    In general, the obtained results agree reasonably well with the experimental data of the bcc Caesium Chloride. Keywords: Bcc caesium chloride; Lattice dynamics; Phonon dispersion; Density of state; Specific heat. Journal of the Nigerian Association of Mathematical Physics, Volume 20 (March, 2012), pp 261 – 266 ...

  18. Dynamic high pressure microfluidization-assisted extraction and bioactivities of Cyperus esculentus (C. esculentus L.) leaves flavonoids. (United States)

    Jing, Siqun; Wang, Saisai; Li, Qian; Zheng, Lian; Yue, Li; Fan, Shaoli; Tao, Guanjun


    The aim of this work was to study the effect of dynamic high pressure microfluidization (DHPM) on extracting total flavonoids from Cyperus esculentus L. (C. esculentus L.) leaves and to evaluate the antioxidant activity and antibacterial property of these flavonoids. In all the assays, pretreatment with DHPM was found to not only efficiently improve the yield of total flavonoids but also strengthen the antioxidant activity of the total flavonoids. C. esculentus L. leaves flavonoids had pronounced antioxidant activity in vivo that could significantly elevate the content of superoxide dismutase (SOD) without increasing the malondialdehyde (MDA) levels, and could also improve total antioxidant capacity in mice with a dose-dependent fashion. C. esculentus L. leaves flavonoids inhibited the growth of both Gram positive and Gram negative bacteria while no obvious inhibitory effect on Penicillium and Aspergillus could be observed. Our studies indicate that flavonoids from C. esculentus L. leaves can be taken as a natural antioxidant and bacteriostatic substance in food and pharmaceutical industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Glycation of β-lactoglobulin under dynamic high pressure microfluidization treatment: Effects on IgE-binding capacity and conformation. (United States)

    Chen, Yuan; Tu, Zongcai; Wang, Hui; Zhang, Lu; Sha, Xiaomei; Pang, Juanjuan; Yang, Ping; Liu, Guangxian; Yang, Wenhua


    The effects of dynamic high-pressure microfluidization (DHPM) (80, 120, and 160MPa) treatment and glycation with galactose on the IgE-binding capacity and conformation of β-lactoglobulin (β-Lg) were investigated. The binding capacity of immunoglobulin E (IgE) from patients' sera with cow's milk allergy on β-Lg glycated with galactose decreased after DHPM treatment. β-Lg treated after different DHPM methods and pressures yielded a significant discrepancy in IgE-binding capacity. When β-Lg was pretreated by DHPM, the IgE-binding capacity of β-Lg-galactose conjugates decreased with increasing pressure; however, the conjugates showed higher IgE-binding capacity at 120MPa than that at 80 and 160MPa when the β-Lg-galactose mixture was treated by DHPM. Results of thermal properties, intrinsic fluorescence spectroscopy, surface hydrophobicity, and circular dichroism (CD) spectra indicated the occurrence of protein unfolding, as well as the tertiary and secondary structural changes of β-Lg. The results suggested pretreatment by DHPM and glycation with galactose was a promising approach for eliminating the IgE-binding capacity of β-Lg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Storage stability and antibacterial activity of eugenol nanoliposomes prepared by an ethanol injection-dynamic high-pressure microfluidization method. (United States)

    Peng, Shengfeng; Zou, Liqiang; Liu, Wei; Gan, Lu; Liu, Weilin; Liang, Ruihong; Liu, Chengmei; Niu, Jing; Cao, Yanlin; Liu, Zhen; Chen, Xing


    Eugenol is a major phenolic component with diverse biological activities. However, it is difficult to formulate into an aqueous solution due to poor water solubility, and this limits its application. In the present study, eugenol nanoliposomes (EN) were prepared by combining the ethanol injection method with the dynamic high-pressure microfluidization method. Good physicochemical characterizations of EN were obtained. The successful encapsulation of eugenol in nanoliposomes was confirmed by Fourier transform infrared spectroscopy. A good storage stability of EN was confirmed by its low variation of average particle diameter and encapsulation efficiency after 8 weeks of storage. No oil drops were found in EN after 8 weeks of storage at 4°C and at room temperature, which suggested that the poor water solubility of eugenol was overcome by nanoliposome encapsulation. Compared with that of eugenol solution, a relatively good sustained release property was observed in EN. The antibacterial activity of EN against four common foodborne pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes) was evaluated in both Luria broth and milk medium.

  1. Dynamic Assessment of the Vaginal High Pressure Zone using High Definition Manometery, 3D -Ultrasound and Magnetic Resonance Imaging of the Pelvic Floor Muscles (United States)

    Raizada, Varuna; Bhargava, Valmik; Jung, Sung-Ae; Karstens, Anna; Pretorius, Dolores; Krysl, Petr; Mittal, Ravinder K


    Aims We used a novel technique, high definition manometry (HDM) that utilizes 256 tactile sensitive micro-transducers to define the characteristics of vaginal high-pressure zone. Methods 16 nullipara asymptomatic women were studied using HDM, transperineal 2D dynamic ultrasound and dynamic magnetic resonance (MR) imaging. Results Vaginal high-pressure zone revealed higher contact pressures in anterior and posterior compared to lateral directions, both at rest and squeeze. At rest, anterior pressure cluster is located 10 mm cephalad to posterior pressure cluster; with squeeze the latter moves in the cranial direction by 7 mm. Ultrasound and MR images reveal that the anorectal angle moves cephalad and ventrally during squeeze. Cephalad movement of posterior pressure cluster during squeeze is similar to the cranial movement of anorectal angle. Conclusions We propose that the vaginal high-pressure zone represents the constrictor function and cranial movement of the posterior pressure cluster represents the elevator function of pelvic floor. PMID:20462564

  2. MAX-IV lattice, dynamic properties and magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Tarawneh, H. E-mail:; Eriksson, M.; Lindgren, L-J.; Anderberg, B


    At MAX-LAB the next synchrotron light source MAX-IV is currently studied (Proceedings of the seventh European Particle Accelerator Conference, EPAC 02, Paris, France, 2002). In this paper, we present a possible lattice with horizontal emittance of 1.2 nm rad at an energy of 3 GeV. The possibilities to realise the main magnetic system with high gradient integrated magnets are studied with 2D and 3D magnetic field programs. The dynamic properties for the lattice are also studied and some higher order corrections are discussed.

  3. Ab initio lattice dynamics of complex structures

    DEFF Research Database (Denmark)

    Voss, Johannes


    atomic coordinates, we have developed a new numerical optimization scheme, which allows for a fast convergence of the coordinate relaxation. Moreover, a method for the efficient calculation of phonon frequencies has been developed, which is based on a combination of density functional theory calculations......, showing that the mobility of hydrogen is limited by high energetic barriers in the intermediate decomposition product Na3AlH6 in particular, and that the effect of titanium as a dopant on the dynamics is negligible. The presented methods and studies demonstrate possibilities for a design of new materials...

  4. Inter-band dynamics in a tunable hexagonal lattice (United States)

    Windpassinger, Patrick; Weinberg, Malte; Simonet, Juliette; Struck, Julian; Oelschlaeger, Christoph; Luehmann, Dirk; Sengstock, Klaus


    Hexagonal lattices have recently attracted a lot of attention in the condensed matter community and beyond. Upon other intriguing features, their unique band structure exhibits Dirac cones at the corners of the Brillouin zone of the two lowest energy bands. Here, we report on the experimental observation of momentum-resolved inter-band dynamics of ultracold bosons between the two lowest Bloch bands (s- and p-band) of a hexagonal optical lattice with tunable band structure. Due to the spin-dependency of the lattice potential [1,2], a rotation of the magnetic quantization axis and the choice of the atomic spin state allow for an in-situ manipulation of the lattice structure from hexagonal to triangular geometry. It is thus possible to modify the band structure and open a gap at the Dirac cones. The loading of atoms into the excited band is achieved by a microwave transition between different spin states which in certain cases is only allowed as a result of interaction effects. We observe the time-dependent population of quasi momenta, revealing a striking influence of the existence of Dirac cones on the dynamics of atoms in the first two energy bands.[4pt] [1] P. Soltan-Panahi et al., Nature Physics 7, 43 (2011)[0pt] [2] P. Soltan-Panahi et al., Nature Physics 8, 71 (2012)

  5. Dynamics of Atomic Matter Waves in Optical Lattices (United States)

    Reeves, Jeremy Brian

    Quantum gases in optical lattices allow for fundamental studies in atomic and condensed-matter physics and the exploration of novel effects. After a brief introduction to the fundamentals of quantum gas experiments in optical lattices, we discuss two recent experiments focusing on driven matter waves in a one-dimensional optical lattice. The first experiment uses a tilted bichromatic optical lattice to investigate the interplay of disorder and collisional interactions in the accelerated transport of a Bose-Einstein condensate. Here, a screening effect is observed, in which the interactions effectively cancel the damping of Bloch oscillations induced by a (quasi-)disordered potential. This effect can be understood through a modification of the underlying band structure by the interactions. The second experiment studies the dynamics of a weakly trapped condensate resonantly coupled to the orbitals of a strongly confining state-selective lattice. We observe momentum distributions that correspond to matter wave diffraction from a periodic structure; however, the diffractive dynamics remain strongly linked to the internal-state Rabi oscillations. In the regime investigated, which we call the nonadiabatic regime, no diffracting potential can be defined. We show how only for much stronger coupling, the internal and external dynamics decouple, transitioning from nonadiabatic diffraction to the well-studied Kapitza-Dirac diffraction. We further investigate prospects for realizing dissipative spin models in our ultracold atomic gas experiment. To this end, we develop and test in the laboratory several possible implementations of effective spins with differential coupling to a superfluid background and examine their viability for a realization of the spin-boson model.

  6. Dynamical Aperture Control in Accelerator Lattices With Multipole Potentials

    CERN Document Server

    Morozov, I


    We develop tools for symbolic representation of a non-linear accelerator model and analytical methods for description of non-linear dynamics. Information relevant to the dynamic aperture (DA) is then obtained from this model and can be used for indirect DA control or as a complement to direct numerical optimization. We apply two analytical methods and use multipole magnets to satisfy derived analytical constraints. The accelerator model is represented as a product of unperturbed and perturbed exponential operators with the exponent of the perturbed operator given as a power series in the perturbation parameter. Normal forms can be applied to this representation and the lattice parameters are used to control the normal form Hamiltonian and normal form transformation. Hamiltonian control is used to compute a control term or controlled operator. Lattice parameters are then fitted to satisfy the imposed control constraints. Theoretical results, as well as illustrative examples, are presented.

  7. Lattice Dynamics and Intermolecular Forces in Organic Molecular Crystals


    Bougeard, D.


    Recent developments in the theory and the application of determination of intermolecular forces are discussed for the computer simulation of the lattice dynamics of organic molecular crystals. Different atom-atom potentials for carbon, hydrogen, halogens, oxygen and nitrogen are presented. The influences of hydrogen bonds and multipolar forces are illustrated with some examples. Such potentials are applied to glutaric and squaric acid, hexachloroethane, malononitrile and parachlorobenzamide.

  8. Single-Particle Quantum Dynamics in a Magnetic Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco


    We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.

  9. One-loop lattice artifacts of a dynamical charm quark

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC


    For a few observables in O(a) improved lattice QCD, we compute discretization effects arising from the vacuum polarization of a heavy quark at one-loop order. In particular, the force between static quarks, the running coupling in the Schroedinger functional and a related quantity, anti {upsilon}, are considered. Results show that the cutoff effects of a dynamical charm quark are typically smaller than those present in the pure gauge theory. This perturbative result is a good indication that dynamical charm quarks are feasible already now. (orig.)

  10. Probing the dynamic response of ordered lattice materials (United States)

    Lind, J.; Jensen, B. J.; Barham, M.; Barton, N. R.; Kumar, M.


    The advent of additive manufacturing has opened up the possibility of designing and creating lattice structures that were previously not possible. Their remarkable strength-to-weight scaling has garnered immense interest from the research community, but one must ask if their strength, which depends uniquely on their geometric and topological character, still holds when they are deformed dynamically? Taking advantage of the newly commissioned Dynamic Compression Sector at the Advanced Photon Source at Argonne National Laboratory, we performed a series of gas gun experiments combined with x-ray phase contrast imaging measurement on additively manufactured polymer lattice and foam structures. With on the order of micron resolution and 100s of ns temporal resolution, the local deformation characteristics of the material can be extracted by tracking the nodal displacements within the lattice material. Properties such as local ligament strain, maximum supported strain, compaction behavior and elastic wave evolution can be extracted from this measurement. We will discuss on-going comparison of the experimental results with direct numerical simulations. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics (United States)

    Wehrenberg, C. E.; McGonegle, D.; Bolme, C.; Higginbotham, A.; Lazicki, A.; Lee, H. J.; Nagler, B.; Park, H.-S.; Remington, B. A.; Rudd, R. E.; Sliwa, M.; Suggit, M.; Swift, D.; Tavella, F.; Zepeda-Ruiz, L.; Wark, J. S.


    Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum—an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning

  12. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. (United States)

    Wehrenberg, C E; McGonegle, D; Bolme, C; Higginbotham, A; Lazicki, A; Lee, H J; Nagler, B; Park, H-S; Remington, B A; Rudd, R E; Sliwa, M; Suggit, M; Swift, D; Tavella, F; Zepeda-Ruiz, L; Wark, J S


    Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum-an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and

  13. Stochastic lattice models for the dynamics of linear polymers

    Energy Technology Data Exchange (ETDEWEB)

    Leeuwen, J.M.J. van [Instituut-Lorentz, University of Leiden, P.O. Box 9506, 2300 RA Leiden (Netherlands)], E-mail:; Drzewinski, Andrzej [Institute of Physics, University of Zielona Gora, Prof. Z. Szafrana 4a, 65-516 Zielona Gora (Poland)


    Linear polymers are represented as chains of hopping reptons and their motion is described as a stochastic process on a lattice. This admittedly crude approximation still catches essential physics of polymer motion, i.e. the universal properties as function of polymer length. More than the static properties, the dynamics depends on the rules of motion. Small changes in the hopping probabilities can result in different universal behavior. In particular the cross-over between Rouse dynamics and reptation is controlled by the types and strength of the hoppings that are allowed. The properties are analyzed using a calculational scheme based on an analogy with one-dimensional spin systems. It leads to accurate data for intermediately long polymers. These are extrapolated to arbitrarily long polymers, by means of finite-size-scaling analysis. Exponents and cross-over functions for the renewal time and the diffusion coefficient are discussed for various types of motion.

  14. Stochastic lattice models for the dynamics of linear polymers (United States)

    van Leeuwen, J. M. J.; Drzewiński, Andrzej


    Linear polymers are represented as chains of hopping reptons and their motion is described as a stochastic process on a lattice. This admittedly crude approximation still catches essential physics of polymer motion, i.e. the universal properties as function of polymer length. More than the static properties, the dynamics depends on the rules of motion. Small changes in the hopping probabilities can result in different universal behavior. In particular the cross-over between Rouse dynamics and reptation is controlled by the types and strength of the hoppings that are allowed. The properties are analyzed using a calculational scheme based on an analogy with one-dimensional spin systems. It leads to accurate data for intermediately long polymers. These are extrapolated to arbitrarily long polymers, by means of finite-size-scaling analysis. Exponents and cross-over functions for the renewal time and the diffusion coefficient are discussed for various types of motion.

  15. Tunable high pressure lasers (United States)

    Hess, R. V.


    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers.

  16. Growth, structure and lattice dynamics of rare earth silicide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Anja


    In the present thesis the epitaxial growth, crystal structure, stoichiometry, thermal stability and lattice dynamics of self-organized EuSi{sub 2} and DySi{sub 2} films, nanoislands and nanowires are investigated. The rare earth silicide (RESi) nanostructures have attracted considerable interest due to their high conductivity, very low Schottky barrier heights, remarkable chemical stability, self-organization in high area density and defects-free nano-objects with tunable size and shape, and the direct integration into the Si technology. The extensive research is driven by the continuous downscaling of the CMOS electronics that require new approaches in the devices architecture and circuits interconnects. Although RESi nanostructures attracted a lot of interest already several years ago and a lot of research has been done in this field, the lattice dynamics of these materials are still unknown. Recent developments at third generation synchrotron radiation sources have brought their performance to a stage where phonon spectroscopy of nanostructures and thin layers became feasible using nuclear inelastic X-ray scattering. This novel experimental technique is based on the process of phonon-assisted nuclear resonant absorption/emission of X-rays from the nuclei of Moessbauer-active isotopes. The method provides direct access to the phonon density of states (DOS) of the investigated element. Together with the ab initio calculations it was possible to get a comprehensive understanding of the lattice dynamics. EuSi{sub 2} films and nanoislands and DySi{sub 2} films, nanoislands and nanowires have been grown on the vicinal Si(001) surface by molecular beam epitaxy. While DySi{sub 2} was grown following known growth procedures, the growth conditions for EuSi{sub 2} had to be established first. EuSi{sub 2} was grown at two different growth conditions to study the influence of crystal structure and morphology upon different growth temperatures. The structure has been

  17. Lattice Dynamics of the Rhenium and Technetium Dichalcogenides. (United States)

    Wolverson, Daniel; Hart, Lewis S


    The rhenium and technetium dichalcogenides are layered van der Waals semiconductors which show a large number of Raman-active zone-centre phonon modes as a result of their unusually large unit cells and deviation from hexagonal symmetry. They thus offer the possibility of introducing in-plane anisotropy into composite heterostructures based on van der Waals materials, and Raman spectroscopy is generally used to determine their in-plane orientation. We show that first-principles calculations give a good description of the lattice dynamics of this family of materials and thus predict the zone-centre phonon frequencies and Raman activities of TcS2. We consider the distribution of the phonon modes in frequency and their atomic displacements and give a unified understanding of the phonon frequencies and Raman spectra of ReS2, TcS2 and ReSe2 in terms of the scaling of Raman frequency with the chalcogen mass.

  18. The particle image velocimetry method in the study of the dynamics of phase transitions induced by high pressures in triolein and oleic acid (United States)

    Tefelski, D. B.; Kulisiewicz, L.; Wierschem, A.; Delgado, A.; Rostocki, A. J.; Siegoczyński, R. M.


    Particle image velocimetry (PIV) is an optical measurement method capable of providing visualisation of velocity field of particle flow in fluids. After analysis of data acquired in the form of an image sequence, it is possible to retrieve information about flow parameters as mean values of velocity, vorticity, shear and normal strain. This paper presents the results of high pressure experiments using this method applied to triolein and oleic acid samples in their phase transition region. A high pressure optical chamber, He-Ne laser and light-sheet optics together with a digital camera and image acquisition computer allow us to study the motion of particles in high pressure conditions. The set-up was similar to that presented in Özmutlu et al. [Momentum and energy transfer during phase change of water under high hydrostatic pressure, Innov. Food Sci. Emerg. Technol. 7(3) (2006), pp. 161-168] and Kulisiewicz et al. [Visualization of pressure-shift freezing and thawing of concentrated aqueous sucrose solutions, High Press. Res. 27(2) (2007), pp. 291-297]. The analysis of phase transition dynamics in triolein and oleic acid is an extension to the work presented in Tefelski et al. [The investigation of the dynamics of the phase transformation in triolein and oleic acid under pressure, J. Phys.: Conf. Ser. 121(142004) (2008), pp. 1-6]. Oleic acid is a monounsaturated fatty acid and has a bent rod shape. Triolein is a triglyceride and has a "chair"-like shape. It is the base particle of many vegetable oils, especially olive oil. Triolein consists of three chains of oleic acid bound by a glycerol part. Information obtained by the study of phase transitions dynamics is important for food science and food technology processes which involve high pressure treatment. The PIV method shows differences in the solidification process of both substances in time, the existence of inhomogeneities (layers of different densities in the observed flow) and allows us to calculate the

  19. Common Misconceptions about the Dynamical Theory of Crystal Lattices: Cauchy Relations, Lattice Potentials and Infinite Crystals (United States)

    Elcoro, Luis; Etxebarria, Jesus


    The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used…

  20. Anisotropic lattice dynamics and intermediate-phase magnetism in delafossite CuFeO2

    NARCIS (Netherlands)

    Klobes, B.; Herlitschke, M.; Rushchanskii, K. Z.; Wille, H. -C.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Nugroho, A. A.; Hermann, R. P.


    Hyperfine interactions and Fe-specific lattice dynamics in CuFeO2 were investigated by nuclear resonance scattering methods and compared to ab initio lattice dynamics calculations. Using nuclear forward scattering the collinear spin structure at temperatures below about 11 K could be confirmed,

  1. Simultaneous free-volume modeling of the self-diffusion coefficient and dynamic viscosity at high pressure

    DEFF Research Database (Denmark)

    Boned, C.; Allal, A.; Baylaucq, A.


    applied to dynamic viscosity, has been considered and generalized. In this generalized model the compound is characterized by only four parameters. But if the quadratic length is known, the number of adjustable parameters is three. The compounds considered in this work are benzene, carbon tetrachloride...

  2. In situ imaging of the dynamics of photo-induced structural phase transition at high pressures by picosecond acoustic interferometry (United States)

    Kuriakose, Maju; Chigarev, Nikolay; Raetz, Samuel; Bulou, Alain; Tournat, Vincent; Zerr, Andreas; Gusev, Vitalyi E.


    Picosecond acoustic interferometry is used to monitor in time the motion of the phase transition boundary between two water ice phases, VII and VI, coexisting at a pressure of 2.15 GPa when compressed in a diamond anvil cell at room temperature. By analyzing the time-domain Brillouin scattering signals accumulated for a single incidence direction of probe laser pulses, it is possible to access ratios of sound velocity values and of the refractive indices of the involved phases, and to distinguish between the structural phase transition and a recrystallization process. Two-dimensional spatial imaging of the phase transition dynamics indicates that it is initiated by the pump and probe laser pulses, preferentially at the diamond/ice interface. This method should find applications in three-dimensional monitoring with nanometer spatial resolution of the temporal dynamics of low-contrast material inhomogeneities caused by phase transitions or chemical reactions in optically transparent media.

  3. Molecular-dynamic simulations of the thermophysical properties of hexanitrohexaazaisowurtzitane single crystal at high pressures and temperatures (United States)

    Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.


    Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.

  4. Dynamic permeability of porous media by the lattice Boltzmann method (United States)

    Adler, P.; Pazdniakou, A.


    The main objective of our work is to determine the dynamic permeability of three dimensional porous media by means of the Lattice Boltzmann method (LBM). The Navier-Stokes equation can be numerically solved by LBM which is widely used to address various fluid dynamics problems. Space is discretized by a three-dimensional cubic lattice and time is discretized as well. The generally accepted notation for lattice Boltzmann models is DdQq where D stands for space dimension and Q for the number of discrete velocities. The present model is denoted by D3Q19. Moreover, the Two Relaxation Times variant of the Multi Relaxation Times model is implemented. Bounce back boundary conditions are used on the solid-fluid interfaces. The porous medium is spatially periodic. Reconstructed media were used; they are obtained by imposing a porosity and a correlation function characterized by a correlation length. Real samples can be obtained by MicroCT. In contrast with other previous contributions, the dynamic permeability K(omega) which is a complex number, is derived by imposing an oscillating body force of pulsation omega on the unit cell and by deriving the amplitude and the phase shift of the resulting time dependent seepage velocity. The influence of two limiting parameters, namely the Knudsen number Kn and the discretization for high frequencies, on K(omega) is carefully studied for the first time. Kn is proportional to nu/(cs H) where nu is the kinematic viscosity, cs the speed of sound in the fluid and H a characteristic length scale of the porous medium. Several porous media such as the classical plane Poiseuille flow and the reconstructed media are used to show that it is only for small enough values of Kn that reliable results are obtained. Otherwise, the data depend on Kn and may even be totally unphysical. However, it should be noticed that the limiting value of Kn could not be derived in general since it depends very much on the structure of the medium. Problems occur at

  5. Exceptional Point Dynamics in Photonic Honeycomb Lattices with PT Symmetry


    Ramezani, Hamidreza; Kottos, Tsampikos; Kovanis, Vassilios; Christodoulides, Demetrios N.


    We theoretically investigate the flow of electromagnetic waves in complex honeycomb photonic lattices with local PT symmetries. Such PT structure is introduced via a judicious arrangement of gain or loss across the honeycomb lattice, characterized by a gain/loss parameter \\gamma. We found a new class of conical diffraction phenomena where the formed cone is brighter and travels along the lattice with a transverse speed proportional to Sqrt (\\gamma).

  6. High-pressure microfluidics (United States)

    Hjort, K.


    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  7. SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations (United States)

    Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.


    Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades.

  8. Damping of Rabi oscillations in quantum dots due to lattice dynamics


    Machnikowski, Pawel; Jacak, Lucjan


    We show that the interaction between carriers confined in a quantum dot and the surrounding lattice under external driving of carrier dynamics has a dynamical, resonant character. The quality of Rabi oscillations in such a system depends on the relation between nonlinear spectral characteristics of the driven dynamics and the spectral density of effectively coupled lattice modes (phonon frequencies and density of states). For a large number of Rabi oscillations within a fixed time (allowed by...

  9. Lattice dynamic studies from {sup 151}Eu-Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Katada, Motomi [Tokyo Metropolitan Univ., Hachioji (Japan). Faculty of Science


    New complexes {l_brace}(Eu(napy){sub 2}(H{sub 2}O){sub 3})(Fe(CN){sub 6})4H{sub 2}O{r_brace}{sub x}, bpy({l_brace}(Eu(bpy)(H{sub 2}O){sub 4})(Fe(CN){sub 6})1.5bpy4H{sub 2}O{r_brace}{sub x}) and ({l_brace}(Eu(phen){sub 2}(H{sub 2}O){sub 2})(Fe(CN){sub 6})2phen{r_brace}{sub x}) etc were synthesized using phenanthroline and bipyridine. Lattice dynamic behaviors of Eu and Fe atom in the complexes were investigated by Moessbauer spectroscopy. By {sup 151}Eu-Moessbauer spectrum and parameters of new complexes, bpy complex showed the largest quadrupole splitting value, indicating bad symmetry of Eu ligand in the environment. Molecular structure of napy, bpy and phen complex were shown. These complexes are consisted of Eu atom coordinated with ligand and water molecule, of which (Fe(CN){sub 6}){sup 3-} ion formed one dimentional polymer chain and naphthyridines formed stacking structure. New complexes were observed by {sup 57}Fe-Moessbauer spectroscopy, too. The quadrupole splitting values were very different each other, indicating change of symmetry of Fe atom in the environment and three valence low spin state of Fe in the complex. (S.Y.)

  10. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies (United States)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed


    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary

  11. Finite-size effects on the lattice dynamics in spin crossover nanomaterials. II. Molecular dynamics simulations (United States)

    Mikolasek, Mirko; Nicolazzi, William; Terki, Férial; Molnár, Gábor; Bousseksou, Azzedine


    In the first part of this work, an experimental study of the lattice dynamics of spin crossover nanoparticles was performed using the nuclear inelastic scattering (NIS). A size dependence of low energy phonon modes appears under 10 nm, but its origin is not well understood. In this paper, we investigate the phonon confinement effects in the framework of molecular dynamics simulations by modeling three-dimensional nanoparticles considering a cubic lattice with an octahedral pattern. The vibrational density of states is computed and compared to the experiment. The simulations allow one to highlight both the role of the phonon quantification and the role of the size and shape distributions of particles on the extracted parameters leading to a better understanding of the experimental results.

  12. Transmission-lattice based geometric phase analysis for evaluating the dynamic deformation of a liquid surface. (United States)

    Shi, Wenxiong; Huang, Xianfu; Liu, Zhanwei


    Quantitatively measuring a dynamic liquid surface often presents a challenge due to high transparency, fluidity and specular reflection. Here, a novel Transmission-Lattice based Geometric Phase Analysis (TLGPA) method is introduced. In this method, a special lattice is placed underneath a liquid to be tested and, when viewed from above, the phase of the transmission-lattice image is modulated by the deformation of the liquid surface. Combining this with multi-directional Newton iteration algorithms, the dynamic deformation field of the liquid surface can be calculated from the phase variation of a series of transmission-lattice images captured at different moments. The developed method has the advantage of strong self-adaption ability to initial lattice rotational errors and this is discussed in detail. Dynamic 3D ripples formation and propagation was investigated and the results obtained demonstrated the feasibility of the method.

  13. Rigorous mean-field dynamics of lattice bosons: quenches from the Mott insulator

    NARCIS (Netherlands)

    Snoek, M.


    We provide a rigorous derivation of Gutzwiller mean-field dynamics for lattice bosons, showing that it is exact on fully connected lattices. We apply this formalism to quenches in the interaction parameter from the Mott insulator to the superfluid state. Although within mean-field the Mott insulator

  14. Constraints on СS and Їј ¯ from lattice quantum chromo- dynamics

    Indian Academy of Sciences (India)

    Constraints on СS and ¯¼ ¯ from lattice quantum chromo- dynamics. APOORVA PATEL. Centre for Theoretical Studies and Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India. E-mail: Abstract. Results for light quark masses obtained from lattice ...

  15. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)


    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  16. Anisotropic lattice dynamics and intermediate-phase magnetism in delafossite CuFeO$_{2}$


    Klobes, B.; Herlitschke, M.; Rushchanskii, K. Z.; Wille, H.-C.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Nugroho, A. A.; Hermann, Raphael


    Hyperfine interactions and Fe-specific lattice dynamics in CuFeO$_{2}$ were investigated by nuclear resonance scattering methods and compared to ab initio lattice dynamics calculations. Using nuclear forward scattering the collinear spin structure at temperatures below about 11 K could be confirmed, whereas the nuclear forward scattering results in the intermediate temperature range between about 11 K and 14 K are incompatible withthe assumption of a sinusoidal distribution of spins parallel ...

  17. Self-diffusion in supercritical water and benzene in high-temperature high-pressure conditions studied by NMR and dynamic solvation-shell model (United States)

    Yoshida, Ken; Matubayasi, Nobuyuki; Uosaki, Yasuhiro; Nakahara, Masaru


    The self-diffusion coefficients of water and organic solvents in the high-temperature high-pressure conditions are studied by using high-temperature NMR and MD simulation methods. The experimental results are analyzed using a scheme based on the solvation shell relaxation time obtained by MD simulation. The dynamic effect of hydrogen bonding is discussed through the comparison between water and a nonpolar organic solvent, benzene, over a wide range of density and temperature. The hydrogen-bonding effects are as follows: (1) the self-diffusion coefficient of water depends on density more weakly than that of benzene, (2) the self-diffusion coefficient of water at the ambient density depends on temperature more strongly than that of benzene at the density, (3) the turnover from the mobile-shell type to the in-shell type with increasing density does not occur in supercritical water up to the ambient density, whereas such turnover is observed in benzene. These contrasts are reflecting the dynamic effect of the anisotropic attractive interactions.

  18. Global attractor for the lattice dynamical system of a nonlinear Boussinesq equation

    Directory of Open Access Journals (Sweden)

    Ahmed Y. Abdallah


    Full Text Available We will study the lattice dynamical system of a nonlinear Boussinesq equation. Our objective is to explore the existence of the global attractor for the solution semiflow of the introduced lattice system and to investigate its upper semicontinuity with respect to a sequence of finite-dimensional approximate systems. As far as we are aware, our result here is the first concerning the lattice dynamical system corresponding to a differential equation of second order in time variable and fourth order in spatial variable with nonlinearity involving the gradients.

  19. A fractional generalization of the classical lattice dynamics approach (United States)

    Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.


    We develop physically admissible lattice models in the harmonic approximation which define by Hamilton's variational principle fractional Laplacian matrices of the forms of power law matrix functions on the n -dimensional periodic and infinite lattice in n=1,2,3,..n=1,2,3,.. dimensions. The present model which is based on Hamilton's variational principle is confined to conservative non-dissipative isolated systems. The present approach yields the discrete analogue of the continuous space fractional Laplacian kernel. As continuous fractional calculus generalizes differential operators such as the Laplacian to non-integer powers of Laplacian operators, the fractional lattice approach developed in this paper generalized difference operators such as second difference operators to their fractional (non-integer) powers. Whereas differential operators and difference operators constitute local operations, their fractional generalizations introduce nonlocal long-range features. This is true for discrete and continuous fractional operators. The nonlocality property of the lattice fractional Laplacian matrix allows to describe numerous anomalous transport phenomena such as anomalous fractional diffusion and random walks on lattices. We deduce explicit results for the fractional Laplacian matrix in 1D for finite periodic and infinite linear chains and their Riesz fractional derivative continuum limit kernels.

  20. Superconductivity under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K.; Takeda, K.; Tateiwa, N.; Muramatsu, T.; Ishizuka, M.; Kobayashi, T.C


    In part 1, we review techniques developed in our laboratory for producing the complex extreme condition of very low temperature and ultra-high pressure and those for measuring electrical resistance and magnetization of the sample confined in the extremely small space of the used pressure cell. In part 2, we review our experimental results in search for pressure-induced superconductivity, which have been obtained by the use of developed techniques. Typical examples are shown in the case of simple inorganic and organic molecular crystals, ionic crystals, and magnetic metals.

  1. High pressure induced superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K


    We have developed complex extreme condition of very low temperature down to 30 mK and ultra high pressure exceeding 200 GPa by assembling compact diamond anvil cell (DAC) on a powerful {sup 3}He/{sup 4}He dilution refrigerator. We have also developed measuring techniques of electrical resistance, magnetization and optical measurement for the sample confined in the sample space of the DAC. Using the newly developed apparatus and techniques, we have searched for superconductivity in various materials under pressure. In this paper, we will shortly review our newly developed experimental apparatus and techniques and discuss a few examples of pressure induced superconductivity which were observed recently.

  2. Link fermions and dynamically correlated paths for lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Brower, R.C. (Harvard Univ., Cambridge, MA (USA). Lyman Lab. of Physics); Giles, R.C. (Massachusetts Inst. of Tech., Cambridge (USA). Lab. for Nuclear Science); Kessler, D.A. (Los Alamos National Lab., NM (USA). Theoretical Div.); Maturana, G. (California Univ., Santa Cruz (USA). Physics Dept.)


    The calculation of fermion bound states in lattice QCD is discussed from the point of view of the Feynman path integral and the corresponding lattice 'path sum' representation of the fermion propagator. Path sum methods which correlate the trajectories of valence fermion and antifermion constituents of a meson bound state are presented. The resultant Monte Carlo algorithm for the meson propagator samples predominantly those configurations which are expected to be most important for a tightly bound system. Relative to other techniques, this procedure anticipates cancellations due to gauge field averaging, and in addition, allows a more detailed examination of the bound state wavefunction. Inspired by the fermionic path representation of the 2D Ising model, we also introduce a new class of lattice fermion actions with nearest neighbor interactions between Grassman variables associated with links. These link fermions are a simple generalization of Wilson's fermions. They have an additional corner weight parameter which can be adjusted to obtain a much improved dispersion relation for moderate and parge lattice momenta.

  3. Emergent dynamic structures and statistical law in spherical lattice gas automata. (United States)

    Yao, Zhenwei


    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  4. Emergent dynamic structures and statistical law in spherical lattice gas automata (United States)

    Yao, Zhenwei


    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  5. Cascaded spin motive force driven by the dynamics of the skyrmion lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ohe, Jun-ichiro; Shimada, Yuhki [Department of Physics, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 (Japan)


    We numerically investigate the spin motive force (SMF) driven by the dynamics of a Skyrmion lattice. The rotating mode of the Skyrmion core excited by the AC magnetic field induces the large spin-dependent electric field near the core. Due to the collective dynamics of Skyrmion lattice, the measurable voltage is enhanced by the cascade effect of the SMF. The amplitude of the AC voltage is estimated to 30 μV in a macroscopic sample, where 100 Skyrmions exist between two probes. We also investigate the SMF due to the dynamics of the helical magnetic state, where the enhancement of the SMF does not occur.

  6. The existence of traveling wave solutions for a bistable three-component lattice dynamical system (United States)

    Guo, Jong-Shenq; Wu, Chin-Chin


    We study the traveling wave solutions for a three-component lattice dynamical system. This problem arises in the modeling of three species competing two food resources in an environment with migration in which the habitat is one-dimensional and is divided into countable niches. We are concerned with the case when two species have different preferences of food and the third species has both preferences of food. To understand which species win the competition under the bistable condition, the existence of a traveling wave solution for this lattice dynamical system is proven.

  7. Kinks dynamics in one-dimensional coupled map lattices

    CERN Document Server

    Fernández, B


    We examine the problem of the dynamics of interfaces in a one-dimensional space-time discrete dynamical system. Two different regimes are studied : the non-propagating and the propagating one. In the first case, after proving the existence of such solutions, we show how they can be described using Taylor expansions. The second situation deals with the assumption of a travelling wave to follow the kink propagation. Then a comparison with the corresponding continuous model is proposed. We find that these methods are useful in simple dynamical situations but their application to complex dynamical behaviour is not yet understood.

  8. Nonequilibrium Dynamical Mean-Field Theory for Bosonic Lattice Models

    Directory of Open Access Journals (Sweden)

    Hugo U. R. Strand


    Full Text Available We develop the nonequilibrium extension of bosonic dynamical mean-field theory and a Nambu real-time strong-coupling perturbative impurity solver. In contrast to Gutzwiller mean-field theory and strong-coupling perturbative approaches, nonequilibrium bosonic dynamical mean-field theory captures not only dynamical transitions but also damping and thermalization effects at finite temperature. We apply the formalism to quenches in the Bose-Hubbard model, starting from both the normal and the Bose-condensed phases. Depending on the parameter regime, one observes qualitatively different dynamical properties, such as rapid thermalization, trapping in metastable superfluid or normal states, as well as long-lived or strongly damped amplitude oscillations. We summarize our results in nonequilibrium “phase diagrams” that map out the different dynamical regimes.

  9. High pressure direct injection

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J. [Cummins Westport Inc., Vancouver, BC (Canada)


    A brief overview of Cummins Westport was provided, indicating that Westport originated in the 1980s through a research team at the University of British Columbia, and the hiring of the first employees began in 1996. The joint venture between Cummins and Westport was formed in March 2001. Cummins is the largest builder of commercial diesels in the world, and Westport is a small incubation technology company with emphasis on natural gas. The contribution of each company benefits the joint venture. Cummins brings traditional expertise in product and process development and distribution system, while Westport contributes new high pressure direct injection (HPDI) technology, funding and enthusiasm. The same base engine is kept and only the fuel system is changed. HPDI uses diesel cycle combustion and diesel pilot ignites natural gas. It allows for low emissions, high performance, high efficiency and economic payback. The pilot-ignited HPDI technology was explained, and its application to large class-8 trucks was discussed. The efficiency and performance of diesel engines is maintained by HPDI technology, there are 40 per cent reductions in nitrous oxide emissions, particulate matter emissions are reduced by 60 per cent, and carbon dioxide emissions are reduced by 20 per cent. A field demonstration was reviewed, and the major test at Norcal in San Francisco was discussed. The key success factors were found to be: formalized customer support plan, on-site technical support, parts availability, driver support and interaction, and training. Liquid natural gas fuel contamination was found to cause component wear. The emphasis has now been placed on three issues: injector life improvements, fuel debris and liquid natural gas pump/dome regulator life, and fuel economy improvements. The accomplishments for 2001 were identified, such as rapidly improving reliability, 17 HPDI trucks are upfit and in-service to name a few. The goals for 2002 include the placement of permanent fuel

  10. Efficiencies of dynamic Monte Carlo algorithms for off-lattice particle systems with a single impurity

    KAUST Repository

    Novotny, M.A.


