WorldWideScience

Sample records for high-pressure experiments geochemical

  1. High-pressure system for Compton scattering experiments

    International Nuclear Information System (INIS)

    Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.

    1998-01-01

    High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model

  2. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  3. Sounding experiments of high pressure gas discharge

    International Nuclear Information System (INIS)

    Biele, Joachim K.

    1998-01-01

    A high pressure discharge experiment (200 MPa, 5·10 21 molecules/cm 3 , 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm 3 ) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm 3 ) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved

  4. Stand-off laser-induced breakdown spectroscopy of aluminum and geochemical reference materials at pressure below 1 torr

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang-Jae; Choi, Soo-Jin; Yoh, Jack J., E-mail: jjyoh@snu.ac.kr

    2014-11-01

    Laser-induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy that utilizes a highly irradiated pulse laser focused on the target surface to produce plasma. We obtain spectroscopic information from the microplasma and determine the chemical composition of the sample based on its elemental and molecular emission peaks. We develop a stand-off LIBS system to analyze the effect of the remote sensing of aluminum and various geochemical reference materials at pressures below 1 torr. Using a commercial 4 inch refracting telescope, our stand-off LIBS system is configured at a distance of 7.2 m from the four United States Geological Survey (USGS) geochemical samples that include granodiorite, quartz latite, shale-cody, and diabase, which are selected for planetary exploration. Prepared samples were mixed with a paraffin binder containing only hydrogen and carbon, and were pelletized for experimental convenience. The aluminum plate sample is considered as a reference prior to using the geochemical samples in order to understand the influence of a low pressure condition on the resulting LIBS signal. A Q-switched Nd:YAG laser operating at 1064 nm and pulsed at 10 Hz with 21.7 to 48.5 mJ/pulse was used to obtain signals, which showed that the geochemical samples were successfully detected by the present stand-off detection scheme. A low pressure condition generally results in a decrease of the signal intensity, while the signal to noise ratio can vary according to the samples and elements of various types. We successfully identified the signals at below 1 torr with stand-off detection by a tightly focused light detection and by using a relatively larger aperture telescope. The stand-off LIBS detection at low pressure is promising for potential detection of the minor elements at pressures below 1 torr. - Highlights: • Stand-off LIBS signals at below 1 torr are compared to those of in-situ conditions. • Vacuum condition provides easier detection of the

  5. Carbonate mineral dissolution kinetics in high pressure experiments

    Science.gov (United States)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the

  6. High pressure studies on uranium and thorium silicide compounds: Experiment and theory

    DEFF Research Database (Denmark)

    Yagoubi, S.; Heathman, S.; Svane, A.

    2013-01-01

    The actinide silicides ThSi, USi and USi2 have been studied under high pressure using both theory and experiment. High pressure synchrotron X-ray diffraction experiments were performed on polycrystalline samples in diamond anvil cells at room temperature and for pressures up to 54, 52 and 26 GPa...

  7. A demonstration experiment of steam-driven, high-pressure melt ejection

    International Nuclear Information System (INIS)

    Allen, M.D.; Pitch, M.; Nichols, R.T.

    1990-08-01

    A steam blowdown test was performed at the Surtsey Direct Heating Test Facility to test the steam supply system and burst diaphragm arrangement that will be used in subsequent Surtsey Direct Containment Heating (DCH) experiments. Following successful completion of the steam blowdown test, the HIPS-10S (High-Pressure Melt Streaming) experiment was conducted to demonstrate that the technology to perform steam-driven, high-pressure melt ejection (HPME) experiments has been successfully developed. In addition, the HIPS-10S experiment was used to assess techniques and instrumentation design to create the proper timing of events in HPME experiments. This document discusses the results of this test

  8. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  9. High-pressure resistivity technique for quasi-hydrostatic compression experiments.

    Science.gov (United States)

    Rotundu, C R; Ćuk, T; Greene, R L; Shen, Z-X; Hemley, Russell J; Struzhkin, V V

    2013-06-01

    Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.

  10. High-pressure structural study of yttrium monochalcogenides from experiment and theory

    DEFF Research Database (Denmark)

    Vaitheeswaran, G.; Kanchana, V.; Svane, A.

    2011-01-01

    High-pressure powder x-ray diffraction experiments using synchrotron radiation are performed on the yttrium monochalcogenides YS, YSe, and YTe up to a maximum pressure of 23 GPa. The ambient NaCl structure is stable throughout the pressure range covered. The bulk moduli are determined to be 93, 82...

  11. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T. [Quantum Beam Science Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamada, A. [The University of Shiga Prefecture, Shiga 522-8533 (Japan); Tabata, S.; Kondo, M.; Nakamura, A. [Sumitomo Heavy Industries Co., Ltd., Ehime 792-0001 (Japan); Kagi, H.; Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  12. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T

    2002-01-01

    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  13. Feasibility studies of the geochemical Ti-205 solar neutrino experiment

    CERN Document Server

    Neumaier, S; Nolte, E; Morinaga, H

    1991-01-01

    New investigations on the signal to background ratio of the geochemical 205Tl( v., e-)205Pb solar neutrino experiment are presented. The neutrino capture rate of 205Tl and a possible reduction of the neutrino signal due to neutrino oscillations in matter are discussed. The contributions of natural radioactivity, stopped negative muons and fast muons to the background of 205Pb are estimated. The production of radioisotopes in the lead region induced by cosmic ray muons was studied at the high energy muon beam (M2) of CERN with 120, 200 and 280 GeV muons. The background contribution of cosmic ray muons is found to be significantly higher than expected by former estimations and restricts the feasibility of the 205Tl solar neutrino experiment.

  14. New Developments in Deformation Experiments at High Pressure

    International Nuclear Information System (INIS)

    Durham, W B; Weidner, D J; Karato, S; Wang, Y

    2004-01-01

    Although the importance of rheological properties in controlling the dynamics and evolution of the whole mantle of Earth is well-recognized, experimental studies of rheological properties and deformation-induced microstructures have mostly been limited to low-pressure conditions. This is mainly a result of technical limitations in conducting quantitative rheological experiments under high-pressure conditions. A combination of factors is changing this situation. Increased resolution of composition and configuration of Earth's interior has created a greater demand for well-resolved laboratory measurement of the effects of pressure on the behavior of materials. Higher-strength materials have become readily available for containing high-pressure research devices, and new analytical capabilities--in particular very bright synchrotron X-ray sources--are now readily available to high-pressure researchers. One of the biggest issues in global geodynamics is the style of mantle convection and the nature of chemical differentiation associated with convectional mass transport. Although evidence for deep mantle circulation has recently been found through seismic tomography (e.g., van der Hilst et al. (1997)), complications in convection style have also been noted. They include (1) significant modifications of flow geometry across the mantle transition zone as seen from high resolution tomographic studies (Fukao et al. 1992; Masters et al. 2000; van der Hilst et al. 1991) and (2) complicated patterns of flow in the deep lower mantle (∼1500-2500 km), perhaps caused by chemical heterogeneity (Kellogg et al. 1999; van der Hilst and Karason 1999). These studies indicate that while large-scale circulation involving the whole mantle no doubt occurs, significant deviations from simple flow geometry are also present. Two mineral properties have strong influence on convection: (1) density and (2) viscosity (rheology) contrasts. In the past, the effects of density contrast have been

  15. Six-six (6-6) cell used in X-ray and neutron diffraction experiments under high pressure

    International Nuclear Information System (INIS)

    Nishiyama, Norimasa; Yamada, Akihiro

    2015-01-01

    At synchrotron radiation facilities and neutron experimental facilities, X-ray diffraction experiments and neutron diffraction experiments under high-pressure for large-capacity of samples are conducted using DIA type device and 6-axis pressure device that add pressure on cubic space. As the anvil assembly capable of mounting on the above two devices, MA6-6 cell has come to be used. This paper introduces the advantages of using MA6-6 cell, pressure region where experiment is possible with MA6-6 cell, and large-capacity high-pressure press beamline P61.2 that simulates MA-6-6 cell. At MA6-6 cell, 6 pieces of the first-stage anvils of DIA type device or 6-axis pressure device pressurize 6 pieces of the second-stage anvils. These second-stage anvils are included in MA6-6 anvil assembly. The greatest feature of MA6-6 cell is the adoption of the frame for taking alignment of the second stage anvils. By combining MA6-6 cell with DIA-type device or 6-axis pressure device, the degree of freedom of experiment increases, which can simplify the experimental setup. (A.O.)

  16. Design and experiment of high-current low-pressure plasma-cathode e-gun

    International Nuclear Information System (INIS)

    Xie Wenkai; Li Xiaoyun; Wang Bin; Meng Lin; Yan Yang; Gao Xinyan

    2006-01-01

    The preliminary design of a new high-power low pressure plasma-cathode e-gun is presented. Based on the hollow cathode effect and low-pressure glow discharge empirical formulas, the hollow cathode, the accelerating gap, and the working gas pressure region are given. The general experimental device of the low-pressure plasma cathode electron-gun generating high current density e-beam source is shown. Experiments has been done in continuous filled-in gases and gases-puff condition, and the discharging current of 150-200 A, the width of 60 μs and the collector current of 30-80 A, the width of 60 μs are obtained. The results show that the new plasma cathode e-gun can take the place of material cathode e-gun, especially in plasma filled microwave tubes. (authors)

  17. High pressure gas spheres for neutron and photon experiments

    Science.gov (United States)

    Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.

    2009-09-01

    High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.

  18. Polymorphism of a polymer precursor: metastable glycolide polymorph recovered via large scale high-pressure experiments

    DEFF Research Database (Denmark)

    Hutchison, Ian B.; Delori, Amit; Wang, Xiao

    2015-01-01

    Using a large volume high-pressure press a new polymorph of an important precursor for biomedical polymers was isolated in gram quantities and used to seed crystallisation experiments at ambient pressure....

  19. Nutrition label experience, obesity, high blood pressure, and high blood lipids in a cohort of 42,750 Thai adults.

    Science.gov (United States)

    Rimpeekool, Wimalin; Yiengprugsawan, Vasoontara; Kirk, Martyn; Banwell, Cathy; Seubsman, Sam-Ang; Sleigh, Adrian

    2017-01-01

    Nutrition labels have been promoted for nearly two decades in Thailand to educate people about healthy eating and to combat nutrient-related non-communicable diseases (NCDs). But little is known about how nutrition labels are experienced and whether they are linked with better health. Our objective was to investigate the associations between nutrition label experience, obesity and nutrient-related NCDs in Thai consumers. A cross-sectional study was undertaken with a nationwide cohort of 42,750 distance learning Thai adult students enrolled in an Open University in 2013. We measured exposure as nutrition label experience (read, understand, use). Health outcomes were high blood pressure, high blood lipids, and high Body Mass Index (overweight at risk and obesity). Multivariate logistic regression was used to determine the association between nutrition label experience and health outcome adjusting for sociodemographic attributes, physical activity, smoking, and alcohol intake. Frequent nutrition label use varied by cohort attributes and health outcomes and was least for those with low physical activity and high blood pressure. Being male, older, an urban resident or with low physical activity was associated with increasing high blood pressure and high blood lipids. Compared to those who read, understand and use nutrition labels, participants who did not (read, understand, and use), were more likely to report high blood pressure (Adjusted Odds Ratio 1.33; 1.17-1.51), high blood lipids (AOR 1.26; 1.14-1.39), and obesity (AOR 1.23; 1.13-1.33), but were not more likely to be overweight at risk (AOR 1.06; 0.97-1.16). We found cross-sectional associations between low nutrition label experience and increased likelihood of high blood pressure, high blood lipids, and obesity among Thai adults. Nutrition label education should be promoted as part of a public health approach to appropriate food choices and better lifestyles to reduce obesity and nutrient-related NCDs.

  20. Nutrition label experience, obesity, high blood pressure, and high blood lipids in a cohort of 42,750 Thai adults.

    Directory of Open Access Journals (Sweden)

    Wimalin Rimpeekool

    Full Text Available Nutrition labels have been promoted for nearly two decades in Thailand to educate people about healthy eating and to combat nutrient-related non-communicable diseases (NCDs. But little is known about how nutrition labels are experienced and whether they are linked with better health. Our objective was to investigate the associations between nutrition label experience, obesity and nutrient-related NCDs in Thai consumers.A cross-sectional study was undertaken with a nationwide cohort of 42,750 distance learning Thai adult students enrolled in an Open University in 2013. We measured exposure as nutrition label experience (read, understand, use. Health outcomes were high blood pressure, high blood lipids, and high Body Mass Index (overweight at risk and obesity. Multivariate logistic regression was used to determine the association between nutrition label experience and health outcome adjusting for sociodemographic attributes, physical activity, smoking, and alcohol intake.Frequent nutrition label use varied by cohort attributes and health outcomes and was least for those with low physical activity and high blood pressure. Being male, older, an urban resident or with low physical activity was associated with increasing high blood pressure and high blood lipids. Compared to those who read, understand and use nutrition labels, participants who did not (read, understand, and use, were more likely to report high blood pressure (Adjusted Odds Ratio 1.33; 1.17-1.51, high blood lipids (AOR 1.26; 1.14-1.39, and obesity (AOR 1.23; 1.13-1.33, but were not more likely to be overweight at risk (AOR 1.06; 0.97-1.16.We found cross-sectional associations between low nutrition label experience and increased likelihood of high blood pressure, high blood lipids, and obesity among Thai adults. Nutrition label education should be promoted as part of a public health approach to appropriate food choices and better lifestyles to reduce obesity and nutrient-related NCDs.

  1. High performance experiments on high pressure supersonic molecular beam injection in the HL-1M tokamak

    International Nuclear Information System (INIS)

    Yao Lianghua; Dong Jiafu; Zhou Yan; Feng Beibing; Cao Jianyong; Li Wei; Feng Zhen; Zhang Jiquan; Hong Wenyu; Cui Zhengying; Wang Enyao; Liu Yong

    2004-01-01

    Supersonic molecular beam injection (SMBI) was first proposed and demonstrated on the HL-1 tokamak and was successfully developed and used on HL-1M. Recently, new results of SMBI experiments were obtained by increasing the gas pressure from 0.5 to over 1.0 MPa. A stair-shaped density increment was obtained with high-pressure multi-pulse SMBI that was similar to the density evolution behaviour during multi-pellet injection. This demonstrated the effectiveness of SMBI as a promising fuelling tool for steady-state operation. The penetration depth and injection speed of the high-pressure SMBI were roughly measured from the contour plot of the Hα emission intensity. It was shown that injected particles could penetrate into the core region of the plasma. The penetration speed of high-pressure SMBI particles in the plasma was estimated to be about 1200 m s -1 . In addition, clusters within the beam may play an important role in the deeper injection. (author)

  2. Deep Recycling of Sedimentary Lithologies in Subduction Zones: Geochemical and Physical Constraints from Phase Equilibria and Synchrotron-Based Multi-Anvil Experiments at 15-25 GPa

    Science.gov (United States)

    Rapp, R. P.; Nishiyama, N.; Irifune, T.; Inoue, T.; Yamasaki, D.

    2003-12-01

    Ocean island basalts (OIBs) provide geochemical evidence for the presence of crustally-derived sedimentary material in the deep mantle plume source region for EM-type OIBs, and global seismic tomography provides us with dramatic images of subducted slabs, presumably carrying a sediment component, penetrating through the transition zone and into the lower mantle, in some cases to the core-mantle boundary. In an effort to better constrain the geochemical effects of deeply recycled sedimentary material in subduction zones, and their role in the petrogenesis of EM-type OIBs, we have undertaken a series of phase equlibria experiments in the multi-anvil apparatus at 10-25 GPa, using natural sediment lithologies as starting materials. The goal of these experiments is to identify the dominant phases in deeply subducted sediments, constrain their P-T stability limits, and to assess their role in crustal recycling and element redistribution in the deep mantle during subduction. The phase equilibria experiments were performed in a 2000-ton Kawai-type apparatus, using tungsten carbide cubes with 3 mm TEL and Cr-doped MgO and zirconia pressure media. A cylindrical lanthanum chromite heater was used, along with short (gold capsules to minimize thermal gradients and to retain the small amounts of water (< 1 wt%) present in the starting material, and long run-durations (12-48 hours) in order to facilitate future analyses of the dominant phases for key trace elements using the ion microprobe. Our preliminary results at 10-25 GPa indicate that K-hollandite (KalSi3O3) and stishovite are the primary high-pressure phases in the sediment composition, with subordinate garnet and an as-yet-unidentified (possibly hydrous) Al-silicate phase present as well. These results suggest that K-hollandite is the primary repository for incompatible elements (e.g., La, Ce, Sr, Ba, Rb, etc., and the heat-producing elements K, U and Th) in sedimentary material recycled into the deep mantle via

  3. High-pressure high-temperature experiments: Windows to the Universe; Experimentos a alta presion y alta temperatura: Ventanas al universo

    Energy Technology Data Exchange (ETDEWEB)

    Santaria-Perez, D.

    2011-07-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  4. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  5. Experiments on aerosol removal by high-pressure water spray

    International Nuclear Information System (INIS)

    Corno, Ada del; Morandi, Sonia; Parozzi, Flavio; Araneo, Lucio; Casella, Francesco

    2017-01-01

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m"3. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m"3. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was detected with 1

  6. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  7. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  8. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  9. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  10. High pressure XAFS experiments at the XAFS beamline, INDUS-2

    International Nuclear Information System (INIS)

    Ramanan, Nitya; Lahiri, Debdutta; Garg, Nandini; Sharma, Surinder M.; Bhattacharyya, D.; Jha, S.N.; Sahoo, N.K.

    2011-01-01

    The dispersive EXAFS beamline at the INDUS-2 synchrotron source, RRCAT, Indore uses a bent Si (111) crystal as a dispersive-cum-focusing element and a position sensitive CCD detector to enable instantaneous measurement of the whole EXAFS spectrum around the absorption edge of a particular atom. One of the proposed activities with this beamline is the characterization of amorphous materials under high pressure. Polychromator-based beamline is ideal for high pressure studies using Diamond Anvil Cell (DAC) with ∼ 50 μm sample size. Larger spot size would give rise to unwanted diffraction peaks from diamond, superimposed on the XAFS data. Micro-focusing by polychromator crystal and absence of its mechanical movement (unlike monochromator-based scanning-mode beamlines), during data collection, lead to required focal spot stability for DAC experiments. Currently, the theoretically determined spot size (Horizontal x vertical) varies between 17 x 137 μm and 37 x 142 μm for the X-ray energy range 5 keV-20 keV. To reduce the vertical spot size to <50 μm, we have designed an additional focusing mirror between the polychromator and sample position. The mirror, fabricated at SESO, France will be installed shortly. Meanwhile, we have carried out preliminary XAFS experiments on Sr-compounds at ∼16 keV, under ambient conditions and inside diamond anvil cell, in order to assess the signal intensity and quality. We have obtained reasonably good signal. (author)

  11. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  12. Pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Whitman, G.D.; McCulloch, R.W.

    1982-01-01

    The primary objective of the ORNL pressurized-thermal-shock (PTS) experiments is to verify analytical methods that are used to predict the behavior of pressurized-water-reactor vessels under these accident conditions involving combined pressure and thermal loading. The criteria on which the experiments are based are: scale large enough to attain effective flaw border triaxial restraint and a temperature range sufficiently broad to produce a progression from frangible to ductile behavior through the wall at a given time; use of materials that can be completely characterized for analysis; stress states comparable to the actual vessel in zones of potential flaw extension; range of behavior to include cleavage initiation and arrest, cleavage initiation and arrest on the upper shelf, arrest in a high K/sub I/ gradient, warm prestressing, and entirely ductile behavior; long and short flaws with and without stainless steel cladding; and control of loads to prevent vessel burst, except as desired. A PTS test facility is under construction which will enable the establishment and control of wall temperature, cooling rate, and pressure on an intermediate test vessel (ITV) in order to simulate stress states representative of an actual reactor pressure vessel

  13. Hydrogeological and geochemical monitoring system for deep disposal in rock mass

    International Nuclear Information System (INIS)

    Itoh, K.; Otsuka, Y.; Ohi, Y.

    1996-01-01

    For investigation and construction of deep underground disposal site, it is very important to monitor three dimensional hydrogeological and geochemical condition for long term in all stages of investigation, construction and management. In deep geological disposal site, permeability of rock mass should be extremely lower than conventional civil engineering field, and natural piezometric pressure should be much higher than conventional groundwater monitoring in civil engineering. So, pressure measuring device should have wide measuring range and high precision especially for interference hydraulic test in investigation stage. And, simultaneous pressure measurement in plural points would be required for cost minimization. Recently, some kinds of multi-point pressure monitoring system has been presented. However, most of all system requires borehole with large diameter, and for utilization in plural boreholes, centralized sensor control is very difficult. And, in groundwater sampling for geochemical investigation, it is important to keep original chemical condition through sampling and transportation from sampling depth to surface. For these purposes, the authors have developed multi well multi point piezometric pressure measuring device, and groundwater sampling system for 1,000m depth. (author)

  14. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  15. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  16. Some techniques and results from high-pressure shock-wave experiments utilizing the radiation from shocked transparent materials

    International Nuclear Information System (INIS)

    McQueen, R.G.; Fritz, J.N.

