WorldWideScience

Sample records for high-pressure hydrothermal conditions

  1. High-pressure hydrogen respiration in hydrothermal vent samples from the deep biosphere

    Science.gov (United States)

    Morgan-Smith, D.; Schrenk, M. O.

    2013-12-01

    Cultivation of organisms from the deep biosphere has met with many challenges, chief among them the ability to replicate this extreme environment in a laboratory setting. The maintenance of in situ pressure levels, carbon sources, and gas concentrations are important, intertwined factors which may all affect the growth of subsurface microorganisms. Hydrogen in particular is of great importance in hydrothermal systems, but in situ hydrogen concentrations are largely disregarded in attempts to culture from these sites. Using modified Hungate-type culture tubes (Bowles et al. 2011) within pressure-retaining vessels, which allow for the dissolution of higher concentrations of gas than is possible with other culturing methods, we have incubated hydrothermal chimney and hydrothermally-altered rock samples from the Lost City and Mid-Cayman Rise hydrothermal vent fields. Hydrogen concentrations up to 15 mmol/kg have been reported from Lost City (Kelley et al. 2005), but data are not yet available from the recently-discovered Mid-Cayman site, and the elevated concentration of 30 mmol/kg is being used in all incubations. We are using a variety of media types to enrich for various metabolic pathways including iron and sulfur reduction under anoxic or microaerophilic conditions. Incubations are being carried out at atmospheric (0.1 MPa), in situ (9, 23, or 50 MPa, depending on site), and elevated (50 MPa) pressure levels. Microbial cell concentrations, taxonomic diversity, and metabolic activities are being monitored during the course of these experiments. These experiments will provide insight into the relationships between microbial activities, pressure, and gas concentrations typical of deep biosphere environments. Results will inform further culturing studies from both fresh and archived samples. References cited: Bowles, M.W., Samarkin, V.A., Joye, S.B. 2011. Improved measurement of microbial activity in deep-sea sediments at in situ pressure and methane concentration

  2. Reduction of nitrate and nitrite salts under hydrothermal conditions

    International Nuclear Information System (INIS)

    Foy, B.R.; Dell'Orco, P.C.; Wilmanns, E.; McInroy, R.; Ely, J.; Robinson, J.M.; Buelow, S.J.

    1994-01-01

    The feasibility of reducing nitrate/nitrite salts under hydrothermal conditions for the treatment of aqueous mixed wastes stored in the underground tanks at the Department of Energy site at Hanford, Washington was studied. The reduction of nitrate and nitrite salts by reaction with EDTA using a tank waste simulant was examined at temperatures between 623K and 800K and pressures between 0.6 and 1.2 kbar. Continuous flow reactors were used to determine kinetics and products of reactions. All reactions were studied under pressures high enough to produce single phase conditions. The reactions are rapid, go to completion in less than a minute, and produce simple products, such as carbonate, nitrogen, and nitrous oxide gases. The experimental results demonstrate the ability of chemical reactions under hydrothermal conditions to reduce the nitrate and nitrite salts and destroy organic compounds in the waste mixtures

  3. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Science.gov (United States)

    Zhang, Zhifang; Wang, Wenbo; Wang, Aiqin

    2015-02-01

    Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic-inorganic hybrid pigment.

  4. Alteration of MX-80 by hydrothermal treatment under high salt content conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden); Kasbohm, J. [Greifswald Univ. (Germany). Geological Dep.

    2002-02-01

    If brammalit, i.e. sodium illite, is formed from smectite in Na-rich salt water at high temperature such conversion can also take place in the buffer clay that surrounds the canisters in a KBS-3 repository. The present study comprised two laboratory test series with MX-80 clay, one with compacted clay powder with a dry density of 1200 to 1300 kg/m{sup 3} and saturation with 10% and 20% NaCl solutions followed by heating to 110 deg C under closed conditions for 30 days. In the second series air-dry compacted clay powder in a cell was heated at 110 deg C for the same period of time and connected to vessels with 10% and 20% NaCl solutions. The first series represents the conditions in the buffer clay after saturation with Na-rich salt water while the second one corresponds to the conditions in the course of saturation with such water. All laboratory tests were made after short-term percolation with distilled water for making sure that the hydro-thermally treated samples were fully fluid-saturated. The results from the physical testing showed that the hydraulic conductivity and swelling pressure of the hydrothermally treated clay samples were on the same order of magnitude as for untreated clay. Comparison with illitic clays shows that the latter are at least a hundred times more permeable than the hydrothermally treated salt clays in the present study, which hence indicates that conversion to illite was insignificant. This is obvious also from the fact that while illitic clays have very low swelling pressures the hydrothermally treated clays exhibited swelling pressures on the same order of magnitude as untreated MX-80. XRD analysis showed a clear difference in mineral constitution between the two test series. Thus, while no significant change from the typical mineralogy of untreated MX-80 was found for hydrothermal treatment of clay saturated with 10 and 20% NaCl solution, except for some very slight neoformation of illite-smectite mixed layers or irreversible

  5. Microstructural Evidences of Intergranular Pressure Solution during Frictional Sliding at Hydrothermal Conditions

    Science.gov (United States)

    Ma, X.; Yao, S.; He, C.

    2017-12-01

    In the framework of rate- and state-dependent friction, velocity weakening is the result of a healing effect at intergranular contacts that is stronger than the instantaneous rate effect. Intergranular pressure solution has been proposed to be a feasible mechanism for the frictional healing effect (He et al., 2013), but to date no substantial evidences have been reported in related microstructures. In this study we report our reanalyses on samples of plagioclase gouge deformed at hydrothermal conditions with effective normal stresses of 100 MPa, 200 MPa, and 300 MPa, pore pressures of 30 MPa and 100 MPa, and temperatures from 100oC to 600oC. With an Inlens image detector in a scanning electron microscope, our focus is to find the evidences of the pressure solution processes during frictional sliding. As it has been difficult to observe the signatures of pressure solution during frictional sliding at the solution sites due to the short contact time of frequently-switching contact pairs, now we focus on the results of precipitation instead, which is the final process of pressure solution. With high magnification, we find the following evidences of intergranular pressure solution: 1) crystal growth as a result of precipitation is ubiquitously observed in deformed samples at temperatures above 200oC; 2) very fine-grained precipitated particles with flaky morphologies typically appear in intensely sheared regions and between relatively large particles in moderately sheared regions; 3) the precipitated grains are concentrated periodically in zones orientated at 45-50 degrees to the fault strike. These observations indicate that intergranular pressure solution is the dominant process responsible for the frictional healing effect.

  6. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhifang [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wang, Wenbo [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China); Wang, Aiqin, E-mail: aqwang@licp.cas.cn [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China)

    2015-02-28

    Graphical abstract: - Highlights: • Palygorskite was modified by a homogenization associated hydrothermal process. • The crystal bundles of PAL were disaggregated efficiently after modification. • The adsorption of palygorskite for Methylene blue was greatly enhanced. • MB-loaded palygorskite exhibits excellent resistance to acid and alkali solution. - Abstract: Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic–inorganic hybrid pigment.

  7. Extreme hydrothermal conditions at an active plate-bounding fault

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  8. Extreme hydrothermal conditions at an active plate-bounding fault.

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  9. Pore Pressure Distribution and Flank Instability in Hydrothermally Altered Stratovolcanoes

    Science.gov (United States)

    Ball, J. L.; Taron, J.; Hurwitz, S.; Reid, M. E.

    2015-12-01

    Field and geophysical investigations of stratovolcanoes with long-lived hydrothermal systems commonly reveal that initially permeable regions (such as brecciated layers of pyroclastic material) can become both altered and water-bearing. Hydrothermal alteration in these regions, including clay formation, can turn them into low-permeability barriers to fluid flow, which could increase pore fluid pressures resulting in flank slope instability. We examined elevated pore pressure conditions using numerical models of hydrothermal flow in stratovolcanoes, informed by geophysical data about internal structures and deposits. Idealized radially symmetric meshes were developed based on cross-sectional profiles and alteration/permeability structures of Cascade Range stratovolcanoes. We used the OpenGeoSys model to simulate variably saturated conditions in volcanoes heated only by regional heat fluxes, as well as 650°C intrusions at two km depth below the surface. Meteoric recharge was estimated from precipitation rates in the Cascade Range. Preliminary results indicate zones of elevated pore pressures form: 1) where slopes are underlain by continuous low-permeability altered layers, or 2) when the edifice has an altered core with saturated, less permeable limbs. The first scenario might control shallow collapses on the slopes above the altered layers. The second could promote deeper flank collapses that are initially limited to the summit and upper slopes, but could progress to the core of an edifice. In both scenarios, pore pressures can be further elevated by shallow intrusions, or evolve over longer time scales under forcing from regional heat flux. Geometries without confining low-permeability layers do not show these pressure effects. Our initial scenarios use radially symmetric models, but we are also simulating hydrothermal flow under real 3D geometries with asymmetric subsurface structures (Mount Adams). Simulation results will be used to inform 3D slope

  10. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  11. Chemical speciation of inorganic compounds under hydrothermal conditions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Darab, J.G.; Fulton, J.L.; Steidler, G.T.; Stern, E.A.

    1998-01-01

    'To obtain the chemistry of metallic solute ions under aqueous and hydrothermal conditions in order to obtain key insights pertinent to the removal of toxic wastes. Elements present in Hanford tank wastes will be investigated to get a better understanding of how the high temperatures involved in vitrification will affect the hydrolysis-polymerization reaction. In the following summary of the x-ray absorption fine structure (XAFS) measurements under aqueous and hydrothermal conditions, most measurements below the critical temperature (375 C) were taken at about 200 bar pressure, while at supercritical temperatures the pressure was about 600 bar. Chemistry of Na 2 WO 4 Under Aqueous and Hydrothermal Conditions Tungsten, molybdenum, vanadium and, to a lesser agree, chromium, niobium and tantalum form isopolymetallates, polymeric species of rather complicated structure and complex chemical equilibria, in aqueous solution upon acidification. Except Tantalum, all of these elements are present in the Hanford tank wastes and it is not well understood how the high temperatures involved in vitrification will affect the hydrolysis-polymerization reaction. In March 1998, the authors launched a series of XAFS experiments to resolve these questions. Measurements were obtained for 0.2 molal tungstate solutions as a function of temperature (to 200 C) and as a function of starting pH. The outcome of these measurements is providing key insights into this chemistry as follows: (1) A change from tetrahedral to octahedral coordination of the oxygen atoms around the tungsten center atom can be detected upon increasing extent of polymerization. (2) At least one new feature shows up in the Fourier Transform of the k-weighted Chi plot (closely related to a radial distribution function) which is unambiguously attributed to a tungsten-tungsten scattering path, only present in the polymeric species. (3) Perhaps most interestingly, the XAFS data indicate a higher extent of polymerization at

  12. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  13. Hydrothermal carbonization of biomass waste under low temperature condition

    Directory of Open Access Journals (Sweden)

    Putra Herlian Eriska

    2018-01-01

    Full Text Available In this paper, the use of banana peel for energy purposes was investigated. Banana peel is a lignocellulosic waste since it is the most widely produced and consumed fruit in Indonesia. Among the others, hydrothermal carbonization (HTC was chosen as alternative themochemical process, suitable for high moisture biomass. Through a 1 L stirred reactor, hydrothermal treatments were performed under low temperature condition (190, 210 and 230 °C, residence times (30 and 60 min, and biomass to water ratio (1:3, 1:5, and 1:10. Three of product were collected from the process with primary material balance. Solid phase (hydrochar was evaluated in terms of calorific value, proximate and ultimate analysis. The results suggested that the hydrothermal carbonization of banana peel gave high heating value (HHV of 20.09 MJ/kg for its char after dried naturally.

  14. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    International Nuclear Information System (INIS)

    Liu Chuan-Jiang; Zheng Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO 4 ) phase precipitates at 250–320°C in the pressure range of 1.0–1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO 4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T−0.7126 (250°C≤T≤320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature. (geophysics, astronomy, and astrophysics)

  15. Practical conditions in the neutron diffraction under high pressure

    International Nuclear Information System (INIS)

    Kamigaki, Kazuo; Ohashi, Masayoshi

    1993-01-01

    Practical analysis is made on some conditions in utilizing neutrons for the study of atomistic structure of materials under high pressure. Investigation is made on the geometrical conditions; size of the specimen, width of slits, and the rate of extra-scattering. Experiments are performed on the effects of absorption by high pressure cell and the disturbance due to an overlapping of diffraction peaks. An observation is presented on the pressure-induced transformation in RbBr. (author)

  16. Developments in the monitoring and control of Eh and pH conditions in hydrothermal experiments

    International Nuclear Information System (INIS)

    Myers, J.; Ulmer, G.C.; Grandstaff, D.E.; Brozdowski, R.; Danielson, M.J.; Koski, O.H.

    1984-01-01

    In the design of a high-level nuclear waste repository it is essential to obtain accurate groundwater Eh-pH data. Design considerations such as the choice of matrix for the waste form, type and dimensions of canister material, use of buffers, and type and amount of backfill would all benefit from an exact knowledge of oxidation potentials (Eh) and acidity levels (pH) of the groundwater. The Basalt Waste Isolation Project (BWIP) has initiated a research effort to develop sensors which can be mounted in autoclaves to provide constant monitoring of the Eh-pH conditions that exist during waste form/barrier material/groundwater hydrothermal interaction tests. Sensors must withstand temperatures up to 300 0 C and pressures up to 300 bars. This report considers Teflon hydrogen diffusion membranes and zirconia pH sensors. The development of these sensors represents a significant advance in the environmental monitoring of Eh and pH conditions at elevated temperatures and pressures

  17. Is high-pressure water the cradle of life?

    International Nuclear Information System (INIS)

    Bassez, Marie-Paule

    2003-01-01

    Several theories have been proposed for the synthesis of prebiotic molecules. This letter shows that the structure of supercritical water, or high-pressure water, could trigger prebiotic synthesis and the origin of life deep in the oceans, in hydrothermal vent systems. Dimer geometries of high-pressure water may have a point of symmetry and a zero dipole moment. Consequently, simple apolar molecules found in submarine hydrothermal vent systems will dissolve in the apolar environment provided by the apolar form of the water dimer. Apolar water could be the medium which helps precursor molecules to concentrate and react more efficiently. The formation of prebiotic molecules could thus be linked to the structure of the water inside chimney nanochannels and cavities where hydrothermal piezochemistry and shock wave chemistry could occur. (letter to the editor)

  18. Hydrothermal Growth of Polyscale Crystals

    Science.gov (United States)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  19. Development and evaluation of a tracer-injection hydrothermal technique for studies of waste package interactions

    International Nuclear Information System (INIS)

    Jones, T.E.; Coles, D.G.; Britton, R.C.; Burnell, J.R.

    1986-11-01

    A tracer-injection system has been developed for use in characterizing reactions of waste package materials under hydrothermal conditions. High-pressure liquid chromatographic instrumentation has been coupled with Dickson-type rocking autoclaves to allow injection of selected components into the hydrothermal fluid while maintaining run temperature and pressure. Hydrothermal experiments conducted using this system included the interactions of depleted uranium oxide and Zircaloy-4 metal alloy discs with trace levels of 99 Tc and non-radioactive Cs and I in a simulated groundwater matrix. After waste-package components and simulated waste forms were pre-conditioned in the autoclave systems (usually 4 to 6 weeks), known quantities of tracer-doped fluids were injected into the autoclaves' gold reaction bag at run conditions. Time-sequenced sampling of the hydrothermal fluid providing kinetic data on the reactions of tracers with waste package materials. The injection system facilitates the design of experiments that will better define ''steady-state'' fluid compositions in hydrothermal reactions. The injection system will also allow for the formation of tracer-bearing solid phases in detectable quantities

  20. Multiple sample setup for testing the hydrothermal stability of adsorbents in thermal energy storage applications

    International Nuclear Information System (INIS)

    Fischer, Fabian; Laevemann, Eberhard

    2015-01-01

    Thermal energy storage based on adsorption and desorption of water on an adsorbent can achieve high energy storage densities. Many adsorbents lose adsorption capacity when operated under unfavourable hydrothermal conditions during adsorption and desorption. The stability of an adsorbent against stressing hydrothermal conditions is a key issue for its usability in adsorption thermal energy storage. We built an experimental setup that simultaneously controls the hydrothermal conditions of 16 samples arranged in a matrix of four temperatures and four water vapour pressures. This setup allows the testing of potential adsorbents between temperatures of 50 °C and 350 °C and water vapour pressures of up to 32 kPa. A measurement procedure that allows the detection of the hydrothermal stability of an adsorbent after defined time spans has been designed. We verified the functionality of the multiple sample measurements with a microporous adsorbent, a zeolite NaMSX. The hydrothermal stability of this zeolite is tested by water uptake measurements. A standard deviation lower than 1% of the 16 samples for detecting the hydrothermal stability enables setting different conditions in each sample cell. Further, we compared the water uptake measurements by measuring their adsorption isotherms with the volumetric device BELSORP Aqua 3 from Bel Japan. (paper)

  1. Influence of Reaction Conditions on Lignin Hydrothermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Erdocia, Xabier; Prado, Raquel; Corcuera, M. Ángeles; Labidi, Jalel, E-mail: jalel.labidi@ehu.es [Chemical and Environmental Engineering Department, University of the Basque Country, San Seabastian (Spain)

    2014-04-01

    Organosolv lignin, obtained from olive tree pruning under optimized conditions, was subjected to a hydrothermal depolymerization process catalyzed by sodium hydroxide. The depolymerization of lignin was carried out at 300°C using different reaction times (20, 40, 60, 70, 80, 90, and 100 min) in order to study the influence of this parameter on lignin depolymerization. The resulting products (oil and residual lignin) were measured and analyzed by different techniques (GC/MS, high-performance size-exclusion chromatography, and pyrolysis–GC/MS) in order to determine their nature and composition. Coke was also formed, at a lower quantity, uncompetitive repolymerization reactions during the lignin hydrothermal treatment. The maximum oil yield and concentration of monomeric phenolic compounds was obtained after 80 min of reaction time. The highest reaction time studied (100 min) had the worst results with the lowest oil yield and highest coke production.

  2. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.

    Science.gov (United States)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.

    2017-12-01

    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work

  3. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  4. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions

    Science.gov (United States)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.

    2018-05-01

    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  5. Microwave-Hydrothermal Synthesis and Characterization of High-Purity Nb Doped BaTiO3 Nanocrystals

    Directory of Open Access Journals (Sweden)

    A. Khanfekr

    2014-01-01

    Full Text Available The synthesis of Nb doped BaTiO3 has been investigated under Microwave-Hydrothermal (MH conditions in the temperature of 150°C for only 2 h using C16H36O4Ti, BaH2O2.8H2O and NbCl5 as Ba, Ti and  Nb sources, respectively.  Typical experiments performed on MH processing have not yet reported for Nb doped BaTiO3.  In the MH process, the formation of high purity nano tetragonal Nb-BaTiO3 was strongly enhanced. New hydrothermal method was used instead of the previous solid state reaction for the BaTiO3±Nb2O3 system. The new method uses high pressure to create nano dimension particles in a lower time and temperature. In case of the phase evolution studies, the XRD pattern measurements and Raman spectroscopy were performed. TEM and FE-SEM images were taken for the detailed analysis of the particle size, surface and morphology.  Synthesis of Nb doped BaTiO3 with the Microwave-hydrothermal provides an advantage of fast crystallization and reduced crystal size when compared to existing methods.

  6. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit

    Directory of Open Access Journals (Sweden)

    Zong Yao

    2016-06-01

    Full Text Available This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of −50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts, the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor’s output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments.

  7. Experimental study on capacitance void fraction meters for high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Watanabe, Hironori; Mitsutake, Toru; Shibata, Mitsuhiko; Takase, Kazuyuki

    2010-01-01

    The electro-void fraction meter (Capacitance type meter) was applied to higher pressure conditions of 18 MPa than BWR operating conditions of 7 MPa. The void fraction measurement system has been developed including the electrodes of void fraction measurement, instrumentation cables with mineral insulation and simplified electric circuit to provide good signal-to-noise ratio. It satisfied the performance of thermal and pressure resistance and electric insulating capacity. Calibration function for high temperature and high pressure conditions was confirmed through calibration test with 37-rod bundle against datum 19-rod bundle by the quick-shut valve method respectively under 2 MPa conditions. It was confirmed that the measured data were consistent with those measured by the quick-shut valve method. (author)

  8. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects.

    Science.gov (United States)

    Cao, Leichang; Zhang, Cheng; Chen, Huihui; Tsang, Daniel C W; Luo, Gang; Zhang, Shicheng; Chen, Jianmin

    2017-12-01

    Hydrothermal liquefaction has been widely applied to obtain bioenergy and high-value chemicals from biomass in the presence of a solvent at moderate to high temperature (200-550°C) and pressure (5-25MPa). This article summarizes and discusses the conversion of agricultural and forestry wastes by hydrothermal liquefaction. The history and development of hydrothermal liquefaction technology for lignocellulosic biomass are briefly introduced. The research status in hydrothermal liquefaction of agricultural and forestry wastes is critically reviewed, particularly for the effects of liquefaction conditions on bio-oil yield and the decomposition mechanisms of main components in biomass. The limitations of hydrothermal liquefaction of agricultural and forestry wastes are discussed, and future research priorities are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review.

    Science.gov (United States)

    Holm, Nils G; Andersson, Eva

    2005-08-01

    The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of

  10. Hydrothermal processing of transuranic contaminated combustible waste

    International Nuclear Information System (INIS)

    Buelow, S.J.; Worl, L.; Harradine, D.; Padilla, D.; McInroy, R.

    2001-01-01

    Experiments at Los Alamos National Laboratory have demonstrated the usefulness of hydrothermal processing for the disposal of a wide variety of transuranic contaminated combustible wastes. This paper provides an overview of the implementation and performance of hydrothermal treatment for concentrated salt solutions, explosives, propellants, organic solvents, halogenated solvents, and laboratory trash, such as paper and plastics. Reaction conditions vary from near ambient temperatures and pressure to over 1000degC and 100 MPa pressure. Studies involving both radioactive and non-radioactive waste simulants are discussed. (author)

  11. Investigation of high pressure steaming (HPS) as a thermal treatment for lipid extraction from Chlorella vulgaris.

    Science.gov (United States)

    Aguirre, Ana-Maria; Bassi, Amarjeet

    2014-07-01

    Biofuels from algae are considered a technically viable energy source that overcomes several of the problems present in previous generations of biofuels. In this research high pressure steaming (HPS) was studied as a hydrothermal pre-treatment for extraction of lipids from Chlorella vulgaris, and analysis by response surface methodology allowed finding operational points in terms of target temperature and algae concentration for high lipid and glucose yields. Within the range covered by these experiments the best conditions for high bio-crude yield are temperatures higher than 174°C and low biomass concentrations (<5 g/L). For high glucose yield there are two suitable operational ranges, either low temperatures (<105°C) and low biomass concentrations (<4 g/L); or low temperatures (<105°C) and high biomass concentrations (<110 g/L). High pressure steaming is a good hydrothermal treatment for lipid recovery and does not significantly change the fatty acids profile for the range of temperatures studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Estimates of fluid pressure and tectonic stress in hydrothermal/volcanic areas:a methodological approach

    Directory of Open Access Journals (Sweden)

    G. Vilardo

    2005-06-01

    Full Text Available An analytical approach to estimate the relative contribution of the fluid pressure and tectonic stress in hydrothermal/ volcanic areas is proposed assuming a Coulomb criterion of failure. The analytical procedure requires the coefficient of internal friction, cohesion, rock density, and thickness of overburden to be known from geological data. In addition, the orientation of the principal stress axes and the stress ratio must be determined from the inversion of fault-slip or seismic data (focal mechanisms. At first, the stress magnitude is calculated assuming that faulting occurs in 'dry' conditions (fluid pressure=0. In a second step, the fluid pressure is introduced performing a grid search over the orientation of 1 fault planes that slip by shear failure or 2 cracks that open under different values of fluid pressure and calculating the consistency with the observed fault planes (i.e. strike and dip of faults, cracks, nodal planes from focal mechanisms. The analytical method is applied using fault-slip data from the Solfatara volcano (Campi Flegrei, Italy and seismic data (focal mechanisms from the Vesuvius volcano (Italy. In these areas, the fluid pressure required to activate faults (shear fractures and cracks (open fractures is calculated. At Solfatara, the ratio between the fluid pressure and the vertical stress ?is very low for faults ( ?=0.16 and relatively high for cracks ( ?=0.5. At Vesuvius, ?=0.6. Limits and uncertainties of the method are also discussed.

  13. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  14. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  15. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  16. A new HYSYS model for underground gasification of hydrocarbons under hydrothermal conditions

    KAUST Repository

    Alshammari, Y.M.

    2014-08-01

    A new subsurface process model was developed using the ASPEN HYSYS simulation environment to analyse the process energy and gasification efficiency at steady-state equilibrium conditions. Injection and production wells were simulated using the HYSYS pipe flow utilities which makes use of the Beggs and Brill flow correlation applicable for vertical pipes. The downhole reservoir hydrothermal reactions were assumed to be in equilibrium, and hence, the Gibbs reactor was used. It was found that high W/C ratios and low O/C ratios are required to maximise gasification efficiency at a constant hydrocarbon feed flowrate, while the opposite is true for the energy efficiency. This occurs due to the dependence of process energy efficiency on the gas pressure and temperature at surface, while the gasification efficiency depends on the gas composition which is determined by the reservoir reaction conditions which affects production distribution. Another effect of paramount importance is the increase in reservoir production rate which was found to directly enhance both energy and gasification efficiency showing conditions where the both efficiencies are theoretically maximised. Results open new routes for techno-economic assessment of commercial implementation of underground gasification of hydrocarbons. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  17. Solidification of glass powder by a hydrothermal hot-pressing technique

    International Nuclear Information System (INIS)

    Nishioka, Mamoru; Yanagisawa, Kazumichi; Yamasaki, Nakamichi

    1986-01-01

    A borosilicate glass powder was solidified with a NaOH solution or distilled water by the hydrothermal hot-pressing technique. The effect of hydrothermal conditions on the compressive strength was investigated, and the densification mechanism of the glass powder during the hydrothermal hot-pressing was discussed in terms of isothermal shrinkage. The glass powder was successfully solidified by hydrothermal hot-pressing at a reaction temperature lower than that of an ordinary pressure sintering. The solidified body obtained in the presence of distilled water (10 wt%) at 280 deg C had a high compressive strength of about 2300 kg/cm 2 . The analysis of initial densification process of the glass powder in hydrothermal hot-pressing with Murray's rate equation revealed that the densification proceeds both by viscous flow and by rearrangement process. Analysis of the shrinkage rates with a rate equation of hydrothermal reaction suggested that the dissolution of particles into solution controlled the initial densification of the glass powder, and that the alkaline metal acted as a catalyst. (author)

  18. Multi-year high-frequency hydrothermal monitoring of selected high-threat Cascade Range volcanoes

    Science.gov (United States)

    Crankshaw, I. M.; Archfield, S. A.; Newman, A. C.; Bergfeld, D.; Clor, L. E.; Spicer, K. R.; Kelly, P. J.; Evans, W. C.; Ingebritsen, S. E.

    2018-05-01

    From 2009 to 2015 the U.S. Geological Survey (USGS) systematically monitored hydrothermal behavior at selected Cascade Range volcanoes in order to define baseline hydrothermal and geochemical conditions. Gas and water data were collected regularly at 25 sites on 10 of the highest-risk volcanoes in the Cascade Range. These sites include near-summit fumarole groups and springs/streams that show clear evidence of magmatic influence (high 3He/4He ratios and/or large fluxes of magmatic CO2 or heat). Site records consist mainly of hourly temperature and hydrothermal-flux data. Having established baseline conditions during a multiyear quiescent period, the USGS reduced monitoring frequency from 2015 to present. The archived monitoring data are housed at (doi:10.5066/F72N5088). These data (1) are suitable for retrospective comparison with other continuous geophysical monitoring data and (2) will provide context during future episodes of volcanic unrest, such that unrest-related variations at these thoroughly characterized sites will be more clearly recognizable. Relatively high-frequency year-round data are essential to achieve these objectives, because many of the time series reveal significant diurnal, seasonal, and inter-annual variability that would tend to mask unrest signals in the absence of baseline data. Here we characterize normal variability for each site, suggest strategies to detect future volcanic unrest, and explore deviations from background associated with recent unrest.

  19. Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions

    Science.gov (United States)

    Isobe, H.

    2011-12-01

    Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and

  20. Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications

    International Nuclear Information System (INIS)

    Chen, Haijun; Cui, Qun; Wu, Juan; Zhu, Yuezhao; Li, Quanguo; Zheng, Kai; Yao, Huqing

    2014-01-01

    Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N 2 sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches

  1. Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haijun [Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University (China); Cui, Qun, E-mail: cuiqun@njtech.edu.cn [College of Chemistry and Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Gulou District, Nanjing 210009 (China); Wu, Juan; Zhu, Yuezhao [Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University (China); Li, Quanguo; Zheng, Kai; Yao, Huqing [College of Chemistry and Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Gulou District, Nanjing 210009 (China)

    2014-04-01

    Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N{sub 2} sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake

  2. Selective formation of VO2(A) or VO2(R) polymorph by controlling the hydrothermal pressure

    International Nuclear Information System (INIS)

    Ji Shidong; Zhang Feng; Jin Ping

    2011-01-01

    Missing VO 2 (A) usually occurs during the preparation of VO 2 polymorphs. This leads to an ambiguous understanding of the transformation between VO 2 polymorphs. The calculation of the ground state energies for different VO 2 polymorphs indicated that there is only a small energy gap between VO 2 (A) and VO 2 (R), which destined that the transformation from VO 2 (A) to VO 2 (R) should be pressure sensitive. This hypothesis was verified during the synthesizing of VO 2 polymorphs by reducing V 2 O 5 with oxalic acid through hydrothermal treatment process. Selective formation of pure phase VO 2 (A) or VO 2 (R) was achieved by controlling the hydrothermal pressure through varying the filling ratio at 270 deg. C. It was found that a filling ratio over 0.5 favors the formation of pure VO 2 (R) while a reduced filling ratio to 0.4 or lower results in the formation of VO 2 (A). Based on our experiments, VO 2 (B) nanobelts were always first formed and then it transformed to VO 2 (A) by assembling process at increased temperature or extended reaction time. Under further higher pressure, the VO 2 (A) transformed spontaneously to VO 2 (R) initialized from the volume shrinkage due to the formation of denser VO 2 (R). - Graphical abstract: Selective formation of VO 2 (A) or VO 2 (R) could be achieved by controlling the system pressure through varying the filling ratio during hydrothermal treatment. Highlights: → Selective formation of VO 2 polymorphs by controlling hydrothermal pressure. → Ground state energy characteristics were revealed for the first time. → Phase transformation mechanism was clearly elucidated.

  3. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  4. REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure

    Science.gov (United States)

    Allen, Douglas E.; Seyfried, W. E.

    2005-02-01

    A hydrothermal experiment involving peridotite and a coexisting aqueous fluid was conducted to assess the role of dissolved Cl - and redox on REE mobility at 400°C, 500 bars. Data show that the onset of reducing conditions enhances the stability of soluble Eu +2 species. Moreover, Eu +2 forms strong aqueous complexes with dissolved Cl - at virtually all redox conditions. Thus, high Cl - concentrations and reducing conditions can combine to reinforce Eu mobility. Except for La, trivalent REE are not greatly affected by fluid speciation under the chemical and physical condition considered, suggesting control by secondary mineral-fluid partitioning. LREE enrichment and positive Eu anomalies observed in fluids from the experiment are remarkably similar to patterns of REE mobility in vent fluids issuing from basalt- and peridotite-hosted hydrothermal systems. This suggests that the chondrite normalized REE patterns are influenced greatly by fluid speciation effects and secondary mineral formation processes. Accordingly, caution must be exercised when using REE in hydrothermal vent fluids to infer REE sources in subseafloor reaction zones from which the fluids are derived. Although vent fluid patterns having LREE enrichment and positive Eu anomalies are typically interpreted to suggest plagioclase recrystallization reactions, this need not always be the case.

  5. Borehole plugging by hydrothermal transport. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D.M.; White, W.B.

    1976-02-28

    Calcium silicate--and aluminosilicate--compositions based on mixtures of fine grained quartz with various cements or calcium silicate compounds have been investigated under hydrothermal conditions in the temperature range 110-250/sup 0/C and pressure range 1,000-10,000 psi, pressures which are always in excess of that required to maintain liquid H/sub 2/O, and approximate the confining pressures which might be anticipated in deep boreholes. All silicate cement combinations investigated produce materials having adequate strength after reaction times of 1 day or longer. The calcium aluminate cement was also adequate with respect to strength but would need to be investigated more extensively for overall properties because of its highly reactive chemistry. The mini-rock cylinder-cement plug hydrothermal experiments in both limestone and sandstone resulted in reasonable magnitudes of bonding strength. The typical shear strength of a hydrothermally treated cement-sandstone plug is 1030 psi, and the compressive strength of the extruded cement plug is 9550 psi. Reactions having a potential for producing calcium carbonate plugs in holes drilled in carbonate rocks were studied. It should be noted that most cements are calcium silicate systems and are chemically compatible with the CaCO/sub 3/ and CaMg(CO/sub 3/)/sub 2/ in the rock walls of the hole. A side benefit from this research is some insight into the suitability of massive carbonate rocks as disposal sites. Carbonate rocks by themselves are highly impermeable, have low exchange capacity, and a low water content--all properties that are desirable in the storage medium. A major drawback is the presence of secondary permeability in the form of solutionally modified joints, fractures, and bedding planes.

  6. Borehole plugging by hydrothermal transport. Final report

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1976-01-01

    Calcium silicate--and aluminosilicate--compositions based on mixtures of fine grained quartz with various cements or calcium silicate compounds have been investigated under hydrothermal conditions in the temperature range 110-250 0 C and pressure range 1,000-10,000 psi, pressures which are always in excess of that required to maintain liquid H 2 O, and approximate the confining pressures which might be anticipated in deep boreholes. All silicate cement combinations investigated produce materials having adequate strength after reaction times of 1 day or longer. The calcium aluminate cement was also adequate with respect to strength but would need to be investigated more extensively for overall properties because of its highly reactive chemistry. The mini-rock cylinder-cement plug hydrothermal experiments in both limestone and sandstone resulted in reasonable magnitudes of bonding strength. The typical shear strength of a hydrothermally treated cement-sandstone plug is 1030 psi, and the compressive strength of the extruded cement plug is 9550 psi. Reactions having a potential for producing calcium carbonate plugs in holes drilled in carbonate rocks were studied. It should be noted that most cements are calcium silicate systems and are chemically compatible with the CaCO 3 and CaMg(CO 3 ) 2 in the rock walls of the hole. A side benefit from this research is some insight into the suitability of massive carbonate rocks as disposal sites. Carbonate rocks by themselves are highly impermeable, have low exchange capacity, and a low water content--all properties that are desirable in the storage medium. A major drawback is the presence of secondary permeability in the form of solutionally modified joints, fractures, and bedding planes

  7. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  8. Magnesite dissolution and precipitation rates at hydrothermal conditions

    International Nuclear Information System (INIS)

    Saldi, Giuseppe

    2009-01-01

    Magnesite (MgCO 3 ) is the stable anhydrous member of a series of Mg-carbonates with different degrees of hydration. Despite its relative scarcity in the natural environments, it constitutes an important mineral phase for the permanent sequestration of CO 2 as carbonate minerals. Experimental determination of magnesite precipitation and dissolution rates at conditions representative of the storage sites is therefore fundamental for the assessment of magnesite sequestration potential in basaltic and ultramafic rocks and the optimization of the techniques of CO 2 storage. Magnesite precipitation rates have been measured using mixed-flow and batch reactors as a function of temperature (100 ≤ T ≤ 200 deg. C), solution composition and CO 2 partial pressure (up to 30 bar). Rates were found to be independent of aqueous solution ionic strength at 0.1 M 3 2- activity at pH > 8. All rates obtained from mixed flow reactor experiments were found to be consistent with the model of Pokrovsky et al. (1999) where magnesite precipitation rates are proportional to the concentration of the >MgOH 2 + surface species. The study of magnesite crystallization using hydrothermal atomic force microscopy (HAFM) demonstrated the consistency of the rates derived from microscopic measurements with those obtained from bulk experiments and showed that these rates are also consistent with a spiral growth mechanism. According to AFM observations this mechanism controls magnesite growth over a wide range of temperatures and saturation states (15≤ Ω ≤200 for 80 ≤T 2 to accelerate the rate of the overall carbonation process, avoiding the inhibiting effect of carbonate ions on magnesite precipitation and increasing the rates of Mg-silicate dissolution via acidification of reacting solutions. Determination of magnesite dissolution rates by mixed flow reactor at 150 and 200 deg. C and at neutral to alkaline conditions allowed us to improve and extend to high temperatures the surface

  9. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making.

    Science.gov (United States)

    Al-Shiekh Khalil, Wael; Shanableh, Abdullah; Rigby, Portia; Kokot, Serge

    2005-04-01

    The effectiveness of hydrothermal treatment for the destruction of the organic content of sludge waste was investigated. The sludge sampled in this study contained approximately 2% solids. The experimental program consisted of hydrothermal treatment experiments conducted in a batch reactor at temperatures between 100 and 250 degrees C, with the addition of an oxidant (hydrogen peroxide) in the range of 0-150% with reference to TCOD, and reaction times of up to 60 min. The results suggested that the availability of oxidant, reaction temperature and reaction time were the determining factors for COD removal. A significant fraction of the COD remaining after treatment consisted of the dissolved COD. The results confirmed that hydrothermal treatment proceeds through hydrolysis resulting in the production of dissolved organic products followed by COD removal through oxidation. Two MCDM chemometrics methods, PROMETHEE and GAIA, were applied to process the large data matrix so as to facilitate the selection of the most suitable hydrothermal conditions for sludge destruction. Two possible scenarios were produced from this analysis-one depended on the use of high temperatures and no oxidant, while the second offered a choice of compromise solutions at lower temperatures but with the use of at least some oxidant. Thus, for the final choice of operating conditions, the decision maker needs local knowledge of the costs and available infrastructure. In principle, such information could be added as further criteria to the data matrix and new rankings obtained.

  10. X-ray reflectivity measurements of liquid/solid interfaces under high hydrostatic pressure conditions.

    Science.gov (United States)

    Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin

    2014-01-01

    A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.

  11. Hydrothermal processing of inorganic components of Hanford tank sludge

    International Nuclear Information System (INIS)

    Oldenborg, R.; Buelow, S.J.; Dyer, R.B.; Anderson, G.; Dell'Orco, P.C.; Funk, K.; Wilmanns, E.; Knutsen, K.

    1994-09-01

    Hydrothermal Processing (HTP) is an attractive approach for the treatment of Hanford tank sludge. Hydrothermal Processing refers to a waste treatment technique in which an aqueous waste stream is fed through a chemical reactor at elevated temperatures and pressures to effect desired chemical transformations and separations. Transformations such as organic and nitrate destruction and sludge reformulation have been demonstrated at pilot scale using simulants of Hanford tank wastes. At sufficiently high temperatures and pressures organics and nitrates are destroyed in seconds, producing primarily simple products such as CO 3 2- , H 2 O, N 2 , N 2 O and OH - , and sludges are reduced in volume and reformulated as rapid settling oxides amenable to downstream separation, or in some cases reformulated as soluble products. This report describes the hydrothermal dissolution of chromium and chromium oxide; the hydrothermal oxidation of chromium with nitrate; hydrothermal dissolution of aluminum-bearing sludges; the solubility of aluminum compounds in caustic hydrothermal media; experimental techniques for the study of solubility and phase behavior; optical cell studies of basic aluminate solution solubilities; and high temperature, low density salt solubility in the packed-bed flow apparatus

  12. Biological phosphate removal using a degradable carbon source produced by hydrothermal treatment of excess sludge

    Directory of Open Access Journals (Sweden)

    L. H. Haraguchi

    2006-03-01

    Full Text Available The possibility of reusing excess sludge treated by hydrothermal reaction for the purpose of improving the efficiency of the enhanced biological phosphate removal (EBPR process was investigated. Excess sludge from a fish-processing industry located in Japan was treated in high-temperature and high-pressure water, at a reaction temperature ranging from 200 to 400ºC, a pressure of 1.8 to 30MPa and a constant reaction time of 7 min. For the conditions tested, the results showed that when the reaction temperature was increased the content of readily biodegradable substrate in the total COD Cr increased. In addition, the amount of some volatile fatty acids (VFAs produced by the hydrothermal reaction increased as reaction temperature increased. From the phosphate release tests under anaerobic conditions, it was possible to demonstrate that not only the VFAs, but also the readily and slowly biodegradable substrates are used as potential carbon source by the phosphate-accumulating organisms (PAOs.

  13. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  14. Pressure-temperature condition and hydrothermal-magmatic fluid evolution of the Cu-Mo Senj deposit, Central Alborz: fluid inclusion evidence

    Directory of Open Access Journals (Sweden)

    Ebrahim Tale Fazel

    2017-02-01

    Full Text Available Introduction The Senj deposit has significant potential for different types of mineralization, particularly porphyry-like Cu deposits, associated with subduction-related Eocene–Oligocene calc-alkaline porphyritic volcano-plutonic rocks. The study of fluid inclusions in hydrothermal ore deposits aims to identify and characterize the pressure, temperature, volume and fluid composition, (PTX conditions of fluids under which they were trapped (Heinrich et al., 1999; Ulrich and Heinrich, 2001; Redmond et al., 2004. Different characteristics of the deposit such as porphyrtic nature, alteration assemblage and the quartz-sulfide veins of the stockwork were poorly known. In this approach on the basis of alterations, vein cutting relationship and field distribution of fluid inclusions, the physical and chemical evolution of the hydrothermal system forming the porphyry Cu-Mo (±Au-Ag deposit in Senj is reconstructed. Materials and Methods Over 1000 m of drill core was logged at a scale of 1:1000 by Pichab Kavosh Co. and samples containing various vein and alteration types from different depths were collected for laboratory analyses. A total of 14 samples collected from the altered and least altered igneous rocks in the Senj deposit were analyzed for their major oxide concentrations by X-ray fluorescence in the SGS Mineral Services (Toronto, Canada. The detection limit for major oxide analysis is 0.01%. Trace and rare earth elements (REE were analyzed using inductively coupled plasma-mass spectrometery (ICP-MS, in the commercial laboratory of SGS Mineral Services. The analytical error for most elements is less than 2%. The detection limit for trace elements and REEs analysis is 0.01 to 0.1 ppm. Fluid inclusion microthermometry was conducted using a Linkam THMS600 heating–freezing stage (-190 °C to +600 °C mounted on a ZEISS Axioplan2 microscope in the fluid inclusion laboratory of the Iranian Mineral Processing Research Center (Karaj, Iran. Results

  15. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    International Nuclear Information System (INIS)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-01-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA) 2− and (NH 4 ) 2 HPO 4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method

  16. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, Katarzyna, E-mail: Katarzyna.Suchanek@ifj.edu.pl [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Bartkowiak, Amanda [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Gdowik, Agnieszka [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Perzanowski, Marcin [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Kąc, Sławomir [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewica 30, 30-059 Krakow (Poland); Szaraniec, Barbara [Department of Biomaterials, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Suchanek, Mateusz [Department of Chemistry and Physics, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow (Poland); Marszałek, Marta [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland)

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA){sup 2−} and (NH{sub 4}){sub 2}HPO{sub 4} solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method.

  17. Synthesis and characterization of nanosized ceria powders by microwave-hydrothermal method

    International Nuclear Information System (INIS)

    Bonamartini Corradi, A.; Bondioli, F.; Ferrari, A.M.; Manfredini, T.

    2006-01-01

    Nanocrystalline ceria powders (CeO 2 ) have been prepared by adding NaOH to a cerium ammonium nitrate aqueous solution under microwave-hydrothermal conditions. In particular the effect of the synthesis conditions (time, pressure and concentration of both the precursor and the precipitant agent solutions) on the physical properties of the crystals have been evaluated. Microwave-hydrothermal treatment of 5 min at 13.4 atm allows to obtain almost crystallized powders (amorphous phase 4%) as underlined by Rietveld-reference intensity ratio (RIR) results

  18. Hydrothermal gasification of glucose and starch in a batch and continuous reactor

    Directory of Open Access Journals (Sweden)

    Kazuhiro Kumabe

    2017-11-01

    Full Text Available A batch reactor was used for the gasification of glucose and starch as carbohydrate model compounds. The effects of H2O in various states (low-pressure hot compressed water (LP-HCW, 300 °C and 10 MPa, high-pressure hot compressed water (HP-HCW, 360 °C and 20 MPa, high-temperature steam (HTS, 400 °C and 10 MPa, and supercritical water (SCW, 400 °C and 25 MPa, as well as reaction time (10, 30, and 60 min, sample concentration (10, 20, and 30 wt%, and catalyst (mixture of Ca(OH2 and Na2CO3 on gas production were investigated in the hydrothermal gasification. In addition, using a continuous reactor, the hydrothermal gasification of glucose was examined with LP-HCW (200 °C and 5 MPa, HP-HCW (200 °C and 25 MPa, HTS (600 °C, 5 MPa, and SCW (600 °C, 25 MPa in order to study the productions of gases and tar, and the mass balance. The reaction temperature affected gasification considerably, but pressure had little effect. In the batch experiments, the characteristics of the produced gases were almost identical after a reaction time of 10 min, and addition of Ca(OH2 and Na2CO3 as catalysts in a molar ratio of 7:3 led to selective production of H2 in the SCW gasification of 10 wt% glucose for 30 min. In a continuous experiment under the SCW conditions, the conversion efficiency of glucose to gas was 26% and the composition of the produced gas was 29 vol% CO, 23 vol% H2, and 16 vol% CH4. Under the hydrothermal conditions, glucose was mainly converted to char and suspended components of high-molecular-weight compounds such as fat, whereas starch was mainly converted to gas and liquid.

  19. Stability of fluorite-type La{sub 2}Ce{sub 2}O{sub 7} under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.X., E-mail: zhangfx@umich.edu [Department of Earth and Environmental Sciences, The University of Michigan, Ann Arbor, MI 48109 (United States); State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); Tracy, C.L. [Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48109 (United States); Lang, M. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37966 (United States); Ewing, R.C. [Department of Geological Sciences, Stanford University, Stanford, CA 94305 (United States)

    2016-07-25

    The structural stability of fluorite-type La{sub 2}Ce{sub 2}O{sub 7} was studied at pressure up to ∼40 GPa and under hydrothermal conditions of ∼1 GPa and up to 350 °C, respectively, using synchrotron X-ray diffraction (XRD) and Raman scattering measurements. XRD measurements indicated that the fluorite-type La{sub 2}Ce{sub 2}O{sub 7} is not stable at pressures greater than 22.6 GPa and gradually transformed to a high-pressure phase. The high-pressure phase is not stable and changed back to the fluorite-type structure when pressure is released. The La{sub 2}Ce{sub 2}O{sub 7} fluorite is also not stable under hydrothermal conditions and began to react with water at 200–250 °C. Both Raman and XRD results suggest that lanthanum hydroxide La(OH){sub 3} and La{sup 3+}-doped CeO{sub 2} fluorite are the dominant products after hydrothermal treatment. - Graphical abstract: The fluorite-type La{sub 2}Ce{sub 2}O{sub 7} reacted with water at hydrothermal condition (1 GPa, and above 200 °C), and formed rare earth hydroxides. - Highlights: • La{sub 2}Ce{sub 2}O{sub 7} transforms to a metastable phase at pressure higher than 21 GPa. • La{sub 2}Ce{sub 2}O{sub 7} reacts with water at ∼1 GPa and above 200 °C. • The pressure-induced phase transition is reversible.

  20. A hydrothermal flow-through apparatus to simulate leaching of nuclear waste forms under quasi-dynamic conditions

    International Nuclear Information System (INIS)

    Heimann, R.B.

    1985-03-01

    A hydrothermal flow-through apparatus has been designed that will allow the testing of individual waste package components, as well as combinations of these, under a wide range of environmental conditions. The maximum permissible temperature is 700 degrees C, while the maximum pressure is 300 MPa. Flow rates can be adjusted by sequential operation of a pneumatically operated valve with preset pause and working cycles. The main applications of the apparatus to nuclear fuel waste management research are: (i) the study of migration of ionic species through a rock column at specified hydraulic head, and (ii) the study of the rate of leaching of radionuclides from waste forms under disposal vault conditions in the presence of groundwater with variable flow rates

  1. Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis

    International Nuclear Information System (INIS)

    Gao, Jiabing; Shi, Haiyue; Dong, Huina; Zhang, Rui; Chen, Deliang

    2015-01-01

    Highly dispersed BaTiO 3 nanospheres with uniform sizes have important applications in micro/nanoscale functional devices. To achieve well-dispersed spherical BaTiO 3 nanocrystals, we carried out as reported in this paper the systematic investigation on the factors that influence the formation of BaTiO 3 nanospheres by the static hydrothermal process, including the NaOH concentrations [NaOH], molar Ba/Ti ratios (R Ba/Ti ), hydrothermal temperatures, and durations, with an emphasis on understanding the related mechanisms. Barium nitrate and TiO 2 sols derived from tetrabutyl titanate were used as the starting materials. The as-synthesized BaTiO 3 samples were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, thermogravimetry, differential thermal analysis, and FT-IR spectra. The highly dispersed BaTiO 3 nanospheres (76 ± 13 nm) were achieved under the optimum hydrothermal conditions at 200 °C for 10 h: [NaOH] = 2.0 mol L −1 and R Ba/Ti  = 1.5. Higher NaOH concentrations, higher Ba/Ti ratios, higher hydrothermal temperatures, and longer hydrothermal durations are favorable in forming BaTiO 3 nanospheres with larger fractions of tetragonal phase and higher yields; but too long hydrothermal durations resulted in abnormal growth and reduced the uniformity in particle sizes. The possible formation mechanisms for BaTiO 3 nanocrystals under the static hydrothermal conditions were investigated

  2. Flow instability research on steam generator with straight double-walled heat transfer tube for FBR. Pressure drop under high pressure condition

    International Nuclear Information System (INIS)

    Liu, Wei; Tamai, Hidesada; Yoshida, Hiroyuki; Takase, Kazuyuki; Hayafune, Hiroki; Futagami, Satoshi; Kisohara, Naoyuki

    2008-01-01

    For the Steam Generator (SG) with straight double-walled heat transfer tube that used in sodium cooled Faster Breeder Reactor, flow instability is one of the most important items need researching. As the first step of the research, thermal hydraulics experiments were performed under high pressure condition in JAEA with using a straight tube. Pressure drop, heat transfer coefficients and void fraction data were derived. This paper evaluates the pressure drop data with TRAC-BF1 code. The Pffan's correlation for single phase flow and the Martinelli-Nelson's two-phase flow multiplier are found can be well predicted the present pressure drop data under high pressure condition. (author)

  3. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    Science.gov (United States)

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined

  4. [The oral cavity condition in patients with high blood pressure].