    The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing Markov Chains method are given. Simulation results are presented to confirm the theoretical efficiencies. © 2010.

  11. Effect of three-body forces on the lattice dynamics of noble metals

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 56; Issue 4. Effect of ... This effective potential has been used, in third order perturbation, to study the effect of three-body forces on the lattice dynamics of noble metals. ... Department of Physics, School of Sciences, Gujarat University, Ahmedabad 380 009, India ...

  12. Direct characterization of photoinduced lattice dynamics in BaFe2As2. (United States)

    Gerber, S; Kim, K W; Zhang, Y; Zhu, D; Plonka, N; Yi, M; Dakovski, G L; Leuenberger, D; Kirchmann, P S; Moore, R G; Chollet, M; Glownia, J M; Feng, Y; Lee, J-S; Mehta, A; Kemper, A F; Wolf, T; Chuang, Y-D; Hussain, Z; Kao, C-C; Moritz, B; Shen, Z-X; Devereaux, T P; Lee, W-S


    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands.

  13. Lattice Dynamical Properties of Ferroelectric Thin Films at the Nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xiaoxing [Temple University


    In this project, we have successfully demonstrated atomic layer-by-layer growth by laser MBE from separate targets by depositing SrTiO3 films from SrO and TiO2 targets. The RHEED intensity oscillation was used to monitor and control the growth of each SrO and TiO2 layer. We have shown that by using separate oxide targets, laser MBE can achieve the same level of stoichiometry control as the reactive MBE. We have also studied strain relaxation in LaAlO3 films and its effect on the 2D electron gas at LaAlO3/SrTiO3 interface. We found that there are two layers of different in-plane lattice constants in the LaAlO3 films, one next to the SrTiO3 substrate nearly coherently strained, while the top part relaxed as the film thickness increases above 20 unit cells. This strain relaxation significantly affect the transport properties of the LaAlO3/SrTiO3 interface.

  14. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics (United States)

    Murua, Joseba; Palacios, Rafael; Graham, J. Michael R.


    The unsteady vortex-lattice method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally expensive potential-flow models, such as the doublet-lattice method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the unsteady vortex-lattice method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Different formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the unsteady vortex-lattice method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The unsteady vortex-lattice method is unveiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling.

  15. Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl; Møller, Jesper


    Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...

  16. Lattice dynamics during electronic sputtering of solid Ne

    DEFF Research Database (Denmark)

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen


    Electronic sputtering of solid neon has been studied with molecular dynamics. The cavity formation around an excited atom and particle migration in the surface region, as well as the sputtering process have been studied. A single atomic exciton has been observed to produce a desorption of up...

  17. High Pressure Research on Materials

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 6. High Pressure Research on Materials - Production and Measurement of High Pressures in the Laboratory. P Ch Sahu N V Chandra Shekar. General Article Volume 12 Issue 6 June 2007 pp 10-23 ...

  18. Kinetic Continuous Opinion Dynamics Model on Two Types of Archimedean Lattices

    Directory of Open Access Journals (Sweden)

    Francisco W. S. Lima


    Full Text Available Here, the critical properties of kinetic continuous opinion dynamics model are studied on (4, 6, 12 and (4, 82 Archimedean lattices. We obtain pc and the critical exponents from Monte Carlo simulations and finite size scaling. We found out the values of the critical points and Binder cumulant that are pc = 0.086(3 and O4*=0.59(2 for (4, 6, 12; and pc = 0.109(3 and O4*=0.606(5 for (4, 82 lattices and also the exponent ratios β/ν, γ/ν, and 1/ν are, respectively: 0.23(7, 1.43(5, and 0.60(3 for (4, 6, 12; and 0.149(4, 1.56(4, and 0.94(4 for (4, 82 lattices. Our new results disprove of the Grinstein criterion.

  19. Dynamic aperture studies for the LHC high luminosity lattice

    Energy Technology Data Exchange (ETDEWEB)

    Maria, R. de [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Giovannozzi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); McIntosh, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cai, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M. -H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)


    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  20. Molecular dynamics study of acoustic emission from individual lattice defects (United States)

    Nikonov, A. Yu.


    The paper reports on a molecular dynamics study of acoustic emission in an indented iron crystal for analyzing the effect of dislocations on its signal. The acoustic response of the system to loading is evaluated as forces acting on sensors which represent separate atomic areas located on the specimen surface. The analysis of acoustic emission and internal specimen structure shows a significant change in the emission signal due to the emergence of dislocations on the specimen surface.

  1. Dynamical barrier for the formation of solitary waves in discrete lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003 (United States)], E-mail:; Espinola-Rocha, J.A. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003 (United States); Drossinos, Y. [European Commission, Joint Research Centre, I-21020 Ispra (Vatican City State, Holy See,) (Italy); School of Mechanical and Systems Engineering, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); Stefanov, A. [Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd., Lawrence, KS 66045-7523 (United States)


    We consider the problem of the existence of a dynamical barrier of 'mass' that needs to be excited on a lattice site to lead to the formation and subsequent persistence of localized modes for a nonlinear Schroedinger lattice. We contrast the existence of a dynamical barrier with its absence in the static theory of localized modes in one spatial dimension. We suggest an energetic criterion that provides a sufficient, but not necessary, condition on the amplitude of a single-site initial condition required to form a solitary wave. We show that this effect is not one-dimensional by considering its two-dimensional analog. The existence of a sufficient condition for the excitation of localized modes in the non-integrable, discrete, nonlinear Schroedinger equation is compared to the dynamics of excitations in the integrable, both discrete and continuum, version of the nonlinear Schroedinger equation.

  2. Lattice dynamics in spin-crossover nanoparticles through nuclear inelastic scattering (United States)

    Félix, Gautier; Mikolasek, Mirko; Peng, Haonan; Nicolazzi, William; Molnár, Gábor; Chumakov, Aleksandr I.; Salmon, Lionel; Bousseksou, Azzedine


    We used nuclear inelastic scattering (NIS) to investigate the lattice dynamics in [Fe(pyrazine)(Ni(CN)4)] spin crossover nanoparticles. The vibrational density of states of iron was extracted from the NIS data, which allowed to determine characteristic thermodynamical and lattice dynamical parameters as well as their spin-state dependence. The optical part of the NIS spectra compares well with the Raman scattering data reflecting the expansion/contraction of the coordination octahedron during the spin transition. From the acoustic part, we extracted the sound velocity in the low-spin (vLS=2073 ±31 m s-1) and high-spin (vHS=1942 ±23 m s-1) states of the particles. The spin-state dependence of this parameter is of primary interest to rationalize the spin-transition behavior in solids as well as its dynamics and finite size effects.

  3. /sup 57/Fe impurity atom lattice dynamics and systematics in group V and VI host metals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.D.; Kitchens, T.A. Jr.; Erickson, D.J.


    The Moessbauer recoil-free fraction f and thermal shift have been measured for very dilute /sup 57/Fe impurities in body-centered cubic V, Nb, Mo, Ta, and W host metals in the range 4 to 860/sup 0/K. These experimental quantities have been interpreted in terms of an impurity-atom lattice-dynamical model of Mannheim where the important parameter ..gamma../sub ih//..gamma../sub hh/ is a measure of the coupling of the impurity atom to the host lattice relative to the corresponding coupling in the pure host lattice. Values of ..gamma../sub ih//..gamma../sub hh/ for each host from the f-value data were obtained and, independently, from the shift data, and for each host rather good agreement is obtained. The general trend of the data shows that for neighboring hosts of the same row of the periodic table, the relative /sup 57/Fe impurity binding is stronger for the Group V host than for the Group VI host. The results also support a previous conjecture that the nearest-neighbor binding between the impurity and the host should be proportional to a geometric mean of the nearest-neighbor couplings for a lattice consisting entirely of impurity atoms and for a lattice of host atoms only.

  4. Skyrmion-like states in two- and three-dimensional dynamical lattices. (United States)

    Kevrekidis, P G; Carretero-González, R; Frantzeskakis, D J; Malomed, B A; Diakonos, F K


    We construct, in discrete two-component systems with cubic nonlinearity, stable states emulating Skyrmions of the classical field theory. In the two-dimensional case, an analog of the baby Skyrmion is built on the square lattice as a discrete vortex soliton of a complex field [whose vorticity plays the role of the Skyrmion's winding number (WN)], coupled to a radial "bubble" in a real lattice field. The most compact quasi-Skyrmion on the cubic lattice is composed of a nearly planar complex-field discrete vortex and a three-dimensional real-field bubble; unlike its continuum counterpart which must have WN=2, this stable discrete state exists with WN=1. Analogs of Skyrmions in the one-dimensional lattice are also constructed. Stability regions for all these states are found in an analytical approximation and verified numerically. The dynamics of unstable discrete Skyrmions (which leads to the onset of lattice turbulence) and their partial stabilization by external potentials are explored too.

  5. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela


    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  6. On model-free reconstruction of lattice dynamics from thermal diffuse scattering. (United States)

    Bosak, Alexei; Chernyshov, Dmitry


    Expressions are derived for thermal diffuse scattering (TDS) using a formalism based on Born's S-matrix. It is shown that for monoatomic crystals the dynamical matrix containing the full information on lattice dynamics can be recovered from one-phonon TDS intensities. For any non-monoatomic crystal, part of the information is always lost in the kinematic approximation, but can in principle be recovered by measuring TDS in the dynamical scattering regime. In the long-wave limit the description here coincides with known results.

  7. Lattice dynamics of ZnAl{sub 2}O{sub 4} and ZnGa{sub 2}O{sub 4} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Moreno, S.; Rodriguez-Hernandez, P.; Munoz, A. [Departamento de Fisica Fundamental II, MALTA Consolider Team, Instituto de Materiales y Nanotecnologia Universidad de La Laguna, La Laguna 38205, Tenerife (Spain); Romero, A.H. [CINVESTAV-Queretaro Libramiento Norponiente No 2000 Real de Juriquilla 76230 Queretaro, Qro (Mexico); Manjon, F.J. [Instituto de Diseno para la Fabricacion y Produccion Automatizada, MALTA Consolider Team, Universitat Politecnica de Valencia, 46022 Valencia (Spain); Errandonea, D. [Fundacion General de la Universidad de Valencia ICMUV, MALTA Consolider Team, Edificio de Investigacion, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); Rusu, E.; Ursaki, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, 2028 Chisinau (Moldova)


    In this work we present a first-principles density functional study of the vibrational properties of ZnAl{sub 2}O{sub 4} and ZnGa{sub 2}O{sub 4} as function of hydrostatic pressure. Based on our previous structural characterization of these two compounds under pressure, herewith, we report the pressure dependence on both systems of the vibrational modes for the cubic spinel structure, for the CaFe{sub 2}O{sub 4}-type structure (Pnma) in ZnAl{sub 2}O{sub 4} and for marokite (Pbcm) ZnGa{sub 2}O{sub 4}. Additionally we report a second order phase transition in ZnGa{sub 2}O{sub 4} from the marokite towards the CaTi{sub 2}O{sub 4}-type structure (Cmcm), for which we also calculate the pressure dependence of the vibrational modes at the {gamma} point. Our calculations are complemented with Raman scattering measurements up to 12 GPa that show a good overall agreement between our calculated and measured mode frequencies. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Simple Navier’s slip boundary condition for the non-Newtonian Lattice Boltzmann fluid dynamics solver

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skoček, Jan


    The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary condition...

  9. Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann (United States)

    Melenev, Petr


    Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces.

  10. Stability and lattice dynamics of SiO2 cristobalite (United States)

    Coh, Sinisa; Vanderbilt, David


    Among the phases of SiO2 are alpha and beta cristobalite. Despite early indications that the higher-temperature beta phase might be cubic (Fd3m), it is now accepted that it is in fact tetragonal (I42d), and that the experiments suggesting a cubic structure were averaging spatially or dynamically over tetragonal domains. Recently, Zhang and Scott (J. Phys. Cond.Matt. 19, 275201) suggested that the lower-temperature alpha phase, widely accepted to be tetragonal (P41212), might be an artifact in a similar way. With this motivation we investigate the energy landscape in the vicinity of cristobalite phases using first-principles calculations. We use the ABINIT implementation of density-functional theory in a plane-wave pseudopotential framework. We find that both the P41212 alpha and I42d beta phases are local minima, thus reinforcing that the identification of the alpha phase as belonging to the P41212 structure. We compute the frequencies of phonon modes at high-symmetry k-points in both structures and compare with experiment. We also identify a minimum-energy path connecting the alpha and beta phases through an intermediate orthorhombic phase (P212121), and find a surprisingly low barrier of ˜5,eV per formula unit. We note that a simple rigid-unit mode picture gives a good rough description of these energetics, and we map out the minimum-energy path in the space of rigid unit rotations in a physically insightful way.

  11. Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework

    KAUST Repository

    Neumann, Philipp


    © 2014 Elsevier Inc. All rights reserved. We present a dynamically adaptive Lattice Boltzmann (LB) implementation for solving the shallow water equations (SWEs). Our implementation extends an existing LB component of the Peano framework. We revise the modular design with respect to the incorporation of new simulation aspects and LB models. The basic SWE-LB implementation is validated in different breaking dam scenarios. We further provide a numerical study on stability of the MRT collision operator used in our simulations.

  12. Anisotropic lattice dynamics and intermediate-phase magnetism in delafossite CuFeO2 (United States)

    Klobes, B.; Herlitschke, M.; Rushchanskii, K. Z.; Wille, H.-C.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Nugroho, A. A.; Hermann, R. P.


    Hyperfine interactions and Fe-specific lattice dynamics in CuFeO2 were investigated by nuclear resonance scattering methods and compared to ab initio lattice dynamics calculations. Using nuclear forward scattering the collinear spin structure at temperatures below about 11 K could be confirmed, whereas the nuclear forward scattering results in the intermediate temperature range between about 11 K and 14 K are incompatible with the assumption of a sinusoidal distribution of spins parallel to the c axis of CuFeO2. The critical behavior of the average hyperfine field at the phase transition at about 14 K further supports a three-dimensional model for the magnetism in this compound. Moreover, using nuclear inelastic scattering by the 57 Fe Mössbauer resonance, Fe-specific lattice dynamics are found to be strongly anisotropic with stiffer bonds in the a b plane of the crystal. The powder averaged, Fe partial density of phonon states can be well modeled using ab initio calculations and low-energy phonons are found to deviate from classical Debye-like behavior, indicating spin-phonon coupling in this compound. Besides, the theoretical phonon spectrum exhibits typical characteristics for delafossite-type material.

  13. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xia, E-mail:; Wu, Genhua


    Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag{sub 61} cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag{sub 61} cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron.

  14. Coherent ultrafast lattice-directed reaction dynamics of triiodide anion photodissociation (United States)

    Xian, Rui; Corthey, Gastón; Rogers, David M.; Morrison, Carole A.; Prokhorenko, Valentyn I.; Hayes, Stuart A.; Miller, R. J. Dwayne


    Solid-state reactions are influenced by the spatial arrangement of the reactants and the electrostatic environment of the lattice, which may enable lattice-directed chemical dynamics. Unlike the caging imposed by an inert matrix, an active lattice participates in the reaction, however, little evidence of such lattice participation has been gathered on ultrafast timescales due to the irreversibility of solid-state chemical systems. Here, by lowering the temperature to 80 K, we have been able to study the dissociative photochemistry of the triiodide anion (I3-) in single-crystal tetra-n-butylammonium triiodide using broadband transient absorption spectroscopy. We identified the coherently formed tetraiodide radical anion (I4•-) as a reaction intermediate. Its delayed appearance after that of the primary photoproduct, diiodide radical I2•-, indicates that I4•- was formed via a secondary reaction between a dissociated iodine radical (I•) and an adjacent I3-. This chemistry occurs as a result of the intermolecular interaction determined by the crystalline arrangement and is in stark contrast with previous solution studies.

  15. Equilibration Dynamics of Strongly Interacting Bosons in 2D Lattices with Disorder. (United States)

    Yan, Mi; Hui, Hoi-Yin; Rigol, Marcos; Scarola, V W


    Motivated by recent optical lattice experiments [J.-y. Choi et al., Science 352, 1547 (2016)SCIEAS0036-807510.1126/science.aaf8834], we study the dynamics of strongly interacting bosons in the presence of disorder in two dimensions. We show that Gutzwiller mean-field theory (GMFT) captures the main experimental observations, which are a result of the competition between disorder and interactions. Our findings highlight the difficulty in distinguishing glassy dynamics, which can be captured by GMFT, and many-body localization, which cannot be captured by GMFT, and indicate the need for further experimental studies of this system.

  16. Real-Time Dynamics in U(1 Lattice Gauge Theories with Tensor Networks

    Directory of Open Access Journals (Sweden)

    T. Pichler


    Full Text Available Tensor network algorithms provide a suitable route for tackling real-time-dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1 lattice gauge theory in (1+1 dimensions in the presence of dynamical matter for different mass and electric-field couplings, a theory akin to quantum electrodynamics in one dimension, which displays string breaking: The confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric-field and particle fluctuations. We determine a dynamical state diagram for string breaking and quantitatively evaluate the time scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present a variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.

  17. Electrokinetic high pressure hydraulic system (United States)

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.


    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  18. Quantum Ising dynamics and Majorana-like edge modes in the Rabi lattice model (United States)

    Kumar, Brijesh; Jalal, Somenath


    The atomic dipoles in the Rabi lattice model exhibit quantum Ising dynamics in the limit of strong atom-photon interaction. It governs the paraelectric to ferroelectric phase transition in the ground state. On an open chain, it implies the existence of two Majorana-like, albeit topologically unprotected, edge modes in the ordered phase. The relation ρ1Lx=p8 between the end-to-end dipole correlation ρ1Lx and the spontaneous polarization p is proposed as an observable signature of these edge modes. The density-matrix renormalization-group calculations on the one-dimensional Rabi lattice support the strong-coupling quantum Ising behavior and correctly yield the proposed end-to-end dipole correlation. The conditions that protect the edge modes against the adverse perturbations are also identified.

  19. Quantum many-body dynamics of ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Stefan


    Ultracold atoms can be trapped in periodic intensity patterns of light created by counterpropagating laser beams, so-called optical lattices. In contrast to its natural counterpart, electrons in a solid state crystal, this man-made setup is very clean and highly isolated from environmental degrees of freedom. Moreover, to a large extent, the experimenter has dynamical control over the relevant system parameters: the interaction between atoms, the tunneling amplitude between lattice sites, and even the dimensionality of the lattice. These advantages render this system a unique platform for the simulation of quantum many-body dynamics for various lattice Hamiltonians as has been demonstrated in several experiments by now. The most significant step in recent times has arguably been the introduction of single-site detection of individual atoms in optical lattices. This technique, based on fluorescence microscopy, opens a new doorway for the study of quantum many-body states: the detection of the microscopic atom configuration. In this thesis, we theoretically explore the dynamics of ultracold atoms in optical lattices for various setups realized in present-day experiments. Our main focus lies on aspects that become experimentally accessible by (realistic extensions of) the novel single-site measurement technique. The first part deals with the expansion of initially confined atoms in a homogeneous lattice, which is one way to create atomic motion in experiments. We analyze the buildup of spatial correlations during the expansion of a finitely extended band insulating state in one dimension. The numerical simulation reveals the creation of remote spin-entangled fermions in the strongly interacting regime. We discuss the experimental observation of such spin-entangled pairs by means of a single-site measurement. Furthermore, we suggest studying the impact of observations on the expansion dynamics for the extreme case of a projective measurement in the spatial occupation

  20. Electrokinetic high pressure hydraulic system (United States)

    Paul, Phillip H.; Rakestraw, David J.


    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  1. High pressure neon arc lamp (United States)

    Sze, Robert C.; Bigio, Irving J.


    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  2. High Pressure Research on Materials

    Indian Academy of Sciences (India)

    basic types of apparatus that are now being used throughout the world. He was awarded the Nobel Prize in Physics in 1946. The static high pressure generating devices can be divided into two categories: piston-cylinder and opposed anvil devices. These devices with their pressure capabilities are listed in Figure 4.

  3. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink


    In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together with their st......In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together....... High-pressure crystallography is the perfect method for studying intermolecular interactions, by forcing the molecules closer together. In all three studied hydroquinone clathrates, new pressure induced phase transitions have been discovered using a mixture of pentane and isopentane as the pressure...... transmitting medium. Through careful structural analysis combined with theoretical calculations, the structures of all the new high-pressure phases identified herein were determined. In the hydroquinone - methanol and hydroquinone - acetonitrile clathrate structures the phase transitions break the host...

  4. Lattice dynamics of Dirac node-line semimetal ZrSiS (United States)

    Zhou, Wei; Gao, Heng; Zhang, Junran; Fang, Ruiyang; Song, Hao; Hu, Tao; Stroppa, Alessandro; Li, Ling; Wang, Xuefeng; Ruan, Shuangchen; Ren, Wei


    We report a comprehensive study of lattice dynamics of the Dirac node-line semimetal ZrSiS single crystal by Raman spectroscopy and first-principles calculations. The weak covalent bonding between ZrSiS layers is confirmed by the absence of low-frequency shear or breathing Raman modes down to 15 c m-1 . All six Raman-active optical phonons are identified at 300 K, whose energies and symmetries match our phonon-dispersion calculations and polarized Raman measurements. The thermodynamic stability is verified from 77 to 300 K, and, with increasing temperature, sizable softening of Raman modes is observed with broadened profiles. The first-order temperature coefficients are found to be linearly dependent on temperature. Furthermore, using multiple excitation laser wavelengths of 488, 514.5, 568, 647, and 785 nm, we find that three out-of-plane Raman modes are all nondispersive, and their normalized intensity resonances at different laser energies can be attributed to the different interband transitions. Our work provides detailed information of ZrSiS lattice vibrations, as well as the coupling between ZrSiS lattice vibrations and its electronic states.

  5. High-pressure synthesis of tantalum dihydride (United States)

    Kuzovnikov, Mikhail A.; Tkacz, Marek; Meng, Haijing; Kapustin, Dmitry I.; Kulakov, Valery I.


    The reaction of tantalum with molecular hydrogen was studied by x-ray diffraction in a diamond-anvil cell at room temperature and pressures from 1 to 41 GPa. At pressures up to 5.5 GPa, a substoichiometric tantalum monohydride with a distorted bcc structure was shown to be stable. Its hydrogen content gradually increased with the pressure increase, reaching H /Ta =0.92 (5 ) at 5 GPa. At higher pressures, a new dihydride phase of tantalum was formed. This phase had an hcp metal lattice, and its hydrogen content was virtually independent of pressure. When the pressure was decreased, the tantalum dihydride thus obtained transformed back to the monohydride at P =2.2 GPa . Single-phase samples of tantalum dihydride also were synthesized at a hydrogen pressure of 9 GPa in a toroid-type high-pressure apparatus, quenched to the liquid-N2 temperature, and studied at ambient pressure. X-ray diffraction showed them to have an hcp metal lattice with a =3.224 (3 ) and c =5.140 (5 )Å at T =85 K . The hydrogen content determined by thermal desorption was H /Ta =2.2 (1 ) .

  6. Factorization of the hypergeometric-type difference equation on non-uniform lattices: dynamical algebra

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Nodarse, R [Departamento de Analisis Matematico, Universidad de Sevilla, Apdo. 1160, E-41080 Sevilla (Spain); Atakishiyev, N M [Instituto de Matematicas, UNAM, Apartado Postal 273-3, CP 62210 Cuernavaca, Morelos, Mexico (Germany); Costas-Santos, R S [Departamento de Matematicas, EPS, Universidad Carlos III de Madrid, Ave. Universidad 30, E-28911, Leganes, Madrid (Spain)


    We argue that one can factorize the difference equation of hypergeometric type on non-uniform lattices in the general case. It is shown that in the most cases of q-linear spectrum of the eigenvalues, this directly leads to the dynamical symmetry algebra su{sub q}(1, 1), whose generators are explicitly constructed in terms of the difference operators, obtained in the process of factorization. Thus all models with the q-linear spectrum (some of them, but not all, previously considered in a number of publications) can be treated in a unified form.

  7. Quantum Ising dynamics and Majorana-like edge modes in the Rabi lattice model


    Kumar, Brijesh; Jalal, Somenath


    The atomic dipoles in the Rabi lattice model exhibit quantum Ising dynamics in the limit of strong atom-photon interaction. It governs the para- to ferro-electric phase transition in the ground state. On an open chain, it implies the existence of two Majorana-like, albeit topologically unprotected, edge modes in the ordered phase. The relation \\rho^x_{1L}=p^8 between the end-to-end dipole correlation, \\rho^x_{1L}, and the spontaneous polarization, p, is proposed as an observable signature of ...

  8. Dynamic behavior of the interface of striplike structures in driven lattice gases (United States)

    Saracco, Gustavo P.; Albano, Ezequiel V.


    In this work, the dynamic behavior of the interfaces in both the standard and random driven lattice gas models (DLG and RDLG, respectively) is investigated via numerical Monte Carlo simulations in two dimensions. These models consider a lattice gas of density ρ=1/2 with nearest-neighbor attractive interactions between particles under the influence of an external driven field applied along one fixed direction in the case of the DLG model, and a randomly varying direction in the case of the RDLG model. The systems are also in contact with a reservoir at temperature T . Those systems undergo a second-order nonequilibrium phase transition between an ordered state characterized by high-density strips crossing the sample along the driving field, and a quasilattice gas disordered state. For T≲Tc , the average interface width of the strips (W) was measured as a function of the lattice size and the anisotropic shape factor. It was found that the saturation value Wsat2 only depends on the lattice size parallel to the external field axis Ly and exhibits two distinct regimes: Wsat2∝lnLy for low temperatures, that crosses over to Wsat2∝Ly2αI near the critical zone, αI=1/2 being the roughness exponent of the interface. By using the relationship αI=1/(1+ΔI) , the anisotropic exponent for the interface of the DLG model was estimated, giving ΔI≃1 , in agreement with the computed value for anisotropic bulk exponent ΔB in a recently proposed theoretical approach. At the crossover region between both regimes, we observed indications of bulk criticality. The time evolution of W at Tc was also monitored and shows two growing stages: first one observes that W∝lnt for several decades, and in the following times one has W∝tβI , where βI is the dynamic exponent of the interface width. By using this value we estimated the dynamic critical exponent of the correlation length in the perpendicular direction to the external field, giving z⊥I≈4 , which is consistent with

  9. One-dimensional dynamics for travelling fronts in coupled map lattices

    CERN Document Server

    Carretero-González, R; Vivaldi, F


    Multistable coupled map lattices typically support travelling fronts, separating two adjacent stable phases. We show how the existence of an invariant function describing the front profile, allows a reduction of the infinitely-dimensional dynamics to a one-dimensional circle homeomorphism, whose rotation number gives the propagation velocity. The mode-locking of the velocity with respect to the system parameters then typically follows. We study the behaviour of fronts near the boundary of parametric stability, and we explain how the mode-locking tends to disappear as we approach the continuum limit of an infinite density of sites.

  10. Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: Evidence of two types of collective excitations contributing to the transverse dynamics at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bryk, Taras [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv (Ukraine); Lviv Polytechnic National University, 12 S. Bandera Street, UA-79013 Lviv (Ukraine); Ruocco, G. [Dipartimento di Fisica, Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 295 Viale Regina Elena, I-00161 Roma (Italy); Scopigno, T. [Dipartimento di Fisica, Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); IPCF-CNR, c/o Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); Seitsonen, Ari P. [Département de Chimie, Université de Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Département de Chimie, École Normale Supérieure, 24 rue Lhomond, F-75005 Paris (France)


    Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations in liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.

  11. From dynamic live cell imaging to 3D ultrastructure: novel integrated methods for high pressure freezing and correlative light-electron microscopy.

    Directory of Open Access Journals (Sweden)

    Coralie Spiegelhalter

    Full Text Available BACKGROUND: In cell biology, the study of proteins and organelles requires the combination of different imaging approaches, from live recordings with light microscopy (LM to electron microscopy (EM. METHODOLOGY: To correlate dynamic events in adherent cells with both ultrastructural and 3D information, we developed a method for cultured cells that combines confocal time-lapse images of GFP-tagged proteins with electron microscopy. With laser micro-patterned culture substrate, we created coordinates that were conserved at every step of the sample preparation and visualization processes. Specifically designed for cryo-fixation, this method allowed a fast freezing of dynamic events within seconds and their ultrastructural characterization. We provide examples of the dynamic oligomerization of GFP-tagged myotubularin (MTM1 phosphoinositides phosphatase induced by osmotic stress, and of the ultrastructure of membrane tubules dependent on amphiphysin 2 (BIN1 expression. CONCLUSION: Accessible and versatile, we show that this approach is efficient to routinely correlate functional and dynamic LM with high resolution morphology by EM, with immuno-EM labeling, with 3D reconstruction using serial immuno-EM or tomography, and with scanning-EM.

  12. From Dynamic Live Cell Imaging to 3D Ultrastructure: Novel Integrated Methods for High Pressure Freezing and Correlative Light-Electron Microscopy (United States)

    Spiegelhalter, Coralie; Tosch, Valérie; Hentsch, Didier; Koch, Marc; Kessler, Pascal; Schwab, Yannick; Laporte, Jocelyn


    Background In cell biology, the study of proteins and organelles requires the combination of different imaging approaches, from live recordings with light microscopy (LM) to electron microscopy (EM). Methodology To correlate dynamic events in adherent cells with both ultrastructural and 3D information, we developed a method for cultured cells that combines confocal time-lapse images of GFP-tagged proteins with electron microscopy. With laser micro-patterned culture substrate, we created coordinates that were conserved at every step of the sample preparation and visualization processes. Specifically designed for cryo-fixation, this method allowed a fast freezing of dynamic events within seconds and their ultrastructural characterization. We provide examples of the dynamic oligomerization of GFP-tagged myotubularin (MTM1) phosphoinositides phosphatase induced by osmotic stress, and of the ultrastructure of membrane tubules dependent on amphiphysin 2 (BIN1) expression. Conclusion Accessible and versatile, we show that this approach is efficient to routinely correlate functional and dynamic LM with high resolution morphology by EM, with immuno-EM labeling, with 3D reconstruction using serial immuno-EM or tomography, and with scanning-EM. PMID:20140253

  13. A dynamic mesh refinement technique for Lattice Boltzmann simulations on octree-like grids

    KAUST Repository

    Neumann, Philipp


    In this contribution, we present our new adaptive Lattice Boltzmann implementation within the Peano framework, with special focus on nanoscale particle transport problems. With the continuum hypothesis not holding anymore on these small scales, new physical effects - such as Brownian fluctuations - need to be incorporated. We explain the overall layout of the application, including memory layout and access, and shortly review the adaptive algorithm. The scheme is validated by different benchmark computations in two and three dimensions. An extension to dynamically changing grids and a spatially adaptive approach to fluctuating hydrodynamics, allowing for the thermalisation of the fluid in particular regions of interest, is proposed. Both dynamic adaptivity and adaptive fluctuating hydrodynamics are validated separately in simulations of particle transport problems. The application of this scheme to an oscillating particle in a nanopore illustrates the importance of Brownian fluctuations in such setups. © 2012 Springer-Verlag.

  14. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    Directory of Open Access Journals (Sweden)

    C. P. Chui


    Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  15. Deformation Twinning of a Silver Nanocrystal under High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Liu, Ming; Chu, Yong S.; Robinson, Ian K.; Mao, Ho-kwang


    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  16. Deformation Twinning of a Silver Nanocrystal under High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Lu, Ming; Chu, Yong S.; Robinson, Ian K.; Mao, Ho-kwang


    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials’ microscopic morphology and alter their properties. Understanding a crystal’s response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  17. Development of a new type of high pressure calorimetric cell, mechanically agitated and equipped with a dynamic pressure control system: Application to the characterization of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Plantier, F., E-mail:; Missima, D.; Torré, J.-P. [Univ Pau and Pays Adour, CNRS, TOTAL - UMR 5150 – LFC-R - Laboratoire des Fluides Complexes et leurs Réservoirs, BP 1155 – PAU, F-64013 (France); Marlin, L. [Univ Pau and Pays Adour, IPRA FR2952 - Fédération de Recherche- Atelier de Physique Générale, BP 1155 – PAU, F-64013 (France)


    A novel prototype of calorimetric cell has been developed allowing experiments under pressure with an in situ agitation system and a dynamic control of the pressure inside the cell. The use of such a system opens a wide range of potential practical applications for determining properties of complex fluids in both pressurized and agitated conditions. The technical details of this prototype and its calibration procedure are described, and an application devoted to the determination of phase equilibrium and phase change enthalpy of gas hydrates is presented. Our results, obtained with a good precision and reproducibility, were found in fairly good agreement with those found in literature, illustrate the various interests to use this novel apparatus.

  18. Displaced dynamics of binary mixtures in linear and nonlinear optical lattices (United States)

    Sekh, Golam Ali; Salerno, Mario; Saha, Aparna; Talukdar, Benoy


    The dynamical behavior of matter-wave solitons of two-component Bose-Einstein condensates (BEC) in combined linear and nonlinear optical lattices (OLs) is investigated. In particular, the dependence of the frequency of the oscillating dynamics resulting from initially slightly displaced components is investigated both analytically, by means of a variational effective potential approach for the reduced collective coordinate dynamics of the soliton, and numerically, by direct integrations of the mean field equations of the BEC mixture. We show that for small initial displacements binary solitons can be viewed as point masses connected by elastic springs of strengths related to the amplitude of the OL and to the intra- and interspecies interactions. Analytical expressions of symmetric and antisymmetric mode frequencies are derived and occurrence of beatings phenomena in the displaced dynamics is predicted. These expressions are shown to give a very good estimation of the oscillation frequencies for different values of the intraspecies interatomic scattering length, as confirmed by direct numerical integrations of the mean field Gross-Pitaevskii equations (GPE) of the mixture. The possibility to use displaced dynamics for indirect measurements of BEC mixture characteristics such as number of atoms and interatomic interactions is also suggested.

  19. Carbon nanostructures under high pressure

    CERN Document Server

    Sundqvist, B


    Results from recent high-pressure experiments in the field of fullerenes are briefly reviewed. In particular, new results on one-, two- and three-dimensional polymerized C sub 6 sub 0 and C sub 7 sub 0 are discussed. Results discussed include the first synthesis of a well defined, one-dimensional polymer based on C sub 7 sub 0 , transformations from two-dimensional (2D) to three-dimensional phases in C sub 6 sub 0 , and doping of 2D C sub 6 sub 0 polymers.

  20. Dynamical generation of superconducting order of different symmetries in hexagonal lattices (United States)

    Dehghani, Hossein; Mitra, Aditi


    The growth of superconducting order after an interaction quench in a hexagonal lattice is studied. The cases of both time-reversal (TR) preserving graphene, as well as the TR broken Haldane model, are explored. Spin singlet superconducting order is studied where the s ,d +i d , and d -i d wave orders are the irreducible representations of the hexagonal lattice. For small quenches, the d -wave order parameter grows the fastest, a result also expected when the system is in thermal equilibrium. For the TR symmetry preserving case, the growth rate of the two d -wave orders is identical, while the TR-broken case prefers one of the chiral d -wave orders over the other, leading to a TR broken topological superconductor. As the interaction quench becomes larger, a smooth crossover is found where eventually the growth rate of the s wave becomes the largest. Thus for large interaction quenches, the s wave is preferred over the d wave for both TR preserving and TR broken systems. This result is explained in terms of the high energy quasiparticles responsible for the dynamics as the interaction quench amplitude grows. The results are relevant for time-resolved measurements that can probe the symmetry of the superconducting fluctuations in a transient regime.

  1. Proposed formation and dynamical signature of a chiral Bose liquid in an optical lattice (United States)

    Li, Xiaopeng; Paramekanti, Arun; Hemmerich, Andreas; Liu, W. Vincent


    Recent experiments on p-orbital atomic bosons have suggested the emergence of a spectacular ultracold superfluid with staggered orbital currents in optical lattices. This raises fundamental questions concerning the effects of thermal fluctuations as well as possible ways of directly observing such chiral order. Here we show via Monte Carlo simulations that thermal fluctuations destroy this superfluid in an unexpected two-step process, unveiling an intermediate normal phase with spontaneously broken time-reversal symmetry, dubbed a ‘chiral Bose liquid’. For integer fillings (n≥2) in the chiral Mott regime, thermal fluctuations are captured by an effective orbital Ising model, and Onsager’s powerful exact solution is adopted to determine the transition from this intermediate liquid to the para-orbital normal phase at high temperature. A lattice quench is designed to convert the staggered angular momentum, previously thought by experts difficult to directly probe, into coherent orbital oscillations, providing a time-resolved dynamical signature of chiral order.

  2. Relativistic coupled-cluster and density-functional studies of argon at high pressure (United States)

    Schwerdtfeger, Peter; Steenbergen, Krista G.; Pahl, Elke


    The equation of state P (V ,T ) for solid argon is determined by the calculation of accurate static and vibrational terms in the free energy. The static component comes from a quantum theoretical many-body expansion summing over all energetic contributions from two-, three-, and four-body fragments treated with relativistic coupled cluster theory, while the lattice vibrations are described at an anharmonic level including two- and three-body forces as well as temperature effects. The dynamic part is calculated within the Debye and Einstein approximation, as well as by a more accurate phonon treatment where the vibrational motions in the lattice are coupled. Our results are in good agreement with room-temperature high-pressure experimental data up to ˜20 GPa. In the 20-100 GPa pressure range, however, we see considerable deviations between experiment and theory, perhaps indicating missing four-body contributions (beyond the quadruple dipole terms included here), missing five and higher-body effects, and the need to go beyond the coupled cluster singles-doubles with perturbative triples treatment in such higher-body forces. This contrasts with the results for solid neon, where excellent agreement has been achieved taking only two- and three-body forces into account [P. Schwerdtfeger and A. Hermann, Phys. Rev. B 80, 064106 (2009), 10.1103/PhysRevB.80.064106]. We demonstrate that the phase transition from fcc to hcp cannot account for the large discrepancies observed. Density functional calculations give very mixed results in the high-pressure region, but some functionals such as optB88-vdW (proposed by Lundqvist and co-workers) describe the many-body forces in argon reasonably well over the range of pressures investigated. Theoretical investigations of the heavier rare gas solids reaching experimental accuracy in the high-pressure regime therefore remain a significant challenge.

  3. Extracting Lyapunov exponents from the echo dynamics of Bose-Einstein condensates on a lattice (United States)

    Tarkhov, Andrei E.; Wimberger, Sandro; Fine, Boris V.


    We propose theoretically an experimentally realizable method to demonstrate the Lyapunov instability and to extract the value of the largest Lyapunov exponent for a chaotic many-particle interacting system. The proposal focuses specifically on a lattice of coupled Bose-Einstein condensates in the classical regime describable by the discrete Gross-Pitaevskii equation. We suggest to use imperfect time reversal of the system's dynamics known as the Loschmidt echo, which can be realized experimentally by reversing the sign of the Hamiltonian of the system. The routine involves tracking and then subtracting the noise of virtually any observable quantity before and after the time reversal. We support the theoretical analysis by direct numerical simulations demonstrating that the largest Lyapunov exponent can indeed be extracted from the Loschmidt echo routine. We also discuss possible values of experimental parameters required for implementing this proposal.