    1981-01-01

    It has been known for many years that some transparent materials emit radiation when shocked to high pressures. This property was used to determine the temperature of shocked fused and crystal quartz, which in turn allowed the thermal expansion of SiO 2 at high pressure and also the specific heat to be calculated. Once the radiative energy as a function of pressure is known for one material it is shown how this can be used to determine the temperature of other transparent materials. By the nature of the experiments very accurate shock velocities can be measured and hence high quality equation of state data obtained. Some techniques and results are presented on measuring sound velocities from symmetrical impact of nontransparent materials using radiation emitting transparent analyzers, and on nonsymmetrical impact experiments on transparent materials. Because of special requirements in the later experiments, techniques were developed that lead to very high-precision shock-wave data. Preliminary results, using these techniques are presented for making estimates of the melting region and the yield strength of some metals under strong shock conditions

  17. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  18. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  19. High-pressure metallization of FeO and implications for the earth's core

    Science.gov (United States)

    Knittle, Elise; Jeanloz, Raymond

    1986-01-01

    The phase diagram of FeO has been experimentally determined to pressures of 155 GPa and temperatures of 4000 K using shock-wave and diamond-cell techniques. A metallic phase of FeO is observed at pressures greater than 70 GPa and temperatures exceeding 1000 K. The metallization of FeO at high pressures implies that oxygen can be present as the light alloying element of the earth's outer core, in accord with the geochemical predictions of Ringwood (1977 and 1979). The high pressures necessary for this metallization suggest that the core has acquired its composition well after the initial stages of the earth's accretion. Direct experimental observations at elevated pressures and temperatures indicate that core-forming alloy can react chemically with oxides such as those forming the mantle. The core and mantle may never have reached complete chemical equilibrium, however. If this is the case, the core-mantle boundary is likely to be a zone of active chemical reactions.

  20. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  1. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  2. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    Science.gov (United States)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  3. Study on maturation process of huminitic organic matter by means of high-pressure experiments

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, Z.A.

    1983-01-01

    Two different series of artificial coalification experiments were made using high pressure bombs. The first series was carried out with a lignite coal of Pliocene age in open and closed systems under the following conditions: duration: one week, load pressure: 1.5 and 10 kbar: temperature: 90, 120, 160 and 200 C, respectively. In the second series of experiments the behaviour of multipopulate vitrinite material in sedimentary rocks was simulated. This was realized by a coal mixture made from four different types of coal of various rank. This starting material was treated under the same conditions as the samples of the first series. The degree of coalification was followed by the random reflectance of the vitrinitic microcomponents of coal. The experimental results show that temperature and duration of the run are the primary factors to increase the rank while the role of load pressure is negligible. The only effect of volatile pressure is to retain the increase of coalification in closed system (as a consequence of the Le Chatelier-Brown principle).

  4. Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

    KAUST Repository

    Moon, Juhyuk

    2012-06-04

    The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.

  5. Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

    KAUST Repository

    Moon, Juhyuk; Yoon, Seyoon; Wentzcovitch, Renata M.; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-01-01

    The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.

  6. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  7. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale

    International Nuclear Information System (INIS)

    Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.; Hedges, Sheila W.; Lopano, Christina L.; Guthrie, George D.; Hakala, J. Alexandra

    2017-01-01

    Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24–48 h) fluid enrichment of certain elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales. - Highlights: • Metal concentrations could be at their peak in produced waters recovered 24–48 after fracturing. • Carbonate

  8. Neutron powder diffraction under high pressure at J-PARC

    International Nuclear Information System (INIS)

    Utsumi, Wataru; Kagi, Hiroyuki; Komatsu, Kazuki; Arima, Hiroshi; Nagai, Takaya; Okuchi, Takuo; Kamiyama, Takashi; Uwatoko, Yoshiya; Matsubayashi, Kazuyuki; Yagi, Takehiko

    2009-01-01

    It is expected that high-pressure material science and the investigation of the Earth's interior will progress greatly using the high-flux pulse neutrons of J-PARC. In this article, we introduce our plans for in situ neutron powder diffraction experiments under high pressure at J-PARC. The use of three different types of high-pressure devices is planned; a Paris-Edinburgh cell, a new opposed-anvil cell with a nano-polycrystalline diamond, and a cubic anvil high-pressure apparatus. These devices will be brought to the neutron powder diffraction beamlines to conduct a 'day-one' high-pressure experiment. For the next stage of research, we propose construction of a dedicated beamline for high-pressure material science. Its conceptual designs are also introduced here.

  9. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  10. Status report on geochemical modelling

    International Nuclear Information System (INIS)

    Read, D.

    1991-12-01

    This report describes the findings of a review undertaken on behalf of the project management group of the programme 'Endlagersicherheit in der Nachbetriebsphase' based at GSF-IfT (Forschungszentrum fuer Umwelt und Gesundheit - Institut fuer Tieflagerung) to establish the current status of research into the simulation of geochemical processes relevant to radiological assessment. The review is intended to contribute to Stage 1 of a strategy formulated to enhance the use of geochemical models in Germany. Emphasis has been placed on processes deemed to be of greatest relevance to performance assessment for a HLW-repository in a salt dome principally, speciation-solubility in high salinity solutions, complexation by natural organics and generation-transport of colloids. For each of these and other topics covered, a summary is given of fundamental concepts, theoretical representations and their limitations, highlighting, where appropriate, the advantages and disadvantages of alternative approaches. The availability of data to quantify any given representation is addressed, taking into account the need for information at elevated temperatures and pressures. Mass transfer is considered in terms of aqueous, particulate and gas-mediated transport, respectively. (orig.) [de

  11. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and inter......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...... and intermolecular interactions on optical excitations, electron–phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map...

  12. Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers

    International Nuclear Information System (INIS)

    Wigand, M.; Carey, J.W.; Schuett, H.; Spangenberg, E.; Erzinger, J.

    2008-01-01

    The geochemical effects of brine and supercritical CO 2 (SCCO 2 ) on reservoir rocks from deep (1500-2000 m) saline aquifers were examined via experimental simulation at in situ conditions. Dry sandstone samples were mounted in a triaxial cell and autoclave system, evacuated, and saturated with 1 M NaCl solution. The brine-rock system was allowed to react at 30 MPa confining pressure, 15 MPa pore fluid pressure, and 60 deg. C while SCCO 2 was injected at a pressure gradient of 1-2 MPa. The experiment was conducted for a period of 1496 h, during which fluids were periodically sampled and analyzed. The pH measured in partially degassed fluid samples at 25 deg. C decreased from a starting value of 7.0-4.3 (9 days) and finally 5.1 after saturation with SCCO 2 . Fluid analyses indicate that most of the major (e.g. Ca, Mg, Fe, Mn) and trace elements (e.g. Sr, Ba, Pb) of the sandstone increase in concentration during the reaction with brine and SCCO 2 . These results are supported by scanning electron microscopy which indicates dissolution of dolomite cement, K-feldspar, and albite. In addition to dissolution reactions the formation of montmorillonite was observed. By adjusting surface area and reaction rates of dissolution and precipitation, geochemical modeling of the experiments could reproduce long-term trends in solution chemistry and indicated limited rates of dissolution as the system remained strongly undersaturated with most minerals, including carbonates. The geochemical models could not account for decreases in concentration of some elements, changes in solution composition resulting from changes in imposed pressure gradient, and the observed Ca/Mg and Si/Al ratios in solution

  13. Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel

    Science.gov (United States)

    Coder, D. W.

    1984-01-01

    Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.

  14. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, the mechanism is used to simulate published data on ignition delay time and laminar burning velocity of hydrogen. The flow reactor results show that at reducing, stoichiometric, and oxidizing conditions, conversion starts at temperatures of 750–775 K, 800–825 K, and 800–825 K, respectively. In oxygen atmosphere......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  15. Geochemical sensitivity analysis: Identification of important geochemical parameters for performance assessment studies

    International Nuclear Information System (INIS)

    Siegel, M.; Guzowski, R.; Rechard, R.; Erickson, K.

    1986-01-01

    The EPA Standard for geologic disposal of high level waste requires demonstration that the cumulative discharge of individual radioisotopes over a 10,000 year period at points 5 kilometers from the engineered barrier system will not exceed the limits prescribed in 40 CFR Part 191. The roles of the waste package, engineered facility, hydrogeology and geochemical processes in limiting radionuclide releases all must be considered in calculations designed to assess compliance of candidate repositories with the EPA Standard. In this talk, they will discuss the geochemical requirements of calculations used in these compliance assessments. In addition, they will describe the complementary roles of (1) simple models designed to bound the radionuclide discharge over the widest reasonable range of geochemical conditions and scenarios and (2) detailed geochemical models which can provide insights into the actual behavior of the radionuclides in the ground water. Finally, they will discuss development of sensitivity/uncertainty techniques designed to identify important site-specific geochemical parameters and processes using data from a basalt formation

  16. High-pressure behavior of CaMo O4

    Science.gov (United States)

    Panchal, V.; Garg, N.; Poswal, H. K.; Errandonea, D.; Rodríguez-Hernández, P.; Muñoz, A.; Cavalli, E.

    2017-09-01

    We report a high-pressure study of tetragonal scheelite-type CaMo O4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMo O4 . We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active and infrared-active modes. In addition, based on calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMo O4 . The reported results are of interest for the many technological applications of this oxide.

  17. High Pressure In Situ X-ray Diffraction Study of MnO to 120 GPa and Comparison with Shock Compression Experiment

    Science.gov (United States)

    Yagi, Takehiko; Kondo, Tadashi; Syono, Yasuhiko

    1997-07-01

    In order to clarify the nature of the phase transformation in MnO observed at around 90 GPa by shock compression experiment (Syono et al., this symposium), high pressure in situ x-ray experiments were carried out up to 120 GPa. Powdered sample was directly compressed in Mao-Bell type diamond anvil and x-ray experiments were carried out using angle dispersive technique by combining synchrotron radiation and imaging plate detector. Distortion of the B1 structured phase into hexagonal unit cell was observed from 25-40 GPa, which continues to increase up to 90 GPa. At around 90 GPa, discontinuous change of the diffraction was observed. This new phase cannot be explained by a simple B2 structure and the analysis of this phase is in progress. This high pressure phase has metallic appearance, which reverses to transparent MnO on release of pressure.

  18. In situ geochemical properties of clays subject to thermal loading

    International Nuclear Information System (INIS)

    Chapman, N.A.

    1980-01-01

    Compositional variation and geochemical environment in an argillaceous unit are a function of age, depth of burial and mode of origin. This paper considers the variation limits likely to be encountered in potential repository host rocks and examines the significance of factors such as porosity, pore-fluid pressure, total fluid content, and major and accessory mineral component behaviors in controlling the geochemical environment in the neighbourhood of a thermally active waste canister. Particular attention is paid to the use of Eh-pH diagrams in assessing corrosion environments and nuclide speciation. The paper outlines the variables which must be considered when endeavouring to interpret such plots (e.g. temperature, concentration, concurrent reactions and probabilities) and uses the behavior of various iron minerals found in clay deposits under specific conditions to illustrate the complexities. The overall thermal stability of various clay and accessory minerals is discussed and extended to attempt to predict behavior under deep repository conditions, using available data on the diagenetic characteristics of clay-rich sediments. The physical behavior of fluids in plastic clays is considered and methods evaluated for deriving induced geochemical conditions in a thermally active repository. The latter section is particularly related to canister corrosion studies, in situ experiments, and waste dissolution parameters

  19. To the probe theory in a highly-ionized high-pressure plasma

    International Nuclear Information System (INIS)

    Baksht, F.G.; Rybakov, A.B.

    1997-01-01

    The probe theory in highly-ionized high-pressure plasma is presented. The situation typical for high-pressure plasma, when the plasma in the main part of the near-probe layer is in the state of local ionization equilibrium with general temperature for electrons and heavy particles. Possibility is discussed for determining the parameters of non-perturbed plasma through analysis of the probe characteristic at place of ion saturation, transition area and by the probe floating potential. The experiments were carried out by example of highly-ionized xenon plasma under atmospheric pressure

  20. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  1. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  2. Geochemical factors in borehole-shaft plug longevity

    International Nuclear Information System (INIS)

    Roy, D.M.

    1981-01-01

    Geochemical investigations that address factors controlling the longevity of repository sealing materials in a geochemical environment are discussed. Studies are being made of cement-based materials as major candidates for seals for borehole plugging, and shaft and tunnel sealing in certain potential repository environments. Factors controlling the extent of attainment of equilibrium of the plug components with time and the rate of approach to a state of stable equilibrium of the plug component chemical subsystem within the total system are discussed. The effect of these factors on changes in physical, mechanical and thermal properties of a seal system, and the consequent effectiveness of the seal in preventing transport of radioactive waste species are the dominant features to be determined. Laboratory experiments on the effects of anticipated temperature, pressure, and environmental factors (including chemical composition and specific rock type) are described. Thermodynamic studies are used to determine the potentially stable reaction products under conditions similar to those anticipated for the repository boreholes, shafts, and tunnels during and after the operating stage. Multitemperature reaction series are studied, and reaction kinetics are investigated for the purpose of predicting the course of likely reactions. Detailed studies of permeability, diffusion, and interfacial properties and chemical and microphase characterization of the products of experiments are carried out. Characterization studies of old and ancient cements, mortars, and concretes and prototype man-made seal materials are performed to further assess the factors associated with longevity

  3. High-pressure oxidation of methane

    NARCIS (Netherlands)

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  4. $\\mu$SR-Measurements under High Pressure and at Low Temperatures

    CERN Multimedia

    2002-01-01

    High pressure causes changes in the volume available to each atom in a solid and will therefore influence local properties like the electronic charge and spin densities and, in the case of magnetic materials, the spin ordering.\\\\ \\\\ The positive muon is known to be an interesting probe particle for the study of certain problems in magnetism. It has in fact been used for one high pressure experiment earlier in CERN, but the present experiments aim at more systematic studie For this purpose it is necessary to carry out pressure experiments at low temperatures. The new experiments use a helium gas pressure system, which covers the temperature range 10-300 K at pressures up to 14 Kbar.\\\\ \\\\ Experiments are in progress on \\item 1)~~~~Ferromagnetic metals like Fe, Co, Ni where the pressure dependence of the local magnetic field ~~~is studied at 77 K and at room temperature. \\item 2)~~~~Knight shifts in semimetals, where in the case of Sb strong variations with temperature and ~~~pressure are observed. \\end{enumerat...

  5. Geochemical Constraints for Mercury's PCA-Derived Geochemical Terranes

    Science.gov (United States)

    Stockstill-Cahill, K. R.; Peplowski, P. N.

    2018-05-01

    PCA-derived geochemical terranes provide a robust, analytical means of defining these terranes using strictly geochemical inputs. Using the end members derived in this way, we are able to assess the geochemical implications for Mercury.

  6. Geochemical modelling of bentonite porewater in high-level waste repositories

    Science.gov (United States)

    Wersin, Paul

    2003-03-01

    The description of the geochemical properties of the bentonite backfill that serves as engineered barrier for nuclear repositories is a central issue for perfomance assessment since these play a large role in determining the fate of contaminants released from the waste. In this study the porewater chemistry of bentonite was assessed with a thermodynamic modelling approach that includes ion exchange, surface complexation and mineral equilibrium reactions. The focus was to identify the geochemical reactions controlling the major ion chemistry and acid-base properties and to explore parameter uncertainties specifically at high compaction degrees. First, the adequacy of the approach was tested with two distinct surface complexation models by describing recent experimental data performed at highly varying solid/liquid ratios and ionic strengths. The results indicate adequate prediction of the entire experimental data set. Second, the modelling was extended to repository conditions, taking as an example the current Swiss concept for high-level waste where the compacted bentonite backfill is surrounded by argillaceous rock. The main reactions controlling major ion chemistry were found to be calcite equilibrium and concurrent Na-Ca exchange reactions and de-protonation of functional surface groups. Third, a sensitivity analysis of the main model parameters was performed. The results thereof indicate a remarkable robustness of the model with regard to parameter uncertainties. The bentonite system is characterised by a large acid-base buffering capacity which leads to stable pH-conditions. The uncertainty in pH was found to be mainly induced by the pCO 2 of the surrounding host rock. The results of a simple diffusion-reaction model indicate only minor changes of porewater composition with time, which is primarily due to the geochemical similarities of the bentonite and the argillaceous host rock. Overall, the results show the usefulness of simple thermodynamic models to

  7. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    Science.gov (United States)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  8. Heat and mass transportation as factor of formation abnormally high stratum pressure (on the example of the east part of Dniper-Donets cavity

    Directory of Open Access Journals (Sweden)

    Vasily Suyarko

    2016-06-01

    Full Text Available On the example of the eastern part of the Dnieper-Donets cavity (DDC considered the role of the heat and mass transportation in the Earth's crust as a factor of the formation of abnormally high stratum pressure (AHPS. Investigated the regularity of the spatial distribution geochemical and positive anomalies of thermal field as indicators of AHPS zones.Established restriction sites abnormally-high reservoir pressure to areas of deep faults activated and drawn schematic map of the distribution of abnormally high reservoir-ticks 

  9. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  10. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  11. High-level radioactive waste disposal: Key geochemical issues and information needs for site characterization

    International Nuclear Information System (INIS)

    Brooks, D.J.; Bembia, P.J.; Bradbury, J.W.; Jackson, K.C.; Kelly, W.R.; Kovach, L.A.; Mo, T.; Tesoriero, J.A.

    1986-01-01

    Geochemistry plays a key role in determining the potential of a high-level radioactive waste disposal site for long-term radionuclide containment and isolation. The Nuclear Regulatory Commission (NRC) has developed a set of issues and information needs important for characterizing geochemistry at the potential sites being investigated by the Department of Energy Basalt Waste Isolation Project, Nevada Nuclear Waste Storage Investigations project, and Salt Repository Project. The NRC site issues and information needs consider (1) the geochemical environment of the repository, (2) changes to the initial geochemical environment caused by construction and waste emplacement, and (3) interactions that affect the transport of waste radionuclides to the accessible environment. The development of these issues and information needs supports the ongoing effort of the NRC to identify and address areas of geochemical data uncertainty during prelicensing interactions

  12. High pressure and high temperature EXAFS and diffraction study of AgI

    International Nuclear Information System (INIS)

    Yoshiasa, Akira; Arima, Hiroshi; Fukui, Hiroshi; Okube, Maki; Katayama, Yoshinori; Ohtaka, Osamu

    2009-01-01

    We have determined the precise P-T phase diagram of AgI by in-situ high-pressure high-temperature synchrotron experiments. X-ray diffraction and XAFS measurements were performed up to 6.0 GPa and 1100 K using a multi-anvil high-pressure device and synchrotron radiation from SPring-8. In the disordered rock-salt phase, Ag ions occupy both octahedral and tetrahedral sites and twenty percent of Ag ions occupy the tetrahedral site as a maximum value at 2 GPa. From the viewpoint of the local structure analyses, some sudden changes are recognized near broad phase transition point. Analysis of EXAFS Debye-Waller factor is useful because the force constant can be decided directly even at high pressure and high temperature. Pressure influences greatly the effective potential and anharmonicity decreases with increasing pressure. (author)

  13. High Pressure Physics at Brigham Young University

    Science.gov (United States)

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  14. Study of CT Scan Flooding System at High Temperature and Pressure

    Science.gov (United States)

    Chen, X. Y.

    2017-12-01

    CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.

  15. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  16. High-pressure test loop design and application

    International Nuclear Information System (INIS)

    Burnette, R.D.; Graves, J.N.; Blair, P.G.; Baldwin, N.L.

    1980-07-01

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  17. Radioresistance increase in polymers at high pressures

    International Nuclear Information System (INIS)

    Milinchuk, V.; Kirjukhin, V.; Klinshpont, E.

    1977-01-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibres were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures. (J.B.)

  18. Significance of geochemical characterization to performance at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Simmons, A.M.