    Science.gov (United States)

    Rosiak, Joanna; Kubić-Filiks, Beata; Szymańska, Jolanta

    2015-10-01

    The incidence of high blood pressure in adults is estimated at ca. 30-40% of the general population. Both hypertension disease and hypertensive drugs affect the condition of the patients' oral cavity. A review of the current literature shows that disorders most frequently found in the masticatory organ of patients with hypertension include: xerostomia, changes in salivary glands, gum hypertrophy, lichenoid lesions, taste disorders, and paraesthesias. The authors emphasize that patients with high blood pressure, along with the treatment of the underlying disease, should receive prophylactic and therapeutic dental care. This would enable reduction and/or elimination of unpleasant complaints, and also help prevent the emergence of secondary disorders in the patients' oral cavity as a result of hypertension pharmacotherapy. © 2015 MEDPRESS.

  5. Coastal submarine hydrothermal activity off northern Baja California

    International Nuclear Information System (INIS)

    Vidal, V.M.V.; Vidal, F.V.; Isaacs, J.D.; Young, D.R.

    1978-01-01

    In situ observations of submarine hydrothermal activity have been conducted in Punta Banda. Baja Califronia, Mexico, approximately 400 m from the coast and at a seawater depth of 30 m. The hydrothermal activity occurs within the Agua Blanca Fault, a major transverse structure of Northern Baja California. Hot springwater samples have been collected and analyzed. Marked differences exist between the submarine hot springwater, local land hot springwaters, groundwater, and local seawater. SiO 2 , HCO 3 , Ca, K, Li, B, Ba, Rb, Fe, Mn, As, and Zn are enriched in the submarine hot springwater, while Cl, Na, So 4 2 , Mg, Cu, Ni, Cd, Cr, and perhaps Pb are depleted in relation to average and local seawater values. Very high temperatures, at the hydrothermal vents, have been recorded (102 0 C at 4-atm pressure). Visible gaseous emanations rich in CH 4 and N 2 coexist with the hydrothermal solutions. Metalliferous deposits, pyrite, have been encountered with high concentrations of Fe, S, Si, Al, Mn, Ca, and the volatile elements As, Hg, Sb, and Tl, X ray dispersive spectrometry (1500-ppm detection limit). X ray diffraction, and scanning electron microscopy of the isolated metalliferous precipitates indicate that the principal products of precipitation are pyrite and gypsum accompanied by minor amounts of amorphous material containing Si and Al. Chemical analyses and XRD of the reference control rocks of the locality (volcanics) versus the hydrothermally altered rocks indicate that high-temperature and high-pressure water-rock interactions can in part explain the water chemistry characteristics of the submarine hydrothermal waters. Their long residence time, the occurrence of an extensive marine sedimentary formation, their association with CH 4 and their similarities with connate waters of oil and gas fields suggest that another component of their genesis could be in cation exchange reactions within deeply buried sediments of marine origin

  6. Hydrothermal processing of actinide contaminated organic wastes

    International Nuclear Information System (INIS)

    Worl, A.; Buelow, S.J.; Le, L.A.; Padilla, D.D.; Roberts, J.H.

    1997-01-01

    Hydrothermal oxidation is an innovative process for the destruction of organic wastes, that occurs above the critical temperature and pressure of water. The process provides high destruction and removal efficiencies for a wide variety of organic and hazardous substances. For aqueous/organic mixtures, organic materials, and pure organic liquids hydrothermal processing removes most of the organic and nitrate components (>99.999%) and facilitates the collection and separation of the actinides. We have designed, built and tested a hydrothermal processing unit for the removal of the organic and hazardous substances from actinide contaminated liquids and solids. Here we present results for the organic generated at the Los Alamos National Laboratory Plutonium Facility

  7. Long-term hydrothermal temperature and pressure monitoring equipped with a Kuroko cultivation apparatus on the deep-sea artificial hydrothermal vent at the middle Okinawa Trough

    Science.gov (United States)

    Masaki, Y.; Nozaki, T.; Saruhashi, T.; Kyo, M.; Sakurai, N.; Yokoyama, T.; Akiyama, K.; Watanabe, M.; Kumagai, H.; Maeda, L.; Kinoshita, M.

    2017-12-01

    The middle Okinawa Trough, located along the Ryukyu- arc on the margin of the East China Sea, has several active hydrothermal fields. From February to March 2016, Cruise CK16-01 by D/V Chikyu targeted the Iheya-North Knoll and southern flank of the Iheya Minor Ridge to comprehend sub-seafloor geological structure and polymetallic sulfide mineralization. In this cruise, we installed two Kuroko cultivation apparatuses equipped with P/T sensors, flowmeter and load cell to monitor pressure, temperature and flow rate of hydrothermal fluid discharged from the artificial hydrothermal vent together with weight of hydrothermal precipitate. During Cruise KR16-17 in January 2017, two cultivation cells with sensor loggers were successfully recovered by ROV Kaiko MK-IV and R/V Kairei. We report these physical sensor data obtained by more than 10 months monitoring at two deep-sea artificial hydrothermal vents through many first and challenging operations.Hole C9017B at southern flank of the Iheya Minor Ridge (water depth of 1,500 mbsl), fluid temperature was constant ca. 75 ºC for 5 months from the beginning of monitoring. Then temperature gradually decrease to be 40 ºC. In November 2016, temperature and pressure suddenly dropped and quickly recovered due to the disturbance of subseafloor hydrology, induced by another drilling operation at Hole C9017A which is 10.8 meters northeastward from Hole C9017B during Cruise CK16-05. Temperature data exhibit conspicuous periodic 12.4hour cycles and this is attributable to oceanic tidal response. The amplitude of temperature variations increased along with decline of the temperature variations increased along with decline of the temperature. The average flow rate was 67 L/min for 9 hours from the onset of monitoring.Hole C9024A at the Iheya-North Knoll (water depth of 1,050 msl), the maximum temperature reached 308 ºC, which is similar to the maximum value of 311 ºC obtained from the ROV thermometer. The average flow rate was 289 L

  8. Effect of mixing rule boundary conditions on high pressure (liquid + liquid) equilibrium prediction

    International Nuclear Information System (INIS)

    Hsieh, Min-Kang; Lin, Shiang-Tai

    2012-01-01

    Highlights: ► Prediction of LLE from the combined use of EOS and liquid model are examined. ► The mixing rule used affects the predicted pressure dependence of LLE. ► MHV1 mixing rule predicts decent LLE at low pressures. ► WS mixing rule predicts more accurate excess volume and LLE at high pressures. ► The hybrid of MHV1 and WS mixing rule gives overall the best predictions. - Abstract: We examine the prediction of high pressure (liquid + liquid) equilibrium (LLE) from the Peng–Robinson equation with three excess Gibbs free energy (G ex )-based mixing rules (MR): the first order modified Huron–Vidal (MHV1), the Wong–Sandler (WS), and a hybrid of these two (referred to as G ex B 2 ). These mixing rules differ by the boundary conditions used for determination of the temperature and composition dependence of parameters a and b in the PR EOS. The condition of matching the excess Gibbs free energy from the EOS at zero pressure to that from the G ex model, used in MHV1 and G ex B 2 MR, leads to a similar miscibility gap from PR EOS and the G ex model used. On the other hand, the condition of matching excess Helmholtz energy from the EOS at infinite pressure to that from the G ex model, used in the WS MR, shows remarkable deviations. The condition of quadratic composition dependence in the second virial coefficient (B 2 ), used in WS and G ex B 2 MR, allows for both positive and negative values in the molar excess volume. Depending on the mixture, either the increase or decrease of the miscibility gap with pressure can be observed when the WS or the G ex B 2 MR is used. The condition of linear combination of molecular sizes of each component used in the MHV1 MR, however, often leads to small, positive molar excess volumes. As a consequence, the predicted LLE from using the MHV1 MR are insensitive to pressure. Therefore, we find that the G ex B 2 mixing rule provides the best predictive power for the LLE over a wide range of temperature and pressure.

  9. Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy

    Science.gov (United States)

    Chiodini, Giovanni; Marini, Luigi; Russo, Massimo

    2001-07-01

    A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H 2O and CO 2 as major components, followed by H 2, H 2S, N 2, CH 4, and CO (in order of decreasing contents) and undetectable SO 2, HCl, and HF. Fumarolic H 2O is either meteoric water enriched in 18O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO 2 is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO 2 is also possible. All investigated gas species (H 2O, CO 2, CO, CH 4, H 2, H 2S, N 2, and NH 3) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H 2-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ˜14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2-52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.

  10. Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei

    Directory of Open Access Journals (Sweden)

    Carmine Minopoli

    2011-06-01

    Full Text Available Long time series of fluid pressure and temperature within a hydrothermal system feeding the Solfatara fumaroles are investigated here, on the basis of the chemical equilibria within the CO2–H2O–H2–CO gas system. The Pisciarelli fumarole external to Solfatara crater shows an annual cycle of CO contents that indicates the occurrence of shallow secondary processes that mask the deep signals. In contrast, the Bocca Grande and Bocca Nova fumaroles located inside Solfatara crater do not show evidence of secondary processes, and their compositional variations are linked to the temperature–pressure changes within the hydrothermal system. The agreement between geochemical signals and the ground movements of the area (bradyseismic phenomena suggests a direct relationship between the pressurization process and the ground uplift. Since 2007, the gas geoindicators have indicated pressurization of the system, which is most probably caused by the arrival of deep gases with high CO2 contents in the shallow parts of the hydrothermal system. This pressurization process causes critical conditions in the hydrothermal system, as highlighted by the increase in the fumarole temperature, the opening of new vents, and the localized seismic activity. If the pressurization process continues with time, it is not possible to rule out the occurrence of phreatic explosions.

  11. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    Science.gov (United States)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Solidification of ion-exchange resins by hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Kaneko, M.

    1993-01-01

    The solidification reaction which easily occurs while continuously keeping the mixture of cation and anion exchange resins compressed under hydrothermal conditions has been demonstrated. Dehydration was considered to occur between sulphonic acid (-SO 3 H) from the cation exchange resin and quaternary ammonium [-CH 2 -N(CH 3 ) 3 OH] from anion-exchange resin-on terminal groups. The cation-and anion-exchange resins were mixed in a 1:1 weight ratio, put in a hot-pressing autoclave and compressed between pistons from the top and bottom at 600 kg cm -2 pressure. The material was continuously compressed during hydrothermal treatment at 200 kg cm -2 by a hydraulic jack and heated to a desired temperature with an induction heater. This system could be used for rapid temperature increasing up to 30 o c min -1 . The pressure and temperature were kept constant for 10 min. The autoclave was cooled to room temperature after the hydrothermal treatment. After the specimen was taken out, the ion-exchange radical reactions were estimated and the product structures were examined. The cation- and anion-exchange resin mixture was solidified. The resultant solidified body at a 300 o C reaction condition for 10 min had a 1.0 g cm -3 density and 700 kg cm -2 compressive strength, and the weight loss did not change in distilled water for 2 weeks. On the other hand, a solidification reaction did not occur at below 250 o C when only the cation or anion was solidified, but they were decomposed. These results suggest that a mixture of cation- and anion-exchange resins causes a solidification reaction under hydrothermal hot-pressing conditions at 300 o C. (author)

  13. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  14. Seafloor Uplift in Middle Valley, Juan de Fuca Ridge: New High-Resolution Pressure Data

    Science.gov (United States)

    Inderbitzen, K. E.; Becker, K.; Davis, E. E.

    2011-12-01

    Currently, in-situ seafloor and basement pressures are continuously monitored and recorded by an ODP subseafloor hydrogeological observatory (CORK) located in Middle Valley, Juan de Fuca Ridge. Hole 857D was drilled in 1991 in thickly sedimented crust to a depth of 936 mbsf and instrumented with an original CORK that was replaced in 1996. A large hydrothermal field (Dead Dog) lies roughly 1.7 km north of the hole, and two isolated chimneys and several diffuse flow sites are located ~800 meters northeast. The borehole and the vent fields have been visited periodically by submersible/ROV since 1999. Recent results from the CORK at 857D have shown apparent seafloor uplift, supported by depth records from the submersible Alvin. A constant rate of pressure change of ~6 kPa/yr, from its initiation in 2005 to the visit in 2010, has reduced mean seafloor pressure by ~28 kPa, equivalent to nearly 3 meters of head. This uplift rate is several times the typical pre-eruption inflation rates observed at Axial Seamount further south along the Juan de Fuca Ridge. Initially, the apparent uplift at 857D did not seem to have any effect on local high-temperature hydrothermal venting, however recent operations in Middle Valley revealed distinct changes at not only the hydrothermal field to the northeast, but also a shutdown of high-temperature venting to the north of 857D. We will present new data from Middle Valley, including the first year of data collected by a high-resolution pressure data logger deployed at 857D in June, 2010.

  15. Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2006-04-01

    Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ( composite function)C to 300 ( composite function)C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ( composite function)C and 250 ( composite function)C, and were detectable and thus stable under hydrothermal conditions to temperatures acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ( composite function)C and 250 ( composite function)C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.

  16. Solubility limits in Mn–Mg ferrites system under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, N.Y. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Faculty of Science, Taif University, PO Box 888, Al-Haweiah, Taif (Saudi Arabia); Abd Elkader, O.H. [Electron Microscope and Thin Films Department, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, M.A. [Physics Department, Faculty of Science, Al Azhar University, Nasr City, Cairo (Egypt)

    2014-09-01

    In the present investigation, we successfully synthesized a pure MnFe{sub 2}O{sub 4} ferrite by the hydrothermal method. Moreover, the effect of Mg ion content on the formation of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} particles (with x varying from 0.1 to 1.0) was also investigated using XRD, SEM, TEM and Mossbauer Spectroscopy. Phases formed in the system Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4}; 0.0≤x≤1.0 were investigated under hydrothermal conditions at 453 K.The produced phases were characterized by X-ray diffraction, Scanning, transmission microscopy and Mossbauer spectroscopy. The information of composition, cation distribution in the spinel structure and the particle size of the products were obtained. The spinel ferrites; Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} were formed in the range 0.0≤x≤0.3. However, sample with x>0.3 showed semi-crystalline magnesium hydroxide (Mg(OH){sub 2}) and hematite (Fe{sub 2}O{sub 3}) beside the ferrite phase. For x=1.0, only magnesium hydroxide and hematite are formed without any ferrites. Particles of uniform size around 10–20 nm were obtained in the spinel structure of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} with x=0.0 and 0.1. The corresponding average crystallite size for each sample was 40.3 nm and 39.2 nm respectively. In addition, the Mossbauer spectra were analyzed into two subspectra, one for the tetrahedral A-site and the other for the octahedral B-site. The Mossbauer parameters were determined and discussed for the studied system. The cation distribution was estimated from the analysis of the Mossbauer spectra as well as the X-ray diffraction patterns. The results showed that Mg ions occupy mainly B-site while both Mn and Fe ions are distributed between A- and B-sites. - Highlights: • Mossbauer characterization of Mg–Mn ferrite prepared by hydrothermal route. • X-ray powder diffraction analysis of Mg–Mn ferrite prepared by hydrothermal route. • Solubility limit of MgMn ferrite under

  17. Hydrothermal conditions around a radioactive waste repository

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1981-12-01

    Numerical solutions for the hydrothermal conditions around a hard rock repository for nuclear fuel waste are presented. The objective of the present investigation is to illustrate in principle the effect of heat released from a hypothetical radioactive waste repository with regard to anisotropy in the rock permeability. Permeability and porosity are assumed to be constant or to decrease exponentially with depth. The hypothetical repository is situated below a horizontal ground surface or below the crest of a hill, and it is assumed that the water table follows the topography. Major interest in the analysis is directed towards the influence of anisotropy in the permeability on the flow patterns and travel times for water particles, being traced from the repository to the ground surface. The presented results show that anisotropy in the permeability may have a significant influence on the flow conditions around the repository and subsequently also on the travel times from the repository. (Authors)

  18. Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions

    International Nuclear Information System (INIS)

    Yin, Sudong; Tan, Zhongchao

    2012-01-01

    Highlights: ► Hydrothermal liquefaction (HTL) at acidic, neutral and alkaline conditions. ► Bio-oil compositions varied with acidic, neutral and alkaline conditions. ► Reaction mechanisms varied with acidic, neutral and alkaline conditions. ► HTL should be classified to acidic, neutral and alkaline processes. -- Abstract: Hydrothermal liquefaction (HTL) of biomass to bio-oil under alkaline or neutral conditions has been widely reported in literature. However, there has been limited data available in literature on comparing HTL of biomass to bio-oil under acidic, neutral, and alkaline in terms of chemical compositions and yields by using the same reaction conditions and reactor. Using cellulose as a feedstock we conducted the comparative studies for pH = 3, 7 and 14 at temperatures of 275–320 °C with reaction residence times of 0–30 min. Results showed that the chemical compositions of the bio-oils were different for acidic, neutral and alkaline conditions. Under acidic and neutral conditions, the main composition of HTL bio-oil was 5-(Hydroxymethyl)furfural (HMF). Under alkaline conditions, the main compounds became C 2–5 carboxylic acids. For bio-oil yields, it was observed that high temperatures and long residence times had negative effects, regardless of the pH levels. However, the corresponding reaction mechanisms are different. Under acidic conditions, the decrease in the bio-oil yields was mainly caused by polymerization of 5-HMF to solids. Under neutral conditions, the bio-oil yields decreased because 5-HMF was converted to both solid and gaseous products. Under alkaline conditions, the bio-oil decomposed to gases through the formation of short chain acids and aldehydes. Therefore, although they were all referred to as HTL bio-oil in literature, they were formed by different reaction pathways and had different properties due to their different chemical compositions. Given these differences, different strategies are recommended in this study to

  19. Solubilities of iron and nickel oxides under high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Choi, Ke-Chon; Jung, Yong-Ju; Yeon, Jei-Won; Jee, Kwang-Yong

    2007-01-01

    The purposes of primary coolant chemistry are to assure fuel and material integrity and to minimize out of core radiation fields. During the PWR operation, crud deposits are expected on the cladding, leading to cladding failure and raising the radioactivity. Such deposits come from the corrosion products of system surface. To achieve optimal conditions for primary coolant, basic researches on mass transfer, deposition and solubility of corrosion products are needed. The initial stage of crud formation could be the studies on the solubility of a structural material. It has been known that the solubility of metal oxides in boric acid under high temperature and high pressure condition depends on the pH and dissolved hydrogen. Thus, the effect of various pH on the solubility of metal oxide in boric acid solution was investigated in this work

  20. High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO2 using ionic liquid as a template

    International Nuclear Information System (INIS)

    Liu, Hong; Wang, Mengyang; Hu, Hongjiu; Liang, Yuguang; Wang, Yong; Cao, Weiran; Wang, Xiaohong

    2011-01-01

    Mesoporous silicas and Fe-SiO 2 with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 o C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 o C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 o C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO 2 has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 o C for 12 d or steam-treated at 600 o C for 6 h. -- Graphical abstract: Worm-like mesoporous silica and Fe-SiO 2 with high hydrothermal stability have been synthesized using ionic liquid 1-hexadecane-3-methylimidazolium bromide as a template under the assistance of NaF at high temperature. Display Omitted Research highlights: → Increasing aging temperature improved the hydrothermal stability of materials. →Addition of NaF enhanced the polymerization degree of silicates. → Mesoporous SiO 2 and Fe-SiO 2 obtained have remarkable hydrothermal stability.

  1. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  2. Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique

    International Nuclear Information System (INIS)

    Butenhoff, T.J.

    1994-01-01

    Hydrothermal processing is being developed as a method for organic destruction for the Hanford Site in Washington. Hydrothermal processing refers to the redox reactions of chemical compounds in supercritical or near-supercritical aqueous solutions. In order to design reactors for the hydrothermal treatment of complicated mixtures found in the Hanford wastes, engineers need to know the thermophysical properties of the solutions under hydrothermal conditions. The author used the laser-induced grating technique to measure the thermal diffusivity and speed of sound of hydrothermal solutions. In this non-invasive optical technique, a transient grating is produced in the hydrothermal solution by optical absorption from two crossed time-coincident nanosecond laser pulses. The grating is probed by measuring the diffraction efficiency of a third laser beam. The grating relaxes via thermal diffusion, and the thermal diffusivity can be determined by measuring the decay of the grating diffraction efficiency as a function of the pump-probe delay time. In addition, intense pump pulses produce counterpropagating acoustic waves that appear as large undulations in the transient grating decay spectrum. The speed of sound in the sample is simply the grating fringe spacing divided by the undulation period. The cell is made from a commercial high pressure fitting and is equipped with two diamond windows for optical access. Results are presented for dilute dye/water solutions with T = 400 C and pressures between 20 and 70 MPa

  3. An Integrative Genomic Island Affects the Adaptations of Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii to High Temperature and High Hydrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2016-11-01

    Full Text Available Deep-sea hydrothermal vent environments are characterized by high hydrostatic pressure and sharp temperature and chemical gradients. Horizontal gene transfer is thought to play an important role in the microbial adaptation to such an extreme environment. In this study, a 21.4-kb DNA fragment was identified as a genomic island, designated PYG1, in the genomic sequence of the piezophilic hyperthermophile Pyrococcus yayanosii. According to the sequence alignment and functional annotation, the genes in PYG1 could tentatively be divided into five modules, with functions related to mobility, DNA repair, metabolic processes and the toxin-antitoxin system. Integrase can mediate the site-specific integration and excision of PYG1 in the chromosome of P. yayanosii A1. Gene replacement of PYG1 with a SimR cassette was successful. The growth of the mutant strain ∆PYG1 was compared with its parent strain P. yayanosii A2 under various stress conditions, including different pH, salinity, temperature and hydrostatic pressure. The ∆PYG1 mutant strain showed reduced growth when grown at 100 °C, while the biomass of ∆PYG1 increased significantly when cultured at 80 MPa. Differential expression of the genes in module Ⅲ of PYG1 was observed under different temperature and pressure conditions. This study demonstrates the first example of an archaeal integrative genomic island that could affect the adaptation of the hyperthermophilic piezophile P. yayanosii to high temperature and high hydrostatic pressure.

  4. The dissociation mechanism and thermodynamic properties of HCl(aq) in hydrothermal fluids (to 700 °C, 60 kbar) by ab initio molecular dynamics simulations

    Science.gov (United States)

    Mei, Yuan; Liu, Weihua; Brugger, Joël; Sherman, David M.; Gale, Julian D.

    2018-04-01

    HCl is one of the most significant volatiles in the Earth's crust. It is well established that chloride activity and acidity (pH) play important roles in controlling the solubility of metals in aqueous hydrothermal fluids. Thus, quantifying the dissociation of HCl in aqueous solutions over a wide range of temperature and pressure is crucial for the understanding and numerical modeling of element mobility in hydrothermal fluids. Here we have conducted ab initio molecular dynamics (MD) simulations to investigate the mechanism of HCl(aq) dissociation and to calculate the thermodynamic properties for the dissociation reaction at 25-700 °C, 1 bar to 60 kbar, i.e. including high temperature and pressure conditions that are geologically important, but difficult to investigate via experiments. Our results predict that HCl(aq) tends to associate with increasing temperature, and dissociate with increasing pressure. In particular, HCl(aq) is highly dissociated at extremely high pressures, even at high temperatures (e.g., 60 kbar, 600-700 °C). At 25 °C, the calculated logKd values (6.79 ± 0.81) are close to the value (7.0) recommended by IUPAC (International Union of Pure and Applied Chemistry) and some previous experimental and theoretical studies (Simonson et al.., 1990; Sulpizi and Sprik, 2008, 2010). The MD simulations indicate full dissociation of HCl at low temperature; in contrast, some experiments were interpreted assuming significant association at high HCl concentrations (≥1 m HCltot) even at room T (logKd ∼0.7; e.g., Ruaya and Seward, 1987; Sretenskaya, 1992; review in Tagirov et al., 1997). This discrepancy is most likely the result of difficulties in the experimental determination of minor (if any) concentration of associated HCl(aq) under ambient conditions, and thus reflects differences in the activity models used for the interpretation of the experiments. With increasing temperature, the discrepancy between our MD results and previous experimental

  5. The chemistry of hydrothermal magnetite: a review

    Science.gov (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  6. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  7. Deep conditions of hydrothermalism of dorsal East Pacific at 130N

    International Nuclear Information System (INIS)

    Boulegue, J.; Jedwab, J.

    1985-01-01

    Taking advantage of the formation of carbon graphite and Fe-Zn spinels one can compute the conditions of sea water-basalt interaction in deep conditions at 13 0 N E.P.R. One finds: p=260-500 bar, T=440-480 0 C, fO 2 =10 -27 -10sup(-24.5) bar, pH 2 O/pH 2 approximately= 100, fCO 2 /fCO approximately= 600. These conditions lead to a discussion of the possibilities of vaporisation of the hydrothermal fluid and to a discussion of the geochemical behaviour of U and Fe [fr

  8. Hydrothermal metallurgy for recycling of slag and glass

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Yoshikawa, Takeshi; Hirai, Nobumitsu; Katsuyama, Shigeru

    2009-01-01

    The authors have applied hydrothermal reactions to develop recycling processing of slag or glass. As an example, under hydrothermal conditions such as 200 300 deg. C and 30 40MPa with H 2 O, powders made of glass can be sintered to become solidified glass materials containing about 10mass% H 2 O. When the glass containing H 2 O is heated again under normal pressure, the glass expands releasing H 2 O to make porous microstructure. H 2 O starts to emit just above the glass transition temperature. Therefore, when we have a glass with low glass transition temperature, we can make low temperature foaming glass. The SiO 2 -Na 2 O-B 2 O 3 glass is a candidate to be such a foaming glass. In this paper, we describe our recent trial on the fabrication of the low temperature foaming glass by using hydrothermal reaction.

  9. A flow-through hydrothermal cell for in situ neutron diffraction studies of phase transformations

    International Nuclear Information System (INIS)

    O'Neill, Brian; Tenailleau, Christophe; Nogthai, Yung; Studer, Andrew; Brugger, Joel; Pring, Allan

    2006-01-01

    A flow-through hydrothermal cell for the in situ neutron diffraction study of crystallisation and phase transitions has been developed. It can be used for kinetic studies on materials that exhibit structural transformations under hydrothermal conditions. It is specifically designed for use on the medium-resolution powder diffractometer (MRPD) at ANSTO, Lucas Heights, Sydney. But it is planned to adapt the design for the Polaris beamline at ISIS and the new high-intensity powder diffractometer (Wombat) at the new Australian reactor Opal. The cell will operate in a flow-through mode over the temperature range from 25-300 deg. C and up to pressures of 100 bar. The first results of a successful transformation of pentlandite (Fe,Ni) 9 S 8 to violarite (Fe,Ni) 3 S 4 under mild conditions (pH∼4) at 120 deg. C and 3 bar using in situ neutron diffraction measurements are presented

  10. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    OpenAIRE

    M. Orikawa; H. Kamahara; Y. Atsuta; H. Daimon

    2013-01-01

    Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS) dewatered sludge). The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic...

  11. Mineral-assisted production of benzene under hydrothermal conditions: Insights from experimental studies on C6 cyclic hydrocarbons

    Science.gov (United States)

    Venturi, Stefania; Tassi, Franco; Gould, Ian R.; Shock, Everett L.; Hartnett, Hilairy E.; Lorance, Edward D.; Bockisch, Christiana; Fecteau, Kristopher M.; Capecchiacci, Francesco; Vaselli, Orlando

    2017-10-01

    Volatile Organic Compounds (VOCs) are ubiquitously present at low but detectable concentrations in hydrothermal fluids from volcanic and geothermal systems. Although their behavior is strictly controlled by physical and chemical parameters, the mechanisms responsible for the production of most VOCs in natural environments are poorly understood. Among them, benzene, whose abundances were found to be relatively high in hydrothermal gases, can theoretically be originated from reversible catalytic reforming processes, i.e. multi-step dehydrogenation reactions, involving saturated hydrocarbons. However, this hypothesis and other hypotheses are difficult to definitively prove on the basis of compositional data obtained by natural gas discharges only. In this study, therefore, laboratory experiments were carried out to investigate the production of benzene from cyclic hydrocarbons at hydrothermal conditions, specifically 300 °C and 85 bar. The results of experiments carried out in the presence of water and selected powdered minerals, suggest that cyclohexane undergoes dehydrogenation to form benzene, with cyclohexene and cyclohexadiene as by-products, and also as likely reaction intermediates. This reaction is slow when carried out in water alone and competes with isomerization and hydration pathways. However, benzene formation was increased compared to these competing reactions in the presence of sulfide (sphalerite and pyrite) and iron oxide (magnetite and hematite) minerals, whereas no enhancement of any reaction products was observed in the presence of quartz. The production of thiols was observed in experiments involving sphalerite and pyrite, suggesting that sulfide minerals may act both to enhance reactivity and also as reactants after dissolution. These experiments demonstrate that benzene can be effectively produced at hydrothermal conditions through dehydrogenation of saturated cyclic organic structures and highlight the crucial role played by minerals in this

  12. Radionuclides in hydrothermal systems as indicators of repository conditions

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1990-11-01

    Hydrothermal systems in tuffaceous and older sedimentary rocks contain evidence of the interaction of radionuclides in fluids with rock matrix minerals and with materials lining fractures, in settings somewhat analogous to the candidate repository site at Yucca Mountain, NV. Earlier studies encompassed the occurrences of U and Th in a ''fossil'' hydrothermal system in tuffaceous rock of the San Juan Mountains volcanic field, CO. More recent and ongoing studies examine active hydrothermal systems in calderas at Long Valley, CA and Valles, NM. At the Nevada Test Site, occurrences of U and Th in fractured and unfractured rhyolitic tuff that was heated to simulate the introduction of radioactive waste are also under investigation. Observations to date suggest that U is mobile in hydrothermal systems, but that localized reducing environments provided by Fe-rich minerals and/or carbonaceous material concentrate U and thus attenuate its migration. 11 refs., 6 figs., 1 tab

  13. Post-capture immune gene expression studies in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus acclimatized to atmospheric pressure.

    Science.gov (United States)

    Barros, Inês; Divya, Baby; Martins, Inês; Vandeperre, Frederic; Santos, Ricardo Serrão; Bettencourt, Raul

    2015-01-01

    Deep-sea hydrothermal vents are extreme habitats that are distributed worldwide in association with volcanic and tectonic events, resulting thus in the establishment of particular environmental conditions, in which high pressure, steep temperature gradients, and potentially toxic concentrations of sulfur, methane and heavy metals constitute driving factors for the foundation of chemosynthetic-based ecosystems. Of all the different macroorganisms found at deep-sea hydrothermal vents, the mussel Bathymodiolus azoricus is the most abundant species inhabiting the vent ecosystems from the Mid-Atlantic Ridge (MAR). In the present study, the effect of long term acclimatization at atmospheric pressure on host-symbiotic associations were studied in light of the ensuing physiological adaptations from which the immune and endosymbiont gene expressions were concomitantly quantified by means of real-time PCR. The expression of immune genes at 0 h, 12 h, 24 h, 36 h, 48 h, 72 h, 1 week and 3 weeks post-capture acclimatization was investigated and their profiles compared across the samples tested. The gene signal distribution for host immune and bacterial genes followed phasic changes in gene expression at 24 h, 1 week and 3 weeks acclimatization when compared to other time points tested during this temporal expression study. Analyses of the bacterial gene expression also suggested that both bacterial density and activity could contribute to shaping the intricate association between endosymbionts and host immune genes whose expression patterns seem to be concomitant at 1 week acclimatization. Fluorescence in situ hybridization was used to assess the distribution and prevalence of endosymbiont bacteria within gill tissues confirming the gradual loss of sulfur-oxidizing (SOX) and methane-oxidizing (MOX) bacteria during acclimatization. The present study addresses the deep-sea vent mussel B. azoricus as a model organism to study how acclimatization in aquaria and the

  14. Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure

    DEFF Research Database (Denmark)

    Ahmadi, Majid; Younesi, Reza; Guinel, Maxime J-F

    2014-01-01

    ) nanoparticles were synthesized using a simple and inexpensive low temperature and low pressure hydrothermal (HT) method. The precursor solution used for the HT process was prepared by adding hydrochloric acid to diluted sodium tungstate solutions (Na2WO4 center dot 2H(2)O) at temperatures below 5 degrees C...... and then dissolved using oxalic acid. This HT process yielded tungstite (WO3 center dot H2O) nanoparticles with the orthorhombic structure. A heat treatment at temperatures at or above 300 degrees C resulted in a phase transformation to monoclinic WO3, while preserving the nanoparticles morphology. The production...

  15. Production of bio-oil via hydrothermal liquefaction of birch sawdust

    International Nuclear Information System (INIS)

    Malins, Kristaps

    2017-01-01

    Highlights: • NaOH has significant impact on hydrothermal liquefaction of birch sawdust. • High yield of bio-oil (54.1%) was obtained under developed optimal conditions. • Compounds in bio-oil have appropriate chemical structure for hydrocarbon synthesis. • The yield of marketable solid residue with potential for industrial application was 7.1%. • Solid residue has high calorific value (29.8 MJ/kg) and C content (74.6 wt.%). - Abstract: The effect of weight ratio of plywood manufacturing by-product birch sawdust (BS) to water (1/2–1/8), reaction temperature (200–340 °C), initial H 2 pressure (0–10 MPa), residence time (5–90 min), catalysts amount (0.25–7.0 wt.%) and type (FeSO 4 , ZnSO 4 , NiSO 4 , Raney-nickel, Ni65%/SiO 2 −Al 2 O 3 , Na 2 CO 3 and NaOH) on hydrothermal liquefaction of BS was investigated. High yield of bio-oil (54.1%) with calorific value (CV) 24.9 MJ/kg under developed optimal experimental conditions in the presence of NaOH (5 wt.%) utilizing weight ratio of BS to water 1/4, residence time 5 min, mixing speed 250 rpm at 300 °C without pressurized particular inert gas or H 2 atmosphere was achieved. Compounds in bio-oil analyzed by gas chromatography-mass spectrometry (GC-MS) have suitable chemical structures for conversion into renewable hydrocarbons. Marketable solid residue (SR) with yield 7.1%, high CV (29.8 MJ/kg) and perspective characteristics for industrial application was obtained. Produced gas in process analyzed by gas chromatography-thermal conductivity detector (GC–TCD) contains 60.1 vol.% of CO 2 .

  16. The Anvils as Pressure Calibrants in the Hydrothermal Diamond Anvil Cell

    Science.gov (United States)

    Davis, M. K.; Panero, W. R.; Stixrude, L. P.

    2003-12-01

    Throughout the crust and the upper part of the mantle, water is an important agent of heat and mass transport in processes ranging from metasomatism to magma generation in arc environments. One of the important properties of water in this regime: its ability to dissolve significant amounts of solids, presents a substantial challenge to the experimental study of water-rich systems. Many commonly used pressure standards, such as quartz and ruby, dissolve in water under the conditions accessible to the hydrothermal diamond anvil cell (up to 1200 K and 5 GPa). For this reason, it is important to develop alternative pressure calibrants. Two methods have been developed by other groups for pressure calibration in the HDAC in the presence of water. One method relies on the equation of state of the ambient fluid and the observation that the sample chamber remains approximately isochoric on heating. Disadvantages of this method include our imperfect knowledge of the equation of state of water over the relevant pressure-temperature interval, possible changes in fluid composition, and sample chamber assembly relaxation at temperatures above 800 K. The second method is based on the Raman signal from diamond chips loaded with the sample. Synthetic 13C diamond is used to avoid overlap with the much stronger signal from the anvils. Diamond is an ideal pressure sensor since it is chemically inert and unaffected by water. Therefore, we use the tips of the diamond anvils as "internal" sensors. The primary disadvantage of this method is that the stress distribution inside the anvils is non-hydrostatic and inhomogeneous, although the normal stress across the diamond-sample interface must be continuous. Using confocal micro-Raman spectroscopy we are able to characterize both the inhomogeneity and the non-hydrostaticity of the diamond stress field by combining axial and radial transects with peak shapes. We find that on room temperature loading there is substantial inhomogeneity in the

  17. Chemical environments of submarine hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  18. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    Science.gov (United States)

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R.P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  19. Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Li; Hashimoto, Yoshio; Taishi, Toshinori; Ni Qingqing

    2011-01-01

    Multi-walled carbon nanotubes (MWCNTs) with improved dispersion property have been prepared by a mild and fast hydrothermal treatment. The hydrothermal process avoids using harsh oxidants and organic solvents, which is environmental friendly and greatly decreases the damage to intrinsic structure of MWCNTs. The modified MWCNTs were highly soluble in polar solvents such as water, ethanol and dimethylformamide. Morphological observation by TEM indicated that the diameter and inherent structure were well reserved in modified MWCNTs. X-ray photoelectron spectroscopy and Raman spectroscopy were used to quantify functional groups created on the MWCNT surface, and to determine rational parameters of hydrothermal process.

  20. Improving the circular economy via hydrothermal processing of high-density waste plastics.

    Science.gov (United States)

    Helmer Pedersen, Thomas; Conti, Federica

    2017-10-01

    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies. This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical compounds. The outlook presents conversion yields, carbon balances, and chemical details on the products obtained. It is found that all the investigated resins are prone to hydrothermal treatment, and that high yields of monomers and high value compounds (up to nearly 100%), suitable for chemicals and fuels applications, can be obtained. For instance, for polycarbonate, styrene-butadiene, poly(lactic acid), poly(ethylene terephthalate), and poly(butylene terephthalate), original monomeric compounds can be reclaimed for manufacturing new resins. The promising results presented demonstrate that hydrothermal processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Thermodynamic analysis of hydrogen production via hydrothermal gasification of hexadecane

    KAUST Repository

    Alshammari, Yousef M.

    2012-04-01

    This work reports the equilibrium behaviour of the hydrothermal gasification of hexadecane, a heavy saturate model compound, under non-oxidative isothermal and oxidative adiabatic conditions, using the Peng-Robinson equation of state and the direct minimisation of Gibbs free energy employed within the Aspen HYSYS. This modelling enabled establishing both the limits and optimum conditions at which the hydrogen molar yield may be theoretically maximised. The effects of parameters including the reactor isothermal temperature, pressure, water to carbon ratio, and oxygen to carbon ratio on the molar yields of produced gaseous species were analysed. The model has been validated by comparing its results with different reported modelling and experimental data under identical conditions which resulted in a good agreement. The results reported in this work show the potential of achieving economic yields of hydrogen and syngas from liquid hydrocarbons under downhole hydrothermal conditions. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights.

  2. Raman studies of hexagonal MoO{sub 3} at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.C.; Zhang, Z.M.; Dai, R.C.; Zhang, J.W.; Ding, Z.J. [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, L. [Department of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Z.P. [The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-05-15

    The transition-metal oxide MoO{sub 3} is an important semiconductor and has various technological applications in catalysts, electrochromic and photochromic devices, gas sensors, and battery electrodes. In this study, the hexagonal MoO{sub 3} prepared by a hydrothermal method is in morphology of microrod with diameter of 0.8-1.2 {mu}m and length of 2.0-4.3 {mu}m. Its structural stability was investigated by an in situ Raman scattering method in a diamond anvil cell up to 28.7 GPa at room temperature. The new Raman peak around 1000 cm{sup -1} implies that a phase transition from hexagonal to amorphous starts at 5.6 GPa, and the evolution of the Raman spectra indicates that the structural transition is completed at about 13.2 GPa. After releasing pressure to ambient condition, the Raman spectrum pattern of the high pressure phase was retained, revealing that the phase transition is irreversible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  4. Synthesis of MnV{sup 2}O{sup 6} under autogenous hydrothermal conditions and its anodic performance

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Michio; Morishita, Takahiro; Hirano, Masanori; Gupta, Vinay; Nakajima, Tsuyoshi [Faculty of Engineering, Aichi Institute of Technology, Yakusa, Toyota 470-0392 (Japan)

    2003-01-01

    Anhydrous crystalline powders of MnV{sub 2}O{sub 6} (brannerite) were successfully precipitated from mixed aqueous solution of Mn(CH{sub 3}COO){sub 2} and V{sub 2}O{sub 5} with a metal ion concentration of 0.01-1.0 mol/l at 135-200 C under autogenous hydrothermal condition in a closed vessel. The characterization of MnV{sub 2}O{sub 6} synthesized was carried out by XRD, TG, TEM and anodic performance measurement. In case of mixtures with a concentration of 0.1-1.0 mol/l, single phase anhydrous crystalline MnV{sub 2}O{sub 6} with homogeneous thin rod-like particles were synthesized by autogenous hydrothermal process, though starting reagent V{sub 2}O{sub 5} was not fully dissolved. They showed high anodic performance in lithium ion batteries; high charge capacity as 600 mA h/g even after the 10th cycle and stable cyclic performance. MnV{sub 2}O{sub 6} powders synthesized from relatively high concentration of metal ions showed an abrupt increase in charge capacity after third or fourth discharge/charge cycles, though the first cycle showed rather high irreversible capacity.

  5. Processing of Microalgae: Acoustic Cavitation and Hydrothermal Conversion

    Science.gov (United States)

    Greenly, Justin Michael

    The production of energy dense fuels from renewable algal biomass feedstocks -- if sustainably developed at a sufficiently large scale -- may reduce the consumption of petroleum from fossil fuels and provide many environmental benefits. Achieving economic feasibility has several technical engineering challenges that arise from dilute concentration of growing algae in aqueous media, small cell sizes, and durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation and conversion of the cellular contents is necessary. Research was carried out to address two processing options for efficient microalgae biofuel production: 1. Ultrasonic cavitation for cell disruption and 2. Hydrothermal conversion of a model algal triglyceride. 1. Ultrasonic cell disruption, which relies on cavitating bubbles in the suspension to produce damaging shock waves, was investigated experimentally over a range of concentrations and species types. A few seconds of high intensity sonication at fixed frequency yielded significant cell disruption, even for the more durable cells. At longer exposure times, effectiveness was seen to decline and was attributed, using acoustic measurements, to ultrasonic power attenuation in the ensuing cloud of cavitating bubbles. Processing at higher cell concentrations slowed cell disintegration marginally, but increased the effectiveness of dissipating ultrasonic energy. A theoretical study effectively predicted optimal conditions for a variety of parameters that were inaccessible in this experimental investigation. In that study, single bubble collapse was modeled to identify operating conditions that would increase cavitation, and thus cell disruption. Simulations were conducted by varying frequency and pressure amplitude of the ultrasound wave, and initial bubble size. The simulation results indicated that low frequency, high sound wave amplitudes, and small initial bubble size generate the highest shock

  6. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  7. A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples

    DEFF Research Database (Denmark)

    Kallmeyer, J.; Ferdelman, TG; Jansen, KH

    2003-01-01

    Details about the construction and use of a high-pressure thermal gradient block for the simultaneous incubation of multiple samples are presented. Most parts used are moderately priced off-the-shelf components that easily obtainable. In order to keep the pressure independent of thermal expansion...... range of temperatures and pressures and can easily be modified to accommodate different experiments, either biological or chemical. As an application, we present measurements of bacterial sulfate reduction rates in hydrothermal sediments from Guyamas Basin over a wide range of temperatures and pressures...

  8. Ageing of low-firing prehistoric ceramics in hydrothermal conditions

    Directory of Open Access Journals (Sweden)

    Petra Zemenová

    2012-03-01

    Full Text Available Remains of a prehistoric ceramic object, a moon-shaped idol from the Bronze Age found in archaeological site Zdiby near Prague in the Czech Republic, were studied especially in terms of the firing temperature. Archaeological ceramics was usually fired at temperatures below 1000 °C. It contained unstable non-crystalline products, residua after calcination of clay components of a ceramic material. These products as metakaolinite can undergo a reverse rehydration to a structure close to kaolinite. The aim of this work was to prove whether the identified kaolinite in archaeological ceramics is a product of rehydration. The model compound containing high amount of kaolinite was prepared in order to follow its changes during calcination and hydrothermal treatment. Archaeological ceramics and the model compound were treated by hydrothermal ageing and studied by XRF, XRD and IR analyses. It was proved that the presence of kaolinite in the border-parts of the archaeological object was not a product of rehydration, but that it originated from the raw materials.

  9. Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA

    Science.gov (United States)

    Butova, V. V.; Budnyk, A. P.; Bulanova, E. A.; Lamberti, C.; Soldatov, A. V.

    2017-07-01

    In this paper we present, for the first time, a simple hydrothermal recipe for the synthesis of ZIF-8 Metal-Organic Framework (MOF) with a large specific surface area (1340 m2/g by BET). An important feature of the method is that the product forms in aqueous medium under standard hydrothermal conditions without DMF and great excess of linker with the use of TEA as structure directing agent. The ZIF-8 crystal phase of the product was confirmed by XRD; this technique has been also exploited to check the crystallinity and to follow the changes in the MOF structure induced by heating. TGA and temperature dependent XRD testify the high thermal stability of the material (470 °C in N2 and at 400 °C in air). The IR spectral profile of the material provides a complete picture of vibrations assigned to the linker and the metal center. The systematic investigation of the products obtained by increasing the TEA amount in the reacting medium from 0 to 25.5 mol equivalent Zn2+, allowed us to understand its role and to find 2.6 mol equivalent Zn2+ as the minimum amount needed to obtain a single phase ZIF-8 material with the high standard reported above. The stability of the material under severe basic conditions makes it a promising candidate in heterogeneous catalysis. The material has shown high capacity in I2 uptake, making it interesting also for selective molecular adsorption.

  10. Brine/Rock Interaction in Deep Oceanic Layered Gabbros: Petrological Evidence from Cl-Rich Amphibole, High-Temperature Hydrothermal Veins, and Experiments

    Science.gov (United States)

    Currin Sala, A. M.; Koepke, J.; Almeev, R. R.; Teagle, D. A. H.; Zihlmann, B.; Wolff, P. E.

    2017-12-01

    Evidence of high temperature brine/rock interaction is found in hydrothermal veins and dykelets that cross-cut layered olivine gabbros in the deep palaeocrust of the Sumail Ophiolite, Sultanate of Oman. Here we present petrological and geochemical data from these samples, and an experimental attempt to simulate brine/gabbro interaction using externally heated cold seal pressure vessels. The studied natural veins and dykelets contain pargasite, hornblende, actinolite, and Cl-rich pargasite with up to 5 wt% Cl, showing a range of formation conditions from magmatic to metamorphic (hydrothermal) and thus a complex history of brine/rock interaction. In addition, the isotopic study of the radiogenic 87/86Sr and stable 18O in different amphibole types provide an estimate for the extent of seawater influence as alteration agent in the veins of the studied samples. Experiments performed at 750 °C and 200 MPa with different starting materials (chlorine-free amphibole, olivine gabbro powder) and 20 wt% NaCl aqueous brine, illustrate the process by which gabbro-hosted amphibole-rich veins evolve at subsolidus temperatures in the presence of a seawater-derived fluid. Our results demonstrate a decrease in olivine, plagioclase and magnetite content in favour of hastingsite, pargasite and magnesiohornblende, a decrease of IVAl and Ti in the starting amphibole, and an increase in Cl in amphibole, up to 0.2 Cl wt%. Our experiments show the change of magmatic pargasite towards more magnesium and silica-rich end members with results comparable to mildly chlorine-rich pargasites and hornblendes found in the natural samples studied. However, the experimental setup also presents limitations in the attainment of very high-chlorine amphibole (up to 5 wt%). Our analytical and experimental results provide further evidence for the existence of a hydrothermal cooling system in the deep oceanic crust.

  11. Imaging microbial metal metabolism in situ under conditions of the deep-sea hydrothermal vents

    Science.gov (United States)

    Oger, P. M.; Daniel, I.; Simionovici, A.; Picard, A.

    2006-12-01

    High-pressure biotopes are the most widely spread biotopes on Earth. They represent one possible location for the origin of life. They also share striking similarities with extraterrestrial biotopes such as those postulated for Europe or Mars. In absence of light, dissimilatory reduction of metals (DMR) is fueling the ecosystem. Monitoring the metabolism of the deep-sea hydrothermal vent microbial fauna under P, T and chemical conditions relevant to their isolation environment can be difficult because of the confinement and because most spectroscopic probes do not sense metallic ions in solution. We demonstrated the possibility to use Xray spectroscopy to monitor the speciation of metallic species in solution. Experiments were performed at The ESRF using Selenium (Se) detoxification by Agrobacterium tumefaciens as an analog of DMR. The reduction of Se from selenite to the metal was monitored by a combiantion of two Xray spectroscopic techniques (XANES and μXRF). Cells were incubated in the low pressure DAC in growth medium supplemented with 5mM Selenite and incubated under pressures up to 60 Mpa at 30°C for 24h. The evolution of the speciation can be easily monitored and the concentration of each Se species determined from the Xray spectra by linear combinations of standard spectra. Selenite is transformed by the bacterium into a mixture of metal Se and methylated Se after 24 hours. Se detoxification is observed in situ up to at least 25 MPa. The technique, developped for Se can be adapted to monitor other elements more relevant to DMR such as As, Fe or S, which should allow to monitor in situ under controlled pressure and temperature the metabolism of vent organisms. It is also amenable to the monitoring of toxic metals. Xray spectroscopy and the lpDAC are compatible with other spectroscopic techniques, such as Raman, UV or IR spectroscopies, allowing to probe other metabolic activities. Hence, enlarging the range of metabolic information that can be obtained in

  12. Experimental estimates of the energy budget of hydrothermal eruptions; application to 2012 Upper Te Maari eruption, New Zealand

    Science.gov (United States)

    Montanaro, Cristian; Scheu, Bettina; Cronin, Shane J.; Breard, Eric C. P.; Lube, Gert; Dingwell, Donald B.