  4. Electronic and lattice dynamical properties of II-IV-N{sub 2} semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Punya, Atchara; Paudel, Tula R.; Lambrecht, Walter R.L. [Department of Physics, Case Western Reserve University, Cleveland, OH 444106-7079 (United States)


    The II-IV-N2 semiconductors constitute a family of heterovalent ternary semiconductors with properties closely related to those of the III-Nitrides. We here focus on Zn-IV-N2 semiconductors with the group IV-element Si, Ge and Sn. We present results on their electronic band structures obtained with the quasiparticle self-consistent GW method and the full-potential linearized muffin-tin orbital method. The latter is also used to calculate the energies of formation of these compounds from the constituent elements. The lattice dynamical properties were presented earlier in a series of papers and the main properties are briefly reviewed here. We emphasize the trends in the family of materials compared to those of the III-N and discuss the experimental data for the phonons. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3). (United States)

    Zurhelle, Alexander F; Deringer, Volker L; Stoffel, Ralf P; Dronskowski, Richard


    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ΔHf (Bi2Te3)  =  -102 kJ mol(-1) at 298 K.

  6. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters (United States)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook


    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  7. Quadrupole splitting and Eu partial lattice dynamics in europium orthophosphate EuPO {sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Klobes, B., E-mail: [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany); Arinicheva, Y., E-mail:; Neumeier, S., E-mail: [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety (Germany); Simon, R. E., E-mail:; Jafari, A., E-mail: [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany); Bosbach, D., E-mail: [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety (Germany); Hermann, R. P., E-mail: [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany)


    Hyperfine interactions in europium orthophosphate EuPO{sub 4} were investigated using {sup 151}Eu Mössbauer spectroscopy from 6 to 300 K. The value of the quadrupole splitting and the asymmetry parameter were refined and further substantiated by nuclear forward scattering data obtained at room temperature. The temperature dependence of the relative absorption was modeled with an Eu specific Debye temperature of 221(1) K. Eu partial lattice dynamics were probed by means of nuclear inelastic scattering and the mean force constant, the Lamb-Mössbauer factor, the internal energy, the vibrational entropy, the average phonon group velocity were calculated using the extracted density of phonon states. In general, Eu specific vibrations are characterized by rather small phonon energies and contribute strongly to the total entropy of the system. Although there is no classical Debye like behavior at low vibrational energies, the average phonon group velocity can be reasonably approximated using a linear fit.

  8. Dynamical Behavior of Multi-Robot Systems Using Lattice Gas Automata

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Robinett, R.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.


    Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned robotic vehicles (e.g., RATLERs, Robotic All-ten-sin Lunar Exploration Rover-class vehicles). Overall design methodology is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's deformation rate, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with

  9. High pressure Raman spectra of monoglycine nitrate single crystal (United States)

    Carvalho, J. O.; Moura, G. M.; Dos Santos, A. O.; Lima, R. J. C.; Freire, P. T. C.; Façanha Filho, P. F.


    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5 GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6 GPa and 4.0-4.6 GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55 cm- 1 point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal.

  10. High pressure processing of meat

    DEFF Research Database (Denmark)

    Grossi, Alberto; Christensen, Mette; Ertbjerg, Per

    Abstract Background: The research of high pressure (HP) processing of meat based foods needs to address how pressure affects protein interactions, aggregation and/or gelation. The understanding of the gel forming properties of myofibrillar components is fundamental for the development of muscle...... based products (Chapleau et al., 2004;Colmenero, 2002). Object: The aim was to study the rheological properties of pork meat emulsion exposed to HP and the effect of HP on the aggregation state of myofibrillar proteins. To address the role of cathepsin in myofibrillar protein degradation the changes...... in the myofibrillar protein pattern and HP-induced change in activity of cathepsin B and L were investigated. Results: In this study we showed that HP treatment of pork meat emulsion, ranging from 0.1 to 800 MPa, induced protein gel formation as shown by the increased Young’s modulus (Fig.1). Analysis of SDS...

  11. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure (United States)

    Lyu, Dandan; Li, Shaofan


    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  12. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    NARCIS (Netherlands)

    Alling, B.; Kormann, F.H.W.; Grabowski, B; Glensk, A; Abrikosov, I.A.


    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite

  13. Dynamics of High Pressure Reacting Shear Flows (United States)


    liquid rockets, future gas turbines • When the combustion systems are for propulsion, limited tankage dictates that on-board propellants be stored in...condensed form – eg, kerosene, liquid oxygen in rockets • Combustion systems can no longer be designed to meet modern requirements without considering...speed gaseous H2 Symmetric recirculation zones Low-speed liquid O2 High-speed gaseous H2 Asymmetric recirculation zones Combustion case Results

  14. Lattice dynamics in two-photon-excited CdS studied by picosecond time-resolved X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kishimura, Hiroaki; Hironaka, Yoichiro [Materials and Structures Laboratory, Tokyo Institute of Technology, R3-10, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Nakamura, Kazutaka G. [Materials and Structures Laboratory, Tokyo Institute of Technology, R3-10, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan)], E-mail:


    Lattice dynamics and radiative processes in single-crystal cadmium sulfide induced by two-photon excitation with a femtosecond laser are investigated. The development of lattice expansion is directly observed by picosecond time-resolved X-ray diffraction. The obtained lattice dynamics are explained on the basis of a thermally induced impulsive-strain model. The model calculation indicates that two- and more-photon absorption processes occur and that reflectivity rapidly increases under laser irradiation. In photoluminescence spectroscopy, the spectra for TW cm{sup -2} excitation are shifted to lower energy and show an additional shoulder at 2.35 eV. Furthermore, emission due to Fabry-Perot laser modes with self-formed cavities was observed under 11 TW cm{sup -2} excitation. The discrepancy between carrier densities deduced from the lattice expansion and the PL spectra indicates that the predominant process at a higher carrier density is not radiative recombination, but Auger recombination followed by lattice heating.

  15. Molecular dynamics simulation of lattice structure, radiation damage, and vibrational spectra of zircon (ZrSiO{sub 4}).

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G. K.; Zhuang, H.-Z.; Beitz, J. V.


    The lattice structure, phonon density of states, and infrared spectrum for crystalline zircon, ZrSiO{sub 4}, have been studied using a molecular dynamics (MD) simulation method that utilizes the Born-Mayer-Huggins and Coulomb pair potentials and the Stillinger-Weber three-body potential. A lattice block of ZrSiO{sub 4}, which contains 343 unit cells with dimensions of 4.6249 x 4.6249 x 4.1874 nm{sub 3} and containing 8232 ions, was considered in our calculations. The simulated lattice structure agreed with that determined from x-ray and neutron diffraction experiments. The vibrational modes and absorption spectrum were calculated based on the simulated lattice and compared with infrared absorption spectra. Characteristic lines in infrared spectra obtained from previous experiments on natural and synthetic zircon were assigned to specific bond structures by interactive MD simulations with variation of selected potential parameters. It is shown that the O-Si-O three-body correlations in the SiO{sub 4} tetrahedron significantly influence the spectrum. It is demonstrated that the oxygen ions that are parallel and perpendicular to the c-axis in the SiO{sub 4} tetrahedron are inequivalent and make different contributions to the vibration spectrum. The energy distribution among 24 atoms in a unit cell in the 1011-cm{sup {minus}1} vibrational mode is shown in Fig. 1. Comparison between the simulated infrared absorption spectrum and that from experiments on synthetic zircon is shown in Fig. 2. The interactive method of fitting simulated results to those determined from experiments may be used as a tool for studying nanostructure and thermodynamics properties of materials. The model potentials for the ZrSiO{sub 4} lattice are refined and further applied to MD simulation of lattice disordering and line broadening that are induced by radiation damage processes and amorphization. We have further simulated alpha-decay-induced damage and dynamical recovery in the lattice of Zr

  16. Lattice dynamics in monolayer and few-layer SnSe2 (United States)

    Zhou, Wei; Yu, Zhenhai; Song, Hao; Fang, Ruiyang; Wu, Zhangting; Li, Ling; Ni, Zhenhua; Ren, Wei; Wang, Lin; Ruan, Shuangchen


    Hexagonal tin diselenide (6 Hb -SnSe2 ), a two-dimensional (2D) layered metal dichalcogenide from the IVA and VIA groups, has recently drawn numerous attention in 2D nano-optoelectronics. In this paper, we investigate characteristic lattice dynamics of mechanically exfoliated mono- and few-layer 6 Hb -SnSe2 samples by Raman spectroscopy. Bulk SnSe2 has all four Raman active modes of low-frequency shear Eg2 and layer-breathing A1g 2 modes, and high-frequency intralayer vibrational Eg1 and A1g 1 modes observed around 18.9, 33.6, 107.9, and 182.1 c m-1 , respectively. From polarized Raman measurements, we find that Eg1 mode intensity is independent of polarization configuration and increases linearly with layer number, which provides an effective approach to determine sample thickness. From low-temperature Raman measurements, Eg1 and A1g 1 mode temperature coefficients of one-layer, three-layer, and bulk SnSe2 are around -0.018 and -0.014 c m-1/K , whereas they have almost zero values for low-frequency Eg2 and A1g 2 modes of bulk SnSe2 due to different thermal responses of intralayer and interlayer vibrations. Using multiple excitation laser lines of 488, 514.5, 568, 647, and 785 nm, Eg1 and A1g 1 mode intensities of bulk SnSe2 have a similar trend with weak maxima around 2.41 eV. Our work provides valuable information about SnSe2 lattice vibrations for further fundamental research and potential applications in 2D devices such as thermoelectric and infrared light detectors.

  17. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. (United States)

    Martinez, Esteban A; Muschik, Christine A; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer


    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  18. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer (United States)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer


    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  19. Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering (United States)

    Lee, W. S.; Kung, Y. F.; Moritz, B.; Coslovich, G.; Kaindl, R. A.; Chuang, Y. D.; Moore, R. G.; Lu, D. H.; Kirchmann, P. S.; Robinson, J. S.; Minitti, M. P.; Dakovski, G.; Schlotter, W. F.; Turner, J. J.; Gerber, S.; Sasagawa, T.; Hussain, Z.; Shen, Z. X.; Devereaux, T. P.


    We investigate the lattice coupling to the spin and charge orders in the striped nickelate, La1.75Sr0.25NiO4 , using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an Eu bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.

  20. Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering


    Lee, WS; Kung, YF; Moritz, B.; Coslovich, G.; Kaindl, RA; Chuang, YD; Moore, RG; Lu, DH; Kirchmann, PS; Robinson, JS; Minitti, MP; Dakovski, G.; Schlotter, WF; Turner, JJ; Gerber, S


    © 2017 American Physical Society. We investigate the lattice coupling to the spin and charge orders in the striped nickelate, La1.75Sr0.25NiO4, using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an Eu bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.

  1. Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.S.; Kung, Y.F.; Moritz, B.; Coslovich, G.; Kaindl, R.A.; Chuang, Y.D.; Moore, R.G.; Lu, D.H.; Kirchmann, P.S.; Robinson, J.S.; Minitti, M.P.; Dakovski, G.; Schlotter, W.F.; Turner, J.J.; Gerber, S.; Sasagawa, T.; Hussain, Z.; Shen, Z.X.; Devereaux, T.P.


    We investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4 , using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.

  2. Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method (United States)

    Pravinraj, T.; Patrikar, Rajendra


    Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains the temporal behaviour of droplet during the spreading, recoiling and translation along with tracking of contact angle hysteresis phenomenon.

  3. 3D Lattice Boltzmann-Brownian Dynamics Simulations of Nanoparticle Deposition in Evaporating Liquid Masses (United States)

    Zhao, Mingfei; Yong, Xin


    Nanoparticle deposition coupled to hydrodynamics plays important roles in materials printing and thin-film processing. Investigations of nanoparticle dynamics in evaporating colloidal dispersions could elicit a greater understanding of the processing-structure relationship for evaporation-induced self-assembly and deposition. A 3D free-energy lattice Boltzmann method combined with Brownian dynamics is developed to simulate evaporating colloidal droplets and rivulets. In this work, we explore the deposition on solid substrates with different wetting properties, namely static contact angle and contact line motion. We highlight the influence of convective flows on the assembly kinetics and deposit patterns using the developed model. We introduce a novel approach to impose a pinned contact line for most of droplet lifetime. The time evolutions of contact angle and droplet volume are examined to characterize the pinning scheme. We observe the process of nanoparticle self-assembly during the evaporation of droplets and rivulets and quantitatively analyze the deposit structure. This work was supported by the National Science Foundation under Grant No. CMMI-1538090.

  4. Molecular simulations and lattice dynamics determination of Stillinger-Weber GaN thermal conductivity (United States)

    Liang, Zhi; Jain, Ankit; McGaughey, Alan J. H.; Keblinski, Pawel


    The bulk thermal conductivity of Stillinger-Weber (SW) wurtzite GaN in the [0001] direction at a temperature of 300 K is calculated using equilibrium molecular dynamics (EMD), non-equilibrium MD (NEMD), and lattice dynamics (LD) methods. While the NEMD method predicts a thermal conductivity of 166 ± 11 W/m.K, both the EMD and LD methods predict thermal conductivities that are an order of magnitude greater. We attribute the discrepancy to significant contributions to thermal conductivity from long-mean free path phonons. We propose that the Grüneisen parameter for low-frequency phonons is a good predictor of the severity of the size effects in NEMD thermal conductivity prediction. For weakly anharmonic crystals characterized by small Grüneisen parameters, accurate determination of thermal conductivity by NEMD is computationally impractical. The simulation results also indicate the GaN SW potential, which was originally developed for studying the atomic-level structure of dislocations, is not suitable for prediction of its thermal conductivity.

  5. Knotted Vortices: Entropic Lattice Boltzmann Method for Simulation of Vortex dynamics (United States)

    Boesch, Fabian; Chikatamarla, Shyam; Karlin, Ilya


    Knotted and interlinked vortex structures in real fluids are conjectured to play a major role in hydrodynamic flow dissipation. Much interest lies in determining their temporal stability and the mechanism through which knots dissolve. Kleckner and Irvine recently have shown the existence of such knotted vortices experimentally by accelerating hydrofoils in water. In the present work we employ the entropic lattice Boltzmann method (ELBM) to perform DNS simulations of the creation and dynamics of knotted vortex rings inspired by the experimental setup in. ELBM renders LBM scheme unconditionally stable by restoring the second law of thermodynamics (the Boltzmann H-theorem), and thus enables simulations of large domains and high Reynolds numbers with DNS quality. The results presented in this talk provide an in-depth study of the dynamics of knotted vortices and vortex reconnection events and confirm the existence of trefoil knots in silicio for the first time. This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s347.

  6. High pressure Raman scattering study on Sm2Mo4O15 system (United States)

    Silva Santos, S. D.; Paraguassu, W.; Maczka, M.; Freire, P. T. C.


    High-pressure Raman experiments were performed on Sm2Mo4O15 system up to 7.9 GPa. We show that this system exhibits an irreversible structural amorphization at 5.0 GPa. In contrast to any other molybdates and tungstates experiencing pressure-induced amorphization, this structural change in Sm2Mo4O15 has strongly first-order character. This amorphous phase can be originated from the hindrance of a crystalline structural phase transition from the P 1 bar to P2/m structure. Additionally, the assignment of Raman modes of the ambient-pressure phase of Sm2Mo4O15 was proposed based on lattice dynamics calculations.

  7. Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Pravinraj, T., E-mail:; Patrikar, Rajendra


    Highlights: • A LBM model on partial wetting surface for droplet dynamics is presented by introducing a simple initial partial wetting boundary condition in SC model. • With our approach one can tune the splitting volume and time by carefully choosing strip width and position. • It is shown that the droplet spreading on chemically heterogeneous surfaces can be controlled not only by Weber number but also by tuning strip width ratio. • The directional transportation of a droplet due to chemical wetting gradient is simulated and analyzed using hybrid thermodynamic-image processing technique. • Microstructure surface and its influence on the directional wetting based transportation of droplet are demonstrated. - Abstract: Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains

  8. Ab initio study of phase stability, lattice dynamics and thermodynamic properties of magnesium chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Showkat H. [Centre for Nano Science, Central University of Gujarat, Gandhinagar 382030 (India); Jha, Prakash C., E-mail: [School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Dabhi, Shweta [Department of Physics, M. K. Bhavnagar University, Bhavnagar 364001 (India); Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara 390002 (India); Jha, Prafulla K. [Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara 390002 (India)


    The present work reports a comprehensive study of structural, dielectric, lattice dynamic and thermodynamic properties of magnesium chalcogenides MgX (X = S, Se, and Te) in rock-salt, zinc-blende and wurtzite crystal structures. Density functional theory calculations were performed using Perdew-Burke-Ernzerhof (PBE) functional (hereafter, PBE) and along with van der Walls interactions (hereafter, DFT-D). Our calculations show that the inclusion of van der Walls interactions improves the results and predict structural parameters close to the experimental values than using PBE functional alone. Both approaches show that the rock-salt phase is the ground state stable phase of MgS. The DFT-D calculations indicate that rock-salt whereas PBE results show wurtzite as the stable crystal structure for MgSe and MgTe respectively. Further, density functional perturbation theory has been employed to obtain the phonon dispersion curves and phonon density of states. The present phonon calculations show that these compounds are dynamically stable in the three considered phases. Thereafter, temperature dependent heat capacity at constant volume and entropy are also presented and discussed. - Highlights: • Van der walls dispersive forces are found useful in predicting the structural and mechanical properties of ionic solids. • Very minute energy differences between B3 and B4 phases of magnesium chalcogenides were observed. • The three considered phases (B1, B3 and B4) of magnesium chalcogenides are found dynamically stable at ambient conditions. • Heat capacity and entropy are found to decrease with decrease in anion mass.

  9. The high pressure structure and equation of state of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) up to 20 GPa: X-ray diffraction measurements and first principles molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Stavrou, Elissaios, E-mail:; Riad Manaa, M., E-mail:; Zaug, Joseph M.; Kuo, I-Feng W.; Pagoria, Philip F.; Crowhurst, Jonathan C.; Armstrong, Michael R. [Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, P.O. Box 808 L-350, Livermore, California 94550 (United States); Kalkan, Bora [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); Advanced Materials Research Laboratory, Department of Physics Engineering, Hacettepe University 06800, Beytepe, Ankara (Turkey)


    Recent theoretical studies of 2,6-diamino-3,5-dinitropyrazine-1-oxide (C{sub 4}H{sub 4}N{sub 6}O{sub 5} Lawrence Livermore Molecule No. 105, LLM-105) report unreacted high pressure equations of state that include several structural phase transitions, between 8 and 50 GPa, while one published experimental study reports equation of state (EOS) data up to a pressure of 6 GPa with no observed transition. Here we report the results of a synchrotron-based X-ray diffraction study and also ambient temperature isobaric-isothermal atomistic molecular dynamics simulations of LLM-105 up to 20 GPa. We find that the ambient pressure phase remains stable up to 20 GPa; there is no indication of a pressure induced phase transition. We do find a prominent decrease in b-axis compressibility starting at approximately 13 GPa and attribute the stiffening to a critical length where inter-sheet distance becomes similar to the intermolecular distance within individual sheets. The ambient temperature isothermal equation of state was determined through refinements of measured X-ray diffraction patterns. The pressure-volume data were fit using various EOS models to yield bulk moduli with corresponding pressure derivatives. We find very good agreement between the experimental and theoretically derived EOS.

  10. The high pressure structure and equation of state of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) up to 20 GPa: X-ray diffraction measurements and first principles molecular dynamics simulations (United States)

    Stavrou, Elissaios; Riad Manaa, M.; Zaug, Joseph M.; Kuo, I.-Feng W.; Pagoria, Philip F.; Kalkan, Bora; Crowhurst, Jonathan C.; Armstrong, Michael R.


    Recent theoretical studies of 2,6-diamino-3,5-dinitropyrazine-1-oxide (C4H4N6O5 Lawrence Livermore Molecule No. 105, LLM-105) report unreacted high pressure equations of state that include several structural phase transitions, between 8 and 50 GPa, while one published experimental study reports equation of state (EOS) data up to a pressure of 6 GPa with no observed transition. Here we report the results of a synchrotron-based X-ray diffraction study and also ambient temperature isobaric-isothermal atomistic molecular dynamics simulations of LLM-105 up to 20 GPa. We find that the ambient pressure phase remains stable up to 20 GPa; there is no indication of a pressure induced phase transition. We do find a prominent decrease in b-axis compressibility starting at approximately 13 GPa and attribute the stiffening to a critical length where inter-sheet distance becomes similar to the intermolecular distance within individual sheets. The ambient temperature isothermal equation of state was determined through refinements of measured X-ray diffraction patterns. The pressure-volume data were fit using various EOS models to yield bulk moduli with corresponding pressure derivatives. We find very good agreement between the experimental and theoretically derived EOS.

  11. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)


    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  12. Lattice dynamics of Al-based quasicrystals studied by high-resolution inelastic X-ray scattering with synchrotron radiation

    CERN Document Server

    Burkel, E; Ponkratz, U; Sinn, H; Alatas, A; Alp, E E


    Quasicrystals are aperiodic long-range ordered solids expected to exhibit peculiar dynamical properties. For these new intermetallic phases, previous theoretical work predicted the existence of phason dynamics and a highly structured vibrational density of states. We used the high-resolution inelastic X-ray scattering method to investigate the lattice dynamics of Al-Cu-Fe and Al-Pd-Mn quasicrystals, near the (18,29) diffraction peak situated on the fivefold axis. Phonon dispersion relations were determined for both quasicrystals. In addition to propagating acoustic modes, dispersionless ('optic') low-energy modes were observed.

  13. Simulation of regimes of convection and plume dynamics by the thermal Lattice Boltzmann Method (United States)

    Mora, Peter; Yuen, David A.


    We present 2D simulations using the Lattice Boltzmann Method (LBM) of a fluid in a rectangular box being heated from below, and cooled from above. We observe plumes, hot narrow upwellings from the base, and down-going cold chutes from the top. We have varied both the Rayleigh numbers and the Prandtl numbers respectively from Ra = 1000 to Ra =1010 , and Pr = 1 through Pr = 5 ×104 , leading to Rayleigh-Bénard convection cells at low Rayleigh numbers through to vigorous convection and unstable plumes with pronounced vortices and eddies at high Rayleigh numbers. We conduct simulations with high Prandtl numbers up to Pr = 50, 000 to simulate in the inertial regime. We find for cases when Pr ⩾ 100 that we obtain a series of narrow plumes of upwelling fluid with mushroom heads and chutes of downwelling fluid. We also present simulations at a Prandtl number of 0.7 for Rayleigh numbers varying from Ra =104 through Ra =107.5 . We demonstrate that the Nusselt number follows power law scaling of form Nu ∼Raγ where γ = 0.279 ± 0.002 , which is consistent with published results of γ = 0.281 in the literature. These results show that the LBM is capable of reproducing results obtained with classical macroscopic methods such as spectral methods, and demonstrate the great potential of the LBM for studying thermal convection and plume dynamics relevant to geodynamics.

  14. Boundary effects on population dynamics in stochastic lattice Lotka-Volterra models (United States)

    Heiba, Bassel; Chen, Sheng; Täuber, Uwe C.


    We investigate spatially inhomogeneous versions of the stochastic Lotka-Volterra model for predator-prey competition and coexistence by means of Monte Carlo simulations on a two-dimensional lattice with periodic boundary conditions. To study boundary effects for this paradigmatic population dynamics system, we employ a simulation domain split into two patches: Upon setting the predation rates at two distinct values, one half of the system resides in an absorbing state where only the prey survives, while the other half attains a stable coexistence state wherein both species remain active. At the domain boundary, we observe a marked enhancement of the predator population density. The predator correlation length displays a minimum at the boundary, before reaching its asymptotic constant value deep in the active region. The frequency of the population oscillations appears only very weakly affected by the existence of two distinct domains, in contrast to their attenuation rate, which assumes its largest value there. We also observe that boundary effects become less prominent as the system is successively divided into subdomains in a checkerboard pattern, with two different reaction rates assigned to neighboring patches. When the domain size becomes reduced to the scale of the correlation length, the mean population densities attain values that are very similar to those in a disordered system with randomly assigned reaction rates drawn from a bimodal distribution.

  15. Topological dynamics and current-induced motion in a skyrmion lattice (United States)

    Martinez, J. C.; Jalil, M. B. A.


    We study the Thiele equation for current-induced motion in a skyrmion lattice through two soluble models of the pinning potential. Comprised by a Magnus term, a dissipative term and a pinning force, Thiele’s equation resembles Newton’s law but in virtue of the topological character to the first, it differs significantly from Newtonian mechanics and because the Magnus force is dominant, unlike its mechanical counterpart—the Coriolis force—skyrmion trajectories do not necessarily have mechanical counterparts. This is important if we are to understand skyrmion dynamics and tap into its potential for data-storage technology. We identify a pinning threshold velocity for the one-dimensional pinning potential and for a two-dimensional attractive potential we find a pinning point and the skyrmion trajectories toward that point are spirals whose frequency (compare Kepler’s second law) and amplitude-decay depend only on the Gilbert constant and potential at the pinning point. Other scenarios, e.g. other choices of initial spin velocity, a repulsive potential, etc are also investigated.

  16. First principles analysis of lattice dynamics for Fe-based superconductors and entropically-stabilized phases

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Steven [Iowa State Univ., Ames, IA (United States)


    Modern calculations are becoming an essential, complementary tool to inelastic x-ray scattering studies, where x-rays are scattered inelastically to resolve meV phonons. Calculations of the inelastic structure factor for any value of Q assist in both planning the experiment and analyzing the results. Moreover, differences between the measured data and theoretical calculations help identify important new physics driving the properties of novel correlated systems. We have used such calculations to better and more e ciently measure the phonon dispersion and elastic constants of several iron pnictide superconductors. This dissertation describes calculations and measurements at room temperature in the tetragonal phase of CaFe{sub 2}As{sub 2} and LaFeAsO. In both cases, spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improves the agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase. In addition, we discuss a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD), which goes beyond the harmonic approximation to include phonon-phonon interactions and produce a temperature-dependent phonon dispersion. We used this technique to study the HCP to BCC transition in beryllium.

  17. Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys (United States)

    Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet


    The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.

  18. First-principles study of the lattice dynamical properties of strontium ruthenate. (United States)

    Miao, Naihua; Bristowe, Nicholas C; Xu, Bin; Verstraete, Matthieu J; Ghosez, Philippe


    By means of first-principles calculations, various properties of SrRuO3 are investigated, focusing on its lattice dynamical properties. Despite having a Goldschmidt tolerance factor very close to 1, the phonon dispersion curves of the high-temperature cubic phase of SrRuO3 show strong antiferrodistortive instabilities. The energetics of metastable phases with different tilt patterns are discussed, concluding that the coupling of oxygen rotation modes with anti-polar Sr motion plays a key role in stabilizing the Pnma phase with respect to alternative rotation patterns. Our systematic analysis confirms previous expectations and contributes to rationalizing better why many ABO3 perovskites, including metallic compounds, exhibit an orthorhombic ground state. The zone-center phonon modes of the Pnma phase have been computed, from which we propose partial reassignment of available experimental data. The full dispersion curves have also been obtained, constituting benchmark results for the interpretation of future measurements and providing access to thermodynamical properties.

  19. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V


    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  20. High-Pressure Lightweight Thrusters (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander


    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  1. Dynamic scaling behaviors of the restricted-solid-on-solid model on honeycomb and square-octagon lattice substrates (United States)

    Zhang, Zhe; Xun, Zhipeng; Wu, Ling; Chen, Yili; Xia, Hui; Hao, Dapeng; Tang, Gang


    The dynamic scaling behaviors of the restricted-solid-on-solid (RSOS) model on two new types of substrate, which are honeycomb and square-octagon lattice substrates, are studied by means of Kinetic Monte Carlo simulations. The growth exponent β and the roughness exponent α defined, respectively, by the surface width via W t β and the saturated width via W sat L α , L being the system size, were obtained by a power-counting analysis. Our simulation results show that the Family-Vicsek scaling is still satisfied. However, the structures of the substrates indeed affect the dynamic behavior of the growth model. The values of the roughness exponents fall between regular and fractal lattices. Deeper analysis show that the coordination number of the substrates play an crucial role.

  2. Lattice dynamics and domain wall oscillations of morphotropic Pb(Zr,Ti)O.sub.3./sub. ceramics

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Bovtun, Viktor; Kempa, Martin; Nuzhnyy, Dmitry; Savinov, Maxim; Vaněk, Přemysl; Gregora, Ivan; Malic, B.


    Roč. 94, č. 5 (2016), 1-10, č. článku 054315. ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA14-25639S; GA MŠk(CZ) LD15014 Institutional support: RVO:68378271 Keywords : PZT * phonon * lattice dynamics * dielectric response * Raman * infrared spectroscopy * broad-band spectroscopy * piezoelectrics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  3. A far infrared study of the lattice dynamics of nickel(II) iodide (NiI2).

    NARCIS (Netherlands)

    Kuindersma, S. R.; Mueller, W. R.; Rautenberg, M.


    The lattice dynamics of NiI2 was studied at 4.2-300 K. The anisotropy of the oscillatory parameters is due to long-range Coulomb interactions. The polarizabilities were calcd as 5.6 × 10-24 for I- and 2.1 × 10-24 cm3 for Ni2+. The Szigeti effective charge is 0.30, indicating a large degree of

  4. Anomalous lattice dynamics in a σ-Fe60V40 alloy: Mössbauer spectroscopic study (United States)

    Dubiel, Stanisław M.; Żukrowski, Jan


    Lattice dynamics in a σ-Fe60V40 compound, which shows a re-entrant magnetism and orders ferromagnetic at TC ≈ 170 K, was investigated with the Mössbauer spectroscopy in the temperature interval of 5-300 K. Two relevant spectral parameters viz. the average center shift, , and the relative recoil-free fraction, f/fo, were explored. The former yielded the Debye temperature, TD1, and the mean-square velocity of vibration, , while the latter TD2 and the mean-square amplitude of vibrations, . Significant differences in the lattice-dynamical behaviors in the magnetic and paramagnetic phases were revealed. In particular, the values of TD were notably lower and those of f/fo greatly higher in the former. This anomalous result has likely its origin in a remarkably high anharmonic contribution to the vibrations found for the ground magnetic state (spin-glass). Especially anomalous behavior vs. temperature exhibits where four well defined ranges could have been identified and ascribed to the paramagnetic, ferromagnetic and two spin-glass phases. Linear correlations between - were found within each of the four ranges. They enabled determination of force constants, hence a change of the potential energy, Ep, in each of the ranges. The total change of Ep ≈ 30 meV while the corresponding one of the kinetic energy, determined from the knowledge of , was Ek ≈ 21 meV. The lack of balance between Ep and Ek follows from the anharmonic lattice-dynamical behavior observed in the spin-glass state. The results give a strong evidence that magnetism can significantly affect the lattice dynamics.

  5. First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure (United States)

    Xiao-Lin, Zhang; Yuan-Yuan, Wu; Xiao-Hong, Shao; Yong, Lu; Ping, Zhang


    The high pressure behaviors of Th4H15 and ThH2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy-volume relations, the bct phase of ThH2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH2 and bcc Th4H15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th4H15 and bct ThH2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th4H15 and ThH2. Project supported by the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.

  6. Dynamical control of matter-wave splitting using time-dependent optical lattices

    DEFF Research Database (Denmark)

    Park, Sung Jong; Andersen, Henrik Kjær; Mai, Sune


    We report on measurements of splitting Bose-Einstein condensates (BEC) by using a time-dependent optical lattice potential. First, we demonstrate the division of a BEC into a set of equally populated components by means of time-dependent control of Landau-Zener tunneling in a vertical lattice...... potential. Next, we apply time-dependent optical Bragg mirrors to a BEC oscillating in a harmonic trap. We demonstrate high-order Bragg reflection of the condensate due to multiphoton Raman transitions, where the depth of the optical lattice potential allows for a choice of the order of the transition...

  7. World of high pressure. Koatsuryoku no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Moritoki, M.; Kanda, T. (Kobe Steel, Ltd., Kobe (Japan))


    The present article describes development and current status of high pressure technology. It introduces applications of high pressure technology to chemical reactions and processings, utilizations of phase changes and supercritical fluids, and applications of high pressure to food processings. Contributions of high pressure technology to synthetic chemistry are mentioned as for industrialization of syntheses of ammonia, urea and methanol, and invention of synthesis of polyethylene. Processing technologies utilizing high pressure are also mentioned as for cold isostatic pressing, hot isostatic pressing, hydrostatic extrusion technique, water jet working technique, and explosive forming technique. Introduced are application of phase changes under high pressure, such as high pressure synthesis of diamond and pressurized crystallization technology, and supercritical extraction technology using water and carbon dioxide. Pressurized food processings of mandarin orange, jam, and grapefruit are described. Furthermore, current status of fundamental technologies of high pressure installations is provided as for pressure vessel technology, pressure generation and control technology, and pressure sealing technology. 12 refs., 15 figs., 1 tab.

  8. High pressure studies of molecular lumenescence

    Energy Technology Data Exchange (ETDEWEB)

    Drickamer, H.G.


    The studies of high pressure molecular luminescence reviewed, along with results for inorganic systems discussed elsewhere, provide evidence about the versatility and power of high pressure as a tool for characterizing electronic states, testing theories concerning electronic phenomena, and generally obtaining a better understanding of electronic behavior in condensed systems. 16 figures.

  9. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.


    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  10. Coal swelling and thermoplasticity under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ndaji, F.E.; Butterfield, I.M.; Thomas, K.M. (Newcastle upon Tyne University, Newcastle upon Tyne (United Kingdom). Northern Carbon Research Labs., Dept. of Chemistry)


    The literature on the following topics is reviewed: swelling and agglomeration of coal; measurements of swelling index and dilatometric and plastometric properties at high pressures; and the effects of oxidation, tar addition and minerals on high-pressure thermoplastic properties. 34 refs., 6 figs.

  11. Depth Gauge for Liquids Under High Pressure (United States)

    Zuckerwar, A. J.; Mazel, D. S.


    Piezoelectric element mounted in hole drilled in high-pressure plug. Transducer used to measure depth of liquid when pressure in vessel high. New configuration transmits ultrasonic vibration directly into liquid, enhancing signal strength, accuracy, and range, yet piezoelectric element protected from high-pressure liquid.

  12. Efficiency of rejection-free methods for dynamic Monte Carlo studies of off-lattice interacting particles

    KAUST Repository

    Guerra, Marta L.


    We calculate the efficiency of a rejection-free dynamic Monte Carlo method for d -dimensional off-lattice homogeneous particles interacting through a repulsive power-law potential r-p. Theoretically we find the algorithmic efficiency in the limit of low temperatures and/or high densities is asymptotically proportional to ρ (p+2) /2 T-d/2 with the particle density ρ and the temperature T. Dynamic Monte Carlo simulations are performed in one-, two-, and three-dimensional systems with different powers p, and the results agree with the theoretical predictions. © 2009 The American Physical Society.

  13. Effect of the lattice dynamics on the electronic structure of paramagnetic NiO within the disordered local moment picture (United States)

    Mozafari, Elham; Alling, Björn; Belov, Maxim P.; Abrikosov, Igor A.


    Using the disordered local moments approach in combination with the ab initio molecular dynamics method, we simulate the behavior of a paramagnetic phase of NiO at finite temperatures to investigate the effect of magnetic disorder, thermal expansion, and lattice vibrations on its electronic structure. In addition, we study its lattice dynamics. We verify the reliability of our theoretical scheme via comparison of our results with available experiment and earlier theoretical studies carried out within static approximations. We present the phonon dispersion relations for the paramagnetic rock-salt (B1) phase of NiO and demonstrate that it is dynamically stable. We observe that including the magnetic disorder to simulate the paramagnetic phase has a small yet visible effect on the band gap. The amplitude of the local magnetic moment of Ni ions from our calculations for both antiferromagnetic and paramagnetic phases agree well with other theoretical and experimental values. We demonstrate that the increase of temperature up to 1000 K does not affect the electronic structure strongly. Taking into account the lattice vibrations and thermal expansion at higher temperatures have a major impact on the electronic structure, reducing the band gap from ˜3.5 eV at 600 K to ˜2.5 eV at 2000 K. We conclude that static lattice approximations can be safely employed in simulations of the paramagnetic state of NiO up to relatively high temperatures (˜1000 K), but as we get closer to the melting temperature vibrational effects become quite large and therefore should be included in the calculations.

  14. Structural polymorphism in multiferroic BiMnO{sub 3} at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kozlenko, D.P. [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna (Russian Federation); Dang, N.T. [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna (Russian Federation); Tula State University, Department of Natural Sciences, 300600 Tula (Russian Federation); Jabarov, S.H. [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna (Russian Federation); Institute of Physics, ANAS, Baku, AZ 1143 (Azerbaijan); Belik, A.A. [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Kichanov, S.E., E-mail: [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna (Russian Federation); Lukin, E.V. [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna (Russian Federation); Lathe, C. [Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam (Germany); Dubrovinsky, L.S. [Bayerisches Geoinstitute, University Bayreuth, D-95440 Bayreuth (Germany); Kazimirov, V.Yu. [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna (Russian Federation); Smirnov, M.B. [Saint-Petersburg State University, Department of Physics, 194508 St-Petersburg (Russian Federation); Savenko, B.N. [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna (Russian Federation); Mammadov, A.I. [Institute of Physics, ANAS, Baku, AZ 1143 (Azerbaijan); Takayama-Muromachi, E. [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Khiem, L.H. [Institute of Physics, Vietnam Academy of Science and Technology, 10000 Hanoi (Viet Nam)


    Highlights: • The detailed P–T phase diagram of BiMnO{sub 3} was established. • We found three monoclinic modifications of BiMnO{sub 3} at pressure and temperature. • A suppression of monoclinic C2/c phase have been observed under pressure. • We found a new orthorhombic Imma phase of BiMnO{sub 3} at P > 20 GPa. -- Abstract: Structural phase transitions in BiMnO{sub 3} were studied by means of energy-dispersive X-ray diffraction in the pressure 0–4 GPa and temperature 300–900 K ranges, and also by means of angle-dispersive X-ray diffraction and Raman spectroscopy at high pressures up to 50 GPa and ambient temperature. The P–T phase diagram of BiMnO{sub 3} was constructed. A suppression of the transition temperatures between monoclinic C2/c and orthorhombic Pnma phases was observed under pressure. The temperature and pressure dependencies of lattice parameters were obtained. A new orthorhombic Imma phase was observed at P > 20 GPa. The lattice dynamics calculations were performed for the analysis of the Raman spectra of BiMnO{sub 3}.

  15. Reinvestigation of high pressure polymorphism in hafnium metal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K. K., E-mail:; Sharma, Surinder M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India); Gyanchandani, Jyoti; Dey, G. K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India); Somayazulu, M. [Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015 (United States); Sikka, S. K. [Indian National Science Academy, New Delhi-110 002 (India)


    There has been a recent controversy about the high pressure polymorphism of Hafnium (Hf). Unlike, the earlier known α→ω structural transition at 38 ± 8 GPa, at ambient temperature, Hrubiak et al. [J. Appl. Phys. 111, 112612 (2012)] did not observe it till 51 GPa. They observed this transition only at elevated temperatures. We have reinvestigated the room temperature phase diagram of Hf, employing x-ray diffraction (XRD) and DFT based first principles calculations. Experimental investigations have been carried out on several pure and impure Hf samples and also with different pressure transmitting media. Besides demonstrating the significant role of impurity levels on the high pressure phase diagram of Hf, our studies re-establish room temperature α→ω transition at high pressures, even in quasi-hydrostatic environment. We observed this transition in pure Hf with equilibrium transition pressure P{sub o} = 44.5 GPa; however, with large hysteresis. The structural sequence, transition pressures, the lattice parameters, the c/a ratio and its variation with compression for the α and ω phases as predicted by our ab-initio scalar relativistic (SR) calculations are found to be in good agreement with our experimental results of pure Hf.