    1993-01-01

    The U.S. concept for permanent disposal of high-level radioactive waste resembles those of other countries in that it relies upon burial in a deep geologic medium. This concept relies upon multiple barriers to retard transport of radionuclides to the accessible environment; those barriers consist of the waste form, waste container, engineered barrier system (including possible backfill) and retardant properties of the host rock. Because mobilization of radionuclides is fundamentally a geochemical problem, an understanding of past, present, and future geochemical processes is a requisite part of site characterization studies conducted by the U.S. Department of Energy at Yucca Mountain, Nevada. Geochemical information is needed for evaluating three favorable conditions (the rates of geochemical processes, conditions that promote precipitation or sorption of radionuclides or prohibit formation of colloids, and stable mineral assemblages) and four potentially adverse conditions of the site (groundwater conditions that could increase the chemical reactivity of the engineered barried system or reduce sorption, potential for gaseous radionuclide movement, and oxidizing groundwaters) for key issues of radionuclide release, groundwater quality, and stability of the geochemical environment. Preliminary results of long-term heating experiments indicate that although zeolites can be modified by long-term, low temperature reactions, their beneficial sorptive properties will not be adversely affected. Mineral reactions will be controlled by the aqueous activity of silica in groundwater with which the minerals are in contact. Geochemical barriers alone may satisfy release requirements to the accessible environment for many radionuclides; however, additional site specific geochemical and mineralogical data are needed to test existing and future radionuclide transport models

  19. Hydrostatic pressure cells development for X-ray and neutrons experiments

    International Nuclear Information System (INIS)

    Passamai Junior, Jose Luis; Pinheiro, Christiano J.G.; Orlando, Marcos Tadeu D.; Passos, Carlos A.C.; Rossi, Jesualdo L.; Mazzocchi, Vera L.; Parente, Carlos B.R.; Mestnik Filho, Jose; Martinez, Luis G.; Melo, Francisco C.L. de

    2011-01-01

    A set of hydrostatic pressure cells was specially developed in order to be applied in X-ray diffraction, X-ray absorption and neutron diffraction experiments. For the experiments where X-rays are used, the pressure cells are built in a CuBe alloy body with two B 4 C anvils in order to allow the low absorption of the radiation. The B 4 C anvils were specially prepared in CTA - Centro Tecnico Aeroespacial - Sao Jose dos Campos - Brazil, in order to present enhanced X-ray transparency and high hardness. One of the advantage of the CuBe-body cell with B 4 C anvil is that it can be also used under magnetic fields, for instance for measurements of AC magnetic susceptibility under high hydrostatic pressures. The X-ray cells work in transmission mode and present a 2 mm diameter hole for the beam path. The X-ray beam pass through the hole and outgoing to the detector positioned in front of the pressure cell. A second type of pressure cell was developed in order to be used in neutron elastic scattering experiments, especially in neutron diffraction experiments. The neutron cell pressure cell was constructed in Zirconium alloy reinforced with carbon fibers composite in order to improve the mechanical resistance of his cylindrical geometry. The B 4 C pressure cells are available to users of the techniques of X-ray diffraction and absorption in the Brazilian National Synchrotron Laboratory - LNLS, at Campinas City. The neutron pressure cell is available to users at the neutron powder diffraction facility installed at the Nuclear and Energy Research Institute - IPEN, Sao Paulo. In this work will be shown details and drawings of the two types of hydrostatic pressure cells. (author)

  20. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Experiments and geochemical modelling of CO{sub 2} sequestration by olivine: Potential, quantification

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, B., E-mail: Bruno.Garcia@ifp.fr [Institut Francais du Petrole, 1 et 4 Avenue du Bois Preau, 92852 Rueil Malmaison (France); Beaumont, V.; Perfetti, E.; Rouchon, V.; Blanchet, D. [Institut Francais du Petrole, 1 et 4 Avenue du Bois Preau, 92852 Rueil Malmaison (France); Oger, P.; Dromart, G. [Universite de Lyon, CNRS, UMR 5570, ENS de Lyon, Site Monod, 15 Parvis Rene Descartes BP 7000, Lyon F-69342 (France); Huc, A.-Y.; Haeseler, F. [Institut Francais du Petrole, 1 et 4 Avenue du Bois Preau, 92852 Rueil Malmaison (France)

    2010-09-15

    Aqueous solutions equilibrated with supercritical CO{sub 2} (150 deg. C and total pressure of 150 bar) were investigated in order to characterize their respective conditions of carbonation. Dissolution of olivine and subsequent precipitation of magnesite with a net consumption of CO{sub 2} were expected. A quantified pure mineral phase (powders with different olivine grain diameter [20-80 {mu}m], [80-125 {mu}m], [125-200 {mu}m] and [>200 {mu}m]), and CO{sub 2} (as dried ice) were placed in closed-batch reactors (soft Au tubes) in the presence of solutions. Different salinities (from 0 to 3400 mM) and different ratios of solution/solid (mineral phase) (from 0.1 to 10) were investigated. Experiments were performed over periods from 2 to 8 weeks. Final solid products were quantified by the Rock-Eval 6 technique, and identified using X-ray diffraction, Raman spectroscopy, electron microprobe and scanning electron microscopy. Gaseous compounds were quantified by a vacuum line equipped with a Toepler pump and identified and measured by gas chromatography (GC). Carbon mass balances were calculated. Olivine reacted completely with CO{sub 2}, trapping up to 57 {+-} 2% (eqC of initial CO{sub 2}) as magnesite; some amorphous silica also formed. Olivine grain diameter and solution/mineral ratios appeared to be the primary controls on the reaction, salinity acting as a second order parameter. During the experiments, fluid analyses may not be performed with approach adopted but, geochemical modelling was attempted to give information about the solution composition. This showed an interesting mineral matrix evolution. Under the experimental conditions, olivine appeared to be a good candidate for CO{sub 2} trapping into a geologically stable carbonate, magnesite. The possible use of mafic and ultramafic rocks for CO{sub 2} sequestration is discussed.

  2. NATO Advanced Research Workshop on Frontiers of High-Pressure Research

    CERN Document Server

    Etters, Richard

    1991-01-01

    The role of high pressure experiments in the discovery of supercon­ ducting materials with a T. above liquid nitrogen temperature has demon­ strated the importance of such experiments. The same role holds true in the tailoring of materials for optoelectronic devices. In addition, much progress has been made recently in the search for metallic hydro­ gen, and the application of high pressure in polymer research has brought forth interesting results. These facts together with the suc­ cess of previous small size meetings (such as the "First International Conference on the Physics of Solids at High Pressure", held in 1965 in Tucson, Arizona, U. S. A. ; "High Pressure and Low Temperature Physics", held in 1977 in Cleveland, Ohio, U. S. A. ; and "Physics of Solids Under High Pressure", held in 1981 in bad Honnef, Germany), motivated us to organize a workshop with emphasis on the newest results and trends in these fields of high pressure research. Furthermore, it was intended to mix experienced and young scien�...

  3. Geochemical site-selection criteria for HLW repositories in Europe and North America

    International Nuclear Information System (INIS)

    Savage, David; Arthur, Randolph C.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu

    2000-01-01

    Geochemical as well as socio-economic issues associated with the selection of potential sites to host a high-level nuclear waste repository have received considerable attention in repository programs in Europe (Belgium, Finland, France, Germany, Spain, Sweden, Switzerland and the U.K.) and North America (Canada and the United States). The objective of the present study is to summarize this international experience with particular emphasis on geochemical properties that factor into the adopted site-selection strategies. Results indicate that the geochemical properties of a site play a subordinate role, at best, to other geotechnical properties in the international site-selection approaches. In countries where geochemical properties are acknowledged in the site-selection approach, requirements are stated qualitatively and tend to focus on associated impacts on the stability of the engineered barrier system and on radionuclide transport. Site geochemical properties that are likely to control the long-term stability of geochemical conditions and radionuclide migration behavior are unspecified, however. This non-prescriptive approach may be reasonable for purposes of screening among potential sites, but a better understanding of site properties that are most important in controlling the long-term geochemical evolution of the site over a range of possible scenarios would enable the potential sites to be ranked in terms of their suitability to host a repository. (author)

  4. PPOOLEX experiments on dynamic loading with pressure feedback

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.

    2011-01-01

    This report summarizes the results of the dynamic loading experiments (DYN series) carried out with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiments was to study dynamic loads caused by different condensation modes. Particularly, the effect of counterpressure on loads due to pressure oscillations induced by chugging was of interest. Before the experiments the condensation pool was filled with isothermal water so that the blowdown pipe outlet was submerged by 1.03-1.11 m. The initial temperature of the pool water varied from 11 deg. C to 63 deg. C, the steam flow rate from 290 g/s to 1220 g/s and the temperature of incoming steam from 132 deg. C to 182 deg. C. Non-condensables were pushed from the dry well into the gas space of the wet well with a short discharge of steam before the recorded period of the experiments. As a result of this procedure, the system pressure was at an elevated level in the beginning of the actual experiments. An increased counterpressure was used in the last experiment of the series. The diminishing effect of increased system pressure on chugging intensity and on measured loads is evident from the results of the last experiment. The highest pressure pulses both inside the blowdown pipe and in the condensation pool were about half of those measured with a lower system pressure but otherwise with similar test parameters. The experiments on dynamic loading gave expected results. The loads experienced by pool structures depended strongly on the steam mass flow rate, pool water temperature and system pressure. The DYN experiments indicated that chugging and condensation within the blowdown pipe cause significant dynamic loads in case of strongly sub-cooled pool water. The level of pool water temperature is decisive

  5. PPOOLEX experiments on dynamic loading with pressure feedback

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the dynamic loading experiments (DYN series) carried out with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiments was to study dynamic loads caused by different condensation modes. Particularly, the effect of counterpressure on loads due to pressure oscillations induced by chugging was of interest. Before the experiments the condensation pool was filled with isothermal water so that the blowdown pipe outlet was submerged by 1.03-1.11 m. The initial temperature of the pool water varied from 11 deg. C to 63 deg. C, the steam flow rate from 290 g/s to 1220 g/s and the temperature of incoming steam from 132 deg. C to 182 deg. C. Non-condensables were pushed from the dry well into the gas space of the wet well with a short discharge of steam before the recorded period of the experiments. As a result of this procedure, the system pressure was at an elevated level in the beginning of the actual experiments. An increased counterpressure was used in the last experiment of the series. The diminishing effect of increased system pressure on chugging intensity and on measured loads is evident from the results of the last experiment. The highest pressure pulses both inside the blowdown pipe and in the condensation pool were about half of those measured with a lower system pressure but otherwise with similar test parameters. The experiments on dynamic loading gave expected results. The loads experienced by pool structures depended strongly on the steam mass flow rate, pool water temperature and system pressure. The DYN experiments indicated that chugging and condensation within the blowdown pipe cause significant dynamic loads in case of strongly sub-cooled pool water. The level of pool water temperature is decisive

  6. A system for incubations at high gas partial pressure

    Directory of Open Access Journals (Sweden)

    Patrick eSauer

    2012-02-01

    Full Text Available High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed one MPa at in-situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in-situ conditions, but the partial pressure of dissolved gasses has to be controlled as well.We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120° C and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. The system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g. fluid-gas-rock-interactions in relation to carbon dioxide sequestration.As an application of the system we extracted organic acids from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90°C and pressure (5 MPa. Subsamples were taken during the incubation and analysed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulphate reduction rate upon the addition of

  7. The impact of personality traits and professional experience on police officers' shooting performance under pressure.

    Science.gov (United States)

    Landman, Annemarie; Nieuwenhuys, Arne; Oudejans, Raôul R D

    2016-07-01

    We explored the impact of professional experience and personality on police officers' shooting performance under pressure. We recruited: (1) regular officers, (2) officers wanting to join a specialised arrest unit (AU) (expected to possess more stress-resistant traits; pre-AU) and (3) officers from this unit (expected to also possess more professional experience; AU) (all male). In Phase 1, we determined personality traits and experience. In Phase 2, state anxiety, shot accuracy, decision-making (shoot/don't shoot), movement speed and gaze behaviour were measured while officers performed a shooting test under low and high pressure. Results indicate minimal differences in personality among groups and superior performance of AU officers. Regression analyses showed that state anxiety and shooting performance under high pressure were first predicted by AU experience and second by certain personality traits. Results suggest that although personality traits attenuate the impact of high pressure, it is relevant experience that secures effective performance under pressure. Practitioner Summary: To obtain information for police selection and training purposes, we let officers who differed in personality and experience execute a shooting test under low and high pressure. Outcomes indicate that experience affected anxiety and performance most strongly, while personality traits of thrill- and adventure-seeking and self-control also had an effect.

  8. Thermally induced coloration of KBr at high pressures

    Science.gov (United States)

    Arveson, Sarah M.; Kiefer, Boris; Deng, Jie; Liu, Zhenxian; Lee, Kanani K. M.

    2018-03-01

    Laser-heated diamond-anvil cell (LHDAC) experiments reveal electronic changes in KBr at pressures between ˜13 -81 GPa when heated to high temperatures that cause runaway heating to temperatures in excess of ˜5000 K . The drastic changes in absorption behavior of KBr are interpreted as rapid formation of high-pressure F-center defects. The defects are localized to the heated region and thus do not change the long-range crystalline order of KBr. The results have significant consequences for temperature measurements in LHDAC experiments and extend the persistence of F centers in alkali halides to at least 81 GPa.

  9. A preliminary study on the geochemical environment for deep geological disposal of high level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Yong Kwon; Park, Byoung Yun

    2000-03-01

    Geochemical study on the groundwater from crystalline rocks (granite and gneiss) for the deep geological disposal of high-level radioactive waste was carried out in order to elucidate the hydrogeochemical and isotope characteristics and geochemical evolution of the groundwater. Study areas are Jungwon, Chojeong, Youngcheon and Yusung for granite region, Cheongyang for gneiss region, and Yeosu for volcanic region. Groundwaters of each study areas weree sampled and analysed systematically. Groundwaters can be grouped by their chemistry and host rock. Origin of the groundwater was proposed by isotope ( 18 O, 2 H, 13 C, 34 S, 87 Sr, 15 N) studies and the age of groundwater was inferred from their tritium contents. Based ont the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  10. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  11. High-pressure structural behaviour of HoVO4: combined XRD experiments and ab initio calculations

    International Nuclear Information System (INIS)

    Garg, Alka B; Errandonea, D; Rodríguez-Hernández, P; Muñoz, A; López-Moreno, S; Popescu, C

    2014-01-01

    We report a high-pressure experimental and theoretical investigation of the structural properties of zircon-type HoVO 4 . Angle-dispersive x-ray diffraction measurements were carried out under quasi-hydrostatic and partial non-hydrostatic conditions up to 28 and 23.7 GPa, respectively. In the first case, an irreversible phase transition is found at 8.2 GPa. In the second case, the onset of the transition is detected at 4.5 GPa, a second (reversible) transition is found at 20.4 GPa, and a partial decomposition of HoVO 4 was observed. The structures of the different phases have been assigned and their equations of state (EOS) determined. Experimental results have also been compared to theoretical calculations which fully agree with quasi-hydrostatic experiments. Theory also suggests the possibility of another phase transition at 32 GPa; i.e. beyond the pressure limit covered by present experiments. Furthermore, calculations show that deviatoric stresses could trigger the transition found at 20.4 GPa under non-hydrostatic conditions. The reliability of the present experimental and theoretical results is supported by the consistency between the values yielded for transition pressures and EOS parameters by the two methods. (paper)

  12. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    Science.gov (United States)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  13. Microstructures define melting of molybdenum at high pressures

    Science.gov (United States)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  14. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  15. Cavity pressure/residual stress measurements from the Non-Proliferation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Heinle, R.A.; Hudson, B.C. [Lawrence Livermore National Lab., CA (United States); Hatch, M.A. Jr.

    1994-12-31

    The Lawrence Livermore National Laboratory planned and conducted experiments on the Non-Proliferation Experiment to determine post-detonation gas pressure inside the explosive cavity and the residual rock stress in the region immediately outside the cavity. Before detonation there was significant concern that steam and detonation products would create very high temperatures and pressure in the blast cavity that would exist for weeks and months after firing. This could constitute a safety hazard to personnel re-entering the tunnel. Consequently the Lawrence Livermore National Laboratory was asked to field its Cavity Pressure/Residual stress monitor system on the Non-Proliferation Experiment. We obtained experimental data for the first 600 ms after the explosion and again several weeks after detonation upon tunnel re-entry. We recorded early-time cavity pressure of about 8.3 MPa. In addition we believe that the ends of our sensor hoses were subjected to an ambient driving pressure of about 0.5 MPa (absolute) that persisted until at least three weeks after zero time.

  16. High-pressure synchrotron infrared spectroscopy at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hemley, R.J.; Goncharov, A.F.; Lu, R.; Struzhkin, V.V.; Li, M.; Mao, H.K.

    1998-01-01

    The paper describes a synchrotron infrared facility for high-pressure spectroscopy and microspectroscopy at the National Synchrotron Light-Source (NSLS). Located at beamline U2B on the VUV ring of the NSLS, the facility utilizes a commercial FT-IR together with custom-built microscope optics designed for a variety of diamond anvil cell experiments, including low- and high- temperature studies. The system contains an integrated laser optical/grating spectrometer for concurrent optical experiments. The facility has been used to characterize a growing number of materials to ultrahigh pressure and has been instrumental of new high-pressure phenomena. Experiments on dense hydrogen to >200 GPa have led to the discovery of numerous unexpected properties of this fundamental system. The theoretically predicted molecular-atomic transition of H 2 O ice to the symmetric hydrogen-bonded structure has been identified, and new classes of high-density clathrates and molecular compounds have been characterized. Experiments on natural and synthetic mineral samples have been performed to study hydrogen speciation, phase transformations, and microscopic inclusions in multiphase assemblages. Detailed information on the behavior of new materials, including novel high-pressure glasses and ceramics, has also been obtained

  17. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Salas, Joaquin; Arcos, David (Amphos 21 Consulting S.L., Barcelona (Spain))

    2010-12-15

    /condensation process /Karnland et al. 2009/. Once bentonite is water saturated, the transport of solutes is driven by diffusion. Although Donnan equilibrium /Birgersson and Karnland 2009/ and anion exclusion /Muurinen et al. 2004/ are able to influence the mobility of chloride in the bentonite buffer, under the high temperature LOT A2 test conditions, measured data seem to indicate a relatively low influence of these processes on the transport of chloride. For this reason, the transport of chloride has been modelled taking into account advective, dispersive and diffusive fluxes that are believed to have occurred in the LOT A2 test. Numerical results were conducted at fixed thermal gradients for both heated and non-heated bentonite based on the temperatures recorded during the experiment for both heated and non-heated bentonite. The computed evolution of the bentonite saturation indicates that, within approximately one year, the bentonite blocks located at the depth of the heater are completely water saturated which agrees with measured data. The simulated transport of chloride is also in good agreement with data measured at the end of the LOT A2 test for the two cases considered, reflecting the reliability of the conceptual model defined for the LOT A2 test. Based on the geochemical data obtained at end of the LOT A2 test, and on previous modelling exercises /Arcos et al. 2006/, the main geochemical processes that are believed to have developed during the LOT A2 test are: (i) precipitation/dissolution of carbonate, sulphate and silica minerals and, (ii) cation exchange in the montmorillonite interlayer. Numerical results predict the dissolution - precipitation of anhydrite, calcite and silica in the heated bentonite in agreement with data measured at the end of the LOT A2 test

  18. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    International Nuclear Information System (INIS)

    Sena, Clara; Salas, Joaquin; Arcos, David

    2010-12-01

    /condensation process /Karnland et al. 2009/. Once bentonite is water saturated, the transport of solutes is driven by diffusion. Although Donnan equilibrium /Birgersson and Karnland 2009/ and anion exclusion /Muurinen et al. 2004/ are able to influence the mobility of chloride in the bentonite buffer, under the high temperature LOT A2 test conditions, measured data seem to indicate a relatively low influence of these processes on the transport of chloride. For this reason, the transport of chloride has been modelled taking into account advective, dispersive and diffusive fluxes that are believed to have occurred in the LOT A2 test. Numerical results were conducted at fixed thermal gradients for both heated and non-heated bentonite based on the temperatures recorded during the experiment for both heated and non-heated bentonite. The computed evolution of the bentonite saturation indicates that, within approximately one year, the bentonite blocks located at the depth of the heater are completely water saturated which agrees with measured data. The simulated transport of chloride is also in good agreement with data measured at the end of the LOT A2 test for the two cases considered, reflecting the reliability of the conceptual model defined for the LOT A2 test. Based on the geochemical data obtained at end of the LOT A2 test, and on previous modelling exercises /Arcos et al. 2006/, the main geochemical processes that are believed to have developed during the LOT A2 test are: (i) precipitation/dissolution of carbonate, sulphate and silica minerals and, (ii) cation exchange in the montmorillonite interlayer. Numerical results predict the dissolution - precipitation of anhydrite, calcite and silica in the heated bentonite in agreement with data measured at the end of the LOT A2 test

  19. Carbon dioxide storage in marine sediments - dissolution, transport and hydrate formation kinetics from high-pressure experiments

    Science.gov (United States)

    Bigalke, N. K.; Savy, J. P.; Pansegrau, M.; Aloisi, G.; Kossel, E.; Haeckel, M.

    2009-12-01

    By satisfying thermodynamic framework conditions for CO2 hydrate formation, pressures and temperatures of the deep marine environment are unique assets for sequestering CO2 in clathrates below the seabed. However, feasibility and safety of this storage option require an accurate knowledge of the rate constants governing the speed of physicochemical reactions following the injection of the liquefied gas into the sediments. High-pressure experiments designed to simulate the deep marine environment open the possibility to obtain the required parameters for a wide range of oceanic conditions. In an effort to constrain mass transfer coefficients and transport rates of CO2 in(to) the pore water of marine sediments first experiments were targeted at quantifying the rate of CO2 uptake by de-ionized water and seawater across a two-phase interface. The nature of the interface was controlled by selecting p and T to conditions within and outside the hydrate stability field (HSF) while considering both liquid and gaseous CO2. Concentration increase and hydrate growth were monitored by Raman spectroscopy. The experiments revealed anomalously fast transport rates of dissolved CO2 at conditions both inside and outside the HSF. While future experiments will further elucidate kinetics of CO2 transport and hydrate formation, these first results could have major significance to safety-related issues in the discussion of carbon storage in the marine environment.

  20. Evaluation of CO2-Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale Geochemical Simulations

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2017-01-01

    Full Text Available Recent studies suggest that using supercritical CO2 (scCO2 instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS may improve energy extraction. While CO2-fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO2 as a working fluid (“CO2-EGS” compared to those for water as a working fluid (H2O-EGS are needed. The primary objectives of this study are (1 constraining geochemical processes associated with CO2-fluid-rock interactions under the high pressures and temperatures of a typical CO2-EGS site and (2 comparing geochemical impacts of CO2-EGS to geochemical impacts of H2O-EGS. The St. John’s Dome CO2-EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO2-EGS were larger compared to H2O-EGS, suggesting that using scCO2 as a working fluid may enhance EGS heat extraction. More aqueous CO2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO2 as a working fluid. It indicates that geochemical processes of scCO2-rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.