    2016-10-01

    Sudden hydrothermal eruptions occur in many volcanic settings and may include high-energy explosive phases. Ballistics launched by such events, together with ash plumes and pyroclastic density currents, generate deadly proximal hazards. The violence of hydrothermal eruptions (or explosive power) depends on the energy available within the driving-fluids (gas or liquid), which also influences the explosive mechanisms, volumes, durations, and products of these eruptions. Experimental studies in addition to analytical modeling were used here to elucidate the fragmentation mechanism and aspects of energy balance within hydrothermal eruptions. We present results from a detailed study of recent event that occurred on the 6th of August 2012 at Upper Te Maari within the Tongariro volcanic complex (New Zealand). The eruption was triggered by a landslide from this area, which set off a rapid stepwise decompression of the hydrothermal system. Explosive blasts were directed both westward and eastward of the collapsed area, with a vertical ash plume sourced from an adjacent existing crater. All explosions ejected blocks on ballistic trajectories, hundreds of which impacted New Zealand's most popular hiking trail and a mountain lodge, 1.4 km from the explosion locus. We have employed rocks representative of the eruption source area to perform rapid decompression experiments under controlled laboratory conditions that mimic hydrothermal explosions under controlled laboratory conditions. An experimental apparatus for 34 by 70 mm cylindrical samples was built to reduce the influence of large lithic enclaves (up to 30 mm in diameter) within the rock. The experiments were conducted in a temperature range of 250 °C-300 °C and applied pressure between 4 MPa and 6.5 MPa, which span the range of expected conditions below the Te Maari crater. Within this range we tested rapid decompression of pre-saturated samples from both liquid-dominated conditions and the vapor-dominated field

  13. High blood pressure - adults

    Science.gov (United States)

    ... pressure is found. This is called essential hypertension. High blood pressure that is caused by another medical condition or medicine you are taking is called secondary hypertension. Secondary hypertension may be due to: Chronic ...

  14. Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions

    International Nuclear Information System (INIS)

    Lee, Eduardo J.H.; Ribeiro, Caue; Longo, Elson; Leite, Edson R.

    2006-01-01

    Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 deg. C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO 2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data

  15. Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions

    International Nuclear Information System (INIS)

    Zhilyaev, A.P.; Sabirov, I.; Gonzalez-Doncel, G.; Molina-Aldareguia, J.; Srinivasarao, B.; Perez-Prado, M.T.

    2011-01-01

    Research highlights: → We analyze the influence of Nb additions on the shear-induced α → ω → β phase transformations in pure Zr by high pressure torsion (HPT). → Nb reduces the transition pressures and increases the transformation kinetics. → High pressure phases are retained under ambient conditions due to the presence of an internal stress. → Post-HPT annealing allows to fabricate bimodal/biphase nanostructures with enhanced mechanical behavior. - Abstract: This paper analyzes the influence of Nb on the shear-induced α → ω → β transformation taking place when processing Zr by high pressure torsion (HPT) under suitable conditions of pressure and shear. With that purpose, pure Zr and Zr-2.5%Nb were processed by HPT at room temperature and at pressures ranging from 0.25 to 6 GPa using 5 anvil turns. Nb causes a further reduction of the transition pressures, which are already lower when applying shear besides pressure. Thus, the transition pressure to the β phase is reduced at least 100 times in the Zr-Nb alloy. Alloying with Nb decreases the grain size of the transformed phases, significantly enhances their thermal stability and increases their UTS and elongation to failure. Selected post-HPT annealing treatments lead to the development of very tough, multiphase Zr and Zr-Nb with bimodal grain size distributions. The retention of the high pressure phases under ambient conditions is explained by the development of a high internal stress during processing. This stress is measured by synchrotron radiation diffraction at HZB-BESSY II. It is proposed that the presence of Nb reduces the internal stress level required for the retention of the high pressure phases.

  16. The critical singularities of water and its significance in the hydrothermal mineralization of uranium

    International Nuclear Information System (INIS)

    Hu Baoqun; Lv Guxian; Wang Fangzheng; Sun Zhanxue; Zhu Peng

    2008-01-01

    Water is the main composition of the geo-fiuid. With the changes of temperature and pressure, its phases and physicochemical properties will vary and the critical singularity occur at the critical point of second-order phase transition. These changes of water will enormously affect the hydrothermal mineralizations. This paper has introduced the types and characteristics of water phase transitions, studied the phase transitions of water in the lithosphere and showed the critical singularity of water with the example of the isobaric heat capacity. The conclusions are as follow: (1) the critical singularities of water are the most obvious as the temperature and pressure near to the critical constants of water; (2) Because the temperature changes with the pressure according to the thermal curve in the lithosphere, it is difficult to find a place where the temperature and pressure can be at the critical constants at same time except the coupling effect of the hydrothermal processes, intermediate-acidic magmatism and faulting; (3) To the hydrothermal mineralization, the significances of water's critical singularities at least include the sharp variation of solubility and instantaneous high pressure to conduct the deposit of ore-forming materials and fault formation. (authors)

  17. Interfacial tension measurement between CO2 and brines under high temperature and elevated pressure conditions

    Science.gov (United States)

    Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M.

    2012-04-01

    We have investigated the dependence of interfacial tension of (CO2 + brine) on temperature, pressure and salinity (including both salt type and molality) over the range of conditions applicable to CO2 storage in saline aquifers. The study covered a wide range of measurements of the interfacial tensions between carbon dioxide and (NaCl + KCl)(aq), CaCl2(aq), MgCl2(aq), Na2SO4(aq), KHCO3(aq), NaHCO3(aq) and two laboratory constructed brines with molality ranging from (0.3 to 5.0) mol·kg-1. The measurements were made at temperatures between (298 and 448) K at various pressures up to 50 MPa, using the pendant drop method in a high-pressure view cell filled with water-saturated CO2. The drop to be imaged was created by injecting brine from a high-pressure syringe pump into a capillary sealed through the top of the cell. The expanded uncertainties of the experimental state variables at 95 % confidence are +0.05 K in temperature and +70 kPa in pressure. For the interfacial tension, the overall expanded relative uncertainty at 95 % confidence was +1.6%. The experimental results show that interfacial tension for all the systems increases linearly with molality, indicating that relatively few measurements and simple interpolation procedures are adequate for describing this property accurately over wide ranges of conditions.

  18. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  19. Numerical Simulation of a Non-volcanic Hydrothermal System Caused by Formation of a High Permeability Fracture Zone

    Science.gov (United States)

    Oka, Daisuke; Ehara, Sachio; Fujimitsu, Yasuhiro

    2010-05-01

    Because in the Japanese islands the earth crust activity is very active, a disposal stratum for high-level radioactive waste produced by reprocessing the spent nuclear fuel from nuclear power plants will be selected in the tectonically stable areas in which the waste can be disposed underground safely for a long term and there is no influence of earthquakes, seismic activities, volcanic activities, upheaval, sedimentation, erosion, climate and global sea level change and so on, which causes the risk of the inflow of the groundwater to destroy the disposal site or the outflow to the ground surface. However, even if the disposal stratum in such condition will be chosen, in case that a new high permeability fracture zone is formed by the earthquake, and a new hydrothermal system may be formed for a long term (thousands or millions years) and the system may affect the disposal site. Therefore, we have to understand the feature of the non-volcanic hydrothermal system through the high permeability fracture zone. We estimated such influence by using HYDROTHERM Ver2.2 (Hayba & Ingebritsen, 1994), which is a three-dimensional numerical reservoir simulator. The model field is the northwestern part of Kego Fault, which was formed by a series of earthquakes called "the 2005 Fukuoka Prefecture Western Offshore Earthquakes" (the main shock of Mjma 7.0 on 20 March 2005) in Kyushu, Japan. The results of the numerical simulations show the development of a low temperature hydrothermal system as a new fracture zone is formed, in case that there is no volcanic heat source. The results of the simulations up to 100,000 years after formation of the fracture zone show that the higher heat flow and the wider and more permeable fracture zone accelerate the development of the hydrothermal system in the fracture zone. As a result of calculation of up to10 million years, we clarified the evolutional process of the non-volcanic hydrothermal system through the high permeability fracture zone. At

  20. Borders of life: lessons from Microbiology of deep-sea hydrothermal vents

    Science.gov (United States)

    Prieur, D.

    Thirty years ago, the deep-sea was known as a low density biotope due to coldness, darkness and famine-like conditions. The discovery of deep-sea hydrothermal vents in the Eastern Pacific in 1977 and the associated black smokers in 1979 considerably changed our views about life on Earth. For the first time, an ecosystem almost independent (at least for tens of years) of solar nergy was discovered. Besides the spectacular and unexpected communities of invertebrates based on symbiotic associations with chemo-litho-autotrophic bacteria, prokaryotic communities associated with high temperature black smokers fascinated microbiologists of extreme environments. Within mineral structures where temperature gradients may fluctuate from ambient seawater temperatures (2°C) up to 350°C, thermophilic (optimal growth above 60°C) and hyperthermophilic (optimal growth above 80°C) microorganisms thrived under very severe conditions due to elevated hydrostatic pressure, toxic compounds or strong ionizing radiations. These organisms belong to both domains of Bacteria and Archaea and live aerobically but mostly anaerobically, using a variety of inorganic and organic carbon sources, and a variety of electron donnors and acceptors as well. The most thermophilic organism known on Earth was isolated from a mid-Atlantic-Ridge hydrotermal vent: Pyrolobus fumarii grows optimally at 110°c and its upper temperature limit for life is 113°C. Such an organism survived to autoclaving conditions currently used for sterilization procedures. Many other hyperthermophilic organisms were isolated and described, including fermenters, sulphate and sulphur reducers, hydrogen oxidizers, nitrate reducers, methanogens, etc. Although most of anaerobes are killed when exposed to oxygen, several deep-sea hyperthermophiles appeared to survive to both oxygen and starvation exposures, indicating that they probably can colonize rather distant environments Because of elevated hydrostatic pressure that exists at

  1. Comparison of anti-corrosive properties between hot alkaline nitrate blackening and hydrothermal blackening routes

    Energy Technology Data Exchange (ETDEWEB)

    Fattah-alhosseini, A. [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Yazdani Khan, H., E-mail: hamid.yazdanikhan@gmail.com [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Heidarpour, A. [Department of Metallurgy and Materials Engineering, Hamedan University of Technology, Hamedan, 65155-579 (Iran, Islamic Republic of)

    2016-08-15

    In this study, the oxide films were formed on carbon steel by using hot alkaline nitrate and hydrothermal treatments. A dense and protective oxide film was obtained by hydrothermal method due to application of high pressure and by increasing solution temperature from boiling temperature (155 °C) to 250 °C. Oxide films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical tests including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). These analyses showed that the magnetite film which was formed on carbon steel surface by hydrothermal treatment offers the best resistance in 3.5 wt.% NaCl solution. Although thicker oxide film could be obtained via hot alkaline nitrate black oxidizing, corrosion resistance was lower as a result of being highly porous and the presence of hematite. - Highlights: • Oxide films have been formed on steel by using of hot alkaline nitrate and hydrothermal treatments. • A dense and protective oxide film was obtained by hydrothermal treatment. • SEM micrographs showed that a dense and protective oxide film was obtained by hydrothermal treatment. • Film formed by hydrothermal treatment could have the best resistance in 3.5 wt.% NaCl solution.

  2. Hydrothermal processing of Hanford tank wastes: Process modeling and control

    International Nuclear Information System (INIS)

    Currier, R.P.

    1994-01-01

    In the Los Alamos National Laboratory (LANL) hydrothermal process, waste streams are first pressurized and heated as they pass through a continuous flow tubular reactor vessel. The waste is maintained at reaction temperature of 300--550 C where organic destruction and sludge reformation occur. This report documents LANL activities in process modeling and control undertaken in FY94 to support hydrothermal process development. Key issues discussed include non-ideal flow patterns (e.g. axial dispersion) and their effect on reactor performance, the use and interpretation of inert tracer experiments, and the use of computational fluid mechanics to evaluate novel hydrothermal reactor designs. In addition, the effects of axial dispersion (and simplifications to rate expressions) on the estimated kinetic parameters are explored by non-linear regression to experimental data. Safety-related calculations are reported which estimate the explosion limits of effluent gases and the fate of hydrogen as it passes through the reactor. Development and numerical solution of a generalized one-dimensional mathematical model is also summarized. The difficulties encountered in using commercially available software to correlate the behavior of high temperature, high pressure aqueous electrolyte mixtures are summarized. Finally, details of the control system and experiments conducted to empirically determine the system response are reported

  3. Caldera unrest driven by CO2-induced drying of the deep hydrothermal system.

    Science.gov (United States)

    Moretti, R; Troise, C; Sarno, F; De Natale, G

    2018-05-29

    Interpreting volcanic unrest is a highly challenging and non-unique problem at calderas, since large hydrothermal systems may either hide or amplify the dynamics of buried magma(s). Here we use the exceptional ground displacement and geochemical datasets from the actively degassing Campi Flegrei caldera (Southern Italy) to show that ambiguities disappear when the thermal evolution of the deep hydrothermal system is accurately tracked. By using temperatures from the CO 2 -CH 4 exchange of 13 C and thermodynamic analysis of gas ascending in the crust, we demonstrate that after the last 1982-84 crisis the deep hydrothermal system evolved through supercritical conditions under the continuous isenthalpic inflow of hot CO 2 -rich gases released from the deep (~8 km) magma reservoir of regional size. This resulted in the drying of the base of the hot hydrothermal system, no more buffered along the liquid-vapour equilibrium, and excludes any shallow arrival of new magma, whose abundant steam degassing due to decompression would have restored liquid-vapour equilibrium. The consequent CO 2 -infiltration and progressive heating of the surrounding deforming rock volume cause the build-up of pore pressure in aquifers, and generate the striking temporal symmetry that characterizes the ongoing uplift and the post-1984 subsidence, both originated by the same but reversed deformation mechanism.

  4. Hydrothermal Processes

    Science.gov (United States)

    German, C. R.; von Damm, K. L.

    2003-12-01

    found at more than 40 locations throughout the Pacific, North Atlantic, and Indian Oceans (e.g., Van Dover et al., 2002) with further evidence - from characteristic chemical anomalies in the ocean water column - of its occurrence in even the most remote and slowly spreading ocean basins ( Figure 3), from the polar seas of the Southern Ocean (German et al., 2000; Klinkhammer et al., 2001) to the extremes of the ice-covered Arctic ( Edmonds et al., 2003). (61K)Figure 3. Schematic map of the global ridge crest showing the major ridge sections along which active hydrothermal vents have already been found (red circles) or are known to exist from the detection of characteristic chemical signals in the overlying water column (orange circles). Full details of all known hydrothermally active sites and plume signals are maintained at the InterRidge web-site: http://triton.ori.u-tokyo.ac.jp/~intridge/wg-gdha.htm The most spectacular manifestation of seafloor hydrothermal circulation is, without doubt, the high-temperature (>400 °C) "black smokers" that expel fluids from the seafloor along all parts of the global ocean ridge crest. In addition to being visually compelling, vent fluids also exhibit important enrichments and depletions when compared to ambient seawater. Many of the dissolved chemicals released from the Earth's interior during venting precipitate upon mixing with the cold, overlying seawater, generating thick columns of black metal-sulfide and oxide mineral-rich smoke - hence the colloquial name for these vents: "black smokers" (Figure 4). In spite of their common appearance, high-temperature hydrothermal vent fluids actually exhibit a wide range of temperatures and chemical compositions, which are determined by subsurface reaction conditions. Despite their spectacular appearance, however, high-temperature vents may only represent a small fraction - perhaps as little as 10% - of the total hydrothermal heat flux close to ridge axes. A range of studies - most notably

  5. Hydrothermal synthesis of highly crystalline ZnO nanorod arrays: Dependence of morphology and alignment on growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Azzez, Shrook A., E-mail: shurouq44@yahoo.com [Institutes of Nano-Optoelectronic Research and Technology Laboratory (INOR), Ministry of Science and Technology, Baghdad (Iraq); Hassan, Z.; Alimanesh, M.; Rasheed, Hiba S.; Sabah, Fayroz A.; Abdulateef, Sinan A. [Institutes of Nano-Optoelectronic Research and Technology Laboratory (INOR), Ministry of Science and Technology, Baghdad (Iraq); Hassan, J. J. [Department of Physics, College of Science, University of Basrah, Basrah (Iraq)

    2016-07-06

    Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicon substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.

  6. Voltammetric Investigation Of Hydrothermal Iron Speciation

    Directory of Open Access Journals (Sweden)

    Charlotte eKleint

    2016-05-01

    Full Text Available Hydrothermal vent fluids are highly enriched in iron (Fe compared to ambient seawater, and organic ligands may play a role in facilitating the transport of some hydrothermal Fe into the open ocean. This is important since Fe is a limiting micronutrient for primary production in large parts of the world`s surface ocean. We have investigated the concentration and speciation of Fe in several vent fluid and plume samples from the Nifonea vent field, Coriolis Troughs, New Hebrides Island Arc, South Pacific Ocean using competitive ligand exchange - adsorptive cathodic stripping voltammetry (CLE - AdCSV with salicylaldoxime (SA as the artificial ligand. Our results for total dissolved Fe (dFe in the buoyant hydrothermal plume samples showed concentrations up to 3.86 µM dFe with only a small fraction between 1.1% and 11.8% being chemically labile. Iron binding ligand concentrations ([L] were found in µM level with strong conditional stability constants up to log K[L],Fe3+ of 22.9. Within the non-buoyant hydrothermal plume above the Nifonea vent field, up to 84.7% of the available Fe is chemically labile and [L] concentrations up to 97 nM were measured. [L] was consistently in excess of Felab, indicating that all available Fe is being complexed, which in combination with high Felab values in the non-buoyant plume, signifies that a high fraction of hydrothermal dFe is potentially being transported away from the plume into the surrounding waters, contributing to the global oceanic Fe budget.

  7. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    Solid state sintering transforms particle compact to a physically robust and dense polycrystalline monolith driven by reduction of surface energy and curvature. Since bulk diffusion is required for neck formation and pore elimination, sintering temperature about 2/3 of melting point is needed. It thus places limitations for materials synthesis and integration, and contributes to significant energy consumption in ceramic processing. Furthermore, since surface transport requires lower temperature than bulk processes, grain growth is often rapid and can be undesired for physical properties. For these reasons, several techniques have been developed including Liquid Phase Sintering (LPS), Hot Pressing (HP) and Field Assisted Sintering Technique (FAST), which introduce either viscous melt, external pressure or electric field to speed up densification rates at lower temperature. However, because of their inherent reliability on bulk diffusion, temperatures required are often too high for integrating polymers and non-noble metals. Reduction of sintering temperature below 400 °C would require a different densification mechanism that is based on surface transport with external forces to drive volume shrinkage. Densification method combining uniaxial pressure and solution under hydrothermal condition was first demonstrated by Kanahara's group at Kochi University in 1986 and was brought to our attention by the work of Kahari, etc, from University of Oulu on densification of Li2MoO 4 in 2015. This relatively new process showed promising ultra-low densification temperature below 300 °C, however little was known about its fundamental mechanism and scope of applications, which became the main focus of this dissertation. In this work, a uniaxial hydraulic press, a standard stainless steel 1/2 inch diameter die with heating band were utilized in densifying metal oxides. Applied pressure and sintering temperature were between 100 MPa and 700 MPa and from room temperature to 300

  8. Water-rock interactions in discharge areas of Xiangshan Fossil hydrothermal system

    International Nuclear Information System (INIS)

    Zhou, Wenbin

    1992-01-01

    Xiangshan Fossil hydrothermal system is located within a volcanic basin of south-eastern China. The fact that most metal mineralizations were found in the discharge areas of the fossil hydrothermal system shows that the discharge areas were special geochemical fields. This paper discusses some important water-rock interactions in the discharge areas of Xiangshan fossil hydrothermal system. When the fluids circulating in the deep section of the hydrothermal system went upward to the discharge area, the physico-chemical conditions under which the fluids were saturated changed so considerably that the original physico-chemical equilibria were broken. Consequently, the fluids tended to move to new equilibrium by means of regulating their chemical compositions. Temperature and pressures of the fluids could be declined greatly in discharge area; the difference of temperature and pressure are determined to be 100--150 C and 1--2 x 10 7 Pa. As a result, a large amount of CO 2 in solution escaped from the fluids in the discharge area, and UO 2 (CO 3 ) n 2(1-n) , stable in CO 2 -rich solutions, could be decomposed into UUO 2 2+ , which could be easily reduced into pitchblende associated by calcite and hematite. The pH values for the fluids tended to increase with the CO 2 escaping, however, the interactions between the hydrothermal fluids and the wall rocks (dominantly aluminosilicate) served as the buffers for the pH, and regulated the pH value around neutral point. The buffer effect was of great importance to uranium mineralization. In addition, isotope exchangements between the fluids and rocks took place extensively

  9. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor

    International Nuclear Information System (INIS)

    Zhao, Haiqiang; Qi, Weihong; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting

    2017-01-01

    Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles (~90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.

  10. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haiqiang; Qi, Weihong, E-mail: qiwh216@csu.edu.cn; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting [Central South University, School of Materials Science and Engineering (China)

    2017-05-15

    Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles (~90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.

  11. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    KAUST Repository

    Michoud, Gregoire; Jebbar, Mohamed

    2016-01-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins.

  12. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    KAUST Repository

    Michoud, Gregoire

    2016-06-02

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins.

  13. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    Science.gov (United States)

    Michoud, Grégoire; Jebbar, Mohamed

    2016-01-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins. PMID:27250364

  14. High pressure study of water-salt systems, phase equilibria, partitioning, thermodynic properties and implication for large icy worlds hydrospheres.

    Science.gov (United States)

    Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.

    2017-12-01

    Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the

  15. Hydrothermal liquefaction of high- and low-lipid algae: Mass and energy balances.

    Science.gov (United States)

    Cheng, Feng; Cui, Zheng; Mallick, Kwonit; Nirmalakhandan, Nagamany; Brewer, Catherine E

    2018-06-01

    Hydrothermal liquefaction (HTL) of high-lipid microalgae Nannochloropsis salina (N. salina) and low-lipid microalgae Galdieria sulphuraria (G. sulphuraria) were run under subcritical conditions (310-350 °C and 10-17 MPa) in a 1.8 L batch autoclave system. HTL mass and energy balances for both species were compared under different operating conditions to predict the optimum reaction conditions for new algae strains based on their feedstock composition. Bio-crude oils and chars were characterized by bomb calorimetry, elemental analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis (TGA). Under the optimized conditions, 59 wt% and 31 wt% bio-crude oil yields were obtained from HTL of N. salina and G. sulphuraria, while 85% and 59% of the feedstock energy were partitioned into N. salina-derived and G. sulphuraria-derived bio-crude oils, respectively. More favorable energy balances were related to shorter reaction times and higher algal solid contents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Testing the benthic foraminiferal B/Ca proxy in a hydrothermal vent environment to determine its validity under extreme conditions

    Science.gov (United States)

    Clementi, V.; Haynes, L.; Hoenisch, B.; Costa, K.; McManus, J. F.

    2016-12-01

    The boron to calcium ratio (B/Ca) and boron isotopic composition of the benthic foraminifer C. wuellerstorfi have become frequently used proxies for reconstructing carbonate chemistry in ocean bottom waters. However, elevated boron isotope data from a site proximal to the Clipperton Fracture Zone on the East Pacific Rise have led to the hypothesis that boron derived from hydrothermal fluids may be incorporated into benthic foraminifer shells (1). To date there is no comparable evidence for B/Ca at sites adjacent to hydrothermal vent systems, but hydrothermal vent fluid at the Juan de Fuca Ridge in the northeast Pacific Ocean can have boron concentrations nearly twice as high as ambient seawater (2), and other studies have documented increased levels of trace element incorporation in foraminifers living near hydrothermal vents (3). If the same effect holds true for B/Ca, the proxy may be compromised in sediments near hydrothermal vent sites. Here we present C. wuellerstorfi B/Ca data from a sediment core 5 km west of the Juan de Fuca Ridge, North Cleft Segment, to study the influence of vent fluid chemistry and partial shell dissolution on B/Ca and other trace element ratios. Our results do not show a strong hydrothermal signature on B/Ca despite the elevated boron concentrations of modern vent fluids and close proximity to the ridge. However, partial shell dissolution appears to have a significant impact on B/Ca ratios, calling for careful sample selection in future reconstructions from the region. Analysis of B/Ca and other trace element ratios across a ridge transect at a time of documented high hydrothermal activity—as indicated by high sediment hydrothermal Fe fluxes—may determine whether the hydrothermal signal is recorded further downstream from the vent fluid source. (1) Raitzsch, M. and Hönisch, B. (2010). Geology 40(5). (2) Seyfried Jr., W.E. et al. (2003). Journal of Geophys. Res.:Solid Earth 108(B9). (3) Munsel, D. et al. (2010). Biogeosci. 7.7.

  17. Vein networks in hydrothermal systems provide constraints for the monitoring of active volcanoes.

    Science.gov (United States)

    Cucci, Luigi; Di Luccio, Francesca; Esposito, Alessandra; Ventura, Guido

    2017-03-10

    Vein networks affect the hydrothermal systems of many volcanoes, and variations in their arrangement may precede hydrothermal and volcanic eruptions. However, the long-term evolution of vein networks is often unknown because data are lacking. We analyze two gypsum-filled vein networks affecting the hydrothermal field of the active Lipari volcanic Island (Italy) to reconstruct the dynamics of the hydrothermal processes. The older network (E1) consists of sub-vertical, N-S striking veins; the younger network (E2) consists of veins without a preferred strike and dip. E2 veins have larger aperture/length, fracture density, dilatancy, and finite extension than E1. The fluid overpressure of E2 is larger than that of E1 veins, whereas the hydraulic conductance is lower. The larger number of fracture intersections in E2 slows down the fluid movement, and favors fluid interference effects and pressurization. Depths of the E1 and E2 hydrothermal sources are 0.8 km and 4.6 km, respectively. The decrease in the fluid flux, depth of the hydrothermal source, and the pressurization increase in E2 are likely associated to a magma reservoir. The decrease of fluid discharge in hydrothermal fields may reflect pressurization at depth potentially preceding hydrothermal explosions. This has significant implications for the long-term monitoring strategy of volcanoes.

  18. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  19. Hydrothermal diamond-anvil cell: Application to studies of geologic fluids

    Science.gov (United States)

    Chou, I.-Ming

    2003-01-01

    The hydrothermal diamond-anvil cell (HDAC) was designed to simulate the geologic conditions of crustal processes in the presence of water or other fluids. The HDAC has been used to apply external pressure to both synthetic and natural fluid inclusions in quartz to minimize problems caused by stretching or decrepitation of inclusions during microthermometric analysis. When the HDAC is loaded with a fluid sample, it can be considered as a large synthetic fluid inclusion and therefore, can be used to study the PVTX properties as well as phase relations of the sample fluid. Because the HDAC has a wide measurement pressure-temperature range and also allows in-situ optical observations, it has been used to study critical phenomena of various chemical systems, such as the geologically important hydrous silicate melts. It is possible, when the HDAC is combined with synchrotron X-ray sources, to obtain basic information on speciation and structure of metal including rare-earth elements (REE) complexes in hydrothermal solutions as revealed by X-ray absorption fine structure (XAFS) spectra. Recent modifications of the HDAC minimize the loss of intensity of X-rays due to scattering and absorption by the diamonds. These modifications are especially important for studying elements with absorption edges below 10 keV and therefore particularly valuable for our understanding of transport and deposition of first-row transition elements and REE in hydrothermal environments.

  20. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions.

    Science.gov (United States)

    McCollom, T M; Ritter, G; Simoneit, B R

    1999-03-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  1. Hydrothermal reactions of nuclear waste solids . A preliminary study

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.; Turcotte, R.P.

    1978-09-01

    A simulated high-level waste glass, Supercalcine, and some common ceramic and metallic solids were exposed to hydrothermal conditions at 250 and 350 0 C for time periods ranging from three days to three weeks. Most of the experiments were done in salt brine, but the glass study did include deionized water tests so that the influence of salt could be better understood. Under the extreme hydrothermal conditions of these tests, all of the materials examined underwent measurable changes. The glass is converted to a mixture of crystalline phases, depending upon conditions, giving NaFeSi 2 O 6 as the primary alteration product. The rate of alteration is higher in deionized water than in salt brine; however, under equivalent test conditions, 66% of the Cs originally in the glass is released to the salt brine, while only 6% is released to deionized water. Rb and Mo are the only other fission product elements significantly leached from the glass. Evidence is presented which shows that sintered Supercalcine undergoes chemical changes in salt brine that are qualitatively similar to those experienced by glass samples. High concentrations of Cs enter the aqueous phase, and Sn and Mo are mobilized. Scouting tests were made with a variety of materials including commercial glasses, granite, UO 2 , Al 2 O 3 , steel, and waste glasses. Weight losses under hydrothermal conditions are in a relatively narrow band, with glass and ceramic materials showing 3 to 20 times greater weight losses than 304L stainless steel in the 250 0 C test used. The conclusion from these studies is that virtually all solid materials show hydrothermal reactivity at temperatures between 250 and 350 0 C, and that these extreme conditions are not desirable

  2. Methane- and Hydrogen-Influenced Microbial Communities in Hydrothermal Plumes above the Atlantis Massif, Mid Atlantic Ridge

    Science.gov (United States)

    Stewart, C. L.; Schrenk, M.

    2017-12-01

    Ultramafic-hosted hydrothermal systems associated with slow-spreading mid ocean ridges emit copious amounts of hydrogen and methane into the deep-sea, generated through a process known as serpentinization. Hydrothermal plumes carrying the reduced products of water-rock interaction dissipate and mix with deep seawater, and potentially harbor microbial communities adapted to these conditions. Methane and hydrogen enriched hydrothermal plumes were sampled from 3 sites near the Atlantis Massif (30°N, Mid Atlantic Ridge) during IODP Expedition 357 and used to initiate cultivation experiments targeting methanotrophic and hydrogenotrophic microorganisms. One set of experiments incubated the cultures at in situ hydrostatic pressures and gas concentrations resulting in the enrichment of gammaproteobacterial assemblages, including Marinobacter spp. That may be involved in hydrocarbon degradation. A second set of experiments pursued the anaerobic enrichment of microbial communities on solid media, resulting in the enrichment of alphaproteobacteria related to Ruegeria. The most prodigious growth in both case occurred in methane-enriched media, which may play a role as both an energy and carbon source. Ongoing work is evaluating the physiological characteristics of these isolates, including their metabolic outputs under different physical-chemical conditions. In addition to providing novel isolates from hydrothermal habitats near the Lost City Hydrothermal Field, these experiments will provide insight into the ecology of microbial communities from serpentinization influenced hydrothermal systems that may aid in future exploration of these sites.

  3. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  4. Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors

    Science.gov (United States)

    Fan, Haowen; Zhang, He; Luo, Xiaolei; Liao, Maoying; Zhu, Xufei; Ma, Jing; Song, Ye

    2017-07-01

    Although TiO2 nanotube arrays (TNTAs) have shown great promise as supercapacitor materials, their specific capacitances are still not comparable with some typical materials. Here, TiO2 nanoparticles (NPs)/TNTAs hybrid structure has been derived from the anodized TNTAs by a facile hydrothermal solid-gas method (HSGM), which can avoid cracking or curling of the TNTAs from Ti substrate. The obtained NPs/TNTAs hybrid structure can exhibit a ∼4.90 times increase in surface area and a ∼5.49 times increase in areal specific capacitance compared to the TNTAs without HSGM treatment. Besides, the argon-atmosphere annealing can offer improved areal capacitance and cycling stability relative to the air-atmosphere annealing. The hydrothermal vapor pressure is a key factor for controlling microscopic morphologies of TNTAs, the morphology transformations of TNTAs during the HSGM treatment can be accelerated under enhanced vapor pressures. The highest areal capacitance of HSGM-treated TNTAs is up to 76.12 mF cm-2 at 0.5 mA cm-2, well above that of any TiO2 materials reported to date.

  5. Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method

    Science.gov (United States)

    Li, Mingling; Liu, Xiansong; Xu, Taotao; Nie, Yu; Li, Honglin; Zhang, Cong

    2017-10-01

    Nanosized MnZn ferrite particles, with narrow size distribution, regular morphology and high saturation magnetization have been synthesized via a modified hydrothermal method. This modified hydrothermal method involves a chemical co-precipitation of hydroxides under a vacuum condition using potassium hydroxide as precipitating agent, followed by a separate hydrothermal process. The microstructure and magnetic properties of the synthesized nanoparticles were investigated by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). The effects of different synthesis conditions (excess ratio of precipitating agent and hydrothermal reaction time) on the microstructure and magnetic properties of the as-synthesized nanoparticles were discussed. The magnetic measurements indicated that the obtained samples were superparamagnetic in nature at room temperature. Moreover, the MnZn ferrite nanoparticles with excellent magnetic performance could be synthesized at 180 °C for a short reaction time (3 h).

  6. Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+xAlxTi2-x(PO4)3 solid electrolytes

    International Nuclear Information System (INIS)

    Kim, Kwang Man; Shin, Dong Ok; Lee, Young-Gi

    2015-01-01

    Li 1+x Al x Ti 2-x (PO 4 ) 3 (LATP) solid electrolytes are prepared by hydrothermal reaction as an effective method to yield moderate ionic conductivity adoptable in actual lithium-ion batteries. Particularly examined in this study are the effects of the synthesis conditions, such as Al dopant concentration (x), hydrothermal reaction time, and calcination and sintering temperatures, on the ionic conductivity of the synthesized LATP. Through repeated synthesis and characterizations of the LATPs by variation of the values of condition variables, the optimum condition for the best LATP with adequate ionic conductivity applicable to actual lithium batteries are determined to be x = 0.3 or 0.4, a hydrothermal reaction time of 12 h, and calcination and sintering temperatures of 600 °C and 900 °C, respectively

  7. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    Science.gov (United States)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  8. High-pressure polymorphs in Yamato-790729 L6 chondrite and their significance for collisional conditions

    Science.gov (United States)

    Kato, Yukako; Sekine, Toshimori; Kayama, Masahiko; Miyahara, Masaaki; Yamaguchi, Akira

    2017-12-01

    Shock pressure recorded in Yamato (Y)-790729, classified as L6 type ordinary chondrite, was evaluated based on high-pressure polymorph assemblages and cathodoluminescence (CL) spectra of maskelynite. The host-rock of Y-790729 consists mainly of olivine, low-Ca pyroxene, plagioclase, metallic Fe-Ni, and iron-sulfide with minor amounts of phosphate and chromite. A shock-melt vein was observed in the hostrock. Ringwoodite, majorite, akimotoite, lingunite, tuite, and xieite occurred in and around the shock-melt vein. The shock pressure in the shock-melt vein is about 14-23 GPa based on the phase equilibrium diagrams of high-pressure polymorphs. Some plagioclase portions in the host-rock occurred as maskelynite. Sixteen different CL spectra of maskelynite portions were deconvolved using three assigned emission components (centered at 2.95, 3.26, and 3.88 eV). The intensity of emission component at 2.95 eV was selected as a calibrated barometer to estimate shock pressure, and the results indicate pressures of about 11-19 GPa. The difference in pressure between the shock-melt vein and host-rock might suggest heterogeneous shock conditions. Assuming an average shock pressure of 18 GPa, the impact velocity of the parent-body of Y-790729 is calculated to be 1.90 km s-1. The parent-body would be at least 10 km in size based on the incoherent formation mechanism of ringwoodite in Y-790729.

  9. Parameterised Model of 2D Combustor Exit Flow Conditions for High-Pressure Turbine Simulations

    Directory of Open Access Journals (Sweden)

    Marius Schneider

    2017-12-01

    Full Text Available An algorithm is presented generating a complete set of inlet boundary conditions for Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD of high-pressure turbines to investigate their interaction with lean and rich burn combustors. The method shall contribute to understanding the sensitivities of turbine aerothermal performance in a systematic approach. The boundary conditions are based on a set of input parameters controlling velocity, temperature, and turbulence fields. All other quantities are derived from operating conditions and additional modelling assumptions. The algorithm is coupled with a CFD solver by applying the generated profiles as inlet boundary conditions. The successive steps to derive consistent flow profiles are described and results are validated against flow fields extracted from combustor CFD.

  10. The accuracy of the crystal chemical parameters at high-pressure conditions from single-crystal X-ray diffraction in diamond-anvil cell

    DEFF Research Database (Denmark)

    Periotto, Benedetta

    -ray instruments. At the same time, the high-pressure experiments have benefited by the strong improvements on the high-pressure devices, in particular the diamond-anvil cell (DAC). The aim of this research project is to assess the quality of the data obtained by means of the single-crystal X-ray diffraction...... technique through the study of different mineral phases. The procedure for setting up an experiment under high-pressure conditions, using a single crystal as sample held within a DAC, are presented here with all the details of the in situ measurements at high-pressure conditions. The research project...... started with a comparison between two different DACs, in order to define the capabilities of one of the most common types of pressure device, the ETH-type DAC. Application examples of data quality analysis have been conducted on pyroxenes (NaInSi2O6, orthoenstatite MgSiO3 and LiCrSi2O6), which...

  11. Pressure cylinders under fire condition

    Directory of Open Access Journals (Sweden)

    Jan Hora

    2016-03-01

    Full Text Available The presence of pressure cylinders under fire conditions significantly increases the risk rate for the intervening persons. It is considerably problematic to predict the pressure cylinders behaviour during heat exposition, its destruction progress and possible following explosion of the produced air–gas mixture because pressure cylinders and its environment generate a highly complicated dynamic system during an uncontrolled destruction. The large scale tests carried out by the Pilsen Fire and Rescue Department and the Rapid Response Unit of the Czech Republic Police in October 2012 and in May 2014 in the Military area Brdy and in the area of the former Lachema factory in Kaznějov had several objectives, namely, to record, qualify and quantify some of the aspects of an uncontrolled heat destruction procedure of an exposed pressure cylinder in an enclosed space and to qualify and describe the process of a controlled destruction of a pressure cylinder by shooting through it including basic tactical concepts. The article describes the experiments that were carried out.

  12. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    Science.gov (United States)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  13. High Pressure Reduction of Selenite by Shewanella oneidensis MR-1

    Science.gov (United States)

    Picard, A.; Daniel, I.; Testemale, D.; Letard, I.; Bleuet, P.; Cardon, H.; Oger, P.

    2007-12-01

    High-pressure biotopes comprise cold deep-sea environments, hydrothermal vents, and deep subsurface or deep-sea sediments. The latter are less studied, due to the technical difficulties to sample at great depths without contamination. Nevertheless, microbial sulfate reduction and methanogenesis have been found to be spatially distributed in deep deep-sea sediments (1), and sulfate reduction has been shown to be actually more efficient under high hydrostatic pressure (HHP) in some sediments (2). Sulfate-reducing bacteria obtained from the Japan Sea are characterized by an increased sulfide production under pressure (3,4). Unfortunately, investigations of microbial metabolic activity as a function of pressure are extremely scarce due to the experimental difficulty of such measurements at high hydrostatic pressure. We were able to measure the reduction of selenite Se(IV) by Shewanella oneidensis MR-1 as a function of pressure, to 150 MPa using two different high-pressure reactors that allow in situ X-ray spectroscopy measurements on a synchrotron source. A first series of measurements was carried out in a low-pressure Diamond Anvil Cell (DAC) of our own design (5) at ID22 beamline at ESRF (European Synchrotron Radiation Facility); a second one was performed in an autoclave (6) at the BM30B beamline at ESRF. Selenite reduction by strain MR-17 was monitored from ambient pressure to 150 MPa over 25 hours at 30 deg C by XANES spectroscopy (X-ray Analysis of Near Edge Structure). Spectra were recorded hourly in order to quantify the evolution of the oxidation state of selenium with time. Stationary-phase bacteria were inoculated at a high concentration into fresh growth medium containing 5 or 10 M of sodium selenite and 20 mM sodium lactate. Kinetic parameters of the Se (IV) reduction by Shewanella oneidensis strain MR-1 could be extracted from the data, as a function of pressure. They show 1) that the rate constant k of the reaction is decreased by a half at high pressure

  14. Robust Mesoporous CoMo/γ-Al2O3 Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method.

    Science.gov (United States)

    Bleta, Rudina; Schiavo, Benedetto; Corsaro, Natale; Costa, Paula; Giaconia, Alberto; Interrante, Leonardo; Monflier, Eric; Pipitone, Giuseppe; Ponchel, Anne; Sau, Salvatore; Scialdone, Onofrio; Tilloy, Sébastien; Galia, Alessandro

    2018-04-18

    Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al 2 O 3 catalysts. Catalytic tests performed on the HTL of Nannochloropsis gaditana microalga indicate that solids prepared by the one-pot colloidal approach show higher hydrothermal stability and enhanced biocrude yield with respect to the catalyst-free test. The positive effect of the substitution of the block copolymer Tetronic T90R4 for Pluronic F127 in the preparation procedure was evidenced by diffuse reflectance UV-visible spectroscopy, X-ray diffraction, N 2 -adsorption-desorption, and H 2 -temperature-programmed reduction measurements and confirmed by the higher quality of the obtained biocrude, which exhibited lower oxygen content and higher-energy recovery equal to 62.5% of the initial biomass.

  15. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  16. Extreme hydrothermal conditions at an active plate-bounding fault

    NARCIS (Netherlands)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G.R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre|info:eu-repo/dai/nl/370832132; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-01-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At

  17. Thermodynamic and physico-chemical fluctuations in hydrothermal systems suitable for the geological cradle of life

    Science.gov (United States)

    Kompanichenko, Vladimir

    Thermodynamic and physico-chemical fluctuations in the medium seem are the necessary factor for the origin of life. Fluctuations are usual phenomena in hydrothermal systems including their outcrops in ocean or terrestrial groundwater aquifers. Investigation of the fluctuations regimes in natural hydrothermal systems can be used in advanced laboratory experiments on prebiotic organic synthesis under changeable conditions. To characterize a scale of the thermodynamic and physic-chemical fluctuations four hydrothermal systems were explored: several terrestrial hydrothermal systems, primarily on the Russian Far East. Temperature of water and water-steam mixture (from boreholes) in Mutnovsky and Pauzhetsky hydrothermal fields (Kamchatka peninsula) ranges from less than 100 o C up to 240 o C. Water from Kuldur thermal basin (in-tracontinental part of the Russian Far East) is characterized with the lower temperature: 60-70 o C. Data of monitoring of pressure, temperature and some chemical parameters in the boreholes of these fields were mathematically processed. Periods of long-range macrofluctuations of pres-sure and temperature in Mutnovsky and Kuldur fields are 2-4.5 months, maximum amplitudes of temperature in the wells' orifices are 53o C and 9 o C correspondingly, maximum amplitude of pressure in Mutnovsky field 34 bars. Periods of minioscillations are from 10 to 70 minutes in Mutnovsky and Pauzhetsky fields, average amplitudes of pressure are 0.2-0.7 bars. These data are comparable with similar data from Mura basin in Slovenia: amplitudes of temperature and pH minioscillations are about 1-2o C and 0.2 correspondingly; there exists strict positive correlation of temperature with pH, K+, Na+, Ca2+, HCO3-, SO42-, Cl-, F-, but concentra-tions of Mg2+, NH4+, CO2 change independently (Kralj, 2000).. The general conclusion is that minifluctuations of thermodynamic and physic-chemical parameters in hydrothermal sys-tems are usual phenomenon. From time to time the

  18. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  19. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  20. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  1. Biodiversity patterns, environmental drivers and indicator species on a High-temperature Hydrothermal edifice, mid-Atlantic ridge

    KAUST Repository

    Sarrazin, Jozée

    2015-04-25

    Knowledge on quantitative faunal distribution patterns of hydrothermal communities in slow-spreading vent fields is particularly scarce, despite the importance of these ridges in the global mid-ocean system. This study assessed the composition, abundance and diversity of 12 benthic faunal assemblages from various locations on the Eiffel Tower edifice (Lucky Strike vent field, Mid-Atlantic Ridge) and investigated the role of key environmental conditions (temperature, total dissolved iron (TdFe), sulfide (TdS), copper (TdCu) and pH) on the distribution of macro- and meiofaunal species at small spatial scales (< 1 m). There were differences in macro- and meiofaunal community structure between the different sampling locations, separating the hydrothermal community of the Eiffel Tower edifice into three types of microhabitats: (1) cold microhabitats characterized by low temperatures (<6 °C), high TdCu (up to 2.4±1.37 µmol l−1), high pH (up to 7.34±0.13) but low TdS concentrations (<6.98±5.01 µmol l−1); (2) warm microhabitats characterized by warmer temperatures (>6 °C), low pH (<6.5) and high TdS/TdFe concentrations (>12.8 µmol l−1/>1.1 µmol l−1 respectively); and (3) a third microhabitat characterized by intermediate abiotic conditions. Environmental conditions showed more variation in the warm microhabitats than in the cold microhabitats. In terms of fauna, the warm microhabitats had lower macro- and meiofaunal densities, and lower richness and Shannon diversity than the cold microhabitats. Six macrofaunal species (Branchipolynoe seepensis, Amathys lutzi, Bathymodiolus azoricus, Lepetodrilus fucensis, Protolira valvatoides and Chorocaris chacei) and three meiofaunal taxa (Paracanthonchus, Cephalochaetosoma and Microlaimus) were identified as being significant indicator species/taxa of particular microhabitats. Our results also highlight very specific niche separation for copepod juveniles among the different hydrothermal microhabitats. Some sampling

  2. Seawater bicarbonate removal during hydrothermal circulation

    Science.gov (United States)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  3. Measurements of mixtures with carbon dioxide under supercritical conditions using commercial high pressure equipment

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luciana L.P.R. de; Rutledge, Luis Augusto Medeiros; Moreno, Eesteban L.; Hovell, Ian; Rajagopal, Krishnaswamy [Universidade Federal do Rio de Janeiro (LATCA-EQ-UFRJ), RJ (Brazil). Escola de Quimica. Lab. de Termodinamica e Cinetica Aplicada

    2012-07-01

    There is a growing interest in studying physical properties of binary and multicomponent fluid mixtures with supercritical carbon dioxide (CO{sub 2}) over an extended range of temperature and pressure. The estimation of properties such as density, viscosity, saturation pressure, compressibility, solubility and surface tension of mixtures is important in design, operation and control as well as optimization of chemical processes especially in extractions, separations, catalytic and enzymatic reactions. The phase behaviour of binary and multicomponent mixtures with supercritical CO{sub 2} is also important in the production and refining of petroleum where mixtures of paraffin, naphthene and aromatics with supercritical fluids are often encountered. Petroleum fluids can present a complex phase behaviour in the presence of CO{sub 2}, where two-phase (VLE and LLE) and three phase regions (VLLE) might occur within ranges of supercritical conditions of temperature and pressure. The objective of this study is to develop an experimental methodology for measuring the phase behaviour of mixtures containing CO{sub 2} in supercritical regions, using commercial high-pressure equipment. (author)

  4. Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

    Directory of Open Access Journals (Sweden)

    Janani Murallidharan

    2016-08-01

    Full Text Available Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI model and, within this model, the bubble is characterized using three main parameters: departure diameter (D, nucleation site density (N, and departure frequency (f. Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

  5. Dynamics of the Yellowstone hydrothermal system

    Science.gov (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  6. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  7. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  8. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes

    Science.gov (United States)

    Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju

    2017-08-01

    Multi-layered SiC composites consisting of monolithic SiC and a SiCf/SiC composite are one of the accident tolerant fuel cladding concepts in pressurized light water reactors. To evaluate the integrity of the SiC fuel cladding under normal operating conditions of a pressurized light water reactor, the hydrothermal corrosion behavior of multi-layered SiC composite tubes was investigated in the simulated primary water environment of a pressurized water reactor without neutron fluence. The results showed that SiC phases with good crystallinity such as Tyranno SA3 SiC fiber and monolithic SiC deposited at 1200 °C had good corrosion resistance. However, the SiC phase deposited at 1000 °C had less crystallinity and severely dissolved in water, particularly the amorphous SiC phase formed along grain boundaries. Dissolved hydrogen did not play a significant role in improving the hydrothermal corrosion resistance of the CVI-processed SiC phases containing amorphous SiC, resulting in a significant weight loss and reduction of hoop strength of the multi-layered SiC composite tubes after corrosion.

  9. Mn"4"+-activated BaSiF_6 red phosphor: Hydrothermal synthesis and dependence of its luminescent properties on reaction conditions

    International Nuclear Information System (INIS)

    Zhou, Qiang; Zhou, Yayun; Lu, Fengqi; Liu, Yong; Wang, Qin; Luo, Lijun; Wang, Zhengliang

    2016-01-01

    In this work, a series of BaSiF_6:Mn"4"+ red phosphors were synthesized through a hydrothermal route. The crystal structure and morphology were characterized by powder X-ray diffraction (XRD) with Rietveld refinement, scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS) in detail. The influence of reaction conditions, including the concentration of KMnO_4 and HF, reaction temperature and time, on the photoluminescence properties were investigated systematically. It can emit intense red light (∼636 nm) under blue light (∼458 nm) illumination. The white LED device based on YAG:Ce–BaSiF_6:Mn"4"+ mixture shows warm white light with low color temperature and high correlated color index, which reveals its potential application in WLED. - Highlights: • The crystal structure of BaSiF_6:Mn"4"+ has been verified using Rietveld refinement. • The optimum hydrothermal reaction condition for BaSiF_6:Mn"4"+ has been confirmed. • The white LED based on YAG:Ce–BaSiF_6:Mn"4"+ mixture presents warmer white light than that only with YAG:Ce.