  16. First-principles investigation of structural, elastic, lattice dynamical and thermodynamic properties of lithium sulfur under pressure (United States)

    Saib, S.; Bouarissa, N.


    In this study we report on the influence of hydrostatic pressure on structural, elastic, lattice dynamical and thermal properties of Li2S in the anti-fluorite structure using ab initio pseudopotential approach based on the density functional perturbation theory. Our results are found to be in good agreement with those existing in the literature. The present phonon dispersion spectra, dielectric constants and Born effective charges may be seen as the first investigation for the material under load. The pressure dependence of all features of interest has been examined and discussed. Besides, the temperature dependence of the lattice parameter and bulk modulus is predicted. The generalized elastic stability criteria showed that the material of interest is mechanically unstable for pressures beyond 55 GPa.

  17. Effect of the surface on the internal structure of CdSe crystal lattice based on molecular dynamics simulations (United States)

    Stelmakh, S.; Skrobas, K.; Gierlotka, S.; Palosz, B.


    The results of molecular dynamics (MD) simulations of CdSe crystals terminated by low-index atomic planes, (100), (110) and (111), are presented. The effect of the crystal termination on the atomic arrangement (interatomic distances) at the surface and underneath the surface is examined. It is shown that the crystal lattice is distorted in lateral and normal directions to the depth of up to about 2 nm from the surface. The exact characteristic of the changes of interatomic distances is specific to the type of the atomic plane terminating the crystal lattice. At some surfaces, the very last monoatomic layer loses the long-range ordering and becomes quasi amorphous. The atoms group into randomly distributed pairs or short linear groups.

  18. Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory

    Directory of Open Access Journals (Sweden)

    Hong Qin


    Full Text Available The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a U(2 element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Other components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.

  19. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.


    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  20. Research on viscosity of metal at high pressure (United States)

    Li, Y.; Liu, F.; Ma, X.; Zhang, M.


    A new experimental technique, the flyer-impact method, is proposed in this article to investigate the viscosity coefficient of shocked metals. In this technique, a shock wave with a sinusoidal perturbation on the front is induced by the sinusoidal profile of the impact surface of the sample by use of a two-stage light-gas gun, and the oscillatory damping process of the perturbation amplitude is monitored by electric pins. The damping processes of aluminum at 78 and 101 GPa and iron at 159 and 103 GPa are obtained by this technique, which supplement the existing data by measuring the viscosity coefficient via a dynamic high-pressure method. Applying the formula of Miller and Ahrens to fit the experimental data, the shear viscosity coefficients of aluminum at 78 and 101 GPa are 1350 ± 500 and 1200 ± 500 Pa s, respectively, and those of iron at 159 and 103 GPa are 1150 ± 1000 and 4800 ± 1000 Pa s, respectively. The values measured by the flyer-impact method, approximately 103 Pa s, are consistent with those measured by Sakharov's method, while still greatly differing from those measured by static high-pressure methods. In dynamic high-pressure experiments, the shear viscosity is related to dislocation motion in the solid material, while that in static high-pressure experiments is related to the diffusion motion of atoms or molecules in liquids. Therefore, there are different physical meanings of shear viscosity in dynamic and static high-pressure experiments, and there is no comparability among these results.

  1. A study of lattice dynamics in iron-based superconductors by inelastic light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Um, Youngje


    After the discovery of high temperature (high T{sub c}) superconductivity in copper oxide-based materials (cuprates) in 1986, this phenomenon was a unique property of the cuprates for more than 20 years. The origin of high T{sub c} superconductivity is still under debate. In 2008, high T{sub c} superconductivity was discovered in iron-based compounds. This discovery presents new opportunities for the development of a fundamental understanding of high T{sub c} superconductivity. Density functional calculations indicate a weak electron-phonon coupling strength in iron-based superconductors and these suggest that superconductivity is not mediated by phonons. However, experimental report of a large isotope effect of the iron atoms on the superconductivity T{sub c} suggests that phonons play an important role in iron-based superconductors. Motivated by these findings, this thesis presents a Raman scattering study of the lattice dynamics of the iron-based superconductors Fe{sub 1+y}Te{sub 1-x}Se{sub x}, LiFeAs and NaFe{sub 1-x}Co{sub x}As as a function of chemical composition and temperature. In Fe{sub 1+y}Te{sub 1-x}Se{sub x}, an unconventional linewidth broadening of the c-axis polarized Fe phonon of B{sub 1g} symmetry is found with decreasing temperature, which indicates an unusual coupling between the phonon and iron excessinduced magnetic fluctuations in this compound. In LiFeAs, the Raman scattering data provide evidence for a weak electron-phonon coupling, which is consistent with non-phonon mediated Cooper pairing in this compound. In NaFe{sub 1-x}Co{sub x}As, upon cooling two features are observed: (i) an unconventional linewidth broadening of several phonons, which is indicative of spin fluctuation-phonon coupling, and (ii) a superconductivity-induced phonon lineshape renormalization, which can not be explained by standard model calculations.

  2. High pressure properties of solid α-O2 (United States)

    Helmy, A.; Kobashi, K.; Etters, R. D.


    The static and dynamic properties of solid oxygen are calculated vs pressure at zero temperature using a pattern recognition optimization scheme and harmonic lattice dynamics method. The lattice parameters, phonon and libron dispersion curves, acoustic sound velocities, compressibility, root mean square translational and librational fluctuations from equilibrium, and the pressure dependence of the intramolecular stretching mode are calculated. It is shown that the attractive magnetic interaction strongly influences the behavior of the solid at all pressures. A soft mode induced phase transition from the monoclinic α structure to an orthorhombic structure is predicted at zero temperature near 6 kbar. No volume change is observed at the transition.

  3. High Pressure X-ray Absorption Studies on Correlated-Electron Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, Andrew L. [Univ. of Nevada, Las Vegas, NV (United States)


    This project used high pressure to alter the electron-electron and electron-lattice interactions in rare earth and actinide compounds. Knowledge of these properties is the starting points for a first-principles understanding of electronic and electronically related macroscopic properties. The research focused on a systematic study of x-ray absorption measurements on rare earth and actinide compounds.

  4. Ultrafast electron, lattice and spin dynamics on rare earth metal surfaces. Investigated with linear and nonlinear optical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Radu, I.E.


    This thesis presents the femtosecond laser-induced electron, lattice and spin dynamics on two representative rare-earth systems: The ferromagnetic gadolinium Gd(0001) and the paramagnetic yttrium Y(0001) metals. The employed investigation tools are the time-resolved linear reflectivity and second-harmonic generation, which provide complementary information about the bulk and surface/interface dynamics, respectively. The femtosecond laser excitation of the exchange-split surface state of Gd(0001) triggers simultaneously the coherent vibrational dynamics of the lattice and spin subsystems in the surface region at a frequency of 3 THz. The coherent optical phonon corresponds to the vibration of the topmost atomic layer against the underlying bulk along the normal direction to the surface. The coupling mechanism between phonons and magnons is attributed to the modulation of the exchange interaction J between neighbour atoms due to the coherent lattice vibration. This leads to an oscillatory motion of the magnetic moments having the same frequency as the lattice vibration. Thus these results reveal a new type of phonon-magnon coupling mediated by the modulation of the exchange interaction and not by the conventional spin-orbit interaction. Moreover, we show that coherent spin dynamics in the THz frequency domain is achievable, which is at least one order of magnitude faster than previously reported. The laser-induced (de)magnetization dynamics of the ferromagnetic Gd(0001) thin films have been studied. Upon photo-excitation, the nonlinear magneto-optics measurements performed in this work show a sudden drop in the spin polarization of the surface state by more than 50% in a <100 fs time interval. Under comparable experimental conditions, the time-resolved photoemission studies reveal a constant exchange splitting of the surface state. The ultrafast decrease of spin polarization can be explained by the quasi-elastic spin-flip scattering of the hot electrons among spin

  5. High-pressure study on some superconductors

    CERN Document Server

    Li, K Q; Yao, Y S; Che, G C; Zhao, Z X


    High-pressure study has played an important role in the investigation of conventional superconductors. Since the discovery of cuprate superconductors, high-pressure study has become even more important, especially as regards high-pressure synthesis and the effect of pressure. In this report, the new materials Ca-doped Pr-123, (Fe, Cu)-1212, and MgB sub 2 - a very new and interesting system synthesized under high pressure with good quality - will be discussed. Chemical inner pressure has been thought to explain the high T sub c of Ca-doped Pr-123. As another possibility, the replacement of the physical pressure effect by a chemical effect will be discussed.

  6. High pressure behaviour of uranium dicarbide (UC{sub 2}): Ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B. D., E-mail:; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)


    The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ∼8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressures placed at ∼24 GPa and ∼50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ∼17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC{sub 2} sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as

  7. High pressure structural studies of conjugated molecules

    DEFF Research Database (Denmark)

    Knaapila, Matti; Torkkeli, Mika; Scherf, Ullrich


    This chapter highlights high pressure GPa level structural studies of conjugated polymers and their analogues: conjugated oligomers and molecules, and rigid rod polymers. Attention is placed on our recent studies of polyfluorenes.......This chapter highlights high pressure GPa level structural studies of conjugated polymers and their analogues: conjugated oligomers and molecules, and rigid rod polymers. Attention is placed on our recent studies of polyfluorenes....

  8. High-pressure minerals in shocked meteorites (United States)

    Tomioka, Naotaka; Miyahara, Masaaki


    Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.

  9. Effect of three-body forces on the lattice dynamics of noble metals

    Indian Academy of Sciences (India)

    Abstract. A simple method to generate an effective electron–ion interaction pseudopotential from the energy wave number characteristic obtained by first principles calculations has been suggested. This effective potential has been used, in third order perturbation, to study the effect of three-body forces on the lattice ...

  10. Exceptional-point Dynamics in Photonic Honeycomb Lattices with PT Symmetry (United States)


    INTRODUCTION Conical refraction phenomena, i.e., the spreading into a hollow cone of an unpolarized light beam entering a biaxial crystal along its optic...not uniquely defined. Recently, conical diffraction was observed in two-dimensional photonic honey - comb lattices [5] which share key common features

  11. Molecular dynamics simulations of the lattice thermal conductivity of thermoelectric material CuInTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J. [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong (Hong Kong); Liu, H.J., E-mail: [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Cheng, L.; Zhang, J.; Jiang, P.H.; Liang, J.H.; Fan, D.D.; Shi, J. [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)


    Highlights: • A simple but effective Morse potential is constructed to accurately describe the interatomic interactions of CuInTe{sub 2}. • The lattice thermal conductivity of CuInTe{sub 2} predicted by MD agrees well with those measured experimentally, as well as those calculated from phonon BTE. • Introducing Cd impurity or Cu vacancy can effectively reduce the lattice thermal conductivity of CuInTe{sub 2} and thus further enhance its thermoelectric performance. - Abstract: The lattice thermal conductivity of thermoelectric material CuInTe{sub 2} is predicted using classical molecular dynamics simulations, where a simple but effective Morse-type interatomic potential is constructed by fitting first-principles total energy calculations. In a broad temperature range from 300 to 900 K, our simulated results agree well with those measured experimentally, as well as those obtained from phonon Boltzmann transport equation. By introducing the Cd impurity or Cu vacancy, the thermal conductivity of CuInTe{sub 2} can be effectively reduced to further enhance the thermoelectric performance of this chalcopyrite compound.

  12. Constrained dynamics via the Zeno effect in quantum simulation: implementing non-Abelian lattice gauge theories with cold atoms. (United States)

    Stannigel, K; Hauke, P; Marcos, D; Hafezi, M; Diehl, S; Dalmonte, M; Zoller, P


    We show how engineered classical noise can be used to generate constrained Hamiltonian dynamics in atomic quantum simulators of many-body systems, taking advantage of the continuous Zeno effect. After discussing the general theoretical framework, we focus on applications in the context of lattice gauge theories, where imposing exotic, quasilocal constraints is usually challenging. We demonstrate the effectiveness of the scheme for both Abelian and non-Abelian gauge theories, and discuss how engineering dissipative constraints substitutes complicated, nonlocal interaction patterns by global coupling to laser fields.

  13. High pressure processing for food safety. (United States)

    Fonberg-Broczek, Monika; Windyga, B; Szczawiński, J; Szczawińska, M; Pietrzak, D; Prestamo, G


    Food preservation using high pressure is a promising technique in food industry as it offers numerous opportunities for developing new foods with extended shelf-life, high nutritional value and excellent organoleptic characteristics. High pressure is an alternative to thermal processing. The resistance of microorganisms to pressure varies considerably depending on the pressure range applied, temperature and treatment duration, and type of microorganism. Generally, Gram-positive bacteria are more resistant to pressure than Gram-negative bacteria, moulds and yeasts; the most resistant are bacterial spores. The nature of the food is also important, as it may contain substances which protect the microorganism from high pressure. This article presents results of our studies involving the effect of high pressure on survival of some pathogenic bacteria -- Listeria monocytogenes, Aeromonas hydrophila and Enterococcus hirae -- in artificially contaminated cooked ham, ripening hard cheese and fruit juices. The results indicate that in samples of investigated foods the number of these microorganisms decreased proportionally to the pressure used and the duration of treatment, and the effect of these two factors was statistically significant (level of probability, P monocytogenes and A. hydrophila. Mathematical methods were applied, for accurate prediction of the effects of high pressure on microorganisms. The usefulness of high pressure treatment for inactivation of microorganisms and shelf-life extention of meat products was also evaluated. The results obtained show that high pressure treatment extends the shelf-life of cooked pork ham and raw smoked pork loin up to 8 weeks, ensuring good micro-biological and sensory quality of the products.

  14. Volume analysis of supercooled water under high pressure


    Duki, Solomon F.; Tsige, Mesfin


    Motivated by recent experimental findings on the volume of supercooled water at high pressure [O. Mishima, J. Chem. Phys. 133, 144503 (2010)] we performed atomistic molecular dynamics simulations study of bulk water in the isothermal-isobaric ensemble. Cooling and heating cycles at different isobars and isothermal compression at different temperatures are performed on the water sample with pressures that range from 0 to 1.0 GPa. The cooling simulations are done at temperatures that range from...

  15. Special structures and properties of hydrogen nanowire confined in a single walled carbon nanotube at extreme high pressure

    Directory of Open Access Journals (Sweden)

    Yueyuan Xia


    Full Text Available Extensive ab initio molecular dynamics simulations indicate that hydrogen can be confined in single walled carbon nanotubes to form high density and high pressure H2 molecular lattice, which has peculiar shell and axial structures depending on the density or pressure. The band gap of the confined H2 lattice is sensitive to the pressure. Heating the system at 2000K, the H2 lattice is firstly melted to form H2 molecular liquid, and then some of the H2 molecules dissociate accompanied by drastic molecular and atomic reactions, which have essential effect on the electronic structure of the hydrogen system. The liquid hydrogen system at 2000K is found to be a particular mixed liquid, which consists of H2 molecules, H atoms, and H-H-H trimers. The dissociated H atoms and the trimers in the liquid contribute resonance electron states at the Fermi energy to change the material properties substantially. Rapidly cooling the system from 2000K to 0.01 K, the mixed liquid is frozen to form a mixed solid melt with a clear trend of band gap closure. It indicates that this solid melt may become a superconducting nanowire when it is further compressed.

  16. Nonequilibrium self-energy functional theory. Accessing the real-time dynamics of strongly correlated fermionic lattice systems

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix


    The self-energy functional theory (SFT) is extended to the nonequilibrium case and applied to the real-time dynamics of strongly correlated lattice-fermions. Exploiting the basic structure of the well established equilibrium theory the entire formalism is reformulated in the language of Keldysh-Matsubara Green's functions. To this end, a functional of general nonequilibrium self-energies is constructed which is stationary at the physical point where it moreover yields the physical grand potential of the initial thermal state. Nonperturbative approximations to the full self-energy can be constructed by reducing the original lattice problem to smaller reference systems and varying the functional on the space of the respective trial self-energies, which are parametrized by the reference system's one-particle parameters. Approximations constructed in this way can be shown to respect the macroscopic conservation laws related to the underlying symmetries of the original lattice model. Assuming thermal equilibrium, the original SFT is recovered from the extended formalism. However, in the general case, the nonequilibrium variational principle comprises functional derivatives off the physical parameter space. These can be carried out analytically to derive inherently causal conditional equations for the optimal physical parameters of the reference system and a computationally realizable propagation scheme is set up. As a benchmark for the numerical implementation the variational cluster approach is applied to the dynamics of a dimerized Hubbard model after fast ramps of its hopping parameters. Finally, the time-evolution of a homogeneous Hubbard model after sudden quenches and ramps of the interaction parameter is studied by means of a dynamical impurity approximation with a single bath site. Sharply separated by a critical interaction at which fast relaxation to a thermal final state is observed, two differing response regimes can be distinguished, where the

  17. Beam dynamics in disordered P T -symmetric optical lattices based on eigenstate analyses (United States)

    Yao, Xiankun; Liu, Xueming


    Wave functions will experience a localization process when evolving in disordered lattices. Here, we have demonstrated the effects of disordered P T -symmetric potentials on wave-function characteristics in optics based on eigenstate analyses. In weak-disorder cases, by using the tight-binding approximation method, a conclusion is obtained that the increasing of the imaginary part of potential can enhance the diffraction, while the increasing disorder will block the diffraction and lead to localization. In the general case, band theory is used for band-structure analysis of three bands. We find that the disorder has a smaller effect on the higher-order band, which is proved by the beam evolutions. Our work may be instructive for realizing beam path control by manipulating the strengths of disorder and gain and/or loss of lattice.

  18. On the lattice dynamics of metallic hydrogen and other Coulomb systems (United States)

    Beck, H.; Straus, D.


    Numerical results for the phonon spectra of metallic hydrogen and other Coulomb systems in cubic lattices are presented. In second order in the electron-ion interaction, the behavior of the dielectric function of the interacting electron gas for arguments around the seond Fermi harmonic leads to drastic Kohn anomalies and even to imaginary phonon frequencies. Third-order band-structure corrections are also calculated. Properties of self-consistent phonons and the validity of the adiabatic approximation are discussed.

  19. Heat capacity, lattice dynamics, and thermodynamic stability of the negative thermal expansion material HfMo2O8 (United States)

    Kennedy, Catherine A.; White, Mary Anne; Wilkinson, Angus P.; Varga, Tamas


    We explore the lattice dynamics of the negative thermal expansion material, cubic HfMo2O8 , through analysis of its heat capacity (measured from 0.5to300K ) and its room-temperature Raman spectrum. Its heat capacity is quantitatively very similar to that of ZrW2O8 , as is its Raman spectrum. The heat capacity of HfMo2O8 can be well represented by the present lattice dynamical assignment and by CP(HfW2O8)-CP(ZrW2O8)+CP(ZrMo2O8) , but not by CP(HfO2)+2CP(MoO3) , likely because the AB2O8 compounds have low-frequency optic modes, not present in HfO2 and MoO3 . The present thermodynamic data also allow an analysis of the thermodynamic stability of cubic HfMo2O8 , and it is shown to be unstable with respect to MoO3 and HfO2 at room temperature.

  20. Exotic quantum clusters and non-equilibrium dynamics of Rydberg excitations in one-dimensional optical lattices (United States)

    Mattioli, Marco


    In this mini-review, we report results from M. Mattioli, et al. [Phys. Rev. Lett. 111, 165302 (2013)], M. Dalmonte, et al. [Phys. Rev. B 92, 045106 (2015)] and M. Mattioli, et al. [New J. Phys. 17, 113039 (2015)], where it is shown that Rydberg atoms trapped in one-dimensional optical lattices are a useful tool to investigate the equilibrium phase diagram and the non-equilibrium dynamics of extended Hubbard models and Kinetically Constrained Models, respectively. Atoms weakly-dressed to an high-lying Rydberg state, which interact with a constant potential extended over several lattice sites, can be in an exotic quantum liquid state, the cluster Luttinger liquid phase [42, 43]. Furthermore, we show how a many-body model of interacting three-level atoms in the V-shaped configuration, where one of the level is a Rydberg state, might relax to equilibrium according to the same rules, so-called kinetic constraints, which are known to reproduce the characteristic dynamical arrest and separation of timescales of real glass-forming materials [62].

  1. Study of dislocations in nanoscale semiconductors by ab initio molecular dynamics and lattice Green's function methods

    Energy Technology Data Exchange (ETDEWEB)

    Masuda-Jindo, K. [Department of Materials Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Hung, Vu Van [Hanoi National Pedagogic University, km8 Hanoi-Sontay Highway, Hanoi (Viet Nam); Menon, M. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States)


    The electronic and mechanical properties of the nanoscale materials are studied by using an ab initio molecular dynamics (TBMD) method and temperature dependent lattice Green's function method. The core structures of dislocations in semiconductor crystallites composed of {proportional_to}1000 atoms are calculated using the ab initio TB molecular dynamics method and compared with those in the corresponding bulk semiconductors. The core structures of both 30 and 90 partial dislocations in Si crystallites are found to be similar to those of the bulk Si crystals, but excess energies of the dislocations are of considerably smaller in the small semiconductor crystallites. We also investigate the mechanical (dislocation) properties of carbon related nanoscale materials, graphen in comparison with CNT, by using the temperature dependent Lattice Green's function method and we will show that the thermodynamic and mechanical properties of the nanoscale materials are quite different from those of the corresponding bulk materials. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. The high-pressure phase of CePtAl

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, Gunter [Univ. Innsbruck (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie; Heying, Birgit; Rodewald, Ute C. [Univ. Muenster (Germany). Inst. fuer Anorganische und Analytische Chemie; Janka, Oliver [Univ. Muenster (Germany). Inst. fuer Anorganische und Analytische Chemie; Univ. Oldenburg (Germany). Inst. fuer Chemie


    The intermetallic aluminum compound HP-CePtAl was synthesized by arc melting of the elements with subsequent high-pressure/high-temperature treatment at 1620 K and 10.5 GPa in a multianvil press. The compound crystallizes in the hexagonal MgZn{sub 2}-type structure (P6{sub 3}/mmc) with lattice parameters of a=552.7(1) and c=898.8(2) pm refined from powder X-ray diffraction data. With the help of single crystal investigations (wR=0.0527, 187 F{sup 2} values, 13 variables), the proposed structure type was confirmed and the mixed Pt/Al site occupations could be refined. Magnetic susceptibility measurements showed a disappearance of the complex magnetic ordering phenomena, which are observed in NP-CePtAl.

  3. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan


    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  4. High pressure water jet mining machine (United States)

    Barker, Clark R.


    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  5. Quantum Algorithms for Computational Physics: Volume 3 of Lattice Gas Dynamics (United States)


    decryption and aerodynamics remain analytically in- 1 1970 1975 1980 1985 1990 1995 2000 2005 106 107 108 105 104 8008 8080 8086 80286 80386 80486 DX...code on BABBAGE with number of CPUs . Some runs with these models–in particular the Q15, Q19, Q27 and S27 models–have been completed. The advantages of...gigaflops per second per processor element for 2912 CPU runs on a 1952× 1946× 1950 grid for four lattice Boltzmann codes variants. The wallclock time is

  6. Lattice dynamics and correlated atomic motion from the atomic pair distribution function


    Jeong, I. -K.; Heffner, R. H.; Graf, M. J.; Billinge, S. J. L.


    The mean-square relative displacements (MSRD) of atomic pair motions in crystals are studied as a function of pair distance and temperature using the atomic pair distribution function (PDF). The effects of the lattice vibrations on the PDF peak widths are modelled using both a multi-parameter Born von-Karman (BvK) force model and a single-parameter Debye model. These results are compared to experimentally determined PDFs. We find that the near-neighbor atomic motions are strongly correlated, ...

  7. Symmetries of differential-difference dynamical systems in a two-dimensional lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ste-Marie, Isabelle; Tremblay, Sebastien [Departement de mathematiques et d' informatique, Universite du Quebec, Trois-Rivieres, Quebec, G9A 5H7 (Canada)], E-mail:, E-mail:


    The classification of differential-difference equations of the form u-ddot{sub nm}(t,{l_brace}u{sub pq}{r_brace} (p,q) element of {gamma}) is considered according to their Lie point symmetry groups. The set {gamma} represents the point (n, m) and its six nearest neighbors in a two-dimensional triangular lattice. It is shown that the symmetry group can be at most 12 dimensional for Abelian symmetry algebras and 13 dimensional for nonsolvable symmetry algebras.

  8. Chemical Vapor Deposition at High Pressure in a Microgravity Environment (United States)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao


    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  9. High pressure synthesis of bismuth disulfide

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure contains Bi atoms in distorted square-based pyramidal coordination to five surrounding...

  10. Development of high pressure proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Oddone, P.; Smith, G.; Green, A.; Nemethy, P.; Baksay, L.; Schick, L.; Heflin, E.G.


    We have begun to investigate the possibility of operating gas counters at high pressures. In a first step we were able to operate cylindrical chambers up to 430 atm with a gas gain of about 300 using a mixture of 92% Ar and 8% CH/sub 4/.

  11. High-field/high-pressure ESR. (United States)

    Sakurai, T; Okubo, S; Ohta, H


    We present a historical review of high-pressure ESR systems with emphasis on our recent development of a high-pressure, high-field, multi-frequency ESR system. Until 2000, the X-band system was almost established using a resonator filled with dielectric materials or a combination of the anvil cell and dielectric resonators. Recent developments have shifted from that in the low-frequency region, such as X-band, to that in multi-frequency region. High-pressure, high-field, multi-frequency ESR systems are classified into two types. First are the systems that use a vector network analyzer or a quasi-optical bridge, which have high sensitivity but a limited frequency region; the second are like our system, which has a very broad frequency region covering the THz region, but lower sensitivity. We will demonstrate the usefulness of our high-pressure ESR system, in addition to its experimental limitations. We also discuss the recent progress of our system and future plans. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A


    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  13. High-pressure oxidation of methane

    NARCIS (Netherlands)

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter


    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  14. High pressure metrology for industrial applications (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.


    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress–strain analysis of elastic and nonlinear elastic–plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  15. Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics. (United States)

    Kalarakis, A N; Burganos, V N; Payatakes, A C


    A two-dimensional two-phase lattice-Boltzmann model is presented and used for the study of interfacial phenomena under static and flow conditions. The model is based on the nonideal lattice-Boltzmann model proposed originally by Swift, Osborn, and Yeomans [Phys. Rev. Lett. 75, 830 (1995)] and makes it possible to couple a prescribed equation of state with the pressure tensor at the interface and the excess free-energy density formalism. The characteristic feature of the present model is that Galilean invariance is restored in the presence of interfaces without sacrificing any of the merits of the original model and, hence, the Navier-Stokes equation is adequately (to second order) recovered. The fluid properties can be prescribed in a thermodynamically consistent manner, which remains accurate at states close to the critical point. The model is first validated through static equilibrium tests and then applied to flow systems. It is shown that the simulator can reproduce some known two-phase flow configurations, like the motion of deformable droplets under the action of an external flow field. The simulator can also capture some interesting events during jet breakup and can be useful for the parametric study of the process in the two-dimensional case.

  16. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.


    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  17. Lattice dynamics and substrate-dependent transport properties of (In, Yb)-doped CoSb3 skutterudite thin films

    KAUST Repository

    Sarath Kumar, S. R.


    Lattice dynamics, low-temperature electrical transport, and high-temperature thermoelectric properties of (In, Yb)-doped CoSb3thin films on different substrates are reported. Pulsed laser deposition under optimized conditions yielded single-phase polycrystalline skutterudite films. Raman spectroscopy studies suggested that In and Yb dopants occupy the cage sites in the skutterudite lattice. Low-temperature electrical transport studies revealed the n-type semiconducting nature of the films with extrinsic and intrinsic conduction mechanisms, in sharp contrast to the degenerate nature reported for identical bulk samples. Calculations yielded a direct bandgap close to 50 meV with no evidence of an indirect gap. The carrier concentration of the films was identical to that reported for the bulk and increased with temperature beyond 250 K. The higher resistivity exhibited is attributed to the enhanced grain boundary scattering in films with a high concentration of grains. The maximum power factor of ∼0.68 W m−1 K−1 obtained at 660 K for the film on glass is found to be nearly four times smaller compared to that reported for the bulk. The observed difference in the power factors of the films on different substrates is explained on the basis of the diffusion of oxygen from the substrates and the formation of highly conducting CoSb2 phase upon the oxidation of CoSb3.

  18. On the absence of pentaquark states from dynamics in strongly coupled lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Petrus Henrique Ribeiro dos [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Veiga, Paulo Afonso Faria da; O' Carroll, Michael [Universidade de Sao Paulo (USP), SP (Brazil); Francisco Neto, Antonio [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)


    Full text: We consider an imaginary time functional integral formulation of a two-flavor, 3 + 1 lattice QCD model with Wilson's action and in the strong coupling regime (with a small hopping parameter, {kappa}0, and a much smaller plaquette coupling, {beta} = 1/g{sub 0}{sup 2}, so that the quarks and glueballs are heavy). The model has local SU(3){sub c} gauge and global SU(2){sub f} flavor symmetries, and incorporates the corresponding part of the eightfold way particles: baryons (mesons) of asymptotic mass -3ln{kappa}(-2 ln {kappa}). We search for pentaquark states as meson-baryon bound states in the energy-momentum spectrum of the model, using a lattice Bethe-Salpeter equation. This equation is solved within a ladder approximation, given by the lowest nonvanishing order in {kappa} and {beta} of the Bethe-Salpeter kernel. It includes order 2 contributions with a q-barq exchange potential together with a contribution that is a local-in-space, energy-dependent potential. The attractive or repulsive nature of the exchange interaction depends on the spin of the meson-baryon states. The Bethe-Salpeter equation presents integrable singularities, forcing the couplings to be above a threshold value for the meson and the baryon to bind in a pentaquark. We analyzed all the total isospin sectors, I = 1/2/3/2/ 5/2, for the system. For all I, the net attraction resulting from the two sources of interaction is not strong enough for the meson and the baryon to bind. Thus, within our approximation, these pentaquark states are not present up to near the free meson-baryon energy threshold of - 5 ln{kappa}. This result is to be contrasted with the spinless case for which our method detects meson-baryon bound states, as well as for Yukawa effective baryon and meson field models. A physical interpretation of our results emerges from an approximate correspondence between meson-baryon bound states and negative energy states of a one-particle lattice Schroedinger Hamiltonian

  19. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)


    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  20. Tunneling dynamics of Bose—Einstein condensates with higher-order interactions in optical lattice (United States)

    Tie, Lu; Xue, Ju-Kui


    The nonlinear Landau—Zener tunneling and nonlinear Rabi oscillations of Bose—Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed. Within the two-level model, the tunneling probability of BEC with higher-order atomic interaction between Bloch bands is obtained. We finds that the tunneling rate is closely related to the higher-order atomic interaction. Furthermore, the nonlinear Rabi oscillations of BEC with higher-order atomic interaction between the bands are discussed by imposing a periodic modulation on the level bias. Analytical expressions of the critical higher-order atomic interaction for suppressing/enhancing the Rabi oscillations are obtained. It is shown that the critical value strongly depends on the modulation parameters (i.e., the modulation amplitude and frequency) and the strength of periodic potential.

  1. Computer code for the atomistic simulation of lattice defects and dynamics. [COMENT code

    Energy Technology Data Exchange (ETDEWEB)

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.


    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability.

  2. Magnetic anisotropy and lattice dynamics in FeAs studied by Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Błachowski, A. [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ruebenbauer, K., E-mail: [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Żukrowski, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Solid State Physics, Av. A. Mickiewicza 30, PL-30-059 Kraków (Poland); Bukowski, Z. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, PL-50-422 Wrocław (Poland)


    Highlights: • Large anisotropy of the Fe hyperfine field along magnetic spiral. • Lattice hardening upon transition to the magnetic state. • Anisotropy of the recoilless fraction in the paramagnetic state. • Evaporation of arsenic at about 1000 K. -- Abstract: Iron mono-arsenide in the powder form has been investigated by transmission {sup 57}Fe Mössbauer spectroscopy in the temperature range 4.2–1000 K. Additional spectra have been obtained at 20 K and 100 K applying external magnetic field of 7 T. It was found that the spin spiral propagating along the c-axis leads to the complex variation of the hyperfine magnetic field amplitude with the spin orientation varying in the a–b plane. The magnitude of the hyperfine field pointing in the direction of the local magnetic moment depends on the orientation of this moment in the a–b plane. Patterns are vastly different for iron located in the [0 k 0] positions and for iron in the [0 k +1/2 0] positions within the orthorhombic cell set to the Pnma symmetry. Lattice softens upon transition to the paramagnetic state at 69.2 K primarily in the a–c plane as seen by iron atoms. This effect is quite large considering lack of the structural transition. Two previously mentioned iron sites are discernible in the paramagnetic region till 300 K by different electron densities on the iron nuclei. The anisotropy of the iron vibrations developed at the transition to the paramagnetic state increases with the temperature in accordance with the harmonic approximation, albeit tends to saturation at high temperatures indicating gradual onset of the quasi-harmonic conditions. It seems that neither hyperfine fields nor magnetic moments are correct order parameters in light of the determined static critical exponents. Sample starts to loose arsenic at about 1000 K and under vacuum.

  3. Pressure effects on the elastic and lattice dynamics properties of AlP from first-principles calculations (United States)

    Lakel, S.; Okbi, F.; Ibrir, M.; Almi, K.


    We have performed first-principles calculations to investigate the behavior under hydrostatic pressure of the structural, elastic and lattice dynamics properties of aluminum phosphide crystal (AlP), in both zinc-blende (B3) and nickel arsenide (B8) phases. Our calculated structural and electronic properties are in good agreement with previous theoretical and experimental results. The elastic constants, bulk modulus (B), shear modulus (G), and Young's modulus (E), Born effective charge and static dielectric constant ɛ0, were calculated with the generalized gradient approximations and the density functional perturbation theory (DFPT). Our results in the pressure behavior of the elastic and dielectric properties of both phases are compared and contrasted with the common III-V materials. The Born effective charge ZB decreases linearly with pressure increasing, while the static dielectric constant decreases quadratically with the increase of pressure.

  4. An analysis of the phonon dispersion curves of lead hafnate in the cubic phase using lattice-dynamical models

    Directory of Open Access Journals (Sweden)

    Roman G. Burkovsky


    Full Text Available We have analyzed the phonon dispersion curves in the paraelectric phase of a lead hafnate crystal (PbHfO3 by means of two different lattice-dynamical models. Both the rigid-ion model and the shell one provided an acceptable description of the available experimental data. The atomic displacement patterns were qualitatively different for the two models. In the rigid-ion model the motion in the characteristic low-energy flattened transverse acoustic branch contained both lead and hafnium displacements, while for the shell model it corresponded mainly to lead displacements with the small contribution of oxygen displacements. The shell model allows simultaneous description of the phonon dispersion curves and the correct value of the dielectric constant.

  5. Lattice dynamics of {alpha} boron and of boron carbide; Proprietes vibrationnelles du bore {alpha} et du carbure de bore

    Energy Technology Data Exchange (ETDEWEB)

    Vast, N


    The atomic structure and the lattice dynamics of {alpha} boron and of B{sub 4}C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In {alpha} boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B{sub 4}C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  6. Cementing liners through deep high pressure ones

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, B.J.; Barrios, J.R.


    Entry of gas into the liner-hole annulus during and after cementing liners though deep high pressure zones, generally results in a gas cut cement column from depth of gas entry to top of liner. Prior to undertaking design of liner cementation, it is necessary to know fracture pressure limits of the formations. It is also necessary to know the formation pore pressure or the pressure required to hold gas in the formation and precisely the depth of formation from which gas emerges. This knowledge may be gained from a study of formation pressure gradients of nearby wells or from sonic log analysis of the interval being readied for cementation. Both single-stage and 2-stage techniques are used to solve liner cementing problems in these high pressure zones. An example sets out conditions which are more or less typical and demonstrates how the problem may be considered and solved.

  7. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H


    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  8. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander


    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  9. Melting point of polymers under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Andreas [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany)], E-mail:; Freitag, Detlef [Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany); Freidel, Frank [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany); Luft, Gerhard [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany)], E-mail:


    The influence of highly compressed gases on the melting of polyethylene was investigated for nitrogen, helium and ethylene. The impact of the particle size of the polymer and the heating rate on the melting point were also analysed. The melting points were determined with a high pressure differential thermal analysis (HPDTA) apparatus. These measurements were compared with independent measurements, done by high pressure differential scanning calorimetry (HPDSC), without gas. From this experimental data it was possible to calculate the concentration of the gas in the molten polymer phase based on equilibrium thermodynamics. For high density polyethylene (HDPE), a concentration of nitrogen at the polymer melting point of 10.4-35.7 mL(SATP) g(polymer){sup -1}, in the pressure interval of 65-315 MPa, was calculated.

  10. Stability of xenon oxides at high pressures. (United States)

    Zhu, Qiang; Jung, Daniel Y; Oganov, Artem R; Glass, Colin W; Gatti, Carlo; Lyakhov, Andriy O


    Xenon, which is quite inert under ambient conditions, may become reactive under pressure. The possibility of the formation of stable xenon oxides and silicates in the interior of the Earth could explain the atmospheric missing xenon paradox. Using an ab initio evolutionary algorithm, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO(2) and XeO(3) become stable at pressures above 83, 102 and 114 GPa, respectively). Our calculations indicate large charge transfer in these oxides, suggesting that large electronegativity difference and high pressure are the key factors favouring the formation of xenon compounds. However, xenon compounds cannot exist in the Earth's mantle: xenon oxides are unstable in equilibrium with the metallic iron occurring in the lower mantle, and xenon silicates are predicted to decompose spontaneously at all mantle pressures (xenon atoms may be retained at defects in mantle silicates and oxides.

  11. Electronic excitation induced hydrogen-bond adjustment and lattice control in organic-inorganic hybrid cubic perovskites: a fixed occupation molecular dynamics study. (United States)

    Wang, Mo-Ran; Ren, Xiang-Yang; Li, Xian-Bin; Chen, Nian-Ke; Sun, Hong-Bo


    The organic-inorganic hybrid perovskite has become a new type of semiconductor for low cost and highly efficient solar cells. However, the mechanism of interactions between the organic cation and the inorganic framework is still not completely clear under optical electronic excitation. In this work, we employ first-principles molecular dynamics with electronic excitation effects to prove that the hydrogen-bond interaction between the molecular cation and the inorganic lattice can be readily adjusted by several-percentage-valence-electron excitations in cubic CH3NH3PbI3. While the hydrogen-bond interaction causes serious lattice distortions, the electronic excitation can recover the lattice symmetry largely by weakening hydrogen bonding. The study offers atomic dynamics to understand the excitation process in the organic-inorganic hybrid perovskite semiconductor.

  12. High pressure layered structure of carbon disulfide


    Naghavi, S. Shahab; Crespo, Yanier; Martonak, Roman; Tosatti, Erio


    Solid CS$_{2}$ is superficially similar to CO$_{2}$, with the same $Cmca$ molecular crystal structure at low pressures, which has suggested similar phases also at high pressures. We carried out an extensive first principles evolutionary search in order to identify the zero temperature lowest enthalpy structures of CS$_{2}$ for increasing pressure up to 200\\,GPa. Surprisingly, the molecular $Cmca$ phase does not evolve into $\\beta$-cristobalite as in CO$_{2}$, but transforms instead into phase...