  1. A preliminary study on the geochemical environment for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Yong Kwon; Park, Byoung Yun

    2000-03-01

    Geochemical study on the groundwater from crystalline rocks (granite and gneiss) for the deep geological disposal of high-level radioactive waste was carried out in order to elucidate the hydrogeochemical and isotope characteristics and geochemical evolution of the groundwater. Study areas are Jungwon, Chojeong, Youngcheon and Yusung for granite region, Cheongyang for gneiss region, and Yeosu for volcanic region. Groundwaters of each study areas weree sampled and analysed systematically. Groundwaters can be grouped by their chemistry and host rock. Origin of the groundwater was proposed by isotope ({sup 18}O, {sup 2}H, {sup 13}C, {sup 34}S, {sup 87}Sr, {sup 15}N) studies and the age of groundwater was inferred from their tritium contents. Based ont the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  2. Trace element partitioning between ilmenite, armalcolite and anhydrous silicate melt: Implications for the formation of lunar high-Ti mare basalts

    NARCIS (Netherlands)

    Kan Parker, M. van; Mason, P.R.D.; Westrenen, W. van

    2011-01-01

    We performed a series of experiments at high pressures and temperatures to determine the partitioning of a wide range of trace elements between ilmenite (Ilm), armalcolite (Arm) and anhydrous lunar silicate melt, to constrain geochemical models of the formation of titanium-rich melts in the Moon.

  3. High pressure in situ X-ray diffraction study of MnO to 137 GPa and comparison with shock compression experiment

    Science.gov (United States)

    Yagi, T.; Kondo, T.; Syono, Y.

    1998-07-01

    In order to clarify the nature of the phase transformation in MnO observed at around 90 GPa by shock compression experiment, high pressure in situ X-ray observations were carried out up to 137 GPa. Powdered sample was directly compressed in Mao-Bell type diamond anvil cell and X-ray experiments were carried out using angle dispersive technique by combining synchrotron radiation and imaging plate detector. Distortion of the B1 structured phase was observed above about 40 GPa, which continues to increase up to 90 GPa. Two discontinuous changes of the diffraction profiles were observed at around 90 GPa and 120 GPa. The nature of the intermediate phase between 90 GPa and 120 GPa is not clear yet. It is neither cesium chloride (B2) nor nickel arsenide (B8) structure. On the other hand, the diffraction profile above 120 GPa can be reasonably well explained by the B8 structure. High pressure phases above 90 GPa have metallic luster and all the transformations are reversible on release of pressure.

  4. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  5. Does the Hertz solution estimate pressures correctly in diamond indentor experiments?

    Science.gov (United States)

    Bruno, M. S.; Dunn, K. J.

    1986-05-01

    The Hertz solution has been widely used to estimate pressures in a spherical indentor against flat matrix type high pressure experiments. It is usually assumed that the pressure generated when compressing a sample between the indentor and substrate is the same as that generated when compressing an indentor against a flat surface with no sample present. A non-linear finite element analysis of this problem has shown that the situation is far more complex. The actual peak pressure in the sample is highly dependent on plastic deformation and the change in material properties due to hydrostatic pressure. An analysis with two material models is presented and compared with the Hertz solution.

  6. A geochemical and geophysical reappraisal to the significance of the recent unrest at Campi Flegrei caldera (Southern Italy)

    Science.gov (United States)

    Moretti, Roberto; De Natale, Giuseppe; Troise, Claudia

    2017-04-01

    Volcanic unrest at calderas involve complex interaction between magma, hydrothermal fluids and crustal stress and strain. Campi Flegrei caldera (CFc), located in the Naples (Italy) area and characterised by the highest volcanic risk on Earth for the extreme urbanisation, undergoes unrest phenomena involving several meters of uplift and intense shallow micro-seismicity since several decades. Despite unrest episodes display in the last decade only moderate ground deformation and seismicity, current interpretations of geochemical data point to a highly pressurized hydrothermal system. We show that at CFc, the usual assumption of vapour-liquid coexistence in the fumarole plumes leads to largely overestimated hydrothermal pressures and, accordingly, interpretations of elevated unrest. By relaxing unconstrained geochemical assumptions, we infer an alternative model yielding better agreement between geophysical and geochemical observations. The model reconciles discrepancies between what observed 1) for two decades since the 1982-84 large unrest, when shallow magma was supplying heat and fluids to the hydrothermal system, and 2) in the last decade. Compared to the 1980's unrest, the post-2005 phenomena are characterized by much lower aquifers overpressure and magmatic involvement, as indicated by geophysical data and despite large changes in geochemical indicators. Our interpretation points out a model in which shallow sills, intruded during 1969-1984, have completely cooled, so that fumarole emissions are affected now by deeper, CO2-richer, magmatic gases producing a relatively modest heating and overpressure of the hydrothermal system. Our results do have important implications on the short-term eruption hazard assessment and on the best strategies for monitoring and interpreting geochemical data.

  7. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  8. Practical conditions in the neutron diffraction under high pressure

    International Nuclear Information System (INIS)

    Kamigaki, Kazuo; Ohashi, Masayoshi

    1993-01-01

    Practical analysis is made on some conditions in utilizing neutrons for the study of atomistic structure of materials under high pressure. Investigation is made on the geometrical conditions; size of the specimen, width of slits, and the rate of extra-scattering. Experiments are performed on the effects of absorption by high pressure cell and the disturbance due to an overlapping of diffraction peaks. An observation is presented on the pressure-induced transformation in RbBr. (author)

  9. Experimental Compressibility of Molten Hedenbergite at High Pressure

    Science.gov (United States)

    Agee, C. B.; Barnett, R. G.; Guo, X.; Lange, R. A.; Waller, C.; Asimow, P. D.

    2010-12-01

    Experiments using the sink/float method have bracketed the density of molten hedenbergite (CaFeSi2O6) at high pressures and temperatures. The experiments are the first of their kind to determine the compressibility of molten hedenbergite at high pressure and are part of a collaborative effort to establish a new database for an array of silicate melt compositions, which will contribute to the development of an empirically based predictive model that will allow calculation of silicate liquid density and compressibility over a wide range of P-T-X conditions where melting could occur in the Earth. Each melt composition will be measured using: (i) double-bob Archimedean method for melt density and thermal expansion at ambient pressure, (ii) sound speed measurements on liquids to constrain melt compressibility at ambient pressure, (iii) sink/float technique to measure melt density to 15 GPa, and (iv) shock wave measurements of P-V-E equation of state and temperature between 10 and 150 GPa. Companion abstracts on molten fayalite (Waller et al., 2010) and liquid mixes of hedenbergite-diopside and anorthite-hedenbergite-diopside (Guo and Lange, 2010) are also presented at this meeting. In the present study, the hedenbergite starting material was synthesized at the Experimental Petrology Lab, University of Michigan, where melt density, thermal expansion, and sound speed measurements were also carried out. The starting material has also been loaded into targets at the Caltech Shockwave Lab, and experiments there are currently underway. We report here preliminary results from static compression measurement performed at the Department of Petrology, Vrije Universiteit, Amsterdam, and the High Pressure Lab, Institute of Meteoritics, University of New Mexico. Experiments were carried out in Quick Press piston-cylinder devices and a Walker-style multi-anvil device. Sink/float marker spheres implemented were gem quality synthetic forsterite (Fo100), San Carlos olivine (Fo90), and

  10. High Pressure Reduction of Selenite by Shewanella oneidensis MR-1

    Science.gov (United States)

    Picard, A.; Daniel, I.; Testemale, D.; Letard, I.; Bleuet, P.; Cardon, H.; Oger, P.

    2007-12-01

    High-pressure biotopes comprise cold deep-sea environments, hydrothermal vents, and deep subsurface or deep-sea sediments. The latter are less studied, due to the technical difficulties to sample at great depths without contamination. Nevertheless, microbial sulfate reduction and methanogenesis have been found to be spatially distributed in deep deep-sea sediments (1), and sulfate reduction has been shown to be actually more efficient under high hydrostatic pressure (HHP) in some sediments (2). Sulfate-reducing bacteria obtained from the Japan Sea are characterized by an increased sulfide production under pressure (3,4). Unfortunately, investigations of microbial metabolic activity as a function of pressure are extremely scarce due to the experimental difficulty of such measurements at high hydrostatic pressure. We were able to measure the reduction of selenite Se(IV) by Shewanella oneidensis MR-1 as a function of pressure, to 150 MPa using two different high-pressure reactors that allow in situ X-ray spectroscopy measurements on a synchrotron source. A first series of measurements was carried out in a low-pressure Diamond Anvil Cell (DAC) of our own design (5) at ID22 beamline at ESRF (European Synchrotron Radiation Facility); a second one was performed in an autoclave (6) at the BM30B beamline at ESRF. Selenite reduction by strain MR-17 was monitored from ambient pressure to 150 MPa over 25 hours at 30 deg C by XANES spectroscopy (X-ray Analysis of Near Edge Structure). Spectra were recorded hourly in order to quantify the evolution of the oxidation state of selenium with time. Stationary-phase bacteria were inoculated at a high concentration into fresh growth medium containing 5 or 10 M of sodium selenite and 20 mM sodium lactate. Kinetic parameters of the Se (IV) reduction by Shewanella oneidensis strain MR-1 could be extracted from the data, as a function of pressure. They show 1) that the rate constant k of the reaction is decreased by a half at high pressure

  11. High pressure neutron and X-ray diffraction at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J.; Kamenev, Konstantin V. [Edinburgh Univ. (United Kingdom). School of Engineering and the Centre for Science at Extreme Conditions

    2014-04-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  12. High pressure neutron and X-ray diffraction at low temperatures

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Kamenev, Konstantin V.

    2014-01-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  13. Thermal neutron scattering studies of condensed matter under high pressures

    International Nuclear Information System (INIS)

    Carlile, C.J.; Salter, D.C.

    1978-01-01

    Although temperature has been used as a thermodynamic variable for samples in thermal neutron scattering experiments since the inception of the neutron technique, it is only in the last decade that high pressures have been utilised for this purpose. In the paper the problems particular to this field of work are outlined and a review is made of the types of high-pressure cells used and the scientific results obtained from the experiments. 103 references. (author)

  14. Geochemical evolution of highly alkaline and saline tank waste plumes during seepage through vadose zone sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.; Larsen, Joern T.; Serne, R. JEFFREY

    2004-01-01

    Leakage of highly saline and alkaline radioactive waste from storage tanks into underlying sediments is a serious environmental problem at the Hanford Site in Washington State. This study focuses on geochemical evolution of tank waste plumes resulting from interactions between the waste solution and sediment. A synthetic tank waste solution was infused into unsaturated Hanford sediment columns (0.2, 0.6, and 2 m) maintained at 70C to simulate the field contamination process. Spatially and temporally resolved geochemical profiles of the waste plume were obtained. Thorough OH neutralization (from an initial pH 14 down to 6.3) was observed. Three broad zones of pore solutions were identified to categorize the dominant geochemical reactions: the silicate dissolution zone (pH > 10), pH-neutralized zone (pH 10 to 6.5), and displaced native sediment pore water (pH 6.5 to 8). Elevated concentrations of Si, Fe, and K in plume fluids and their depleted concentrations in plume sediments reflected dissolution of primary minerals within the silicate dissolution zone. The very high Na concentrations in the waste solution resulted in rapid and complete cation exchange, reflected in high concentrations of Ca and Mg at the plume front. The plume-sediment profiles also showed deposition of hydrated solids and carbonates. Fair correspondence was obtained between these results and analyses of field borehole samples from a waste plume at the Hanford Site. Results of this study provide a well-defined framework for understanding waste plumes in the more complex field setting and for understanding geochemical factors controlling transport of contaminant species carried in waste solutions that leaked from single-shell storage tanks in the past

  15. Extremely-high vacuum pressure measurement by laser ionization

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  16. Antibodies under pressure: A Small-Angle X-ray Scattering study of Immunoglobulin G under high hydrostatic pressure.

    Science.gov (United States)

    König, Nico; Paulus, Michael; Julius, Karin; Schulze, Julian; Voetz, Matthias; Tolan, Metin

    2017-12-01

    In the present work two subclasses of the human antibody Immunoglobulin G (IgG) have been investigated by Small-Angle X-ray Scattering under high hydrostatic pressures up to 5kbar. It is shown that IgG adopts a symmetric T-shape in solution which differs significantly from available crystal structures. Moreover, high-pressure experiments verify the high stability of the IgG molecule. It is not unfolded by hydrostatic pressures of up to 5kbar but a slight increase of the radius of gyration was observed at elevated pressures. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Creation of ultra-high-pressure shocks by the collision of laser-accelerated disks: experiment and theory

    International Nuclear Information System (INIS)

    Rosen, M.D.; Phillion, D.W.; Price, R.H.; Campbell, E.M.; Obenschain, S.P.; Whitlock, R.R.; McLean, E.A.; Ripin, B.H.

    1983-01-01

    We have used the SHIVA laser system to accelerate carbon disks to speeds in excess of 100 km/sec. The 3KJ/3 ns pulse, on a 1 mm diameter spot of a single disk produced a conventional shock of about 5 MB. The laser energy can, however, be stored in kinetic motion of this accelerated disk and delivered (reconverted to thermal energy) upon impact with another carbon disk. This collision occurs in a time much shorter than the 3 ns pulse, thus acting as a power amplifier. The shock pressures measured upon impact are estimated to be in the 20 MB range, thus demonstrating the amplification power of this colliding disk technique in creating ultra-high pressures. Theory and computer simulations of this process will be discussed, and compared with the experiment

  18. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  19. Inferring the high-pressure strength of copper by measurement of longitudinal sound speed in a symmetric impact and release experiment

    Science.gov (United States)

    Rothman, Stephen; Edwards, Rhys; Vogler, Tracy J.; Furnish, M. D.

    2012-03-01

    Velocity-time histories of free- or windowed-surfaces have been used to calculate wave speeds and hence deduce the shear moduli for materials at high pressure. This is important to high velocity impact phenomena, e.g. shaped-charge jets, long rod penetrators, and other projectile/armour interactions. Historically the shock overtake method has required several experiments with different depths of material to account for the effect of the surface on the arrival time of the release. A characteristics method, previously used for analysis of isentropic compression experiments, has been modified to account for the effect of the surface interactions, thus only one depth of material is required. This analysis has been applied to symmetric copper impacts performed at Sandia National Laboratory's Star Facility. A shear modulus of 200GPa, at a pressure of ~180GPa, has been estimated. These results are in broad agreement with previous work by Hayes et al.

  20. Designing high pressure containers for research- principles and applications

    International Nuclear Information System (INIS)

    Anandkumar, V.

    1997-01-01

    The high pressure scientist looks for a well engineered pressure apparatus for high pressure experiments for 1 kbar (0.1 GPa) and above. Often, a variety of difficulties including the choice of materials, design configuration, optimum utilisation of the strength of materials used in the design, are encountered. This article is intended to help the high pressure scientist to select the design approach for pressure retaining container. The limitations imposed by the strength of available materials and engineering standards in building high pressure containers are discussed. Engineering solutions to overcome these limitations with optimal utilisation of the strength of the materials are also discussed. Novel methods to boost up the pressure retaining capacity like multilayered design and autofrettaging are compared along with their relative advantages and disadvantages. Special methods by which it is possible to attain pressures which are several times the yield strength of the materials of construction are presented. In this aspects such as the basis of the codes and their relevance in the design of high pressure equipment will also be described. Discussions are centered around the methods to tackle situations where experimental constraints dictate requirements of pressures higher than those permitted by design codes. Safety features are also discussed. (author)

  1. High-pressure X-ray diffraction experiments on US using synchrotron radiation

    International Nuclear Information System (INIS)

    Olsen, J.S.; Steenstrup, S.

    1983-12-01

    High-pressure X-ray diffraction studies have been performed on US up to 40 GPa using synchrotron radiation and a diamond anvil cell. The measured value of the bulk modulus B 0 = 92 GPa is in reasonable agreement with calculations. The high-pressure behaviour indicates a phase transformation to US III at about 15 GPa. The transformation is a smooth deformation process, which starts with a tetragonal structure asub(tetr) = asub(cub)/√2, csub(tetr) = 2asub(cub) and continues with an orthorhombic structure with a = 375(3)pm, b = 345(3)pm, c = 1069 (24)pm at 35 GPa; it is of second order nature within experimental errors and it should involve some contributions from uranium f electrons. (orig.)

  2. Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Kurpiewska, Katarzyna, E-mail: kurpiews@chemia.uj.edu.pl [Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Protein Crystallography Group, Ingardena 3, 30-060 Kraków (Poland); Dziubek, Kamil; Katrusiak, Andrzej [Adam Mickiewicz University, Faculty of Chemistry, Department of Materials Chemistry, Umultowska 89b, 61-61 Poznań (Poland); Font, Josep [School of Medical Science, University of Sydney, NSW 2006 (Australia); Ribò, Marc; Vilanova, Maria [Universitat de Girona, Laboratorid’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Campus de Montilivi, 17071 Girona (Spain); Lewiński, Krzysztof [Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Protein Crystallography Group, Ingardena 3, 30-060 Kraków (Poland)

    2016-04-01

    Highlights: • A unique crystallographic studies of wild-type and mutated form of the same protein under high pressure. • Compressibility of RNase A molecule is significantly affected by a single amino acid substitution. • High pressure protein crystallography helps understanding protein flexibility and identify conformational substrates. - Abstract: Hydrostatic pressure in range 0.1–1.5 GPa is used to modify biological system behaviour mostly in biophysical studies of proteins in solution. Due to specific influence on the system equilibrium high pressure can act as a filter that enables to identify and investigate higher energy protein conformers. The idea of the presented experiments is to examine the behaviour of RNase A molecule under high pressure before and after introduction of destabilizing mutation. For the first time crystal structures of wild-type bovine pancreatic ribonuclease A and its markedly less stable variant modified at position Ile106 were determined at different pressures. X-ray diffraction experiments at high pressure showed that the secondary structure of RNase A is well preserved even beyond 0.67 GPa at room temperature. Detailed structural analysis of ribonuclease A conformation observed under high pressure revealed that pressure influences hydrogen bonds pattern, cavity size and packing of molecule.

  3. Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography

    International Nuclear Information System (INIS)

    Kurpiewska, Katarzyna; Dziubek, Kamil; Katrusiak, Andrzej; Font, Josep; Ribò, Marc; Vilanova, Maria; Lewiński, Krzysztof

    2016-01-01

    Highlights: • A unique crystallographic studies of wild-type and mutated form of the same protein under high pressure. • Compressibility of RNase A molecule is significantly affected by a single amino acid substitution. • High pressure protein crystallography helps understanding protein flexibility and identify conformational substrates. - Abstract: Hydrostatic pressure in range 0.1–1.5 GPa is used to modify biological system behaviour mostly in biophysical studies of proteins in solution. Due to specific influence on the system equilibrium high pressure can act as a filter that enables to identify and investigate higher energy protein conformers. The idea of the presented experiments is to examine the behaviour of RNase A molecule under high pressure before and after introduction of destabilizing mutation. For the first time crystal structures of wild-type bovine pancreatic ribonuclease A and its markedly less stable variant modified at position Ile106 were determined at different pressures. X-ray diffraction experiments at high pressure showed that the secondary structure of RNase A is well preserved even beyond 0.67 GPa at room temperature. Detailed structural analysis of ribonuclease A conformation observed under high pressure revealed that pressure influences hydrogen bonds pattern, cavity size and packing of molecule.

  4. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  5. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  6. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    Science.gov (United States)

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  7. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  8. Radioresistance increase in polymers at high pressures. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Milinchuk, V; KIRJUKHIN, V; KLINSHPONT, E

    1977-06-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibers were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene, 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures.

  9. Geochemical characterisation of Elbe river high flood sediments

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, F. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung]|[UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Rupp, H.; Meissner, R. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung; Lohse, M.; Buettner, O.; Friese, K. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Miehlich, G. [Hamburg Univ. (Germany). Inst. fuer Bodenkunde

    2001-07-01

    Quality aims for land usage in flood plains have to be worked out in the Russian-German research project 'Effects of floods on the pollution of agricultural used flood plain soils of the Oka River and the Elbe River'. It is financed by the Germany Ministry of Education and Research (FKZ 02 WT 9617/0). Beside the characterisation of the present pollution of soils for the middle Elbe, it is necessary to prognosticate the current pollutant input. At the examination site nearby Wittenberge, Elbe River kilometers 435 and 440, natural deposited flood sediments were sampled by artificial lawn mats. By the geochemical characterisation it is possible to record the metal input into the flood plain and to win knowledge about the sedimentation process. The results of sediment investigation of the high flood in spring 1997 are presented. (orig.)

  10. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  11. A high-pressure hydrogen time projection chamber for the MuCap experiment

    Energy Technology Data Exchange (ETDEWEB)

    Egger, J.; Fahrni, D.; Hildebrandt, M.; Hofer, A.; Meier, L.; Petitjean, C. [Paul Scherrer Institute, Villigen PSI (Switzerland); Andreev, V.A.; Ganzha, V.A.; Kravtsov, P.A.; Krivshich, A.G.; Maev, E.M.; Maev, O.E.; Petrov, G.; Semenchuk, G.G.; Vasilyev, A.A.; Vorobyov, A.A.; Vznuzdaev, M.E. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Banks, T.I. [University of California, Department of Physics, Berkeley, California (United States); Clayton, S.M. [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States); Gray, F.E. [University of California, Department of Physics, Berkeley, California (United States); Regis University, Department of Physics and Computational Science, Denver, Colorado (United States); University of Washington, Department of Physics, Seattle, Washington (United States); Kammel, P.; Kiburg, B.; Winter, P. [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States); University of Washington, Department of Physics, Seattle, Washington (United States); Lauss, B. [Paul Scherrer Institute, Villigen PSI (Switzerland); University of California, Department of Physics, Berkeley, California (United States)

    2014-10-15

    The MuCap experiment at the Paul Scherrer Institute performed a high-precision measurement of the rate of the basic electroweak process of nuclear muon capture by the proton, μ{sup -} + p → n + ν{sub μ}. The experimental approach was based on the use of a time projection chamber (TPC) that operated in pure hydrogen gas at a pressure of 10bar and functioned as an active muon stopping target. The TPC detected the tracks of individual muon arrivals in three dimensions, while the trajectories of outgoing decay (Michel) electrons were measured by two surrounding wire chambers and a plastic scintillation hodoscope. The muon and electron detectors together enabled a precise measurement of the μp atom's lifetime, from which the nuclear muon capture rate was deduced. The TPC was also used to monitor the purity of the hydrogen gas by detecting the nuclear recoils that follow muon capture by elemental impurities. This paper describes the TPC design and performance in detail. (orig.)