  10. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Demes, Thomas [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Ternon, Céline, E-mail: celine.ternon@grenoble-inp.fr [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, LTM, F-38000 Grenoble (France); Morisot, Fanny [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Riassetto, David [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Legallais, Maxime [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Roussel, Hervé; Langlet, Michel [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France)

    2017-07-15

    Highlights: • ZnO nanowires are grown on sol-gel ZnO seed layers by hydrothermal synthesis. • Ultra-thin and high aspect ratio nanowires are obtained without using additives. • Nanowire diameter is 20–25 nm regardless of growth time and seed morphology. • A nanowire growth model is developed on the basis of thermodynamic considerations. • The nanowires are intended for integration into electrically conductive nanonets. - Abstract: Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20–25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20–25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  11. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    Science.gov (United States)

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  12. Al-doped SnO2 nanocrystals from hydrothermal systems

    International Nuclear Information System (INIS)

    Jin Haiying; Xu Yaohua; Pang Guangsheng; Dong Wenjun; Wan Qiang; Sun Yan; Feng Shouhua

    2004-01-01

    Nanoparticles of Al-doped SnO 2 have been hydrothermally synthesized. The influences of the hydrothermal reaction time, the molar ratio of Sn/Al as well as the pH value of the solution have been studied. During the hydrothermal synthesis, the particle's core is rich in Sn and the surface is rich in Al. The Al-rich surface prevents the particles from further growing up either in the hydrothermal condition or during the calcination at 600 deg. C for a short period of time. The optimal hydrothermal synthesis condition of the nanoparticles is pH 5, Sn/Al=4:1 and 12 h at 160 deg. C. The products have been studied by XRD, TEM and 27 Al solid-state NMR

  13. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Science.gov (United States)

    Demes, Thomas; Ternon, Céline; Morisot, Fanny; Riassetto, David; Legallais, Maxime; Roussel, Hervé; Langlet, Michel

    2017-07-01

    Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20-25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20-25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  14. Electrochemical noise measurements under pressurized water reactor conditions

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.

    2000-01-01

    Electrochemical potential noise measurements on sensitized stainless steel pressure tubes under pressurized water reactor (PWR) conditions were performed for the first time. Very short potential spikes, believed to be associated to crack initiation events, were detected when stressing the sample above the yield strength and increased in magnitude until the sample broke. Sudden increases of plastic deformation, as induced by an increased tube pressure, resulted in slower, high-amplitude potential transients, often accompanied by a reduction in noise level

  15. Effects of hydrothermal treatment of sewage sludge on pyrolysis and steam gasification

    International Nuclear Information System (INIS)

    Moon, Jihong; Mun, Tae-Young; Yang, Won; Lee, Uendo; Hwang, Jungho; Jang, Ensuk; Choi, Changsik

    2015-01-01

    Highlights: • Hydrothermal treatment (HT) is energy efficient and increases fuel energy density. • Pyrolysis and steam gasification were performed with sewage sludge before/after HT. • Product gases resembled those from wood chips, particularly at high temperature. • HT increases sludge lignin content, possibly enhancing methane yield of product gas. • HT can improve sewage sludge for use as an alternative to biomass and fossil fuels. - Abstract: Hydrothermal treatment is a promising option for pretreatment drying of organic waste, due to its low energy consumption and contribution to increasing fuel energy density. In this study, the characteristics of hydrothermally treated sewage sludge were investigated, and pyrolysis and steam gasification were performed with the sludge before and after hydrothermal treatment. The overall composition of product gases from treated sludge was similar to that obtained from steam gasification of wood chips, particularly under high-temperature conditions. In addition, the increase in lignin content of sewage sludge following hydrothermal treatment could help enhance methane yield in product gas during pyrolysis and steam gasification. The findings suggest that hydrothermal treatment is an appropriate method for improving sewage sludge for use as an alternative to biomass and fossil fuels

  16. Modeling of the fault-controlled hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Pek, A.A.; Malkovsky, V.I.

    1993-07-01

    A necessary precondition for the formation of hydrothermal ore deposits is a strong focusing of hydrothermal flow as fluids move from the fluid source to the site of ore deposition. The spatial distribution of hydrothermal deposits favors the concept that such fluid flow focusing is controlled, for the most part, by regional faults which provide a low resistance path for hydrothermal solutions. Results of electric analog simulations, analytical solutions, and computer simulations of the fluid flow, in a fault-controlled single-pass advective system, confirm this concept. The influence of the fluid flow focusing on the heat and mass transfer in a single-pass advective system was investigated for a simplified version of the metamorphic model for the genesis of greenstone-hosted gold deposits. The spatial distribution of ore mineralization, predicted by computer simulation, is in reasonable agreement with geological observations. Computer simulations of the fault-controlled thermoconvective system revealed a complex pattern of mixing hydrothermal solutions in the model, which also simulates the development of the modern hydrothermal systems on the ocean floor. The specific feature of the model considered, is the development under certain conditions of an intra-fault convective cell that operates essentially independently of the large scale circulation. These and other results obtained during the study indicate that modeling of natural fault-controlled hydrothermal systems is instructive for the analysis of transport processes in man-made hydrothermal systems that could develop in geologic high-level nuclear waste repositories

  17. High-pressure test loop design and application

    International Nuclear Information System (INIS)

    Burnette, R.D.; Graves, J.N.; Blair, P.G.; Baldwin, N.L.

    1980-07-01

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  18. Re-investigation of the crystal structure of enstatite under high-pressure conditions

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Balic Zunic, Tonci; Nestola, Fabrizio

    2012-01-01

    A synthetic single crystal of pure orthoenstatite (MgSiO3, space group Pbca) has been investigated at high pressure for structural determinations by in situ single-crystal X‑ray diffraction using a diamond-anvil cell. Ten complete intensity data collections were performed up to 9.36 GPa. This study...... with different compositions. The structural evolution determined in this work confirms the high-pressure evolution found previously for other orthopyroxenes and removes some ambiguities originating from the less accurate published data on the MgSiO3 structure at high pressure. The structural compression...

  19. Interactions between iron oxides and copper oxides under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, G B; Owen, D G

    1995-08-01

    Under hydrothermal conditions, magnetite and hematite have been shown to undergo interconversion reactions, the extent of which is controlled in part by the presence of copper oxides. In oxygenated water, the degree to which magnetite was oxidized to hematite was found to be dependent on the presence of CuO or Cu{sub 2}O. When these materials were absent, the oxidation of magnetite was limited by the dissolved oxygen in the aqueous system. Participation of the copper oxides in the oxidation process was confirmed by more complete conversion of magnetite was also influenced by the presence of the copper oxides. In addition to driving the reduction to completion, the presence of the copper oxides also exerted a strong influence over the morphology of the magnetite that formed. (author). 13 refs., 1 tab., 3 figs.

  20. Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae

    Energy Technology Data Exchange (ETDEWEB)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas; Lemmon, Teresa; Swita, Marie; Albrecht, Karl; Howe, Daniel

    2016-10-01

    Aqueous streams generated from hydrothermal liquefaction contain approximately 30% of the total carbon present from the algal feed. Hence, this aqueous carbon must be utilized to produce liquid fuels and/or specialty chemicals for economic sustainability of hydrothermal liquefaction on industrial scale. In this study, aqueous fractions produced from the hydrothermal liquefaction of fresh water and saline water algal cultures were analyzed using a wide variety of analytical instruments to determine their compositional characteristics. This study will also inform researchers designing catalysts for down-stream processing such as high-pressure catalytic conversion of organics in aqueous phase, catalytic hydrothermal gasification, and biological conversions. Organic chemical compounds present in all eight aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compounds include organic acids, nitrogen compounds and aldehydes/ketones. Conventional gas chromatography and liquid chromatography methods were utilized to quantify the identified compounds. Inorganic species in the aqueous stream of hydrothermal liquefaction of algae were identified using ion chromatography and inductively coupled plasma optical emission spectrometer. The concentrations of organic chemical compounds and inorganic species are reported. The amount quantified carbon ranged from 45 to 72 % of total carbon in the aqueous fractions.

  1. Axial gas transport and loss of pressure after ballooning rupture of high burn-up fuel rods subjected to LOCA conditions

    International Nuclear Information System (INIS)

    Wiesenack, Wolfgang; Oberlaender, Barbara; Kekkonen, Laura

    2008-01-01

    The OECD Halden Reactor Project has implemented integral in-pile tests on issues related to fuel behaviour under LOCA conditions. In this test series, the interaction of bonded fuel and cladding, the behaviour of fragmented fuel around the ballooning area, and the axial gas communication in high burn-up rods as affected by gap closure and fuel-clad bonding are of major interest for the investigations. In the Halden reactor tests, the decay heat is simulated by a low level of nuclear heating, in contrast to the heating conditions implemented in hot laboratory set-ups, and the thermal expansion of fuel and cladding relative to each other is more similar to the real event. The paper deals with observations regarding the loss of rod pressure following the rupture of the cladding. In the majority of the tests conducted so far, the rod pressure dropped practically instantaneously as a consequence of ballooning rupture, while one test showed a remarkably slow pressure loss. The slow loss of pressure in this test was analysed, showing that the 'hydraulic diameter' of the rod over an un-distended upper part was about 30 - 35 μm which is typical of high burn-up fuel at hot-standby conditions. The 'plug' of fuel restricts the gas flow from the plenum through the fuel column and thus limits the availability of high pressure gas for driving the ballooning. This observation is relevant for the analysis of the behaviour of a full length fuel rod under LOCA conditions since restricted gas flow may influence bundle blockage and the number of failures. (authors)

  2. Highly hydrothermally stable microporous silica membranes for hydrogen separation.

    Science.gov (United States)

    Wei, Qi; Wang, Fei; Nie, Zuo-Ren; Song, Chun-Lin; Wang, Yan-Li; Li, Qun-Yan

    2008-08-07

    Fluorocarbon-modified silica membranes were deposited on gamma-Al2O3/alpha-Al2O3 supports by the sol-gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is observed that the water contact angle increases from 27.2+/-1.5 degrees for the pure silica membranes to 115.0+/-1.2 degrees for the modified ones with a (trifluoropropyl)triethoxysilane (TFPTES)/tetraethyl orthosilicate (TEOS) molar ratio of 0.6. The modified membranes preserve a microporous structure with a micropore volume of 0.14 cm3/g and a pore size of approximately 0.5 nm. A single gas permeation of H2 and CO2 through the modified membranes presents small positive apparent thermal activation energies, indicating a dominant microporous membrane transport. At 200 degrees C, a single H2 permeance of 3.1x10(-6) mol m(-2) s(-1) Pa(-1) and a H2/CO2 permselectivity of 15.2 were obtained after proper correction for the support resistance and the contribution from the defects. In the gas mixture measurement, the H2 permeance and the H2/CO2 separation factor almost remain constant at 200 degrees C with a water vapor pressure of 1.2x10(4) Pa for at least 220 h, indicating that the modified membranes are hydrothermally stable, benefiting from the integrity of the microporous structure due to the fluorocarbon modification.

  3. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    Science.gov (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  4. Hydrothermal synthesis of sodium titanate nanotubes; Hydrotermalna synteza nanorurok titanatu sodneho

    Energy Technology Data Exchange (ETDEWEB)

    Miskoci, M.; Jesenak, K. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra anorganickej chemie, 84215 Bratislava (Slovakia); Caplovicova, M. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra loziskovej geologie, 84215 Bratislava (Slovakia)

    2013-04-16

    From suspension of nanoparticles TiO{sub 2} in concentrated water solution of NaOH were prepared by hydrothermal synthesis sodium titanates particles with different shapes. Influence of synthesis duration under temperature 180 grad C on the change of particles shapes was observed. The result of experiment showed that one day synthesis resulted to obtained product with high content of nanotubes, but the extension of this period led to the transformation of product's shape into stripes. From the results of experiment follows that as a precursor for TiO{sub 2} nanotubes preparation may be used only products of hydrothermal synthesis, which duration of pressure synthesis was not longer than 24 hours. (authors)

  5. Development of a model for the anodic behavior of T60 titanium in chlorinated and oxygenated aqueous media. Application to the specific conditions of hydrothermal oxidation (1 MPa<pressure<30 MPa, 20 deg. C

    International Nuclear Information System (INIS)

    Frayret, C.; Jaszay, Th.; Lestienne, B.; Delville, M.H.

    2003-01-01

    This work evaluates the anodic electrochemical behavior of titanium metal in hydrothermal oxidation conditions (up to 400 deg. C and 28 MPa) in chlorinated media in order to estimate the supercritical water oxidation reactors reliability for the treatment of less than 10% organic-waste waters. The titanium room temperature dissolution mechanism in chlorinated acidic medium (pH 2 oxide formation with a very limited tetravalent dissolution). In hydrothermal oxidation (pH>1), only the second branch is effective. The titanium protection is directly related to the oxide stability in high pH systems. The mechanism model is expressed in terms of 'current-potential' laws, which provide kinetic parameters using optimization calculations. The different elementary steps reaction rates were estimated as well as the evolution of the reaction intermediates coverage ratios with the potential. The quantification of each elementary step was performed to understand and/or orient the materials behavior according to different factors (pH, chloride ions contents, potentials...)

  6. Carbon dioxide in magmas and implications for hydrothermal systems

    Science.gov (United States)

    Lowenstern, J. B.

    2001-01-01

    This review focuses on the solubility, origin, abundance, and degassing of carbon dioxide (CO2) in magma-hydrothermal systems, with applications for those workers interested in intrusion-related deposits of gold and other metals. The solubility of CO2 increases with pressure and magma alkalinity. Its solubility is low relative to that of H2O, so that fluids exsolved deep in the crust tend to have high CO2/H2O compared with fluids evolved closer to the surface. Similarly, CO2/H2O will typically decrease during progressive decompression- or crystallization-induced degassing. The temperature dependence of solubility is a function of the speciation of CO2, which dissolves in molecular form in rhyolites (retrograde temperature solubility), but exists as dissolved carbonate groups in basalts (prograde). Magnesite and dolomite are stable under a relatively wide range of mantle conditions, but melt just above the solidus, thereby contributing CO2 to mantle magmas. Graphite, diamond, and a free CO2-bearing fluid may be the primary carbon-bearing phases in other mantle source regions. Growing evidence suggests that most CO2 is contributed to arc magmas via recycling of subducted oceanic crust and its overlying sediment blanket. Additional carbon can be added to magmas during magma-wallrock interactions in the crust. Studies of fluid and melt inclusions from intrusive and extrusive igneous rocks yield ample evidence that many magmas are vapor saturated as deep as the mid crust (10-15 km) and that CO2 is an appreciable part of the exsolved vapor. Such is the case in both basaltic and some silicic magmas. Under most conditions, the presence of a CO2-bearing vapor does not hinder, and in fact may promote, the ascent and eruption of the host magma. Carbonic fluids are poorly miscible with aqueous fluids, particularly at high temperature and low pressure, so that the presence of CO2 can induce immiscibility both within the magmatic volatile phase and in hydrothermal systems

  7. Organic sulfur metabolisms in hydrothermal environments.

    Science.gov (United States)

    Rogers, Karyn L; Schulte, Mitchell D

    2012-07-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e⁻) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N₂ has the highest energy yields at higher temperatures (greater than ∼40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e⁻). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H₂. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities. © 2012 Blackwell Publishing Ltd.

  8. EXAFS measurements under high pressure conditions using a combination of a diamond anvil cell and synchrotron radiation

    International Nuclear Information System (INIS)

    Sueno, Shigeho; Nakai, Izumi; Imafuku, Masayuki; Morikawa, Hideki; Kimata, Mitsuyoshi; Ohsumi, Kazumasa; Nomura, Masaharu; Shimomura, Osamu.

    1986-01-01

    EXAFS spectra for Fe, Co, Ni K-edges were successfully measured under high pressure conditions using a combination of a set of normal 1/8 carat diamond anvils, synchrotron radiation and a scintillation counter. A newly developed motor controlled goniometer stage was used for adjusting the position of a miniature diamond anvil cell. On the measurement of Cr and Mn spectra, specially designed thinner diamond anvil was necessary. EXAFS analysis of bis(dimethylglyoximato)nickel(II) at pressures from 1 atm to 5.6 GPa was made. (author)

  9. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Blank, D.H.A.; Ten Elshof, J.E. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands); Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN Efficiency and Infrastructure, Petten (Netherlands)

    2009-05-15

    A new organic-inorganic hybrid membrane has been prepared with exceptional performance in dewatering applications. The only precursor used in the sol-gel synthesis of the selective layer was organically linked 1,2-bis(triethoxysilyl)ethane (BTESE). The microporous structure of this layer enables selective molecular sieving of small molecules from larger ones. In the dehydration of n-butanol with 5% of water, the membrane shows a high separation factor of over 4000 and ultra-fast water transport at a rate of more than 20 kg m{sup -2} h{sup -1} at 150C. This can be related to the high adsorption capacity of the material and the sub-micron thickness of the selective layer. The selectivity has now remained constant over almost one and a half years under continuous process testing conditions. Apart from the hydrothermal stability, the membrane exhibits a high tolerance for acid contamination. A slow performance decline in flux and separation factor is only observed at a pH lower than 2. The high stability and effective separation indicate a broad industrial application potential of the hybrid membrane material.

  10. Study on the hydrothermal treatment of Shenhua coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhicai Wang; Hengfu Shui; Zhanning Pei; Jinsheng Gao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-04-15

    In this paper, the hydrothermal treatment of Shenhua coal was carried out under 0.1 MPa (initial pressure) nitrogen and different temperature. Effects of hydrothermal treatment on the structure and the hydro-liquefaction activity of Shenhua coal were investigated by the ultimate and proximate analyses, the FTIR measurements and TG analyses of hydrothermally treated coals, and the characterizations of extraction and swelling properties, and the batch hydro-liquefaction of treated coal were also carried out. The results indicate that hydrothermal treatment above 200{sup o}C can increase the hydrogen content of treated coal and decrease the yield of volatiles and the content of ash, especially a large amount of CO and CH{sub 4} are found in gas products obtained by the hydrothermal treatment above 250{sup o}C. Hydrothermal treatment disrupts the weak covalent bond such as ether, ester and side-chain substituent by hydrolysis and pyrolysis, and changes the distribution of H-bond in coal. The swelling ratio and the Soxhlet extraction yield of treated coal decrease with the increase of hydrothermal treatment temperature. The conversion of liquefaction and the yield of CS{sub 2}/NMP mixed solvent extraction at ambient temperature are enhanced by hydrothermal treatment at 300{sup o}C. Therefore hydrogen donation reactions and the rupture of non-covalent bond and weak covalent bonds present in the process of hydrothermal treatment resulting in the changes of structure and reactivity of Shenhua coal. The results show that the hydro-liquefaction activity of Shenhua coal can be improved by hydrothermal pretreatment between 250{sup o}C and 300{sup o}C. 15 refs., 5 figs., 4 tabs.

  11. A simulation of the hydrothermal response to the Chesapeake Bay bolide impact

    Science.gov (United States)

    Sanford, W.E.

    2005-01-01

    Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. ?? Blackwell Publishing Ltd.

  12. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  13. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    International Nuclear Information System (INIS)

    Nistor, L C; Nistor, S V; Dinca, G; Georgeoni, P; Landuyt, J van; Manfredotti, C; Vittone, E

    2002-01-01

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp 3 bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m -2 is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond

  14. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    Science.gov (United States)

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  15. Mn{sup 4+}-activated BaSiF{sub 6} red phosphor: Hydrothermal synthesis and dependence of its luminescent properties on reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qiang; Zhou, Yayun [Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650500 (China); Lu, Fengqi [MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004 (China); Liu, Yong [Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650500 (China); Wang, Qin [College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500 (China); Luo, Lijun [Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650500 (China); Wang, Zhengliang, E-mail: wangzhengliang@foxmail.com [Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650500 (China)

    2016-02-15

    In this work, a series of BaSiF{sub 6}:Mn{sup 4+} red phosphors were synthesized through a hydrothermal route. The crystal structure and morphology were characterized by powder X-ray diffraction (XRD) with Rietveld refinement, scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS) in detail. The influence of reaction conditions, including the concentration of KMnO{sub 4} and HF, reaction temperature and time, on the photoluminescence properties were investigated systematically. It can emit intense red light (∼636 nm) under blue light (∼458 nm) illumination. The white LED device based on YAG:Ce–BaSiF{sub 6}:Mn{sup 4+} mixture shows warm white light with low color temperature and high correlated color index, which reveals its potential application in WLED. - Highlights: • The crystal structure of BaSiF{sub 6}:Mn{sup 4+} has been verified using Rietveld refinement. • The optimum hydrothermal reaction condition for BaSiF{sub 6}:Mn{sup 4+} has been confirmed. • The white LED based on YAG:Ce–BaSiF{sub 6}:Mn{sup 4+} mixture presents warmer white light than that only with YAG:Ce.

  16. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.

    Science.gov (United States)

    Chimentão, R J; Lorente, E; Gispert-Guirado, F; Medina, F; López, F

    2014-10-13

    The hydrolysis of dilute acid-pretreated cellulose was investigated in a conventional oven and under microwave heating. Two acids--sulfuric and oxalic--were studied. For both hydrothermal conditions (oven and microwave) the resultant total organic carbon (TOC) values obtained by the hydrolysis of the cellulose pretreated with sulfuric acid were higher than those obtained by the hydrolysis of the cellulose pretreated with oxalic acid. However, the dicarboxylic acid exhibited higher hydrolytic efficiency towards glucose. The hydrolysis of cellulose was greatly promoted by microwave heating. The Rietveld method was applied to fit the X-ray patterns of the resultant cellulose after hydrolysis. Oxalic acid preferentially removed the amorphous region of the cellulose and left the crystalline region untouched. On the other hand, sulfuric acid treatment decreased the ordering of the cellulose by partially disrupting its crystalline structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Fault-controlled development of shallow hydrothermal systems: Structural and mineralogical insights from the Southern Andes

    Science.gov (United States)

    Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.

    2017-12-01

    Paleofluid-transporting systems can be recognized as meshes of fracture-filled veins in eroded zones of extinct hydrothermal systems. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in hydrothermal systems associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated hydrothermal activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.

  18. High-pressure U3O8 with the fluorite-type structure

    International Nuclear Information System (INIS)

    Zhang, F.X.; Lang, M.; Wang, J.W.; Li, W.X.; Sun, K.; Prakapenka, V.; Ewing, R.C.

    2014-01-01

    A new high-pressure phase of U 3 O 8 , which has a fluorite-type structure, forms at pressures greater than ∼8.1 GPa that was confirmed by in situ x-ray diffraction (XRD) measurements. The fluorite-type U 3 O 8 is stable at pressures at least up to ∼40 GPa and temperatures to 1700 K, and quenchable to ambient conditions. Based on the XRD analysis, there is a huge volume collapse (>20%) for U 3 O 8 during the phase transition and the quenched high-pressure phase is 28% denser than the initial orthorhombic phase at ambient conditions. The high-pressure phase has a very low compressibility comparing with the starting orthorhombic phase. - Graphical abstract: α-U 3 O 8 is in a layered structure with orthorhombic symmetry, at high pressures, it transformed to a fluorite-type cubic structure. There are a lot of defects in the cubic structure, and it is a new kind of hyperstoichiometric uranium oxide, which is stable at ambient conditions. - Highlights: • A new fluorite-type high-pressure phase was found in hyperstoichometric UO 2 +x (x∼0.8). • The new high-pressure structure is quenchable to ambient conditions. • Pressure driven phase transition in orthorhombic U 3 O 8 was first found

  19. The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-Hydrothermal Systems

    Science.gov (United States)

    Weis, P.

    2014-12-01

    Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the hydrothermal system self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the hydrothermal system to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active systems, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal systems from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal systems may be closer to the magma chamber.

  20. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  1. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  2. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  3. High-pressure condition of SiH{sub 4}+Ar+H{sub 2} plasma for deposition of hydrogenated nanocrystalline silicon film

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, A.; Kumar, Sushil; Dixit, P.N.; Gope, Jhuma; Rauthan, C.M.S. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Hashmi, S.A. [Department of Physics and Astro Physics, University of Delhi, Delhi 110007 (India)

    2008-10-15

    The characteristics of 13.56-MHz discharged SiH{sub 4}+Ar+H{sub 2} plasma at high pressure (2-8 Torr), used for the deposition of hydrogenated nanocrystalline silicon (nc-Si:H) films in a capacitively coupled symmetric PECVD system, has been investigated. Plasma parameters such as average electron density, sheath field and bulk field are extracted from equivalent circuit model of the plasma using outputs (current, voltage and phase) of RF V-I probe under different pressure conditions. The conditions of growth in terms of plasma parameters are correlated with properties of the hydrogenated nanocrystalline silicon films characterized by Raman, AFM and dc conductivity. The film deposited at 4 Torr of pressure, where relatively low sheath/bulk field ratio is observed, exhibits high crystallinity and conductivity. The crystalline volume fraction of the films estimated from the Raman spectra is found to vary from 23% to 79%, and the trend of variation is similar to the RF real plasma impedance data. (author)

  4. Highly sensitive avoidance plays a key role in sensory adaptation to deep-sea hydrothermal vent environments.

    Directory of Open Access Journals (Sweden)

    Tetsuya Ogino

    Full Text Available The environments around deep-sea hydrothermal vents are very harsh conditions for organisms due to the possibility of exposure to highly toxic compounds and extremely hot venting there. Despite such extreme environments, some indigenous species have thrived there. Alvinellid worms (Annelida are among the organisms best adapted to high-temperature and oxidatively stressful venting regions. Although intensive studies of the adaptation of these worms to the environments of hydrothermal vents have been made, little is known about the worms' sensory adaptation to the severe chemical conditions there. To examine the sensitivity of the vent-endemic worm Paralvinella hessleri to low pH and oxidative stress, we determined the concentration of acetic acid and hydrogen peroxide that induced avoidance behavior of this worm, and compared these concentrations to those obtained for related species inhabiting intertidal zones, Thelepus sp. The concentrations of the chemicals that induced avoidance behavior of P. hessleri were 10-100 times lower than those for Thelepus sp. To identify the receptors for these chemicals, chemical avoidance tests were performed with the addition of ruthenium red, a blocker of transient receptor potential (TRP channels. This treatment suppressed the chemical avoidance behavior of P. hessleri, which suggests that TRP channels are involved in the chemical avoidance behavior of this species. Our results revealed for the first time hypersensitive detection systems for acid and for oxidative stress in the vent-endemic worm P. hessleri, possibly mediated by TRP channels, suggesting that such sensory systems may have facilitated the adaptation of this organism to harsh vent environments.

  5. Borehole plugging by hydrothermal transport. A feasibility report

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1975-01-01

    The possibility of forming borehole plugs by hydrothermal transport was examined with respect to five systems, utilizing available literature data. In general, it would appear possible to create plugs with hydrothermal cements, with hydrothermally transported quartz, and with carbonates precipitated in-situ using carbon dioxide or carbon dioxide and water as reacting fluids. Hydrothermal cements appear to be most feasible from an engineering and economic point of view using a slurry with a lime-alumina-silica composition carried into the hole in a single pipe at temperatures in the range of 200 0 C and requiring only enough pressure to drive the mixture into the hole. Quartz or chalcedony plugs would be the most impervious, have the lowest chemical reactivity with groundwater, the lowest thermal expansion, and be most compatible with the wall rock. Deposition is likely to be slow, and there are severe engineering problems associated with a single pipe system carrying silica-rich solutions at temperatures in excess of 500 0 C at pressure of 2000 bars (30,000 psi). Calcite plugs could be formed as compatible plug materials in contact with a limestone or dolomite wall rock. It is not known whether non-porous plugs can be readily formed and there is also a problem of chemical reaction with percolating groundwater. The clay-water and sulfur-water systems do not appear to be viable plug systems. In-situ reconstitution of the wall rock does not appear to be an economically feasible possibility

  6. Radiogeochemical features of hydrothermal metasomatic formations

    International Nuclear Information System (INIS)

    Plyushchev, E.V.; Ryabova, L.A.; Shatov, V.V.

    1978-01-01

    Considered are the most general peculiarities of uranium and thorium distributions in hydrothermal-metasomatic formations of three levels of substance formation: 1) in hydrothermal minerals; 2) in natural associations of these minerals (in the altered rocks, metasomatites, ores, etc.); 3) ordened series of zonally and in stage conjugated hydrothermal-metasomatic formations. Statistically stable recurrence of natural combinations of hydrothermal-metasomatic formations points out conjugation of their formation in the directed evolution in the general hydrothermal process. Series of metasomatic formations, the initial members of which are potassium metasomatites, mostly result in accumulation up to industrial concentrations of radioactive elements in final members of these formations. Development of midlow-temperature propylitic alterations in highly radiative rocks causes the same accumulation

  7. Geothermic analysis of high temperature hydrothermal activities area in Western plateau of Sichuan province, China

    Science.gov (United States)

    Zhang, J.

    2016-12-01

    There is a high temperature hydrothermal activity area in the western plateau of Sichuan. More than 200 hot springs points have been found in the region, including 11 hot spring water temperature above local boiling point. Most of these distribute along Jinshajjiang fracture, Dege-Xiangcheng fracture, Ganzi-Litang fracture as well as Xianshuihe fracture, and form three high-temperature hydrothermal activity strips in the NW-SE direction. Using gravity, magnetic, seismic and helium isotope data, this paper analyzed the crust-mantle heat flow structure, crustal heat source distribution and water heating system. The results show that the geothermal activity mainly controlled by the "hot" crust. The ratio of crustal heat flow and surface heat flow is higher than 60%. In the high temperature hydrothermal activities area, there is lower S wave velocity zone with VsGeothermal water mainly reserve in the Triassic strata of the containing water good carbonate rocks, and in the intrusive granite which is along the fault zone. The thermal energy of Surface heat thermal activities mainly comes from the high-temperature hot source which is located in the middle and lower crust. Being in the deep crustal fracture, the groundwater infiltrated to the deep crust and absorbed heat, then, quickly got back to the surface and formed high hot springs.

  8. High pressure-elevated temperature x-ray micro-computed tomography for subsurface applications.

    Science.gov (United States)

    Iglauer, Stefan; Lebedev, Maxim

    2018-06-01

    Physical, chemical and mechanical pore-scale (i.e. micrometer-scale) mechanisms in rock are of key importance in many, if not all, subsurface processes. These processes are highly relevant in various applications, e.g. hydrocarbon recovery, CO 2 geo-sequestration, geophysical exploration, water production, geothermal energy production, or the prediction of the location of valuable hydrothermal deposits. Typical examples are multi-phase flow (e.g. oil and water) displacements driven by buoyancy, viscous or capillary forces, mineral-fluid interactions (e.g. mineral dissolution and/or precipitation over geological times), geo-mechanical rock behaviour (e.g. rock compaction during diagenesis) or fines migration during water production, which can dramatically reduce reservoir permeability (and thus reservoir performance). All above examples are 3D processes, and 2D experiments (as traditionally done for micro-scale investigations) will thus only provide qualitative information; for instance the percolation threshold is much lower in 3D than in 2D. However, with the advent of x-ray micro-computed tomography (μCT) - which is now routinely used - this limitation has been overcome, and such pore-scale processes can be observed in 3D at micrometer-scale. A serious complication is, however, the fact that in the subsurface high pressures and elevated temperatures (HPET) prevail, due to the hydrostatic and geothermal gradients imposed upon it. Such HPET-reservoir conditions significantly change the above mentioned physical and chemical processes, e.g. gas density is much higher at high pressure, which strongly affects buoyancy and wettability and thus gas distributions in the subsurface; or chemical reactions are significantly accelerated at increased temperature, strongly affecting fluid-rock interactions and thus diagenesis and deposition of valuable minerals. It is thus necessary to apply HPET conditions to the aforementioned μCT experiments, to be able to mimic subsurface

  9. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, L C [National Institute for Materials Physics, Bucharest (Romania); Nistor, S V [National Institute for Materials Physics, Bucharest (Romania); Dinca, G [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Georgeoni, P [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Landuyt, J van [University of Antwerpen - RUCA, EMAT, Antwerpen (Belgium); Manfredotti, C [Experimental Physics Department, University of Turin, Turin (Italy); Vittone, E [Experimental Physics Department, University of Turin, Turin (Italy)

    2002-11-11

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp{sup 3} bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m{sup -2} is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond.

  10. Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction

    International Nuclear Information System (INIS)

    Liang, Xianqing; Zhong, Jun; Shi, Yalin; Guo, Jin; Huang, Guolong; Hong, Caihao; Zhao, Yidong

    2015-01-01

    Highlights: • A novel approach to synthesis of N-doped few-layer graphene has been developed. • The high doping levels of N in products are achieved. • XPS and XANES results reveal a thermal transformation of N bonding configurations. • The developed method is cost-effective and eco-friendly. - Abstract: Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22 at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications

  11. Effect of hydrothermal treatment of coal on its associative structure

    Energy Technology Data Exchange (ETDEWEB)

    Shui Heng-fu; Wang Zhi-cai; Wang Gao-qiang; Niu Min-feng [Anhui University of Technology, Maanshan (China). School of Chemistry & Chemical Engineering

    2006-10-15

    4 bituminous coals with different ranks were thermally and hydrothermally treated under different conditions, and the raw and treated coals were extracted with carbon disulfide/N-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent (1:1 by volume). It is found that the extraction yields of the thermal or hydrothermal treated coals at proper conditions increase in different extent. The increments of extraction yields for hydrothermal treated coals are higher than those of thermal treated coals. FT-IR shows that the adsorption peaks at 3410 cm{sup -1} attributed to OH group for the hydrothermal treated coals decrease, suggesting the dissociation of the coal aggregation structure due to the breakage of hydrogen bonds, resulting in the increase of extraction yields for the treated coals. For higher rank coal, the removal of minerals and the dissociation of {pi}-cation association after hydrothermal treatment of coal may be responsible for the increase of extraction yield. In addition, the mechanism of hydrothermal treatment of coal was discussed. 15 refs., 2 figs., 5 tabs.

  12. Nucleation control and inhibition of BaTiO3 films using hydrothermal-electrochemical method

    International Nuclear Information System (INIS)

    Escobar, Ivan; Silva, Carmen; Silva, Eric; Vargas, Tomas; Fuenzalida, Victor

    1999-01-01

    The microstructure of BaTiO 3 films on titanium by the hydrothermal-electrochemical method was investigated using a three electrode high pressure electrochemical cell in a 0.2 M Ba(OH) 2 electrolyte at 150 0 C. The spontaneous initial linked to pure hydrothermal BaTiO 3 formation can be inhibited by cathodically protecting titanium electrode since its immersion in the electrolyte. The application of initial nucleation pulses of varying the cathodic potentials affected the grain size of the deposit. It is suggested that the formation of a titanium oxide layers is a necessary step previous to the nucleation of BaTiO 3

  13. Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing

    DEFF Research Database (Denmark)

    Rosa, Massimo; Gooden, P. N.; Butterworth, S.

    2017-01-01

    Water dispersions of nanometric yttria stabilized zirconia (YSZ) particles synthesized by Continuous Hydrothermal Synthesis are transferred into nano-inks for thin film deposition. YSZ nanoparticles are synthesized in supercritical conditions resulting in highly dispersed crystals of 10 nm in size...

  14. First-principles calculations of a high-pressure synthesized compound PtC

    International Nuclear Information System (INIS)

    Li Linyan; Yu Wen; Jin Changqing

    2005-01-01

    The first-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that platinum carbide has a zinc-blende ground-state phase at zero pressure and that the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt structure is determined to be 52 GPa. Furthermore, our calculation shows the possibility that the PtC experimentally synthesized under high pressure conditions might undergo a transition from rock-salt to zinc-blende structure after a pressure quench to ambient conditions

  15. TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS

    International Nuclear Information System (INIS)

    Rathborne, J. M.; Contreras, Y.; Longmore, S. N.; Bastian, N.; Jackson, J. M.; Kruijssen, J. M. D.; Alves, J. F.; Bally, J.; Foster, J. B.; Garay, G.; Testi, L.; Walsh, A. J.

    2014-01-01

    Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10 5 K cm –3 ) molecular clouds in the solar neighborhood. However, it is unknown whether or not these theories extend to clouds in high-pressure (P/k > 10 7 K cm –3 ) environments, like those in the Galaxy's inner 200 pc central molecular zone (CMZ) and in the early universe. Here, we present Atacama Large Millimeter/submillimeter Array 3 mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density probability distribution function (PDF) are strikingly similar to those of solar neighborhood clouds, there is one important quantitative difference: its mean column density is one to two orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighborhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighborhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighborhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early universe

  16. TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Rathborne, J. M.; Contreras, Y. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW, 1710 (Australia); Longmore, S. N.; Bastian, N. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Jackson, J. M. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Kruijssen, J. M. D. [Max-Planck Institut fur Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748, Garching (Germany); Alves, J. F. [University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Bally, J. [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 8030 (United States); Foster, J. B. [Department of Astronomy, Yale University, P.O. Box 208101 New Haven, CT 06520-8101 (United States); Garay, G. [Universidad de Chile, Camino El Observatorio1515, Las Condes, Santiago (Chile); Testi, L. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen (Germany); Walsh, A. J., E-mail: Jill.Rathborne@csiro.au [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth (Australia)

    2014-11-10

    Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10{sup 5} K cm{sup –3}) molecular clouds in the solar neighborhood. However, it is unknown whether or not these theories extend to clouds in high-pressure (P/k > 10{sup 7} K cm{sup –3}) environments, like those in the Galaxy's inner 200 pc central molecular zone (CMZ) and in the early universe. Here, we present Atacama Large Millimeter/submillimeter Array 3 mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density probability distribution function (PDF) are strikingly similar to those of solar neighborhood clouds, there is one important quantitative difference: its mean column density is one to two orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighborhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighborhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighborhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early universe.

  17. Reverse spin-crossover and high-pressure kinetics of the heme iron center relevant for the operation of heme proteins under deep-sea conditions.

    Science.gov (United States)

    Troeppner, Oliver; Lippert, Rainer; Shubina, Tatyana E; Zahl, Achim; Jux, Norbert; Ivanović-Burmazović, Ivana

    2014-10-20

    By design of a heme model complex with a binding pocket of appropriate size and flexibility, and by elucidating its kinetics and thermodynamics under elevated pressures, some of the pressure effects are demonstrated relevant for operation of heme-proteins under deep-sea conditions. Opposite from classical paradigms of the spin-crossover and reaction kinetics, a pressure increase can cause deceleration of the small-molecule binding to the vacant coordination site of the heme-center in a confined space and stabilize a high-spin state of its Fe center. This reverse high-pressure behavior can be achieved only if the volume changes related to the conformational transformation of the cavity can offset the volume changes caused by the substrate binding. It is speculated that based on these criteria nature could make a selection of structures of heme pockets that assist in reducing metabolic activity and enzymatic side reactions under extreme pressure conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method

    International Nuclear Information System (INIS)

    Razak, K.A.; Asadov, A.; Yoo, J.; Haemmerle, E.; Gao, W.

    2008-01-01

    The preparation procedure, structural and dielectric properties of hydrothermally derived Ba x Sr 1-x TiO 3 (BST) were studied. BST with initial Ba compositions of 75, 80, 85 and 90 mol.% were prepared by a high temperature hydrothermal synthesis. The obtained powders were pressed into pellet, cold isostatically pressed and sintered at 1200 deg. C for 3 hours. The phase compositions and lattice parameters of the as prepared powders and sintered samples were analysed using X-ray diffractometry. A fitting software was used to analyse the XRD spectra to separate different phases. It was found that BST powder produced by the high temperature hydrothermal possessed a two-phase structure. This structure became more homogeneous during sintering due to interdiffusion but a small amount of minor phase can still be traced. Samples underwent an abnormal grain growth, whereby some grains grow faster than the other due to the presence of two-phase structure. The grain size increased with increasing Ba amount. Dielectric constant and polarisation increased with increasing Ba content but it was also affected by the electronic state and grain size of the compositions

  19. Controllable hydrothermal synthesis of Ni/H-BEA with a hierarchical core-shell structure and highly enhanced biomass hydrodeoxygenation performance.

    Science.gov (United States)

    Ma, Bing; Cui, Huimei; Wang, Darui; Wu, Peng; Zhao, Chen

    2017-05-11

    Ni based catalysts are wildly used in catalytic industrial processes due to their low costs and high activities. The design of highly hierarchical core-shell structured Ni/HBEA is achieved using a sustainable, simple, and easy-tunable hydrothermal synthesis approach using combined NH 4 Cl and NH 3 ·H 2 O as a co-precipitation agent at 120 °C. Starting from a single-crystalline hierarchical H + -exchanged beta polymorph zeolite (HBEA), the adjustment of the precipitate conditions shows that mixed NH 4 Cl and NH 3 ·H 2 O precipitates with proper concentrations are vital in the hydrothermal synthesis for preserving a good crystalline morphology of HBEA and generating abundant highly-dispersed Ni nanoparticles (loading: 41 wt%, 5.9 ± 0.7 nm) encapsulated onto/into the support. NH 4 Cl solution without an alkali is unable to generate abundant Ni nanoparticles from Ni salts under the hydrothermal conditions, whereas NH 3 ·H 2 O seriously damages the pore structure. After studying the in situ changes in infrared, X-ray diffractometry, temperature-programmed reduction, and scanning electron microscopy measurements, as well as variations in the filtrate pH, Si/Al ratios, and solid sample Ni loading, a two-step dissolution-recrystallization process is proposed. The process consists of Si dissolution and no change in elemental Al, and after the dissolved Si(iv) concentrations have promoted Ni phyllosilicate nanosheet solubility, further growth of multilayered Ni phyllosilicate nanosheets commences. The precursor Ni phyllosilicate is changeable between Ni 3 Si 2 O 5 (OH) 4 and Ni 3 Si 4 O 10 (OH) 2 , because of competition in kinetically-favored and thermodynamically-controlled species caused by different basic agents. The superior catalytic performance is demonstrated in the metal/acid catalyzed biomass derived bulky stearic acid hydrodeoxygenation with 90% octadecane selectivity and a promising rate of 54 g g -1 h -1 , which highly excels the reported rates catalyzed by

  20. Effect of Low Pressure End Conditions on Steam Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Ali Syed Haider

    2014-07-01

    Full Text Available Most of the electricity produced throughout the world today is from steam power plants and improving the performance of power plants is crucial to minimize the greenhouse gas emissions and fuel consumption. Energy efficiency of a thermal power plant strongly depends on its boiler-condenser operating conditions. The low pressure end conditions of a condenser have influence on the power output, steam consumption and efficiency of a plant. Hence, the objective this paper is to study the effect of the low pressure end conditions on a steam power plant performance. For the study each component was modelled thermodynamically. Simulation was done and the results showed that performance of the condenser is highly a function of its pressure which in turn depends on the flow rate and temperature of the cooling water. Furthermore, when the condenser pressure increases both net power output and plant efficiency decrease whereas the steam consumption increases. The results can be used to run a steam power cycle at optimum conditions.

  1. Bacterial Diets of Primary Consumers at Hydrothermal Vents

    Science.gov (United States)

    Govenar, B.; Shank, T. M.

    2008-12-01

    Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets

  2. Evaluation of lime and hydrothermal pretreatments for efficient enzymatic hydrolysis of raw sugarcane bagasse.

    Science.gov (United States)

    Grimaldi, Maira Prearo; Marques, Marina Paganini; Laluce, Cecília; Cilli, Eduardo Maffud; Sponchiado, Sandra Regina Pombeiro

    2015-01-01

    Ethanol production from sugarcane bagasse requires a pretreatment step to disrupt the cellulose-hemicellulose-lignin complex and to increase biomass digestibility, thus allowing the obtaining of high yields of fermentable sugars for the subsequent fermentation. Hydrothermal and lime pretreatments have emerged as effective methods in preparing the lignocellulosic biomass for bioconversion. These pretreatments are advantageous because they can be performed under mild temperature and pressure conditions, resulting in less sugar degradation compared with other pretreatments, and also are cost-effective and environmentally sustainable. In this study, we evaluated the effect of these pretreatments on the efficiency of enzymatic hydrolysis of raw sugarcane bagasse obtained directly from mill without prior screening. In addition, we evaluated the structure and composition modifications of this bagasse after lime and hydrothermal pretreatments. The highest cellulose hydrolysis rate (70 % digestion) was obtained for raw sugarcane bagasse pretreated with lime [0.1 g Ca(OH)2/g raw] for 60 min at 120 °C compared with hydrothermally pretreated bagasse (21 % digestion) under the same time and temperature conditions. Chemical composition analyses showed that the lime pretreatment of bagasse promoted high solubilization of lignin (30 %) and hemicellulose (5 %) accompanied by a cellulose accumulation (11 %). Analysis of pretreated bagasse structure revealed that lime pretreatment caused considerable damage to the bagasse fibers, including rupture of the cell wall, exposing the cellulose-rich areas to enzymatic action. We showed that lime pretreatment is effective in improving enzymatic digestibility of raw sugarcane bagasse, even at low lime loading and over a short pretreatment period. It was also demonstrated that this pretreatment caused alterations in the structure and composition of raw bagasse, which had a pronounced effect on the enzymes accessibility to the

  3. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Directory of Open Access Journals (Sweden)

    Rika E Anderson

    Full Text Available The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  4. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2014-01-01

    The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  5. Spectroscopic studies of sulfite-based polyoxometalates at high temperature and high pressure

    International Nuclear Information System (INIS)

    Quesada Cabrera, Raul; Firth, Steven; Blackman, Christopher S.; Long, De-Liang; Cronin, Leroy; McMillan, Paul F.

    2012-01-01

    Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. - Graphical abstract: Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. Highlights: ► Spectroscopy studies of non-conventional Wells–Dawson polyoxometalates (POMs) at high temperature and high pressure. ► Discussion on the stability of two POM isomers. ► Local formation of bronze-like materials: possibilities for a new synthetic method at high pressure from POM precursors.

  6. Stability of Hydrogen-Bonded Supramolecular Architecture under High Pressure Conditions: Pressure-Induced Amorphization in Melamine-Boric Acid Adduct

    International Nuclear Information System (INIS)

    Wang, K.; Duan, D.; Wang, R.; Lin, A.; Cui, Q.; Liu, B.; Cui, T.; Zou, B.; Zhang, X.

    2009-01-01

    The effects of high pressure on the structural stability of the melamine-boric acid adduct (C3N6H6 2H3BO3, M 2B), a three-dimensional hydrogen-bonded supramolecular architecture, were studied by in situ synchrotron X-ray diffraction (XRD) and Raman spectroscopy. M 2B exhibited a high compressibility and a strong anisotropic compression, which can be explained by the layerlike crystal packing. Furthermore, evolution of XRD patterns and Raman spectra indicated that the M 2B crystal undergoes a reversible pressure-induced amorphization (PIA) at 18 GPa. The mechanism for the PIA was attributed to the competition between close packing and long-range order. Ab initio calculations were also performed to account for the behavior of hydrogen bonding under high pressure.

  7. High Blood Pressure, Afib and Your Risk of Stroke

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure, AFib and Your Risk of Stroke Updated:Aug ... have a stroke for the first time have high blood pressure . And an irregular atrial heart rhythm — a condition ...

  8. Preparation and Characterization of Lignocellulosic Oil Sorbent by Hydrothermal Treatment of Populus Fiber

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2014-09-01

    Full Text Available This study is aimed at achieving the optimum conditions of hydrothermal treatment and acetylation of Populus fiber to improve its oil sorption capacity (OSC in an oil-water mixture. The characteristics of the hydrolyzed and acetylated fibers were comparatively investigated by FT-IR, CP-MAS 13C-NMR, SEM and TGA. The optimum conditions of the hydrothermal treatment and acetylation were obtained at170 °C for 1 h and 120 °C for 2 h, respectively. The maximum OSC of the hydrolyzed fiber (16.78 g/g was slightly lower than that of the acetylated fiber (21.57 g/g, but they were both higher than the maximum OSC of the unmodified fiber (3.94 g/g. In addition, acetylation after hydrothermal treatment for the Populus fiber was unnecessary as the increment of the maximum OSC was only 3.53 g/g. The hydrolyzed and the acetylated Populus fibers both displayed a lumen orifice enabling a high oil entrapment. The thermal stability of the modified fibers was shown to be increased in comparison with that of the raw fiber. The hydrothermal treatment offers a new approach to prepare lignocellulosic oil sorbent.

  9. Contention between supply of hydrothermal fluid and conduit obstruction: inferences from numerical simulations

    Science.gov (United States)

    Tanaka, Ryo; Hashimoto, Takeshi; Matsushima, Nobuo; Ishido, Tsuneo

    2018-05-01

    We investigate a volcanic hydrothermal system using numerical simulations, focusing on change in crater temperature. Both increases and decreases in crater temperature have been observed before phreatic eruptions. We follow the system's response for up to a decade after hydrothermal fluid flux from the deep part of the system is increased and permeability is reduced at a certain depth in a conduit. Our numerical simulations demonstrate that: (1) changes in crater temperature are controlled by the magnitude of the increase in hydrothermal fluid flux and the degree of permeability reduction; (2) significant increases in hydrothermal flux with decreases in permeability induce substantial pressure changes in shallow depths in the edifice and decreases in crater temperature; (3) the location of maximum pressure change differs between the mechanisms. The results of this study imply that it is difficult to predict eruptions by crater temperature change alone. One should be as wary of large eruptions when crater temperature decreases as when crater temperature increases. It is possible to clarify the implications of changes in crater temperature with simultaneous observation of ground deformation.

  10. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    OpenAIRE

    Dunne, Peter W.; Starkey, Christopher L.; Gimeno-Fabra, Miquel; Lester, Edward

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe₍₁₋ᵪ₎S and Bi₂S₃, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth d...

  11. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    Science.gov (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  13. Production and analysis of hydroxyapatite from Australian corals via hydrothermal process

    International Nuclear Information System (INIS)

    Hu, J.; Russell, J.; Ben-Nissan, B.

    1999-01-01

    Since the 1970s it is well known that if a biocompatible ceramic prosthesis with appropriate interconnected pores is used, growth of hard and soft tissue into the surface pores will be observed. A very strong attachment and hence the resultant mechanical and chemical bond to the existing surrounding tissue will be produced. Current artificial eyes although widely used encounter various problems due to the their motility and fail to deliver natural movement. They also cause sagging of the lids due to unsupported weight of the prosthesis. It is expected that application of a porous bioceramic such as the hydroxyapatite can generate good bonding to the tissue and hence a life-like eye movement. Hydroxyapatite (HAp) and related calcium phosphates have been studied for many years as implant materials, due to their similarity with the mineral phase of bone. From the point of view of biocompatibility, HAp seems to be the most suitable ceramic material for tissue replacement implants. Hydroxyapatite ceramics do not exhibit any cytoxic effects. It shows excellent biocompatibility with hard and soft tissues. Moreover, HAp can directly bond to the bone. Various preparation methods for HAp including the hydrothermal method have been used. The hydrothermal method was first used for hydroxyapatite formation directly from corals in 1974 by Roy and Linnehan. Complete replacement of aragonite by phosphatic material was achieved under 270degC and 103MPa using the hydrothermal process. This process has the disadvantage that the hydrothermal treatment must be carried out at a relatively high temperature under very high pressure. In 1996, HAp derived from Indian coral using hydrothermal process was developed by Sivakumar et al. However, the resultant material was in the form of a powder. Australia has rich variety of corals. Their application for implants have been studied very little. In this study, Australian corals selected were used for hydroxyapatite conversion. A new hydrothermal

  14. Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates

    DEFF Research Database (Denmark)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin

    2014-01-01

    Hydrothermal synthesis has been used as a soft chemical method to prepare bismuth molybdate catalysts for the selective oxidation of propylene to acrolein. All obtained samples displayed a plate-like morphology, but their individual aspect ratios varied with the hydrothermal synthesis conditions...... of nitric acid during hydrothermal synthesis enhanced both propylene conversion and acrolein yield, possibly due to a change in morphology. Formation of β-Bi2Mo2O9 was not observed under the applied conditions. In general, the catalytic performance of all samples decreased notably after calcination at 550...