  13. The high-pressure behavior of bloedite

    DEFF Research Database (Denmark)

    Comodi, Paola; Nazzareni, Sabrina; Balic Zunic, Tonci


    High-pressure single-crystal synchrotron X‑ray diffraction was carried out on a single crystal of bloedite [Na2Mg(SO4)24H2O] compressed in a diamond-anvil cell. The volume-pressure data, collected up to 11.2 GPa, were fitted by a second- and a third-order Birch-Murnaghan equation of state (EOS), ...

  14. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan


    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  15. observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si. NMR signals arising from the antiferromagnetic (AF) region besides the previously observed 29Si. NMR signals which come ...

  16. Optical properties of V1-xCrxO2 compounds under high pressure (United States)

    Marini, C.; Arcangeletti, E.; di Castro, D.; Baldassare, L.; Perucchi, A.; Lupi, S.; Malavasi, L.; Boeri, L.; Pomjakushina, E.; Conder, K.; Postorino, P.


    Raman and infrared transmission and reflectivity measurements were carried out at room temperature and high pressure (0-15 GPa) on V1-xCrxO2 compounds. Raman spectra were collected at ambient conditions on the x=0.007 and 0.025 materials, which are characterized by different insulating monoclinic phases ( M3 and M2 , respectively), while infrared spectra were collected on the x=0.025 sample only. The present data were compared with companion results on undoped VO2 [E. Arcangeletti , Phys. Rev. Lett. 98, 196406 (2007)], which is found at ambient conditions in a different, third insulating monoclinic phase, named M1 . This comparison allowed us to investigate the effects of different extents of structural distortions (Peierls distortion) on the lattice dynamics and the electronic properties of this family of compounds. The pressure dependence of the Raman spectrum of VO2 and Cr-doped samples shows that all the systems retain the monoclinic structure up to the highest explored pressure, regardless the specific monoclinic structure ( M1 , M2 , and M3 ) at ambient condition. Moreover, the Raman spectra of the two Cr-doped samples, which exhibit an anomalous behavior over the low-pressure range (P<8GPa) , merge into that of VO2 in the high-pressure regime and are all found into a common monoclinic phase (a possible fourth kind phase). Combining Raman and infrared results on both the VO2 and the present data, we found that a common metallic monoclinic phase appears accessible in the high-pressure regime at room temperature for both undoped and Cr-doped samples independently of the different extents of Peierls distortion at ambient conditions. This finding differs from the behavior observed at ambient pressure, where the metallic phase is found only in conjunction with the rutile structure. The whole of these results suggests a major role of the electron correlations, rather than of the Peierls distortion, in driving the metal-insulator transition in vanadium dioxide

  17. CRRT Connected to ECMO: Managing High Pressures. (United States)

    de Tymowski, Christian; Augustin, Pascal; Houissa, Hamda; Allou, Nicolas; Montravers, Philippe; Delzongle, Alienor; Pellenc, Quentin; Desmard, Mathieu

    Metabolic disorders and fluid overload are indications of continuous renal replacement therapy (CRRT) including continuous venovenous hemofiltration in patients on extracorporeal membrane oxygenation (ECMO). Direct connection of CRRT machine to the ECMO circuit provides many advantages. Nevertheless, because pressures in CRRT lines relate to ECMO blood flow, high ECMO blood flow may be associated with high pressures in CRRT lines. Thus, management of CRRT pressure lines becomes challenging. We evaluated a protocol for managing high CRRT pressures. Connections were performed according to a standardized protocol to maintain CRRT lines in the correct pressure ranges without modifying ECMO settings or inhibiting pressure alarms. To achieve this goal, the way of connecting of CRRT lines was adapted following a standardized protocol. Connection was first attempted between pump and oxygenator in the 12 patients. In five cases, high pressures in CRRT lines were successfully managed by changing the connection segment. Continuous renal replacement therapy parameters were within target levels and reduction of serum creatinine was 37%. In conclusion, management of high pressures in CRRT lines induced by ECMO could be achieved without modifying ECMO blood flow or inhibiting CRRT alarms. Iterative stops were avoided allowing efficient procedures.

  18. Path Dependency of High Pressure Phase Transformations (United States)

    Cerreta, Ellen


    At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.

  19. High pressure synthesis gas conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)


    The purpose of this research project is to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by Clostridium ljungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors. A maximum operating pressure of 150 psig has been shown to be possible for C. ljungdahlli with the medium of Phillips et al. This medium was developed for atmospheric pressure operation in the CSTR to yield maximum ethanol concentrations and thus is not best for operation at elevated pressures. It is recommended that a medium development study be performed for C. ljungdahlii at increased pressure. Cell concentration, gas conversion and product concentration profiles were presented for C. ljungdahlii as a function of gas flow rate, the variable which affects bacterium performance the most. This pressure was chosen as a representative pressure over the 0--150 psig operating pressure range for the bacterium. Increased pressure negatively affected ethanol productivity probably due to the fact that medium composition was designed for atmospheric pressure operation. Medium development at increased pressure is necessary for high pressure development of the system.

  20. Long-time averaged dynamics of a Bose–Einstein condensate in a bichromatic optical lattice with external harmonic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Sakhel, Asaad R., E-mail: [Department of Physics and Basic Sciences, Faculty of Engineering Technology, Balqa Applied University, Amman 11134 (Jordan); Abdus-Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)


    The dynamics of a Bose–Einstein condensate are examined numerically in the presence of a one-dimensional bichromatic optical lattice (BCOL) with external harmonic confinement in the strongly interacting regime. The condensate is excited by a focusing stirring red laser. Two realizations of the BCOL are considered, one with a rational and the other with an irrational ratio of the two constituting wave lengths. The system is simulated by the time-dependent Gross Pitaevskii equation that is solved using the Crank Nicolson method in real time. It is found that for a weak BCOL, the long-time averaged physical observables of the condensate respond only very weakly (or not at all) to changes in the secondary OL depth V{sub 1} showing that under these conditions the harmonic trap plays a dominant role in governing the dynamics. However, for a much larger strength of the BCOL, the response is stronger as it begins to compete with the external harmonic trap, such that the frequency of Bloch oscillations of the bosons rises with V{sub 1} yielding higher time-averages. Qualitatively there is no difference between the dynamics of the condensate resulting from the use of a rational or irrational ratio of the wavelengths since the external harmonic trap washes it out. It is further found that in the presence of an external harmonic trap, the BCOL acts in favor of superflow.

  1. Electronic structure and lattice dynamics of rhombohedral BiAlO{sub 3} from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Kaczkowski, J., E-mail:


    The structural, elastic, electronic, dynamical (zone-center phonon modes and Born effective charge tensors), and ferroelectric properties of the rhombohedral BiAlO{sub 3} were calculated within various exchange-correlation functionals. The standard local-density (LDA) and generalized gradient (GGA) approximations, and nonlocal hybrid Heyd-Scuseria-Ernzerhof (HSE) were used. We have also performed the electronic structure calculations with meta-GGA Tran-Blaha functional. BiAlO{sub 3} is indirect band gap semiconductor with the value of band gap: 2.87 eV (GGA), 4.14 eV (HSE), and 3.78 eV (TB-mBJ). The calculated spontaneous polarization is 81 μC/cm{sup 2} (87 μC/cm{sup 2}) for GGA (HSE). The vibrational spectrum including LO-TO splitting was calculated within GGA. The zone-center phonon modes with LO-TO splitting for BiAlO{sub 3} were compared with those in isostructural BiFeO{sub 3}. - Highlights: • Electronic structure of the rhombohedral phase of BiAlO{sub 3} were calculated. • Structural, elastic, dynamical, and ferroelectric properties were investigated. • Calculations were done within GGA, hybrid HSE, and TB-mBJ functionals. • The lattice dynamics with LO-TO splitting were investigated within GGA functional.

  2. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating (United States)

    Valbuena, Alejandro; Mateu, Mauricio G.


    Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior of protein assemblies in order to improve their suitability as nanomaterials. In this study, the capsid protein of the human immunodeficiency virus was induced to self-assemble as a continuous, single layered, ordered nanocoating onto an inorganic substrate. Atomic force microscopy (AFM) was used to quantify the mechanical behavior and the equilibrium dynamics (``breathing'') of this virus-based, self-assembled protein lattice in close to physiological conditions. The results uniquely provided: (i) evidence that AFM can be used to directly visualize in real time and quantify slow breathing motions leading to dynamic disorder in protein nanocoatings and viral capsid lattices; (ii) characterization of the dynamics and mechanics of a viral capsid lattice and protein-based nanocoating, including flexibility, mechanical strength and remarkable self-repair capacity after mechanical damage; (iii) proof of principle that chemical additives can modify the dynamics and mechanics of a viral capsid lattice or protein-based nanocoating, and improve their applied potential by increasing their mechanical strength and elasticity. We discuss the implications for the development of mechanically resistant and compliant biocoatings precisely organized at the nanoscale, and of novel antiviral agents acting on fundamental physical properties of viruses.Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications

  3. High-pressure structural phase transitions in CuWO[subscript 4

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Fuertes, J.; Errandonea, D.; Lacomba-Perales, R.; Segura, A.; González, J.; Rodríguez, F.; Manjón, F.J.; Ray, S.; Rodríguez-Hernández, P.; Muñoz, A.; Zhu, Zh.; Tu, C.Y. (Cantabria); (Valencia); (Laguna); (Chinese Aca. Sci.)


    We study the effects of pressure on the structural, vibrational, and magnetic behavior of cuproscheelite. We performed powder x-ray diffraction and Raman spectroscopy experiments up to 27 GPa as well as ab initio total-energy and lattice-dynamics calculations. Experiments provide evidence that a structural phase transition takes place at 10 GPa from the low-pressure triclinic phase (P1{sup -}) to a monoclinic wolframite-type structure (P2/c). Calculations confirmed this finding and indicate that the phase transformation involves a change in the magnetic order. In addition, the equation of state for the triclinic phase is determined: V{sub 0} = 132.8(2) {angstrom}{sup 3}, B{sub 0} = 139(6) GPa, and B{prime}{sub 0} = 4. Furthermore, experiments under different stress conditions show that nonhydrostatic stresses induce a second phase transition at 17 GPa and reduce the compressibility of CuWO{sub 4}, B{sub 0} = 171(6) GPa. The pressure dependence of all Raman modes of the triclinic and high-pressure phases is also reported and discussed.

  4. Study of the Dynamics of a Condensing Bubble Using Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Shahnawaz Ahmed


    Full Text Available Mesoscopic lattice Boltzmann method (LBM is used to discretize the governing equations for a steam bubble inside a tube filled with water. The bubbles are kept at higher temperature compared to its boiling point while the liquid is kept subcooled. Heat transfer is allowed to take place between the two phases by virtue of which the bubble will condense. Three separate probability distribution functions are used in LBM to handle continuity, momentum and energy equations separately. The interface is considered to be diffused within a narrow zone and it has been modeled using convective Cahn-Hillard equation. Combined diffused interface-LBM framework is adapted accordingly to handle complex interface separating two phases having high density ratio. Developed model is validated with respect to established correlations for instantaneous equivalent radius of a spherical condensing bubble. Numerical snapshots of the simulation depict that the bubble volume decreases faster for higher degree of superheat. The degrees of superheat are varied over a wide range to note its effect on bubble shape and size. Effect of initial volume of the bubble on the condensation rate is also studied. It has been observed that for a fixed degree of superheat, the condensation rate is not exactly proportional to its volume. Due to the variation in interfacial configuration for different sized bubbles, condensation rate changes drastically. Influence of gravity on the rate of condensation is also studied using the developed methodology.

  5. Wave-packet dynamics of noninteracting ultracold bosons in an amplitude-modulated parabolic optical lattice (United States)

    Yamakoshi, Tomotake; Watanabe, Shinichi


    The recent Aarhus experiment [Phys. Rev. A 88, 023620 (2013), 10.1103/PhysRevA.88.023620] produced wave packets by applying amplitude modulation to a trapped Bose-Einstein condensate (BEC) of 87Rb using an optical lattice. The present paper renders a theoretical account of this experimental production of wave packets and their subsequent time evolution, focusing on a one-dimensional noninteracting bosonic system as a fundamental starting point for accurate quantum analysis. Since experimental manipulation requires efficient wave-packet creation, we introduce the "single-Q Rabi model" to give a simple and reliable description of the interband transition. As a natural extension, we demonstrate enhancement of the wave-packet production by the "two-step Rabi oscillation method" using either one or two frequencies. The subsequent time evolution is affected by the intertwining of Bragg reflection and the Landau-Zener transition at each band gap, which is analyzed with the aid of a semiclassical theory [Phys. Rev. Lett. 110, 085302 (2013), 10.1103/PhysRevLett.110.085302].

  6. Coupling molecular dynamics with lattice Boltzmann method based on the immersed boundary method (United States)

    Tan, Jifu; Sinno, Talid; Diamond, Scott


    The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the classic problem of rigid ellipsoid particle orbit in shear flow, blood cell stretching test and effective blood viscosity, and demonstrated essentially linear scaling over 16 cores. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code. NIH 1U01HL131053-01A1.

  7. Lattice Boltzmann numerical simulation and experimental research of dynamic flow in an expansion-contraction microchannel. (United States)

    Jiang, Di; Sun, Dongke; Xiang, Nan; Chen, Ke; Yi, Hong; Ni, Zhonghua


    This paper applies the lattice Boltzmann method (LBM) to a 3D simulation of micro flows in an expansion-contraction microchannel. We investigate the flow field under various inlet flow rates and cavity structures, and then systematically study the flow features of the vortex and Dean flow in this channel. Vortex formation analysis demonstrates that there is no observable vortex generated when the inlet flow rate is low enough. As the inlet flow rate increases, a small vortex first appears near the inlet, and then this vortex region will keep expanding until it fully occupies the cavity. A smaller cavity width may result in a larger vortex but the vortex is less influenced by cavity length. The Dean flow features at the outlet become more apparent with increasing inlet flow rate and more recirculation regions can be observed in the cross-section under over high inlet flow rate. In order to support the simulation results, some experimental processes are conducted successfully. It validates that the applied model can accurately characterize the flow in the microchannel. Results of simulations and experiments in this paper provide insights into the design and operation of microfluidic systems for particle/cell manipulation.

  8. Thermoelectric properties of high pressure synthesized lithium and calcium double-filled CoSb3

    Directory of Open Access Journals (Sweden)

    Xiaohui Li


    Full Text Available Lithium and calcium are inefficient filling elements of CoSb3 at ambient pressure, but show nice filling behavior under high pressure. In this work, we synthesized Li/Ca double-filled CoSb3 with high pressure synthesis method. The products show the skutterudite structure of Im3¯ symmetry. Thermoelectric properties were effectively enhanced through Li and Ca co-filling. For the optimal Li0.08Ca0.18Co4Sb12 sample, the power factor maintains a relatively high value over the whole measurement temperature range and peaks at 4700μWm−1K−2, meanwhile the lattice thermal conductivity is greatly suppressed, leading to a maximal ZT of 1.18 at 700 K. Current work demonstrates high pressure synthesis as an effective method to produce multiple elemental filled CoSb3 skutterudites.

  9. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T


    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  10. Non-equilibrium dynamics of hard-core bosons on 1D lattices: short vs large time results (United States)

    Rigol, Marcos; Muramatsu, Alejandro


    Based on an exact treatment we study the non-equilibrium dynamics of hard-core bosons on one-dimensional lattices. Starting from a pure Fock state we find that quasi-long range correlations develop very fast in the system, and they lead to the emergence of quasi-condensates at finite momentum [1]. The exponent observed in the power-law decay of the one-particle density matrix, which develops dynamically, is the same that has been proven to be universal in the equilibrium case [2]. We also study the time evolution of clouds of hard-core bosons when they are released from a harmonic trap. In this case we show that the momentum distribution of the free expanding hard-core bosons approaches to the one of noninteracting fermions [3], in contrast to the known behavior in equilibrium systems. [1] M. Rigol and A. Muramatsu, cond-mat/0403387, to appear in Phys. Rev. Lett. (2004). [2] M. Rigol and A. Muramatsu, Phys. Rev. A 70, 031603(R) (2004); ibid. cond-mat/0409132. [3] M. Rigol and A. Muramatsu, cond-mat/0410683.


    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino


    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  12. Heterogeneous flow during high-pressure torsion

    Directory of Open Access Journals (Sweden)

    Roberto B. Figueiredo


    Full Text Available High-Pressure Torsion (HPT has attracted significant attention in recent years as an effective technique to process ultrafine and nanostructured materials. The hydrostatic pressure developed during processing prevents the occurrence of cracks and the low thickness to diameter ratio provides the opportunity for developing high strains at low numbers of rotations. The present work analyses the plastic flow during HPT. Experimental results and computer modeling are used to describe heterogeneous plastic flow. It is shown that variations in structure, hardness and in the distribution of strain are observed along the disc thickness. The sources of these heterogeneities are discussed.

  13. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  14. High pressure hydroformylation in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Paciello, R. [BASF Aktiengesellschaft, Ludwigshafen (Germany)


    Higher oxo alcohols are intermediates for large-scale applications, such as plasticizers, detergents and fuel additives, as well as being useful in the synthesis of fine chemicals such as vitamins or flavors and fragrances. Many of these alcohols are still made using high pressure technologies. Advantages and disadvantages of different technologies presently in use or being developed are discussed. In particular, efforts to decrease raw material costs, e.g. by increasing yield, or investment, e.g. by decreasing pressure, will be highlighted. (orig.)

  15. Inelastic neutron scattering and lattice dynamics of ZrO2, Y2O3 and ...

    Indian Academy of Sciences (India)


    Nov 27, 2015 ... Zirconia (ZrO2), yttria (Y2O3) and thorite (ThSiO4) are ceramic materials used for a wide range of industrial applications. The dynamical properties of these materials are of interest as they exhibit numerous interesting phase transitions at high temperature and pressure. Using a combination of inelastic ...

  16. High Pressure and Temperature Effects in Polymers (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  17. High Pressure Hydrogen from First Principles (United States)

    Morales, M. A.


    Typical approximations employed in first-principles simulations of high-pressure hydrogen involve the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. This work was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  18. Is sodium a superconductor under high pressure? (United States)

    Tutchton, Roxanne; Chen, Xiaojia; Wu, Zhigang


    Superconductivity has been predicted or measured for most alkali metals under high pressure, but the computed critical temperature (T c ) of sodium (Na) at the face-centered cubic (fcc) phase is vanishingly low. Here we report a thorough, first-principles investigation of superconductivity in Na under pressures up to 260 GPa, where the metal-to-insulator transition occurs. Linear-response calculations and density functional perturbation theory were employed to evaluate phonon distributions and the electron-phonon coupling for bcc, fcc, cI16, and tI19 Na. Our results indicate that the maximum electron-phonon coupling parameter, λ, is 0.5 for the cI16 phase, corresponding to a theoretical peak in the critical temperature at T c ≈1.2 K. When pressure decreases or increases from 130 GPa, T c drops quickly. This is mainly due to the lack of p-d hybridization in Na even at 260 GPa. Since current methods based on the Eliashberg and McMillian formalisms tend to overestimate the T c (especially the peak values) of alkali metals, we conclude that under high pressure-before the metal-to-insulator transition at 260 GPa-superconductivity in Na is very weak, if it is measurable at all.

  19. On the Validity of the Dynamical Mean-Field Approximation for Studying the Two-Dimensional Hubbard Model on a Square Lattice

    Directory of Open Access Journals (Sweden)

    A. N. Ribeiro


    Full Text Available The dynamical mean-field approximation (DMFA becomes exact in the limit of infinite dimensions, and allows results to be obtained in a nonperturbative regime without the limitations normally found with exact diagonalization (ED and quantum Monte Carlo (QMC methods. In this paper, we investigate the applicability of the method to lattices with small coordination number in special situations. Specifically we use this approximation to study the two-dimensional (2D Hubbard model on a square lattice far from half filling. In this situation, we calculate the specific heat and find that when the filling decreases, that is, antiferromagnetic correlations become less important, the agreement between DMFA and QMC results increases. Our results show that the DMFA can be a valuable technique for studying the thermodynamic properties of the Hubbard model also on a square lattice, but within a parameter range in which the antiferromagnetic correlations are not important.

  20. Combined molecular and spin dynamics simulation of bcc iron with lattice vacancies (United States)

    Mudrick, Mark; Eisenbach, Markus; Perera, Dilina; Stocks, G. Malcolm; Landau, David P.


    Using an atomistic model that treats both translational and spin degrees of freedom, we have performed combined molecular and spin dynamics simulations to study dynamic properties of BCC iron with varying vacancy concentrations. Atomic interactions are described by an empirical many-body potential while spin interactions are handled with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. By calculating the Fourier transform of spatial and temporal correlation functions, vibrational and magnetic excitations have been studied. The creation of vacancies in the material has shown splitting of the characteristic transverse spin-wave excitations, indicating the production of additional excitation modes. By merging two vacancies to form a nearest neighbor pair, we find that these modes become more distinct. Investigation of longitudinal spin-wave excitations reveals interactions between constituent components of the split transverse excitations.

  1. Quantum walks and wavepacket dynamics on a lattice with twisted photons (United States)

    Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W.; Marrucci, Lorenzo


    The “quantum walk” has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations. PMID:26601157

  2. Quantum walks and wavepacket dynamics on a lattice with twisted photons


    Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W.; Marrucci, Lorenzo


    Inspired by the classical phenomenon of random walk, the concept of quantum walk has emerged recently as a powerful platform for the dynamical simulation of complex quantum systems, entanglement production and universal quantum computation. Such a wide perspective motivates a renewing search for efficient, scalable and stable implementations of this quantum process. Photonic approaches have hitherto mainly focused on multi-path schemes, requiring interferometric stability and a number of opti...

  3. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.


    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.

  4. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh


    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  5. Interplay of structural instability and lattice dynamics in Ni{sub 2}MnAl shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mehaddene, T.


    The work presented here is devoted to investigate the interplay of lattice dynamics and structural instability in Ni{sub 2}MnAl shape memory alloys. Inelastic neutron scattering is used to get more insight on the dynamic precursors of structural instability in Ni{sub 2}MnAl. Differential Scanning Calorimetry was used to characterise the martensitic transition in Ni{sub 2}MnAl alloys. Effects of composition and heat treatments have been investigated. The measured martensitic transition temperature in Ni-Mn-Al alloys depends linearly on the valence electron concentration. Two single crystals with different compositions have been succesfully grown using the Czochralski technique. Acoustic and optical phonon modes have been measured at room temperature in the high symmetry directions of the cubic B2 phase. The force constants have been fitted to the measured data using the Born-von Karman model. The character of the phonon softening measured in Ni{sub 2}MnAl corresponds to the pattern of atomic displacements of the modulations 2M, 10M, 12M and 14M observed in bulk and thin-films of Ni{sub 2}MnAl. The effect of the composition on the lattice instability has been investigated by measuring normal modes of vibration in two different crystals, Ni{sub 51}Mn{sub 18}Al{sub 31} and Ni{sub 53}Mn{sub 22}Al{sub 25}, with e/a ratios of 7.29 and 7.59 respectively. The stabilisation of a single L2{sub 1} phase in Ni{sub 2}MnAl by annealing a Ni{sub 51}Mn{sub 18}Al{sub 31} single crystal at 673 K during 45 days has been attempted. Despite of the long-time annealing, a single L2{sub 1} phase could not be stabilised because of either a slow diffusion kinetics or the establishment of an equilibrium between the L2{sub 1} and the B2 phases. Phonon measurements of the TA{sub 2}[{xi}{xi}0] branch in the annealed sample revealed a substantial effect. The wiggle, associated with the anomalous softening, is still present but the degree of softening is smaller below 673 K and changes

  6. Structural control on displacive phase transitions in minerals at high pressures (United States)

    Miletich, Ronald


    High-pressure phase transformations resemble discontinuous thermodynamic and structural changes of materials, which can be assigned to configurational instabilities and lattice-related boundary conditions. In particular transformations, which are predominantely displacive in character, reveal structural control across the critical transition pressures through the structures of the polymorphs involved. Three examples of high-pressure phase transitions will be presented, which have been subject to a series of experimental studies at high pressures using diamond-anvil cells. The first example deals with clinopyroxenes, their static elasticities and elastic anomalies associated with occuring first-order transition. The example of spodumene will demonstrate in particular the structural role of the silicate-chain units, and exemplifies the pronounced deviation from conventional equation-of-state behaviour in the proximity of the critical transition pressure. The second example deals with the high-pressure phase transition of behoite and the structural control of hydrogen bridging on first-order transformations in simple (hydr)oxide phases. The third example will present the second-order transition in the silicate mineral benitoite, which has been chosen to demonstrate the need for high-precision single-crystal techniques in order to track down subtle structural changes related to high-pressure transitions.

  7. High pressure structural phase transitions of PbPo

    Energy Technology Data Exchange (ETDEWEB)

    Bencherif, Y.; Boukra, A. [Departement de Physique, Faculte des Sciences, Universite de Mostaganem (Algeria); Departement de Physique, Universite des Sciences et de la Technologie d' Oran, USTO, Oran (Algeria); Zaoui, A., E-mail: [Universite Lille Nord de France, LGCgE (EA 4515) Lille1, Polytech' Lille, Cite Scientifique, Avenue Paul Langevin, 59655 Villeneuve D' Ascq Cedex (France); Ferhat, M. [Departement de Physique, Universite des Sciences et de la Technologie d' Oran, USTO, Oran (Algeria)


    First-principles calculations have been performed to investigate the high pressure phase transitions and dynamical properties of the less known lead polonium compound. The calculated ground state parameters for the NaCl phase show good agreement with the experimental data. The obtained results show that the intermediate phase transition for this compound is the orthorhombic Pnma phase. The PbPo undergoes from the rocksalt to Pnma phase at 4.20 GPa. Further structural phase transition from intermediate to CsCl phase has been found at 8.5 GPa. In addition, phonon dispersion spectra were derived from linear-response to density functional theory. In particular, we show that the dynamical properties of PbPo exhibit some peculiar features compared to other III-V compounds. Finally, thermodynamics properties have been also addressed from quasiharmonic approximation.

  8. Generic dynamical phase transition in one-dimensional bulk-driven lattice gases with exclusion (United States)

    Lazarescu, Alexandre


    Dynamical phase transitions are crucial features of the fluctuations of statistical systems, corresponding to boundaries between qualitatively different mechanisms of maintaining unlikely values of dynamical observables over long periods of time. They manifest themselves in the form of non-analyticities in the large deviation function of those observables. In this paper, we look at bulk-driven exclusion processes with open boundaries. It is known that the standard asymmetric simple exclusion process exhibits a dynamical phase transition in the large deviations of the current of particles flowing through it. That phase transition has been described thanks to specific calculation methods relying on the model being exactly solvable, but more general methods have also been used to describe the extreme large deviations of that current, far from the phase transition. We extend those methods to a large class of models based on the ASEP, where we add arbitrary spatial inhomogeneities in the rates and short-range potentials between the particles. We show that, as for the regular ASEP, the large deviation function of the current scales differently with the size of the system if one considers very high or very low currents, pointing to the existence of a dynamical phase transition between those two regimes: high current large deviations are extensive in the system size, and the typical states associated to them are Coulomb gases, which are highly correlated; low current large deviations do not depend on the system size, and the typical states associated to them are anti-shocks, consistently with a hydrodynamic behaviour. Finally, we illustrate our results numerically on a simple example, and we interpret the transition in terms of the current pushing beyond its maximal hydrodynamic value, as well as relate it to the appearance of Tracy-Widom distributions in the relaxation statistics of such models. , which features invited work from the best early-career researchers working

  9. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team. (United States)

    Xiao, Y M; Chow, P; Boman, G; Bai, L G; Rod, E; Bommannavar, A; Kenney-Benson, C; Sinogeikin, S; Shen, G Y


    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.

  10. A multispin algorithm for the Kob-Andersen stochastic dynamics on regular lattices (United States)

    Boccagna, Roberto


    The aim of the paper is to propose an algorithm based on the Multispin Coding technique for the Kob-Andersen glassy dynamics. We first give motivations to speed up the numerical simulation in the context of spin glass models [M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)]; after defining the Markovian dynamics as in [W. Kob, H.C. Andersen, Phys. Rev. E 48, 4364 (1993)] as well as the related interesting observables, we extend it to the more general framework of random regular graphs, listing at the same time some known analytical results [C. Toninelli, G. Biroli, D.S. Fisher, J. Stat. Phys. 120, 167 (2005)]. The purpose of this work is a dual one; firstly, we describe how bitwise operators can be used to build up the algorithm by carefully exploiting the way data are stored on a computer. Since it was first introduced [M. Creutz, L. Jacobs, C. Rebbi, Phys. Rev. D 20, 1915 (1979); C. Rebbi, R.H. Swendsen, Phys. Rev. D 21, 4094 (1980)], this technique has been widely used to perform Monte Carlo simulations for Ising and Potts spin systems; however, it can be successfully adapted to more complex systems in which microscopic parameters may assume boolean values. Secondly, we introduce a random graph in which a characteristic parameter allows to tune the possible transition point. A consistent part is devoted to listing the numerical results obtained by running numerical simulations.

  11. Anomalies in vortex lattice dynamics driven by induced ac currents in superconducting films with magnetic arrays of two-fold symmetry (United States)

    Moreno, A. J.; Chiliotte, C. E.; Pasquini, G.; Bekeris, V.; Gomez, A.; del Valle, J.; Gonzalez, E. M.; Prieto, J. L.; Vicent, J. L.


    We study the dynamics of the vortex lattice driven by ac induced currents in the critical state regime, for T > 0.70 TC. The samples are superconducting films grown on top of two-fold symmetry array of magnetic dots. In these heterostructures, the induced ac currents flow parallel to the short and to the long side of the pinning array in different areas of the samples simultaneously. This behavior produces remarkable effects in the vortex lattice dynamics. First of all, periodic features are observed in the ac susceptibility versus applied magnetic field measurements which are related to matching effects between the vortex lattices and the magnetic array. However, the vortex lattice reconfiguration observed in magnetotransport experiments is absent. Some of these features are revealed as maxima instead of being minima, indicating higher mobility at certain matching fields. Competing unstable vortex configurations could lead to increase vortex mobility precluding the reconfiguration transition. At high temperatures, where the matching effects show up, the magnetic permeability of the dots is the mechanism that governs the JC(T) behavior. Moreover, the temperature dependence of the pinning force FP(T) shows a temperature crossover related to an unexpected enhancement in vortex mobility. Vortex-vortex interaction and the interplay between trapped and interstitial vortices are a hint to explain these phenomena.

  12. Production of nanograined intermetallics using high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji, E-mail: [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka (Japan)


    Formation of intermetallics is generally feasible at high temperatures when the lattice diffusion is fast enough to form the ordered phases. This study shows that nanograined intermetallics are formed at a low temperature as 573 K in Al- 25 mol% Ni, Al- 50 mol.% Ni and Al- 50 mol% Ti powder mixtures through powder consolidation using high-pressure torsion (HPT). For the three compositions, the hardness gradually increases with straining but saturates to the levels as high as 550-920 Hv. In addition to the high hardness, the TiAl material exhibits high yield strength as {approx}3 GPa with good ductility as {approx}23%, when they are examined by micropillar compression tests. X-ray diffraction analysis and high-resolution transmission electron microscopy reveal that the significant increase in hardness and strength is due to the formation of nanograined intermetallics such as Al{sub 3}Ni, Al{sub 3}Ni{sub 2}, TiAl{sub 3}, TiAl{sub 2} and TiAl with average grain sizes of 20-40 nm (author)

  13. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita


    highlighted by high pressure optical spectroscopy whilst analogous x-ray diffraction experiments remain less frequent. By focusing on a class of blue-emitting π-conjugated polymers, polyfluorenes, this article reviews optical spectroscopic studies under hydrostatic pressure, addressing the impact of molecular......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...

  14. High pressure chemistry of substituted acetylenes

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa, Raja [Los Alamos National Laboratory; Dattelbaum, Dana [Los Alamos National Laboratory; Sheffield, Stephen [Los Alamos National Laboratory; Robbins, David [Los Alamos National Laboratory


    High pressure in situ synchrotron x-ray diffraction experiments were performed on substituted polyacetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C{triple_bond}CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-Si{triple_bond}CH] to investigate pressure-induced chemical reactions. The starting samples were the low temperature crystalline phases which persisted metastably at room temperature and polymerized beyond 11 GPa and 26 GPa for TBA and ETMS respectively. These reaction onset pressures are considerably higher than what we observed in the shockwave studies (6.1 GPa for TBA and 6.6 GPa for ETMS). Interestingly, in the case of ETMS, it was observed with fluid ETMS as starting sample, reacts to form a semi-crystalline polymer (crystalline domains corresponding to the low-T phase) at pressures less than {approx}2 GPa. Further characterization using vibrational spectroscopy is in progress.

  15. High pressure photophysics of organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Brey, L. A.


    High pressure spectroscopic studies on several classes of organic compounds were made both in fluid solution (to 10 kbar) and in polymeric media (to 40 kbar). The first three studies were conducted in fluid solution and concern the effect of solvent viscosity on the nonradiative deactivation rates from electronically excited states. Pressure was utilized to attain high viscosities in organic solvents at room temperature. The primary experimental technique used was fluorescence emission spectroscopy. In the fourth and last study observations were made both in fluid solution and in plastic films. The focus of this study was the effect of pressure on the solvent-chromophore dispersion interaction in several polyenes and the concomitant changes in both the radiative and non-radiative rates from the excited states. Extensive use was made of fluorescence lifetime measurements and excitation spectra. 105 references.

  16. Superconductivity from magnetic elements under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Katsuya [KYOKUGEN, Research Center for Materials Science at Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)]. E-mail:; Amaya, Kiichi [Toyota Physical and Chemical Research Institute, Aichi 480-1192 (Japan); Suzuki, Naoshi [Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Onuki, Yoshichika [Graduate School of Science, Osaka University, Osaka 560-0043 (Japan)


    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors.

  17. Polymerization of Formic Acid under High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, A F; Manaa, M R; Zaug, J M; Fried, L E; Montgomery, W B


    We report combined Raman, infrared (IR) and x-ray diffraction (XRD) measurements, along with ab initio calculations on formic acid under pressure up to 50 GPa. Contrary to the report of Allan and Clark (PRL 82, 3464 (1999)), we find an infinite chain low-temperature Pna2{sub 1} structure consisting of trans molecules to be a high-pressure phase at room temperature. Our data indicate the symmetrization and a partially covalent character of the intra-chain hydrogen bonds above approximately 20 GPa. Raman spectra and XRD patterns indicate a loss of the long-range order at pressures above 40 GPa with a large hysteresis at decompression. We attribute this behavior to a three-dimensional polymerization of formic acid.

  18. High pressure Raman scattering of silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Khachadorian, Sevak; Scheel, Harald; Thomsen, Christian [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, 10623 Berlin (Germany); Papagelis, Konstantinos [Materials Science Department, University of Patras, 26504 Patras (Greece); Colli, Alan [Nokia Research Centre, 21 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ferrari, Andrea C, E-mail: [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)


    We study the high pressure response, up to 8 GPa, of silicon nanowires (SiNWs) with {approx} 15 nm diameter, by Raman spectroscopy. The first order Raman peak shows a superlinear trend, more pronounced compared to bulk Si. Combining transmission electron microscopy and Raman measurements we estimate the SiNWs' bulk modulus and the Grueneisen parameters. We detect an increase of Raman linewidth at {approx} 4 GPa, and assign it to pressure induced activation of a decay process into LO and TA phonons. This pressure is smaller compared to the {approx} 7 GPa reported for bulk Si. We do not observe evidence of phase transitions, such as discontinuities or change in the pressure slopes, in the investigated pressure range.

  19. Urea and deuterium mixtures at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M., E-mail:; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)


    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  20. High-pressure structures of methane hydrate

    CERN Document Server

    Hirai, H; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T


    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K sub 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively.

  1. Lattice thermal conductivity of δ-graphyne - A molecular dynamics study (United States)

    Zhang, Jide; Cui, Yan; Wang, Shuaiwei


    Thermal conductivity of δ-graphyne was investigated using reverse non-equilibrium molecular dynamics simulations. The dependence of the thermal conductivities with the temperature, acetylenic linkages, and external strain were explained by the phonon density of states. Our simulations revealed that as the temperature increased, the thermal conductivity of graphene first increased and then decreased, whereas that of δ-graphyne monotonically decreased. Owing to the presence of the acetylenic linkages, a significant reduction was found in the thermal conductivity of δ-graphyne, which resulted in a phonon vibration mismatch or weakened coupling. Moreover, the temperature profile changed from mono linear to the ladder the number of acetylenic linkages increased. These results play a guidance role in the design and application of thermoelectrics devices using 2D carbon materials.

  2. First principles study on structural, lattice dynamical and thermal properties of BaCeO3 (United States)

    Zhang, Qingping; Ding, Jinwen; He, Min


    BaCeO3 exhibits impressive application potentials on solid oxide fuel cell electrolyte, hydrogen separation membrane and photocatalyst, owing to its unique ionic and electronic properties. In this article, the electronic structures, phonon spectra and thermal properties of BaCeO3 in orthorhombic, rhombohedral and cubic phases are investigated based on density functional theory. Comparisons with reported experimental results are also presented. The calculation shows that orthorhombic structure is both energetically and dynamically stable under ground state, which is supported by the experiment. Moreover, charge transfer between cations and anions accompanied with phase transition is observed, which is responsible for the softened phonon modes in rhombohedral and cubic phases. Besides, thermal properties are discussed. Oxygen atoms contribute most to the specific heat. The calculated entropy and specific heat at constant pressure fit well with the experimental ones within the measured temperature range.

  3. Optimization of dynamic aperture for hadron lattices in eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Yichao [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, Vladimir [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, Dejan [Brookhaven National Lab. (BNL), Upton, NY (United States)


    The potential upgrade of the Relativistic Heavy Ion Collider (RHIC) to an electron ion collider (eRHIC) involves numerous extensive changes to the existing collider complex. The expected very high luminosity is planned to be achieved at eRHIC with the help of squeezing the beta function of the hadron ring at the IP to a few cm, causing a large rise of the natural chromaticities and thus bringing with it challenges for the beam long term stability (Dynamic aperture). We present our effort to expand the DA by carefully tuning the nonlinear magnets thus controlling the size of the footprints in tune space and all lower order resonance driving terms. We show a reasonably large DA through particle tracking over millions of turns of beam revolution.

  4. Inelastic neutron scattering and lattice dynamical calculation of negative thermal expansion in HfW2O8 (United States)

    Mittal, R.; Chaplot, S. L.; Kolesnikov, A. I.; Loong, C.-K.; Mary, T. A.


    The compounds ZrW2O8 and HfW2O8 undergo large isotropic negative thermal expansion (NTE) over a wide range of temperatures up to 1443 K and 1050 K, respectively. We have showed previously that large softening of low-energy phonons in ZrW2O8 is responsible for its anomalous thermal expansion behavior. In order to understand the effect of replacing Zr by Hf on NTE behavior we report lattice dynamical calculations and neutron time-of-flight spectroscopic measurements of the phonon density of states for cubic HfW2O8. The calculated phonon spectrum for cubic HfW2O8 is in fair agreement with the experimental data. The phonon spectra in the Zr and Hf compounds differ at low energies largely due to the mass difference. The calculated negative thermal expansion for HfW2O8 is in good agreement with experimental data from the literature. We further report a calculation of the pressure dependence of the detailed phonon dispersion relation which reveals large softening of several phonon branches on compression associated with the NTE.