  12. Filter-based Aerosol Measurement Experiments using Spherical Aerosol Particles under High Temperature and High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Jung, Woo Young; Lee, Hyun Chul; Lee, Doo Young [FNC TECH., Yongin (Korea, Republic of)

    2016-05-15

    Optical Particle Counter (OPC) is used to provide real-time measurement of aerosol concentration and size distribution. Glass fiber membrane filter also be used to measure average mass concentration. Three tests (MTA-1, 2 and 3) have been conducted to study thermal-hydraulic effect, a filtering tendency at given SiO{sub 2} particles. Based on the experimental results, the experiment will be carried out further with a main carrier gas of steam and different aerosol size. The test results will provide representative behavior of the aerosols under various conditions. The aim of the tests, MTA 1, 2 and 3, are to be able to 1) establish the test manuals for aerosol generation, mixing, sampling and measurement system, which defines aerosol preparation, calibration, operating and evaluation method under high pressure and high temperature 2) develop commercial aerosol test modules applicable to the thermal power plant, environmental industry, automobile exhaust gas, chemical plant, HVAC system including nuclear power plant. Based on the test results, sampled aerosol particles in the filter indicate that important parameters affecting aerosol behavior aerosols are 1) system temperature to keep above a evaporation temperature of ethanol and 2) aerosol losses due to the settling by ethanol liquid droplet.

  13. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  14. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  15. Geochemical computer codes. A review

    International Nuclear Information System (INIS)

    Andersson, K.

    1987-01-01

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  16. A high-pressure MWPC detector for crystallography

    DEFF Research Database (Denmark)

    Ortuno-Prados, F.; Bazzano, A.; Berry, A.

    1999-01-01

    The application of the Multi-Wire Proportional Counter (MWPC) as a potential detector for protein crystallography and other wide-angle diffraction experiments is presented. Electrostatic problems found with our large area MWPC when operated at high pressure are discussed. We suggest that a solution...

  17. Validation of the WATEQ4 geochemical model for uranium

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite [UO 2 (OH) 2 . H 2 O], UO 2 (OH) 2 , and rutherfordine ((UO 2 CO 3 ) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions

  18. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, T.; Sano-Furukawa, A. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Komatsu, K. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Yamada, A. [University of Shiga Prefecture, Shiga 522-8533 (Japan); Inamura, Y.; Nakatani, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Seto, Y. [Graduate School of Science, Kobe University, Kobe 657-8501 (Japan); Nagai, T. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Utsumi, W. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Iitaka, T. [Computational Astrophysics Laboratory, RIKEN, Saitama 351-0198 (Japan); Kagi, H. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Katayama, Y. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Inoue, T. [Geodynamic Research Center, Ehime University, Matsuyama 790-8577 (Japan); Otomo, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 205-001 (Japan); Suzuya, K. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kamiyama, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 205-001 (Japan); Arai, M. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2015-04-21

    PLANET is a time-of-flight (ToF) neutron beamline dedicated to high-pressure and high-temperature experiments. The large six-axis multi-anvil high-pressure press designed for ToF neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators to eliminate parasitic scattering from the high-pressure cell assembly. The high performance of the diffractometer for the resolution (Δd/d~0.6%) and the accessible d-spacing range (0.2–8.4 Å) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions.

  19. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC

    International Nuclear Information System (INIS)

    Hattori, T.; Sano-Furukawa, A.; Arima, H.; Komatsu, K.; Yamada, A.; Inamura, Y.; Nakatani, T.; Seto, Y.; Nagai, T.; Utsumi, W.; Iitaka, T.; Kagi, H.; Katayama, Y.; Inoue, T.; Otomo, T.; Suzuya, K.; Kamiyama, T.; Arai, M.; Yagi, T.

    2015-01-01

    PLANET is a time-of-flight (ToF) neutron beamline dedicated to high-pressure and high-temperature experiments. The large six-axis multi-anvil high-pressure press designed for ToF neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators to eliminate parasitic scattering from the high-pressure cell assembly. The high performance of the diffractometer for the resolution (Δd/d~0.6%) and the accessible d-spacing range (0.2–8.4 Å) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions

  20. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  1. Study on flow regimes of high-pressure and dense-phase pneumatic conveying

    International Nuclear Information System (INIS)

    Lu Peng; Chen Xiaoping; Liang Cai; Pu Wenhao; Zhou Yun; Xu Pan; Zhao Changsui

    2009-01-01

    High-pressure and dense-phase pneumatic conveying of pulverized coal is a key technology in the field of large-scale entrained bed coal gasification. Flow regime plays an important role in two-phase flow because it affects not only flow behavior and safety operation, but also the reliability of practical processes. Few references and experiences in high-pressure and dense-phase conveying are available, especially for the flow regimes. And because of the high stickiness and electrostatic attraction of pulverized coal to the pipe wall, it is very difficult to make out the flow regimes in the conveying pipe by visualization method. Thus quartz powder was chosen as the conveyed material to study the flow regime. High-speed digital video camera was employed to photograph the flow patterns. Experiments were conducted on a pilot scale experimental setup at the pressure up to 3.6MPa. With the decrease in superficial gas velocity, three distinguishable flow regimes were observed: stratified flow, dune flow and plug flow. The characteristics of pressure traces acquired by high frequency response pressure transmitter and their EMD (Empirical Mode Decomposition) characteristics were correlated strongly with the flow regimes. Combining high-speed photography and pressure signal analysis together can make the recognition of flow patterns in the high-pressure and dense-phase pneumatic conveying system more accurate. The present work will lead to better understanding of the flow regime transition under high-pressure.

  2. High-pressure phase transitions - Examples of classical predictability

    Science.gov (United States)

    Celebonovic, Vladan

    1992-09-01

    The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.

  3. High-pressure pyrolysis and oxidation of ethanol

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob M.; Glarborg, Peter

    2018-01-01

    against the present data as well as ignition delay times and flame speed measurements from literature. The model predicted the onset of fuel conversion and the composition of products from the flow reactor experiments fairly well. It also predicted well ignition delays above 900 K whereas it overpredicted...... reported flame speeds slightly. The results of sensitivity analyses revealed the importance of the reaction between ethanol and the hydroperoxyl radical for ignition at high pressure and intermediate temperatures. An accurate determination of the rate coefficients for this reaction is important to improve......The pyrolysis and oxidation of ethanol has been investigated at temperatures of 600–900 K, a pressure of 50 bar and residence times of 4.3–6.8 s in a laminar flow reactor. The experiments, conducted with mixtures highly diluted in nitrogen, covered fuel-air equivalence ratios (Φ) of 0.1, 1.0, 43...

  4. Equation of state of liquid Indium under high pressure

    Directory of Open Access Journals (Sweden)

    Huaming Li

    2015-09-01

    Full Text Available We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  5. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Guodong Zhang

    2018-03-01

    Full Text Available With the development of energetic materials (EMs and microelectromechanical systems (MEMS initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size.

  6. A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition

    Science.gov (United States)

    Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.

    2017-12-01

    Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background and the uncertainty induced by the randomly initialized weights of neurons, leading to ineffective recognition of weak anomalies. In this paper, we introduce a spatially constrained multi-autoencoder (SCMA) approach for multivariate geochemical anomaly recognition, which includes two steps: spatial partitioning and anomaly score computation. The first step divides the study area into multiple sub-regions to segregate the geochemical background, by grouping the geochemical samples through K-means clustering, spatial filtering, and spatial constraining rules. In the second step, for each sub-region, a group of autoencoder neural networks are constructed with an identical structure but different initial weights on neurons. Each autoencoder is trained using the geochemical samples within the corresponding sub-region to learn the sub-regional geochemical background. The best autoencoder of a group is chosen as the final model for the corresponding sub-region. The anomaly score at each location can then be calculated as the euclidean distance between the observed concentrations and reconstructed concentrations of geochemical elements.The experiments using the geochemical data and Fe deposits in the southwestern Fujian province of China showed that our SCMA approach greatly improved the recognition of weak anomalies, achieving the AUC of 0.89, compared

  7. Superconductivity at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, N B; Ginzburg, N I

    1969-07-01

    Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.

  8. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    Science.gov (United States)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  9. Pressure relief experiments on a cyclindrical carbon brick tube

    International Nuclear Information System (INIS)

    Lang, H.; Weise, H.J.; Ennen, P.

    1978-08-01

    Pressure relief experiments have been carried out on a carbon brick tube. The outer diameter of the specimen was 580 mm, the inner diameter 280 mm, the length 800 mm. The experiments were made with helium at the temperature of the environment. The measurements were carried out in the pressure range from 15 upto 39 bar. The pressure loss was measured dependent on the initial pressure and on time at 5 positions uniformly distributed over the thickness of the tube wall and in the pressure vessel. The maximum pressure transients occurred amounted to approximately 60 bar/second. The maximum overpressure with respect to the environment which occurred in the carbon brick during the relief experiments was about 3.3 bar. The measurements distinctly showed the presence and the effects of inhomogeneities in the sample material. No damages or changes in the carbon brick, which could be regarded as a consequence of the experiments, were found. (orig./GSC) [de

  10. Summary report on geochemical barrier special study

    International Nuclear Information System (INIS)

    1988-12-01

    Long-term management of uranium mill tailings must provide assurance that soluble contaminants will not migrate beyond the Point of Compliance. Conventional management alternatives provide containment through the use of physical barriers which are designed to prevent migration of water through the tailings pile. An alternative is to geochemically modify the tailings to immobilize the contaminants. This investigation examined three potential geochemical modifiers to determine their ability to immobilize inorganic groundwater contaminants found in uranium mill tailings. These modifiers were hydrated lime (Ca(OH) 2 ), limestone (CaCO 3 ), and a sphaegnum peat moss. This investigation focused on both the geochemical interactions between the tailings and the modifiers, and the effects the modifiers had on the physical strength of the tailings. The geochemical investigations began with characterization of the tailings by X-ray diffraction and scanning electron microscopy. This was followed by batch leaching experiments in which various concentrations of each modifier were added to tailings in shaker flasks and allowed to come to equilibrium. Finally, column experiments were conducted to simulate flow through a tailings pile. The results show that all of the modifiers were at least moderately effective at immobilizing most of the groundwater contaminants of concern at uranium mill tailings sites. Hydrated lime was able to achieve 90 percent concentration reduction of arsenic, cadmium, selenium, uranium, and sulfate when added at a two percent concentration. Limestone was somewhat less effective and peat removed greater than 90 percent of arsenic, lead, uranium, and sulfate at a one percent concentration. The column tests showed that kinetic and/or mass transfer limitations are important and that sufficient time must be allowed for the immobilization reactions to occur

  11. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  12. Drilling and testing hot, high-pressure wells

    Energy Technology Data Exchange (ETDEWEB)

    MacAndrew, R. (Ranger Oil Ltd, Aberdeen (United Kingdom)); Parry, N. (Phillips Petroleum Company United Kingdom Ltd, Aberdeen (United Kingdom)); Prieur, J.M. (Conoco UK Ltd, Aberdeen (United Kingdom)); Wiggelman, J. (Shell UK Exploration and Production, Aberdeen (United Kingdom)); Diggins, E. (Brunei Shell Petroleum (Brunei Darussalam)); Guicheney, P. (Sedco Forex, Montrouge (France)); Cameron, D.; Stewart, A. (Dowell Schlumberger, Aberdeen (United Kingdom))

    Meticulous planning and careful control of operations are needed to safely drill and test high-temperature, high-pressure (HTHP) wells. Techniques, employed in the Central Graben in the UK sector of the North Sea, where about 50 HTHP wells have been drilled, are examined. Three main areas of activity are covered in this comprehensive review: drilling safety, casing and cementation, and testing. The three issues at the heart of HTHP drilling safety are kick prevention, kick detection and well control. Kicks are influxes of reservoir fluid into the well. Test equipment and operations are divided into three sections: downhole, subsea and surface. Also details are given of how this North Sea experience has been used to help plan a jackup rig modification for hot, high-pressure drilling off Brunei. 16 figs., 32 refs.

  13. High pressure neutron powder diffraction at LANSCE

    International Nuclear Information System (INIS)

    Von Dreele, R.B.

    1994-01-01

    By making use of the recently developed ''Paris-Edinburgh'' high pressure cell, the author has successfully performed neutron powder experiments to 10GPa at ambient temperature. Results for the structural compression of the high Tc 1223-Hg superconductor to 9.2 GPa, the compression and possible hydrogen bond formation in brucite, Mg(OD) 2 , to 9.3 GPa, and the molecular reorientation in nitromethane to 5.5 GPa will be presented

  14. Structural Modification of Platinum Model Systems under High Pressure CO Annealing

    DEFF Research Database (Denmark)

    McCarthy, David Norman; Strebel, Christian Ejersbo; Johansson, Tobias Peter

    2012-01-01

    relation between surface atom coordination, and the desorption temperature of CO. Investigation of these structural features was then made for CO dosing pressures in the mbar range. Intriguingly, from the mbar pressure experiments it was observed that elevated CO pressures enhanced the annealing of the Pt......Using temperature-programmed desorption experiments, we have studied the coordination dependent adsorption of CO on a platinum (Pt) single crystal, and mass-selected Pt nanoparticles in the size range of 3 to 11 nm, for CO dosing pressures in 10–7 mbar and mbar ranges. From low pressure CO...... adsorption experiments on the Pt(111) crystal, we establish a clear link between the degree of presputtering of the surface prior to CO adsorption, and the amount of CO bound at high temperature. It was found that for rougher surfaces, i.e., with more undercoordinated surface atoms, a feature appears...

  15. Research needs for coupling geochemical and flow models for nuclear waste isolation

    International Nuclear Information System (INIS)

    Pearson, F.J. Jr.

    1985-01-01

    An overview of coupling geochemical and flow models for nuclear waste disposal is presented and research needs are discussed. Topics considered include, chemical effects on flow, fluid and rock properties, pressure effects, water-rock equilibria, and reaction kinetics. 25 references

  16. Ab Initio Predictions of K, He and Ar Partitioning Between Silicate Melt and Liquid Iron Under High Pressure

    Science.gov (United States)

    Xiong, Z.; Tsuchiya, T.

    2017-12-01

    Element partitioning is an important property in recording geochemical processes during the core-mantle differentiation. However, experimental measurements of element partitioning coefficients under extreme temperature and pressure condition are still challenging. Theoretical modeling is also not easy, because it requires estimation of high temperature Gibbs free energy, which is not directly accessible by the standard molecular dynamics method. We recently developed an original technique to simulate Gibbs free energy based on the thermodynamics integration method[1]. We apply it to element partitioning of geochemical intriguing trace elements between molten silicate and liquid iron such as potassium, helium and argon as starting examples. Radiogenic potassium in the core can provide energy for Earth's magnetic field, convection in the mantle and outer core[2]. However, its partitioning behavior between silicate and iron remains unclear under high pressure[3,4]. Our calculations suggest that a clear positive temperature dependence of the partitioning coefficient but an insignificant pressure effect. Unlike sulfur and silicon, oxygen dissolved in the metals considerably enhances potassium solubility. Calculated electronic structures reveal alkali-metallic feature of potassium in liquid iron, favoring oxygen with strong electron affinity. Our results suggest that 40K could serve as a potential radiogenic heat source in the outer core if oxygen is the major light element therein.­­ We now further extend our technique to partitioning behaviors of other elements, helium and argon, to get insides into the `helium paradox' and `missing argon' problems. References [1] T. Taniuchi, and T. Tsuchiya, Phys.Rev.B. In press [2] B.A. Buffett, H.E. Huppert, J.R. Lister, and A.W. Woods, Geophys.Res.Lett. 29 (1996) 7989-8006. [3] V.R. Murthy, W. Westrenen, and Y. Fei, Nature. 426 (2003) 163-165. [4] A. Corgne, S.Keshav, Y. Fei, and W.F. McDonough, Earth.Planet.Sci.Lett. 256 (2007

  17. A STUDY OF THE PRESSURE SOLUTION AND DEFORMATION OF QUARTZ CRYSTALS AT HIGH pH AND UNDER HIGH STRESS

    Directory of Open Access Journals (Sweden)

    JUNG-HAE CHOI

    2013-02-01

    Full Text Available Bentonite is generally used as a buffer material in high-level radioactive waste disposal facilities and consists of 50% quartz by weight. Quartz strongly affects the behavior of bentonite over very long periods. For this reason, quartz dissolution experiment was performed under high-pressure and high-alkalinity conditions based on the conditions found in a high-level radioactive waste disposal facility located deep underground. In this study, two quartz dissolution experiments were conducted on 1 quartz beads under low-pressure and high-alkalinity conditions and 2 a single quartz crystal under high-pressure and high-alkalinity conditions. Following the experiments, a confocal laser scanning microscope (CLSM was used to observe the surfaces of experimental samples. Numerical analyses using the finite element method (FEM were also performed to quantify the deformation of contact area. Quartz dissolution was observed in both experiments. This deformation was due to a concentrated compressive stress field, as indicated by the quartz deformation of the contact area through the FEM analysis. According to the numerical results, a high compressive stress field acted upon the neighboring contact area, which showed a rapid dissolution rate compared to other areas of the sample.

  18. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  19. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Parents / Hypertension (High Blood Pressure) What's ... High Blood Pressure) Treated? Print What Is Hypertension (High Blood Pressure)? Blood pressure is the pressure of blood against ...

  20. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  1. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Science.gov (United States)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  2. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  3. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  4. Research experiments on pressure-difference sensors with ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Ruican, Hao, E-mail: haoruican@163.com [School of Mechanical Engineering, Beijing Polytechnic, Beijing 100176 (China); Huagang, Liu; Wen, Gong; Na, Zhang [School of Mechanical Engineering, Beijing Polytechnic, Beijing 100176 (China); Ruixiao, Hao [Civil and Architectural Engineering Institute of CCCC-FHEB Co., Ltd., Beijing 101102 (China)

    2016-10-15

    Ferrofluid has distinctive properties and can be applied in many industrial uses, especially in sensors. The principles of pressure-difference sensors with ferrofluid were illustrated and experiments were demonstrated. Four types of ferrofluids with different concentrations were selected for the experiments performed. Then, the parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. Four U tubes with different diameters were designed and built. Experiments were conducted to analyze the impacts of tube diameter and ferrofluid concentration on the output voltage/pressure difference performance. According to the experiment results, the tube diameter has little effect on the sensor output voltage. With the concentration of ferrofluid increasing, the output voltage and sensitivity of the pressure-difference sensor increases. The measurable range of the sensor also increases with the increasing concentration of ferrofluid. The workable range and the sensitivity of the designed sensor were (−2000~+2000)Pa and 1.26 mV/Pa, respectively. - Highlights: • The principle of pressure difference sensor with ferrofluid was illustrated. • The parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. • Four series of U tubes with different diameter were designed and manufactured. • The experiments were made to analyze the factors of the tube diameter and the concentration of ferrofluid on the output-input pressure difference. • The sensitivity of the pressure difference sensor with ferrofluid was studied and the corresponding conclusions were obtained.

  5. Research experiments on pressure-difference sensors with ferrofluid

    International Nuclear Information System (INIS)

    Ruican, Hao; Huagang, Liu; Wen, Gong; Na, Zhang; Ruixiao, Hao

    2016-01-01

    Ferrofluid has distinctive properties and can be applied in many industrial uses, especially in sensors. The principles of pressure-difference sensors with ferrofluid were illustrated and experiments were demonstrated. Four types of ferrofluids with different concentrations were selected for the experiments performed. Then, the parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. Four U tubes with different diameters were designed and built. Experiments were conducted to analyze the impacts of tube diameter and ferrofluid concentration on the output voltage/pressure difference performance. According to the experiment results, the tube diameter has little effect on the sensor output voltage. With the concentration of ferrofluid increasing, the output voltage and sensitivity of the pressure-difference sensor increases. The measurable range of the sensor also increases with the increasing concentration of ferrofluid. The workable range and the sensitivity of the designed sensor were (−2000~+2000)Pa and 1.26 mV/Pa, respectively. - Highlights: • The principle of pressure difference sensor with ferrofluid was illustrated. • The parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. • Four series of U tubes with different diameter were designed and manufactured. • The experiments were made to analyze the factors of the tube diameter and the concentration of ferrofluid on the output-input pressure difference. • The sensitivity of the pressure difference sensor with ferrofluid was studied and the corresponding conclusions were obtained.