  15. Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions

    KAUST Repository

    Vanteru, Mahendra Reddy

    2017-02-01

    This Chapter presents numerical simulation on MILD combustion operating at high pressure. Influence of preheat and dilution of oxidizer and operating pressure on stabilization of MILD combustion are presented. Three different preheat temperatures (1100, 1300 and 1500 K) and three different dilution levels (3, 6 and 9% O2) are simulated over an operating pressure variation from 1 atm to 16 atm. A classical jet in hot coflow burner is considered for this study. Total of 45 cases are simulated and analyzed. Essential characteristics of MILD combustion, i.e., maximum temperature (Tmax), temperature rise (ΔT) and temperature distributions, are analyzed. The distribution of emissions OH and CO are also studied and presented. Well-stabilized MILD combustion is observed for all cases except for two cases with high preheated (1500 K). Peak temperature is observed to decrease with increasing operating pressure for a given level of preheat and dilution. OH mass faction is reduced with increasing pressure. The CO emissions show little sensitivity to operating pressure. However, CO mass fraction is slightly higher at 1 atm operating pressure as compared to 4 to 16 atm. Since the residence time of reactants increases as the operating pressure increases, well-stabilized MILD combustion is observed for all highly diluted and low temperature preheat cases (3% O2 and 1100 K).

  16. Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions

    KAUST Repository

    Vanteru, Mahendra Reddy; Roberts, William L.

    2017-01-01

    This Chapter presents numerical simulation on MILD combustion operating at high pressure. Influence of preheat and dilution of oxidizer and operating pressure on stabilization of MILD combustion are presented. Three different preheat temperatures (1100, 1300 and 1500 K) and three different dilution levels (3, 6 and 9% O2) are simulated over an operating pressure variation from 1 atm to 16 atm. A classical jet in hot coflow burner is considered for this study. Total of 45 cases are simulated and analyzed. Essential characteristics of MILD combustion, i.e., maximum temperature (Tmax), temperature rise (ΔT) and temperature distributions, are analyzed. The distribution of emissions OH and CO are also studied and presented. Well-stabilized MILD combustion is observed for all cases except for two cases with high preheated (1500 K). Peak temperature is observed to decrease with increasing operating pressure for a given level of preheat and dilution. OH mass faction is reduced with increasing pressure. The CO emissions show little sensitivity to operating pressure. However, CO mass fraction is slightly higher at 1 atm operating pressure as compared to 4 to 16 atm. Since the residence time of reactants increases as the operating pressure increases, well-stabilized MILD combustion is observed for all highly diluted and low temperature preheat cases (3% O2 and 1100 K).

  17. The insoluble carbonaceous material of CM chondrites: A possible source of discrete organic compounds under hydrothermal conditions

    Science.gov (United States)

    Yabuta, Hikaru; Williams, Lynda B.; Cody, George D.; Alexander, Conel M. O. D.; Pizzarello, Sandra

    2007-08-01

    We report on the molecular analyses of the water- and solvent-soluble organic compounds released from the insoluble organic material (IOM) of the Murray meteorite upon treatment with weight-equivalent amounts of water and under conditions of elevated temperature and pressure. A varied suite of compounds was identified by gas chromatography-mass spectrometry (GC-MS). C3-C17 alkyl dicarboxylic acids and N- and O-containing hydroaromatic and aromatic compounds were found in the water extracts. The solvent extracts contained N-, O-, and S-containing aromatic compounds, a large number of their isomers and homologs, and a series of polycyclic aromatic hydrocarbons (PAHs) of up to five rings, together with noncondensed aromatic species such as substituted benzenes, biphenyl, and terphenyls as well as their substituted homologs, and hydrated PAHs. Isotopic analyses showed that residue IOMs after hydrothermal treatment had lower deuterium and 15N content than the untreated material (ΔD = -833‰ and Δ15N = -24.1) but did not differ from it in 13C composition. The effect of the hydrothermolytic release was recorded in significant differences between the NMR spectra of untreated and residue IOM. A possible relation to common precursors for the dicarboxylic acids found in the IOM and bulk extracts is discussed.

  18. Hydrothermal systems on Mars: an assessment of present evidence

    Science.gov (United States)

    Farmer, J. D.

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  19. Production of lightweight refractory material by hydrothermal process

    International Nuclear Information System (INIS)

    Sulejmani, Ramiz B.

    2002-01-01

    Many different processes of production of lightweight refractories are well known over the World. Traditional production of lightweight refractories is by addition of combustibles or by a special frothing process. This work is concerned with hydrothermal of lightweight refractories from rice husk ash. The rice husk ash, used in present investigations were from Kocani region, R. Macedonia. The chemical analysis of the rice husk ash shows that it contains 91,8 - 93,7% SiO 2 and some alkaline and alkaline earth oxides. Microscopic and X - ray diffraction examinations of the rice husk ash have shown that it is composed of cristobalite, tridimite and amorphous silica. The composition of the mixture for lightweight refractory brick production is 93,4% rice husk ash and 6,6% Ca(OH) 2 . The mixtures were well mixed, moistened and pressed at 5 - 10 MPa. The hydrothermal reactions between calcium hydroxide and rice husk ash over the temperature range 80 - 160 o C were investigated. The period of autoclave treatment was from 2 to 72 h. After the hydrothermal treatment of the samples, the mineralogical composition, bulk density, density, cold crushing strength, porosity, refractoriness and thermal expansion were examined. Analysing the properties of the obtained samples it can be concluded that from rice husk ash and calcium hydroxide under hydrothermal condition it is possible to obtain lightweight acid refractory material with high quality.(Author)

  20. Anhydrite precipitation in seafloor hydrothermal systems

    Science.gov (United States)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  1. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  2. Argentine hydrothermal panorama

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    An attempt is made to give a realistic review of Argentine thermal waters. The topics discussed are the characteristics of the hydrothermal resources, classification according to their mineral content, hydrothermal flora and fauna, uses of hydrothermal resources, hydrothermal regions of Argentina, and meteorology and climate. A tabulation is presented of the principal thermal waters. (JSR)

  3. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  4. Boiling heat transfer and dryout in helically coiled tubes under different pressure conditions

    International Nuclear Information System (INIS)

    Chung, Young-Jong; Bae, Kyoo-Hwan; Kim, Keung Koo; Lee, Won-Jae

    2014-01-01

    Highlights: • Heat transfer characteristics and dryout for helically coiled tube are performed. • A boiling heat transfer tends to increase with a pressure increase. • Dryout occurs at high quality test conditions investigated. • Steiner–Taborek’s correlation is predicted well based on the experimental results. - Abstract: A helically coiled once-through steam generator has been used widely during the past several decades for small nuclear power reactors. The heat transfer characteristics and dryout conditions are important to optimal design a helically coiled steam generator. Various experiments with the helically coiled tubes are performed to investigate the heat transfer characteristics and occurrence condition of a dryout. For the investigated experimental conditions, Steiner–Taborek’s correlation is predicted reasonably based on the experimental results. The pressure effect is important for the boiling heat transfer correlation. A boiling heat transfer tends to increase with a pressure increase. However, it is not affected by the pressure change at a low power and low mass flow rate. Dryout occurs at high quality test conditions investigated because a liquid film on the wall exists owing to a centrifugal force of the helical coil

  5. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  6. High Pressure Compression-Molding of α-Cellulose and Effects of Operating Conditions

    Directory of Open Access Journals (Sweden)

    Antoine Rouilly

    2013-05-01

    Full Text Available Commercial α-cellulose was compression-molded to produce 1A dog-bone specimens under various operating conditions without any additive. The resulting agromaterials exhibited a smooth, plastic-like surface, and constituted a suitable target as replacement for plastic materials. Tensile and three-points bending tests were conducted according to ISO standards related to the evaluation of plastic materials. The specimens had strengths comparable to classical petroleum-based thermoplastics. They also exhibited high moduli, which is characteristic of brittle materials. A higher temperature and higher pressure rate produced specimens with higher mechanical properties while low moisture content produced weaker specimens. Generally, the strong specimen had higher specific gravity and lower moisture content. However, some parameters did not follow the general trend e.g., thinner specimen showed much higher Young’s Modulus, although their specific gravity and moisture content remained similar to control, revealing a marked skin-effect which was confirmed by SEM observations.

  7. Influence of the pressure applied to make LATP pellets

    Science.gov (United States)

    Lu, Xiaojuan

    2018-02-01

    NASICON structured Li1+xAlxTi2-x(PO4)3 (0.1≤x≤0.7) powders were prepared by hydrothermal synthesis method and the pressure applied to press the powders into pellets was investigated in this study. The conductivity was measured by an impedance analyzer and the microstructures were examined by SEM. The variation trend with Al amount was almost identical for LATP pressed at high pressure and low pressure. Both the total conductivities of LATP prepared at high pressures and low pressures peaked at x=0.6. The conductivities of LATP pressed at high pressures were all higher than those at low pressures. The reason was mainly attributed to the denser microstructures achieved at higher pressure.

  8. Numerical Modeling of Hydrothermal Circulation at the Longqi-1 Field: Southwest Indian Ridge

    Science.gov (United States)

    Guo, Z.; Lowell, R. P.; Tao, C.; Rupke, L.; Lewis, K. C.

    2017-12-01

    The Longqi-1(Dragon Flag) hydrothermal field is the first high-temperature hydrothermal system observed on the ultra-slow spreading Southwest Indian Ridge. Hydrothermal vents with temperatures near 380 °C are localized by detachment faulting within which extensional deformation likely increases permeability to provide preferred pathways for hydrothermal discharge. To better understand the Longqi-1 circulation system, we construct a 2-D numerical simulations in a NaCl- H2O fluid constrained by key observational data, such as vent temperature and heat output, crust structure derived from seismic data, and fault zone geometry deduced from seismicity. Heat output from AUV surveys is estimated to be » 300 ± 100 MW, and this value, in conjunction with vent temperature was used with the single-pass modeling approach to obtain an average permeability of 10-13 m-2 within the fault zone. In analogy with other fault-controlled hydrothermal systems such as Logatchev-1 we assume a lower background permeability of 10-14 m-2. The top boundary of the system is permeable and maintained at constant seafloor pressure, which is divided into two parts by the detachment fault. The pressure of the southern part is lower than the northern part to simulate the effect of the seafloor topography. The top boundary is upstream weighted to allow high temperature fluid to exit, while recharging fluid is maintained at 10°C. The bottom boundary is impermeable and is given a fixed temperature distribution at a depth of 7 km below the seafloor. The highest value Tmax is maintained over a distance given lateral distance and decreases linearly towards two ends to 300 °C. The salinity is set to 3.2 wt. % NaCl, and the simulations are assumed to be single phase. The results show that with a 7 km deep circulation system, Tmax = 550 oC gives a reasonable temperature and heat output of venting plume.We infer that the observed high salinity results from serpentinization reactions. Assuming all salinity

  9. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  10. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  11. A high-temperature hydrothermal deposit on the East Pacific Rise near 70N

    International Nuclear Information System (INIS)

    Boulegue, J.; Stouff, P.; Perseil, E.A.; Bernat, M.; Dupre, B.; Francheteau, J.

    1984-01-01

    A SEABEAM survey of the East Pacific Rise (EPR) led to the selection of several sites having structural characteristics favorable for hydrothermal activity. Dredging of such an area located at 7 0 N on the EPR resulted in the recovery of sulfides, oxides and fresh basalt. Chemical analyses and isotopic compositions showed that the recovered pyrites were probably precipitated directly from hot vent hydrothermal waters. Chemical analyses and isotopic composition of manganese-iron oxides indicated that they too were of hydrothermal origin. 210 Pb/Pb measurements yielded ages of 90 +- 10 years for the deposits. This site may still be undergoing hydrothermal activity. (orig.)

  12. High-pressure resistivity technique for quasi-hydrostatic compression experiments.

    Science.gov (United States)

    Rotundu, C R; Ćuk, T; Greene, R L; Shen, Z-X; Hemley, Russell J; Struzhkin, V V

    2013-06-01

    Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.

  13. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  14. Porosity evolution in Icelandic hydrothermal systems

    Science.gov (United States)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  15. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53719 (United States)

    2015-10-15

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  16. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  17. A feasibility study of hydrothermal treatment of rice straw for multi-production of solid fuel and liquid fertilizer

    Science.gov (United States)

    Samnang, S.; Prawisudha, P.; Pasek, A. D.

    2017-05-01

    Energy use has increased steadily over the last century due to population and industry increase. With the growing of GHG, biomass becomes an essential contributor to the world energy need. Indonesia is the third rice producer in the world. Rice straw has been converted to solid fuel by Hydrothermal Treatment (HT) for electricity generation. HT is a boiling solid organic or inorganic substance in water at high pressure and temperature within a holding time. HT converts high moisture content biomass into dried, uniform, pulverized, and higher energy density solid fuels. HT can effectively transport nutrient components in biomass into a liquid product known as fertilizer. This paper deals with an evaluation of hydrothermal treatment of rice straw for solid fuel and liquid fertilizer. An investigation of rice straw characteristics were completed for Bandung rice straw with various condition of temperature, biomass-water ratio, and holding time in the purpose to find the changes of calorific value for solid product and (N, P, K, and pH) for liquid product. The results showed that solid product at 225 °C and 90 min consists in a heating value 13.8 MJ/kg equal to lignite B. Liquid product at 225 °C and 90 min had the NPK content similar to that of micronutrients compound liquid fertilizer. The dried solid product should be useful for Coal Fire Power Plant, and the liquid product is suitable for plants. This research proves that hydrothermal process can be applied to rice straw to produce solid fuel and liquid fertilizer with adequate quality.

  18. Hydrothermal decomposition of liquid crystal in subcritical water

    International Nuclear Information System (INIS)

    Zhuang, Xuning; He, Wenzhi; Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao

    2014-01-01

    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H 2 O 2 supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment

  19. Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Xing Weinan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Ni Liang, E-mail: xingweinan3@126.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Huo Pengwei; Lu Ziyang; Liu Xinlin; Luo Yingying; Yan Yongsheng [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer CdS/halloysite nanotubes (HNTs) were synthesized by hydrothermal method. Black-Right-Pointing-Pointer The CdS/HNTs had better photocatalytic activity for degradation of tetracycline. Black-Right-Pointing-Pointer The presence of halloysite nanotubes both improved its photocatalytic activity and stability. - Abstract: A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.

  20. Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method

    International Nuclear Information System (INIS)

    Xing Weinan; Ni Liang; Huo Pengwei; Lu Ziyang; Liu Xinlin; Luo Yingying; Yan Yongsheng

    2012-01-01

    Highlights: ► CdS/halloysite nanotubes (HNTs) were synthesized by hydrothermal method. ► The CdS/HNTs had better photocatalytic activity for degradation of tetracycline. ► The presence of halloysite nanotubes both improved its photocatalytic activity and stability. - Abstract: A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (UV–vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.

  1. The BGU/CERN solar hydrothermal reactor

    CERN Document Server

    Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano

    2014-01-01

    We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

  2. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  3. Effects of storage conditions before or after high-hydrostatic pressure on inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters

    Science.gov (United States)

    The effect of storage conditions on subsequent high-hydrostatic pressure (HHP) inactivation of V. parahaemolyticus and V. vulnificus in oyster meat was investigated. Live oysters were inoculated with V. parahaemolyticus or V. vulnificus to ca. 7-8 log MPN/g by feeding and stored at different conditi...

  4. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analyses indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests to be applicable to actual repository conditions, a minimum heater test duration of 6-7 yr (including 4 yr of full-power heating) is required

  5. Recrystallization Experiments of Pyrite From Circulating Hydrothermal Solution by Thermal Convection

    Science.gov (United States)

    Tanaka, K.; Isobe, H.

    2005-12-01

    Pyrite is one of the most common accessory minerals in many rocks and generally occurs in hydrothermal deposit. However, pyrite morphology and association with other sulfide minerals is not well known with respect to the solution condition, especially with the hydrothermal solution under circulation. In this study, recrystallization experiments of pyrite from circulating hydrothermal solution by thermal convection were carried out. A rectangular circuit (42.6 cm by 17.3 cm) of SUS316 pressure tubing with 5 mm in inner diameter was used as a reaction vessel. The volume of the circuit is approximately 24 ml. Long sides of the rectangular circuit were held to be 20 degrees inclination. One of the long sides was heated by an electric furnace. Solution in the circuit evaporates in the high temperature tubing and the vapor condenses in room temperature tubing. The solution backs to the bottom of the high temperature tubing. Thus, thermal convection of the solution produces circulation in the circuit. Starting material was filled in the high temperature tubing. The lower half was filled with mixture of 2 g of powdered natural pyrite and 4 g of quartz grains. The upper half was filled with quartz grains only. 9 ml of 5 mol/l NH4Cl solution was sealed in the circuit with the starting material. Temperature gradient of the sample was monitored by 6 thermocouples. Maximum temperature was controlled at 350°C. Experimental durations are 3, 5, 10 and 30 days. After the experiments, the run products are fixed with resin and cut every 2 cm. Thin sections of vertical cross-sections are made and observed by microscope and SEM. Tiny pyrite crystals occurred at the upper outside of the furnace, where temperature should be much lower than 200°C. In the lower half of the starting material, pyrite decomposed and pyrrhotite formed around pyrite grains. At higher temperature area, pyrite decomposition and pyrrhotite formation is remarkable. Circulating sulfur-bearing solution provided by

  6. Inversion Approach For Thermal Data From A Convecting Hydrothermal System

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1985-01-01

    Hydrothermal systems are often studied by collecting thermal gradient data and temperature depth curves. These data contain important information about the flow field, the evolution of the hydrothermal system, and the location and nature of the ultimate heat sources. Thermal data are conventionally interpreted by the ''forward'' method; the thermal field is calculated based on selected initial conditions and boundary conditions such as temperature and permeability distributions. If the calculated thermal field matches the data, the chosen conditions are inferred to be possibly correct. Because many sets of initial conditions may produce similar thermal fields, users of the ''forward'' method may inadvertently miss the correct set of initial conditions. Analytical methods for ''inverting'' data also allow the determination of all the possible solutions consistent with the definition of the problem. In this paper we suggest an approach for inverting thermal data from a hydrothermal system, and compare it to the more conventional approach. We illustrate the difference in the methods by comparing their application to the Salton Sea Geothermal Field by Lau (1980a) and Kasameyer, et al. (1984). In this particular example, the inverse method was used to draw conclusions about the age and total rate of fluid flow into the hydrothermal system.

  7. Multiple-pass high-pressure homogenization of milk for the development of pasteurization-like processing conditions.

    Science.gov (United States)

    Ruiz-Espinosa, H; Amador-Espejo, G G; Barcenas-Pozos, M E; Angulo-Guerrero, J O; Garcia, H S; Welti-Chanes, J

    2013-02-01

    Multiple-pass ultrahigh pressure homogenization (UHPH) was used for reducing microbial population of both indigenous spoilage microflora in whole raw milk and a baroresistant pathogen (Staphylococcus aureus) inoculated in whole sterile milk to define pasteurization-like processing conditions. Response surface methodology was followed and multiple response optimization of UHPH operating pressure (OP) (100, 175, 250 MPa) and number of passes (N) (1-5) was conducted through overlaid contour plot analysis. Increasing OP and N had a significant effect (P pasteurization. Multiple-pass UHPH optimized conditions might help in producing safe milk without the detrimental effects associated with thermal pasteurization. © 2012 The Society for Applied Microbiology.

  8. Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization

    Science.gov (United States)

    Hoai, Tran Thanh; Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Tuan, Phan Nguyen Minh; Binh, Bui Thi Thanh

    2017-08-01

    Hydroxyapatite (HAp) is an excellent biomaterial for bone repair and regeneration. The biological functions of HAp particles, such as biomineralization, cell adhesion, and cell proliferation, can be enhanced when their size is reduced to the nanoscale. In this work, HAp nanoparticles were synthesized by the hydrothermal technique with addition of cetyltrimethylammonium bromide (CTAB). These particles were also characterized, and their size controlled by modifying the CTAB concentration and hydrothermal duration. The results show that most HAp nanoparticles were rod-like in shape, exhibiting the most uniform and smallest size (mean diameter and length of 39 nm and 125 nm, respectively) at optimal conditions of 0.64 g CTAB and hydrothermal duration of 12 h. Moreover, good biomineralization capability of the HAp nanorods was confirmed through in vitro tests in simulated body fluid. A bone-like mineral layer of synthesized HAp nanorods formed rapidly after 7 days. This study shows that highly bioactive HAp nanorods can be easily prepared by the hydrothermal method, being a potential nanomaterial for bone regeneration.

  9. Direct catalytic hydrothermal liquefaction of spirulina to biofuels with hydrogen

    Science.gov (United States)

    Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li

    2018-01-01

    We report herein on acquiring biofuels from direct catalytic hydrothermal liquefaction of spirulina. The component of bio-oil from direct catalytic hydrothermal liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with hydrothermal condition is higher than that from two independent processes.

  10. Hydrothermal behaviors and long-term stability of bentonitic buffer material

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin

    2007-01-01

    In hydrothermal reaction tests, smectite-to-illite conversion was identified using a domestic bentonite which is favorably considered as a buffer material, and its dependency on various hydrothermal conditions was investigated. The analysis results of the XRD and Si concentration indicated that the smectite-to- illite conversion was a major process of bentonite alteration under the hydrothermal conditions. The temperature, potassium concentration in solution, and pH were observed to significantly affect the smectite-to illite conversion. A model of conversion reaction rate was suggested evaluate the long-term stability of smectite composing a major constituent of bentonitic buffer. It was expected from the evaluation results that the smectite would keep its integrity for very long disposal time under a normal condition, while as it might be converted to illite by 50 percent after over 5 x 10 4 year of disposal time under a conservative condition and consequently lose its swelling capacity as a buffer material of a repository

  11. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits

    Science.gov (United States)

    Rehkamper, M.; Frank, M.; Hein, J.R.; Porcelli, D.; Halliday, A.; Ingri, J.; Liebetrau, V.

    2002-01-01

    manganese deposits with high Mn/Fe and high ??205Ti are generated by scavenging of TI from colder, more distal hydrothermal fluids. Under such conditions, adsorption is associated with significant isotope fractionation, and this produces deposits with higher ??205TI values coupled with high Mn/Fe. ?? 2002 Elsevier Science B.V. All rights reserved.

  12. High-pressure crystal structure of elastically isotropic CaTiO3 perovskite under hydrostatic and non-hydrostatic conditions.

    Science.gov (United States)

    Zhao, Jing; Ross, Nancy L; Wang, Di; Angel, Ross J

    2011-11-16

    The structural evolution of orthorhombic CaTiO3 perovskite has been studied using high-pressure single-crystal x-ray diffraction under hydrostatic conditions up to 8.1 GPa and under a non-hydrostatic stress field formed in a diamond anvil cell (DAC) up to 4.7 GPa. Under hydrostatic conditions, the TiO6 octahedra become more tilted and distorted with increasing pressure, similar to other 2:4 perovskites. Under non-hydrostatic conditions, the experiments do not show any apparent difference in the internal structural variation from hydrostatic conditions and no additional tilts and distortions in the TiO6 octahedra are observed, even though the lattice itself becomes distorted due to the non-hydrostatic stress. The similarity between the hydrostatic and non-hydrostatic cases can be ascribed to the fact that CaTiO3 perovskite is nearly elastically isotropic and, as a consequence, its deviatoric unit-cell volume strain produced by the non-hydrostatic stress is very small; in other words, the additional octahedral tilts relevant to the extra unit-cell volume associated with the deviatoric unit-cell volume strain may be totally neglected. This study further addresses the role that three factors--the elastic properties, the crystal orientation and the pressure medium--have on the structural evolution of an orthorhombic perovskite loaded in a DAC under non-hydrostatic conditions. The influence of these factors can be clearly visualized by plotting the three-dimensional distribution of the deviatoric unit-cell volume strain in relation to the cylindrical axis of the DAC and indicates that, if the elasticity of a perovskite is nearly isotropic as it is for CaTiO3, the other two factors become relatively insignificant.

  13. High-pressure crystal structure of elastically isotropic CaTiO3 perovskite under hydrostatic and non-hydrostatic conditions

    International Nuclear Information System (INIS)

    Zhao Jing; Ross, Nancy L; Wang, Di; Angel, Ross J

    2011-01-01

    The structural evolution of orthorhombic CaTiO 3 perovskite has been studied using high-pressure single-crystal x-ray diffraction under hydrostatic conditions up to 8.1 GPa and under a non-hydrostatic stress field formed in a diamond anvil cell (DAC) up to 4.7 GPa. Under hydrostatic conditions, the TiO 6 octahedra become more tilted and distorted with increasing pressure, similar to other 2:4 perovskites. Under non-hydrostatic conditions, the experiments do not show any apparent difference in the internal structural variation from hydrostatic conditions and no additional tilts and distortions in the TiO 6 octahedra are observed, even though the lattice itself becomes distorted due to the non-hydrostatic stress. The similarity between the hydrostatic and non-hydrostatic cases can be ascribed to the fact that CaTiO 3 perovskite is nearly elastically isotropic and, as a consequence, its deviatoric unit-cell volume strain produced by the non-hydrostatic stress is very small; in other words, the additional octahedral tilts relevant to the extra unit-cell volume associated with the deviatoric unit-cell volume strain may be totally neglected. This study further addresses the role that three factors-the elastic properties, the crystal orientation and the pressure medium-have on the structural evolution of an orthorhombic perovskite loaded in a DAC under non-hydrostatic conditions. The influence of these factors can be clearly visualized by plotting the three-dimensional distribution of the deviatoric unit-cell volume strain in relation to the cylindrical axis of the DAC and indicates that, if the elasticity of a perovskite is nearly isotropic as it is for CaTiO 3 , the other two factors become relatively insignificant. (paper)

  14. High-resolution thermal expansion measurements under helium-gas pressure

    Science.gov (United States)

    Manna, Rudra Sekhar; Wolf, Bernd; de Souza, Mariano; Lang, Michael

    2012-08-01

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K ⩽ T ⩽ 300 K and hydrostatic pressure P ⩽ 250 MPa. Helium (4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu3(CO3)2(OH)2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  15. High-pressure phase transition in Ho2O3

    International Nuclear Information System (INIS)

    Lonappan, Dayana; Shekar, N.V. Chandra; Ravindran, T.R.; Sahu, P. Ch.

    2010-01-01

    High-pressure X-ray diffraction and Raman studies on holmium sesquioxide (Ho 2 O 3 ) have been carried out up to a pressure of ∼17 GPa in a diamond-anvil cell at room temperature. Holmium oxide, which has a cubic or bixbyite structure under ambient conditions, undergoes an irreversible structural phase transition at around 9.5 GPa. The high-pressure phase has been identified to be low symmetry monoclinic type. The two phases coexist to up to about 16 GPa, above which the parent phase disappears. The high-pressure laser-Raman studies have revealed that the prominent Raman band ∼370 cm -1 disappears around the similar transition pressure. The bulk modulus of the parent phase is reported.

  16. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  17. Template-free hydrothermal synthesis and high photocatalytic activity of ZnWO4 nanorods

    International Nuclear Information System (INIS)

    Gao, Bin; Fan, Huiqing; Zhang, Xiaojun; Song, Lixun

    2012-01-01

    Highlights: ► ZnWO 4 nanorods with uniform diameter are successfully prepared through a template-free hydrothermal method. ► The crystallinity of the products is influenced by the pH value of initial precursor suspension. ► Photocatalytic activity of the ZnWO 4 nanorods for degradation of methylene blue is evaluated. ► The ZnWO 4 nanorods exhibit good stability of photocatalytic activity. - Abstract: ZnWO 4 nanorods are successfully synthesized by a template-free hydrothermal method, and are characterized in detail by X-ray diffractometer (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The results show that the ZnWO 4 nanorods with wolframite structure are well-crystallized single crystallites. The crystallinity of the products is influenced by the pH value of initial precursor suspension. The width and length of the synthesized samples increase with hydrothermal reaction temperature. The photocatalytic efficiency of the ZnWO 4 nanorods for degradation of methylene blue (MB) in aqueous solution under UV light irradiation declines greatly with increasing crystallinity. The ZnWO 4 nanorods prepared at pH of 4 have the best activity in photo-degradation of MB. After six recycles, photocatalytic activity loss of the catalyst is not obvious.

  18. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ferreira, Nildemar A.M.; Rumbao, Ana Carolina S. Coutinho; Lazar, Dolores R.R.; Ussui, Valter

    2009-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150°C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  19. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, W.K.; Ferreira, N.A.M.; Lazar, D.R.R.; Ussui, V.; Rumbao, A.C.S.

    2011-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150 deg C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  20. A study on variations of the low cycle fatigue life of a high pressure turbine nozzle caused by inlet temperature profiles and installation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Aero-propulsion Research Office, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [School of Mechanical and Aerospace Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  1. A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [Pusan National Univ., Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  2. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  3. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.; McCollom, Thomas; Schulte, Mitchell D.

    1995-06-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  4. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  5. Fluid transfer and vein thickness distribution in high and low temperature hydrothermal systems at shallow crustal level in southern Tuscany (Italy

    Directory of Open Access Journals (Sweden)

    Francesco Mazzarini

    2014-06-01

    Full Text Available Geometric analysis of vein systems hosted in upper crustal rocks and developed in high and low temperature hydrothermal systems is presented. The high temperature hydrothermal system consists of tourmaline-rich veins hosted within the contact aureole of the upper Miocene Porto Azzurro pluton in the eastern Elba Island. The low temperature hydrothermal system consists of calcite-rich veins hosted within the Oligocene sandstones of the Tuscan Nappe, exposed along the coast in southern Tuscany. Vein thickness distribution is here used as proxy for inferring some hydraulic properties (transmissivity of the fluid circulation at the time of veins’ formation. We derive estimations of average thickness of veins by using the observed distributions. In the case of power law thickness distributions, the lower the scaling exponent of the distribution the higher the overall transmissivity. Indeed, power law distributions characterised by high scaling exponents have transmissivity three order of magnitude lower than negative exponential thickness distribution. Simple observations of vein thickness may thus provides some clues on the transmissivity in hydrothermal systems.

  6. Birnessite-type MnO2 nanosheets with layered structures under high pressure: elimination of crystalline stacking faults and oriented laminar assembly.

    Science.gov (United States)

    Sun, Yugang; Wang, Lin; Liu, Yuzi; Ren, Yang

    2015-01-21

    Squeezing out crystalline stacking faults: Birnessite-type δ-phase MnO2 microflowers containing interconnected ultrathin nanosheets are synthesized through a microwave-assisted hydrothermal process and exhibit a layered crystalline structure with significant stacking faults. Compressing these MnO2 nanosheets in a diamond anvil cell with high pressure up to tens of GPa effectively eliminates the crystalline stacking faults. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  8. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  9. Structural phase transitions in Zn(CN)2 under high pressures

    International Nuclear Information System (INIS)

    Poswal, H.K.; Tyagi, A.K.; Lausi, Andrea; Deb, S.K.; Sharma, Surinder M.

    2009-01-01

    High pressure behavior of zinc cyanide (Zn(CN) 2 ) has been investigated with the help of synchrotron-based X-ray diffraction measurements. Our studies reveal that under pressure this compound undergoes phase transformations and the structures of the new phases depend on whether the pressure is hydrostatic or not. Under hydrostatic conditions, Zn(CN) 2 transforms from cubic to orthorhombic to cubic-II to amorphous phases. In contrast, the non-hydrostatic pressure conditions drive the ambient cubic phase to a partially disordered crystalline phase, which eventually evolves to a substantially disordered phase. The final disordered phase in the latter case is distinct from the amorphous phase observed under the hydrostatic pressures. - Graphical abstract: High pressure X-ray diffraction investigations on Zn(CN) 2 show three phase transformations i.e., cubic→orthorhombic→cubic-II→amorphous. However, the results strongly depend upon the nature of stress

  10. Effect of high pressure on physicochemical properties of meat.

    Science.gov (United States)

    Buckow, Roman; Sikes, Anita; Tume, Ron

    2013-01-01

    The application of high pressure offers some interesting opportunities in the processing of muscle-based food products. It is well known that high-pressure processing can prolong the shelf life of meat products in addition to chilling but the pressure-labile nature of protein systems limits the commercial range of applications. High pressure can affect the texture and gel-forming properties of myofibrillar proteins and, hence, has been suggested as a physical and additive-free alternative to tenderize and soften or restructure meat and fish products. However, the rate and magnitude at which pressure and temperature effects take place in muscles are variable and depend on a number of circumstances and conditions that are still not precisely known. This review provides an overview of the current knowledge of the effects of high pressure on muscle tissue over a range of temperatures as it relates to meat texture, microstructure, color, enzymes, lipid oxidation, and pressure-induced gelation of myofibrillar proteins.

  11. Path Dependency of High Pressure Phase Transformations

    Science.gov (United States)

    Cerreta, Ellen

    2017-06-01

    At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.

  12. Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life

    Science.gov (United States)

    Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.

    2000-01-01

    Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.

  13. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    Science.gov (United States)

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki; Mansfield, Andrew B.; Wooldridge, Margaret S.; Im, Hong G.

    2015-01-01

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  15. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki

    2015-05-31

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  16. The α → ω Transformation in Titanium-Cobalt Alloys under High-Pressure Torsion

    Directory of Open Access Journals (Sweden)

    Askar R. Kilmametov

    2017-12-01

    Full Text Available The pressure influence on the α → ω transformation in Ti–Co alloys has been studied during high pressure torsion (HPT. The α → ω allotropic transformation takes place at high pressures in titanium, zirconium and hafnium as well as in their alloys. The transition pressure, the ability of high pressure ω-phase to retain after pressure release, and the pressure interval where α and ω phases coexist depend on the conditions of high-pressure treatment. During HPT in Bridgeman anvils, the high pressure is combined with shear strain. The presence of shear strain as well as Co addition to Ti decreases the onset of the α → ω transition from 10.5 GPa (under quasi-hydrostatic conditions to about 3.5 GPa. The portion of ω-phase after HPT at 7 GPa increases in the following sequence: pure Ti → Ti–2 wt % Co → Ti–4 wt % Co → Ti–4 wt % Fe.

  17. The steam pressure effect on high temperature corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    Kim, K. P.; Park, G. H.

    1998-01-01

    To find the effect of pressure on the high temperature oxidation of zircaloy-4, an autoclave capable of measuring the degree of oxidation at high temperatures and high pressure was manufactured. The degree of high temperature oxidation of zircaloy-4 was measured at three different conditions, high pressure steam, high pressure Ar gas with small amount of steam, and 1 atm steam. All the measurements were done at 750 deg C. The oxide thickness is much thicker in high pressure steam, comparing to that in the 1 atm steam. And, the higher is the steam pressure, the thicker becomes the oxide. No effect was observed in the case of high pressure Ar containing small amount of steam. Many cracks exist on the surface of specimens oxidized at high pressure steam, which come from the enhanced tetragonal to monoclinic phase transformation due to high pressure steam. The enhanced oxidation seems to oxide cracking

  18. Highly Hydrothermally Stable Microporous Membranes for Hydroge Separation

    NARCIS (Netherlands)

    Wei, Qi; Wang, Fei; Wang, F.; Nie, Zuo-Ren; Song, C.; Wang, Yan-Li; Li, Qun-Yan

    2008-01-01

    Fluorocarbon-modified silica membranes were deposited on γ-Al2O3/α-Al2O3 supports by the sol−gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is

  19. Fingerprinting the Hydrothermal Fluid Characteristics from LA-ICP-MS Trace Element Geochemistry of Garnet in the Yongping Cu Deposit, SE China

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-10-01

    Full Text Available The large Yongping Cu deposit is situated in the eastern Qin-Hang Metallogenic Belt, Southeast China and on the southern side of the Yangtze—Cathaysia suture zone, and is characterized by large stratiform orebodies. Garnet represents the main non-metallic mineral at Yongping, and shows variations in color from dark red to green to light brown with distance from the Shizitou porphyritic biotite granite stock. An in situ elemental analysis using EPMA and LA-ICP-MS and fluid inclusions microthermometric measurement on the Yongping garnet were conducted to constrain the hydrothermal and physicochemical mineralization conditions and the ore origin. The Yongping garnet ranges from nearly pure to impure andradite, is characterized by low concentrations of MnO (0.11–0.71 wt % with a wide range of Y/Ho (2.1–494.9 and does not exhibit any melting inclusions or fluid-melt inclusions, indicating that they are likely to be resulted from hydrothermal replacements. The Yongping garnet is rich in LREEs, Cs, Th, U and Pb; relatively depleted in HREEs, Rb, Sr and Ba; but exhibits distinct Eu anomalies (δEu of the dark red, green and light brown garnet range 2.12–20.54, 0.74–1.70 and 0.52–0.85, respectively with the homogenization temperatures and salinities of the fluid inclusions principally ranging from 387–477 °C and 7.8–16.0 wt % NaCl equivalent, respectively. The distinct trace elements and microthermometric characteristics reveal that the garnet was formed in a physicochemical conditions of medium-high temperature, 44–64 MPa pressures, mildly acidic pH levels, and unstable oxygen fugacity, and indicate that they were primarily formed by infiltration metasomatism, quite fitting with the scenario that the preferential entrance of magmatic-hydrothermal fluids derived from the Shizitou stock into the relatively low-pressure fracture zones between the limestone and quartz sandstone in the Yejiawan Formation, and further led to the formation

  20. Zinc stannate nanostructures: hydrothermal synthesis

    International Nuclear Information System (INIS)

    Baruah, Sunandan; Dutta, Joydeep

    2011-01-01

    Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature. (topical review)

  1. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  2. Geochemical Constraints on Archaeal Diversity in the Vulcano Hydrothermal System

    Science.gov (United States)

    Rogers, K. L.; Amend, J. P.

    2006-12-01

    The shallow marine hydrothermal system of Vulcano, Italy hosts a wide diversity of cultured thermophilic Archaea, including Palaeococcus helgesonii, Archaeoglobus fulgidus, and Pyrococcus furiosus, to name a few. However, recent studies have revealed a plethora of uncultured archaeal lineages in the Vulcano system. For example, a 16S rRNA gene survey of an onshore geothermal well identified a diverse archaeal community including deeply-branching uncultured Crenarchaeota, Korarchaeota, and Euryarchaeota. Additionally, culture-independent hybridization techniques suggested that Archaea account for nearly half of the microbial community in the Vulcano system. Furthermore, geochemical characterization of fluids revealed numerous lithotrophic and heterotrophic exergonic reactions that could support as yet uncultured organisms. Archaeal diversity throughout the Vulcano hydrothermal system was investigated using 16S rRNA gene surveys at five submarine vents and an onshore sediment seep. Overall, archaeal diversity was higher (10 groups) at submarine vents with moderate temperatures (59°C) compared with higher temperature (94°C) vents (4 groups). Archaeal communities at the moderately thermal vents were dominated by Thermococcales and also contained Archaeoglobales, Thermoproteales, and uncultured archaea among the Korarchaeota, Marine Group I, and the Deep-sea Hydrothermal Vent Euryarchaeota (DHVE). Fluid composition also affects the microbial community structure. At two high-temperature sites variations in archaeal diversity can be attributed to differences in iron and hydrogen concentrations, and pH. Comparing sites with similar temperature and pH conditions suggests that the presence of Desulfurococcales is limited to sites at which metabolic energy yields exceed 10 kJ per mole of electrons transferred. The Vulcano hydrothermal system hosts diverse archaeal communities, containing both cultured and uncultured species, whose distribution appears to be constrained by

  3. Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems.

    Science.gov (United States)

    Roussel, Erwan G; Konn, Cécile; Charlou, Jean-Luc; Donval, Jean-Pierre; Fouquet, Yves; Querellou, Joël; Prieur, Daniel; Bonavita, Marie-Anne Cambon

    2011-09-01

    The distribution of Archaea and methanogenic, methanotrophic and sulfate-reducing communities in three Atlantic ultramafic-hosted hydrothermal systems (Rainbow, Ashadze, Lost City) was compared using 16S rRNA gene and functional gene (mcrA, pmoA and dsrA) clone libraries. The overall archaeal community was diverse and heterogeneously distributed between the hydrothermal sites and the types of samples analyzed (seawater, hydrothermal fluid, chimney and sediment). The Lost City hydrothermal field, characterized by high alkaline warm fluids (pH>11; Tphylum and Methanopyrales order were also retrieved from the Rainbow and Ashadze hydrothermal fluids. However, the methanogenic Methanococcales was the most widely distributed hyper/thermophilic archaeal group among the hot and acidic ultramafic-hosted hydrothermal system environments. Most of the lineages detected are linked to methane and hydrogen cycling, suggesting that in ultramafic-hosted hydrothermal systems, large methanogenic and methanotrophic communities could be fuelled by hydrothermal fluids highly enriched in methane and hydrogen. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  5. Moessbauer study of phase transitions under high hydrostatic pressures. 1

    International Nuclear Information System (INIS)

    Kapitanov, E.V.; Yakovlev, E.N.

    1979-01-01

    Experimental results of the hydrostatic pressure influence on Moessbauer spectrum parameters are obtained over the pressure range including the area of structural phase transition. A linear increase of the Moessbauer effect probability (recoilless fraction) is accompanied by a linear decrease of the electron density at tin nuclei within the pressure range foregoing the phase transition. The electric resistance and the recoilless fraction of the new phase of Mg 2 Sn are lower, but the electron density at tin nuclei is greater than the initial phase ones. Hydrostatic conditions allow to fix clearly the diphasic transition area and to determine the influence of the pressure on the Moessbauer line position and on the recoilless fraction of the high pressure phase. The phase transition heat Q = 415 cal mol -1 is calculated using recoilless fractions of the high and low pressure phases at 25 kbar. The present results are qualitatively and quantitatively different from the results, obtained at nonhydrostatic conditions. (author)

  6. Laboratory simulated hydrothermal alteration of sedimentary organic matter from Guaymas Basin, Gulf of California. Ph.D. Thesis

    Science.gov (United States)

    Leif, Roald N.

    1993-01-01

    High temperature alteration of sedimentary organic matter associated with marine hydrothermal systems involves complex physical and chemical processes that are not easily measured in most natural systems. Many of these processes can be evaluated indirectly by examining the geochemistry of the hydrothermal system in the laboratory. In this investigation, an experimental organic geochemical approach to studying pyrolysis of sedimentary organic matter is applied to the hydrothermal system in the Guaymas Basin, Gulf of California. A general survey of hydrothermal oils and extractable organic matter (bitumen) in hydrothermally altered sediments identified several homologous series of alkanones associated with a high temperature hydrothermal origin. The alkanones range in carbon number from C11 to C30 with no carbon number preference. Alkan-2-ones are in highest concentrations, with lower amounts of 3-, 4-, 5- (and higher) homologs. The alkanones appear to be pyrolysis products synthesized under extreme hydrothermal conditions. Hydrous pyrolysis and confinement pyrolysis experiments were performed to simulate thermally enhanced diagenetic and catagenetic changes in the immature sedimentary organic matter. The extent of alteration was measured by monitoring the n-alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic aromatic hydrocarbons and alkanones. The results were compared to bitumen extracts from sediments which have been naturally altered by a sill intrusion and accompanied hydrothermal fluid flow. These pyrolysis experiments duplicated many of the organic matter transformations observed in the natural system. Full hopane and sterane maturation occurred after 48 hr in experiments at 330 deg C with low water/rock mass ratios (0.29). A variety of radical and ionic reactions are responsible for the organic compound conversions which occur under extreme hydrothermal conditions. Short duration pyrolysis experiments revealed that a portion of the

  7. Agro-industrial waste to solid biofuel through hydrothermal carbonization.

    Science.gov (United States)

    Basso, Daniele; Patuzzi, Francesco; Castello, Daniele; Baratieri, Marco; Rada, Elena Cristina; Weiss-Hortala, Elsa; Fiori, Luca

    2016-01-01

    In this paper, the use of grape marc for energy purposes was investigated. Grape marc is a residual lignocellulosic by-product from the winery industry, which is present in every world region where vine-making is addressed. Among the others, hydrothermal carbonization was chosen as a promising alternative thermochemical process, suitable for the treatment of this high moisture substrate. Through a 50 mL experimental apparatus, hydrothermal carbonization tests were performed at several temperatures (namely: 180, 220 and 250 °C) and residence times (1, 3, 8 h). Analyses on both the solid and the gaseous phases obtained downstream of the process were performed. In particular, solid and gas yields versus the process operational conditions were studied and the obtained hydrochar was evaluated in terms of calorific value, elemental analysis, and thermal stability. Data testify that hydrochar form grape marc presents interesting values of HHV (in the range 19.8-24.1 MJ/kg) and physical-chemical characteristics which make hydrochar exploitable as a solid biofuel. In the meanwhile, the amount of gases produced is very small, if compared to other thermochemical processes. This represents an interesting result when considering environmental issues. Statistical analysis of data allows to affirm that, in the chosen range of operational conditions, the process is influenced more by temperature than residence time. These preliminary results support the option of upgrading grape marc toward its energetic valorisation through hydrothermal carbonization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Heat and mass transfer in a concrete pressure vessel

    International Nuclear Information System (INIS)

    Zangle, K.; Sadouki, H.; Wittmann, F.H.

    1989-01-01

    Pressure vessels of prestressed concrete for high temperature reactors are subjected to high mechanical and thermal stresses during the reactors normal working conditions and in particular accidental conditions. According to a large temperature gradient between the inner liner and the outer side of the thickwalled vessel, physical as well as chemical processes take place in concrete. Temperature and moisture content of concrete have a big influence on these processes. During the last years different investigations have been conducted in order to determine characteristic values of concrete under these conditions. At present the authors conduct a series of experiments on model vessels of prestressed concrete and a large number of small specimens. The aims of these tests can be briefly summarized as follows: experimental determination of transport coefficients for a numerical analysis; determination of chemical reactions under hydrothermal conditions and their significance for the risk of corrosion; determination of temperature and moisture distribution as a function of time; and determination of the strength development in the zones subjected to elevated temperatures

  9. Prediction of pressure between packers of staged fracturing pipe strings in high-pressure deep wells and its application

    Directory of Open Access Journals (Sweden)

    Fuxiang Zhang

    2015-03-01

    Full Text Available Addressing to the deteriorated load conditions of working string and packers caused by annular pressure drop between packers during the staged stimulation of high-pressure deep well, one 2D temperature field transient prediction model for borehole under injecting conditions which considers such influences as friction heat, convection heat exchange was set up, based on energy conservation principle and borehole heat transfer theory. By means of analyzing the influences of borehole temperature and pressure changes on the annular volume between packers, and in combination with borehole temperature transient prediction model, annular fluid PVT equations of state, radial deformation model of tubing and formation transient seepage equation, a typical high-pressure deep well inter-packer annular pressure prediction model was established. Taking a high-pressure gas well in Tarim Oilfield for example, the inter-packer annular pressure prediction was conducted, on which, the mechanical analysis on packers and working strings was carried out. The analysis results show that although the pipe string is safe in the viewpoint of conventional design methods, it is still susceptible to failure after the annular pressure drop between packers was taken into consideration. Such factor should be fully considered in the design of staged stimulation pipe strings, and this prediction model provides new thoughts for the optimal design of high-pressure deep well staged stimulation pipe strings.

  10. The analysis of repository-heat-driven hydrothermal flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact the waste package (WP), accelerate its failure rate, and eventually transport radionuclides to the water table. In a concept called the ''extended-dry repository,'' decay heat arising from radioactive waste extends the time before liquid water can contact a WP. Recent modeling and theoretical advances in nonisothermal, multiphase fracture-matrix flow have demonstrated (1) the critical importance of capillary pressure disequilibrium between fracture and matrix flow, and (2) that radioactive decay heat plays a dominant role in the ability of the engineered and natural barriers to contain and isolate radionuclides. Our analyses indicate that the thermo-hydrological performance of both the unsaturated zone (UZ) and saturated zone (SZ) will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. For thermal loads resulting in extended-dry repository conditions, UZ performance is primarily sensitive to the thermal properties and thermal loading conditions and much less sensitive to the highly spatially and temporally variable ambient hydrologic properties and conditions. The magnitude of repository-heat-driven buoyancy flow in the SZ is far more dependent on the total mass of emplaced spent nuclear fuel (SNF) than on the details of SNF emplacement, such as the Areal Power Density [(APD) expressed in kill/acre] or SNF age

  11. Medusa-Isosampler: A modular, network-based observatory system for combined physical, chemical and microbiological monitoring, sampling and incubation of hydrothermal and cold seep fluids

    Science.gov (United States)

    Schultz, A.; Flynn, M.; Taylor, P.