  5. Finite-size effects on the lattice dynamics in spin crossover nanomaterials. I. Nuclear inelastic scattering investigation (United States)

    Mikolasek, Mirko; Félix, Gautier; Peng, Haonan; Rat, Sylvain; Terki, Férial; Chumakov, Aleksandr I.; Salmon, Lionel; Molnár, Gábor; Nicolazzi, William; Bousseksou, Azzedine


    We report the investigation of the size evolution of lattice dynamics in spin crossover coordination nanoparticles of [ Fe (pyrazine ) (Ni (CN) 4) ] through nuclear inelastic scattering (NIS) measurements. Vibrational properties in these bistable molecular materials are of paramount importance and NIS permits access to the partial vibrational density of states in both spin states [high spin (HS) and low spin (LS)] from which thermodynamical and mechanical properties can be extracted. We show that the size reduction leads to the presence of inactive metal centers with the coexistence of HS and LS vibrational modes. The confinement effect has only weak impact on the vibrational properties of nanoparticles, especially on the optical modes which remain almost unchanged. On the other hand, the acoustic modes are much more affected which results in the increase of the vibrational entropy and also the Debye sound velocity in the smallest particles (spin states. This stiffening may be due to the elastic surface stress exerted by the external environment. An evidence of the influence of the host matrix on the vibrational properties of the nanoparticles is also highlighted through the matrix dependence of the sound velocity.

  6. Anomalous random correlations of force constants on the lattice dynamical properties of disordered Au-Fe alloys (United States)

    Kangsabanik, Jiban; Chouhan, Rajiv K.; Johnson, D. D.; Alam, Aftab


    Gold iron (Au-Fe) alloys are of immense interest due to their biocompatibility, anomalous Hall conductivity, and applications in various medical treatments. However, irrespective of the method of preparation, they often exhibit a high level of disorder with properties sensitive to the thermal or magnetic annealing temperatures. We calculate the lattice dynamical properties of Au1 -xFex alloys using density functional theory methods where, being multisite properties, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a twofold approach: (1) an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic the homogeneously disordered alloy and (2) a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near x =0.19 , which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermophysical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x =0.19 , suggesting a tendency for chemical unmixing, reflecting the onset of a miscibility gap in the phase diagram. Our results match fairly well with reported data wherever available.

  7. Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta3N5

    KAUST Repository

    Nurlaela, Ela


    Presented herein is a detailed discussion of the properties of the lattice dynamic and optoelectronic properties of tantalum(V) oxynitride (TaON) and tantalum(V) nitride (Ta3N5), from experimental and theoretical standpoint. The active Raman and infra red (IR) frequencies of TaON and Ta3N5 were measured using confocal Raman and Fourier Transform Infrared spectroscopies (FTIR) and calculated using the linear response method within the density functional perturbation theory (DFPT). The detailed study leads to an exhaustive description of the spectra, including the symmetry of the vibrational modes. Electronic structures of these materials were computed using DFT within the range-separated hybrid HSE06 exchange–correlation formalism. Electronic and ionic contributions to the dielectric constant tensors of these materials were obtained from DFPT within the linear response method using the PBE functional. Furthermore, effective mass of photogenerated holes and electrons at the band edges of these compounds were computed from the electronic band structure obtained at the DFT/HSE06 level of theory. The results suggest that anisotropic nature in TaON and Ta3N5 is present in terms of dielectric constant and effective masses.

  8. One-dimensional lattice of oscillators coupled through power-law interactions : Continuum limit and dynamics of spatial Fourier modes

    NARCIS (Netherlands)

    Gupta, S.; Potters, M.G.; Ruffo, S.


    We study synchronization in a system of phase-only oscillators residing on the sites of a one-dimensional periodic lattice. The oscillators interact with a strength that decays as a power law of the separation along the lattice length and is normalized by a size-dependent constant. The exponent ? of

  9. Effects of viscoelasticity on droplet dynamics and break-up in microfluidic T-Junctions: a lattice Boltzmann study. (United States)

    Gupta, Anupam; Sbragaglia, Mauro


    The effects of viscoelasticity on the dynamics and break-up of fluid threads in microfluidic T-junctions are investigated using numerical simulations of dilute polymer solutions at changing the Capillary number (Ca), i.e. at changing the balance between the viscous forces and the surface tension at the interface, up to Ca ≈ 3×10(-2). A Navier-Stokes (NS) description of the solvent based on the lattice Boltzmann models (LBM) is here coupled to constitutive equations for finite extensible non-linear elastic dumbbells with the closure proposed by Peterlin (FENE-P model). We present the results of three-dimensional simulations in a range of Ca which is broad enough to characterize all the three characteristic mechanisms of break-up in the confined T-junction, i.e. squeezing, dripping and jetting regimes. The various model parameters of the FENE-P constitutive equations, including the polymer relaxation time τP and the finite extensibility parameter L2, are changed to provide quantitative details on how the dynamics and break-up properties are affected by viscoelasticity. We will analyze cases with Droplet Viscoelasticity (DV), where viscoelastic properties are confined in the dispersed (d) phase, as well as cases with Matrix Viscoelasticity (MV), where viscoelastic properties are confined in the continuous (c) phase. Moderate flow-rate ratios Q ≈ O(1) of the two phases are considered in the present study. Overall, we find that the effects are more pronounced in the case with MV, as the flow driving the break-up process upstream of the emerging thread can be sensibly perturbed by the polymer stresses.

  10. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride. (United States)

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei


    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN)--another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics.

  11. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride (United States)

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei


    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) – another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  12. Novel High Pressure Pump-on-a-Chip Technology Project (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  13. Accurate quantum dynamics calculations using symmetrized Gaussians on a doubly dense Von Neumann lattice

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Thomas; Poirier, Bill [Department of Chemistry and Biochemistry and Department of Physics, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States)


    In a series of earlier articles [B. Poirier, J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam, J. Chem. Phys. 121, 1690 (2004); and ibid. 121, 1704 (2004)], a new method was introduced for performing exact quantum dynamics calculations. The method uses a 'weylet' basis set (orthogonalized Weyl-Heisenberg wavelets) combined with phase space truncation, to defeat the exponential scaling of CPU effort with system dimensionality-the first method ever able to achieve this long-standing goal. Here, we develop another such method, which uses a much more convenient basis of momentum-symmetrized Gaussians. Despite being non-orthogonal, symmetrized Gaussians are collectively local, allowing for effective phase space truncation. A dimension-independent code for computing energy eigenstates of both coupled and uncoupled systems has been created, exploiting massively parallel algorithms. Results are presented for model isotropic uncoupled harmonic oscillators and coupled anharmonic oscillators up to 27 dimensions. These are compared with the previous weylet calculations (uncoupled harmonic oscillators up to 15 dimensions), and found to be essentially just as efficient. Coupled system results are also compared to corresponding exact results obtained using a harmonic oscillator basis, and also to approximate results obtained using first-order perturbation theory up to the maximum dimensionality for which the latter may be feasibly obtained (four dimensions).

  14. Iron Catalyst Chemistry in High Pressure Carbon Monoxide Nanotube Reactor (United States)

    Scott, Carl D.; Povitsky, Alexander; Dateo, Christopher; Gokcen, Tahir; Smalley, Richard E.


    The high-pressure carbon monoxide (HiPco) technique for producing single wall carbon nanotubes (SWNT) is analyzed using a chemical reaction model coupled with properties calculated along streamlines. Streamline properties for mixing jets are calculated by the FLUENT code using the k-e turbulent model for pure carbon monixide. The HiPco process introduces cold iron pentacarbonyl diluted in CO, or alternatively nitrogen, at high pressure, ca. 30 atmospheres into a conical mixing zone. Hot CO is also introduced via three jets at angles with respect to the axis of the reactor. Hot CO decomposes the Fe(CO)5 to release atomic Fe. Cluster reaction rates are from Krestinin, et aI., based on shock tube measurements. Another model is from classical cluster theory given by Girshick's team. The calculations are performed on streamlines that assume that a cold mixture of Fe(CO)5 in CO is introduced along the reactor axis. Then iron forms clusters that catalyze the formation of SWNTs from the Boudouard reaction on Fe-containing clusters by reaction with CO. To simulate the chemical process along streamlines that were calculated by the fluid dynamics code FLUENT, a time history of temperature and dilution are determined along streamlines. Alternative catalyst injection schemes are also evaluated.

  15. Lattice theory

    CERN Document Server

    Birkhoff, Garrett


    Since its original publication in 1940, this book has been revised and modernized several times, most notably in 1948 (second edition) and in 1967 (third edition). The material is organized into four main parts: general notions and concepts of lattice theory (Chapters I-V), universal algebra (Chapters VI-VII), applications of lattice theory to various areas of mathematics (Chapters VIII-XII), and mathematical structures that can be developed using lattices (Chapters XIII-XVII). At the end of the book there is a list of 166 unsolved problems in lattice theory, many of which still remain open. I

  16. Novel stable structure of Li3PS4 predicted by evolutionary algorithm under high-pressure

    Directory of Open Access Journals (Sweden)

    S. Iikubo


    Full Text Available By combining theoretical predictions and in-situ X-ray diffraction under high pressure, we found a novel stable crystal structure of Li3PS4 under high pressures. At ambient pressure, Li3PS4 shows successive structural transitions from γ-type to β-type and from β-type to α type with increasing temperature, as is well established. In this study, an evolutionary algorithm successfully predicted the γ-type crystal structure at ambient pressure and further predicted a possible stable δ-type crystal structures under high pressure. The stability of the obtained structures is examined in terms of both static and dynamic stability by first-principles calculations. In situ X-ray diffraction using a synchrotron radiation revealed that the high-pressure phase is the predicted δ-Li3PS4 phase.

  17. From simple to complex and backwards. Chemical reactions under very high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bini, Roberto [Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); LENS - European Laboratory of Non linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Ceppatelli, Matteo; Citroni, Margherita [LENS - European Laboratory of Non linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Schettino, Vincenzo, E-mail: [LENS - European Laboratory of Non linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy)


    Highlights: Black-Right-Pointing-Pointer High pressure reactivity of several molecular systems. Black-Right-Pointing-Pointer Reaction kinetics and dynamics in high density conditions. Black-Right-Pointing-Pointer Key role of optical pumping and electronic excitation. Black-Right-Pointing-Pointer Perspectives for the synthesis of hydrogen. - Abstract: High pressure chemical reactions of molecular systems are discussed considering the various factors that can affect the reactivity. These include steric hindrance and geometrical constraints in the confined environment of crystals at high pressure, changes of the free energy landscape with pressure, photoactivation by two-photon absorption, local and collective effects. A classification of the chemical reactions at high pressure is attempted on the basis of the prevailing factors.

  18. Kenneth Wilson and lattice QCD

    CERN Document Server

    Ukawa, Akira


    We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward b...

  19. Engineering Model of High Pressure Moist Air

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš


    Full Text Available The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept of an ideal mixture of real gases. The comparison of enthalpy end entropy based on the model of an ideal mixture of ideal gases and the model of an ideal mixture of real gases is performed. It is shown that the model of an ideal mixture of real gases deviates from the model of an ideal mixture of ideal gases only in the case of high pressure. An impossibility of the definition of partial pressure in the mixture of real gases is discussed, where the virial equation of state is used.

  20. High-pressure structures of yttrium hydrides (United States)

    Liu, Lu-Lu; Sun, Hui-Juan; Wang, C. Z.; Lu, Wen-Cai


    In this work, the crystal structures of YH3 and YH4 at high pressure (100-250 GPa) have been explored using a genetic algorithm combined with first-principles calculations. New structures of YH3 with space group symmetries of P21/m and I4/mmm were predicted. The electronic structures and the phonon dispersion properties of various YH3 and YH4 structures at different temperatures and pressures were investigated. Among YH3 phases, the P21/m structure of YH3 was found to have a relatively high superconducting transformation temperature T c of 19 K at 120 GPa, which is reduced to 9 K at 200 GPa. Other YH3 structures have much lower T cs. Compared with YH3, the T c of the YH4 compound is much higher, i.e. 94 K at 120 GPa and 55 K at 200 GPa.

  1. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata


    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  2. Effects of classical stochastic webs on the quantum dynamics of cold atomic gases in a moving optical lattice (United States)

    Welch, N.; Greenaway, M. T.; Fromhold, T. M.


    We introduce and investigate a system that uses temporal resonance-induced phase-space pathways to create strong coupling between an atomic Bose-Einstein condensate and a traveling optical lattice potential. We show that these pathways thread both the classical and quantum phase space of the atom cloud, even when the optical lattice potential is arbitrarily weak. The topology of the pathways, which form weblike patterns, can by controlled by changing the amplitude and period of the optical lattice. In turn, this control can be used to increase and limit the BEC's center-of-mass kinetic energy to prespecified values. Surprisingly, the strength of the atom-lattice interaction and resulting BEC heating of the center-of-mass motion is enhanced by the repulsive interatomic interactions.

  3. Electronic structure, lattice dynamics, and optical properties of a novel van der Waals semiconductor heterostructure: InGaSe2 (United States)

    Ibarra-Hernández, Wilfredo; Elsayed, Hannan; Romero, Aldo H.; Bautista-Hernández, Alejandro; Olguín, Daniel; Cantarero, Andrés


    There is a growing interest in the property dependence of transition metal dichalcogenides as a function of the number of layers and formation of heterostructures. Depending on the stacking, doping, edge effects, and interlayer distance, the properties can be modified, which opens the door to novel applications that require a detailed understanding of the atomic mechanisms responsible for those changes. In this work, we analyze the electronic properties and lattice dynamics of a heterostructure constructed by simultaneously stacking InSe layers and GaSe layers bounded by van der Waals forces. We have assumed the same space group of GaSe, P 6 ¯m 2 as it becomes the lower energy configuration for other considered stackings. The structural, vibrational, and optical properties of this layered compound have been calculated using density functional theory. The structure is shown to be energetically, thermally, and elastically stable, which indicates its possible chemical synthesis. A correlation of the theoretical physical properties with respect to its parent compounds is extensively discussed. One of the most interesting properties is the low thermal conductivity, which indicates its potential use in thermolectric applications. Additionally, we discuss the possibility of using electronic gap engineering methods, which can help us to tune the optical emission in a variable range close to that used in the field of biological systems (NIR). Finally, the importance of considering properly van der Waals dispersion in layered materials has been emphasized as included in the exchange correlation functional. As for the presence of atoms with important spin-orbit coupling, relativistic corrections have been included.

  4. Compactons in strongly nonlinear lattices


    Ahnert, Karsten


    In the present work, we study wave phenomena in strongly nonlinear lattices. Such lattices are characterized by the absence of classical linear waves. We demonstrate that compactons – strongly localized solitary waves with tails decaying faster than exponential – exist and that they play a major role in the dynamics of the system under consideration. We investigate compactons in different physical setups. One part deals with lattices of dispersively coupled limit cycle oscillators which find ...

  5. Phonon transport in Na2He at high pressure from a first-principles study (United States)

    Guo, San-Dong; Zhang, Ai-Xia


    Phonon transport of recently fabricated Na2He at high pressure is investigated from a combination of first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation. The calculated room-temperature lattice thermal conductivity is 149.19 W m-1 K-1, which is very close to that of Si. It is found that low-frequency optical modes comprise 16% of the lattice thermal conductivity, while high-frequency optical modes have negligible contribution. The high lattice thermal conductivity is due to large group velocities, small Grüneisen parameters, and long phonon lifetimes. The size effects on lattice thermal conductivity are considered by cumulative thermal conductivity with respect to the phonon mean free path. To significantly reduce the lattice thermal conductivity, the characteristic length smaller than 100 nm is required and can reach a decrease of 36%. These results may be useful to understand thermal transport processes that occur inside giant planets.

  6. Pargasite at high pressure and temperature (United States)

    Comboni, Davide; Lotti, Paolo; Gatta, G. Diego; Merlini, Marco; Liermann, Hanns-Peter; Frost, Daniel J.


    The P-T phase stability field, the thermoelastic behavior and the P-induced deformation mechanisms at the atomic scale of pargasite crystals, from the "phlogopite peridotite unit" of the Finero mafic-ultramafic complex (Ivrea-Verbano Formation, Italy), have been investigated by a series of in situ experiments: (a) at high pressure (up to 20.1 GPa), by single-crystal synchrotron X-ray diffraction with a diamond anvil cell, (b) at high temperature (up to 823 K), by powder synchrotron X-ray diffraction using a hot air blower device, and (c) at simultaneous HP-HT conditions, by single-crystal synchrotron X-ray diffraction with a resistive-heated diamond anvil cell (P max = 16.5 GPa, T max = 1200 K). No phase transition has been observed within the P-T range investigated. At ambient T, the refined compressional parameters, calculated by fitting a second-order Birch-Murnaghan Equation of State (BM-EoS), are: V 0 = 915.2(8) Å3 and K P0,T0 = 95(2) GPa (β P0,T0 = 0.0121(2) GPa-1) for the unit-cell volume; a 0 = 9.909(4) Å and K(a) P0,T0 = 76(2) GPa for the a-axis; b 0 = 18.066(7) Å and K(b) P0,T0 = 111(2) GPa for the b-axis; c 0 = 5.299(5) Å and K(c) P0,T0 = 122(12) GPa for the c-axis [K(c) P0,T0 K(b) P0,T0 > K(a) P0,T0]. The high-pressure structure refinements (at ambient T) show a moderate contraction of the TO4 double chain and a decrease of its bending in response to the hydrostatic compression, along with a pronounced compressibility of the A- and M(4)-polyhedra [K P0, T0(A) = 38(2) GPa, K P0, T0(M4) = 79(5) GPa] if compared to the M(1)-, M(2)-, M(3)-octahedra [K P0, T0(M1,2,3) ≤ 120 GPa] and to the rigid tetrahedra [K P0, T0(T1,T2) 300 GPa]. The thermal behavior, at ambient pressure up to 823 K, was modelled with Berman's formalism, which gives: V 0 = 909.1(2) Å3, α0 = 2.7(2)·10-5 K-1 and α1 = 1.4(6)·10-9 K-2 [with α0(a) = 0.47(6)·10-5 K-1, α0(b) = 1.07(4)·10-5 K-1, and α0(c) = 0.97(7)·10-5 K-1]. The petrological implications for the experimental

  7. Pressure Dome for High-Pressure Electrolyzer (United States)

    Norman, Timothy; Schmitt, Edwin


    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  8. High Pressure Microwave Powered UV Light Sources (United States)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.


    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  9. Dynamically controlled two-color photonic band gaps via balanced four-wave mixing in one-dimensional cold atomic lattices (United States)

    Yang, Hong; Yang, Liu; Wang, Xiao-Chang; Cui, Cui-Li; Zhang, Yan; Wu, Jin-Hui


    We study an ensemble of cold atoms driven to the four-level double-Λ configuration and trapped in the one-dimensional optical lattices for achieving dynamically controlled photonic band gaps (PBGs) via the balanced four-wave mixing interaction. Numerical results show that a pair of PBGs characterized by high platforms of probe reflectivities and reduced density of photonic states are established, simultaneously, on both probe transitions in one symmetric driving scheme. Such two-color PBGs can be easily manipulated in position and width by modulating, e.g., the balanced Rabi frequencies of two coupling fields and the Gaussian widths of atomic density distributions, to change the equal probe detunings fulfilling both Bragg conditions. Each two-color PBG as predicted in the coherent atomic lattices may be explored to attain robust light entanglement, even for single-probe photons, via an efficient frequency conversion during the nonlinearly correlated reflection.

  10. The coupling of lattice vibrations to spin dynamics and electronic properties of paramagnetic Fe and CrN revealed by first-principles methods (United States)

    Alling, BjöRn

    We report the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron employing the disordered local moments molecular dynamics (DLM-MD). Vibrations strongly affect the distribution of local magnetic moments and the electronic density of states in the paramagnetic regime. When the coupling between vibrations and magnetism is taken into account at the γ- δ transition temperature (1662 K), the lattice distortions cause very similar mean magnetic moments and total electronic density of states of both bcc and fcc structures. Consequently, our simulations suggest that at the γ- δ transition temperature, electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe. In the next step, going beyond the approximation of magnetism as an adiabatically fast degree of freedom, we study paramagnetic CrN using a combination of atomistic spin dynamics and ab-initio molecular dynamics. We demonstrate how the relaxation time scales of the transverse spin dynamics and atomic vibrations are rather similar and study the impact of their explicit coupling on properties such as pair-correlation functions, potential energies, and trajectories.

  11. PREFACE: Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures (United States)

    Liu, Haozhe; Wenk, Hans-Rudolf; Duffy, Thomas S.


    reduction and analysis of diffraction data (Hinrichsen et al). A complementary study by Conil and Kavner explores DAC heterogeneities with numerical methods. Using the D-DIA multianvil apparatus, the differential lattice strains in polycrystalline Fe2SiO4 and MgO are measured to investigate the evolution of the weighting factor for Reuss and Voigt bounds during plastic flow by Chen et al, while Weidner and Li study MgO and mixtures of MgO and spinel (MgAl2O4) for fabric and residual stresses development during a plastic deformation cycle. Mao and Mao describe an ingenious device for remote pressure control and demonstrate it with a sample of platinum to 230 GPa. Large strains can be obtained with a rotational DAC and this influences the pressure at which the α-epsilon transition occurs in iron (Ma et al). Chesnut et al introduce a new DAC adapted for radial diffraction geometry. While much of the current DAC work in radial geometry is done with monochromatic x-rays and angle dispersive 2D detectors, the radial x-ray diffraction program at X17C of NSLS at energy dispersive XRD geometry is reviewed by Hu et al. Meng et al introduce the double-sided laser heating technique at ID-B of HPCAT, and propose a rotational design for applying the laser heating technique to radial x-ray diffraction studies at simultaneous high pressure-temperature (PT) conditions. These contributions provide a sound introduction and overview of the current science for anyone interested in elasticity and plasticity of materials at ultrahigh pressure. We are grateful to Dr Richard Palmer and Professor Marshall Stoneham for the opportunity to publish these carefully selected and reviewed proceedings in Journal of Physics: Condensed Matter where they reach a large audience. We acknowledge the authors for contributing exciting papers to this issue, to participants at the workshop for stimulating presentations and discussions, and to many reviewers whose suggestions improved the manuscripts. We are most

  12. Hydrogen bonds and van der waals forces in ice at ambient and high pressures. (United States)

    Santra, Biswajit; Klimeš, Jiří; Alfè, Dario; Tkatchenko, Alexandre; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias


    The first principles methods, density-functional theory and quantum Monte Carlo, have been used to examine the balance between van der Waals (vdW) forces and hydrogen bonding in ambient and high-pressure phases of ice. At higher pressure, the contribution to the lattice energy from vdW increases and that from hydrogen bonding decreases, leading vdW to have a substantial effect on the transition pressures between the crystalline ice phases. An important consequence, likely to be of relevance to molecular crystals in general, is that transition pressures obtained from density-functional theory exchange-correlation functionals which neglect vdW forces are greatly overestimated.

  13. Lattice dynamics of local defects in wide-gap semiconductors; Schwingungsverhalten lokaler Defekte in Breitband-Halbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarczyk, G.


    The group III-nitrides and zinc oxide are in the focus of material research because of their high application potential. The presentation of the first UV laser diode as well as blue light emitting diodes were the preliminary highlights. Although of all technological progress many physical questions are still open. In this work some of these questions are examined experimentally with Raman-scattering and theoretically with valence-force calculations. Many physical properties such as strain and doping concentration affect the lattice dynamics. As a start the phonons of the center of the Brillouin-zone in GaN, AlN, InN and ZnO are studied with first-order Raman-scattering. These results are the basis for advanced investigations. The acoustical and optical modes at the zone boundary and their combinations and overtones are determinated from the second-order Raman-scattering. Using the valence-force calculations the experimental frequencies are assigned to particular phonon branches or points of the Brillouin zone. The second part of this work treats systematically the physics of local vibrational modes. They occur due to intrinsic defects or impurities in the semiconductors. They are investigated with respect to the vibrational properties of the unperturbed crystals. In order to assign new experimentally found structures, calculations of local vibrational modes in GaN:Mg, GaN:As and ZnO:N systems were carried out. Furthermore, the calculations in Si- and C-doped hexagonal GaN suggest the frequency range for local vibrational modes. In the last section the influence of external parameters such as temperature or strain on the phonon frequency is analyzed. It is shown, that the influence on the temperature dependence of host phonons and local vibrational modes are dominated through different effects. In case of the host phonons it is mainly due to the volume effect whereas the local modes are highly affected by the anharmonic decay. Moreover, the calculations verified

  14. Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail:; Mao, Wendy L. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Trigo, Mariano [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Reis, David A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Photon Science and Applied Physics, Stanford University, Stanford, California 94305 (United States); Andrea Artioli, Gianluca; Malavasi, Lorenzo [Dipartimento di Chimica, Sezione di Chimica Fisica, INSTM (UdR Pavia), Università di Pavia, Viale Taramelli 16, 27100 Pavia (Italy)


    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1}) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.

  15. Structural and electronic properties of superconductor MgB sub 2 under high pressure

    CERN Document Server

    Tang, J; Gu, H W; Matsushita, A; Takano, Y; Togano, K; Kito, H; Ihara, H


    The superconductivity and the lattice properties of a sintered MgB sub 2 material have been investigated under high pressure up to 10 GPa. The transition temperature was found to decrease linearly with increasing hydrostatic pressure at a rate of 1.03 K GPa sup - sup 1 , which can be explained with the classical Bardeen-Cooper-Shrieffer theory based on an electron-phonon coupling mechanism. The crystal lattice exhibits an anisotropic compressibility characterized by a larger compressibility along the c-direction than the a/b-directions. The anisotropy is attributed to a weaker inter-plane bonding along the c-axis in comparison with a stronger intra-plane bonding perpendicular to the c-axis. The bulk modulus of the measured material was deduced to be 172 GPa.

  16. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing Project (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  17. Lattice instability and martensitic transformation in LaAg predicted from first-principles theory

    DEFF Research Database (Denmark)

    Vaitheeswaran, G.; Kanchana, V.; Zhang, X.


    The electronic structure, elastic constants and lattice dynamics of the B2 type intermetallic compound LaAg are studied by means of density functional theory calculations with the generalized gradient approximation for exchange and correlation. The calculated equilibrium properties and elastic...... constants agree well with available experimental data. From the ratio between the bulk and shear moduli, LaAg is found to be ductile, which is unusual for B2 type intermetallics. The computed band structure shows a dominant contribution from La 5d states near the Fermi level. The phonon dispersion relations....... By structural optimization the high pressure phase is identified as orthorhombic B19....

  18. Lattice design and beam dynamics simulation for the simultaneous operation of stable ion beam and rare isotope beam in the RAON accelerator (United States)

    Jin, Hyunchang; Jeon, Dong-O.


    The Rare Isotope Accelerator of Newness (RAON) accelerator is under construction to generate and accelerate the stable ion beams and the rare isotope beams for various kinds of experiment programs. Especially, the post accelerator section was designed to be able to separately accelerate and transport the stable ion beams created by the superconducting electron cyclotron resonance ion source (ECR-IS) and the rare isotope beams created by the Isotope Separation On-Line (ISOL) system. However, recently, the research of the simultaneous operation of the stable ion beams and the rare isotope beams has been conducted to more efficiently satisfy the a wide range of beam requirements of the experimental halls. For the operation, we has modified the lattice of the post low energy beam transport (LEBT) section for the injection of the rare isotope beam and the next lattice after the low energy superconducting linac (SCL3) section for the extraction of the accelerated beam in the post accelerator section of the RAON accelerator. In this paper, the new lattice designs of the injection and extraction parts will be presented and we will describe the results of the beam dynamics simulations for the simultaneous operation of the two kinds of beams.

  19. Dynamic mean field theory for lattice gas models of fluids confined in porous materials: Higher order theory based on the Bethe-Peierls and path probability method approximations (United States)

    Edison, John R.; Monson, Peter A.


    Recently we have developed a dynamic mean field theory (DMFT) for lattice gas models of fluids in porous materials [P. A. Monson, J. Chem. Phys. 128(8), 084701 (2008)]. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable states for fluids in pores and is especially useful for studying system exhibiting adsorption/desorption hysteresis. In this paper we discuss the extension of the theory to higher order by means of the path probability method (PPM) of Kikuchi and co-workers. We show that this leads to a treatment of the dynamics that is consistent with thermodynamics coming from the Bethe-Peierls or Quasi-Chemical approximation for the equilibrium or metastable equilibrium states of the lattice model. We compare the results from the PPM with those from DMFT and from dynamic Monte Carlo simulations. We find that the predictions from PPM are qualitatively similar to those from DMFT but give somewhat improved quantitative accuracy, in part due to the superior treatment of the underlying thermodynamics. This comes at the cost of greater computational expense associated with the larger number of equations that must be solved.

  20. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen


    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  1. Effects of high-pressure processing (HPP) on the microbiological ...

    African Journals Online (AJOL)



    Dec 29, 2009 ... High pressure processing (HPP) is an increasingly popular food processing method that offers great potential within the food industry. ... Key words: High pressure processing, fresh cheese, dairy, spoilage. INTRODUCTION. Food ..... chemical reactions and genetic mechanisms. Primarily,. HP treatment ...

  2. High Pressure Research on Materials-Experimental Techniques to ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 8. High Pressure Research on Materials - Experimental Techniques to Study the Behaviour of Materials Under High Pressure. P Ch Sahu N V Chandra Shekar. General Article Volume 12 Issue 8 August 2007 pp 49-64 ...

  3. Quantum effects in condensed matter at high pressure

    CERN Document Server

    Stishov, S M


    Experimental data on the influence of quantum effects on the equation of state and melting at high pressure are reviewed. It is shown that quantum isotopic effects tend to increase upon compression of substances with predominately Coulomb interaction, whereas compression of the van der Waals substances reveals the opposite trend. The cold melting of Coulomb substances at high pressure is discussed

  4. Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yan.


    The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs.

  5. High pressure HC1 conversion of cellulose to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Antonoplis, Robert Alexander [Univ. of California, Berkeley, CA (United States); Blanch, Harvey W. [Univ. of California, Berkeley, CA (United States); Wilke, Charles R. [Univ. of California, Berkeley, CA (United States)


    The production of ethanol from glucose by means of fermentation represents a potential long-range alternative to oil for use as a transportation fuel. Today's rising oil prices and the dwindling world supply of oil have made other fuels, such as ethanol, attractive alternatives. It has been shown that automobiles can operate, with minor alterations, on a 10% ethanol-gasoline mixture popularly known as gasohol. Wood has long been known as a potential source of glucose. Glucose may be obtained from wood following acid hydrolysis. In this research, it was found that saturating wood particles with HCl gas under pressure was an effective pretreatment before subjecting the wood to dilute acid hydrolysis. The pretreatment is necessary because of the tight lattice structure of cellulose, which inhibits dilute acid hydrolysis. HCl gas makes the cellulose more susceptible to hydrolysis and the glucose yield is doubled when dilute acid hydrolysis is preceded by HCl saturation at high pressure. The saturation was most effectively performed in a fluidized bed reactor, with pure HCl gas fluidizing equal volumes of ground wood and inert particles. The fluidized bed effectively dissipated the large amount of heat released upon HCl absorption into the wood. Batch reaction times of one hour at 314.7 p.s.i.a. gave glucose yields of 80% and xylose yields of 95% after dilute acid hydrolysis. A non-catalytic gas-solid reaction model, with gas diffusing through the solid limiting the reaction rate, was found to describe the HCl-wood reaction in the fluidized bed. HCl was found to form a stable adduct with the lignin residue in the wood, in a ratio of 3.33 moles per mole of lignin monomer. This resulted in a loss of 0.1453 lb. of HCl per pound of wood. The adduct was broken upon the addition of water. A process design and economic evaluation for a plant to produce 214 tons per day of glucose from air-dried ground Populus tristi gave an estimated glucose cost of 15.14 cents per pound

  6. Heavy fermion behaviour in the high pressure structure of CeSb{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseev, Vitaly; Feng, Zhuo; Zou, Yang; Grosche, F. Malte [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Giles, Terence; Niklowitz, Philipp [Department of Physics, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Wilhelm, Heribert [Beamline I15, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Lampronti, Giulio [Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom)


    The Kondo lattice system CeSb{sub 2} crystallises in the orthorhombic SmSb{sub 2} structure and exhibits a series of magnetic phase transitions at low temperature. It has been reported to become ferromagnetic below 15 K, with the ordered moment oriented within the basal plane, and to undergo two further transitions at 9K and 12K. These transition are suppressed above a hydrostatic pressure p{sub c} ≅ 16 kbar. We present high pressure transport and x-ray diffraction results, which examine the high pressure state of CeSb{sub 2}. Our findings suggest that CeSb{sub 2} undergoes a drastic structural change at p{sub c} into a new and now fully resolved crystal structure. Whereas in the low pressure structure, CeSb{sub 2} is a local moment magnet, in the high pressure structure it exhibits transport properties characteristic of a heavy fermion material with a low Kondo temperature scale of the order of 10 K.

  7. Shaken Lattice Interferometry (United States)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana


    This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.

  8. Lattice dynamics approach to determine the dependence of the time-of-flight of transversal polarized acoustic waves on external stress (United States)

    Tarar, K. S.; Pluta, M.; Amjad, U.; Grill, W.


    Based on the lattice dynamics approach the dependence of the time-of-flight (TOF) on stress has been modeled for transversal polarized acoustic waves. The relevant dispersion relation is derived from the appropriate mass-spring model together with the dependencies on the restoring forces including the effect of externally applied stress. The lattice dynamics approach can also be interpreted as a discrete and strictly periodic lumped circuit. In that case the modeling represents a finite element approach. In both cases the properties relevant for wavelengths large with respect to the periodic structure can be derived from the respective limit relating also to low frequencies. The model representing a linear chain with stiffness to shear and additional stiffness introduced by extensional stress is presented and compared to existing models, which so far represent each only one of the effects treated here in combination. For a string this effect is well known from musical instruments. The counteracting effects are discussed and compared to experimental results.

  9. High Pressure Scanning Tunneling Microscopy and High PressureX-ray Photoemission Spectroscopy Studies of Adsorbate Structure,Composition and Mobility during Catalytic Reactions on A Model SingleCrystal

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Max O. [Univ. of California, Berkeley, CA (United States)


    Our research focuses on taking advantage of the ability of scanning tunneling microscopy (STM) to operate at high-temperatures and high-pressures while still providing real-time atomic resolution images. We also utilize high-pressure x-ray photoelectron spectroscopy (HPXPS) to monitor systems under identical conditions thus giving us chemical information to compare and contrast with the structural and dynamic data provided by STM.

  10. Ultrasonic depth gauge for liquids under high pressure (United States)

    Zuckerwar, Allan J. (Inventor); Mazel, David S. (Inventor)


    The invention relates to an ultrasonic depth gauge for liquids under high pressure and is particularly useful in the space industry where it is necessary to use a pressurized gas to transfer a liquid from one location to another. Conventional liquid depth gauges do not have the capability to operate under extreme high pressure (i.e., exceeding 300 psi). An ultrasonic depth gauge capable of withstanding high pressure according to the present invention is comprised of a transducer assembly and a supporting electronics unit. The former is mounted in to the bottom wall of a storage vessel with its resonating surface directly exposed to the highly pressurized liquid in the vessel. In operation, the ultrasonic pulse propagates upward through the liquid to the liquid-gas interface in the storage vessel. When the ultrasonic echo returns from the liquid-gas interface, it re-excites the composite resonator into vibration. The supporting electronics unit measures the round-trip transmit time for the ultrasonic pulse and its return echo to traverse the depth of the highly pressurized liquid. The novelty of the invention resides in the use of a conventional transducer rigidly bonded to the inside wall of a bored out conventional high-pressure plug to form a composite resonator capable of withstanding extremely high pressure.

  11. Thermal conductivity of iron at high pressures (United States)

    Suehiro, S.; Ohta, K.; Yagi, T.; Hirose, K.


    Earth generates and preserves a dipole magnetic field by self-sustained dynamo action in its liquid outer core for geologic timescale. Secular cooling of the core induces growth of the solid inner core that contributes additional buoyant source for the core convection. The electrical and thermal conductivities of core are fundamental physical parameters for knowing the dynamics inside the Earth. Direct measurements of the electrical and thermal conductivities of iron (Fe) at the Earth's core conditions have been recently reported (Konôpková et al., 2016; Ohta et al., 2016). Measurements of Fe thermal conductivity at the core conditions suggested thermal conductivity of the outer core was 18-32 W/m/K (Konôpková et al., 2016). On the other hand, Ohta et al. (2016) experimentally determined electrical conductivity of Fe at the core conditions, and estimated the core conductivity to be 75-117 W/m/K from obtained electrical conductivity and Wiedemann-Franz relation (κ = σLT; κ: thermal conductivity, σ: electrical conductivity, L: Lorenz number, T: absolute temperature) with ideal Lorenz number. Such large discrepancy in the estimated core thermal conductivity throw doubt on the validity of the Wiedemann-Franz relation at extremely high P-T conditions. In this study, we performed thermal conductivity measurements on Fe up to 130 GPa at room temperature in a diamond anvil cell using the pulsed light heating thermoreflectance technique (Ohta et al., 2012). The obtained thermal conductivity of Fe is in good agreement with calculated thermal conductivity via high-P/room-T Fe electrical conductivity and the Wiedemann-Franz law with constant Lorenz number up to around 50 GPa. However, the obtained thermal conductivity deviated downward from the calculated thermal conductivity profile above 50 GPa. Our results suggest pressure-dependent Lorenz number of Fe,which could be due to pressure- induced electronic topological transition in hcp Fe (Glazyrin et al., 2013). Kon

  12. Evolution of Titan's High-Pressure Ice layer (United States)

    Sotin, C.; Kalousova, K.


    Constraints on the present interior structure of Titan come from the gravity science experiment onboard the Cassini spacecraft and from the interpretation of the Extremely Low Frequency (ELF) wave observed by the Huygens probe [1, 2]. From the surface to the center, Titan would be composed of 4 layers: an icy crust, a global salty ocean, a layer of high-pressure ice (HP ice) and a core made of hydrated silicates [2, 3, 4]. The presence of a large amount of 40Ar in Titan's atmosphere argues for a geologically recent exchange process between the silicate core, where 40Ar is produced by the decay of 40K, and the atmosphere. Argon must then be able to be transported from the silicate core to the surface. This study investigates how volatiles can be transported through the HP ice layer.Recent numerical simulations [5] have demonstrated that the dynamics of the HP ice layer is controlled by convection processes in a two-phase material (water and high-pressure ice). The silicate / HP ice interface is maintained at the melting temperature, which might allow for the incorporation of volatiles such as 40Ar into the convecting HP ice. Above the hot thermal boundary layer, the temperature of the convecting HP ice is below the melting temperature, except for the upwelling plumes when they approach the cold thermal boundary layer. The upper part of the HP ice layer is at the melting point and permeable for water transport, providing a path for the transfer of volatiles trapped in the ice towards the ocean.Scaling laws are inferred from the numerical simulations [5]. They are then used to model the evolution of the HP ice layer. Specifically, we look at the effect of (i) ice viscosity, (ii) heat flux at the silicate/HP ice interface, and (iii) presence of anti-freeze compounds in the ocean, on the thickness of the HP ice layer. In addition, our results provide insights on possible resurfacing processes that could explain the geologically young age of Titan's surface. This work

  13. Safety analysis of high pressure gasous fuel container punctures

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R. [Univ. of Miami, Coral Gables, FL (United States)


    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  14. Implement and application of ultra-high pressures environment (United States)

    Xian Zhang, Yu; Li, Nan; Liu, Bin Bin; Wang, Hong


    A hydraulic system was designed which was used to generate hydrostatic ultra-high pressure environment. The functions and roles of the main elements in the hydraulic system were introduced. Deformation theory based on ultrahigh pressure cylinder was analyzed. The principle and method about measuring ultra-high pressure cylinder radial and circumferential elastic line-strain by a dial indicator were illustrated. A practical example was given to illustrate the practicability and validity of this method. The measures to decrease the measurement error were pointed out. The described priciples and methods have a certain theoretical and practical significance in engineering research and application of ultra-high pressure.