  6. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  7. Check experiment of the high pressure water washing technology used to the decommissioning of reactor

    International Nuclear Information System (INIS)

    Han Jianping; Hou Yongming; Fu Yunshan

    2004-01-01

    High pressure water washing technology has been widely applied in the field of the decommissioning of nuclear facilities, and it is used to wash the sump for craft conveyance, the craft workshop, the hermetic sump, and some other nuclear equipment as well. The authors have got a set of technical data correlated with high pressure water washing technology by comparing the situations between the test before and after the washing work. At the same time, authors also improve the technique on some special cases, which made the high pressure water washing technology more perfect in the field of the decommissioning of nuclear facilities. (authors)

  8. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  9. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  10. A High-Pressure Bi-Directional Cycloid Rotor Flowmeter

    Directory of Open Access Journals (Sweden)

    Shuo Liu

    2014-08-01

    Full Text Available The measurement of the flow rate of various liquids and gases is critical in industrial automation. Rotary positive displacement meters (rotary PD meters are highly accurate flowmeters that are widely employed in engineering applications, especially in custody transfer operations and hydraulic control systems. This paper presents a high pressure rotary PD meter containing a pair of internal cycloid rotors. It has the advantages of concise structure, low pressure loss, high accuracy and low noise. The curve of the internal rotor is designed as an equidistant curtate epicycloid curve with the external rotor curve as its conjugate. The calculation method used to determine the displacement of the cycloid rotor flowmeter is discussed. A prototype was fabricated, and experiments were performed to confirm measurements over a flow range of 1–100 L/min with relative errors of less than ±0.5%. The pressure loss through the flowmeter was about 3 bar at a flow rate of 100 L/min.

  11. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  12. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  13. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1988-04-01

    Discharge of the molten core debris from a pressurized reactor vessel has been recognized as an important accident scenario for pressurized water reactors. Recent high-pressure melt streaming experiments conducted at Sandia National Laboratories, designed to study cavity and containment events related to melt ejection, have resulted in two important observations: (1) Expansion and breakup of the ejected molten jet. (2) Significant aerosol generation during the ejection process. The expansion and breakup of the jet in the experiments are attributed to rapid evolution of the pressurizing gas (nitrogen or hydrogen) dissolved in the melt. It has been concluded that aerosol particles may be formed by condensation of melt vapor and mechanical breakup of the melt and generation. It was also shown that the above stated phenomena are likely to occur in reactor accidents. This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals, and gas bubble nucleation in molten metals are relevant problems that are addressed in this work

  14. Using Omega and NIF to Advance Theories of High-Pressure, High-Strain-Rate Tantalum Plastic Flow

    Science.gov (United States)

    Rudd, R. E.; Arsenlis, A.; Barton, N. R.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Orlikowski, D. A.; Park, H.-S.; Prisbrey, S. T.; Remington, B. A.; Wehrenberg, C. E.

    2015-11-01

    Precisely controlled plasmas are playing an important role as both pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theory, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum and vanadium starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on up to full scale. High-energy laser platforms such as the NIF and the Omega laser probe ramp-compressed strength to 1-5 Mbar. The predictions of the multiscale model agree well with the 1 Mbar experiments without tuning. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions; for example, the familiar strengthening of metals as the grain size is reduced has been shown not to occur in the high pressure experiments. Work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Lab under contract DE-AC52-07NA273.

  15. On the electronic structure and equation of state in high pressure ...

    Indian Academy of Sciences (India)

    We discuss the high pressure behaviour of zinc as an interesting example of controversy, and of extensive interplay between theory and experiment. We present its room temperature electronic structure calculations to study the temperature effect on the occurrence of its controversial axial ratio (/) anomaly under pressure ...

  16. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  17. High blood pressure - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  18. The geochemical atlas of Alaska, 2016

    Science.gov (United States)

    Lee, Gregory K.; Yager, Douglas B.; Mauk, Jeffrey L.; Granitto, Matthew; Denning, Paul; Wang, Bronwen; Werdon, Melanie B.

    2016-06-21

    A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of heterogeneity and deficiencies in these data presented major challenges to our development of coherently integrated datasets for modeling and mapping of element distributions. Researchers from many different organizations and disparate scientific studies collected samples that were analyzed using highly variable methods throughout a time period of more than 50 years, during which many changes in analytical techniques were developed and applied. Despite these challenges, the U.S. Geological Survey has produced a new systematically integrated compilation of sediment and soil geochemical data with an average sample site density of approximately 1 locality per 10 square kilometers (km2) for the entire State of Alaska, although density varies considerably among different areas. From that compilation, we have modeled and mapped the distributions of 68 elements, thus creating an updated geochemical atlas for the State.

  19. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  20. Propane Oxidation at High Pressure and Intermediate Temperatures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    Propane oxidation at intermediate temperatures (500—900 K) and high pressure (100 bar) has been characterized by conducting experiments in a laminar flow reactor over a wide range of stoichiometries. The onset of fuel oxidation was found to be 600—725 K, depending on mixture stoichiometry...

  1. Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy

    Science.gov (United States)

    Chiodini, Giovanni; Marini, Luigi; Russo, Massimo

    2001-07-01

    A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H 2O and CO 2 as major components, followed by H 2, H 2S, N 2, CH 4, and CO (in order of decreasing contents) and undetectable SO 2, HCl, and HF. Fumarolic H 2O is either meteoric water enriched in 18O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO 2 is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO 2 is also possible. All investigated gas species (H 2O, CO 2, CO, CH 4, H 2, H 2S, N 2, and NH 3) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H 2-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ˜14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2-52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.

  2. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  3. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A.

    2006-01-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  4. Revealing properties of single-walled carbon nanotubes under high pressure

    CERN Document Server

    Tang Jie; Sasaki, T; Yudasaka, M; Matsushita, A; Iijima, S

    2002-01-01

    It was found by the x-ray diffraction experiment under hydrostatic pressure that the carbon nanotubes are compressed easily with a high volume compressibility of 0.024 GPa sup - sup 1. The single-walled carbon nanotubes are polygonized when they form bundles of hexagonal close-packed structure and the inter-tubular gap is smaller than the equilibrium spacing of graphite. Under high pressure, further polygonization occurs to accommodate the extra amount of volume reduction. The ratio of the short and the long diagonals in the hexagonalized cross section is found to have changed from 0.991 at zero pressure to 0.982 at 1.5 GPa pressure, when the Bragg reflection from the nanotube lattice diminished. Accompanying polygonization, a discontinuous change in electrical resistivity was observed at 1.5 GPa pressure, suggesting a phase transition had occurred.

  5. Pressurized-thermal-shock experiments with thick vessels

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1986-01-01

    Information is provided on the series of pressurized-thermal-shock experiments at the Oak Ridge National Laboratory, motivated by a concern for the behavior of flaws in reactor pressure vessels having welds or shells exhibiting low upper-shelf Charpy impact energies, approx. 68J or less

  6. Fast pressure measurements for the TMX-U fusion experiment

    International Nuclear Information System (INIS)

    Hunt, A.L.; Coffield, F.E.; Pickles, W.L.

    1982-01-01

    The pressure on the boundary of the Lawrence Livermore National Laboratory's (LLNL) tandem mirror (TMX-U) plasma experiment is difficult to trace for several reasons: (1) the TMX-U boundary is in the high vacuum range (10 -5 to 10 -6 Pa) and requires an ionization gauge; (2) the boundary includes high-energy neutral particles and radiation, so the gauge must be optically baffled from the plasma; (3) the gauge must be shielded from the magnetic flux density of 0.03 T; (4) maximum conductance to the gauge must be preserved so that the time response remains about 1 ms; (5) a fast electrical circuit is required to measure the small ion-current changes at a rate consistent with the geometrical and experimental time constant of 1 ms. We have developed solutions to these limitations, including fast ionization gauge (FIG) circuitry for the remote gauge operation and the CAMAC system for recording the pressure-time history in the TMX-U computer data base. We also give some examples of actual fast pressure histories during plasma operation

  7. Psoriasis and high blood pressure.

    Science.gov (United States)

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  8. High-pressure torsion of hafnium

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  9. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  10. Electrical behavior of Ca, Sr, Ba, and Eu at very high pressures and low temperatures

    International Nuclear Information System (INIS)

    Bundy, F.P.; Dunn, K.J.

    1981-01-01

    Compression of Ca and Sr initially causes an increase in resistivity, probably because of uncrossing of conduction and valence bands. Then at about 180 kbar for Ca and about 35 kbar for Sr the resistivity drops quite abruptly, following which the resistivity again increases with additional pressure, similar to the behavior of Ba starting at room pressure. The high pressure forms of Ba have already been reported to be superconducting, and the experiments confirm this. Superconductivity appears in Sr at about 350 kbar and develops strongly at higher pressures. In the 440 kbar experiment on Ca a resistance drop started at the lower threshold of the temperature capability, 2.1K, suggesting that Ca, too, becomes superconducting at sufficiently high pressures. The high pressure form of Eu above 125 kbar was tested for superconductivity down to 2.2K with negative results. (Auth.)

  11. High-pressure powder X-ray diffraction at the turn of the century

    International Nuclear Information System (INIS)

    Paszkowicz, W.

    2002-01-01

    Studies at extreme pressures and temperatures are helpful for understanding the physical properties of the solid state, including such classes of materials as semiconductors, superconductors or minerals. This is connected with the opportunity of tuning the pressure by many orders of magnitude. Diamond-anvil and large-anvil pressure cells installed at dedicated synchrotron beamlines are efficient tools for examination of crystal structure, equation of state, compressibility and phase transitions. One of basic methods in such studies is powder diffraction. This review is devoted to methods of powder X-ray diffraction at high-pressures generated by devices installed at synchrotron radiation sources, in particular to the principles of operation of high-pressure-high-temperature cells. General information on high-pressure diffraction facilities installed at 11 synchrotron storage rings in the world is provided. Measurement aspects are considered, including (i) pressure generation and calibration, (ii) strain in the sample, the pressure marker and the pressure-transmitting medium and (iii) pressure and temperature distributions within the cells. Sources of interest in high-pressure diffraction studies (design of new materials, observation of new phenomena, confrontation of theory with experiment) are briefly discussed. Recent developments of high-pressure methods make that pressure becomes a variable playing a key role in investigation of condensed matter. The paper ends with some remarks on the possible future developments of the technique

  12. Multipurpose high-pressure high-temperature diamond-anvil cell with a novel high-precision guiding system and a dual-mode pressurization device

    Science.gov (United States)

    Pippinger, Thomas; Miletich, Ronald; Burchard, Michael

    2011-09-01

    A novel diamond-anvil cell (DAC) design has been constructed and tested for in situ applications at high-pressure (HP) operations and has proved to be suitable even for HP sample environments at non-ambient temperature conditions. The innovative high-precision guiding mechanism, comparable to a dog clutch, consists of perpendicular planar sliding-plane elements and is integrated directly into the base body of the cylindrically shaped DAC. The combination of two force-generating devices, i.e., mechanical screws and an inflatable gas membrane, allows the user to choose independently between, and to apply individually, two different forcing mechanisms for pressure generation. Both mechanisms are basically independent of each other, but can also be operated simultaneously. The modularity of the DAC design allows for an easy exchange of functional core-element groups optimized not only for various analytical in situ methods but also for HP operation with or without high-temperature (HT) application. For HP-HT experiments a liquid cooling circuit inside the specific inner modular groups has been implemented to obtain a controlled and limited heat distribution within the outer DAC body.

  13. Crosslinking polymerization of tetraethylene glycol dimethacrylate under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Bogoslovov, R; Roland, C M [Chemistry Division, Code 6120, Naval Research Laboratory, Washington DC 20375-5342 (United States)], E-mail: kaminski@us.edu.pl

    2008-07-15

    The polymerization reaction of tetraethylene glycol dimethacrylate was induced by application of high pressure. Broadband dielectric spectroscopy was employed to investigate dielectric properties of the produced polymers. Additionally swelling experiment was performed to determine the degree of crossliniking of the polymers.

  14. Review of modern instrumentation for magnetic measurements at high pressure and low temperature

    International Nuclear Information System (INIS)

    Wang, X.; Kamenev, K.V.

    2015-01-01

    High-pressure magnetic susceptibility experiments can provide insights into the changes in magnetic behavior and electric properties which can accompany extreme compressions of material. Instrumentation plays an important role in the experimental work in this field since 1990s. Here we present a comprehensive review of the high-pressure instrumentation development for magnetic measurement from the engineering perspective in the last 20 years. Suitable nonmagnetic materials for high pressure cell are introduced initially. Then we focus on the existing cells developed for magnetic property measurement system (MPMS) SQUID magnetometer from Quantum Design (USA). Two categories of high pressure cells for this system are discussed in detail respectively. Some high pressure cells with built-in magnetic measurement system are also reviewed

  15. Long-Term CO2 Exposure Experiments - Geochemical Effects on Brine-Saturated Reservoir Sandstone

    Science.gov (United States)

    Fischer, Sebastian; Zemke, Kornelia; Liebscher, Axel; Wandrey, Maren

    2010-05-01

    The injection of CO2 into deep saline aquifers is the most promising strategy for the reduction of CO2 emissions to the atmosphere via long-term geological storage. The study is part of the CO2SINK project conducted at Ketzin, situated 40 km west of Berlin. There, food grade CO2 has been pumped into the Upper Triassic Stuttgart Formation since June 2008. The main objective of the experimental program is to investigate the effects of long-term CO2 exposure on the physico-chemical properties of the reservoir rock. To achieve this goal, core samples from observation well Ktzi 202 have been saturated with synthetic brine and exposed to CO2 in high quality steel autoclaves at simulated reservoir P-T-conditions of 5.5 MPa and 40 ° C. The synthetic brine had a composition representative of the formation fluid (Förster et al., 2006) of 172.8 g/l NaCl, 8.0 g/l MgCl2×2H2O, 4.8 g/l CaCl2×2H2O and 0.6 g/l KCl. After 15 months, the first set of CO2-exposed samples was removed from the pressure vessels. Thin sections, XRD, SEM as well as EMP data were used to determine the mineralogical features of the reservoir rocks before and after the experiments. Additionally, NMR relaxation and MP was performed to measure poroperm and pore size distribution values of the twin samples. The analyzed samples are fine- to medium grained, moderately well- to well sorted and weakly consolidated sandstones. Quartz and plagioclase are the major components, while K-feldspar, hematite, white & dark mica, chlorite and illite are present in minor and varying amounts. Cements are composed of analcime, dolomite and anhydrite. Some samples show mm- to cm-scale cross-beddings. The laminae comprise lighter, quartz- and feldspar-dominated layers and dark-brownish layers with notably less quartz and feldspars. The results are consistent with those of Blaschke et al. (2008). The plagioclase composition indicates preferred dissolution of the Ca-component and a trend toward albite-rich phases or even pure

  16. A Spectacular Experiment Exhibiting Atmospheric Pressure

    Science.gov (United States)

    Le Noxaïc, Armand

    2014-01-01

    The experiment described here is fairly easy to reproduce and dramatically shows the magnitude of ambient air pressure. Two circular plates of aluminum are applied one against the other. How do you make their separation very difficult? With only the help of an elastic band! You don't have to use a vacuum pump for this experiment.

  17. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  18. Improvement in motor performance during high pressure pump starting at NDDP, Kalpakkam

    International Nuclear Information System (INIS)

    Nagaraj, R.; Murugan, V.; Thalor, K.L.; Saxena, A.K.; Dangore, A.Y.; Prabhakar, S.; Tiwari, P.K.

    2007-01-01

    The major energy requirement required for a Sea Water Reverse Osmosis is in the form of Electrical Energy. The primary energy requirement in the process is the electrical energy fed to High Pressure Pumps to pressurize the feed sea water to membranes. This High pressure pump being a high inertia load requires very high torque at the time of starting. This high starting torque requirement results in increased acceleration time of the motor which subsequently increases the strain on the upstream electrical system from motor feeder to transformer. Such starting characteristic necessitates provision of special starting scheme for the high pressure pump motors. Sea water reverse osmosis (SWRO) plant of Nuclear Desalination Demonstration Project (NDDP) was commissioned in October 2002 at Kalpakkam, India. This paper presents the experiences of problems faced due to the typical starting characteristics of High Pressure pumps and provision of series reactor type motor starter for the same. (author)

  19. High pressure experimental studies on Na3Fe(PO4)(CO3) and Na3Mn(PO4)(CO3): Extensive pressure behaviors of carbonophosphates family

    Science.gov (United States)

    Gao, Jing; Huang, Weifeng; Wu, Xiang; Qin, Shan

    2018-04-01

    Carbon-bearing phases in the Earth's interior have profound implications for the long-term Earth carbon cycle. Here we investigate high-pressure behaviors of carbonophosphates bonshtedtite Na3Fe(PO4)(CO3) and sidorenkite Na3Mn(PO4)(CO3) in diamond anvil cells up to ∼12 GPa at room temperature. Modifications in in situ synchrotron X-ray diffraction patterns and Raman spectra confirm the structural stability of carbonophosphates within the pressure region. Fitting the third-order Birch-Murnaghan equation of state to the volume compression curve, the isothermal bulk modulus parameters are obtained to be K0 = 56(1) GPa, K0' = 3.3(1), V0 = 303.3(3) Å3 for Na3Fe(PO4)(CO3) and K0 = 54(1) GPa, K0' = 3.4(1), V0 = 313.4(2) Å3 for Na3Mn(PO4)(CO3). Crystallographic axes exhibit an elastic anisotropy with a more compressible c-axis relative to the ab-plane. An inverse linear correlation between the K0 value and the ionic radius of M2+ (M = Mg, Fe, Mn) is well determined for carbonophosphates. The pressure-dependence responsiveness of [PO4] and [CO3] in carbonophosphates show a negative relationship to the M2+ radius. We also discussed the effect of [PO4] group on the structural variations and high-pressure behaviors of carbonates. Furthermore, the geochemical properties of carbonophosphates hold implications to diamond genesis.

  20. Methods for geochemical analysis

    Science.gov (United States)

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  1. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  2. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  3. In-situ Diffraction Study of Magnetite at Simultaneous High Pressure and High Temperature Using Synchrotron Radiation

    Science.gov (United States)

    Wang, L.; Zhang, J.; Wang, S.; Chen, H.; Zhao, Y.

    2014-12-01

    Magnetite intertwined with the evolution of human civilizations, and remains so today. It is technologically and scientifically important by virtue of its unique magnetic and electrical properties. Magnetite is a common mineral found in a variety of geologic environments, and plays an important role in deciphering the oxygen evolution in the Earth's atmosphere and its deep interiors. The latter application asks for the knowledge of the thermal and elastic properties of magnetite at high pressures and temperatures, which is currently not available in literature. We have carried out a few in-situ diffraction experiments on magnetite using white synchrotron radiation at beamline X17B2 of National Synchrotron Light Source (NSLS). A DIA module in an 1100-ton press and WC anvils were employed for compression, and diffraction spectra were collected at simultaneous high pressures (P) and temperatures (T) (up to 9 GPa and 900 oC). Mixture of amorphous boron and epoxy resin was used as pressure medium, and NaCl as pressure marker. Temperature was recorded by W-Re thermocouples. Commercially purchased magnetite powder and a mixture of the said powder and NaCl (1:1) were used as starting material in separate experiments. Preliminary data analyses have yielded following observations: (1) Charge disordering seen at ambient pressure remains active in current experiments, especially at lower pressures (reversibility and degree of cation disordering depend on the starting material and/or experimental P-T path; and (4) cation disordering notably reduces the apparent bulk moduli of magnetite.

  4. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  5. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  6. Warm pre-stress experiments on highly irradiated reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Landron, C.; Ait-Bachir, M.; Moinereau, D.; Molinie, E.; Garbay, E.

    2015-01-01

    In the aim to justify in-service integrity of reactor pressure vessel beyond 40 years, experimental warm pre-stress (WPS) tests were performed on irradiated materials representative of RPV steels corresponding to 40 operating years. Different types of WPS loading path have been considered to cover typical postulated accidental transients. These results confirmed the beneficial effect of WPS on the cleavage fracture resistance of the irradiated materials. No fracture occurred during the cooling phase of the loading path and the fracture toughness values are higher than that measured with conventional isothermal tests. The analyses of the experiments, conducted using either simplified engineering models or more refined fracture models based on local approach to cleavage fracture, are in agreement with the experimental results. (authors)

  7. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons

  8. High pressure inertial focusing for separating and concentrating bacteria at high throughput

    Science.gov (United States)

    Cruz, J.; Hooshmand Zadeh, S.; Graells, T.; Andersson, M.; Malmström, J.; Wu, Z. G.; Hjort, K.

    2017-08-01

    Inertial focusing is a promising microfluidic technology for concentration and separation of particles by size. However, there is a strong correlation of increased pressure with decreased particle size. Theory and experimental results for larger particles were used to scale down the phenomenon and find the conditions that focus 1 µm particles. High pressure experiments in robust glass chips were used to demonstrate the alignment. We show how the technique works for 1 µm spherical polystyrene particles and for Escherichia coli, not being harmful for the bacteria at 50 µl min-1. The potential to focus bacteria, simplicity of use and high throughput make this technology interesting for healthcare applications, where concentration and purification of a sample may be required as an initial step.

  9. Determining pH at elevated pressure and temperature using in situ ¹³C NMR.

    Science.gov (United States)

    Surface, J Andrew; Wang, Fei; Zhu, Yanzhe; Hayes, Sophia E; Giammar, Daniel E; Conradi, Mark S

    2015-02-03

    We have developed an approach for determining pH at elevated pressures and temperatures by using (13)C NMR measurements of inorganic carbon species together with a geochemical equilibrium model. The approach can determine in situ pH with precision better than 0.1 pH units at pressures, temperatures, and ionic strengths typical of geologic carbon sequestration systems. A custom-built high pressure NMR probe was used to collect (13)C NMR spectra of (13)C-labeled CO2 reactions with NaOH solutions and Mg(OH)2 suspensions at pressures up to 107 bar and temperatures of 80 °C. The quantitative nature of NMR spectroscopy allows the concentration ratio [CO2]/[HCO3(-)] to be experimentally determined. This ratio is then used with equilibrium constants calculated for the specific pressure and temperature conditions and appropriate activity coefficients for the solutes to calculate the in situ pH. The experimentally determined [CO2]/[HCO3(-)] ratios agree well with the predicted values for experiments performed with three different concentrations of NaOH and equilibration with multiple pressures of CO2. The approach was then applied to experiments with Mg(OH)2 slurries in which the change in pH could track the dissolution of CO2 into solution, rapid initial Mg(OH)2 dissolution, and onset of magnesium carbonate precipitation.