    2004-12-01

    The study of life in extreme environments provides an important context from which we can undertake the search for extraterrestrial life, and through which we can better understand biogeochemical feedback in terrestrial hydrothermal and cold seep systems. The Medusa-Isosampler project is aimed at fundamental research into understanding the potential for, and limits to, chemolithoautotrophic life, i.e. primary production without photosynthesis. One environment that might foster such life is associated with the high thermal and chemical gradient environment of hydrothermal vent structures. Another is associated with the lower thermal and chemical gradient environment of continental margin cold seeps. Under NERC, NASA and industrial support, we have designed a flexible instrumentation system, operating as networked, autonomous modules on a local area network, that will make possible simultaneous physical and chemical sampling and monitoring of hydrothermal and cold seep fluids, and the in situ and laboratory incubation of chemosynthetic microbes under high pressure, isobaric conditions. The system has been designed with long-term observatory operations in mind, and may be reconfigured dynamically as the requirements of the observatory installation change. The modular design will also accommodate new in situ chemical and biosensor technologies, provided by third parties. The system may be configured for seafloor use, and can be adapted to use in IODP boreholes. Our overall project goals are provide an instrumentation system capable of probing both high and low-gradient water-rock systems for chemolithoautotrophic biospheres, to identify the physical and chemical conditions that define these microhabitats and explore the details of the biogeochemical feedback loops that mediate these microhabitats, and to attempt to culture and identify chemolithoautotrophic microbial communities that might exist there. The Medusa-Isosampler system has been produced and is now

  12. Hydrothermal Pretreatment of Date Palm (Phoenix dactylifera L. Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential

    Directory of Open Access Journals (Sweden)

    Chuanji Fang

    2015-01-01

    Full Text Available Date palm residues are one of the most promising lignocellulosic biomass for bioethanol production in the Middle East. In this study, leaflets and rachis were subjected to hydrothermal pretreatment to overcome the recalcitrance of the biomass for enzymatic conversion. Evident morphological, structural, and chemical changes were observed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy after pretreatment. High glucan (>90% for both leaflets and rachis and xylan (>75% for leaflets and >79% for rachis recovery were achieved. Under the optimal condition of hydrothermal pretreatment (210°C/10 min highly digestible (glucan convertibility, 100% to leaflets, 78% to rachis and fermentable (ethanol yield, 96% to leaflets, 80% to rachis solid fractions were obtained. Fermentability test of the liquid fractions proved that no considerable inhibitors to Saccharomyces cerevisiae were produced in hydrothermal pretreatment. Given the high sugar recovery, enzymatic digestibility, and ethanol yield, production of bioethanol by hydrothermal pretreatment could be a promising way of valorization of date palm residues in this region.

  13. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    Science.gov (United States)

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  15. Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition

    International Nuclear Information System (INIS)

    Hu, Yuyan; Zhang, Pengfei; Chen, Dezhen; Zhou, Bin; Li, Jianyi; Li, Xian-wei

    2012-01-01

    Highlights: ► The first study to apply Fe-sulfate in hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition. ► The first study to comprehensively evaluate the effect of hydrothermal treatment on dioxin decomposition and heavy metal stabilization in municipal solid waste incineration fly ash. ► Gaussian software chemical computational simulation was performed to investigate the mechanism of dioxin decomposition based on quantum chemistry calculation, and to support the experimental data by the calculation results. - Abstract: Hydrothermal treatment of MSWI fly ash was performed in this paper with a purpose to reduce its dioxin content. First a hydrothermal reactor was set up with a mixture of ferric sulphate and ferrous sulphate serviced as the reactant, then the effects caused by reaction conditions such as reaction temperature, pre-treatment by water-washing and reactant dosage were checked; the results showed that as a promising technology, hydrothermal treatment exhibited considerable high efficiencies in decomposition of PCDDs/PCDFs and good stabilization of heavy metals as well. Experimental results also showed that for dioxin destruction, higher reaction temperature is the most important influencing factor followed by Fe addition, and pre-treatment of raw fly ash by water-washing increased the destruction efficiencies of dioxins only very slightly. Finally with help of Gaussian software chemical computational simulation was performed to investigate the mechanism of dioxin decomposition based on quantum chemistry calculation. The calculation results were supported by the experimental data. The leaching toxicities of hydrothermal products were higher than upper limits defined in the latest Chinese standard GB 16889-2008 for sanitary landfill disposal, thus an auxiliary process is suggested after the hydrothermal treatment for heavy metal stabilization.

  16. A system for incubations at high gas partial pressure

    Directory of Open Access Journals (Sweden)

    Patrick eSauer

    2012-02-01

    Full Text Available High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed one MPa at in-situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in-situ conditions, but the partial pressure of dissolved gasses has to be controlled as well.We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120° C and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. The system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g. fluid-gas-rock-interactions in relation to carbon dioxide sequestration.As an application of the system we extracted organic acids from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90°C and pressure (5 MPa. Subsamples were taken during the incubation and analysed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulphate reduction rate upon the addition of

  17. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  18. Experimental Investigations of Boron, Lithium, and Halogens During High-Temperature Water-Rock Interaction: Insights into the Yellowstone Hydrothermal System

    Science.gov (United States)

    Cullen, J. T.; Hurwitz, S.; Thordsen, J. J.; Barnes, J.

    2017-12-01

    B, Li, and halogens (Cl, F, Br) are used extensively in studies of thermal waters to infer fluid equilibrium conditions with the host reservoir lithology, and quantify the possible fraction of a magmatic component in thermal waters. Apart from fluorine, the limited number of minerals that incorporate these elements support the notion that they preferentially partition into an aqueous fluid during high temperature water-rock interaction. Although limited experimental work is largely consistent with these observations, a rigorous experimental investigation is required to quantify the mobility of these elements under conditions emulating a silicic hydrothermal system. Here we present the results from water-rhyolite interaction batch experiments conducted over a range of temperatures between 150 °C and 350 °C and 250 bar. Powdered obsidian from Yellowstone was reacted with MiliQ water and sampled intermittently throughout the duration of the 90 day experiment. The experimental data show that at temperatures ≤ 200 °C, B, Cl, Br, and Li are not readily leached from the rhyolite, whereas aqueous F- concentration increases by a factor of 3.5 when the temperature was increased from 150 °C to 200 °C. Between 200 °C and 250 °C, B concentration increased by more than an order of magnitude and Cl- concentration increased by a factor of 5. F- concentration increased by a factor of 3. Between 250 °C and 300 °C the opposite trend was observed, in which F- concentration decreased by 60%, Br- concentration increased by a factor of 5, and Cl- and B concentrations increased by more than an order of magnitude. The progressive decrease of aqueous F- at T ≥ 300 °C is likely controlled by precipitation into a fluorine bearing secondary mineral(s). Our experimental results demonstrate that leaching of B, Li, Cl, F, and Br from rhyolite is highly temperature-dependent between 150 °C and 350 °C. These results can provide context to infer the sources of solutes discharged at

  19. OPAQUE MINERAL CONTENT OF DUTLUCA VOLCANICS (BURHANİYE - BALIKESİR: THE EFFECT OF HYDROTHERMAL ALTERATION ON THESE MINERALS

    Directory of Open Access Journals (Sweden)

    Şükrü KOÇ

    2016-12-01

    Full Text Available Dutluca volcanics, which are known as Hallaçlar Formation in regional scale in the study area (Kurshens- ky, 1976, are composed of hydrothermally altered andesite and basaltic andesite. In these rocks, sulfidic minerals such as pyrite, enargite and chalcosine, and oxide and hydroxide minerals such as magnetite, hematite and goethite were detected as opaque minerals. The presence of enargite in opaque mineral para- genesis, and the changes observed in structures and textures of opaque and silicate minerals indicate that examined volcanics have been altered by highly sulfidic hydrothermal solutions. During the hydrothermal alteration process, which indicates at least in two phases, a diffuse pyritization rich in H S in reducing conditions and enargite mineral, which is known as pathfinder minerals in such processes, formed in the first phase. Later on; the extensive martitization developed in oxidizing conditions.

  20. Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method

    Science.gov (United States)

    Xing, Weinan; Ni, Liang; Huo, Pengwei; Lu, Ziyang; Liu, Xinlin; Luo, Yingying; Yan, Yongsheng

    2012-10-01

    A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.

  1. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt

    2016-01-01

    Ammonia oxidation experiments were conducted at high pressure (30 bar and 100 bar) under oxidizing and stoichiometric conditions, respectively, and temperatures ranging from 450 to 925 K. The oxidation of ammonia was slow under stoichiometric conditions in the temperature range investigated. Under...... oxidizing conditions the onset temperature for reaction was 850–875 K at 30 bar, while at 100 bar it was about 800 K, with complete consumption of NH3 at 875 K. The products of reaction were N2 and N2O, while NO and NO2 concentrations were below the detection limit even under oxidizing conditions. The data...... was satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  2. Hydrothermal Carbonization of Seaweed For Advanced Biochar Production

    Directory of Open Access Journals (Sweden)

    Prakoso Tirto

    2018-01-01

    Full Text Available Seaweed such as Eucheuma Cottonii is a potential source of biomaterialIts high moisture content makes it suitable for hydrothermal conversion process since it doesn’t need to utilize dry feedstock. The aim of this study is to convert the biomass of red seaweed Eucheuma Cottonii into alternative fuels and high value biomaterials using hydrothermal process. The hydrothermal process seaweed Eucheuma Cottonii produce two types of products, liquid product and char (solid. This research focus on the char product. The char from hydrothermal process was then activated using the tubular furnace. The yield for activated char is 7.5 % and results of SEM analysis of activated char showed the formation of allotropes carbon include carbon micro spheres, carbon micro fibres and graphene. These structures have encountered application in a wide range of technological fields, such as adsorption, catalysis, hydrogen storage or electronics.

  3. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  4. Obtaining zeolite Y synthesized by hydrothermal treatment assisted by microwave

    International Nuclear Information System (INIS)

    Simoes, A.N.; Simoes, V.N.; Neiva, L.S.; Rodrigues, M.G.F.; Gama, L.; Oliveira, J. B.L.

    2011-01-01

    n search of new catalysts several man-made structures have been developed. The use of zeolites in catalysis is applied due to its ability to associate activity, selectivity and stability, the main conditions to have an effective catalyst. Thus, studies have been done on the hydrothermal synthesis of zeolites by microwave assisted, since the use of microwave radiation offers several advantages over conventional heating. In this context, this work aims to synthesis and characterization of zeolite Y via hydrothermal treatment in a microwave oven. The sample obtained was characterized by XRD, BET and SEM. XRD results showed the formation of zeolite Y in just 60 minutes. The sample showed high value of surface area, the latter being of 476.2 m² / g. The particles are agglomerated, but with a narrow distribution of size. (author)

  5. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  6. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  7. Safety conditions of using structural steels under high temperature and pressures in hydrogen containing environment

    International Nuclear Information System (INIS)

    Asviyan, M.B.

    1984-01-01

    The method for establishing full-strength conditions was suggested on the base of results of creep-rupture test of tube samples under hydrogen pressure and according to permissible stresses in neutral medium. Applicability of the method was considered taking St3 and 12KhM steels as examples. It was shown that the use of suggested dependences and special efficiency factors enables to forecast endurance limit for the given steel grade and assigned partial hydrogen pressure without labour-intensive test conducting

  8. Optimizing the conditions for hydrothermal liquefaction of barley straw for bio-crude oil production using response surface methodology

    DEFF Research Database (Denmark)

    Zhu, Zhe; Rosendahl, Lasse Aistrup; Toor, Saqib Sohail

    2018-01-01

    The present paper examines the conversion of barley straw to bio-crude oil (BO) via hydrothermal liquefaction. Response surface methodology based on central composite design was utilized to optimize the conditions of four independent variables including reaction temperature (factor X1, 260-340 oC...... phenols and their derivatives, acids, aromatic hydrocarbon, ketones, N-contained compounds and alcohols, which makes it a promising material in the applications of either bio-fuel or as a phenol substitute in bio-phenolic resins....

  9. Determination of optimal conditions for pressure oxidative leaching of Sarcheshmeh Molybdenite concentrate using Taguchi method

    Directory of Open Access Journals (Sweden)

    Khoshnevisana A.

    2012-01-01

    Full Text Available The present research work is based on finding the optimum conditions for pressure oxidative leaching of the molybdenite concentrate to produce technical-grade molybdic oxide (MoO3 with high recovery through further treatment of the filtrate solution. The Taguchi method was used to design and minimize the number of experiments. By using Taguchi orthogonal (L25 array, five parameters (time, temperature, oxygen pressure, pulp density and acid concentration at five levels were selected for 25 experiments. The experiments were designed and carried out in a high-pressure reactor in the presence of nitric acid as solvent and oxidizing agent for the molybdenite concentrate and its ReS2 content. The optimum conditions for pressure leaching of molybdenite were obtained through using Signal to Noise analysis and modified by using Minitab software prediction tool. Furthermore, the optimum condition for an economical pressure leaching of rhenium sulfide (ReS2 was achieved with the same process. Analysis of variance (ANOVA showed that the pulp density is of paramount importance in this process.

  10. Pressure measurements and high speed visualizations of the cavitation phenomena at deep part load condition in a Francis turbine

    International Nuclear Information System (INIS)

    Yamamoto, K; Müller, A; Favrel, A; Landry, C; Avellan, F

    2014-01-01

    In a hydraulic power plant, it is essential to provide a reliable, sustainable and flexible energy supply. In recent years, in order to cover the variations of the renewable electricity production, hydraulic power plants are demanded to operate with more extended operating range. Under these off-design conditions, a hydraulic turbine is subject to cavitating swirl flow at the runner outlet. It is well-known that the helically/symmetrically shaped cavitation develops at the runner outlet in part load/full load condition, and it gives severe damage to the hydraulic systems under certain conditions. Although there have been many studies about partial and full load conditions, contributions reporting the deep part load condition are limited, and the cavitation behaviour at this condition is not yet understood. This study aims to unveil the cavitation phenomena at deep part load condition by high speed visualizations focusing on the draft tube cone as well as the runner blade channel, and pressure fluctuations associated with the phenomena were also investigated

  11. Ca isotope fractionation and Sr/Ca partitioning associated with anhydrite formation at mid-ocean ridge hydrothermal systems: An experimental approach

    Science.gov (United States)

    Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    The elemental and isotopic mass balance of Ca and Sr between seawater and basalt at mid-ocean ridge (MOR) hydrothermal systems is an integrated reflection of the various physiochemical processes, which induce chemical exchange, in the subseafloor. Specifically, the processes of anhydrite precipitation and recrystallization are recognized to be important controls on governing the Ca and Sr elemental and isotope compositions of high temperature vent fluids, however, few experimental data exist to constrain these geochemical effects. Thus, to better understand the associated Sr/Ca partitioning and Ca isotope fractionation and rate of exchange between anhydrite and dissolved constituents, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350°C and 500 bar at chemical conditions indicative of active MOR hydrothermal systems. The experimental data suggest that upon entrainment of seawater into MOR hydrothermal systems, anhydrite will precipitate rapidly and discriminate against the heavy isotopes of Ca (Δ44/40Ca(Anh-Fluid) = -0.68 - -0.25 ‰), whereas Sr/Ca partitioning depends on the saturation state of the evolving hydrothermal fluid with respect to anhydrite at each PTX (KD(Anh-Fluid) = 1.24 - 0.55). Coupling experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems in the oceanic crust, data suggest that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will be influenced by disequilibrium effects, while, at higher temperatures further into the oceanic crust, anhydrite will be representative of equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. These experimental observations are consistent with analyzed Sr/Ca and Ca isotope compositions of anhydrites and vent fluids sampled from modern MOR hydrothermal systems1,2 and can be used to further constrain the geochemical effects of hydrothermal circulation in the oceanic crust

  12. Elastic Wave Velocity Measurements on Mantle Peridotite at High Pressure and Temperature

    Science.gov (United States)

    Mistler, G. W.; Ishikawa, M.; Li, B.

    2002-12-01

    With the success of conducting ultrasonic measurements at high pressure and high temperature in large volume high pressure apparatus with in-situ measurement of the sample length by X-ray imaging, it is now possible to measure elastic wave velocities on aggregate samples with candidate compositions of the mantle to the conditions of the Earth's transition zone in the laboratory. These data can be directly compared with seismic data to distinguish the compositional models in debate. In this work, we carried out velocity measurements on natural peridotite KLB-1 at the conditions of the Earth's upper mantle. Fine powered sample of natural KLB-1 was used as starting material. Specimens for ultrasonic measurements were hot-pressed and equilibrated at various pressure and temperature conditions along geotherm up to the transition zone. The recovered samples were characterized with density measurement, X-ray diffraction and microprobe analysis. Bench top P and S wave velocities of KLB-1 sample sintered at 3-4 GPa and 1400 degree centigrade showed a very good agreement with the VRH average of pyrolite. High pressure and high temperature measurements was conducted up to 7 GPa and 800 degree centigrade using ultrasonic interferometric method in a DIA-type high pressure apparatus in conjunction with X-ray diffraction and X-ray imaging. The utilization of X-ray imaging technique provides direct measurements of sample lengths at high pressure and high temperature, ensuring a precise determination of velocities. The results of P and S wave velocities at high pressure and high temperature as well as their comparison with calculated pyrolite model will be presented.

  13. Sealing of rotary drums for operation under pressurized conditions

    International Nuclear Information System (INIS)

    Shirvani, M.; Khanof, M. H.; Yousefi, M. R.; Sadighi, S.

    2006-01-01

    In practice, rotary drums are always designed for operation under vacuum conditions. In this paper, a novel technique is proposed for sealing the rotary drums under pressurized conditions. The proposed system is based on applying a secondary pressurized volume around the leaking gap of the drum. By controlling the pressure of this volume above the pressure of the drum, it will be possible to prevent from any leakage of gases to the ambient. The objective of a controller in this system is that the pressure of secondary volume be kept above the pressure of the drum in spite of the disturbances which may be exerted on the system by the wind outside the drum. The control system is also required to trace the variations in the drum pressure with the least fluctuations in the pressure difference among the drum and the volume

  14. Di-, tri-, tetranuclear clusters and polymeric cadmium compounds: Syntheses, structures and fluorescent properties with various linking fashions and high stability of orotates under the condition of strong bases

    International Nuclear Information System (INIS)

    Li Xing; Bing Yue; Zha Meiqin; Wang Dongjie; Han Lei; Cao Rong

    2011-01-01

    Assembly reactions of orotic acid (H 3 dtpc ) and CdCl 2 .2.5H 2 O or CdSO 4 .8H 2 O yielded four new cadmium compounds {[Cd(H 2 dtpc)(phen)(H 2 O) 2 ].(H 2 dtpc).4H 2 O} 2 (1: solution reaction, pH=4-5, in addition of phen), [Cd 3 (dtpc) 2 (phen) 5 ].13H 2 O (2: hydrothermal reaction, initial pH=14, final pH=7.5), [Cd(Hdtpc)(H 2 O) 3 ] 4 (3: solution reaction, initial pH=6.5, final pH=6.0), {[Cd(Hdtpc)(phen)(H 2 O)].H 2 O} n (4: hydrothermal reaction, initial pH=8; final pH=6.5), respectively. Compounds 1-4 have been characterized by IR, thermogravimetric analyses (TGA), photoluminescence analyses, single-crystal and powder X-ray diffraction (PXRD). Compound 1 is a binuclear, 2 is a trinuclear, 3 is a tetranuclear structure, and 4 possesses one-dimensional chain framework, respectively, in which the orotate ligands show seven different linking fashions in 1-4. The orotate ligands as trivalence anions are observed in the formation of orotate-compounds, in which the orotates show high stability under the extreme condition of strong basic solution, high temperature and pressure. - Graphical abstract: Assembly of orotic acid and Cd(II) salts result in four new compounds under different reaction conditions, the compounds possess strong photoluminescence emissions and high thermal stability. Highlights: → Four Cd-compounds were prepared from orotic acid under different crystallization systems. → The orotates as trivalence anions displayed high stability under extremely conditions. → The orotates displayed various connection modes in the compounds. → The strong photoluminescence emissions have been observed in the compounds.

  15. IR-thermography-based investigation of critical heat flux in subcooled flow boiling of water at atmospheric and high pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bucci, Matteo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Seong, Jee H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buongiorno, Jdacopo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Richenderfer, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kossolapov, A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-11-01

    Here we report on MIT’s THM work in Q4 2016 and Q1 2017. The goal of this project is to design, construct and execute tests of flow boiling critical heat flux (CHF) at high-pressure using high-resolution and high-speed video and infrared (IR) thermometry, to generate unique data to inform the development of and validate mechanistic boiling heat transfer and CHF models. In FY2016, a new test section was designed and fabricated. Data was collected at atmospheric conditions at 10, 25 and 50 K subcoolings, and three mass fluxes, i.e. 500, 750 and 1000 kg/m2/s. Starting in Q4 2016 and continuing forward, new post-processing techniques have been developed to analyze the data collected. These new algorithms analyze the time-dependent temperature and heat flux distributions to calculate nucleation site density, nucleation frequency, growth and wait time, dry area fraction, and the complete heat flux partitioning. In Q1 2017 a new flow boiling loop was designed and constructed to support flow boiling tests up 10 bar pressure and 180 °C. Initial shakedown and testing has been completed. The flow loop and test section are now ready to begin high-pressure flow boiling testing.

  16. Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species

    Science.gov (United States)

    Schmidt, Christian

    2018-01-01

    The speciation of tin and the solubility of cassiterite in H2O + HCl were determined at temperatures to 600 °C using in situ Raman spectroscopy. In addition, information on the fluid-melt partition of Sn was obtained at 700 °C and indicated a preference of the fluid only at HCl concentrations that are much higher than in fluids exsolved from natural felsic melts. Dissolution of cassiterite generally resulted in formation of Sn(IV) species unless reduced conditions were generated by hydrogen permeation or carbohydrates in the starting material. The prevalent aqueous Sn(IV) species was [SnCl4(H2O)2]0, with additional [SnCl3(H2O)3]+ and [SnCl5(H2O)]-. The only detectable Sn(II) species was very likely [Sn(II)Cl3]-. Cassiterite solubility increased with HCl concentration and was generally high in H2O+HCl fluids, with no strong dependencies on temperature, pressure, or the oxidation state of tin in the fluid. The Sn(IV) concentrations at 500 and 600 °C determined from the integrated ν1[Sn(IV)sbnd Cl] band intensity are in good agreement with literature data on the cassiterite solubility in H2O + HCl at oxygen fugacities along the hematite-magnetite buffer. The combined results from previous experimental studies and this study demonstrate that HCl molality is a crucial parameter for hydrothermal mobilization and transport of tin and for cassiterite precipitation, and that pH, pressure and temperature are less important. Current models on hydrothermal tin deposit formation need to be augmented to include Sn(IV)sbnd Cl complexes as significant tin-transporting species. Irrespective of the oxidation state of tin in the fluid, cassiterite precipitates due to reaction of the hydrothermal fluid with the wall rock (greisen or skarn formation), dilution (mixing with meteoric water) or a decrease in the HCl activity in the aqueous liquid by boiling. A redox reaction is only required for tin transported as Sn(II) to be converted to Sn(IV).

  17. Phase stability of TiH{sub 2} under high pressure and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Selva Vennila, R.; Durygin, A.; Saxena, S.K. [Center for Study of Matter at Extreme Conditions (CeSMEC), Florida International University, VH-150, University Park, Miami, FL 33199 (United States); Merlini, Marco [European Synchrotron Radiation Facility (ESRF), Grenoble 38043 (France); Wang, Zhongwu [Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States)

    2008-11-15

    Phase stability of titanium hydride (TiH{sub 2}) was studied at high pressure-high temperature conditions using synchrotron radiation under non-hydrostatic conditions. Resistive heating method was used to heat the sample to a maximum temperature of 873 K in a diamond anvil cell (DAC) under pressure up to 12 GPa. Pressure-temperature behavior was studied by varying the temperature upto 823 K in steps of 50 K with pressure variations within 3 GPa. Structural phase transformation from tetragonal (I4/mmm) to cubic (Fm-3 m) was observed with increase in temperature. Tetragonal phase was found to be stabilized when the sample was subjected to pressure and temperature cycle. (author)

  18. Effective production of bioenergy from marine Chlorella sp. by high-pressure homogenization

    Directory of Open Access Journals (Sweden)

    Woon Yong Choi

    2016-01-01

    Full Text Available This study investigated the use of a high-pressure homogenization process for the production of high shear stress on Chlorella sp. cells in order to effectively degrade their cell walls. The high-pressure homogenization process was conducted by using various pressure conditions in the range of 68.94–275.78 MPa with different numbers of repeated cycles. The optimal high-pressure homogenization pretreatment conditions were found to be two cycles at a pressure of 206.84 MPa, which provided an extraction yield of 20.35% (w/w total cellular lipids. In addition, based on the confocal microscopic images of Chlorella sp. cells stained by using nile red, the walls of Chlorella sp. cells were disrupted more effectively using this process when compared with the disruption achieved by conventional lipid-extraction processes. By using the by-product of Chlorella sp., 47.3% ethanol was obtained from Saccharomyces cerevisiae cultures. These results showed that the high-pressure homogenization process efficiently hydrolysed this marine resource for subsequent bioethanol production by using only water.

  19. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    Science.gov (United States)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  20. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear-waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analysis indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. The success of the License Application (LA) hinges largely on how effectively we validate the process models that provide the basis for performance assessment. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests duration of 6-7 yr (including 4 yr of full-power heating) is required. The parallel use of highly accelerated, shorter-duration tests may provide timely information for the LA, provided that the applicability of the test results can be validated against ongoing nominal-rate heater tests

  1. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc

    Directory of Open Access Journals (Sweden)

    Kevin W. Hager

    2017-08-01

    Full Text Available The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity.

  2. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC.

    Science.gov (United States)

    Yang, Liyang; Zhuang, Wan-E; Chen, Chen-Tung Arthur; Wang, Bing-Jye; Kuo, Fu-Wen

    2017-03-15

    The submarine hydrothermal systems are extreme environments where active cycling of dissolved organic matter (DOM) may occur. However, little is known about the optical properties and bioavailability of hydrothermal DOM, which could provide valuable insights into its transformation processes and biogeochemical reactivity. The quantity, quality, and bioavailability of DOM were investigated for four very different hydrothermal vents east of Taiwan, using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). The DOC and absorption coefficient a 280 were both lower in the two hydrothermal vents off the Orchid Island and on the Green Island than in the surrounding seawater and the two vents off the Kueishantao Island, indicating effective removals of DOM in the former two hydrothermal systems owing to possible adsorption/co-precipitation and thermal degradation respectively. The four hydrothermal DOM showed notable differences in the absorption spectral slope S 275-295 , humification index HIX, biological index BIX, EEM spectra, and the relative distributions of seven PARAFAC components. The results demonstrated a high diversity of chemical composition and transformation history of DOM under contrasting hydrothermal conditions. The little change in the hydrothermal DOC after 28-day microbial incubations indicated a low bioavailability of the bulk DOM, and different PARAFAC components showed contrasting bioavailability. The results have profound implications for understanding the biogeochemical cycling and environmental effects of hydrothermal DOM in the marine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transcriptomics reveal several gene expression patterns in the piezophile Desulfovibrio hydrothermalis in response to hydrostatic pressure.

    Directory of Open Access Journals (Sweden)

    Amira Amrani

    Full Text Available RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria.

  4. Transcriptomics Reveal Several Gene Expression Patterns in the Piezophile Desulfovibrio hydrothermalis in Response to Hydrostatic Pressure

    Science.gov (United States)

    Amrani, Amira; Bergon, Aurélie; Holota, Hélène; Tamburini, Christian; Garel, Marc; Ollivier, Bernard; Imbert, Jean; Dolla, Alain; Pradel, Nathalie

    2014-01-01

    RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt) that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria. PMID:25215865

  5. Performance test of ex-core high temperature and high pressure water loop test equipment (Contract research)

    International Nuclear Information System (INIS)

    Nakano, Hiroko; Uehara, Toshiaki; Takeuchi, Tomoaki; Shibata, Hiroshi; Nakamura, Jinichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

    2016-03-01

    In Japan Atomic Energy Agency, we started research and development so as to monitor the situations in the Nuclear Plant Facilities during a severe accident, such as a radiation-resistant monitoring camera, a radiation-resistant transmission system for conveying the in-core information, and a heat-resistant signal cable. As a part of developments of the heat-resistant signal cable, we prepared ex-core high-temperature and high-pressure water loop test equipment, which can simulate the conditions of BWRs and PWRs, for evaluating reliability and properties of sheath materials of the cable. This equipment consists of autoclave, water conditioning tank, high-pressure metering pump, preheater, heat exchanger and water purification equipment, etc. This report describes the basic design and the performance test results of ex-core high-temperature and high-pressure water loop test equipment. (author)

  6. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  7. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation.

    Science.gov (United States)

    Pala, Mehmet; Kantarli, Ismail Cem; Buyukisik, Hasan Baha; Yanik, Jale

    2014-06-01

    Grape pomace was treated by hydrothermal carbonization (sub-critical water, 175-275°C) and torrefaction (nitrogen atmosphere, 250 and 300°C), with mass yield of solid product (char) ranging between 47% and 78%, and energy densification ratio to 1.42-1.15 of the original feedstock. The chars were characterised with respect to their fuel properties, morphological and structural properties and combustion characteristics. The hydrothermal carbonization produced the char with greater energy density than torrefaction. The chars from torrefaction were found to be more aromatic in nature than that from hydrothermal carbonization. Hydrothermal carbonization process produced the char having high combustion reactivity. Most interesting was the finding that aqueous phase from hydrothermal carbonization had antioxidant activity. The results obtained in this study showed that HTC appears to be promising process for a winery waste having high moisture content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Evaluation of High-Pressure RCS Natural Circulations Under Severe Accident Conditions

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Bang, Young Suk; Suh, Nam Duk

    2006-01-01

    Since TMI-2 accident, the occurrence of severe accident natural circulations inside RCS during entire in-vessel core melt progressions before the reactor vessel breach had been emphasized and tried to clarify its thermal-hydraulic characteristics. As one of consolidated outcomes of these efforts, sophisticated models have been presented to explain the effects of a variety of engineering and phenomenological factors involved during severe accident mitigation on the integrity of RCS pressure boundaries, i.e. reactor pressure vessel(RPV), RCS coolant pipe and steam generator tubes. In general, natural circulation occurs due to density differences, which for single phase flow, is typically generated by temperature differences. Three natural circulation flows can be formed during severe accidents: in-vessel, hot leg countercurrent flow and flow through the coolant loops. Each of these flows may be present during high-pressure transients such as station blackout (SBO) and total loss of feedwater (TLOFW). As a part of research works in order to contribute on the completeness of severe accident management guidance (SAMG) in domestic plants by quantitatively assessing the RCS natural circulations on its integrity, this study presents basic approach for this work and some preliminary results of these efforts with development of appropriately detailed RCS model using MELCOR computer code

  9. High-pressure high-temperature experiments: Windows to the Universe; Experimentos a alta presion y alta temperatura: Ventanas al universo

    Energy Technology Data Exchange (ETDEWEB)

    Santaria-Perez, D.

    2011-07-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  10. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  11. Application on electrochemistry measurement of high temperature high pressure condition in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Li Yuchun; Xiao Zhongliang; Jiang Ya; Yu Xiaowei; Pang Feifei; Deng Fenfang; Gao Fan; Zhou Nianguang

    2011-01-01

    High temperature high pressure electrochemistry testing system was comprehensively analyzed in this paper, according to actual status for supervision in primary and secondary circuits of PWR nuclear power plants. Three research methods were reviewed and discussed for in-situ monitor system. By combination with ECP realtime measurement it was executed for evaluation and water chemistry optimization in nuclear power plants. It is pointed out that in-situ electrochemistry measurement has great potential application for water chemistry evaluation in PWR nuclear power plants. (authors)

  12. Frictional pressure drop of high pressure steam-water two-phase flow in internally helical ribbed tubes

    International Nuclear Information System (INIS)

    Tingkuan, C.; Xuanzheng, C.

    1987-01-01

    It is well known that the internally helical ribbed tubes are effective in suppressing the dry-out in boiling tubes at high pressures, so they are widely used as furnace water wall tubes in modern large steam power boilers. Design of the boilers requires the data on frictional pressure drop characteristics of the ribbed tubes, but they are not sufficient now. This paper describes the experimental results on the adiabatic frictional pressure drop in both horizontal ribbed tubes with measured mean inside diameter of 11.69 mm and 35.42 mm at high pressure from 10 to 21 MPa, mass flow rate from 350 to 3800 kg/m/sup 2/s and steam quality from 0 to 1 in our high pressure electrically heated water loop. Simultaneously, both smooth tubes under the same conditions for comparison. Based on the tests the correlation for determining the frictional pressure drop of internally ribbed tubes are proposed

  13. Hydrothermal synthesis of hydroxyapatite nanorods using pyridoxal-5′-phosphate as a phosphorus source

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang; Chen, Feng; Qi, Chao; Zhao, Jing; Wu, Jin

    2014-07-01

    Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects of experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.

  14. Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry.

    Science.gov (United States)

    Deamer, David; Damer, Bruce

    2017-09-01

    Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth-hydrothermal vents on the ocean floor and hydrothermal volcanic fields at the surface-and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A hydrothermal vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater hydrothermal pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus-Hydrothermal vents-Hydrothermal fields-Origin of life. Astrobiology 17, 834-839.

  15. In situ ligand synthesis with the UO22+ cation under hydrothermal conditions

    International Nuclear Information System (INIS)

    Frisch, Mark; Cahill, Christopher L.

    2007-01-01

    A novel uranium (VI) coordination polymer, (UO 2 ) 2 (C 2 O 4 )(C 5 H 6 NO 3 ) 2 (1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/c, a=22.541(6) A, b=5.7428(15) A, c=15.815(4) A, β=119.112(4) o , Z=4, R 1 =0.0237, wR 2 =0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO 2 to form the oxalate linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C 2 O 4 ).nH 2 O; 0≤n≤1) and a known uranyl oxalate [(UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 .H 2 O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solid state. - Graphical abstract: A novel homometallic coordination polymer (UO 2 ) 2 (C 2 O 4 )(C 5 H 6 NO 3 ) 2 , in the uranium-L-pyroglutamic acid system has been synthesized under hydrothermal conditions. The title compound consists of uranium pentagonal bipyramids bridged through both L-pyroglutamate and oxalate linkages to produce a 3D crystal structure. The oxalate anions are theorized to result from decarboxylation of L-pyroglutamic acid followed by subsequent coupling of CO 2

  16. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  17. Biodiversity patterns, environmental drivers and indicator species on a high-temperature hydrothermal edifice, Mid-Atlantic Ridge

    OpenAIRE

    Sarrazin, Jozée; Legendre, Pierre; de Busserolles, Fanny; Fabri, Marie-Claire; Guilini, Katja; Ivanenko, Viatcheslav N.; Morineaux, Marie; Vanreusel, Ann; Sarradin, Pierre-Marie

    2015-01-01

    Knowledge on quantitative faunal distribution patterns of hydrothermal communities in slow-spreading vent fields is particularly scarce, despite the importance of these ridges in the global mid-ocean system. This study assessed the composition, abundance and diversity of 12 benthic faunal assemblages from various locations on the Eiffel Tower edifice (Lucky Strike vent field, Mid-Atlantic Ridge) and investigated the role of key environmental conditions (temperature, total dissolved iron (TdFe...

  18. Effect on High-Intensity Fields of a Tough Hydrophone With Hydrothermal PZT Thick-Film Vibrator and Titanium Front Layer.

    Science.gov (United States)

    Okada, Nagaya; Takeuchi, Shinichi

    2017-07-01

    A novel tough hydrophone was fabricated by depositing hydrothermally synthesized lead zirconate titanate polycrystalline film on the back-side surface of a titanium plate. Our developed tough hydrophone resisted damage in a high-pressure field (15 MPa) at a focal point of a sinusoidal continuous wave driven by a concave high-intensity focused ultrasound (HIFU) transducer with up to 50 W of power input to the sound source. The hydrophone was suitable for the HIFU field, even though the hydrophone has a flat-shape tip of 3.5 mm diameter, which is slightly larger than the wavelength of a few megahertz. In this paper, experiments are performed to assess the effect on the HIFU field of changing the shape of the tough hydrophone, with the aim of developing a tough hydrophone. The spatial distribution of the acoustic bubbles around the focal point was visualized by using ultrasonic diagnostic equipment with the tough hydrophone located at the focal point of the HIFU transducer. From the visualization, the trapped acoustic bubbles were seen to arise from the standing wave, which implies that the acoustic pressure is reduced by this cloud of acoustic bubbles that appeared during hydrophone measurement. Although cavitation and acoustic bubbles may be unavoidable when using high-intensity ultrasound, the estimated result of evaluating acoustic fields without misunderstanding by acoustic bubbles can be obtained by the aid of visualizing bubbles around the tough hydrophone.

  19. Raman study of opal at high pressure

    Science.gov (United States)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  20. Fabrication of High Temperature and High Pressure Vessel for the Fuel Test

    International Nuclear Information System (INIS)

    Park, Kook Nam; Lee, Jong Min; Sim, Bong Shick; Shon, Jae Min; Ahn, Seung Ho; Yoo, Seong Yeon

    2007-01-01

    The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR and CANDU nuclear power plants has been developed and installed in HANARO, KAERI. It is consisted of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS which is located inside the pool is divided into 3-parts; they are in-pool pipes, IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The localization of the IVA is achieved by manufacturing through local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique of the instrument lines has been checked for its functionality and yield. A IVA has been manufactured by local technique and will be finally tested under out of the high temperature and high pressure test

  1. Use of soft hydrothermal processing to improve and recycle bedding for laboratory animals.

    Science.gov (United States)

    Miyamoto, T; Li, Z; Kibushi, T; Yamasaki, N; Kasai, N

    2008-10-01

    Cage bedding for laboratory rodents can influence animal wellbeing and thus the experimental data. In addition, a large amount of used bedding containing excrement is discharged as medical waste from life science institutes and breeding companies. We developed a ground-breaking system to improve fresh bedding and recycle used bedding by applying a soft hydrothermal process with high-temperature and high-pressure dry steam. The system removes both harmful organic components and aromatic hydrocarbons that can affect animals' metabolism. The purpose of the present study was to evaluate the chemical and physical properties of the improved fresh bedding and the recycled used bedding treated by the system. The results showed that 68-99% of the predominant aromatic hydrocarbons were removed from fresh bedding treated at 0.35 MPa and 140 degrees C for 120 min ('improved bedding'). In addition, 59.4-99.0% of predominant harmful organic compounds derived from excrement were removed from used bedding treated at 0.45 MPa and 150 degrees C for 60 min ('recycled bedding'). The soft hydrothermal treatment increased the number of acidic functional groups on the bedding surface and gave it the high adsorptive efficiency of ammonia gas. Harmful substances such as microorganisms, heavy metals and pesticides decreased below the detection limit. The results clearly showed that the improved and recycled bedding is safer for laboratory rodents and has the potential to ameliorate conditions in primary and secondary enclosures (e.g. cages and animal rooms) used for maintaining laboratory animals. This process may be one of the most advanced techniques in providing an alternative to softwood and other bedding, economizing through the recycling of used bedding and reducing bedding waste from animal facilities.

  2. Base hydrolysis and hydrothermal processing of PBX-9404

    International Nuclear Information System (INIS)

    Flesner, R.L.; Spontarelli, T.; Dell'Orco, P.C.; Sanchez, J.A.

    1994-01-01

    Base hydrolysis in combination with hydrothermal processing has been proposed as an environmentally acceptable alternative to open burning/open detonation for degradation and destruction of high explosives. In this report, the authors examine gaseous and aqueous products of base hydrolysis of the HMX-based plastic bonded explosive, PBX-9404. They also examined products from the subsequent hydrothermal treatment of the base hydrolysate. The gases produced from hydrolysis of PBX-9404 are ammonia, nitrous oxide, and nitrogen. Major aqueous products are sodium formate, acetate, nitrate, and nitrite, but not all carbon products have been identified. Hydrothermal processing of base hydrolysate destroyed up to 98% of the organic carbon in solution, and higher destruction efficiencies are possible. Major gas products detected from hydrothermal processing were nitrogen and nitrous oxide

  3. Effect of process parameters on hydrothermal liquefaction of oil palm biomass for bio-oil production and its life cycle assessment

    International Nuclear Information System (INIS)

    Chan, Yi Herng; Yusup, Suzana; Quitain, Armando T.; Tan, Raymond R.; Sasaki, Mitsuru; Lam, Hon Loong; Uemura, Yoshimitsu

    2015-01-01

    Highlights: • Water is used as a clean solvent to liquefy palm biomass to bio-oil. • The optimum liquefaction condition of oil palm biomass is 390 °C and 25 MPa. • Optimum reaction time for liquefaction of empty fruit bunch and palm mesocarp fiber is 120 min. • Optimum reaction time for liquefaction of palm kernel shell is 240 min. • From the life cycle assessment, a net 2.29 kg CO 2 equivalent is generated per kg of bio-oil produced. - Abstract: This paper presents the studies on the effect of three process parameters; temperature, pressure and reaction time on the subcritical and supercritical hydrothermal liquefaction of oil palm empty fruit bunch, palm mesocarp fiber and palm kernel shell. The effect of temperature (330–390 °C), pressure (25–35 MPa) and reaction time (30–240 min) on bio-oil yields were investigated using a Inconel batch reactor. The optimum liquefaction condition for empty fruit bunch, palm mesocarp fiber and palm kernel shell was at supercritical condition of water; 390 °C and 25 MPa. For the effect of reaction time, bio-oil from empty fruit bunch and palm mesocarp fiber attained maximum yields at 120 min, whereas bio-oil yield from palm kernel shell continued to increase at reaction time of 240 min. Lastly, a life cycle assessment based on a conceptual biomass hydrothermal liquefaction process for bio-oil production was constructed and presented

  4. From simple to complex and backwards. Chemical reactions under very high pressure

    International Nuclear Information System (INIS)

    Bini, Roberto; Ceppatelli, Matteo; Citroni, Margherita; Schettino, Vincenzo

    2012-01-01

    Highlights: ► High pressure reactivity of several molecular systems. ► Reaction kinetics and dynamics in high density conditions. ► Key role of optical pumping and electronic excitation. ► Perspectives for the synthesis of hydrogen. - Abstract: High pressure chemical reactions of molecular systems are discussed considering the various factors that can affect the reactivity. These include steric hindrance and geometrical constraints in the confined environment of crystals at high pressure, changes of the free energy landscape with pressure, photoactivation by two-photon absorption, local and collective effects. A classification of the chemical reactions at high pressure is attempted on the basis of the prevailing factors.

  5. Synthesis of nickel oxide - zirconia composites by coprecipitation route followed by hydrothermal treatment

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci; Paschoal, Jose Octavio Armani

    2009-01-01

    Nickel oxide-yttria stabilized zirconia (NiO-YSZ) for use as solid oxide fuel cell anode were synthesized by coprecipitation to obtain amorphous zirconia and crystallized β-nickel gels of the corresponding metal hydroxides. Hydrothermal treatment at 200°C and 220 psi from 2 up to 16 hours, under stirring, was performed to produce nanocrystalline powder. The as-synthesized powders were uniaxially pressed and sintered in air. Powders were characterized by X-ray diffraction, laser scattering, scanning and transmission electron microscopy (SEM/TEM), gas adsorption technique (BET) and TGDTA thermal analysis. Ceramic samples were characterized by dilatometric analysis and density measurements by Archimedes method. The characteristics of hydrothermally synthesized powders and compacts were compared to those produced without temperature and pressure application. Crystalline powders were obtained after hydrothermal process, excluding the calcination step from this route. The specific surface area of powders decreases with increasing time of hydrothermal treatment while the agglomerate mean size is not affected by this parameter. (author)

  6. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems.

    Science.gov (United States)

    Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc

    2014-12-01

    Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    Science.gov (United States)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  8. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    Science.gov (United States)

    Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f

  9. Obsidian: alteration study under hydrothermal-like conditions for its assessment as a nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Rania, Nishi; Shrivastava, J.P. [Department of Geology, University of Delhi, Delhi - 110007 (India); Bajpai, R.K. [BETDD, Nuclear Recycle Group, BARC, Mumbai - 400008 (India)

    2013-07-01

    Alteration experiments of obsidian (from Osham Hill, Gujarat, India) were performed under hydrothermal-like conditions. Neo-formed minerals were compared with naturally altered minerals to assess its performance. Altered specimens show partial to complete leaching of glass, where ionic release is of the order of Na>Si>K>Ca>Al = Mg>Mn>Ti. SEM-BSE images show distinct microstructures and mineral paragenesis of smectite, chlorite, nontronite, and illite inside and outside of the secondary layers - show retention of Si, Al, and Mg ions, fixation in the alteration products after their meager release to the solution. Secondary minerals-palagonite, chlorite, calcite, zeolite and white colored clays - formed after experiments largely correspond to altered obsidian in the natural environment since ∼ 65 Ma. (authors)

  10. Obsidian: alteration study under hydrothermal-like conditions for its assessment as a nuclear waste glass

    International Nuclear Information System (INIS)

    Rania, Nishi; Shrivastava, J.P.; Bajpai, R.K.

    2013-01-01

    Alteration experiments of obsidian (from Osham Hill, Gujarat, India) were performed under hydrothermal-like conditions. Neo-formed minerals were compared with naturally altered minerals to assess its performance. Altered specimens show partial to complete leaching of glass, where ionic release is of the order of Na>Si>K>Ca>Al = Mg>Mn>Ti. SEM-BSE images show distinct microstructures and mineral paragenesis of smectite, chlorite, nontronite, and illite inside and outside of the secondary layers - show retention of Si, Al, and Mg ions, fixation in the alteration products after their meager release to the solution. Secondary minerals-palagonite, chlorite, calcite, zeolite and white colored clays - formed after experiments largely correspond to altered obsidian in the natural environment since ∼ 65 Ma. (authors)

  11. Ash behavior during hydrothermal treatment for solid fuel applications. Part 2: Effects of treatment conditions on industrial waste biomass

    International Nuclear Information System (INIS)

    Mäkelä, Mikko; Yoshikawa, Kunio

    2016-01-01

    Highlights: • Effect of treatment conditions on composition and solubility of ash. • Ash dissolution and yield governed by liquid pH and calcium carbonate solubility. • Dissolution of calcium carbonate decreases ash fusion temperature during combustion. • Decreasing the ash content of sludge can weaken ash properties for combustion. - Abstract: This second half of our work on ash behavior concentrates on the effects of hydrothermal treatment conditions on paper sludge. Ash composition and solubility were determined based on treatment temperature, reactor solid load and liquid pH using experimental design and univariate regression methods. In addition, ash properties for combustion were evaluated based on recent developments on ash classification. Based on the results, all experimental variables had a statistically significant effect on ash yields. Only reactor solid load was statistically insignificant for char ash content, which increased based on increasing treatment temperature due to the decomposition of organic components. Ash dissolution and ash yield were governed by liquid pH and the generation of acids mainly due to the solubility of calcium carbonate identified as the main mineral species of paper sludge. Dissolution of calcium carbonate however decreased ash fusion temperatures more likely causing problems during char incineration. This indicated that decreasing the ash content of sludge during hydrothermal treatment can actually weaken ash properties for solid fuel applications.

  12. Fractionation of boron isotopes in Icelandic hydrothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.K.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive δ 1 1B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive δ 1 1B than the high temperature systems, indicating fractionation of boron due to absorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems. (author). 14 refs., 2 figs

  13. Calculation of cooling tower plumes for high pressure wintry situations

    International Nuclear Information System (INIS)

    Gassmann, F.; Tinguely, M.; Haschke, D.

    1982-12-01

    The diffusion of the plumes of the projected nuclear power plants at Kaiseraugst and Schwoerstadt, during high pressure wintry conditions, has been examined using a mathematical model to simulate the plumes. For these calculations, microaerological measurements were made in the proximity of Kaiseraugst and Schwoerstadt. These give a typical image of the weather during high pressure wintry conditions, which is normally associated with an inversion, sometimes strong, at a low height. Dry cooling towers with natural draught, which offer an alternative solution to the wet cooling towers proposed for Kasieraugst, are examined equally. (Auth./G.T.H.)

  14. Structural and photocatalytic properties of iron- and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions

    International Nuclear Information System (INIS)

    Diamandescu, L.; Vasiliu, F.; Tarabasanu-Mihaila, D.; Feder, M.; Vlaicu, A.M.; Teodorescu, C.M.; Macovei, D.; Enculescu, I.; Parvulescu, V.; Vasile, E.

    2008-01-01

    Iron- and europium-doped (≤1 at.%) TiO 2 nanoparticles powders have been synthesized by a hydrothermal route at 200 deg. C, starting with TiCl 4 , FeCl 3 .6H 2 O and EuCl 3 .6H 2 O. The structure, morphology and optical peculiarities were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), extended X-ray absorption fine structure (EXAFS), Moessbauer spectroscopy and UV-vis measurements. The photocatalytic performance was analysed in the photodegradation reaction of phenol. Rietveld refinements of XRD patterns reveal that the as-prepared samples consist in iron- and europium-doped TiO 2 in the tetragonal anatase structural shape, with particle size as low as 15 nm. By means of Moessbauer spectroscopy on both 57 Fe and 151 Eu isotopes as well as by EXAFS analyses, the presence of Fe 3+ and/or Eu 3+ ions in the nanosized powders has been evidenced. It was found that iron and europium ions can substitute for titanium in the anatase structure. From the UV-vis reflection spectra, by using the transformed Kubelka-Munk functions, the band gap energy (E g ) of the hydrothermal samples has been determined in comparison with that of Degussa P-25 photocatalyst. A decrease of E g from 2.9 eV found for Degussa photocatalyst to 2.8 eV for the titania doped with 1 at.% Fe has been evidenced, indicating a valuable absorption shift (∼20 nm) towards visible light region. However, the best photocatalytic activity in the photodegradation reaction of phenol was evidenced for the hydrothermal sample, TiO 2 : 1 at.% Fe, 0.5 at.% Eu, in both UV and visible light regions. The photocatalytic activities of iron-doped and iron-europium-codoped samples are high and practically the same only in visible light. The photocatalytic properties in correlation with the structural and optical peculiarities of the hydrothermal samples are discussed

  15. Combined pressure and cosolvent effects on enzyme activity - a high-pressure stopped-flow kinetic study on α-chymotrypsin.

    Science.gov (United States)

    Luong, Trung Quan; Winter, Roland

    2015-09-21

    We investigated the combined effects of cosolvents and pressure on the hydrolysis of a model peptide catalysed by α-chymotrypsin. The enzymatic activity was measured in the pressure range from 0.1 to 200 MPa using a high-pressure stopped-flow systems with 10 ms time resolution. A kosmotropic (trimethalymine-N-oxide, TMAO) and chaotropic (urea) cosolvent and mixtures thereof were used as cosolvents. High pressure enhances the hydrolysis rate as a consequence of a negative activation volume, ΔV(#), which, depending on the cosolvent system, amounts to -2 to -4 mL mol(-1). A more negative activation volume can be explained by a smaller compression of the ES complex relative to the transition state. Kinetic constants, such as kcat and the Michaelis constant KM, were determined for all solution conditions as a function of pressure. With increasing pressure, kcat increases by about 35% and its pressure dependence by a factor of 1.9 upon addition of 2 M urea, whereas 1 M TMAO has no significant effect on kcat and its pressure dependence. Similarly, KM increases upon addition of urea 6-fold. Addition of TMAO compensates the urea-effect on kcat and KM to some extent. The maximum rate of the enzymatic reaction increases with increasing pressure in all solutions except in the TMAO : urea 1 : 2 mixture, where, remarkably, pressure is found to have no effect on the rate of the enzymatic reaction anymore. Our data clearly show that compatible solutes can easily override deleterious effects of harsh environmental conditions, such as high hydrostatic pressures in the 100 MPa range, which is the maximum pressure encountered in the deep biosphere on Earth.