  15. Public debate on metallic hydrogen to boost high pressure research

    Directory of Open Access Journals (Sweden)

    Hua Y. Geng


    Full Text Available Instead of praises from colleagues, the claim of observation of metallic hydrogen at 495 GPa by Dias and Silvera met much skepticism, and grew into a public debate at the International Conference on High-Pressure Science and Technology, AIRAPT26. We briefly review this debate, and extend the topic to show that this disputation could be an opportunity to benefit the whole high pressure community. Keywords: High pressure, Metallic hydrogen, Quantum solid and liquid, Phase stability, Superconductivity, PACS codes: 61.50.Ks, 67.63.-r, 67.80.-s, 71.30.+h, 74.62.Fj

  16. Negative thermal expansion in cubic ZrMo2 O8 : Inelastic neutron scattering and lattice dynamical studies (United States)

    Mittal, R.; Chaplot, S. L.; Schober, H.; Kolesnikov, A. I.; Loong, C.-K.; Lind, C.; Wilkinson, A. P.


    Disordered cubic ZrMo2O8(Pa3¯,Z=4) is known to display isotropic negative thermal expansion (NTE) below 600 K. We report high-pressure inelastic neutron scattering experiments up to 2.5 kbar in this material using the IN6 spectrometer at Institut Laue-Langevin. The observed phonon softening of about 0.1-0.3 meV for phonons below 8 meV is able to account for the NTE below 100 K. The phonon spectrum in the entire energy range up to 150 meV has been measured using the HRMECS spectrometer at Argonne National Laboratory. The ordered phase (space group P213 ) of cubic ZrMo2O8 has not yet been synthesized. However, we have calculated the phonon spectrum and thermal expansion in this phase for comparison with the known ordered phase of cubic ZrW2O8 .

  17. Anomalous perovskite PbRuO3 stabilized under high pressure (United States)

    Cheng, J.-G.; Kweon, K. E.; Zhou, J.-S.; Alonso, J. A.; Kong, P.-P.; Liu, Y.; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S. A.; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.


    Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc. PMID:24277807

  18. Quantum distillation: Dynamical generation of low-entropy states of strongly correlated fermions in an optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich-Meisner, F. [Institut fur Physikalische Chemie der RWTH; Manmana, S. R. [Ecole Polytechnique Federale de Lausanne, Switzerland; Rigol, M. [Georgetown University; Muramatsu, A. [Universitat Stuttgart, Institute fur Plasmaforschung, Germany; Feiguin, A. E. [University of Maryland; Dagotto, Elbio R [ORNL


    Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies. We promote the notion of quantum distillation: during the expansion and in the case of strongly repulsive interactions, doublons group together, forming a nearly ideal band insulator, which is metastable with low entropy. We propose that this effect could be used for cooling purposes in experiments with two-component Fermi gases.

  19. Upper and lower Higgs boson mass bounds from a lattice Higgs-Yukawa model with dynamical overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, Philipp [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC


    We study a lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model, in particular, obeying a Ginsparg- Wilson version of the underlying SU(2){sub L} x U(1){sub Y} symmetry, being a global symmetry here due to the neglection of gauge fields in this model. In this paper we present our results on the cutoffdependent upper Higgs boson mass bound at several selected values of the cutoff parameter {lambda}. (orig.)

  20. Lattice gas cellular automata and lattice Boltzmann models an introduction

    CERN Document Server

    Wolf-Gladrow, Dieter A


    Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.

  1. The high pressure gas Cerenkov counter at the Omega Facility.

    CERN Multimedia


    The high-pressure gas Cerenkov was used to measure reactions as pion (or kaon)- hydrogen --> forward proton - X. It was built by the Ecole Polytechnique (Palaiseu). Here Peter Sonderegger and Patrick Fleury,

  2. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  3. Novel High Pressure Pump-on-a-Chip Technology Project (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc proposes to develop a novel high pressure "pump-on-a-chip" and "valve-on-a-chip" microfluidic technology for NASA planetary science...

  4. Monitoring protein folding through high pressure NMR spectroscopy. (United States)

    Roche, Julien; Royer, Catherine A; Roumestand, Christian


    High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that destabilize protein structures uniformly, pressure exerts local effects on regions or domains of a protein containing internal cavities. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility to monitor at a residue level the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. High-pressure NMR experiments can now be routinely performed, owing to the recent development of commercially available high-pressure sample cells. This review summarizes recent advances and some future directions of high-pressure NMR techniques for the characterization at atomic resolution of the energy landscape of protein folding. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Optical Abelian lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Tagliacozzo, L., E-mail: [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Celi, A., E-mail: [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Zamora, A. [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Lewenstein, M. [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)


    We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.

  6. Local structure and lattice dynamics study of low dimensional materials using atomic pair distribution function and high energy resolution inelastic x-ray scattering (United States)

    Shi, Chenyang

    Structure and dynamics lie at the heart of the materials science. A detailed knowledge of both subjects would be foundational in understanding the materials' properties and predicting their potential applications. However, the task becomes increasingly dicult as the particle size is reduced to the nanometer scale. For nanostructured materials their laboratory x-ray scattering patterns are overlapped and broadened, making structure determination impossible. Atomic pair distribution function technique based on either synchrotron x-ray or neutron scattering data is known as the tool of choice for probing local structures. However, to solve the "structure problem" in low-dimensional materials with PDF is still challenging. For example for 2D materials of interest in this thesis the crystallographic modeling approach often yields unphysical thermal factors along stacking direction where new chemical intuitions about their actual structures and new modeling methodology/program are needed. Beyond this, lattice dynamical investigations on nanosized particles are extremely dicult. Laboratory tools such as Raman and infra-red only probe phonons at Brillouin zone center. Although in literature there are a great number of theoretical studies of their vibrational properties based on either empirical force elds or density functional theory, various approximations made in theories make the theoretical predictions less reliable. Also, there lacks the direct experiment result to validate the theory against. In this thesis, we studied the structure and dynamics of a wide variety of technologically relevant low-dimensional materials through synchrotron based x-ray PDF and high energy resolution inelastic x-ray scattering (HERIX) techniques. By collecting PDF data and employing advanced modeling program such as DiPy-CMI, we successfully determined the atomic structures of (i) emerging Ti3C2, Nb4C3 MXenes (transition metal carbides and/or nitrides) that are promising for energy storage

  7. A high-pressure MWPC detector for crystallography

    DEFF Research Database (Denmark)

    Ortuno-Prados, F.; Bazzano, A.; Berry, A.


    The application of the Multi-Wire Proportional Counter (MWPC) as a potential detector for protein crystallography and other wide-angle diffraction experiments is presented. Electrostatic problems found with our large area MWPC when operated at high pressure are discussed. We suggest that a soluti...... to these problems is to use a glass micro-strip detector in place of the wire frames. The characteristics of a high-pressure Micro-Strip Gas Chamber (MSGC) tested in the laboratory are presented....

  8. Matter-wave bright solitons in effective bichromatic lattice potentials

    Indian Academy of Sciences (India)

    Keywords. Bose–Einstein condensate; optical lattices; inhomogeneous nonlinearity. Abstract. Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and ...

  9. Ground state properties and non-equilibrium dynamics of hard-core bosons confined on optical lattices (United States)

    Rigol, Marcos; Muramatsu, Alejandro


    We study by means of an exact approach, a gas of hard core bosons (HCB) confined on optical lattices. The ground state properties of such systems are analyzed. Local incompressible phases appear in the system, like in the case of interacting soft-core bosons [1] and fermions [2,3]. The changes in momentum distribution function and in the natural orbitals (effective single particle states) introduced by the formation of such phases are analyzed. We also study non-equilibrium properties for those systems, which within our numerical approach can be obtained exactly for systems with 200 particles on lattices with 3000 sites. In particular we analyze the free expansion of the gas when it is released from the trap turning off the confining potential. We show that the expansion is non-trivial (as opposed to the fermionic case) and new features to be observed in the experiments are analyzed. [1] G. G. Batrouni, V. Rousseau, R. T. Scalettar, M. Rigol, A. Muramatsu, P. J. H. Denteneer, and M. Troyer, Phys. Rev. Lett. 89, 117203 (2002). [2] M. Rigol, A. Muramatsu, G. G. Batrouni, and R. T. Scalettar, Phys. Rev. Lett. 91, 130403 (2003). [3] M. Rigol and A. Muramatsu, cond-mat/0309670 (2003).

  10. Phase Evolution of Hydrous Enstatite at High Pressures and Temperatures (United States)

    Xu, J.; Zhang, D.; Dera, P.; Zhang, J.; Fan, D.


    Pyroxenes, including Mg-rich orthopyroxene and Ca-rich clinopyroxene, are among the most important minerals in the Earth's upper mantle (account for 20% by volume). Pyroxenes are major phases of harzburgite and lherzolite, which are important components of subducting slabs, so the high pressure behavior of pyroxenes should influence the physical properties of the subducted slabs. Therefore, understanding the phase evolution and thermal equations of state and of pyroxenes at elevated pressure and temperature is crucial to model theupper mantle and subduction zones. On the other hand, water is expected to be incorporated into pyroxene minerals in the upper mantle environments, yet the effect of water on the high pressure behavior of pyroxene has not been fully explored. In this study, we conducted high-pressure single-crystal X-ray diffraction study on hydrous enstatite sample (Mg2Si2O6) at ambient and high temperatures. High-pressure single-crystal diffraction experiments at ambient temperature were performed to 30 GPa at the experimental station 13BMC of the Advanced Photon Source. Two phase transformations were detected within the pressure range. High-pressure and high-temperature single crystal diffraction experiments were conducted to 27 GPa and 700 K also at 13BMC. From the experimental data, we derived the thermoelastic parameters of enstatite and performed structural refinements of enstatite at high pressures and temperatures, which is of implication for understanding of geophysics and geochemistry of subducting slabs.

  11. High-pressure crystallography of periodic and aperiodic crystals

    Directory of Open Access Journals (Sweden)

    Clivia Hejny


    Full Text Available More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal–organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium `High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic.

  12. One- and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation (United States)

    Chen, Yong; Yan, Zhenya; Li, Xin


    The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.

  13. Modeling and simulation of high-pressure industrial autoclave polyethylene reactor

    Directory of Open Access Journals (Sweden)


    Full Text Available High-pressure technology for polyethylene production has been widely used by industries around the world. A good model for the reactor fluid dynamics is essential to set the operating conditions of an autoclave reactor. The high-pressure autoclave reactor model developed in this work was based on a non-isothermal dynamic model, where PID control equations are used to maintain the operation at the unstable steady state. The kinetic mechanism to describe the polymerization rate and molecular weight averages are presented. The model is capable of computing temperature, concentration gradients and polymer characteristics. The model was validated for an existing industrial reactor and data for production of homopolymer polyethylene and has represented well the behavior of the autoclave reactor used in ethylene homopolymerization.

  14. Lattice QCD on fine lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing


    These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.

  15. Avaliação do escoamento de leite desnatado durante homogeneização a alta pressão (HAP por meio de fluidodinâmica computacional (CFD Evaluation of skimmed milk flow during high pressure homogenization (HPH using computational fluid dynamics (CFD

    Directory of Open Access Journals (Sweden)

    Claudia Regina Gonçalves Pinho


    Full Text Available A tecnologia de homogeneização a alta pressão (HAP tem sido estudada por diversos autores como metodologia não térmica para a conservação de alimentos líquidos. Entretanto, o perfil do fluido durante o processo, assim como os mecanismos de inativação e rompimento celular, ainda não estão totalmente elucidados. O presente trabalho avaliou o escoamento de leite desnatado durante HAP por meio de fluidodinâmica computacional (CFD. Consideraram-se pressões de homogeneização de até 300 MPa, sendo avaliados os perfis de pressão e velocidade do fluido durante o processo. Os resultados obtidos demonstram que as tensões de cisalhamento resultantes do escoamento do fluido dentro do gap e a cavitação na saída do mesmo são os mecanismos mais prováveis para inativação microbiana no homogeneizador avaliado.High pressure homogenization (HPH technology has been studied by various authors as a non-thermal process for liquid food preservation. However, the fluid characteristics during processing, as also the cell inactivation and disruption mechanisms have still not been totally elucidated. The present work evaluated the flow of skimmed milk during HPH using computational fluid dynamics (CFD. The homogenization pressure was varied up to 300 MPa and the pressure and velocity profiles evaluated during the process. The results obtained showed that the shear stress due to the flow of the liquid inside the gap and the cavitation on exiting, are the most probable mechanisms of microbial inactivation in the homogenizer evaluated.

  16. Evaluation of High Pressure Components of Fuel Injection Systems Using Speckle Interferometry


    Basara, Adis


    The modern high pressure fuel injection systems installed in engines provide a highly efficient combustion process accompanied by low emissions of exhaust gases and an impressive level of dynamic response. The design and development of mechanical components for such systems pose a great challenge, since they have to operate under extremely high fluctuating pressures (e.g. up to 2000 bar) for a long lifetime (more than 1000 injections per minute). The permanent change between a higher and a lo...

  17. High pressure sample cell for total internal reflection fluorescence spectroscopy at pressures up to 2500 bar (United States)

    Koo, Juny; Czeslik, Claus


    Total internal reflection fluorescence (TIRF) spectroscopy is a surface sensitive technique that is widely used to characterize the structure and dynamics of molecules at planar liquid-solid interfaces. In particular, biomolecular systems, such as protein adsorbates and lipid membranes can easily be studied by TIRF spectroscopy. Applying pressure to molecular systems offers access to all kinds of volume changes occurring during assembly of molecules, phase transitions, and chemical reactions. So far, most of these volume changes have been characterized in bulk solution, only. Here, we describe the design and performance of a high pressure sample cell that allows for TIRF spectroscopy under high pressures up to 2500 bar (2.5 × 108 Pa), in order to expand the understanding of volume effects from the bulk phase to liquid-solid interfaces. The new sample cell is based on a cylindrical body made of Nimonic 90 alloy and incorporates a pressure transmitting sample cuvette. This cuvette is composed of a fused silica prism and a flexible rubber gasket. It contains the sample solution and ensures a complete separation of the sample from the liquid pressure medium. The sample solution is in contact with the inner wall of the prism forming the interface under study, where fluorescent molecules are immobilized. In this way, the new high pressure TIRF sample cell is very useful for studying any biomolecular layer that can be deposited at a planar water-silica interface. As examples, high pressure TIRF data of adsorbed lysozyme and two phospholipid membranes are presented.

  18. Lattice dynamical calculation of negative thermal expansion in ZrV2O7 and HfV2O7 (United States)

    Mittal, R.; Chaplot, S. L.


    We report lattice dynamics calculations of negative thermal-expansion (NTE) behavior of ZrV2O7 family, extending our previous work on the ZrW2O8 family. The two families of compounds differ in terms of the oxygen coordination around the V/W atoms leading to differences in the nature of soft phonons under compression that are responsible for the NTE. Our calculations quantitatively reproduce the negative expansion over a range of temperatures. We also discuss the relation of the soft phonons with the phase transitions observed in the ZrV2O7 family. Especially, the calculations show a soft-phonon mode at a wave vector of 0.31⟨1,1,0⟩ , which is in excellent agreement with the known incommensurate modulation in ZrV2O7 below 375 K.

  19. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.


    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  20. High-pressure deformation and failure of polycrystalline ceramics (United States)

    Zhang, Dongmei


    High-strength polycrystalline ceramics are increasingly being used for armor applications because of their light weight and superior ballistic performance over conventional armor steels. However, accurate material modeling needed in ceramic armor design remains a challenge because of their complex behavior under impact loading. A ceramic may display extremely high strength during rapid compression but lose tensile strength when the load reverses from compression to tension. A good understanding of the mechanisms governing the deformation and failure of ceramics under high-stress impact and a capability to accurately predict the resulting effective strengths of both intact and damaged ceramics are critically needed. To this end, a computational methodology for micromechanical analysis of polycrystalline materials has been developed. It combines finite element analysis with microstructural modeling based on the Voronoi polycrystals, and material modeling that considers nonlinear elasticity, crystal plasticity, intergranular shear damage during compression and intergranular Mode-I cracking during tension. Using this method, simulations have been carried out on polycrystalline alpha-6H silicon carbide and alpha-phase aluminum oxide to determine if microplasticity is a viable mechanism of inelastic deformation in ceramics undergoing high-pressure uniaxial-strain compression. Further, the competing roles of in-grain microplasticity and intergranular microdamage during a sequence of dynamic compression and tension have been studied. The results show that microplasticity is a more plausible mechanism than microcracking under uniaxial-strain compression. The deformation by limited slip systems can be highly heterogeneous so that a significant amount of grains may remain elastic and thus result in high macroscopic compressive strength. On the other hand, the failure evolution during dynamic load reversal from compression to tension can be well predicted by intergranular Mode

  1. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych


    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  2. Underground storage systems for high-pressure air and gases (United States)

    Beam, B. H.; Giovannetti, A.


    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  3. High pressure common rail injection system modeling and control. (United States)

    Wang, H P; Zheng, D; Tian, Y


    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. High Pressure Processing Technology and Equipment Evolution: A Review

    Directory of Open Access Journals (Sweden)

    Wael M. Elamin


    Full Text Available High pressure processing (HPP is an interesting non-thermal technology that involves the sterilization of food by the mean of ultra-high pressures, which lead to extending the shelf life of processed food, as well as maintaining nutritional value and quality of food products. The consumers’ increasing demand for this new products graped the interest of several already-existing high pressure equipment manufacturers around the globe. The successful of this technology encouraged them to enter the field of food processing and adjust their existing technologies to adapt to the new process. This review spots the major discoveries in HPP equipment history, describes the current applications of HHP in processing and provides comprehensive information about HPP equipment technology used in commercial and research applications. In addition, this paper presents the major manufacturers in HPP equipment industry around the world.

  5. The value of high-pressure hysterosalpingography with new cannula. (United States)

    Totani, R


    To achieve maximum dilatation of the Fallopian tubes so as to improve the pregnancy: non-pregnancy ratio of hysterosalpingography (HSG) treatment, a high-pressure injection technique was evaluated. For this purpose a disposable cannula and an adapted pair of tenacula were developed and a remote-control procedure using an auto-injector and an adapted pressure recorder was used to assure the safety of doctors and staff. 1780 cases who underwent 400 mmHg high-pressure HSG treatment were compared with 903 conventional HSG cases. Results indicated a higher pregnancy ratio for the high-pressure experimental group after treatment. In addition, it was found that side effects due to the use of disposable cannula and highly viscous water-soluble mediums developed for use in angiography were less common than for conventional materials.

  6. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    Energy Technology Data Exchange (ETDEWEB)



    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  7. Confinement of hydrogen at high pressure in carbon nanotubes (United States)

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA


    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  8. A High-Pressure Phase Transition of Calcite-III (United States)

    Catalli, K. C.; Williams, Q.


    We document the presence of a high-pressure phase transition in metastable calcite-III using infrared spectroscopy. The post-calcite-III transition initiates at a pressure of 15.5 (±2) GPa, and is completed between 25 and 30 GPa. The transition is particularly apparent in the ν4-in-plane bending vibration of the carbonate group, in which two new peaks gradually supplant the doublet associated with calcite-III. Furthermore, both the ν3-asymmetric and ν1-symmetric stretches of the carbonate group in the high-pressure phase appear at considerably lower frequencies than the extrapolated positions of the corresponding calcite-III peaks. The geometry of the carbonate unit within the high-pressure phase is likely closer to trigonal symmetry than in the calcite-III structure, and the C-O bond is probably longer than in the lower pressure calcite-III phase.

  9. High-pressure injection injuries of the hand. (United States)

    Pai, C H; Wei, D C; Hou, S P


    The majority of high-pressure injection injuries can produce serious damage to the hand. Nevertheless, the injury may follow a relatively benign course if the injected substance possesses a less harmful nature. Treatment for these injuries requires immediate and aggressive surgery in most circumstances, but conservative treatment may be justified in certain instances. During a 4-year period, eight cases of high-pressure injection injury were encountered. The types of injected material were: four from paint, and one each from grease, water, benzene, and hydraulic oil. Time is an important factor regarding the results, while the types of injected material modify the clinical courses. It is advisable that the etiology of high-pressure injection injury should be established initially, and this factor be taken into consideration in choosing treatment options.

  10. Accessing Mefenamic Acid Form II through High-Pressure Recrystallisation

    Directory of Open Access Journals (Sweden)

    Nasir Abbas


    Full Text Available High-pressure crystallisation has been successfully used as an alternative technique to prepare Form II of a non-steroidal anti-inflammatory drug, mefenamic acid (MA. A single crystal of Form II, denoted as high-pressure Form II, was grown at 0.3 GPa from an ethanolic solution by using a diamond anvil cell. A comparison of the crystal structures shows that the efficient packing of molecules in Form II was enabled by the structural flexibility of MA molecules. Compression studies performed on a single crystal of Form I resulted in a 14% decrease of unit cell volume up to 2.5 GPa. No phase transition was observed up to this pressure. A reconstructive phase transition is required to induce conformational changes in the structure, which was confirmed by the results of crystallisation at high pressure.

  11. A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Fakhari, Abbas, E-mail: [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Geier, Martin [TU Braunschweig, Institute for Computational Modeling in Civil Engineering (iRMB), TU-Braunschweig, Pockelsstr. 3, 38106 Braunschweig (Germany); Lee, Taehun [Department of Mechanical Engineering, The City College of the City University of New York, New York, NY 10031 (United States)


    A mass-conserving lattice Boltzmann method (LBM) for multiphase flows is presented in this paper. The proposed LBM improves a previous model (Lee and Liu, 2010 [21]) in terms of mass conservation, speed-up, and efficiency, and also extends its capabilities for implementation on non-uniform grids. The presented model consists of a phase-field lattice Boltzmann equation (LBE) for tracking the interface between different fluids and a pressure-evolution LBM for recovering the hydrodynamic properties. In addition to the mass conservation property and the simplicity of the algorithm, the advantages of the current phase-field LBE are that it is an order of magnitude faster than the previous interface tracking LBE proposed by Lee and Liu (2010) [21] and it requires less memory resources for data storage. Meanwhile, the pressure-evolution LBM is equipped with a multi-relaxation-time (MRT) collision operator to facilitate attainability of small relaxation rates thereby allowing simulation of multiphase flows at higher Reynolds numbers. Additionally, we reformulate the presented MRT-LBM on nonuniform grids within an adaptive mesh refinement (AMR) framework. Various benchmark studies such as a rising bubble and a falling drop under buoyancy, droplet splashing on a wet surface, and droplet coalescence onto a fluid interface are conducted to examine the accuracy and versatility of the proposed AMR-LBM. The proposed model is further validated by comparing the results with other LB models on uniform grids. A factor of about 20 in savings of computational resources is achieved by using the proposed AMR-LBM. As a more demanding application, the Kelvin–Helmholtz instability (KHI) of a shear-layer flow is investigated for both density-matched and density-stratified binary fluids. The KHI results of the density-matched fluids are shown to be in good agreement with the benchmark AMR results based on the sharp-interface approach. When a density contrast between the two fluids exists, a

  12. Chain-length-dependent intermolecular packing in polyphenylenes: a high pressure study

    CERN Document Server

    Heimel, G; Oehzelt, M; Hummer, K; Koppelhuber-Bitschnau, B; Porsch, F; Ambrosch-Draxl, C; Resel, R


    We report on pressure-induced structural changes in crystalline oligo(para-phenylenes) containing two to six phenyl rings. The results are discussed with particular emphasis put on the implications these changes in intermolecular distances and molecular arrangement have on important bulk properties of this class of materials, such as optical response and charge transport. We performed energy dispersive x-ray diffraction in a systematic study on polycrystalline powders of biphenyl, para-terphenyl, p-quaterphenyl, p-quinquephenyl and p-sexiphenyl under hydrostatic pressure up to 60 kbar. Revisiting the crystal structures at ambient conditions reveals details in the packing principle. A linear relationship between the density at ambient conditions and the number of phenyl rings is found. High pressure data not only yields pressure-dependent lattice parameters and hints towards pressure-induced changes in the molecular arrangement but also allows for an analysis of the equations of state of these substances as a ...

  13. Revealing properties of single-walled carbon nanotubes under high pressure

    CERN Document Server

    Tang Jie; Sasaki, T; Yudasaka, M; Matsushita, A; Iijima, S


    It was found by the x-ray diffraction experiment under hydrostatic pressure that the carbon nanotubes are compressed easily with a high volume compressibility of 0.024 GPa sup - sup 1. The single-walled carbon nanotubes are polygonized when they form bundles of hexagonal close-packed structure and the inter-tubular gap is smaller than the equilibrium spacing of graphite. Under high pressure, further polygonization occurs to accommodate the extra amount of volume reduction. The ratio of the short and the long diagonals in the hexagonalized cross section is found to have changed from 0.991 at zero pressure to 0.982 at 1.5 GPa pressure, when the Bragg reflection from the nanotube lattice diminished. Accompanying polygonization, a discontinuous change in electrical resistivity was observed at 1.5 GPa pressure, suggesting a phase transition had occurred.

  14. High Pressure Study of Structural and Electronic Properties of PbSe

    Directory of Open Access Journals (Sweden)

    P. Bhambhani


    Full Text Available High pressure structural phase transition and electronic properties have been investigated using the linear combination of atomic orbitals (LCAO method with two exchange-correlation approximations, the generalized gradient approximation (GGA and local density approximation (LDA. The present study shows phase transitions from B1 to B27 and B27 to B2 at 6.24 GPa and 16.39 GPa, respectively. Lattice constant, bulk modulus, and energy gap of pressure-induced PbSe are found to be in good agreement with previous theoretical and experimental results. Variation of electronic band structure with pressure shows direct band gap along L point of the Brillouin zone.

  15. Low temperature vibrational spectra, lattice dynamics, and phase transitions in some potassium hexahalometallates: K2[XY6] with X=Sn or Te and Y=Cl or Br

    DEFF Research Database (Denmark)

    Chodos, Steven L.; Berg, Rolf W.


    This paper deals with the observation and identification of phonon frequencies resulting from the low temperature phase transitions in K2XY6 crystals. By means of a simple lattice dynamical model, the vibrational Raman and IR data available in the literature and obtained here have been analyzed. ...

  16. Experiment on wear behavior of high pressure gas seal faces (United States)

    Xu, Jing; Peng, Xudong; Bai, Shaoxian; Meng, Xiangkai; Li, Jiyun


    Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%-25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.

  17. Survey of High-Pressure Effects in Solids. (United States)


    Roe Nmiw 10M Finad Repas Contrat No. MDA97C-0U5 a neuabyDeftn Mdwa esch P r* Ape Arlington, Virginb 22209 The vie wW cn oncluions cotIn i kl dosmnut...the Gordon-Kim-Boyer scheme with our suggested modifications ; use of the exchange-correlation potential in the local-density approximation i such an...limitations at very high pressures. One modification that becomes necessary at high pressures is not to first determine the two-body interatomic

  18. Effects of High Pressure on Membrane Ion Binding and Transport. (United States)


    AD-AI16 015 CALIFORNIA UNIV BERKELEY DEPT OF PHYSIOLOGY- ANATOMY FIG 6/16 EFFECTS OF HIGH PRESSURE ON MEMBRANE ION BINDING AND TRANSPORT.(U) DEC 80 R...ION BIND.NG AID TPANSPOFT (N)014-7 1-C-0482) 1Fobert I. 1.. cey, Ph.D. a v] Da iel M. F zan, Ph.D. Department of Ph ,sioloy- Anatomy unriveorsity o...given to Tra"uble’s theory . C. Develonrment of a High Pressure Zton-Flow Realization of the goals outlined in this project lenends on the availa- bility

  19. Novel High Pressure Multi-Component Diffusion Cell


    Elma, Muthia; Massarotto, Paul; Rudolph, Victor


    A novel high pressure multi-component diffusion cell (HPMCDC) apparatus has been designed and built to measure single and binary gas diffusion, including co-current and counter-diffusion, from low to high pressures. The apparatus incorporates capability to investigate scale effects in solid coal specimens, up to 25 mm in diameter and 25 mm in thickness. Future experiments will be conducted to measure diffusion and counter-diffusion of CH4 and CO2 gases in solid coal, at various temperatures, ...

  20. Quark orbital dynamics in the proton from lattice QCD: From Ji to Jaffe-Manohar orbital angular momentum (United States)

    Engelhardt, M.


    Given a Wigner distribution simultaneously characterizing quark transverse positions and momenta in a proton, one can directly evaluate their cross product, i.e., quark orbital angular momentum. The aforementioned distribution can be obtained by generalizing the proton matrix elements of quark bilocal operators which define transverse momentum-dependent parton distributions (TMDs); the transverse momentum information is supplemented with transverse position information by introducing an additional nonzero momentum transfer. A gauge connection between the quarks must be specified in the quark bilocal operators; the staple-shaped gauge link path used in TMD calculations yields the Jaffe-Manohar definition of orbital angular momentum, whereas a straight path yields the Ji definition. An exploratory lattice calculation, performed at the pion mass mπ=518 MeV , is presented which quasicontinuously interpolates between the two definitions and demonstrates that their difference can be clearly resolved. The resulting Ji orbital angular momentum is confronted with traditional evaluations based on Ji's sum rule. Jaffe-Manohar orbital angular momentum is enhanced in magnitude compared to its Ji counterpart.

  1. Ab Initio High Pressure and Temperature Investigation on Cubic PbMoO3 Perovskite (United States)

    Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar


    A combined high pressure and temperature investigation on recently reported cubic perovskite PbMoO3 have been performed within the most accurate density functional theory (DFT). The structure was found stable in cubic paramagnetic phase. The DFT calculated analytical and experimental lattice constant were found in good agreement. The analytical tolerance factor as well as the elastic properties further verifies the cubic stability for PbMoO3. The spin polarized electronic band structure and density of states presented metallic nature with symmetry in up and down states. The insignificant magnetic moment also confirms the paramagnetic nature for the compound. The high pressure elastic and mechanical study up to 35 GPa reveal the structural stability of the material in this pressure range. The compound was found to establish a ductile nature. The electrical conductivity obtained from the band structure results show a decreasing trend with increasing temperature. The temperature dependence of thermodynamic parameters such as specific heat ( C v), thermal expansion ( α) has also been evaluated.

  2. High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide

    Energy Technology Data Exchange (ETDEWEB)

    Laniel, Dominique; Desgreniers, Serge [Laboratoire de physique des solides denses, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Downie, Laura E. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Smith, Jesse S. [High Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Savard, Didier; Murugesu, Muralee [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)


    Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network, starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.

  3. Collision condition indicted by High Pressure Phases in a Chondrite (United States)

    Kato, Y.; Sekine, T.; Kayama, M.; Miyahara, M.; Yamaguchi, A.


    It has been generally recognized that there were many collisions during planetary accretion. Chondrites include the materials at the time of formation of the solar system. It is essential to unravel the shock history in meteorites and the parent planet in order to understand such collisional processes. In this study, we investigate a thin section of ordinary chondrite Y-790729 classified as L6 in which high-pressure minerals are found in the about 620-μm-wide shock vein. The mineralogical and chemical features give us detailed information to constrain the shock conditions. We have tried to constrain the P-T condition from the viewpoints of the mineral assemblage and cathodoluminescense (CL) spectroscopy. Y-790729 consists mostly of olivine and pyroxene and has shock veins. To identify high pressure phases, we used an optical microscope, a scanning electron microscope (SEM), micro Raman spectroscopy, and electron probe micro analyzer (EPMA). In addition, scanning electron microscopy-cathodoluminescence (SEM-CL) analysis, detectable shock-induced defect centers, was used to characterize the shock metamorphism in feldspar minerals. The presence of shock vein, maskelynite, and high pressure phases confirms shock record. 7 high pressure phases of ringwoodite, high-pressure clinoenstatite (HPC), majorite, merrillite, lingunite, high-pressure chromite and akimotoite were found in this section. All of them exist only in a shock vein, but maskelynite occurs everywhere in the section. From these observations, it is obvious that the shock vein experienced the high pressure and high temperature generated by shock wave. If some of the high pressure minerals are equilibrated, the P-T condition can be estimated. Based on the equilibrium phase diagram of MgSiO3 polymorphs (Presnall. 1995), the P-T conditions for crystallization of majorite, HPC and akimotoite is about 17 GPa and 1600 oC, because the compositions of the three phases are close to MgSiO3. It is consistent with the

  4. Hyper-lattice algebraic model for data warehousing

    CERN Document Server

    Sen, Soumya; Chaki, Nabendu


    This book presents Hyper-lattice, a new algebraic model for partially ordered sets, and an alternative to lattice. The authors analyze some of the shortcomings of conventional lattice structure and propose a novel algebraic structure in the form of Hyper-lattice to overcome problems with lattice. They establish how Hyper-lattice supports dynamic insertion of elements in a partial order set with a partial hierarchy between the set members. The authors present the characteristics and the different properties, showing how propositions and lemmas formalize Hyper-lattice as a new algebraic structure.

  5. High pressure structural changes in aluminium triiodide: A first principles study (United States)

    Majumdar, Arnab; Klug, Dennis D.; Yao, Yansun


    First principles calculations identified a phase transition in aluminium triiodide (AlI3) and predicted its physical and spectroscopic properties under high pressure conditions. A high pressure monoclinic phase is predicted to exist above 1.3 GPa accompanied with a coordination change of aluminium resulting from a transformation from the ambient pressure 4-coordinated primitive monoclinic phase with space group P21/c to the monoclinic 6-coordinated structure with space group C2/m. Density functional phonon calculations predicted its dynamical and mechanical stability. Infrared effective charge intensities and Raman scattering tensors were obtained to characterize its spectroscopic properties. First-principles metadynamics simulations were employed to reconstruct this phase transition and provide the mechanism details for energetically favourable path from the ambient pressure P21/c structure to the predicted C2/m structure.

  6. Ultra-high pressure water jet: Baseline report

    Energy Technology Data Exchange (ETDEWEB)



    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  7. High-pressure physical properties of magnesium silicate post ...

    Indian Academy of Sciences (India)

    dLaboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Academy of Engineering. Physics, PO Box 919-102, Mianyang 621900, China. MS received 1 May 2011. Abstract. The structure, thermodynamic and elastic properties of magnesium silicate (MgSiO3) post-perovskite at high pressure ...

  8. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  9. Numerical investigation of high pressure condensing flows in supersonic nozzles

    NARCIS (Netherlands)

    Azzini, L.; Pini, M.


    High-pressure non-equilibrium condensing flows are investigated in this paper through a quasi-1D Euler model coupled to the method of moments for the physical characterization of the dispersed phase. Two different numerical approaches, namely the so-called (a) the mixture and (b) continuum phase

  10. Structural properties of BeO at high pressure

    Indian Academy of Sciences (India)


    nuclear reactor (Zeezherun et al 1963). BeO has the wurzite structure (B4) under ambient condition, although the other BeX (X = S, Se and Te) crystallizes in zinc blend (B3). In recent past, phase transition at high pressure has been a subject of great interest for experi- mentalists as well as theoreticians. Recently, Yashihisa.

  11. Screening of hydrogen storage media applying high pressure thermogravimetry

    DEFF Research Database (Denmark)

    Bentzen, J.J.; Pedersen, Allan Schrøder; Kjøller, J.


    A number of commercially available hydride-forming alloys of the MmNi5–xSnx (Mm=mischmetal, a mixture of lanthanides) type were examined using a high pressure, high temperature microbalance,scanning electron microscopy and X-ray diffraction. Activation conditions, reversible storage capacity, wor...

  12. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J


    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  13. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J


    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  14. High pressure injection injuries: a serious occupational hazard. (United States)

    Mrvos, R; Dean, B S; Krenzelok, E P


    High pressure injection equipment such as airless paint sprayers, high pressure grease guns, and fuel injection apparatus constitute a serious safety hazard resulting in significant morbidity. These devices are capable of delivering contaminants such as paint, solvents, and grease at pressures ranging from 600-12,000 psi. This allows the substance to penetrate through a minute skin wound and to spread widely through fascial planes and tendon sheaths and to produce significant vascular compression and systemic toxicity. High pressure injection injuries frequently result in amputation. Fifty-five suspected high pressure injection injury cases were evaluated. Twenty were determined to be actual injection injuries from equipment producing pressures in the range of 1,500-12,000 psi. The injected contaminants included latex paint, mineral spirits, and concrete sealer. Fourteen injuries involved digits. Digital amputation was necessary in three patients. Hospital admissions averaged 6.5 days. Successful management of these cases involves awareness of the impending problem and rapid referral of the patient to an emergency department and to a competent orthopedic or plastic surgeon.

  15. Propane Oxidation at High Pressure and Intermediate Temperatures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    Propane oxidation at intermediate temperatures (500—900 K) and high pressure (100 bar) has been characterized by conducting experiments in a laminar flow reactor over a wide range of stoichiometries. The onset of fuel oxidation was found to be 600—725 K, depending on mixture stoichiometry...

  16. High pressure gas laser technology for atmospheric remote sensing (United States)

    Javan, A.


    The development of a fixed frequency chirp-free and highly stable intense pulsed laser made for Doppler wind velocity measurements with accurate ranging is described. Energy extraction from a high pressure CO2 laser at a tunable single mode frequency is also examined.

  17. Performance studies on high pressure 1-D position sensitive ...

    Indian Academy of Sciences (India)

    Performance studies on high pressure 1-D position sensitive neutron detectors. S S DESAI and A M SHAIKH∗. Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. *Corresponding author. E-mail: Abstract. The powder diffractometer and Hi-Q diffractometer at ...

  18. High-pressure applications in medicine and pharmacology (United States)

    Silva, Jerson L.; Foguel, Debora; Suarez, Marisa; Gomes, Andre M. O.; Oliveira, Andréa C.


    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  19. Raman Studies of Vanadates at Low Temperatures and High Pressures

    NARCIS (Netherlands)

    Siranidi, E.; Lampakis, D.; Palles, D.; Liarokapis, E.; Colin, C.; Palstra, T. T. M.