  10. Flow instability research on steam generator with straight double-walled heat transfer tube for FBR. Pressure drop under high pressure condition

    International Nuclear Information System (INIS)

    Liu, Wei; Tamai, Hidesada; Yoshida, Hiroyuki; Takase, Kazuyuki; Hayafune, Hiroki; Futagami, Satoshi; Kisohara, Naoyuki

    2008-01-01

    For the Steam Generator (SG) with straight double-walled heat transfer tube that used in sodium cooled Faster Breeder Reactor, flow instability is one of the most important items need researching. As the first step of the research, thermal hydraulics experiments were performed under high pressure condition in JAEA with using a straight tube. Pressure drop, heat transfer coefficients and void fraction data were derived. This paper evaluates the pressure drop data with TRAC-BF1 code. The Pffan's correlation for single phase flow and the Martinelli-Nelson's two-phase flow multiplier are found can be well predicted the present pressure drop data under high pressure condition. (author)

  11. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  12. Comparison of Diesel Spray Combustion in Different High-temperature, High-pressure Facilities

    DEFF Research Database (Denmark)

    Pickett, Lyle M.; Genzale, Caroline L.; Bruneaux, Gilles

    2010-01-01

    Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models...... participants in the ECN. Thus, in addition to the presentation of a comparative study, this paper demonstrates steps that are needed for other interested groups to participate in ECN spray research. We expect that this collaborative effort will generate a high-quality dataset to be used for advanced...

  13. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Directory of Open Access Journals (Sweden)

    Yoko eOhtomo

    2013-12-01

    Full Text Available Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in situ pressure (0–100 MPa and temperature (0–70°C conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to

  14. Application of high-power lasers to equation-of-state research at ultrahigh pressures

    International Nuclear Information System (INIS)

    Trainor, R.J.; Graboske, H.C.; Long, K.S.; Shaner, J.W.

    1978-01-01

    The application of high-power pulsed lasers to ultrahigh pressure equation-of-state (EOS) experiments is discussed. It is shown that pressures along the principal Hugoniot between 1 and 10 TPa can be produced with existing lasers used for inertial-confinement fusion research. The relevance of measurements in this pressure regime to improving our understanding of condensed matter physics is also discussed. New experimental techniques as well as potential experimental problems are described, and EOS experiments on the Janus and Argus laser systems are proposed

  15. Structural stability of high entropy alloys under pressure and temperature

    DEFF Research Database (Denmark)

    Ahmad, Azkar S.; Su, Y.; Liu, S. Y.

    2017-01-01

    The stability of high-entropy alloys (HEAs) is a key issue before their selection for industrial applications. In this study, in-situ high-pressure and high-temperature synchrotron radiation X-ray diffraction experiments have been performed on three typical HEAs Ni20Co20Fe20Mn20Cr20, Hf25Nb25Zr25Ti...

  16. Laboratory batch experiments and geochemical modelling of water-rock-supercritical CO2 reactions in Southern San Joaquin Valley, California oil field sediments: Implications for future carbon capture and sequestration projects.

    Science.gov (United States)

    Mickler, P. J.; Rivas, C.; Freeman, S.; Tan, T. W.; Baron, D.; Horton, R. A.

    2015-12-01

    Storage of CO2 as supercritical liquid in oil reservoirs has been proposed for enhanced oil recovery and a way to lower atmospheric CO2 levels. The fate of CO2 after injection requires an understanding of mineral dissolution/precipitation reactions occurring between the formation minerals and the existing formation brines at formation temperatures and pressures in the presence of supercritical CO2. In this study, core samples from three potential storage formations, the Vedder Fm. (Rio Bravo oil field), Stevens Fm. (Elk Hills oil field) and Temblor Fm. (McKittrick oil field) were reacted with a synthetic brine and CO2(sc) at reservoir temperature (110°C) and pressure (245-250 bar). A combination of petrographic, SEM-EDS and XRD analyses, brine chemistry, and PHREEQ-C modelling were used to identify geochemical reactions altering aquifer mineralogy. XRD and petrographic analyses identified potentially reactive minerals including calcite and dolomite (~2%), pyrite (~1%), and feldspars (~25-60%). Despite the low abundance, calcite dissolution and pyrite oxidation were dominant geochemical reactions. Feldspar weathering produced release rates ~1-2 orders of magnitude slower than calcite dissolution. Calcite dissolution increased the aqueous concentrations of Ca, HCO3, Mg, Mn and Sr. Silicate weathering increased the aqueous concentrations of Si and K. Plagioclase weathering likely increased aqueous Ca concentrations. Pyrite oxidation, despite attempts to remove O2 from the experiment, increased the aqueous concentration of Fe and SO4. SEM-EDS analysis of post-reaction samples identified mixed-layered illite-smectites associated with feldspar grains suggesting clay mineral precipitation in addition to calcite, pyrite and feldspar dissolution. The Vedder Fm. sample underwent complete disaggregation during the reaction due to cement dissolution. This may adversely affect Vedder Formation CCS projects by impacting injection well integrity.

  17. TAPIR--Finnish national geochemical baseline database.

    Science.gov (United States)

    Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael

    2010-09-15

    In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various

  18. Predictive geochemical mapping using environmental correlation

    International Nuclear Information System (INIS)

    Wilford, John; Caritat, Patrice de; Bui, Elisabeth

    2016-01-01

    The distribution of chemical elements at and near the Earth's surface, the so-called critical zone, is complex and reflects the geochemistry and mineralogy of the original substrate modified by environmental factors that include physical, chemical and biological processes over time. Geochemical data typically is illustrated in the form of plan view maps or vertical cross-sections, where the composition of regolith, soil, bedrock or any other material is represented. These are primarily point observations that frequently are interpolated to produce rasters of element distributions. Here we propose the application of environmental or covariate regression modelling to predict and better understand the controls on major and trace element geochemistry within the regolith. Available environmental covariate datasets (raster or vector) representing factors influencing regolith or soil composition are intersected with the geochemical point data in a spatial statistical correlation model to develop a system of multiple linear correlations. The spatial resolution of the environmental covariates, which typically is much finer (e.g. ∼90 m pixel) than that of geochemical surveys (e.g. 1 sample per 10-10,000 km 2 ), carries over to the predictions. Therefore the derived predictive models of element concentrations take the form of continuous geochemical landscape representations that are potentially much more informative than geostatistical interpolations. Environmental correlation is applied to the Sir Samuel 1:250,000 scale map sheet in Western Australia to produce distribution models of individual elements describing the geochemical composition of the regolith and exposed bedrock. As an example we model the distribution of two elements – chromium and sodium. We show that the environmental correlation approach generates high resolution predictive maps that are statistically more accurate and effective than ordinary kriging and inverse distance weighting interpolation

  19. Progress in evaluation of radionuclide geochemical information developed by DOE high-level nuclear waste repository site projects

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; O'Kelley, G.D.; Case, F.I.; Land, J.F.

    1989-08-01

    Information that is being developed by projects within the Department of Energy (DOE) pertinent to the potential geochemical behavior of radionuclides at candidate sites for a high-level radioactive waste repository is being evaluated by Oak Ridge National Laboratory (ORNL) for the Nuclear Regulatory Commission (NRC). During this report period, all experiments were conducted with tuff from the proposed high-level nuclear waste site at Yucca Mountain, Nevada. The principal emphasis in this report period was on column studies of migration of uranium and technetium in water from well J-13 at the Yucca Mountain site. Columns 1 cm in diameter and about 5 cm long were constructed and carefully packed with ground tuff. The characteristics of the columns were tested by determination of elution curves of tritium and TcO 4 - . Elution peaks obtained in past studies with uranium were asymmetrical and the shapes were often complex, observations that suggested irreversibilities in the sorption reaction. To try to understand these observations, the effects of flow rate and temperature on uranium migration were studied in detail. Sorption ratios calculated from the elution peaks became larger as the flow rate decreased and as the temperature increased. These observations support the conclusion that the sorption of uranium is kinetically hindered. To confirm this, batch sorption ratio experiments were completed for uranium as a function of time for a variety of conditions

  20. African Americans and High Blood Pressure

    Science.gov (United States)

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? African Americans in the U.S. have a higher prevalence of high blood pressure (HBP) than ...

  1. Diffraction studies of order-disorder at high pressures and temperatures

    International Nuclear Information System (INIS)

    Parise, John B.; Antao, Sytle M.; Martin, Charles D.; Crichton, Wilson

    2005-01-01

    Recent developments at synchrotron X-ray beamlines now allow collection of data suitable for structure determination and Rietveld structure refinement at high pressures and temperatures on challenging materials. These include materials, such as dolomite (CaMg(CO 3 ) 2 ) that tends to calcine at high temperatures, and Fe-containing materials, such as the spinel MgFe 2 O 4 , which tend to undergo changes in oxidation state. Careful consideration of encapsulation along with the use of radial collimation produced powder diffraction patterns virtually free of parasitic scattering from the cell in the case of large volume high-pressure experiments. These features have been used to study a number of phase transitions, especially those where superior signal-to-noise discrimination is required to distinguish weak ordering reflections. The structures adopted by dolomite, and CaSO4, anhydrite, were determined from 298 to 1466 K at high pressures. Using laser-heated diamond-anvil cells to achieve simultaneous high pressure and temperature conditions, we have observed CaSO 4 undergo phase transitions to the monazite type and at highest pressure and temperature to crystallize in the barite-type structure. On cooling, the barite structure distorts, from an orthorhombic to a monoclinic lattice, to produce the AgMnO 4 -type structure.

  2. Experimental studies on radiation effects under high pressure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, E [Osaka Univ. (Japan). School of Dentistry

    1974-06-01

    The effect of oxygen tension on the radiosensitivity of tumor cells is well known, but its clinical application for radiotherapy is not yet established. Rabbits with V x 2 carcinoma in the maxilla were irradiated by /sup 60/Co under high pressure oxygen (experimental group), and compared with those treated in air (control group). For the purpose of examining the clinical effects of high pressure oxygen, an experiment was made in vivo. The following items were compared respectively: a) Tumor regression effect b) Tumor clearance rate c) Survival days d) Half size reduction time e) Inhibition of DNA synthesis in the tumor tissue. Results obtained were as follows: a) 56 per cent of animals showed tumor regression in the experimental group, whereas it occured 26 per cent in the control group. b) 53 per cent of animals showed tumor disappearance in the experimental group, while it was observed only in 13 per cent in the control group. c) Only 2 of 30 rabbits irradiated in air survived over 180 days, whereas 11 of 30 rabbits survived meanwhile in the group irradiated under high pressure oxygen. d) About 11 days were necessary to reduce the tumor size by half after irradiation in the group under high pressure oxygen, while it took 17 days in the group treated in normal air. e) DNA synthesis was inhibited more prominently in the group irradiated under high pressure oxygen in normal air.

  3. Geochemical porosity values obtained in core samples from different clay-rocks

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2010-01-01

    . The Cl porosity is lower than the total physical porosity, because clays have different types of water (interlayer water, adsorbed water and free water), and ions can be affected by anionic exclusion processes. The geochemical porosity includes only the free water and some of the diffuse layer and surface-sorbed water; while the total physical porosity includes both the external and interlayer water. In order to calculate the Cl or geochemical porosity (n cl ), a relationship was used, which relates leaching data and the chloride content of the pore water extracted by the squeezing technique. Aqueous leaching tests were performed at anoxic conditions in order to obtain the chloride inventory in different core samples from each argillaceous formation. Besides, the chemical composition of the pore water was obtained by squeezing at high pressures. Taking into account the measured physical properties of the rock samples, such as water content, dry density, total porosity and degree of saturation; the geochemical porosity was calculated by using the above relationship. For Boom Clay core samples, the mean Cl porosity/water loss porosity ratio is 0.81. In the case of Opalinus Clay, the mean Cl porosity/water loss porosity ratio is 0.59. In Mont Terri core samples, this ratio ranges from 0.5 to 0.7, although a value of 0.55 is frequently used. As conclusion, for indurated mud-rock formations (Callovo-Oxfordian and Opalinus Clay), the mean geochemical porosity obtained was around 8-10 %vol. (0.5-0.6 porosity ratio), whereas in the plastic Boom Clay the geochemical porosity was around 29 %vol. (0.8 porosity ratio)

  4. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  5. Hydrogen oxidation at high pressure and intermediate temperatures: experiments and kinetic modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2015-01-01

    was varied from very oxidizing to strongly reducing conditions. The results supplement high-pressure data from RCM (900–1100 K) and shock tubes (900–2200 K). At the reducing conditions ( U = 12), oxidation started at 748–775 K while it was shifted to 798–823 K for stoichiometric and oxidizing conditions ( U...

  6. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  7. Hydrostatic pressure cells development for X-ray and neutron experiments

    International Nuclear Information System (INIS)

    Passamai Junior, Jose Luis

    2010-01-01

    It was developed and built two pressure cell original models in order to be applied in X-ray elastic scattering (X-ray diffraction), X-ray absorption and neutron scattering experiments (neutron diffraction) under hydrostatic pressure. For the first two experimental cases, where X-ray beam is used, the pressure cell built with two B 4 C anvil mounted in a CuBe body. The B 4 C anvil was prepared at CTA research center in order to present an enhanced X-ray transparence and hardness. The special detail and advantage of the CuBe cell with B 4 C anvil is that this cell can be also used to measure de AC magnetic susceptibility in situ. This special characteristic is highlight as new concept of labeled here as multipurpose pressure cell. A second type of cell pressure was developed in order to be used in neutron elastic scattering experiments, specific in neutron diffraction experiments. The neutron cell pressure was developed using carbon fibers composite to improve the mechanical resistance a cylindrical geometry. The B 4 C pressure cells were available to researches in LNLS. The neutron pressure cell was given to research staff of IPEN Nuclear Reactor. This work show details and draws of these two types of hydrostatic pressure cells. (author)

  8. Experimental apparatus with full optical access for combustion experiments with laminar flames from a single circular nozzle at elevated pressures.

    Science.gov (United States)

    Joo, Peter H; Gao, Jinlong; Li, Zhongshan; Aldén, Marcus

    2015-03-01

    The design and features of a high pressure chamber and burner that is suitable for combustion experiments at elevated pressures are presented. The high pressure combustion apparatus utilizes a high pressure burner that is comprised of a chamber burner module and an easily accessible interchangeable burner module to add to its flexibility. The burner is well suited to study both premixed and non-premixed flames. The optical access to the chamber is provided through four viewports for direct visual observations and optical-based diagnostic techniques. Auxiliary features include numerous access ports and electrical connections and as a result, the combustion apparatus is also suitable to work with plasmas and liquid fuels. Images of methane flames at elevated pressures up to 25 atm and preliminary results of optical-based measurements demonstrate the suitability of the high pressure experimental apparatus for combustion experiments.

  9. Structural phase transition of BaZrO3 under high pressure

    International Nuclear Information System (INIS)

    Yang, Xue; Li, Quanjun; Liu, Ran; Liu, Bo; Zhang, Huafang; Jiang, Shuqing; Zou, Bo; Cui, Tian; Liu, Bingbing; Liu, Jing

    2014-01-01

    We studied the phase transition behavior of cubic BaZrO 3 perovskite by in situ high pressure synchrotron X-ray diffraction experiments up to 46.4 GPa at room temperature. The phase transition from cubic phase to tetragonal phase was observed in BaZrO 3 for the first time, which takes place at 17.2 GPa. A bulk modulus 189 (26) GPa for cubic BaZrO 3 is derived from the pressure–volume data. Upon decompression, the high pressure phase transforms into the initial cubic phase. It is suggested that the unstable phonon mode caused by the rotation of oxygen octahedra plays a crucial role in the high pressure phase transition behavior of BaZrO 3

  10. High pressure inactivation of relevant target microorganisms in poultry meat products and the evaluation of pressure-induced protein denaturation of marinated poultry under different high pressure treatments

    Science.gov (United States)

    Schmidgall, Johanna; Hertel, Christian; Bindrich, Ute; Heinz, Volker; Toepfl, Stefan

    2011-03-01

    In this study, the possibility of extending shelf life of marinated poultry meat products by high pressure processing was evaluated. Relevant spoilage and pathogenic strains were selected and used as target microorganisms (MOs) for challenge experiments. Meat and brine were inoculated with MOs and treated at 450 MPa, 4 °C for 3 min. The results of inactivation show a decreasing pressure tolerance in the series Lactobacillus > Arcobacter > Carnobacterium > Bacillus cereus > Brochothrix thermosphacta > Listeria monocytogenes. Leuconostoc gelidum exhibited the highest pressure tolerance in meat. A protective effect of poultry meat was found for L. sakei and L. gelidum. In parallel, the influence of different marinade formulations (pH, carbonates, citrates) on protein structure changes during a pressure treatment was investigated. Addition of sodium carbonate shows a protection against denaturation of myofibrillar proteins and provides a maximum water-holding capacity. Caustic marinades allowed a higher retention of product characteristics than low-pH marinades.

  11. Petrologic and geochemical characterization of the Bullfrog Member of the Crater Flat Tuff: outcrop samples used in waste package experiments

    International Nuclear Information System (INIS)

    Knauss, K.G.

    1983-09-01

    In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), experiments on hydrothermal rock/water interaction, corrosion, thermomechanics, and geochemical modeling calculations are being conducted. All of these activities require characterization of the initial bulk composition, mineralogy, and individual phase geochemistry of the potential repository host rock. This report summarizes the characterization done on samples of the Bullfrog Member of the Crater Flat Tuff (Tcfb) used for Waste Package experimental programs. 11 references, 17 figures, 3 tables

  12. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  13. High pressure x-ray diffraction studies on U-Al systems

    International Nuclear Information System (INIS)

    Sahu, P.Ch.; Chandra Shekar, N.V.; Subramanian, N.; Yousuf, Mohammad; Govinda Rajan, K.

    1995-01-01

    In this paper, high pressure x-ray diffraction studies of the three U-Al compounds, namely, UAl 2 , UAl 3 and UAl 4 are presented. The experiments are carried out using a unique diamond anvil high pressure x-ray diffraction system in the Guinier geometry up to a maximum pressure of ∼ 35 GPa. The compressibility behaviour of UAl 2 is consistent with its itinerant 5f states, whereas that of UAl 3 and UAl 4 indicate more towards their localized nature. Among these three compounds, a structural phase transition in UAl 2 has been observed at ∼ 11 GPa and the structure of the high pressure phase has been identified to be of MgNi 2 type with space group P6 3 /mmc. The structure of UAl 2 at NTP is of MgCu 2 type with space group Fd3m. From the electron to atom ratio (e/α) consideration, another structural phase transition, namely, MgNi 2 -MgCu 2 at a higher pressure is proposed. Further, on a similar consideration, a new pressure induced structural sequence, namely, MgCu 2 -MgNi 2 (or MgZn 2 -MgCu 2 ) in the AB 2 type compounds of the f electron based systems is suggested. (author)

  14. Cleanup of a Department of Energy Nonreactor Nuclear Facility: Experience at the Los Alamos National Laboratory High Pressure Tritium Laboratory

    International Nuclear Information System (INIS)

    Horak, H.L.

    1995-01-01

    On October 25, 1990, Los Alamos National Laboratory (LANL) ceased programmatic operations at the High Pressure Tritium Laboratory (HPTL). Since that time, LANL has been preparing the facility for transfer into the Department of Energy's (DOE's) Decontamination and Decommissioning Program. LANL staff now has considerable operational experience with the cleanup of a 40-year-old facility used exclusively to conduct experiments in the use of tritium, the radioactive isotope of hydrogen. Tritium and its compounds have permeated the HPTL structure and equipment, have affected operations and procedures, and now dominate efforts at cleanup and disposal. At the time of shutdown, the HPTL still had a tritium inventory of over 100 grams in a variety of forms and containers

  15. High blood pressure - adults

    Science.gov (United States)

    ... pressure is found. This is called essential hypertension. High blood pressure that is caused by another medical condition or medicine you are taking is called secondary hypertension. Secondary hypertension may be due to: Chronic ...

  16. Low cost sonoluminescence experiment in pressurized water

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, L; Insabella, M [LADOP, University of Mar del Plata (Argentina); Bilbao, L [INFIP, University of Buenos Aires and CONICET (Argentina)

    2012-06-19

    We present a low cost design for demostration and mesurements of light emission from a sonoluminescence experiment. Using pressurized water introduced in an acrylic cylinder and one piezoelectric from an ultrasonic cleaner, we are able to generate cavitacion zones with emission of light. The use of argon to pressurize the water improves the emission an the light can be seen at naked eye in a softlit ambient.

  17. Low cost sonoluminescence experiment in pressurized water

    International Nuclear Information System (INIS)

    Bernal, L; Insabella, M; Bilbao, L

    2012-01-01

    We present a low cost design for demostration and mesurements of light emission from a sonoluminescence experiment. Using pressurized water introduced in an acrylic cylinder and one piezoelectric from an ultrasonic cleaner, we are able to generate cavitacion zones with emission of light. The use of argon to pressurize the water improves the emission an the light can be seen at naked eye in a softlit ambient.

  18. Determination of geochemical characters of insterstitial waters of pleistocene Italian clay formations

    International Nuclear Information System (INIS)

    Fontanive, A.; Gragnani, R.; Mignuzzi, C.; Spat, G.