  16. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    Science.gov (United States)

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  17. Effects of the imposed pressure differential conditions on duoplasmatron performance

    International Nuclear Information System (INIS)

    Oztarhan, A.

    1988-01-01

    The duoplasmatron plasma source (D.P.T.) was modified to allow access to the arc discharge (to measure the discharge properties) and to vary independently the pressures in different volumes of the arc with the aim of seeing if this freedom would help in optimising the output. The duoplasmatron plasma source was operated under normal running condition (N.R.C.), positive imposed pressure differential condition (P.I.P.D.C.) and negative imposed pressure differential condition (N.I.P.D.C.) and the corresponding properties of the plasma output were measured. Running the duoplasmatron under P.I.P.D. condition did not seem to improve the output as compared to that under N.R.C. However, running the duoplasmatron under N.I.P.D. condition seemed to be advantageous as the output increased by about 30%. It was observed that the back pressure was critical in maintaining the arc and the gap pressure could be lowered much below the normal minimum (while the arc was on) if back pressure was kept above a critical value. The results showed that the effects of varying the dimensions of the intermediate electrode nozzle on the output could be understood in terms of the effect of changes in these dimensions on the relative pressures. An empirical expression for the effect of the pressure ratio was developed from the observations and compared with the experimental results. The reasons for various results can be related to the plasma emission mechanism. (author). 8 refs, 6 figs, 1 tab

  18. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Parents / Hypertension (High Blood Pressure) What's ... High Blood Pressure) Treated? Print What Is Hypertension (High Blood Pressure)? Blood pressure is the pressure of blood against ...

  19. Pressurized thermal and hydrothermal decomposition of algae, wood chip residue, and grape marc: A comparative study

    International Nuclear Information System (INIS)

    Subagyono, Dirgarini J.N.; Marshall, Marc; Jackson, W. Roy; Chaffee, Alan L.

    2015-01-01

    Pressurized thermal decomposition of two marine algae, Pinus radiata chip residue and grape marc using high temperature, high pressure reactions has been studied. The yields and composition of the products obtained from liquefactions under CO of a mixture of biomass and H 2 O (with or without catalyst) were compared with products from liquefaction of dry biomass under N 2 , at different temperatures, gas pressures and for CO runs, water to biomass ratios. Thermochemical reactions of algae produced significantly higher dichloromethane solubles and generally higher product yields to oil and asphaltene than Pinus radiata and grape marc under the reaction conditions used. Furthermore, the biofuels derived from algae contained significant concentrations of aliphatic hydrocarbons as opposed to those from radiata pine and grape marc which were richer in aromatic compounds. The possibility of air transport fuel production from algae thus appears to have considerable advantages over that from radiata pine and grape marc. - Highlights: • Liquefaction of algae gave more oil than that of Pinus radiata and grape marc. • Reactions under CO/H 2 O produced higher yields of oil than N 2 . • Water to biomass ratio had little effect on the yields. • Bio-oil from algae contained substantial amounts of aliphatic hydrocarbons. • Pinus radiata oil was low in N but high in O

  20. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  1. Elasticity of methane hydrate phases at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jennifer; Yang, Jing; Liu, Jin [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Liu, Chujie [Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lin, Jung-Fu, E-mail: afu@jsg.utexas.edu [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Center for High Pressure Science and Advanced Technology Research (HPSTAR), Shanghai 201203 (China)

    2016-04-21

    Determination of the full elastic constants (c{sub ij}) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases′ compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  2. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Directory of Open Access Journals (Sweden)

    Mahalakshmi Selvaraj

    2015-11-01

    Full Text Available Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO3 nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C employing barium dichloride (BaCl2 and titanium tetrachloride (TiCl4 as precursors and sodium hydroxide (NaOH as mineralizer for synthesis of BaTiO3 nanopowders. The as-prepared BaTiO3 powders were investigated for structural characteristics using x-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula. SEM and TEM analysis verified that the BaTiO3 nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric phases of undoped BaTiO3 nanopowders can be stabilized by the sol-hydrothermal method.

  3. Concentration and distribution of dissolved amino acids in a shallow hydrothermal system, Vulcano Island (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, E.; Skoog, A. [University of Connecticut, Groton, CT (United States). Dept. of Marine Sciences; Amend, J.P. [Washington University, St. Louis, MO (United States). Dept. of Earth and Planetary Sciences

    2004-09-01

    Hydrothermal systems are known to harbour a large number of microorganisms, but the organic chemical composition of the solution that comprises their potential substrate is largely unknown. Concentrations and distributions of dissolved free amino acids (DFAA) and dissolved combined amino acids (DCAA) were determined in fluids from the moderate-temperature (42-89{sup o}C), shallow hydrothermal system on the volcanically active island of Vulcano, Italy. The seven samples represent three different geological settings on the island; shallow ({approx} 1 m) submarine vents, geothermal wells, and seeps in heated beach sediments, in addition to ambient local seawater from the bay, Baia di Levante. All hydrothermal sites, with one exception, had TDAA concentrations that were 3-114 times higher than local seawater in Baia di Levante. There were large similarities in amino acid concentration and composition among samples from the same geological setting. The highest amino acid concentrations were found at sites with acidic and reducing conditions, which also had the largest freshwater component. An unusually high fraction of the TDAA pool was represented by DFAA (33-87%), possibly due to in situ acid hydrolysis of DCAA to DFAA. Both DFAA and DCAA concentrations were correlated to DOC, indicating similar source and sink functions for these pools. The yield of TDAA (TDAA-carbon as fraction of organic carbon) ranged from 2% to 25%, which is high compared with non-hydrothermal settings, and indicates high biological lability. The mole fraction of {beta}-alanine plus {gamma}-aminobutyric acid (% BALA + GABA) was 2-2.7% of TDAA, also indicating high biological lability. Owing to the high over-all amino acid concentrations, the high fraction of DFAAs, and the high biological lability of the organic matter, organic matter in general and amino acids specifically could represent significant carbon and energy sources for archaea and bacteria in this hydrothermal system. The clear

  4. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    Directory of Open Access Journals (Sweden)

    Premila D. Thongbam

    2011-04-01

    Full Text Available Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  5. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  6. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  7. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Rosendahl, Lasse Aistrup

    2015-01-01

    Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics, and it ......Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics...

  8. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  9. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong

    2015-04-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  10. Deformation of a Volcanic Edifice by Pore Pressurization: An Analog Approach

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.

    2015-12-01

    Volcanic flank destabilization, preceded by pressurization-induced surface deformation or weakening, presents a significant hazard at stratovolcanoes with ample supply of magmatic volatiles or preexisting hydrothermal systems as in Bezymianny- and Bandai-type eruptions, respectively. Deformation is also an important sign of the nature of unrest at large calderas such as Long Valley, USA. Previous studies of volcanic inflation have focused primarily on the role of ascending magma. Relatively few studies have centered on surface deformation caused by pressurization from other volcanic fluids, including exsolved volatiles and pressurized hydrothermal systems. Most investigations of pore-pressurization have focused on numerical modelling of pore pressure transients. In analog experiments presented here, pore-filling fluids are injected into the base of a damp sand medium without exceeding dike propagating pressures, simulating the pressurization and bulk-permeable flow of volatile fluids through volcanic systems. The experiments examine surface deformation from a range of source depths and pressures as well as edifice geometries. 3D imaging is possible through use of the Microsoft® Kinect™ sensor, which allows for the generation of high-resolution, high frame rate, lab-scale Digital Elevation Models (DEMs). After initial processing to increase signal-to-noise ratio, surface deformation is measured using the DEM time-series generated by the Kinect™. Analysis of preliminary experiments suggests that inflation is possible up to approx. 10 % of pressure source depth. We also show that the Kinect™ sensor is useful in analog volcanological studies, an environment to which it is well-suited.

  11. Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.

    Science.gov (United States)

    Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel

    2012-04-01

    The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.

  12. Screening of hydrogen storage media applying high pressure thermogravimetry

    DEFF Research Database (Denmark)

    Bentzen, J.J.; Pedersen, Allan Schrøder; Kjøller, J.

    2001-01-01

    A number of commercially available hydride-forming alloys of the MmNi5–xSnx (Mm=mischmetal, a mixture of lanthanides) type were examined using a high pressure, high temperature microbalance,scanning electron microscopy and X-ray diffraction. Activation conditions, reversible storage capacity...

  13. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  14. High Pressure Scanning Tunneling Microscopy and High PressureX-ray Photoemission Spectroscopy Studies of Adsorbate Structure,Composition and Mobility during Catalytic Reactions on A Model SingleCrystal

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Max O. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Our research focuses on taking advantage of the ability of scanning tunneling microscopy (STM) to operate at high-temperatures and high-pressures while still providing real-time atomic resolution images. We also utilize high-pressure x-ray photoelectron spectroscopy (HPXPS) to monitor systems under identical conditions thus giving us chemical information to compare and contrast with the structural and dynamic data provided by STM.

  15. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough

    Science.gov (United States)

    Zhang, Xia; Zhai, Shikui; Yu, Zenghui; Wang, Shujie; Cai, Zongwei

    2018-04-01

    The study of hydrothermal deposits in the Okinawa Trough can help us to uncover the hydrothermal mineralization characteristics in the back-arc basin during the early expanding stage. Mineralogy and geological significance of hydrothermal deposits from both the middle and southern trough are studied in this paper. First of all, using optical microscope to confirm the mineral compositions, characteristics of crystal shape, paragenetic relationship and minerals crystallization order. Then the minerals chemical composition were analyzed in virtue of electron microprobe. On these basis, the paragenetic sequence and the mineralization characteristics of the hydrothermal deposits were discussed. The results show that the hydrothermal deposit from the mid-Okinawa Trough belongs to Zn-Cu-rich type, consisting dominantly of sulfide minerals such as sphalerite, chalcopyrite, pyrite, etc. The minerals crystallization order is first generation pyrite(PyI)-sphalerite-chalcopyrite-galena-second generation pyrite(PyII)-amorphous silica. While the deposit from the southern Okinawa Trough is Ba-Zn-Pb-rich type mainly composing of barite, sphalerite, galena, etc. The minerals crystallization order is barite-pyrite-sphalerite-tetrahedrite-galena-chalcopyrite-amorphous silica. Hydrothermal fluid temperature in the mid-Okinawa Trough undergoes a process from high to low, which is high up to 350 °C in the early stage, but decreasing gradually with the evolution of hydrothermal fluid. On the contrary, the hydrothermal activity in the southern Okinawa Trough is low temperature dominated, but the mineralization environment is unstable and the fluid temperature changes drastically during the period of hydrothermal activity.

  16. Silylated Zeolites with Enhanced Hydrothermal Stability for the Aqueous-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone

    Science.gov (United States)

    Vu, Hue-Tong; Harth, Florian M.; Wilde, Nicole

    2018-05-01

    A systematic silylation approach using mono-, di- and trichlorosilanes with different alkyl chain lengths was employed to enhance the hydrothermal stability of zeolite Y. DRIFT spectra of the silylated zeolites indicate that the attachment of the silanes takes place at surface silanol groups. Regarding hydrothermal stability under aqueous-phase processing conditions, i.e., pH ≈ 2, 473 K and autogenous pressure, the selective silylation of the zeolite surface using monochlorosilanes has no considerable influence. By using trichlorosilanes, the hydrothermal stability of zeolite Y can be improved significantly as proven by a stability test in an aqueous solution of 0.6 M levulinic acid (LA) and 0.2 M formic acid (FA) at 473 K. However, the silylation with trichlorosilanes results in a significant loss of total specific pore volume and total specific surface area, e.g., 0.35 cm3 g-1 and 507 m2 g 1 for the silylated zeolite Y functionalized with n octadecyltrichlorosilane compared to 0.51 cm3 g 1 and 788 m2 g-1 for the parent zeolite Y. The hydrogenation of LA to γ valerolactone (GVL) was conducted over 3 wt.-% Pt on zeolite Y (3PtY) silylated with either n octadecyltrichlorosilane or methyltrichlorosilane using different reducing agents, e.g., FA or H2. While in the stability test an enhanced hydrothermal stability was found for zeolite Y silylated with n octadecyltrichlorosilane, its stability in the hydrogenation of LA was far less pronounced. Only by applying an excess amount of methyltrichlorosilane, i.e., 10 mmol per 1 g of zeolite Y, presumably resulting in a high degree of polymerization among the silanes, a recognizable improvement of the stability of the 3 PtY catalyst could be achieved. Nonetheless, the pore blockage found for zeolite Y silylated with an excess amount of methyltrichlorosilane was reflected in a drastically lower GVL yield at 493 K using FA as reducing agent, i.e., 12% vs. 34% for 3PtY after 24 h.

  17. Silylated Zeolites With Enhanced Hydrothermal Stability for the Aqueous-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone

    Directory of Open Access Journals (Sweden)

    Hue-Tong Vu

    2018-05-01

    Full Text Available A systematic silylation approach using mono-, di-, and trichlorosilanes with different alkyl chain lengths was employed to enhance the hydrothermal stability of zeolite Y. DRIFT spectra of the silylated zeolites indicate that the attachment of the silanes takes place at surface silanol groups. Regarding hydrothermal stability under aqueous-phase processing (APP conditions, i.e., pH ≈ 2, 473 K and autogenous pressure, the selective silylation of the zeolite surface using monochlorosilanes has no considerable influence. By using trichlorosilanes, the hydrothermal stability of zeolite Y can be improved significantly as proven by a stability test in an aqueous solution of 0.2 M levulinic acid (LA and 0.6 M formic acid (FA at 473 K. However, the silylation with trichlorosilanes results in a significant loss of total specific pore volume and total specific surface area, e.g., 0.35 cm3 g−1 and 507 m2 g−1 for the silylated zeolite Y functionalized with n-octadecyltrichlorosilane compared to 0.51 cm3 g−1 and 788 m2 g−1 for the parent zeolite Y. The hydrogenation of LA to γ-valerolactone (GVL was conducted over 3 wt.-% Pt on zeolite Y (3PtY silylated with either n-octadecyltrichlorosilane or methyltrichlorosilane using different reducing agents, e.g., FA or H2. While in the stability test an enhanced hydrothermal stability was found for zeolite Y silylated with n-octadecyltrichlorosilane, its stability in the hydrogenation of LA was far less pronounced. Only by applying an excess amount of methyltrichlorosilane, i.e., 10 mmol per 1 g of zeolite Y, presumably resulting in a high degree of polymerization among the silanes, a recognizable improvement of the stability of the 3 PtY catalyst could be achieved. Nonetheless, the pore blockage found for zeolite Y silylated with an excess amount of methyltrichlorosilane was reflected in a drastically lower GVL yield at 493 K using FA as reducing agent, i.e., 12 vs. 34% for 3PtY after 24 h.

  18. Whole Algae Hydrothermal Liquefaction: 2014 State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua; Snowden-Swan, Lesley J.; Anderson, Daniel; Hallen, Richard T.; Schmidt, Andrew J.; Albrecht, Karl O.; Elliott, Douglas C.

    2014-07-30

    This report describes the base case yields and operating conditions for converting whole microalgae via hydrothermal liquefaction and upgrading to liquid fuels. This serves as the basis against which future technical improvements will be measured.

  19. A STUDY OF THE PRESSURE SOLUTION AND DEFORMATION OF QUARTZ CRYSTALS AT HIGH pH AND UNDER HIGH STRESS

    Directory of Open Access Journals (Sweden)

    JUNG-HAE CHOI

    2013-02-01

    Full Text Available Bentonite is generally used as a buffer material in high-level radioactive waste disposal facilities and consists of 50% quartz by weight. Quartz strongly affects the behavior of bentonite over very long periods. For this reason, quartz dissolution experiment was performed under high-pressure and high-alkalinity conditions based on the conditions found in a high-level radioactive waste disposal facility located deep underground. In this study, two quartz dissolution experiments were conducted on 1 quartz beads under low-pressure and high-alkalinity conditions and 2 a single quartz crystal under high-pressure and high-alkalinity conditions. Following the experiments, a confocal laser scanning microscope (CLSM was used to observe the surfaces of experimental samples. Numerical analyses using the finite element method (FEM were also performed to quantify the deformation of contact area. Quartz dissolution was observed in both experiments. This deformation was due to a concentrated compressive stress field, as indicated by the quartz deformation of the contact area through the FEM analysis. According to the numerical results, a high compressive stress field acted upon the neighboring contact area, which showed a rapid dissolution rate compared to other areas of the sample.

  20. Hydrothermally stable molecular separation membranes from organically linked silica

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L.; Sah, A; Blank, D.H.A.; Ten Elshof, J.E. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kreiter, R.; Vente, J.F. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-06-15

    A highly hydrothermally stable microporous network material has been developed that can be applied in energy-efficient molecular sieving. The material was synthesized by employing organically bridged monomers in acid-catalysed sol-gel hydrolysis and condensation, and is composed of covalently bonded organic and inorganic moieties. Due to its hybrid nature, it withstands higher temperatures than organic polymers and exhibits high solvolytical and acid stability. A thin film membrane that was prepared with the hybrid material was found to be stable in the dehydration of n-butanol at 150C for almost two years. This membrane is the first that combines a high resistance against water at elevated temperatures with a high separation factor and permeance. It therefore has high potential for energy-efficient molecular separation under industrial conditions, including the dehydration of organic solvents. The organically bridged monomers induce increased toughness in the thin film layer. This suppresses hydrolysis of Si-O-Si network bonds and results in a high resistance towards stress-induced cracking. The large non-hydrolysable units thus remain well incorporated in the surrounding matrix such that the material combines high (pore) structural and mechanical stability. The sol mean particle size was found to be a viable parameter to tune the thickness of the membrane layer and thus optimize the separation performance. We anticipate that other hybrid organosilicas can be made in a similar fashion, to yield a whole new class of materials with superior molecular sieving properties and high hydrothermal stability.

  1. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  2. Modern methods of high-pressure fuel pump common rail power system diagnostics

    Directory of Open Access Journals (Sweden)

    Kyshchun В.

    2016-08-01

    Full Text Available We've considered high pressure fuel pumps design features and equipment for their diagnosis. It was noted that the reliability of the fuel elements Common Rail system primarily provide precision parts of the fuel equipment. As a consequence, the aim of study was comparative analysis and laborious of modern methods of the high pressure fuel pump diagnosing. In particular, the definition of a technical condition of the fuel pump was carried out using a special stand and by measuring the fuel pressure and duty cycle of the pressure regulator signal. As an object of our research we've chosen Bosch № 0445010008 fuel pump (from Mercedes Benz E320cdi in which the plunger pairs were changed alternately with different technical conditions. Preliminary fuel pump parameters were determined by hydraulic testing. Based on conducted experiments we've found out that fuel pressure measurement change method and the duty cycle of the pressure regulator signal at the starting and full load modes less laborious compared to the definition of a technical condition of the pump on the stand. The results of both methods of diagnosing confirmed identity of the fuel pumps.

  3. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 - venting sediments (Milos Island, Greece).

    Science.gov (United States)

    Bayraktarov, Elisa; Price, Roy E; Ferdelman, Timothy G; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive (35)S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40-75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity.

  4. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    Science.gov (United States)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  5. Dynamic Modeling and Validation of a Biomass Hydrothermal Pretreatment Process - A Demonstration Scale Study

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest

    2015-01-01

    for the enzymatic hydrolysis process. Several by-products are also formed, which disturb and act as inhibitors downstream. The objective of this study is to formulate and validate a large scale hydrothermal pretreatment dynamic model based on mass and energy balances, together with a complex conversion mechanism......Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology for second generation biorefineries. The process occurs in large horizontal and pressurized thermal reactors where the biomatrix is opened under the action of steam pressure and temperature to expose cellulose...... and kinetics. The study includes a comprehensive sensitivity and uncertainty analysis, with parameter estimation from real-data in the 178-185° range. To highlight the application utility of the model, a state estimator for biomass composition is developed. The predictions capture well the dynamic trends...

  6. High performance dye-sensitized solar cell based on hydrothermally deposited multiwall carbon nanotube counter electrode

    Science.gov (United States)

    Siriroj, Sumeth; Pimanpang, Samuk; Towannang, Madsakorn; Maiaugree, Wasan; Phumying, Santi; Jarernboon, Wirat; Amornkitbamrung, Vittaya

    2012-06-01

    Conductive glass was coated with multiwall carbon nanotubes (MWCNTs) by a hydrothermal method. MWCNTs films were subsequently used as dye-sensitized solar cell (DSSC) counter electrodes. The performance of hydrothermal MWCNT DSSC was ˜2.37%. After film annealing in an Ar atmosphere, annealed-hydrothermal MWCNT (AHT-CNT) DSSC efficiency was significantly increased to ˜7.66%, in comparison to ˜8.01% for sputtered-Pt DSSC. Improvement of AHT-CNT DSSC performance is attributed to a decrease in charge-transfer resistance from 1500 Ω to 30 Ω as observed by electrochemical impedance spectroscopy.

  7. Hydrothermal liquefaction of Spirulina and Nannochloropsis Salina under subcritical and supercritical water conditions

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, H.; Deng, S.

    2013-01-01

    residue, and recycling process water for algae cultivation. GC-MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained...

  8. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  9. Experimental in situ investigations of turbulence under high pressure.

    Science.gov (United States)

    Song, Kwonyul; Al-Salaymeh, Ahmed; Jovanovic, Jovan; Rauh, Cornelia; Delgado, Antonio

    2010-02-01

    In tube injection systems applied in high-pressure processing of packed biomaterials and foods, the pressure-transmitting medium is injected into the vessel to increase the pressure up to 1000 MPa, generating a submerged liquid-free jet. The presence of a turbulent-free jet during the pressurization phase and its positive influence on the homogeneity of the product treatment has already been examined by computational fluid dynamics investigations. However, no experimental data have supported the existence and properties of turbulent flow under high-pressure (HP) conditions up to 400 MPa. This contribution presents the development of two experimental setups: HP-laser Doppler anemometry and HP-hot wire anemometry. For the first time the time-averaged velocity profiles of a free jet during pressurization up to 300 MPa at different Reynolds numbers (Re) have been obtained. In this article, the dependence of the velocity profiles on the Re is discussed in detail. Moreover, the relaminarization phenomenon of the turbulent pipe flow most likely caused by the compressibility effects and viscosity changes of the pressure-transmitting medium is examined.

  10. Ignition during hydrogen release from high pressure into the atmosphere

    Science.gov (United States)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  11. On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions

    Science.gov (United States)

    Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.

    2018-01-01

    Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.

  12. Sb{sub 2}Te{sub 3} nanobelts and nanosheets: Hydrothermal synthesis, morphology evolution and thermoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guo-Hui [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Cheng, Guo-Feng; Ruan, Yin-Jie [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-02-15

    Graphical abstract: Sb{sub 2}Te{sub 3} nanobelts and nanosheets were synthesized by a hydrothermal method, and the morphology evolution from Sb{sub 2}Te{sub 3} nanobelts to nanosheets with the prolonging hydrothermal time was observed. Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesis of Sb{sub 2}Te{sub 3} nanobelts and nanosheets is demonstrated. Black-Right-Pointing-Pointer The morphology of Sb{sub 2}Te{sub 3} can be adjusted by varying hydrothermal time. Black-Right-Pointing-Pointer The morphology evolution of Sb{sub 2}Te{sub 3} from nanobelts to nanosheets is observed. Black-Right-Pointing-Pointer High Seebeck coefficients (S) of Sb{sub 2}Te{sub 3} nanobelts and nanosheets are attained. - Abstract: Sb{sub 2}Te{sub 3} nanobelts and nanosheets were synthesized by a hydrothermal method using SbCl{sub 3} and TeO{sub 2} as the antimony and tellurium source, hydrazine hydrate as a reducing reagent, polyvinyl alcohol as a surfactant and water as the solvent. The effects of experimental parameters on the product were investigated. The experiments indicated that the elemental Te formed during the reaction, acting as a reactive and self-sacrificial template for the formation of Sb{sub 2}Te{sub 3} nanobelts. The morphology evolution from Sb{sub 2}Te{sub 3} nanobelts to nanosheets with the prolonging hydrothermal time was observed. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The thermoelectric properties of the tablet samples of Sb{sub 2}Te{sub 3} nanostructured powders with different morphologies prepared by a room-temperature pressurized method were investigated.

  13. Hydrothermal treatment for inactivating some hygienic microbial indicators from food waste-amended animal feed.

    Science.gov (United States)

    Jin, Yiying; Chen, Ting; Li, Huan

    2012-07-01

    To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60-110 degrees C for 10-60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 degrees C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 degrees C. The information from the present study will contribute to the microbial risk control of food waste-amended animal feed, to cope with legislation on food or feed safety.

  14. Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Stefanie eMeyer

    2013-07-01

    Full Text Available The Guaymas Basin (Gulf of California hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 × 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit to life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1-5 μmol ml-1 d-1 at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal Intergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T<10°C, medium (10°C≤T<40°C or hot (T≥40°C temperature conditions, with significant OTU overlap with the richer surface communities. Overall, this indicates a high connectivity of benthic bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism.

  15. A test facility for heat transfer, pressure drop and stability studies under supercritical conditions

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2013-02-01

    Supercritical water (SCW) exhibits excellent heat transfer characteristics and high volumetric expansion coefficient (hence high mass flow rates in natural circulation systems) near pseudo-critical temperature. SCW is being considered as a coolant in some advanced nuclear reactor designs on account of its potential to offer high thermal efficiency, compact size, elimination of steam generator, separator and dryer, making it economically competitive. The elimination of phase change results in elimination of the Critical Heat Flux (CHF) phenomenon. Cooling a reactor at full power with natural instead of forced circulation is generally considered as enhancement of passive safety. In view of this, it is essential to study natural circulation, heat transfer and pressure drop characteristics of supercritical fluids. Carbon-dioxide can be considered to be a good simulant of water for natural circulation at supercritical conditions since the density and viscosity variation of carbon-dioxide follows a parallel curve as that of water at supercritical conditions. Hence, a supercritical pressure natural circulation loop (SPNCL) has been set up in Hall-7, BARC to investigate the heat transfer, pressure drop and stability characteristics of supercritical carbon-dioxide under natural circulation conditions. The details of the experimental facility are presented in this report. (author)

  16. Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights into the interplay between hydrothermal alteration and brittle deformation

    Science.gov (United States)

    Sanchez-Alfaro, Pablo; Reich, Martin; Arancibia, Gloria; Pérez-Flores, Pamela; Cembrano, José; Driesner, Thomas; Lizama, Martin; Rowland, Julie; Morata, Diego; Heinrich, Christoph A.; Tardani, Daniele; Campos, Eduardo

    2016-09-01

    the effect of the development of a low-cohesion low-permeability clay cap on the conditions of fault rupture and on the long-term thermal structure of the system. These analyses were performed by using rock failure condition calculations and numerical simulations of heat and fluid flows. Calculations of the critical fluid pressures required to produce brittle rupture indicate that within the clay-rich cap, the creation or reactivation of highly permeable extensional fractures is inhibited. In contrast, in the deep upflow zone the less pervasive formation of clay mineral assemblages has allowed retention of rock strength and dilatant behavior during slip, sustaining high permeability conditions. Numerical simulations of heat and fluid flows support our observations and suggest that the presence of a low permeability clay cap has helped increase the duration of high-enthalpy conditions by a factor of three in the deep upflow zone at Tolhuaca geothermal system, when compared with an evolutionary scenario where a clay cap was not developed. Furthermore, our data demonstrate that the dynamic interplay between fluid flow, crack-seal processes and hydrothermal alteration are key factors in the evolution of the hydrothermal system, leading to the development of a high enthalpy reservoir at the flank of the dormant Tolhuaca volcano.

  17. Thermotechnical comparison of possible operation variants for air conditioning system of mine air with high pressure heat exchanger and hydrodistributor

    OpenAIRE

    Korsun, F. O.

    2015-01-01

    Problem. There are vast losses of cold that take place during the transition of cold to deep horizons of shafts by the mine air conditioning system (MASC) with high pressure heat exchanger. Cold is transferred by the recuperative way. Vast losses of cold mean vast losses of electricity to in order to supply it. Any enterprise requires the reduction of electricity consumption. This article gives proposals on how to replace HPHE into hydrodistributor which will considerably reduce cold losses. ...

  18. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-01-01

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite

  19. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chong [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Guilong; Wang, Min [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Jianfeng [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-08-15

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  20. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  1. High blood pressure - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  2. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  3. The development of an auto-sealing system using an electrically shrinkable tube under a low-pressure condition

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Yoshihiro; Kitagawa, Takao [NKK Corp, Tsu, Mie (Japan); Shoji, Norio [NKK Corp., Yokohama (Japan); Namioka, Toshiyuki [Nippon Kokan Koji Corp., Yokohama (Japan). Research and Development Dept.; Komura, Minoru [Nitto Denko Corp., Fukaya, Saitama (Japan)

    1997-04-01

    This article describes the development of a system to create high quality, automatic sealing of field joints of polyethylene coated pipelines. The system uses a combination of an electrically heated shrinkable tube and a low-pressure chamber. The self-heating shrinkable tube includes electric heater wires that heat when connected to electricity. A method was developed to eliminate air trapped between the tube and the steel pipe by shrinking the tube under a low-pressure condition. The low-pressure condition was automatic and easily attained by using a vacuum chamber. It was verified that the system produced high quality sealing of the field joints.

  4. Effect of High-Pressure Treatment on Catalytic and Physicochemical Properties of Pepsin.

    Science.gov (United States)

    Wang, Jianan; Bai, Tenghui; Ma, Yaping; Ma, Hanjun

    2017-10-11

    For a long time, high-pressure treatment has been used to destroy the compact structures of natural proteins in order to promote subsequent enzymatic hydrolysis. However, there are few reports evaluating the feasibility of directly improving the catalytic capability of proteases by using high-pressure treatments. In this study, the effects of high-pressure treatment on the catalytic capacity and structure of pepsin were investigated, and the relationship between its catalytic properties and changes in its physicochemical properties was explored. It was found that high-pressure treatment could lead to changes of the sulfhydryl group/disulfide bond content, hydrophobicity, hydrodynamic radius, intrinsic viscosity, and subunit composition of pepsin, and the conformational change of pepsin resulted in improvement to its enzymatic activity and hydrolysis efficiency, which had an obvious relationship with the high-pressure treatment conditions.

  5. Asymmetrical structure, hydrothermal system and edifice stability: The case of Ubinas volcano, Peru, revealed by geophysical surveys

    Science.gov (United States)

    Gonzales, Katherine; Finizola, Anthony; Lénat, Jean-François; Macedo, Orlando; Ramos, Domingo; Thouret, Jean-Claude; Fournier, Nicolas; Cruz, Vicentina; Pistre, Karine

    2014-04-01

    Ubinas volcano, the historically most active volcano in Peru straddles a low-relief high plateau and the flank of a steep valley. A multidisciplinary geophysical study has been performed to investigate the internal structure and the fluids flow within the edifice. We conducted 10 self-potential (SP) radial (from summit to base) profiles, 15 audio magnetotelluric (AMT) soundings on the west flank and a detailed survey of SP and soil temperature measurements on the summit caldera floor. The typical “V” shape of the SP radial profiles has been interpreted as the result of a hydrothermal zone superimposed on a hydrogeological zone in the upper parts of the edifice, and depicts a sub-circular SP positive anomaly, about 6 km in diameter. The latter is centred on the summit, and is characterised by a larger extension on the western flank located on the low-relief high plateau. The AMT resistivity model shows the presence of a conductive body beneath the summit at a depth comparable to that of the bottom of the inner south crater in the present-day caldera, where intense hydrothermal manifestations occur. The lack of SP and temperature anomalies on the present caldera floor suggests a self-sealed hydrothermal system, where the inner south crater acts as a pressure release valve. Although no resistivity data exists on the eastern flank, we presume, based on the asymmetry of the basement topography, and the amplitude of SP anomalies on the east flank, which are approximately five fold that on the west flank, that gravitational flow of hydrothermal fluids may occur towards the deep valley of Ubinas. This hypothesis, supported by the presence of hot springs and faults on the eastern foot of the edifice, reinforces the idea that a large part of the southeast flank of the Ubinas volcano may be altered by hydrothermal activity and will tend to be less stable. One of the major findings that stems from this study is that the slope of the basement on which a volcano has grown

  6. Hydrothermal synthesis of highly luminescent blue-emitting ZnSe(S) quantum dots exhibiting low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mirnajafizadeh, Fatemeh; Ramsey, Deborah; McAlpine, Shelli [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Fan; Reece, Peter [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Stride, John Arron, E-mail: j.stride@unsw.edu.au [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)

    2016-07-01

    Highly luminescent quantum dots (QDs) that emit in the visible spectrum are of interest to a number of imaging technologies, not least that of biological samples. One issue that hinders the application of luminescent markers in biology is the potential toxicity of the fluorophore. Here we show that hydrothermally synthesized ZnSe(S) QDs have low cytotoxicity to both human colorectal carcinoma cells (HCT-116) and human skin fibroblast cells (WS1). The QDs exhibited a high degree of crystallinity, with a strong blue photoluminescence at up to 29% quantum yield relative to 4′,6-diamidino-2-phenylindole (DAPI) without post-synthetic UV-irradiation. Confocal microscopy images obtained of HCT-116 cells after incubation with the QDs highlighted the stability of the particles in cell media. Cytotoxicity studies showed that both HCT-116 and WS1 cells retain 100% viability after treatment with the QDs at concentrations up to 0.5 g/L, which makes them of potential use in biological imaging applications. - Highlights: • Highly luminescent ZnSe(S) QDs were synthesized using a simple, one-step hydrothermal method. • The as-synthesized QDs were found to be nontoxic in the presence of biological cells. • The QDs were stable in biological media with identical emission profile to that in water.

  7. Interdiffusion of krypton and xenon in high-pressure helium

    International Nuclear Information System (INIS)

    Campana, R.J.; Jensen, D.D.; Epstein, B.D.; Hudson, R.G.; Baldwin, N.L.

    1980-01-01

    The interdiffusion of gaseous fission products in high-pressure helium is an important factor in the control of radioactivity in gas-cooled fast breeder reactors (GCFRs). As presently conceived, GCFRs use pressure-equalized and vented fuel in which fission gases released from the solid matrix oxide fuel are transported through the fuel rod interstices and internal fission product traps to the fuel assembly vents, where they are swept away to external traps and storage. Since the predominant transport process under steady-state operating conditions is interdiffusion of gaseous fission products in helium, the diffusion properties of krypton-helium and xenon-helium couples have been measured over the range of GCFR temperature and pressure conditions ( -1 ) and expected temperature dependence to the 1.66 power (Tsup(1.66)) at lower pressures and temperatures. Additional work is in progress to measure the behaviour of the krypton-helium and xenon-helium couples in GCFR fuel rod charcoal delay traps. (author)

  8. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  9. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  10. Effect of High Hydrostatic Pressure Combined with Moderate Heat to Inactivate Pressure-Resistant Bacteria in Water-Boiled Salted Duck.

    Science.gov (United States)

    Ye, Keping; Feng, Yulin; Wang, Kai; Bai, Yun; Xu, Xinglian; Zhou, Guanghong

    2015-06-01

    The objective of this work was to study the effect of high hydrostatic pressure combined with moderate heat to inactivate pressure-resistant bacteria in water-boiled salted duck meat (WBSDM), and to establish suitable procedures to improve the quality of WBSDM. The conditions (300 MPa/60 °C, 400 MPa/60 °C, and 500 MPa/50 °C) effectively inactivated the pressure-resistant bacteria (Bacillus cereus and Staphylococcus warneri) in WBSDM. Although more pressure-resistant than S. warneri, the above treatment conditions inactivated B. cereus more than 10(7) CFU/mL in buffer, and more than 10(6) CFU/g in WBSDM, and did not cause any changes in color, texture, or moisture content of products. The interaction between pressure and temperature is a more significant factor than only pressure in inactivating both B. cereus and S. warneri, the treatment of WBSDM at 400 MPa/ 60 °C/ 10 min is the most practical condition for postprocess of WBSDM after cooking. © 2015 Institute of Food Technologists®

  11. Alteration related to hydrothermal activity of the Nevado del Ruiz volcano (NRV), Colombia

    International Nuclear Information System (INIS)

    Forero, Jhon; Zuluaga, Carlos; Mojica, Jaime

    2011-01-01

    The hydrothermal activity in the NRV generates alteration characterized by mineral associations depending one number of physic-chemical factors of the hydrothermal system. Petrography of unaltered rocks was used to establish the mineral assemblage prior to rock-fluid interaction. XRD was used in altered rocks, where it was not possible to recognize the alteration products. the observed mineral assemblages indicate advanced and intermediate argillic alterations, this and the observation of very low modal proportion of sulphates, sulphides and native sulphur in some areas could point to a low sulphidation zone. However, the proximity to the volcano and the presence of acid thermal waters and steam pose an apparent contradiction with an expected high sulphidation zone which is explained by climatic conditions, where excess water has dissolved and leached sulfides, sulphur and sulphates close to the volcano. fault zones serve as conducts for fluid transport and have acid-sulphate mineral associations produced by atmospheric oxidation at the water table in a steam-heated environment of H 2 S released by deeper, boiling fluids or by the disproportionation of magmatic SO 2 to H 2 S and H 2 SO 4 during condensation of magmatic vapor plume at intermedia depths in magmatic hydrothermal environment in andesitic volcanic terrain characteristic of high sulphidation zones.

  12. Energy Analysis of Cascade Heating with High Back-Pressure Large-Scale Steam Turbine

    Directory of Open Access Journals (Sweden)

    Zhihua Ge

    2018-01-01

    Full Text Available To reduce the exergy loss that is caused by the high-grade extraction steam of traditional heating mode of combined heat and power (CHP generating unit, a high back-pressure cascade heating technology for two jointly constructed large-scale steam turbine power generating units is proposed. The Unit 1 makes full use of the exhaust steam heat from high back-pressure turbine, and the Unit 2 uses the original heating mode of extracting steam condensation, which significantly reduces the flow rate of high-grade extraction steam. The typical 2 × 350 MW supercritical CHP units in northern China were selected as object. The boundary conditions for heating were determined based on the actual climatic conditions and heating demands. A model to analyze the performance of the high back-pressure cascade heating supply units for off-design operating conditions was developed. The load distributions between high back-pressure exhaust steam direct supply and extraction steam heating supply were described under various conditions, based on which, the heating efficiency of the CHP units with the high back-pressure cascade heating system was analyzed. The design heating load and maximum heating supply load were determined as well. The results indicate that the average coal consumption rate during the heating season is 205.46 g/kWh for the design heating load after the retrofit, which is about 51.99 g/kWh lower than that of the traditional heating mode. The coal consumption rate of 199.07 g/kWh can be achieved for the maximum heating load. Significant energy saving and CO2 emission reduction are obtained.

  13. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 – venting sediments (Milos Island, Greece)

    Science.gov (United States)

    Bayraktarov, Elisa; Price, Roy E.; Ferdelman, Timothy G.; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive 35S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40–75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity. PMID:23658555

  14. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  15. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route

    International Nuclear Information System (INIS)

    Behdadfar, Behshid; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat; Morales, Maria del Puerto; Mozaffari, Morteza

    2012-01-01

    Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids were stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm 2 /kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: ► Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. ► Citric acid acted as reducing agent and surfactant in the route. ► This is a facile, low energy and environmental friendly route. ► The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. ► The calculated intrinsic loss power of the synthesized ferrofluids was very high.

  16. High Blood Pressure in Adolescents of Curitiba: Prevalence and Associated Factors.

    Science.gov (United States)

    Bozza, Rodrigo; Campos, Wagner de; Barbosa Filho, Valter Cordeiro; Stabelini Neto, Antonio; Silva, Michael Pereira da; Maziero, Renato Silva Barbosa

    2016-05-01

    Arterial hypertension is a major public health problem and has increased considerably in young individuals in past years. Thus, identifying factors associated with this condition is important to guide intervention strategies in this population. To determine high blood pressure prevalence and its associated factors in adolescents. A random sample of 1,242 students enrolled in public schools of the city of Curitiba (PR) was selected. Self-administered questionnaires provided family history of hypertension, daily energy expenditure, smoking habit, daily fat intake, and socioeconomic status. Waist circumference was measured following standardized procedures, and blood pressure was measured with appropriate cuffs in 2 consecutive days to confirm high blood pressure. Relative frequency and confidence interval (95%CI) indicated high blood pressure prevalence. Bivariate and multivariate analyses assessed the association of risk factors with high blood pressure. The high blood pressure prevalence was 18.2% (95%CI 15.2-21.6). Individuals whose both parents had hypertension [odds ratio (OR), 2.22; 95%CI 1.28-3.85] and those with high waist circumference (OR, 2.1; 95%CI 1.34-3.28) had higher chances to develop high blood pressure. Positive family history of hypertension and high waist circumference were associated with high blood pressure in adolescents. These factors are important to guide future interventions in this population.

  17. High Blood Pressure in Adolescents of Curitiba: Prevalence and Associated Factors

    Directory of Open Access Journals (Sweden)

    Rodrigo Bozza

    2016-01-01

    Full Text Available Abstract Background: Arterial hypertension is a major public health problem and has increased considerably in young individuals in past years. Thus, identifying factors associated with this condition is important to guide intervention strategies in this population. Objective: To determine high blood pressure prevalence and its associated factors in adolescents. Methods: A random sample of 1,242 students enrolled in public schools of the city of Curitiba (PR was selected. Self-administered questionnaires provided family history of hypertension, daily energy expenditure, smoking habit, daily fat intake, and socioeconomic status. Waist circumference was measured following standardized procedures, and blood pressure was measured with appropriate cuffs in 2 consecutive days to confirm high blood pressure. Relative frequency and confidence interval (95%CI indicated high blood pressure prevalence. Bivariate and multivariate analyses assessed the association of risk factors with high blood pressure. Results: The high blood pressure prevalence was 18.2% (95%CI 15.2-21.6. Individuals whose both parents had hypertension [odds ratio (OR, 2.22; 95%CI 1.28-3.85] and those with high waist circumference (OR, 2.1; 95%CI 1.34-3.28 had higher chances to develop high blood pressure. Conclusion: Positive family history of hypertension and high waist circumference were associated with high blood pressure in adolescents. These factors are important to guide future interventions in this population.

  18. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  19. Dual shell pressure balanced reactor vessel. Final project report

    International Nuclear Information System (INIS)

    Robertus, R.J.; Fassbender, A.G.

    1994-10-01

    The Department of Energy's Office of Energy Research (OER) has previously provided support for the development of several chemical processes, including supercritical water oxidation, liquefaction, and aqueous hazardous waste destruction, where chemical and phase transformations are conducted at high pressure and temperature. These and many other commercial processes require a pressure vessel capable of operating in a corrosive environment where safety and economy are important requirements. Pacific Northwest Laboratory (PNL) engineers have recently developed and patented (U.S. patent 5,167,930 December 1, 1992) a concept for a novel Dual Shell Pressure Balanced Vessel (DSPBV) which could solve a number of these problems. The technology could be immediately useful in continuing commercialization of an R ampersand D 100 award-winning technology, Sludge-to-oil Reactor System (STORS), originally developed through funding by OER. Innotek Corporation is a small business that would be one logical end-user of the DSPBV reactor technology. Innotek is working with several major U.S. engineering firms to evaluate the potential of this technology in the disposal of wastes from sewage treatment plants. PNL entered into a CRADA with Innotek to build a bench-scale demonstration reactor and test the system to advance the economic feasibility of a variety of high pressure chemical processes. Hydrothermal processing of corrosive substances on a large scale can now be made significantly safer and more economical through use of the DSPBV. Hydrothermal chemical reactions such as wet-air oxidation and supercritical water oxidation occur in a highly corrosive environment inside a pressure vessel. Average corrosion rates from 23 to 80 miles per year have been reported by Rice (1994) and Latanision (1993)

  20. Hydrothermal Upflow, Serpentinization and Talc Alteration Associated with a High Angle Normal Fault Cutting an Oceanic Detachment, Northern Apennines, Italy

    Science.gov (United States)

    Alt, J.; Crispini, L.; Gaggero, L.; Shanks, W. C., III; Gulbransen, C.; Lavagnino, G.

    2017-12-01

    Normal faults cutting oceanic core complexes are observed at the seafloor and through geophysics, and may act as flow pathways for hydrothermal fluids, but we know little about such faults in the subsurface. We present bulk rock geochemistry and stable isotope data for a fault that acted as a hydrothermal upflow zone in a seafloor ultramafic-hosted hydrothermal system in the northern Apennines, Italy. Peridotites were exposed on the seafloor by detachment faulting, intruded by MORB gabbros, and are overlain by MORB lavas and pelagic sediments. North of the village of Reppia are fault shear zones in serpentinite, oriented at a high angle to the detachment surface and extending 300 m below the paleo-seafloor. The paleo-seafloor strikes roughly east-west, dipping 30˚ to the north. At depth the fault zone occurs as an anticlinal form plunging 40˚ to the west. A second fault strikes approximately north-south, with a near vertical dip. The fault rock outcrops as reddish weathered talc + sulfide in 0.1-2 m wide anastomosing bands, with numerous splays. Talc replaces serpentinite in the fault rocks, and the talc rocks are enriched in Si, metals (Fe, Cu, Pb), Light Rare Earth Elements (LREE), have variable Eu anomalies, and have low Mg, Cr and Ni contents. In some cases gabbro dikes are associated with talc-alteration and may have enhanced fluid flow. Sulfide from a fault rock has d34S=5.7‰. The mineralogy and chemistry of the fault rocks indicate that the fault acted as the upflow pathway for high-T black-smoker type fluids. Traverses away from the fault (up to 1 km) and with depth below the seafloor (up to 500 m) reveal variable influences of hydrothermal fluids, but there are no consistent trends with distance. Background serpentinites 500 m beneath the paleoseafloor have LREE depleted trends. Other serpentinites exhibit correlations of LREE with HFSE as the result of melt percolation, but there is significant scatter, and hydrothermal effects include LREE enrichment

  1. Frictional characteristics of silicon graphite lubricated with water at high pressure and high temperature

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Eun Hyun; Park, Jin Seok; Kim, Jong In

    2001-01-01

    Experimental frictional and wear characteristics of silicon graphite materials is studied in this paper. Those specimens are lubricated with high temperature and highly pressurized water to simulate the same operating condition for the journal bearing and the thrust bearing on the main coolant pump bearing in the newly developing nuclear reactor named SMART(System-integrated Modular Advanced ReacTor). Operating condition of the bearings is realized by the tribometer and the autoclave. Friction coefficient and wear loss are analyzed to choose the best silicon graphite material. Pin on plate test specimens are used and coned disk springs are used to control the applied force on the specimens. Wear loss and wear width are measured by a precision balance and a micrometer. The friction force is measured by the strain gauge which can be used under high temperature and high pressure. Three kinds of silicon graphite materials are examined and compared with each other, and each material shows similar but different results on frictional and wear characteristics

  2. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  3. Psoriasis and high blood pressure.

    Science.gov (United States)

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  4. High-pressure torsion of hafnium

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  5. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  6. Basin scale permeability and thermal evolution of a magmatic hydrothermal system

    Science.gov (United States)

    Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.

    2013-12-01

    Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids

  7. Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO2 catalyst for enhanced methane and hydrogen production.

    Science.gov (United States)

    Eskicioglu, Cigdem; Monlau, Florian; Barakat, Abdellatif; Ferrer, Ivet; Kaparaju, Prasad; Trably, Eric; Carrère, Hélène

    2017-09-01

    Hydrothermal pretreatment of five lignocellulosic substrates (i.e. wheat straw, rice straw, biomass sorghum, corn stover and Douglas fir bark) were conducted in the presence of CO 2 as a catalyst. To maximize disintegration and conversion into bioenergy (methane and hydrogen), pretreatment temperatures and subsequent pressures varied with a range of 26-175 °C, and 25-102 bars, respectively. Among lignin, cellulose and hemicelluloses, hydrothermal pretreatment caused the highest reduction (23-42%) in hemicelluloses while delignification was limited to only 0-12%. These reductions in structural integrity resulted in 20-30% faster hydrolysis rates during anaerobic digestion for the pretreated substrates of straws, sorghum, and corn stover while Douglas fir bark yielded 172% faster hydrolysis/digestion due to its highly refractory nature in the control. Furans and phenolic compounds formed in the pretreated hydrolyzates were below the inhibitory levels for methane and hydrogen production which had a range of 98-340 ml CH 4 /g volatile solids (VS) and 5-26 ml H 2 /g VS, respectively. Results indicated that hydrothermal pretreatment is able to accelerate the rate of biodegradation without generating high levels of inhibitory compounds while showing no discernible effect on ultimate biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bulging of pressure tubes at hot spots under LOCA conditions

    International Nuclear Information System (INIS)

    Manu, C.; Shewfelt, R.S.W.; Wright, A.C.D.; Aboud, R.; Lau, J.H.K.; Sanderson, D.B.