    The spin and orbital ordering have been examined for high-quality SmVO(3) polycrystalline compound using Raman spectroscopy. Measurements were obtained on individual microcrystallites in the approximate y(zz)y and y(xx)y scattering configurations at low temperatures (down to 20 K) and high pressures

  20. High pressure ices are not the end of the story for large icy moons habitability: experimental studies of salts effects on high pressure ices and the implications for icy worlds large hydrosphere structure and chemical evolution (United States)

    Journaux, Baptiste; Abramson, Evan; Brown, J. Michael; Bollengier, Olivier


    The presence of several phases of deep high-pressure ices in large icy moons hydrosphere has often been pointed as a major limitation for the habitability of an uppermost ocean. As they are gravitationally stable bellow liquid H2O, they are thought to act as a chemical barrier between the rocky bed and the ocean. Solutes, including salt species such as NaCl and MgSO4, have been suggested inside icy world oceans from remote sensing, magnetic field measurements and chondritic material alteration models. Unfortunately, the pressures and temperatures inside these hydrospheres are very different from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors.Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions.In particular brines have been measured to be sometimes more dense than the high pressure ices at melting conditions, possibly creating several oceanic layer "sandwiched" in between two ices shells or in contact with the rocky bed.Other effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds.We will present the latest results obtained in-situ using diamond anvil cell high pressure allowing to probe the density, chemistry and thermodynamic properties of high pressure ice and aqueous solutions in equilibrium with Na-Mg-SO4-Cl ionic species.We will also discuss the new

  1. Lattice dynamics and dielectric spectroscopy of BZT and NBT lead-free perovskite relaxors - comparison with lead-based relaxors (United States)

    Petzelt, Jan; Nuzhnyy, Dmitry; Bovtun, Viktor; Kempa, Martin; Savinov, Maxim; Kamba, Stanislav; Hlinka, Jiri


    Appearance of the polar nanoregions (PNR) and their manifestation in the dielectric spectra is discussed for lead-free Ba(ZrxTi1-x)O3 (BZT-x) and (Na1/2Bi1/2)TiO3 (NBT) ceramics. Phonon softening is not as pronounced as in the lead-based relaxors, but the relaxation contribution is dominating in all cases, caused by the dynamics of the off-centred ions (Ti4+, Bi3+, Pb2+). In the lead-based relaxors, where there is no relation between the quenched chemical clusters at the B-sites and PNR, which concern the A-site Pb-ion correlations, the relaxation dynamics follows the Vogel-Fulcher behaviour with a clear freezing. However, in BZT and NBT, the PNR are smaller, since they are localised within the small quenched chemical clusters of BaTiO3 and BiTiO3, respectively. Their dynamics is Arrhenius-like, which indicates hopping of the off-centred Ti4+ and Bi3+ ions, respectively, without their complete freezing. BZT can be classified as a dipolar glass and NBT as a nanoscopic ferroelectric with peculiar Bi-ion dynamics.

  2. Congruence amalgamation of lattices

    CERN Document Server

    Grätzer, G; Wehrung, F; Gr\\"{a}tzer, George; Lakser, Harry; Wehrung, Friedrich


    J. Tuma proved an interesting "congruence amalgamation" result. We are generalizing and providing an alternate proof for it. We then provide applications of this result: --A.P. Huhn proved that every distributive algebraic lattice $D$ with at most $\\aleph\\_1$ compact elements can be represented as the congruence lattice of a lattice $L$. We show that $L$ can be constructed as a locally finite relatively complemented lattice with zero. --We find a large class of lattices, the $\\omega$-congruence-finite lattices, that contains all locally finite countable lattices, in which every lattice has a relatively complemented congruence-preserving extension.

  3. New phases of C[sub 60] synthesized at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Y.; Fleming, R.M.; Siegrist, T.; Zhou, O.; Haddon, R.C.; Rothberg, L.J.; Lyons, K.B.; Carter, H.L. Jr.; Hebard, A.F.; Tycko, H.R. (AT T Bell Labs., Murray Hill, NJ (United States)) (and others)


    The fullerene C[sub 60] can be converted into two different structures by high pressure and temperature. They are metastable and revert to pristine C[sub 60] on reheating to 300[degrees]C at ambient pressure. For synthesis temperatures between 300[degrees] and 400[degrees]C and pressures of 5 gigapascals, a nominal face-centered-cubic structure is produced with a lattice parameter a[sub o] = 13.6 angstroms. When treated at 500[degrees] to 800[degrees]C at the same pressure, C[sub 60] transforms into a rhombohedral structure with hexagonal lattice parameters of a[sub o] = 9.22 angstroms and c[sub o] = 24.6 angstroms. The intermolecular distance is small enough that a chemical bond can form, in accord with the reduced solubility of the pressure-induced phases. Infrared, Raman, and nuclear magnetic resonance studies show a drastic reduction of icosahedral symmetry, as might occur if the C[sub 60] molecules are linked.

  4. The elastic solid solution model for minerals at high pressures and temperatures (United States)

    Myhill, R.


    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  5. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)


    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  6. Thermal analysis of high pressure micro plasma discharge (United States)

    Mobli, Mostafa

    High pressure micro plasma discharge has been at the center of interest in recent years, because of their vast applications, ease of access and cost efficiency. This attributes to atmospheric discharges that are generated in ambient conditions and therefore can be readily applicable to everyday use. The absence of vacuum makes these high pressure discharges to be inexpensive to operate. Despite the ease of operation, the high pressure is a source of enhanced gas heating as the gas temperature cannot be controlled by diffusion alone. Gas heating is therefore an important factor when it comes to the simulation of high pressure micro plasma discharge, unlike their low pressure counterpart where the heat generation is almost negligible. Low pressure discharge due to their low degree of collisionality generates ionic species and electrons at small concentrations, whereas high pressure discharge due to their higher gas density produces ions and electrons at higher concentrations which is a direct consequence of increase collision. The higher gas density and consequential large concentration of ionic species and electron contributes directly to higher heat generation rates. . In this thesis the gas temperature transport of high pressure micro plasma discharge has been studied with a special focus on the heat source terms, temperature boundary conditions, temperature distribution in the solid phase electrodes and the gas phase and their overall influence on the plasma characteristics. For this purpose a multi-physics mathematical model has been developed that comprised of a plasma module, neutral gas temperature module, external circuit module and conjugate heat transfer module. The plasma module consisted of conservation of the different ionic, electronically excited species, radicals, neutrals and electrons, conservation of the electron temperature, and electric field. The external circuit module resolved the coupled driving circuit comprised of a voltage source, ballast

  7. Lattices for the lattice Boltzmann method. (United States)

    Chikatamarla, Shyam S; Karlin, Iliya V


    A recently introduced theory of higher-order lattice Boltzmann models [Chikatamarla and Karlin, Phys. Rev. Lett. 97, 190601 (2006)] is elaborated in detail. A general theory of the construction of lattice Boltzmann models as an approximation to the Boltzmann equation is presented. New lattices are found in all three dimensions and are classified according to their accuracy (degree of approximation of the Boltzmann equation). The numerical stability of these lattices is argued based on the entropy principle. The efficiency and accuracy of many new lattices are demonstrated via simulations in all three dimensions.


    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng; Borland, M.; Lindberg, R.; Sajaev, V.


    A 67-pm hybrid-seven-bend achromat (H7BA) lattice is being proposed for a future Advanced Photon Source (APS) multi-bend-achromat (MBA) upgrade project. This lattice design pushes for smaller emittance and requires use of a swap-out (on-axis) injection scheme due to limited dynamic acceptance. Alternate lattice design work has also been performed for the APS upgrade to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow off-axis accumulation. Two such alternate H7BA lattice designs, which target a still-low emittance of 90 pm, are discussed in detail in this paper. Although the single-particle-dynamics performance is good, simulations of collective effects indicate that surprising difficulty would be expected accumulating high single-bunch charge in this lattice. The brightness of the 90-pm lattice is also a factor of two lower than the 67-pm H7BA lattice.

  9. Shock Recovery of the High Pressure Phase Bismuth III (United States)

    Fussell, Zachary; Tschauner, Oliver; Hawkins, Cameron; Ma, Chi; Smith, Jesse; Advanced Photon Source Team; California Institution of Technology Team; National Security Technologies Team; University of Nevada, Las Vegas Team


    Between 0 and 10 GPa there are five different bismuth phases. High-pressure bismuth (Bi) phases have been examined in static compression experiments; however, none could be recovered to ambient conditions. Here we report Bi-III recovery (stable above 3 GPa) to ambient conditions from a shock compression experiment to 5.7 GPa. Bi-III was identified by synchrotron micro-diffraction and backscatter electron imaging. Our work shows shock-compression provides a tool for recovering high-pressure phases that otherwise elude decompression. This work supported by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy and by the Site-Directed Research and Development Program. DOE/NV/25946-3070.

  10. Equation of state of liquid Indium under high pressure

    Directory of Open Access Journals (Sweden)

    Huaming Li


    Full Text Available We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  11. Introduction to high-pressure bioscience and biotechnology. (United States)

    Bartlett, Douglas H


    The manipulation of biological materials using elevated pressure is providing an ever-growing number of opportunities in both the applied and basic sciences. Manipulation of pressure is a useful parameter for enhancing food quality and shelf life; inactivating microbes, viruses, prions, and deleterious enzymes; affecting recombinant protein production; controlling DNA hybridization; and improving vaccine preparation. In biophysics and biochemistry, pressure is used as a tool to study intermediates in protein folding, enzyme kinetics, macromolecular interactions, amyloid fibrous protein aggregation, lipid structural changes, and to discern the role of solvation and void volumes in these processes. Biologists, including many microbiologists, examine the utility and basis of pressure inactivation of cells and cellular processes, and conversely seek to discover how deep-sea life has evolved a preference for high-pressure environments. This introduction and the papers that follow provide information on the nature and promise of the highly interdisciplinary field of high-pressure bioscience and biotechnology (HPBB).

  12. Miscible displacement by high-pressure gas at Block 31

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J.H.; Robertson, N.


    The world's first large-scale miscible displacement project by high-pressure gas injection has produced 130,000,000 bbl, almost double the original estimated primary recovery of 69,000,000 bbl, at the University Block 31 field in Crane County, Texas. The field-wide project began in 1952, and will keep the unit on stream well into the future, with ultimate recovery efficiency estimated at 60%. Infill drilling has helped boost daily production to 16,000 bbl, highest producing rate since gas injection began in 1949. The subject discussed include reservoir characteristics, high pressure gas miscibility, flue gas generation, production problems, and new lift for an old field by infill drilling.

  13. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy (United States)

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.


    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  14. Germination of vegetable seeds exposed to very high pressure (United States)

    Mori, Y.; Yokota, S.; Ono, F.


    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  15. Phase diagram of Nitrogen at high pressures and temperatures (United States)

    Jenei, Zsolt; Lin, Jung-Fu; Yoo, Choong-Shik


    Nitrogen is a typical molecular solid with relatively weak van der Waals intermolecular interactions but strong intramolecular interaction arising from the second highest binding energy of all diatomic molecules. The phase diagram of solid nitrogen is, however, complicated at high pressures, as inter-molecular interaction becomes comparable to the intra-molecular interaction. In this paper, we present an updated phase diagram of the nitrogen in the pressure-temperature region of 100 GPa and 1000 K, based on in-situ Raman and synchrotron x-ray diffraction studies using externally heated membrane diamond anvil cells. While providing an extension of the phase diagram, our results indicate a ``steeper'' slope of the δ/ɛ phase boundary than previously determined^1. We also studied the stability of the ɛ phase at high pressures and temperatures. Our new experimental results improve the understanding of the Nitrogen phase diagram. 1. Gregoryanz et al, Phys. Rev. B 66, 224108 (2002)

  16. The effect of high pressure on nitrogen compounds of milk

    Energy Technology Data Exchange (ETDEWEB)

    Kielczewska, Katarzyna [Institute of Dairy Science and Technology Development, Warmia and Masuria University in Olsztyn, Hevelius 1 Street, 10-957 Olsztyn (Poland); Czerniewicz, Maria [Institute of Dairy Science and Technology Development, Warmia and Masuria University in Olsztyn, Hevelius 1 Street, 10-957 Olsztyn (Poland); Michalak, Joanna [Chair of Instrumental Analysis, Warmia and Masuria University in Olsztyn, Hevelius 1 Street, 10-957 Olsztyn (Poland); Brandt, Waldemar [Institute of Dairy Science and Technology Development, Warmia and Masuria University in Olsztyn, Hevelius 1 Street, 10-957 Olsztyn (Poland)


    The effect of pressurization at different pressures (from 200 to 1000 MPa, at 200 MPa intervals, t{sub const.} = 15 min) and periods of time (from 15 to 35 min, at 10 min intervals, p{sub const.} = 800 MPa) on the changes of proteins and nitrogen compounds of skimmed milk was studied. The pressurization caused an increase in the amount of soluble casein and denaturation of whey proteins. The level of nonprotein nitrogen compounds and proteoso-peptone nitrogen compounds increased as a result of the high-pressure treatment. These changes increased with an increase in pressure and exposure time. High-pressure treatment considerably affected the changes in the conformation of milk proteins, which was reflected in the changes in the content of proteins sedimenting and an increase in their degree of hydration.

  17. Leak Detection of High Pressure Feedwater Heater Using Empirical Models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Song Kyu; Kim, Eun Kee [Korea Power Engineering Company, Daejeon (Korea, Republic of); Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); An, Sang Ha [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)


    Even small leak from tube side or pass partition within the high pressure feedwater heater (HPFWH) causes a significant deficiency in its performance. Plant operation under the HPFWH leak condition for long time will result in cost increase. Tube side leak within HPFWH can produce the high velocity jet of water and it can cause neighboring tube failures. However, most of plants are being operated without any information for internal leaks of HPFWH, even though it is prone to be damaged under high temperature and high pressure operating conditions. Leaks from tubes and/or pass partition of HPFWH occurred in many nuclear power plants, for example, Mihama PS-2, Takahama PS-2 and Point Beach Nuclear Plant Unit 1. If the internal leaks of HPFWH are monitored, the cost can be reduced by inexpensive repairs relative to loss in performance and moreover plant shutdown as well as further tube damages can be prevented.

  18. Industrial high pressure applications. Processes, equipment and safety

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, Rudolf (ed.) [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer Thermische Verfahrenstechnik


    Industrial high pressure processes open the door to many reactions that are not possible under 'normal' conditions. These are to be found in such different areas as polymerization, catalytic reactions, separations, oil and gas recovery, food processing, biocatalysis and more. The most famous high pressure process is the so-called Haber-Bosch process used for fertilizers and which was awarded a Nobel prize. Following an introduction on historical development, the current state, and future trends, this timely and comprehensive publication goes on to describe different industrial processes, including methanol and other catalytic syntheses, polymerization and renewable energy processes, before covering safety and equipment issues. With its excellent choice of industrial contributions, this handbook offers high quality information not found elsewhere, making it invaluable reading for a broad and interdisciplinary audience.

  19. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.


    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  20. High pressure extraction of phenolic compounds from citrus peels† (United States)

    Casquete, R.; Castro, S. M.; Villalobos, M. C.; Serradilla, M. J.; Queirós, R. P.; Saraiva, J. A.; Córdoba, M. G.; Teixeira, P.


    This study evaluated the effect of high pressure processing on the recovery of high added value compounds from citrus peels. Overall, the total phenolic content in orange peel was significantly (P < .05) higher than that in lemon peel, except when pressure treated at 500 MPa. However, lemon peel demonstrated more antioxidant activity than orange peel. Pressure-treated samples (300 MPa, 10 min; 500 MPa, 3 min) demonstrated higher phenolic content and antioxidant activity comparatively to the control samples. For more severe treatments (500 MPa, 10 min), the phenolic content and antioxidant activity decreased in both lemon and orange peels. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014), in Nantes (France), 15-18 July 2014.

  1. Unravelling the High-Pressure Behaviour of Dye-Zeolite L Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Lara Gigli


    Full Text Available Self-assembly of chromophores nanoconfined in porous materials such as zeolite L has led to technologically relevant host-guest systems exploited in solar energy harvesting, photonics, nanodiagnostics and information technology. The response of these hybrid materials to compression, which would be crucial to enhance their application range, has never been explored to date. By a joint high-pressure in situ synchrotron X-ray powder diffraction and ab initio molecular dynamics approach, herein we unravel the high-pressure behaviour of hybrid composites of zeolite L with fluorenone dye. High-pressure experiments were performed up to 6 GPa using non-penetrating pressure transmitting media to study the effect of dye loading on the structural properties of the materials under compression. Computational modelling provided molecular-level insight on the response to compression of the confined dye assemblies, evidencing a pressure-induced strengthening of the interaction between the fluorenone carbonyl group and zeolite L potassium cations. Our results reveal an impressive stability of the fluorenone-zeolite L composites at GPa pressures. The remarkable resilience of the supramolecular organization of dye molecules hyperconfined in zeolite L channels may open the way to the realization of optical devices able to maintain their functionality under extreme conditions.

  2. Bacterial Motility Measured by a Miniature Chamber for High-Pressure Microscopy

    Directory of Open Access Journals (Sweden)

    Seiji Kojima


    Full Text Available Hydrostatic pressure is one of the physical stimuli that characterize the environment of living matter. Many microorganisms thrive under high pressure and may even physically or geochemically require this extreme environmental condition. In contrast, application of pressure is detrimental to most life on Earth; especially to living organisms under ambient pressure conditions. To study the mechanism of how living things adapt to high-pressure conditions, it is necessary to monitor directly the organism of interest under various pressure conditions. Here, we report a miniature chamber for high-pressure microscopy. The chamber was equipped with a built-in separator, in which water pressure was properly transduced to that of the sample solution. The apparatus developed could apply pressure up to 150 MPa, and enabled us to acquire bright-field and epifluorescence images at various pressures and temperatures. We demonstrated that the application of pressure acted directly and reversibly on the swimming motility of Escherichia coli cells. The present technique should be applicable to a wide range of dynamic biological processes that depend on applied pressures.

  3. Simulation of plasma loading of high-pressure RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Kwangmin [Brookhaven; Samulyak, Roman [SUNY, Stony Brook; Yonehara, Katsuya [Fermilab; Freemire, Ben [Northern Illinois U.


    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.

  4. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    Directory of Open Access Journals (Sweden)

    R.F. Vogel


    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.

  5. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt


    was satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  6. High-pressure behavior of CaMo O4 (United States)

    Panchal, V.; Garg, N.; Poswal, H. K.; Errandonea, D.; Rodríguez-Hernández, P.; Muñoz, A.; Cavalli, E.


    We report a high-pressure study of tetragonal scheelite-type CaMo O4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMo O4 . We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active and infrared-active modes. In addition, based on calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMo O4 . The reported results are of interest for the many technological applications of this oxide.

  7. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch


    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  8. Synthesis and stability of hydrogen selenide compounds at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Edward J.; Binns, Jack; Alvarez, Miriam Pena; Dalladay-Simpson, Philip; Gregoryanz, Eugene; Howie, Ross T. (Edinburgh); (CHPSTAR- China)


    The observation of high-temperature superconductivity in hydride sulfide (H2S) at high pressures has generated considerable interest in compressed hydrogen-rich compounds. High-pressure hydrogen selenide (H2Se) has also been predicted to be superconducting at high temperatures; however, its behaviour and stability upon compression remains unknown. In this study, we synthesize H2Se in situ from elemental Se and molecular H2 at pressures of 0.4 GPa and temperatures of 473 K. On compression at 300 K, we observe the high-pressure solid phase sequence (I-I'-IV) of H2Se through Raman spectroscopy and x-ray diffraction measurements, before dissociation into its constituent elements. Through the compression of H2Se in H2 media, we also observe the formation of a host-guest structure, (H2Se)2H2, which is stable at the same conditions as H2Se, with respect to decomposition. These measurements show that the behaviour of H2Se is remarkably similar to that of H2S and provides further understanding of the hydrogen chalcogenides under pressure.

  9. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li


    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  10. A subdivision algorithm for phase equilibrium calculations at high pressures

    Directory of Open Access Journals (Sweden)

    M. L. Corazza


    Full Text Available Phase equilibrium calculations at high pressures have been a continuous challenge for scientists and engineers. Traditionally, this task has been performed by solving a system of nonlinear algebraic equations originating from isofugacity equations. The reliability and accuracy of the solutions are strongly dependent on the initial guess, especially due to the fact that the phase equilibrium problems frequently have multiple roots. This work is focused on the application of a subdivision algorithm for thermodynamic calculations at high pressures. The subdivision algorithm consists in the application of successive subdivisions at a given initial interval (rectangle of variables and a systematic test to verify the existence of roots in each subinterval. If the interval checked passes in the test, then it is retained; otherwise it is discharged. The algorithm was applied for vapor-liquid, solid-fluid and solid-vapor-liquid equilibrium as well as for phase stability calculations for binary and multicomponent systems. The results show that the proposed algorithm was capable of finding all roots of all high-pressure thermodynamic problems investigated, independent of the initial guess used.

  11. Elasticity of methane hydrate phases at high pressure. (United States)

    Beam, Jennifer; Yang, Jing; Liu, Jin; Liu, Chujie; Lin, Jung-Fu


    Determination of the full elastic constants (cij) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases' compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  12. Elasticity of methane hydrate phases at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jennifer; Yang, Jing; Liu, Jin [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Liu, Chujie [Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lin, Jung-Fu, E-mail: [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Center for High Pressure Science and Advanced Technology Research (HPSTAR), Shanghai 201203 (China)


    Determination of the full elastic constants (c{sub ij}) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases′ compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  13. Theoretical Predictions of Phase Transitions at Ultra-high Pressures (United States)

    Boates, Brian


    We present ab initio calculations of the high-pressure phase diagrams of important planetary materials such as CO2, MgSiO3, and MgO. For CO2, we predict a series of distinct liquid phases over a wide pressure (P) and temperature (T) range, including a first-order transition to a dense polymer liquid. We have computed finite-temperature free energies of liquid and solid CO2 phases to determine the melting curve beyond existing measurements and investigate possible phase separation transitions. The interaction of these phase boundaries with the mantle geotherm will also be discussed. Furthermore, we find evidence for a vast pressure-temperature regime where molten MgSiO3 decomposes into liquid SiO2 and solid MgO, with a volume change of approximately 1.2 percent. The demixing transition is driven by the crystallization of MgO ? the reaction only occurs below the high-pressure MgO melting curve. The predicted transition pressure at 10,000 K is in close proximity to an anomaly reported in recent laser-driven shock experiments of MgSiO3. We also present new results for the high-pressure melting curve of MgO and its B1-B2 solid phase transition, with a triple point near 364 GPa and 12,000 K.

  14. (3+1)-dimensional anisotropic fluid dynamics with a lattice QCD equation of state arXiv

    CERN Document Server

    McNelis, M.; Heinz, U.

    Anisotropic hydrodynamics improves upon standard dissipative fluid dynamics by treating certain large dissipative corrections non-perturbatively. Relativistic heavy-ion collisions feature two such large dissipative effects: (i) Strongly anisotropic expansion generates a large shear stress component which manifests itself in very different longitudinal and transverse pressures, especially at early times. (ii) Critical fluctuations near the quark-hadron phase transition lead to a large bulk viscous pressure on the conversion surface between hydrodynamics and a microscopic hadronic cascade description of the final collision stage. We present a new dissipative hydrodynamic formulation for non-conformal fluids where both of these effects are treated nonperturbatively. The evolution equations are derived from the Boltzmann equation in the 14-moment approximation, using an expansion around an anisotropic leading-order distribution function with two momentum-space deformation parameters, accounting for the longitudin...

  15. Influence of ionic charge and dipole fluctuations on the lattice dynamics, dielectric properties, and infrared response of La2CuO4 (United States)

    Falter, Claus; Schnetgöke, Frank


    We generalize our recently proposed microscopic formulation of the electronic density response and screening and apply it to lattice dynamics and, also to the dielectric properties of the high-temperature superconductors (HTSC's). Our previously developed method of screening in the HTSC in terms of ionic charge fluctuations (CF's) is extended by including additional dipole fluctuations as possible electronic polarization processes. The latter prove to be important in the HTSC, especially for the ions in the ionic layers. On the other hand, CF's are the dominating polarization process in the CuO planes. In particular, we have predicted in the past strong coupling via CF's of the high-frequency copper-oxygen bond-stretching modes in the HTSC. These modes are thought now to cause a kink in the electronic dispersion observed by photoemission. Our model calculations in this paper deal with both the metallic as well as the insulating phase of La2CuO4. Complete phonon dispersion curves are calculated for both phases and specific modes discussed controversially in the literature are studied in detail. Finally, the macroscopic high-frequency and static dielectric constants, transverse effective charges, and oscillator strengths of the infrared-active vibrations are investigated.

  16. Cryogenic Transport of High-Pressure-System Recharge Gas (United States)

    Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl


    A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near

  17. Ab initio investigation of the electronic structure and bonding properties of the layered ternary compound Ti sub 3 SiC sub 2 at high pressure

    CERN Document Server

    Wang, J Y


    The pressure dependences of the lattice parameters, electronic structure, and bonding properties of the layered ternary compound Ti sub 3 SiC sub 2 were investigated by performing ab initio plane-wave pseudopotential total energy calculations. The material exhibited elastic anisotropy. The lattice constants and axial ratio were studied for different pressures, and the same trend was obtained as is measured in experiment. It was found that although the structure was stable at high pressure, the electronic structure and atomic bonding were definitely affected. The electrical conductivity was predicted to reduce with pressure, which was interpreted by analysing the band dispersion curve and density of states at the Fermi level. The strengths of the atomic bonds in Ti sub 3 SiC sub 2 were considered by analysing the Mulliken population and by examining the bond length contraction for various pressures. A redistribution of charge density that accompanied high pressures was also revealed.

  18. Small mass spectrometer with extended measurement capabilities at high pressures. [for planetary atmosphere analysis (United States)

    Von Zahn, U.; Mauersberger, K.


    For the in situ investigation of planetary atmospheres a small Mattauch-Herzog mass spectrometer has been developed. Its high-pressure performance has been improved by incorporating differential pumping between the ion source and the analyzing fields, shortening the path-length as well as increasing the extraction field in the ion source. In addition doubly ionized and dissociated ions are used for mass analysis. These measures make possible operation up to 0.01 millibars. Results of laboratory tests related to linearity, dynamic range, and mass resolution are presented, in particular for CO2.

  19. Sound produced by an oscillating arc in a high-pressure gas (United States)

    Popov, Fedor K.; Shneider, Mikhail N.


    We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

  20. Stability analysis and testing of a train of centrifugal compressors for high pressure gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Memmott, E.A. [Dresser-Rand Co., Olean, NY (United States)


    This paper describes the rotor dynamic stability analysis and the PTC-10 Class 1 test of a three body centrifugal compressor train for high pressure natural gas injection services. This train had a full load full pressure string test on hydrocarbon gases to a final discharge pressure of 500 BAR (7250 PSIA). Each compressor is of the back to back configuration, and is equipped with tilting pad seals, damper bearings, and a honeycomb labyrinth at the division wall with shunt holes. The driver is a gas turbine.

  1. Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation. (United States)

    Mazzola, Guglielmo; Yunoki, Seiji; Sorella, Sandro


    The study of the high pressure phase diagram of hydrogen has continued with renewed effort for about one century as it remains a fundamental challenge for experimental and theoretical techniques. Here we employ an efficient molecular dynamics based on the quantum Monte Carlo method, which can describe accurately the electronic correlation and treat a large number of hydrogen atoms, allowing a realistic and reliable prediction of thermodynamic properties. We find that the molecular liquid phase is unexpectedly stable, and the transition towards a fully atomic liquid phase occurs at much higher pressure than previously believed. The old standing problem of low-temperature atomization is, therefore, still far from experimental reach.

  2. Liquid-propellant droplet vaporization and combustion in high pressure environments (United States)

    Yang, Vigor


    In order to correct the deficiencies of existing models for high-pressure droplet vaporization and combustion, a fundamental investigation into this matter is essential. The objective of this research are: (1) to acquire basic understanding of physical and chemical mechanisms involved in the vaporization and combustion of isolated liquid-propellant droplets in both stagnant and forced-convective environments; (2) to establish droplet vaporization and combustion correlations for the study of liquid-propellant spray combustion and two-phase flowfields in rocket motors; and (3) to investigate the dynamic responses of multicomponent droplet vaporization and combustion to ambient flow oscillations.

  3. Rheological properties of a reclaimed waste tire rubber through high-pressure high-temperature sintering (United States)

    Ubaidillah, Yunus, N. A.; Aziz, S. A. A.; Wahab, N. A. A.; Mazlan, S. A.


    High-Pressure High-Temperature (HPHT) sintering method has successfully revulcanized waste tire rubber (WTR) without any additional virgin rubber. The crumb rubber cleaned from its fabric and metals was reclaimed by applying high pressure (25 MPa) and high temperature (200 °C) for an hour along with common vulcanization agents such as sulfur, zinc oxide, and stearic acid. Dynamic properties of reclaimed WTR were assessed through shear rheology test on MCR302 Rheometer, Anton Paar, Austria. The results indicated that under steady test, the yield stress occurred at 31 kPa at 5% linear viscoelastic limit. The storage modulus ranged from 0.6 to 0.7 MPa under excitation frequency of 0.1 to 100 Hz and 1% strain amplitude. Under ramp strain amplitude, the storage modulus showed Payne Effect phenomenon at 0.8 to 1 % strain amplitude and 1 Hz excitation frequency. In general, the resulted dynamic properties was comparable with non-reclaimed rubber based on a literature survey. The results confirmed that HPHT sintering method was capable of reclaiming 100% WTR without an additional virgin rubber and achieving acceptable dynamic properties.

  4. The Lattice-Valued Turing Machines and the Lattice-Valued Type 0 Grammars

    Directory of Open Access Journals (Sweden)

    Juan Tang


    Full Text Available Purpose. The purpose of this paper is to study a class of the natural languages called the lattice-valued phrase structure languages, which can be generated by the lattice-valued type 0 grammars and recognized by the lattice-valued Turing machines. Design/Methodology/Approach. From the characteristic of natural language, this paper puts forward a new concept of the l-valued Turing machine. It can be used to characterize recognition, natural language processing, and dynamic characteristics. Findings. The mechanisms of both the generation of grammars for the lattice-valued type 0 grammar and the dynamic transformation of the lattice-valued Turing machines were given. Originality/Value. This paper gives a new approach to study a class of natural languages by using lattice-valued logic theory.

  5. Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction

    KAUST Repository

    Oh, Jae Eun


    Using a diamond anvil cell, 14 Å tobermorite, a structural analogue of calcium silicate hydrates (C-S-H), was examined by high-pressure synchrotron X-ray diffraction up to 4.8 GPa under hydrostatic conditions. The bulk modulus of 14 Å tobermorite was calculated, K o = 47 GPa. Comparison of the current results with previous high pressure studies on C-S-H(I) indicates that: (1) the compression behavior of the lattice parameters a and b of 14 Å tobermorite and C-S-H(I) are very similar, implying that both materials may have very similar Ca-O layers, and also implying that an introduction of structural defects into the Ca-O layers may not substantially change in-plane incompressibility of the ab plane of 14 Å tobermorite; and (2) the bulk modulus values of 14 Å tobermorite and C-S-H(I) are dominated by the incompressibility of the lattice parameter c, which is directly related to the interlayer spacing composed of dreierketten silicate chains, interlayer Ca, and water molecules. © 2011 Elsevier Ltd. All rights reserved.

  6. Lattice QCD for nuclear physics

    CERN Document Server

    Meyer, Harvey


    With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities.  The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics.  A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...

  7. Invited article: High-pressure techniques for condensed matter physics at low temperature. (United States)

    Feng, Yejun; Jaramillo, R; Wang, Jiyang; Ren, Yang; Rosenbaum, T F


    Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent DeltaP/P per unit area of +/-1.8 %/(10(4) microm(2)) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021+/-0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.

  8. The EOS of α-NTO through high-pressure microscopy-interferometry measurements (United States)

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; Crowhurst, Jonathan C.; Radousky, Harry B.; Armstrong, Michael R.


    Measuring the volume of a material compressed quasi-statically to a high-pressure typically involves the determination of a primitive crystal cell volume using x-ray diffraction (XRD) techniques. The accumulation of pressure dependent volumes leads to an understanding of the material's equation of state, (EOS); however, in the case of low-symmetry (e.g. triclinic) materials with twining features, and large primitive cells, conventional XRD approaches can be technically problematic and lead to ambiguous or mathematically under-determined lattice constants. To resolve this long-standing issue, we examined the utility of a "direct" approach toward determining a material's volume by measuring surface area and sample height using optical microscopy and interferometry respectively. To test the validity of our proposed approach, we first compared our results from pressurized Triamino-Trinitrobenzene (TATB, SG P-1) with a published EOS determined by synchrotron XRD measurements of Stevens et al.. A near-perfect match between the two sets of V(P, 300K) data is observed; and thus, we proceeded to determine the EOS of the energetic material 5-nitro-2,4-dihydro-1,2,4,-triazol-3-one (α-NTO), which under ambient conditions crystallizes as a four-component twinned system with a triclinic symmetry (SG P-1). No high-pressure XRD EOS data have been published on α-NTO, probably due to its unambiguously complex crystal structure. The results of this study reveal that our proposed approach applied to quasi-statically compressed anisotropic materials is a reliable alternative toward determining material EOSs,-especially when conventional methodologies are not feasible.

  9. Analysis, design and testing of high pressure waterjet nozzles (United States)

    Mazzoleni, Andre P.


    The Hydroblast Research Cell at MSFC is both a research and a processing facility. The cell is used to investigate fundamental phenomena associated with waterjets as well as to clean hardware for various NASA and contractor projects. In the area of research, investigations are made regarding the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current industrial methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents, and high pressure waterjet cleaning has proven to be a viable alternative. Standard methods of waterjet cleaning use hand held or robotically controlled nozzles. The nozzles used can be single-stream or multijet nozzles, and the multijet nozzles may be mounted in a rotating head or arranged in a fan-type shape. We consider in this paper the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage (e.g. the formation of 'islands' of material not cleaned) and damage to the substrate from the waterjet have been observed. In addition, current stripping operations require the nozzle to be placed at a standoff distance of approximately 2 inches in order to achieve adequate performance. This close proximity of the nozzle to the target to be cleaned poses risks to the nozzle and the target in the event of robot error or the striking of unanticipated extrusions on the target surface as the nozzle sweeps past. Two key motivations of this research are to eliminate the formation of 'coating islands' and to increase the allowable standoff distance of the nozzle.

  10. Equilibria of oligomeric proteins under high pressure - A theoretical description. (United States)

    Ingr, Marek; Kutálková, Eva; Hrnčiřík, Josef; Lange, Reinhard


    High pressure methods have become a useful tool for studying protein structure and stability. Using them, various physico-chemical processes including protein unfolding, aggregation, oligomer dissociation or enzyme-activity decrease were studied on many different proteins. Oligomeric protein dissociation is a process that can perfectly utilize the potential of high-pressure techniques, as the high pressure shifts the equilibria to higher concentrations making them better observable by spectroscopic methods. This can be especially useful when the oligomeric form is highly stable at atmospheric pressure. These applications may be, however, hindered by less intensive experimental response as well as interference of the oligomerization equilibria with unfolding or aggregation of the subunits, but also by more complex theoretical description. In this study we develop mathematical models describing different kinds of oligomerization equilibria, both closed (equilibrium of monomer and the highest possible oligomer without any intermediates) and consecutive. Closed homooligomer equilibria are discussed for any oligomerization degree, while the more complex heterooligomer equilibria and the consecutive equilibria in both homo- and heterooligomers are taken into account only for dimers and trimers. In all the cases, fractions of all the relevant forms are evaluated as functions of pressure and concentration. Significant points (inflection points and extremes) of the resulting transition curves, that can be determined experimentally, are evaluated as functions of pressure and/or concentration. These functions can be further used in order to evaluate the thermodynamic parameters of the system, i.e. atmospheric-pressure equilibrium constants and volume changes of the individual steps of the oligomer-dissociation processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. LOX vaporization in high-pressure, hydrogen-rich gas (United States)

    Litchford, Ron J.; Jeng, San-Mou


    LOX droplet vaporization in high-pressure hydrogen-rich gas is analyzed, with special attention to thermodynamic effects which compel the surface to heat to the critical state and to supercritical vaporization processes on heating to criticality. Subcritical vaporization is modeled using a quasi-steady diffusion-controlled gas-phase transport formulation coupled to an effective-conductivity internal-energy-transport model accounting for circulation effects. It is demonstrated how the droplet surface might heat to the critical state, for ambient pressures slightly greater than the critical pressure of oxygen, such that the bulk of propellant within the droplet remains substantially below the critical mixing temperature.

  12. High Pressure Serpentinization Catalysed by Awaruite in Planetary Bodies (United States)

    Neto-Lima, J.; Fernández-Sampedro, M.; Prieto-Ballesteros, O.


    Recent discoveries from planetary missions show that serpentinization process may act significantly on the geological evolution and potential habitability of the icy bodies of the Solar System, like Enceladus or Europa. Here we review the available experimental data so far about methane formation occurring during serpentinization, which is potentially relevant to icy moons, and present our results using awaruite as a catalyst of this process. The efficiency of awaruite and high pressure in the Fischer-Tropsch and Sabatier Type reactions are evaluated here when olivine is incubated.

  13. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kepa, M. W., E-mail:; Huxley, A. D. [SUPA, Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Ridley, C. J.; Kamenev, K. V. [Centre for Science at Extreme Conditions and School of Engineering, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)


    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe{sub 2}.

  14. System Study: High-Pressure Safety Injection 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.


    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  15. System Study: High-Pressure Coolant Injection 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.


    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 25 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  16. High pressure and high temperature behaviour of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Thakar, Nilesh A. [K. K. Shah Jarodwala Maninagar Science College, Rambaug, Maninagar, Ahmedabad-380008 (India); Bhatt, Apoorva D. [Department of Physics, Gujarat University, Ahmedabad-380009 (India); Pandya, Tushar C., E-mail: [St. Xavier' s College, Navrangpura, Ahmedabad-380009 (India)


    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  17. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction

    DEFF Research Database (Denmark)

    Marshall, William G.; Urquhart, Andrew; Oswald, Iain D. H.


    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low...... pressures. The first is observed at 0.39 GPa, where both phases were observed simultaneously and confirm our previous observations. This transition is followed by a second transition at 1.2 GPa to a new polymorph that is characterized for the first time. On increasing pressure, the diffraction pattern...

  18. System Study: High-Pressure Safety Injection 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.


    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  19. High pressure CO hydrogenation over bimetallic Pt-Co catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Medford, Andrew James; Studt, Felix


    The potential of bimetallic Pt-Co catalysts for production of higher alcohols in high pressure CO hydrogenation has been assessed. Two catalysts (Pt3Co/SiO2 and PtCo/SiO2) were tested, and the existing literature on CO hydrogenation over Pt-Co catalysts was reviewed. It is found that the catalysts...... produce mainly methanol in the Pt-rich composition range andmainly hydrocarbons (and to a modest extent higher alcohols) in the Co-rich composition range. The transition between the two types of behavior occurs in a narrow composition range around a molar Pt:Co ratio of 1:1....

  20. High pressure melting curves of silver, gold and copper

    Directory of Open Access Journals (Sweden)

    Ho Khac Hieu


    Full Text Available In this work, based on the Lindemann's formula of melting and the pressure-dependent Grüneisen parameter, we have investigated the pressure effect on melting temperature of silver, gold and copper metals. The analytical expression of melting temperature as a function of volume compression has been derived. Our results are compared with available experimental data as well as with previous theoretical studies and the good and reasonable agreements are found. We also proposed the potential of this approach on predicting melting of copper at very high pressure.