    1996-01-01

    During certain postulated loss-of-coolant accidents (LOCA) in a CANDU reactor, some fuel channels can become highly voided within a very short time. Although the pressure tubes are heated mainly by convection and thermal radiation during the LOCA transient, additional heat flow occurs through the bearing pads that are in contact with the pressure tribe. This contact can lead to local hot spots and associated thermal stresses in the pressure tube wall. The two factors that affects the behavior of the pressure tubes during LOCA conditions are the internal pressure and the local heating. Although the effect of internal pressure and of axially uniform temperature has been studied elsewhere, the effect of the local heating on the pressure tube behavior has not been modelled before. This paper shows that the bulging of a pressure tube at a hot spot is the result of the thermal stresses that are developed in a pressure tube during a LOCA transient. To isolate the local heating effect from the internal pressure, a series of single-effect experiments was performed. In these experiments, sections of a CANDU pressure tube were subjected to local heating only. The thermal profile and the local deformation were measured function of time. To quantify the effect of the thermal stresses on the bulging of pressure tubes at hot spots and to develop numerical tools that can predict such bulging, finite element analyses were performed rising the ABAQUS finite element computer code. Use of the measured thermal profiles in the ABAQUS finite element analysis, resulted in very good agreement between the predicted and measured displacements. (author)

  9. Biosphere in 3.5 Ga submarine hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Yuichiro [Tokyo Univ. (Japan). Dept. of Earth Science and Astronomy

    2003-04-01

    Abundant organic matter (kerogen) was identified in {approx}3.5 Ga hydrothermal silica dikes from the North Pole area in the Pilbara craton, Western Australia. The silica dikes developed in the uppermost 1000 m of the ancient oceanic crust. Thus, they would have been deposited in the 3.5 Ga sub-seafloor hydrothermal system. The carbon and nitrogen isotopic compositions of the kerogen were analyzed in this study. Their highly {sup 13}C-depleted isotopic compositions ({delta}{sup 13}C = -38 to -33 per mille) strongly suggest that they are originally derived from biologically produced organic matter. The remarkable similarity of the {delta}{sup 13}C values between the kerogen and modern hydrothermal vent organisms may suggest that the kerogen was derived from chemoautotrophic organisms. This idea is also consistent with their nitrogen isotopic compositions ({delta}{sup 15}N = -4 to +4 per mille). The silica dikes consist mainly of fine-grained silica with minor pyrite and sphalerite. These mineral assemblages indicate that the silica dike was deposited from relatively low-temperature (probably less than 150degC) reducing hydrothermal fluid. Thus, anaerobic thermophilic/hyperthermophilic organisms could have survived in the hydrothermal fluid, which formed the silica dikes. Therefore, it is plausible that a chemoautotrophic-based biosphere (possibly methanogenesis) probably existed in the Early Archean sub-seafloor hydrothermal system. (author)

  10. Microseismicity Observed at a Non-Pressure-Stimulated Geothermal Plant

    Science.gov (United States)

    Megies, T.; Wassermann, J.

    2012-04-01

    The North Alpine Foreland Basin in south-eastern Germany provides remarkably favorable conditions for the exploitation of geothermal energy resources. Scarce background seismicity leads to low seismic hazard and the existence of a natural aquifer obviates the need for high-pressure hydraulic stimulation. This hydrothermal usage was previously assumed to be unproblematic with regard to induced seismicity and most of the currently operating hydrothermal geothermal plants supply thermal baths or district heating with relatively low flow rates and temperature drops. However, in February of 2008 two regionally recorded, shallow magnitude Ml > 2 earthquakes occurred at a geothermal power plant which is located in the municipality of Unterhaching south of Munich. One of the main differences of this specific plant is their combined heat and electric power production which is accompanied with much higher flow rates and thus larger volumes of circulated water. These events showed that induced seismicity can not be ruled out even in this fortunate setting and emphasized the need for a detailed analysis of the case, especially considering that in 2012/13 a series of larger plants for power generation are about to go into production. We present results from two years of data acquired with a local five station seismic network. Overall, more than 100 events with magnitudes mostly below 1 could be detected with a magnitude of completeness of around 0 and the largest observed magnitude at 2.1. Absolute locations are calculated in a 3D velocity model constructed from a high-quality 3D seismic survey and a simple two-layer vp/vs model. As a result, the epicenters cluster tightly within 500 m around the open-hole part of the injection well. The hypocentral depths are computed to be 1500 m below the well bottom but are less well constrained due to uncertainties in the shear wave velocity model and the spatial distribution of the network. Several indications point towards a necessary

  11. Generalized enthalpy model of a high-pressure shift freezing process

    KAUST Repository

    Smith, N. A. S.

    2012-05-02

    High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work, we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition, the significant heat-transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature. © 2012 The Royal Society.

  12. Morphology and nano-structure analysis of soot particles sampled from high pressure diesel jet flames under diesel-like conditions

    Science.gov (United States)

    Jiang, Hao; Li, Tie; Wang, Yifeng; He, Pengfei

    2018-04-01

    Soot particles emitted from diesel engines have a significant impact on the atmospheric environment. Detailed understanding of soot formation and oxidation processes is helpful for reducing the pollution of soot particles, which requires information such as the size and nano-structure parameters of the soot primary particles sampled in a high-temperature and high-pressure diesel jet flame. Based on the thermophoretic principle, a novel sampling probe minimally disturbing the diesel jet flame in a constant volume combustion vessel is developed for analysing soot particles. The injected quantity of diesel fuel is less than 10 mg, and the soot particles sampled by carriers with a transmission electron microscope (TEM) grid and lacey TEM grid can be used to analyse the morphologies of soot aggregates and the nano-structure of the soot primary particles, respectively. When the quantity of diesel fuel is more than 10 mg, in order to avoid burning-off of the carriers in higher temperature and pressure conditions, single-crystal silicon chips are employed. Ultrasonic oscillations and alcohol extraction are then implemented to obtain high quality soot samples for observation using a high-resolution transmission electron microscope. An in-house Matlab-based code is developed to extract the nano-structure parameters of the soot particles. A complete sampling and analysis procedure of the soot particles is provided to study the formation and oxidation mechanism of soot.

  13. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin

    NARCIS (Netherlands)

    Russ, L.; Kartal, B.; Op den Camp, H.J.M.; Sollai, M.; Le Bruchec, J.; Caprais, J.-C.; Godfroy, A.; Sinninghe Damsté, J.S.; Jetten, M.S.M.

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria

  14. Effects of iron-containing minerals on hydrothermal reactions of ketones

    Science.gov (United States)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  15. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    Science.gov (United States)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  16. Hydrothermal synthesis of thiol-capped CdTe nanoparticles and their optical properties.

    Science.gov (United States)

    Bu, Hang-Beom; Kikunaga, Hayato; Shimura, Kunio; Takahasi, Kohji; Taniguchi, Taichi; Kim, DaeGwi

    2013-02-28

    Water soluble nanoparticles (NPs) with a high emission property were synthesized via hydrothermal routes. In this report, we chose thiol ligand N-acetyl-L-cysteine as the ideal stabilizer and have successfully employed it to synthesize readily size-controllable CdTe NPs in a reaction of only one step. Hydrothermal synthesis of CdTe NPs has been carried out in neutral or basic conditions so far. We found out that the pH value of precursor solutions plays an important role in the uniformity of the particle size. Actually, high quality CdTe NPs were synthesized under mild acidic conditions of pH 5. The resultant NPs indicated good visible light-emitting properties and stability. Further, the experimental results showed that the reaction temperature influenced significantly the growth rate and the maximum size of the NPs. The CdTe NPs with a high photoluminescence quantum yield (the highest value: 57%) and narrower half width at half maximum (the narrowest value: 33 nm) were attained in very short time, within 40 minutes, reaching diameters of 2.3 to 4.3 nm. The PL intensity was increased with an increase in the reaction time, reflecting the suppression of nonradiative recombination processes. Furthermore, the formation of CdTe/CdS core-shell structures was discussed from the viewpoint of PL dynamics and X-ray diffraction studies.

  17. Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA

    Science.gov (United States)

    Losh, Steven; Rague, Ryan

    2018-02-01

    Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this

  18. New Developments in Deformation Experiments at High Pressure

    International Nuclear Information System (INIS)

    Durham, W B; Weidner, D J; Karato, S; Wang, Y

    2004-01-01

    Although the importance of rheological properties in controlling the dynamics and evolution of the whole mantle of Earth is well-recognized, experimental studies of rheological properties and deformation-induced microstructures have mostly been limited to low-pressure conditions. This is mainly a result of technical limitations in conducting quantitative rheological experiments under high-pressure conditions. A combination of factors is changing this situation. Increased resolution of composition and configuration of Earth's interior has created a greater demand for well-resolved laboratory measurement of the effects of pressure on the behavior of materials. Higher-strength materials have become readily available for containing high-pressure research devices, and new analytical capabilities--in particular very bright synchrotron X-ray sources--are now readily available to high-pressure researchers. One of the biggest issues in global geodynamics is the style of mantle convection and the nature of chemical differentiation associated with convectional mass transport. Although evidence for deep mantle circulation has recently been found through seismic tomography (e.g., van der Hilst et al. (1997)), complications in convection style have also been noted. They include (1) significant modifications of flow geometry across the mantle transition zone as seen from high resolution tomographic studies (Fukao et al. 1992; Masters et al. 2000; van der Hilst et al. 1991) and (2) complicated patterns of flow in the deep lower mantle (∼1500-2500 km), perhaps caused by chemical heterogeneity (Kellogg et al. 1999; van der Hilst and Karason 1999). These studies indicate that while large-scale circulation involving the whole mantle no doubt occurs, significant deviations from simple flow geometry are also present. Two mineral properties have strong influence on convection: (1) density and (2) viscosity (rheology) contrasts. In the past, the effects of density contrast have been

  19. Behavior of uranium during the formation of granitic magma by anatexis (I). Influence of redox conditions and the presence of chloride on the solubility of uranium in the hydrothermal solutions

    International Nuclear Information System (INIS)

    Satoru Nakashima; Toshimichi Iiyama, J.

    1983-01-01

    The behavior of uranium is examined experimentally in the course of partial fusion of natural or synthetic granitic rocks. Uranium is definitely soluble in the associated hydrothermal solutions containing chloride under oxidizing conditions, but it is not soluble in the same fluids under reducing conditions [fr

  20. Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition

    Science.gov (United States)

    Lestari, W. W.; Hasanah, D. N.; Putra, R.; Mukti, R. R.; Nugrahaningtyas, K. D.

    2018-04-01

    Natural zeolite is abundantly available in Indonesia and well distributed especially in the volcano area like Java, Sumatera, and Sulawesi. So far, natural zeolite from Klaten, Central Java is one of the most interesting zeolites has been widely studied. This research aims to know the effect of seed-assisted synthesis under a hydrothermal condition at 120 °C for 24 hours of Klaten’s zeolite toward the structural change and phase transformation of the original structure. According to XRD and XRF analysis, seed-assisted synthesis through the addition of aluminosilicate mother solution has transformed Klaten’s zeolite which contains (mordenite and clinoptilolite) into analcime type with decreasing Si/Al ratio from 4.51 into 1.38. Morphological analysis using SEM showed the shape changes from irregular into spherical looks like takraw ball in the range of 0.3 to 0.7 micrometer. Based on FTIR data, structure of TO4 site (T = Si or Al) was observed in the range of 300-1300 cm-1 and the occupancy of Brønsted acid site as OH stretching band from silanol groups was detected at 3440-3650 cm-1. Nitrogen adsorption-desorption analysis confirmed that transformation Klaten’s zeolite into analcime type has decreased the surface area from 55.41 to 22.89 m2/g and showed inhomogeneous pore distribution which can be classified as micro-mesoporous aluminosilicate materials.

  1. Apparatus development for high-pressure X-ray diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Martinez, L.G.; Orlando, M.T.D.; Rossi, J.L.; Passamai Junior, J.L.; Melo, F.C.L.; Ferreira, F.F.

    2006-01-01

    Some phenomena in the field of condensed matter physics can be studied when the matter is submitted to extreme conditions of pressure, magnetic fields or temperatures. Once submitted to these conditions it is generally necessary to measure the properties of the matter in situ. The existence of a synchrotron light laboratory in Brazil opens up the chance of studying materials in extreme conditions by techniques like X-ray diffraction and absorption. However, when compared to high-energy synchrotrons accelerators, the Brazilian source offers a narrower energy range and lower flux. These facts impose limitation to perform diffraction experiments by energy dispersion and, consequently, the use of pressure cells with denser anvils like diamond. However, for a lower-pressure range, preliminary studies showed the viability of measurements in an angular dispersion configuration. This allows the use of silicon carbide anvils B 4C . In this work it is described the development of a hydrostatic pressure cell suitable for X-rays diffraction measurements in the Brazilian Synchrotron Light Laboratory using materials and technologies developed by the institutions and researchers involved in this project (IPEN, UFES, CTA and LNLS). This development can provide the scientific community with the possibility of performing X-ray diffraction measurements under hydrostatic pressure, initially up to 2 GPa, with possibilities of increasing the maximum pressure to higher values, with or without application of magnetic fields and high or low temperatures. (author)

  2. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  3. Passenger comfort on high-speed trains: effect of tunnel noise on the subjective assessment of pressure variations.

    Science.gov (United States)

    Sanok, Sandra; Mendolia, Franco; Wittkowski, Martin; Rooney, Daniel; Putzke, Matthias; Aeschbach, Daniel

    2015-01-01

    When passing through a tunnel, aerodynamic effects on high-speed trains may impair passenger comfort. These variations in atmospheric pressure are accompanied by transient increases in sound pressure level. To date, it is unclear whether the latter influences the perceived discomfort associated with the variations in atmospheric pressure. In a pressure chamber of the DLR-Institute of Aerospace Medicine, 71 participants (M = 28.3 years ± 8.1 SD) rated randomised pressure changes during two conditions according to a crossover design. The pressure changes were presented together with tunnel noise such that the sound pressure level was transiently elevated by either +6 dB (low noise condition) or +12 dB (high noise condition) above background noise level (65 dB(A)). Data were combined with those of a recent study, in which identical pressure changes were presented without tunnel noise (Schwanitz et al., 2013, 'Pressure Variations on a Train - Where is the Threshold to Railway Passenger Discomfort?' Applied Ergonomics 44 (2): 200-209). Exposure-response relationships for the combined data set comprising all three noise conditions show that pressure discomfort increases with the magnitude and speed of the pressure changes but decreases with increasing tunnel noise. Practitioner Summary: In a pressure chamber, we systematically examined how pressure discomfort, as it may be experienced by railway passengers, is affected by the presence of tunnel noise during pressure changes. It is shown that across three conditions (no noise, low noise (+6 dB), high noise (+12 dB)) pressure discomfort decreases with increasing tunnel noise.

  4. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  5. High-pressure behavior and crystal–fluid interaction under extreme conditions in paulingite [PAU-topology

    Czech Academy of Sciences Publication Activity Database

    Gatta, G. D.; Scheidl, K. S.; Pippinger, T.; Skála, Roman; Lee, J.; Miletich, R.

    2015-01-01

    Roč. 206, April (2015), s. 34-41 ISSN 1387-1811 Institutional support: RVO:67985831 Keywords : paulingite * high pressure * X-ray diffraction * compressibility * crystal–fluid interaction Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.349, year: 2015

  6. Synthesis and stability of hydrogen selenide compounds at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Edward J.; Binns, Jack; Alvarez, Miriam Pena; Dalladay-Simpson, Philip; Gregoryanz, Eugene; Howie, Ross T. (Edinburgh); (CHPSTAR- China)

    2017-11-14

    The observation of high-temperature superconductivity in hydride sulfide (H2S) at high pressures has generated considerable interest in compressed hydrogen-rich compounds. High-pressure hydrogen selenide (H2Se) has also been predicted to be superconducting at high temperatures; however, its behaviour and stability upon compression remains unknown. In this study, we synthesize H2Se in situ from elemental Se and molecular H2 at pressures of 0.4 GPa and temperatures of 473 K. On compression at 300 K, we observe the high-pressure solid phase sequence (I-I'-IV) of H2Se through Raman spectroscopy and x-ray diffraction measurements, before dissociation into its constituent elements. Through the compression of H2Se in H2 media, we also observe the formation of a host-guest structure, (H2Se)2H2, which is stable at the same conditions as H2Se, with respect to decomposition. These measurements show that the behaviour of H2Se is remarkably similar to that of H2S and provides further understanding of the hydrogen chalcogenides under pressure.

  7. Multipurpose high-pressure high-temperature diamond-anvil cell with a novel high-precision guiding system and a dual-mode pressurization device

    Science.gov (United States)

    Pippinger, Thomas; Miletich, Ronald; Burchard, Michael

    2011-09-01

    A novel diamond-anvil cell (DAC) design has been constructed and tested for in situ applications at high-pressure (HP) operations and has proved to be suitable even for HP sample environments at non-ambient temperature conditions. The innovative high-precision guiding mechanism, comparable to a dog clutch, consists of perpendicular planar sliding-plane elements and is integrated directly into the base body of the cylindrically shaped DAC. The combination of two force-generating devices, i.e., mechanical screws and an inflatable gas membrane, allows the user to choose independently between, and to apply individually, two different forcing mechanisms for pressure generation. Both mechanisms are basically independent of each other, but can also be operated simultaneously. The modularity of the DAC design allows for an easy exchange of functional core-element groups optimized not only for various analytical in situ methods but also for HP operation with or without high-temperature (HT) application. For HP-HT experiments a liquid cooling circuit inside the specific inner modular groups has been implemented to obtain a controlled and limited heat distribution within the outer DAC body.

  8. High-pressure transport properties of CrB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Regnat, Alexander; Becker, Julian; Spallek, Jan; Bauer, Andreas; Chacon, Alfonso; Ritz, Robert; Pfleiderer, Christian [Physik-Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Blum, Christian; Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research IFW, D-01171 Dresden (Germany)

    2015-07-01

    High quality single crystals of the itinerant antiferromagnet CrB{sub 2}, T{sub N} = 88 K, were grown by means of optical float zoning. Bulk, transport and de Haas-van Alphen measurements were carried out. Here, we present a comprehensive study of the high-pressure transport properties. Samples were investigated under hydrostatic, uniaxial and quasi-hydrostatic conditions. As a result we are able to attribute contradictory reports for the pressure dependence of T{sub N} to uniaxial strain. Perhaps most interestingly, we find a pronounced low temperature resistivity anomaly around 3 GPa in the quasi-hydrostatic case.

  9. Hydrothermal stability investigation of micro- and mesoporous silica containing long-range ordered cobalt oxide clusters by XAS.

    Science.gov (United States)

    Liu, Liang; Wang, David K; Kappen, Peter; Martens, Dana L; Smart, Simon; Diniz da Costa, João C

    2015-07-15

    This work investigates the hydrothermal stability of cobalt doped silica materials with different Co/Si molar ratios (0, 0.05, 0.10, and 0.25). The resultant materials were characterized by N2 sorption and chemical structures by Raman and X-ray absorption spectroscopy before and after a harsh hydrothermal exposure (550 °C, 75 mol% vapour and 40 h). The cobalt silica materials showed a lower surface area loss from 48% to 12% with increasing Co/Si molar ratio from 0.05 to 0.25 and relatively maintaining their pore size distribution, while pure silica exhibited significant surface area reduction (80%) and pore size broadening. For low cobalt loading sample (Co/Si = 0.05), the cobalt was highly dispersed in the silica network in a tetrahedral coordination with oxygen and a small proportion of Co-Co interaction in the second shell. Long range order Co3O4 was observed when Co/Si molar ratio increased to 0.10 and 0.25. The hydrothermal exposure did not affect the local cobalt environments and no cobalt-silicon interaction was observed by X-ray absorption spectroscopy. The hydrothermal stability of the silica matrix was attributed to the physical barrier of cobalt oxide in opposing densification and silica mobility under harsh hydrothermal conditions.

  10. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  11. Standard partial molar heat capacities and enthalpies of formation of aqueous aluminate under hydrothermal conditions from integral heat of solution measurements

    International Nuclear Information System (INIS)

    Coulier, Yohann; Tremaine, Peter R.

    2014-01-01

    Highlights: • Heats of solution of NaAlO 2 (s) were measured at five temperatures up to 250 °C. • Standard molar enthalpies of solution were determined from the measured heats of solution. • Standard molar enthalpies of solution were correlated with the density model. • The density model allows us to determine the standard molar heat capacities of reaction. - Abstract: Heats of solution of sodium aluminum oxide, NaAlO 2 (s), were measured in aqueous sodium hydroxide solutions using a Tian–Calvet heat-flow calorimeter (Setaram, Model C80) with high pressure “batch cells” made of hastelloy C-276, at five temperatures from (373.15 to 523.15) K, steam saturation pressure, and concentrations from (0.02 to 0.09) mol · kg −1 . Standard molar enthalpies of solution, Δ soln H ∘ , and relative standard molar enthalpies, [H ∘ (T) − H ∘ (298.15 K)], of NaAl(OH) 4 (aq) were determined from the measured heats of solution. The results were fitted with the “density” model. The temperature dependence of Δ soln H ∘ from the model yielded the standard molar heat capacities of reaction, Δ soln C p ∘ , from which standard partial molar heat capacities for aqueous aluminate, C p ∘ [A1(OH) 4 − ,aq], were calculated. Standard partial molar enthalpies of formation, Δ f H ∘ , and entropies, S ∘ , of A1(OH) 4 − (aq) were also determined. The values for C p ∘ [A1(OH) 4 − ,aq] agree with literature data determined up to T = 413 K from enthalpy of solution and heat capacity measurements to within the combined experimental uncertainties. They are consistent with differential heat capacity measurements up to T = 573 K from Schrödle et al. (2010) [29] using the same calorimeter, but this method has the advantage that measurements could be made at much lower concentrations in the presence of an excess concentration of ligand. To our knowledge, these are the first standard partial molar heat capacities measured under hydrothermal conditions by the

  12. Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds.

    Science.gov (United States)

    Barge, Laura M; White, Lauren M

    2017-09-01

    We review various laboratory strategies and methods that can be utilized to simulate prebiotic processes and origin of life in hydrothermal vent systems on icy/ocean worlds. Crucial steps that could be simulated in the laboratory include simulations of water-rock chemistry (e.g., serpentinization) to produce hydrothermal fluids, the types of mineral catalysts and energy gradients produced in vent interfaces where hydrothermal fluids interface with the surrounding seawater, and simulations of biologically relevant chemistry in flow-through gradient systems (i.e., far-from-equilibrium experiments). We describe some examples of experimental designs in detail, which are adaptable and could be used to test particular hypotheses about ocean world energetics or mineral/organic chemistry. Enceladus among the ocean worlds provides an ideal test case, since the pressure at the ocean floor is more easily simulated in the lab. Results for Enceladus could be extrapolated with further experiments and modeling to understand other ocean worlds. Key Words: Enceladus-Ocean worlds-Icy worlds-Hydrothermal vent-Iron sulfide-Gradient. Astrobiology 17, 820-833.

  13. Insights on the Origin of Volatiles from the Geochemical Investigation of Hydrothermal Gas Discharges from Dominica, Lesser Antilles.

    Science.gov (United States)

    Buskop, J.; Joseph, E. P.; Inguaggiato, S.; Varekamp, J. C.; Ku, T.

    2017-12-01

    The major goals of volcano hydrothermal monitoring are to obtain information on temperature, origin, and changes in chemical composition of volcanic fluids. This data contributes to the baseline geochemical monitoring of volcanic activity and informs on potential volcanic hazards to which the public may be exposed. The origins of hydrothermal fluids are diverse and can be magmatic, crustal and atmospheric. Studies of isotopes, inert gases, and thermodynamic calculations help elucidate the origin in each case and determine provenance of volatiles and a re-evaluation of reservoir temperatures. Sulphur isotope ratio (δ34S) for H2S leached from rock is 0 ‰. Low δ15N (-7.3 ‰) is indicative of low sediment addition to source magmas, while high δ15N (+2.1 ‰) indicates greater sediment contribution in magma formation. Baseline monitoring of hydrothermal gases of Dominica for the period 2000 - 2006 show compositions typical of those found in arc-type settings, with N2 excess and low amounts of He and Ar. The dry gas is dominated by CO2 (ranging from 492 to 993 mmol/mol), and has a hydrothermal signature with hydrogen sulphide as the main sulphurous gas. Over the past decade, Dominica has experienced volcanic and tectonic seismicity and a sudden draining episode at the Boiling Lake in November 2016. This study evaluates data obtained in 2017 on gas composition from five (5) hydrothermal areas across the island (Valley of Desolation, Sulphur Spring, Watten Waven, Galion and Penville cold Soufriere) to determine temporal and spatial deviations from baseline geochemical conditions. This study also presents new data, obtained in 2017, on sulphur and nitrogen isotopes to evaluate contributions from various source components. Preliminary results show high CH4/CO2 ratios for gases from Sulphur Springs and Galion, indicative of a significant hydrothermal contribution to these fluids. However, high helium isotope compositions of 7.02 R/Ra signify a clear magmatic origin

  14. Fast preparation of Na0.44MnO2 nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties

    International Nuclear Information System (INIS)

    Liu, Cai; Li, Jiangang; Zhao, Pengxiang; Guo, Wenli; Yang, Xiaoping

    2015-01-01

    This paper describes a high NaOH concentration hydrothermal soft chemical reaction to prepare Na 0.44 MnO 2 nanorods. In this process, Na-birnessite precursors and concentrated NaOH solution are introduced into the hydrothermal reaction. As a result, the hydrothermal time can be significantly shortened from 96 to 24 h, the hydrothermal temperature can be reduced from 205 to 180 °C and the yield of Na 0.44 MnO 2 can be increased from about 0.6 to about 2.4 g/(mL . day), respectively. Furthermore, the obtained Na 0.44 MnO 2 nanorods with one-dimensional tunnel structures exhibit favorable electrochemical lithium storage properties, which make them promising for the cathode materials of lithium-ion batteries

  15. V isotope composition in modern marine hydrothermal sediments

    Science.gov (United States)

    Wu, F.; Owens, J. D.; Nielsen, S.; German, C. R.; Rachel, M.

    2017-12-01

    Vanadium is multivalence transition metal with two isotopes (51V and 50V). Recent work has shown that large V isotope variations occur with oxygen variations in modern sediments (Wu et al., 2016 and 2017 Goldschmidt Abstracts), providing its potential as a promising proxy for determining low oxygen conditions. However, the development of V isotopes as a proxy to probe past redox conditions requires a comprehensive understanding of the modern oceanic isotopic mass balance. Therein, the scavenging of V from the hydrous iron oxides in hydrothermal fluid has been shown to be an important removal process from seawater (Rudnicki and Elderfield, 1993 GCA) but remains unquantified. In this study, we analyzed V isotopic compositions of metalliferous sediments around the active TAG hydrothermal mound from the mid-Atlantic Ridge (26° degrees North) and the Eastern Pacific Zonal Transect (GEOTRACES EPZT cruise GP16). The TAG sediments deposited as Fe oxyhydroxides from plume fall-out, and have δ51V values between -0.3 to 0‰. The good correlation between Fe and V for these metalliferous sediments indicate that the accumulation of V in these samples is directly related to the deposition of Fe oxyhydroxides, which also control their V isotope signature. The EPZT samples cover 8,000 km in the South Pacific Ocean with sedimentary areas that underlie the Peru upwelling region and the well-oxygenated deep South Pacific Ocean influenced by hydtorthermal plume material from southern East Pacific Rise (EPR). The sediments collected at the east of the EPR have δ51V values between -1.2 to -0.7‰, similar to previous δ51V of oxic sediments. In contrast, the sediments from the west of the EPR have δ51V values (-0.4 to 0‰) similar to hydrothermal sediments from the mid-Atlantic Ridge, indicating the long transportation (more than 4,000 km, Fitzsimmons et al., 2017 NG) of Fe and Mn from hydrothermal plume and their incorporation into sediments have a major impact on the cycle of V

  16. Sulphation of oil shale ash under atmospheric and pressurized combustion conditions

    International Nuclear Information System (INIS)

    Kuelaots, I.; Yrjas, P.; Hupa, M.; Ots, A.

    1995-01-01

    One of the main problems in conventional combustion boilers firing pulverized oil shale is the corrosion and fouling of heating surfaces, which is caused by sulphur compounds. Another major problem, from the environmental point of view, are the high SO 2 emissions. Consequently, the amount of sulphur in flue gases must be reduced. One alternative to lower the SO 2 , concentration is the use of new technologies, such as pressurized fluidized bed combustion (PFBC). In FBC processes, the sulphur components are usually removed by the addition of limestone (CaCO 3 ) or dolomite (CaCO 3 x MgCO 3 ) into the bed. The calcium in these absorbents react with SO 2 , producing solid CaSO 4 . However, when burning oil shale, there would be no need to add limestone or dolomite into the bed, due to the initially high limestone content in the fuel (molar ratio Ca/S =10). The capture of sulphur by oil shale ashes has been studied using a pressurized thermogravimetric apparatus (PTGA). The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. Four different materials were tested - one cyclone ash from an Estonian oil shale boiler, two size fractions of Estonian oil shale and, one fraction of Israeli oil shale. The cyclone ash was found to be the poorest sulphur absorbent. In general, the results from the sulphur capture experiments under both atmospheric and pressurized fluidized bed conditions showed that the oil shale can capture not only its own sulphur but also significant amounts of additional sulphur from another fuel if the fuels are mixed together. (author)

  17. Industrial high pressure applications. Processes, equipment and safety

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, Rudolf (ed.) [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer Thermische Verfahrenstechnik

    2012-07-01

    Industrial high pressure processes open the door to many reactions that are not possible under 'normal' conditions. These are to be found in such different areas as polymerization, catalytic reactions, separations, oil and gas recovery, food processing, biocatalysis and more. The most famous high pressure process is the so-called Haber-Bosch process used for fertilizers and which was awarded a Nobel prize. Following an introduction on historical development, the current state, and future trends, this timely and comprehensive publication goes on to describe different industrial processes, including methanol and other catalytic syntheses, polymerization and renewable energy processes, before covering safety and equipment issues. With its excellent choice of industrial contributions, this handbook offers high quality information not found elsewhere, making it invaluable reading for a broad and interdisciplinary audience.

  18. Effect of fat content and homogenization under conventional or ultra-high-pressure conditions on interactions between proteins in rennet curds.

    Science.gov (United States)

    Zamora, A; Trujillo, A J; Armaforte, E; Waldron, D S; Kelly, A L

    2012-09-01

    The objective of this study was to investigate the influence of conventional and ultra-high-pressure homogenization on interactions between proteins within drained rennet curds. The effect of fat content of milk (0.0, 1.8, or 3.6%) and homogenization treatment on dissociation of proteins by different chemical agents was thus studied. Increasing the fat content of raw milk increased levels of unbound whey proteins and calcium-bonded caseins in curds; in contrast, hydrophobic interactions and hydrogen bonds were inhibited. Both homogenization treatments triggered the incorporation of unbound whey proteins in the curd, and of caseins through ionic bonds involving calcium salts. Conventional homogenization-pasteurization enhanced interactions between caseins through hydrogen bonds and hydrophobic interactions. In contrast, ultra-high-pressure homogenization impaired hydrogen bonding, led to the incorporation of both whey proteins and caseins through hydrophobic interactions and increased the amount of unbound caseins. Thus, both homogenization treatments provoked changes in the protein interactions within rennet curds; however, the nature of the changes depended on the homogenization conditions. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Evidence for recent hydrothermal activity in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; ShyamPrasad, M.; Gupta, S.M.; Charan, S.N.

    fracturing provide conditions conducive to hydrothermal discharge and accumulation of the resultant hydrothermal precipitates (Alt et al., 1987). Bonatti and Joensuu (1966) were among the first to report on the occurrence of spongy iron-oxides from a...-S fracture zones, traverse at 73”E, 76”3O’E and 79”E in the basin (Kamesh Raju, 1993). Many seamounts dot the floor of the CIB (Mukhopadhyay and Khadge, 1990; Kamesh Raju et al., 1993), some of them having caldera (Kodagali, 1991; Kodagali, pers. commun...

  20. High Pressure Hydrogen Pressure Relief Devices: Accelerated Life Testing and Application Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Post, Matthew B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rivkin, Carl H. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-06

    Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particular interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.

  1. Hydrothermal germination models: Improving experimental efficiency by limiting data collection to the relevant hydrothermal range

    Science.gov (United States)

    Hydrothermal models used to predict germination response in the field are usually parameterized with data from laboratory experiments that examine the full range of germination response to temperature and water potential. Inclusion of low water potential and high and low-temperature treatments, how...

  2. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    International Nuclear Information System (INIS)

    Prasad, D N; Ayyappan, R; Kamble, L P; Singh, J P; Muralikrishna, L V; Alex, M; Balagi, V; Mukhopadhyay, P K

    2008-01-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm 2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ∼1 x 10 -5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mmx160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face and diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6x10 -9 m bar ltr/sec in vacuum mode and 2x10 -7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5x10 -5 mbar, the new valve achieved vacuum 7.4x10 -6 mbar in the same time under the same conditions

  3. Loads on EPR containment after RPV failure at high pressure

    International Nuclear Information System (INIS)

    Jacobs, G.

    1995-01-01

    As regards the desgin of the EPR, the general strategy is to eliminate, the vessel failure at high pressure by preventive and mitigative measures. The design proposals involved trust in the reliability of dedicated devices (relief valves) for rapid depressurization. The aim is to attain a lower pressure level at the moment of vessel failure, so that the containment is capable to cope with the blowdown impact on the pit walls and the vessel supporting structures. Nevertheless, the potential of a high-pressure failure of the vessel must be kept in mind, whatever well thought-out and reliable preventive depressurization measures might be. Therefore, the reactor pressure blowdown has been studied in order to quantify the ultimate containment load, which might support future design requirements. The calculations were performed with the LWR transient analysis thermal-hydraulics computer code REALAP5/MOD3. In previous analyses, the nodalization of the problem was based on the geometrical conditions of a typical German 1300 MW(e) NPP. In the present analysis a new input model has been used, which was based on the EPR conditions. (orig./HP)

  4. Pressure retarded osmosis for energy production: membrane materials and operating conditions.

    Science.gov (United States)

    Kim, H; Choi, J-S; Lee, S

    2012-01-01

    Pressure retarded osmosis (PRO) is a novel membrane process to produce energy. PRO has the potential to convert the osmotic pressure difference between fresh water (i.e. river water) and seawater to electricity. Moreover, it can recover energy from highly concentrated brine in seawater desalination. Nevertheless, relatively little research has been undertaken for fundamental understanding of the PRO process. In this study, the characteristics of the PRO process were examined using a proof-of-concept device. Forward osmosis (FO), reverse osmosis (RO), and nanofiltration (NF) membranes were compared in terms of flux rate and concentration polarization ratio. The results indicated that the theoretical energy production by PRO depends on the membrane type as well as operating conditions (i.e. back pressure). The FO membrane had the highest energy efficiency while the NF membrane had the lowest efficiency. However, the energy production rate was low due to high internal concentration polarization (ICP) in the PRO membrane. This finding suggests that the control of the ICP is essential for practical application of PRO for energy production.

  5. A hydronitrogen solid: high pressure ab initio evolutionary structure searches

    International Nuclear Information System (INIS)

    Hu Anguang; Zhang Fan

    2011-01-01

    High pressure ab initio evolutionary structure searches resulted in a hydronitrogen solid with a composition of (NH) 4 . The structure searches also provided two molecular isomers, ammonium azide (AA) and trans-tetrazene (TTZ) which were previously discovered experimentally and can be taken as molecular precursors for high pressure synthesis of the hydronitrogen solid. The computed pressure versus enthalpy diagram showed that the transformation pressure to the hydronitrogen solid is 36 GPa from AA and 75 GPa from TTZ. Its metastability was analyzed by the phonon dispersion spectrum and room-temperature vibrational density of state together with the transformation energy barrier back to molecular phases at 298 K. The predicted energy barrier of 0.21 eV/atom means that the proposed hydronitrogen solid should be very stable at ambient conditions. (fast track communication)

  6. High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide

    Energy Technology Data Exchange (ETDEWEB)

    Laniel, Dominique; Desgreniers, Serge [Laboratoire de physique des solides denses, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Downie, Laura E. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Smith, Jesse S. [High Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Savard, Didier; Murugesu, Muralee [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2014-12-21

    Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network, starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.

  7. Phase transformations in cerium and thorium metals at ultra high pressures

    International Nuclear Information System (INIS)

    Vohra, Y.K.

    1991-01-01

    This paper reports on the role of pressure variable in phase transformation which has not been fully exploited in metallic elements and their alloys. The static compression of over 50% in volume can readily be obtained in most metals and this tremendous change in inter-atomic distances can lead to the formation of new exotic crystal structures. The pressure-induced electron transfer amongst existing electronic energy bands and the occupation of new bands are the driving forces in a rich variety of phase transformations. The modern high pressure diamond anvil cell techniques can produce calibrated static pressures of over 300 to 400 GPa range and this technology, when interfaced with the synchrotron radiation sources, can yield rapid structural information (1-3). These capabilities have given new impetus for investigation of phase transformations in metallic systems at extreme conditions of temperatures and pressures and in establishing phase boundaries at high pressures and high temperatures. Cerium (Ce) and thorium (Th) metals occupy special positions in the periodic table at the beginning of the 4-f lanthanide and 5-f, actinide series, respectively. Ce has one electron in the localized 4-f shell, apart from the three valence electrons. Th metal, on the other hand, has four valence electrons and an unoccupied 5-f band above the Fermi-energy at ambient conditions. In view of the unoccupied 5-f band, Th metal is normally regarded as a tetravalent transition metal like Ti, Zr, and Hf and its bonding and other electronic properties can be explained within the tetravalent transition metal framework. However, the application of ultra-high pressures causes the delocalization of the 4-f shell in Ce and it is believed that Ce above 0.8 GPa pressure is a 4-f band metal

  8. Hydrothermal synthesis of highly water-dispersible anatase nanocrystals from transparent aqueous sols of titanate colloids

    International Nuclear Information System (INIS)

    Ban, Takayuki; Tanaka, Yusuke; Ohya, Yutaka

    2011-01-01

    Transparent colloidal aqueous solutions of anatase nanocrystals were hydrothermally synthesized from aqueous transparent sols with tetramethylammonium titanate colloids, the surfaces of which were modified with citric acid, by structural conversion of the titanate to anatase. This modification hindered coalescence of the titanate colloids during the hydrothermal synthesis. Although the amount of citric acid adsorbed on the colloids was reduced during hydrothermal treatment, a small amount of citric acid was adsorbed on the resulting anatase nanocrystals. Moreover, the use of the titanate colloids as a precursor was compared with the use of a citrato Ti complex, tetramethylammonium citratotitanate. The hydrothermal treatment of the transparent aqueous solutions of the Ti complex yielded opaque solutions with large anatase colloids, suggesting that the titanate colloids were useful for preparing transparent anatase colloidal solutions. Because the shape and size of resulting colloids may be dependent on the size and shape of starting colloids, the use of titanate colloids as a precursor may make it easy to control size and shape of anatase colloids.

  9. Hulls and structural material waste conditioning by high pressure compaction

    International Nuclear Information System (INIS)

    Frotscher, H.

    1991-01-01

    Since 1986 KfK is developing a conditioning process. Main subjects of the investigations were the development of the production technique and the planning of the most important equipments of the process under remote conditions. The process is based on an extensive program of experiments. Inactive bulks of hulls and structural material components were compacted using maximum axial pressure load of about 300 MPa. The product density as function of press force was experimentally determinated. The mechanical loads of the press and tools were estimated for the design of these equipments. The hydraulic press consists a horizontal four-cylinder press. The maximum force of the press is 25 MN. The main advantage is the modular design of the press which is open on all sides. Especially the free accessibility from top is ensured. The report also represents relevant radiological data of the alternative product. Co-60 is the dominating activity of the product due to the effects of the heat production. An amount of 10 kg hull waste or 25 kg top and bottom pieces of the spent fuel assemblies per package is already beyond the Co-60 limit of the KONRAD regulations. The nuclear thermal power of a filled container is approximately sixty times lower compared with a vitrified HLW-container. Since the product shows thermal stability beyond 200 0 C, this it is suited for a combined disposal together with vitrified HLW-containers in salt bore holes of a geological disposal. The preliminary cost evaluation is based on a reprocessing throughput of 500 t HM per year and volume reduction factor of 5.3. Accordingly there are produced 300 waste packages with hulls only or 625 units with hulls and top and bottom pieces which require 1.6 or 2.3 millions DM respectively

  10. Experimental characterization of gasoline sprays under highly evaporating conditions

    Science.gov (United States)

    Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar

    2018-05-01

    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.

  11. rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method

    Science.gov (United States)

    Romeiro, Fernanda C.; Rodrigues, Mônica A.; Silva, Luiz A. J.; Catto, Ariadne C.; da Silva, Luis F.; Longo, Elson; Nossol, Edson; Lima, Renata C.

    2017-11-01

    Reduced graphene oxide-zinc oxide (rGO-ZnO) nanocomposites were successfully synthesized using a facile microwave-hydrothermal method under mild conditions, and their electrocatalytic properties towards O2 evolution were investigated. The microwave radiation played an important role in obtainment of well dispersed ZnO nanoparticles directly on reduced graphene oxide sheets without any additional reducing reagents or passivation agent. X-ray diffraction (XRD), Raman and infrared spectroscopies indicated the reduction of GO as well as the successful synthesis of rGO-ZnO nanocomposites. The chemical states of the samples were shown by XPS analyses. Due to the synergic effect, the resulting nanocomposites exhibited high electronic interaction between ZnO and rGO sheets, which improved the electrocatalytic oxidation of water with low onset potential of 0.48 V (vs. Ag/AgCl) in neutral pH and long-term stability, with high current density during electrolysis. The overpotential for water oxidation decreased in alkaline pH, suggesting useful insight on the catalytic mechanism for O2 evolution.

  12. 600 kyr of Hydrothermal Activity on the Cleft Segment of the Juan de Fuca Ridge

    Science.gov (United States)

    Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; Katz, R. F.; Huybers, P. J.; Winckler, G.; Li, Y.

    2017-12-01

    Pressure fluctuations caused by glacially driven variations in sea level may modulate magmatic and hydrothermal output at submarine volcanic centers, with falling sea level driving increased volcanic activity. In turn, glacially paced changes in submarine volcanism could induce globally synchronous variations in the delivery of bioavailable iron and CO2 from mid-ocean ridges and thus provide solid-Earth feedbacks into the climate system. While evaluation of submarine volcanic output on orbital-timescales is technically challenging, near-ridge sediment cores hosting hydrothermal plume precipitates provide continuous, spatially integrated, and datable records to investigate the long-term behavior of hydrothermal systems. We will present new sedimentary records of hydrothermal variability spanning the past 600 kyr on the Cleft Segment of the Juan de Fuca Ridge in the Northeast Pacific. As an intermediate spreading-rate ridge, the Juan de Fuca Ridge is hypothesized to be particularly sensitive to sea level forcing at the Milankovitch frequencies of Pleistocene glacial cycles. Thus, the new records can be used to examine the connection between sea level and hydrothermal activity over multiple glacial cycles. Hydrothermal input is determined from iron and copper, with a titanium-based correction for lithogenic contributions. Sedimentary fluxes are then constrained using excess thorium-230 and extraterrestrial helium-3 as constant flux proxies. Preliminary results indicate 10-fold changes in hydrothermal iron and copper fluxes over the past 600 kyr and suggest a quasiperiodic variability in hydrothermal deposition on 100 to 120 kyr cycles. Comparison of the Juan de Fuca record with model predictions for an intermediate spreading ridge forced by Pleistocene glacial cycles finds frequent coincidence between predicted positive anomalies in magmatic output and observed peaks in hydrothermal deposition. This work encourages the continued exploration of the relationship between

  13. Association of diarrhoea, poor hygiene and poor social conditions in childhood with blood pressure in adulthood.

    Science.gov (United States)

    Kauhanen, L; Lynch, J W; Lakka, H-M; Kauhanen, J; Smith, G D

    2010-05-01

    Previous research has suggested that dehydration in infancy may lead to high blood pressure in later life because of sodium retention. The purpose of this study was to examine the effect of poor hygiene of the child, poor social and poor housing conditions at home and diarrhoea in childhood as proxies for dehydration on high blood pressure in later life. Data were from a subset of participants in the Kuopio Ischaemic Heart Disease Risk Factor Study, a population-based cohort study in eastern Finland. Information on childhood factors was collected from school health records (n=952), from the 1930s to the 1950s. Adult data were obtained from baseline examinations of the Kuopio Ischaemic Heart Disease Risk Factor Study cohort (n=2682) in 1984-1989. Men who had poor hygiene in childhood had on average 4.07 mm Hg (95% CI 0.53 to 7.61) higher systolic blood pressure than men who had good or satisfactory hygiene in childhood in the age-adjusted analysis. Reports of diarrhoea were not associated with adult blood pressure. The authors' findings suggest that poor hygiene and living in poor social conditions in childhood are associated with higher systolic blood pressure in adulthood. Reported childhood diarrhoea did not explain the link between hygiene and high blood pressure in adulthood.

  14. Leak Detection of High Pressure Feedwater Heater Using Empirical Models

    International Nuclear Information System (INIS)

    Lee, Song Kyu; Kim, Eun Kee; Heo, Gyun Young; An, Sang Ha

    2009-01-01

    Even small leak from tube side or pass partition within the high pressure feedwater heater (HPFWH) causes a significant deficiency in its performance. Plant operation under the HPFWH leak condition for long time will result in cost increase. Tube side leak within HPFWH can produce the high velocity jet of water and it can cause neighboring tube failures. However, most of plants are being operated without any information for internal leaks of HPFWH, even though it is prone to be damaged under high temperature and high pressure operating conditions. Leaks from tubes and/or pass partition of HPFWH occurred in many nuclear power plants, for example, Mihama PS-2, Takahama PS-2 and Point Beach Nuclear Plant Unit 1. If the internal leaks of HPFWH are monitored, the cost can be reduced by inexpensive repairs relative to loss in performance and moreover plant shutdown as well as further tube damages can be prevented

  15. Dynamic behavior of Kilauea Volcano and its relation to hydrothermal systems and geothermal energy

    Science.gov (United States)

    Kauhikaua, Jim; Moore, R.B.; ,

    1993-01-01

    Exploitation of hydrothermal systems on active basaltic volcanoes poses some unique questions about the role of volcanism and hydrothermal system evolution. Volcanic activity creates and maintains hydrothermal systems while earthquakes create permeable fractures that, at least temporarily, enhance circulation. Magma and water, possibly hydrothermal water, can interact violently to produce explosive eruptions. Finally, we speculate on whether volcanic behavior can be affected by high rates of heat extraction.

  16. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    Science.gov (United States)

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Osmosis-induced water uptake by Eurobitum bituminized radioactive waste and pressure development in constant volume conditions

    International Nuclear Information System (INIS)

    Mariën, A.; Mokni, N.; Valcke, E.; Olivella, S.; Smets, S.; Li, X.

    2013-01-01

    Highlights: ► The water uptake by Eurobitum is studied to judge the safety of geological disposal. ► High pressures of up to 20 MPa are measured in constant volume water uptake tests. ► The morphology of leached Eurobitum samples is studied with μCT and ESEM. ► The observations are reproduced by an existing CHM formulation for Eurobitum. - Abstract: The chemo-hydro-mechanical (CHM) interaction between swelling Eurobitum radioactive bituminized waste (BW) and Boom Clay is investigated to assess the feasibility of geological disposal for the long-term management of this waste. These so-called compatibility studies include laboratory water uptake tests at Belgian Nuclear Research Center SCK-CEN, and the development of a coupled CHM formulation for Eurobitum by the International Center for Numerical Methods and Engineering (CIMNE, Polytechnical University of Cataluña, Spain). In the water uptake tests, the osmosis-induced swelling, pressure increase and NaNO 3 leaching of small cylindrical BW samples (diameter 38 mm, height 10 mm) is studied under constant total stress conditions and nearly constant volume conditions; the actual geological disposal conditions should be intermediate between these extremes. Two nearly constant volume tests were stopped after 1036 and 1555 days to characterize the morphology of the hydrated BW samples and to visualize the hydrated part with microfocus X-ray Computer Tomography (μCT) and Environmental Scanning Electron Microscopy (ESEM). In parallel, a coupled CHM formulation is developed that describes chemically and hydraulically coupled flow processes in porous materials with salt crystals, and that incorporates a porosity dependent membrane efficiency, permeability and diffusivity. When Eurobitum BW is hydrated in (nearly) constant volume conditions, the osmosis-induced water uptake results in an increasing pressure to values that can be (in theory) as high as 42.8 MPa, being the osmotic pressure of a saturated NaNO 3

  18. Stability and activity of doped transition metal zeolites in the hydrothermal processing

    Directory of Open Access Journals (Sweden)

    Thomas François Robin

    2015-12-01

    Full Text Available This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper and iron in under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered as a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds which have an impact on the physical and chemical propriety of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts but their stability and activity under hydrothermal conditions is not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350 °C. Catalysts have been characterised before and after treatment using XRD, BET physisorption and STEM microscopy. Metal leaching was determined by analysis of the water phase following hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5 for example molybdenum improves the crystallinity of the zeolite. In general, metal doped zeolites were relatively stable under subcritical water. Activity of the catalysts for processing lipids, protein and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella and P. ellipsoidea. The catalysts exhibited greater activity towards converting lipids for example MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  19. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    International Nuclear Information System (INIS)

    Robin, Thomas François; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M.

    2015-01-01

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.

  20. Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Robin, Thomas François, E-mail: thomas.cognac@gmail.com; Ross, Andrew B.; Lea-Langton, Amanda R.; Jones, Jenny M. [School of Chemical and Process Engineering, University of Leeds, Leeds (United Kingdom)

    2015-12-14

    This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to convert microalgae into a sustainable fuel. One of the drawbacks of this process is that the bio-crude produced contains significant levels of nitrogen and oxygen compounds that have an impact on the physical and chemical properties of the fuel. Heterogeneous catalysts have been shown to improve the quality of the bio-crude by reducing nitrogen and oxygen contents. Zeolites, such as HZSM-5, are strong candidates due to their low cost compared to noble metal catalysts, but their stability and activity under hydrothermal conditions are not well understood. The stability of the catalysts has been determined under hydrothermal conditions at 350°C. Catalysts have been characterized before and after treatment using X-ray diffraction, BET physisorption, and scanning transmission electronic microscopy. Metal leaching was determined by the analysis of the water phase following the hydrothermal treatment. The inserted cation following ion-exchange can influence the physical properties of HZSM-5, for example, molybdenum improves the crystallinity of the zeolite. In general, metal-doped zeolites were relatively stable in subcritical water. The activity of the catalysts for processing lipids, protein, and microalgae has been assessed. Four feedstocks were selected: sunflower oil, soya proteins, Chlorella, and Pseudochoricystis ellipsoidea. The catalysts exhibited greater activity toward converting lipids, for example, MoZSM-5 enhanced the formation of aromatic compounds. NiZSM-5 and CuZSM-5 were observed to be more efficient for deoxygenation.