    1985-01-01

    The geochemical characters of clay formations and of their pore water are fundamental with regards to the mobility of the radionuclides as well as to the corrosion processes on enginered barriers. Experimental researches have been carried out in different types of clay, which represent Italian formations, for the characterization of pore water. A squeezer system, which reaches 1500 Kg/cm 2 in pressure, and an analytical micro-scale methodology, for the determination of dissolved constituents in pore water, were set up. The extracted pore water ranges from 60% to 85% in relation to consolidation state of clay. The chemical composition of the extracted fluid has been checked during the squeezing. During this step the observed variations were smaller than those between the different specimens of the same sample. The comparison between the results obtained by squeezing and by a multiple washing technique, using increasing water/sediment ratios, shows that the last one does not give reliable results on the chemical composition of pore water. This is due to the presence of easily weatherable minerals and to the exchange processes between the clayey minerals and the solution. Nevertheless both these techniques have supplied complementary information about geochemical processes in water-rock interaction. The salinity of pore water ranges from 0.45 g/l to 24.5 g/l and the chemism always shows a high content of calcium-magnesium sulfate, or sodium chloride or calcium-magnesium-sulfate with sodium chloride. The correlation between geochemical composition of pore water and mineralogical composition of clay is not significant

  19. High blood pressure - medicine-related

    Science.gov (United States)

    Drug-induced hypertension is high blood pressure caused by using a chemical substance or medicine. ... of the arteries There are several types of high blood pressure : Essential hypertension has no cause that can be ...

  20. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  1. Sensitizing effects of NOx on CH4 oxidation at high pressure

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Rasmussen, Anja Egede; Glarborg, Peter

    2008-01-01

    The CH4/O2/NOx system is investigated in a laboratory-scale high pressure laminar flow reactor with the purpose of elucidating the sensitizing effects of NOx on CH4 oxidation at high pressures and medium temperatures. Experiments are conducted at 100, 50, and 20 bar, 600-900 K, and stoichiometric...... ratios ranging from highly reducing to oxidizing conditions. The experimental results are interpreted in terms of a detailed kinetic model drawn from previous work of the authors, including an updated reaction subset for the direct interactions of NOx and C1-2 hydrocarbon species relevant...

  2. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  3. Coupled geochemical and solute transport code development

    International Nuclear Information System (INIS)

    Morrey, J.R.; Hostetler, C.J.

    1985-01-01

    A number of coupled geochemical hydrologic codes have been reported in the literature. Some of these codes have directly coupled the source-sink term to the solute transport equation. The current consensus seems to be that directly coupling hydrologic transport and chemical models through a series of interdependent differential equations is not feasible for multicomponent problems with complex geochemical processes (e.g., precipitation/dissolution reactions). A two-step process appears to be the required method of coupling codes for problems where a large suite of chemical reactions must be monitored. Two-step structure requires that the source-sink term in the transport equation is supplied by a geochemical code rather than by an analytical expression. We have developed a one-dimensional two-step coupled model designed to calculate relatively complex geochemical equilibria (CTM1D). Our geochemical module implements a Newton-Raphson algorithm to solve heterogeneous geochemical equilibria, involving up to 40 chemical components and 400 aqueous species. The geochemical module was designed to be efficient and compact. A revised version of the MINTEQ Code is used as a parent geochemical code

  4. Parametric study of unconstrained high-pressure torsion- Finite element analysis

    International Nuclear Information System (INIS)

    Halloumi, A; Busquet, M; Descartes, S

    2014-01-01

    The high-pressure torsion (HPT) experiments have been investigated numerically. An axisymmetric model with twist was developed with commercial finite element software (Abaqus) to study locally the specificity of the stress and strain history within the transformed layers produced during HPT processing. The material local behaviour law in the plastic domain was modelled. A parametric study highlights the role of the imposed parameters (friction coefficient at the interfaces anvil surfaces/sample, imposed pressure) on the stress/strain distribution in the sample bulk for two materials: ultra-high purity iron and steel grade R260. The present modelling provides a tool to investigate and to analyse the effect of pressure and friction on the local stress and strain history during the HPT process and to couple with experimental results

  5. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  6. Coupling between a geochemical model and a transport model of dissolved elements

    International Nuclear Information System (INIS)

    Jacquier, P.

    1988-10-01

    In order to assess the safety analysis of an underground repository, the transport of radioelements in groundwater and their interactions with the geological medium are modelled. The objective of this work is the setting up and experimental validation of the coupling of a geochemical model with a transport model of dissolved elements. A laboratory experiment was developed at the CEA center of Cadarache. Flow-through experiments were carried out on columns filled with crushed limestone, where several inflow conditions were taken into account as the temperature, the presence of a pollutant (strontium chloride) at different concentrations. The results consist of the evolution of the chemical composition of the water at the outlet of the column. The final aim of the study is to explain these results with a coupled model where geochemical and transport phenomena are modelled in a two-step procedure. This code, called STELE, was built by introducing a geochemical code, CHIMERE, into an existing transport code, METIS. At this stage, the code CHIMERE can take into account: any chemical reaction in aqueous phase (complexation, acid-base reaction, redox equilibrium), dissolution-precipitation of minerals and solid phases, dissolution-degassing of gas. The paper intends to describe the whole process leading to the coupling which can be forecasted over the next years between geochemical and transport models

  7. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    Science.gov (United States)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  8. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Sanuel M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Humphries, Seth D [Los Alamos National Laboratory; Wiens, Roger C [Los Alamos National Laboratory; Vaniman, D. T. [Los Alamos National Laboratory; Sharma, S. K. [UNIV OF HAWAII; Misra, A. K. [UNIV OF HAWAII; Dyar, M. D. [MT. HOLYOKE COLLEGE; Smrekar, S. E. [JET PROPULSION LAB.

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to

  9. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:May 4,2018 Knowing the facts ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  10. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  11. High blood pressure and diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  12. Effects of geochemical composition on neutron die-away measurements: Implications for Mars Science Laboratory's Dynamic Albedo of Neutrons experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hardgrove, C., E-mail: craig.hardgrove@stonybrook.edu [Department of Earth and Planetary Science, University of Tennessee, Knoxville, TN (United States); Moersch, J.; Drake, D. [Techsource, Santa Fe, NM (United States)

    2011-12-11

    The Dynamic Albedo of Neutrons (DAN) experiment, part of the scientific payload of the Mars Science Laboratory (MSL) rover mission, will have the ability to assess both the abundance and the burial depth of subsurface hydrogen as the rover traverses the Martian surface. DAN will employ a method of measuring neutron fluxes called 'neutron die-away' that has not been used in previous planetary exploration missions. This method requires the use of a pulsed neutron generator that supplements neutrons produced via spallation in the subsurface by the cosmic ray background. It is well established in neutron remote sensing that low-energy (thermal) neutrons are sensitive not only to hydrogen content, but also to the macroscopic absorption cross-section of near-surface materials. To better understand the results that will be forthcoming from DAN, we model the effects of varying abundances of high absorption cross-section elements that are likely to be found on the Martian surface (Cl, Fe) on neutron die-away measurements made from a rover platform. Previously, the Mars Exploration Rovers (MER) Spirit and Opportunity found that elevated abundances of these two elements are commonly associated with locales that have experienced some form of aqueous activity in the past, even though hydrogen-rich materials are not necessarily still present. By modeling a suite of H and Cl compositions, we demonstrate that (for abundance ranges reasonable for Mars) both the elements will significantly affect DAN thermal neutron count rates. Additionally, we show that the timing of thermal neutron arrivals at the detector can be used together with the thermal neutron count rates to independently determine the abundances of hydrogen and high neutron absorption cross-section elements (the most important being Cl). Epithermal neutron die-away curves may also be used to separate these two components. We model neutron scattering in actual Martian compositions that were determined by the MER

  13. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    Science.gov (United States)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  14. High-pressure cell for simultaneous dielectric and neutron spectroscopy

    Science.gov (United States)

    Sanz, Alejandro; Hansen, Henriette Wase; Jakobsen, Bo; Pedersen, Ib H.; Capaccioli, Simone; Adrjanowicz, Karolina; Paluch, Marian; Gonthier, Julien; Frick, Bernhard; Lelièvre-Berna, Eddy; Peters, Judith; Niss, Kristine

    2018-02-01

    In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation and fast vibrations at the same time. The cell, constructed in cylindrical geometry, is made of a high-strength aluminum alloy and operates up to 500 MPa in a temperature range between roughly 2 and 320 K. In order to measure the scattered neutron intensity and the sample capacitance simultaneously, a cylindrical capacitor is positioned within the bore of the high-pressure container. The capacitor consists of two concentric electrodes separated by insulating spacers. The performance of this setup has been successfully verified by collecting simultaneous dielectric and neutron spectroscopy data on dipropylene glycol, using both backscattering and time-of-flight instruments. We have carried out the experiments at different combinations of temperature and pressure in both the supercooled liquid and glassy state.

  15. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Thomas

    2013-05-13

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa{sub 2}Cu{sub 4}O{sub 8} at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T{sub 1} at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T{sub 1} are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional

  16. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    International Nuclear Information System (INIS)

    Meissner, Thomas

    2013-01-01

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa 2 Cu 4 O 8 at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T 1 at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T 1 are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional quadrupolar broadening which is

  17. Geochemical methods for identification of formations being prospective for uranium

    International Nuclear Information System (INIS)

    Zhukova, A.M.; Komarova, N.I.; Spiridonov, A.A.; Shor, G.M.

    1985-01-01

    Geochemical methods of uranium content evaluation in metamorphic, ultrametamorphic and sedimentary formations are considered. At that, the following four factors are of the highest importance: 1) average uranium content-geochemical background; 2) character of uranium distribution; 3) forms of uranium presence; 4) the value of thorium-uranium ratio. A complex of radiogeochemical criteria, favourable for uranium presence is formulated: high average background content of total and '' mobile''uranium and high value of variation coefficient (80-100% and above); low (approximately one or lower) thorium-uranium ratio; sharp increase in uranium concentration in accessory minerals. Radiogeochemical peculiarities of metamorphic and ultrametamorphic formations prospective for uranium are enumerated. The peculiarities condition specificity of geochemical prospecting methods. Prospecting methods first of all must be directed at the evaluation of radioelement distribution parameters and specification of the forms of their presence

  18. An Ultra-low Frequency Modal Testing Suspension System for High Precision Air Pressure Control

    Directory of Open Access Journals (Sweden)

    Qiaoling YUAN

    2014-05-01

    Full Text Available As a resolution for air pressure control challenges in ultra-low frequency modal testing suspension systems, an incremental PID control algorithm with dead band is applied to achieve high-precision pressure control. We also develop a set of independent hardware and software systems for high-precision pressure control solutions. Taking control system versatility, scalability, reliability, and other aspects into considerations, a two-level communication employing Ethernet and CAN bus, is adopted to complete such tasks as data exchange between the IPC, the main board and the control board ,and the pressure control. Furthermore, we build a single set of ultra-low frequency modal testing suspension system and complete pressure control experiments, which achieve the desired results and thus confirm that the high-precision pressure control subsystem is reasonable and reliable.

  19. Modelling of laboratory high-pressure infiltration experiments

    International Nuclear Information System (INIS)

    Smith, P.A.

    1992-02-01

    This report describes the modelling of break-through curves from a series of two-tracer dynamic infiltration experiments, which are intended to complement larger scale experiments at the Nagra Grimsel Test Site. The tracers are 82 Br, which is expected to be non-sorbing, and 24 Na, which is weakly sorbing. The 24 Na concentration is well below the natural Na concentration in the infiltration fluid, so that sorption on the rock is governed by isotopic exchange, exhibiting a linear isotherm. The rock specimens are sub-samples (cores) of granodiorite from the Grimsel Test Site, each containing a distinct shear zone. Best-fits to the break-through curves using single-porosity and dual-porosity transport models are compared and several physical parameters are extracted. It is shown that the dual-porosity model is required in order to reproduce the tailing part of the break-through curves for the non-sorbing tracer. The single-porosity model is sufficient to reproduce the break-through curves for the sorbing tracer within the estimated experimental errors. Extracted K d values are shown to agree well with a field rock-water interaction experiment and in situ migration experiments. Static, laboratory batch-sorption experiments give a larger K d , but this difference could be explained by the larger surface area available for sorption in the artificially crushed samples used in the laboratory and by a slightly different water chemistry. (author) 13 figs., tabs., 19 refs

  20. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  1. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    International Nuclear Information System (INIS)

    Apps, J.A.

    1995-01-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100 degrees C and could reach 250 degrees C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinement of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields

  2. Double-Sided Laser Heating in Radial Diffraction Geometry for Diamond Anvil Cell Deformation Experiments at Simultaneous High Pressures and Temperatures

    Science.gov (United States)

    Miyagi, L. M.; Kunz, M.; Couper, S.; Lin, F.; Yan, J.; Doran, A.; MacDowell, A. A.

    2017-12-01

    The rheology of rocks and minerals in the Earth's deep interior plays a primary role in controlling large scale geodynamic processes such as mantle convection and slab subduction. Plastic deformation resulting from these processes can lead to texture development and associated seismic anisotropy. If a detailed understanding of the link between deformation and seismic anisotropy is established, observations of seismic anisotropy can be used to understand the dynamic state in the deep Earth. However, performing deformation experiments at lower mantle pressure and temperature conditions are extremely challenging. Thus most deformation studies have been performed either at room temperature and high pressure or at reduced pressures and high temperature. Only a few extraordinary efforts have attained pressures and temperatures relevant to lower mantle. Therefore our ability to interpret observations of lower mantle seismic anisotropy in terms of mantle flow models remains limited. In order to expand the pressure and temperature range available for deformation of deep Earth relevant mineral phases, we have developed a laser heating system for in-situ double-sided heating in radial diffraction geometry at beamline 12.2.2 of the Advanced Light Source of Lawrence Berkeley National Laboratory. This allows texture and lattice strain measurements to be recorded at simultaneous high pressures and temperatures in the diamond anvil cell. This new system is integrated into the newly built axial laser heating system to allow for rapid and reliable transitioning between double-sided laser heating in axial and radial geometries. Transitioning to radial geometry is accomplished by redirecting the laser and imaging paths from 0° and 180° to 90° and 270°. To redirect the 90° path, a motorized periscope mirror pair with an objective lens can be inserted into the downstream axial beam path. The 270° redirection is accomplished by removing the upstream axial objective lens and

  3. Flashing of high-pressure saturated water into the pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Aya, Izuo.

    1997-01-01

    This paper presents an experimental study on a saturated high-pressure water discharging into a water pool. The purpose of the experiment is to clarify the phenomena that occur by a blow-down of the water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in a passive safety reactor. The results show that a flashing oscillation (FO) occurs when the water discharges into the pool, under specified experimental conditions. The range of the flashing location oscillates between a point very close to and some distance away from the vent hole. The pressures in the vent tube and water pool constantly fluctuate due to the flashing oscillation. The pressure oscillation and alternating flashing location might be caused by the balancing action between the supply of saturated water, flashing at the control volume and steam condensation on the steam-water interface. The frequencies of FO, or frequencies of pressure oscillation and alternating flashing location, increased as water subcooling increased, and as discharging pressure and vent hole diameter decreased. A linear analysis was conducted using a spherical flashing bubble model in which the motion of bubble is controlled by steam condensation. The effects of these parameters on the period of FO in the experiments can be predicted well by the analysis. (author)

  4. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  5. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks.

    KAUST Repository

    Li, Yanqiang; Ben, Teng; Zhang, Bingyao; Fu, Yao; Qiu, Shilun

    2013-01-01

    The carbonized PAF-1 derivatives formed by high-temperature KOH activation showed a unique bimodal microporous structure located at 0.6 nm and 1.2 nm and high surface area. These robust micropores were confirmed by nitrogen sorption experiment and high-resolution transmission electron microscopy (TEM). Carbon dioxide, methane and hydrogen sorption experiments indicated that these novel porous carbon materials have significant gas sorption abilities in both low-pressure and high-pressure environments. Moreover the methane storage ability of K-PAF-1-750 is among the best at 35 bars, and its low-pressure gas adsorption abilities are also comparable to the best porous materials in the world. Combined with excellent physicochemical stability, these materials are very promising for industrial applications such as carbon dioxide capture and high-density clean energy storage.

  6. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  7. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  8. High velocity impact experiment (HVIE)

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A.; Donich, T.; Carter, P.

    1998-02-01

    The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!

  9. High Blood Pressure - Multiple Languages

    Science.gov (United States)

    ... Being 8 - High Blood Pressure - Amarɨñña / አማርኛ (Amharic) MP3 Siloam Family Health Center Arabic (العربية) Expand Section ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  10. Modeling of high-pressure generation using the laser colliding foil technique

    Energy Technology Data Exchange (ETDEWEB)

    Fabbro, R.; Faral, B.; Virmont, J.; Cottet, F.; Romain, J.P.

    1989-03-01

    An analytical model describing the collision of two foils is presented and applied to the collision of laser-accelerated foils. Numerical simulations have been made to verify this model and to compare its results in the case of laser-accelerated foils. Scaling laws relating the different parameters (shock pressure, laser intensity, target material, etc.) have been established. The application of this technique to high-pressure equation of state experiments is then discussed.

  11. Modeling of high-pressure generation using the laser colliding foil technique

    International Nuclear Information System (INIS)

    Fabbro, R.; Faral, B.; Virmont, J.; Cottet, F.; Romain, J.P.

    1989-01-01

    An analytical model describing the collision of two foils is presented and applied to the collision of laser-accelerated foils. Numerical simulations have been made to verify this model and to compare its results in the case of laser-accelerated foils. Scaling laws relating the different parameters (shock pressure, laser intensity, target material, etc.) have been established. The application of this technique to high-pressure equation of state experiments is then discussed

  12. Anxiety: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... of high blood pressure? Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  13. Experimental study on neptunium migration under in situ geochemical conditions

    Science.gov (United States)

    Kumata, M.; Vandergraaf, T. T.

    1998-12-01

    Results are reported for migration experiments performed with Np under in situ geochemical conditions over a range of groundwater flow rates in columns of crushed rock in a specially designed facility at the 240-level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. This laboratory is situated in an intrusive granitic rock formation, the Lac du Bonnet batholith. Highly altered granitic rock and groundwater were obtained from a major subhorizontal fracture zone at a depth of 250 m in the URL. The granite was wet-crushed and wet-sieved with groundwater from this fracture zone. The 180-850-μm size fraction was selected and packed in 20-cm long, 2.54-cm in diameter Teflon™-lined stainless steel columns. Approximately 30-ml vols of groundwater containing 3HHO and 237Np were injected into the columns at flow rates of 0.3, 1, and 3 ml/h, followed by elution with groundwater, obtained from the subhorizontal fracture, at the same flow rates, for a period of 95 days. Elution profiles for 3HHO were obtained, but no 237Np was detected in the eluted groundwater. After terminating the migration experiments, the columns were frozen, the column material was removed and cut into twenty 1-cm thick sections and each section was analyzed by gamma spectrometry. Profiles of 237Np were obtained for the three columns. A one-dimensional transport model was fitted to the 3HHO breakthrough curves to obtain flow parameters for this experiment. These flow parameters were in turn applied to the 237Np concentration profiles in the columns to produce sorption and dispersion coefficients for Np. The results show a strong dependence of retardation factors ( Rf) on flow rate. The decrease in the retarded velocity of the neptunium ( Vn) varied over one order of magnitude under the geochemical conditions for these experiments.

  14. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    Science.gov (United States)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  15. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  16. Unravelling the High-Pressure Behaviour of Dye-Zeolite L Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Lara Gigli

    2018-02-01

    Full Text Available Self-assembly of chromophores nanoconfined in porous materials such as zeolite L has led to technologically relevant host-guest systems exploited in solar energy harvesting, photonics, nanodiagnostics and information technology. The response of these hybrid materials to compression, which would be crucial to enhance their application range, has never been explored to date. By a joint high-pressure in situ synchrotron X-ray powder diffraction and ab initio molecular dynamics approach, herein we unravel the high-pressure behaviour of hybrid composites of zeolite L with fluorenone dye. High-pressure experiments were performed up to 6 GPa using non-penetrating pressure transmitting media to study the effect of dye loading on the structural properties of the materials under compression. Computational modelling provided molecular-level insight on the response to compression of the confined dye assemblies, evidencing a pressure-induced strengthening of the interaction between the fluorenone carbonyl group and zeolite L potassium cations. Our results reveal an impressive stability of the fluorenone-zeolite L composites at GPa pressures. The remarkable resilience of the supramolecular organization of dye molecules hyperconfined in zeolite L channels may open the way to the realization of optical devices able to maintain their functionality under extreme conditions.

  17. High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure

    Directory of Open Access Journals (Sweden)

    Yancheng Meng

    2018-05-01

    Full Text Available To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs and poly (dimethylsiloxane (PDMS. In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa−1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 μs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz and large range of air pressure (6–101 kPa, both of which are not achieved before.

  18. The accelerated oxidation of zircaloy-4 at 700∼900 .deg. C in high pressure steam

    International Nuclear Information System (INIS)

    Kim, K. P.; Park, K. H.

    1999-01-01

    To find the effect of pressure on the high temperature oxidation of zircaloy-4, an autoclave capable of measuring the degree of oxidation at high temperatures and high pressure was manufactured. The specimens used in experiments are commercially available Zircaloy-4 used in Kori nuclear power plants. All the measurements were done at 700∼900 .deg. C in steam. Pressure effects were noticed. The oxide thickness was much thicker in high pressure steam, comparing to that in the 1 atm steam. And, the higher is the steam pressure, the thicker becomes the oxide. The enhancement of oxide growth rate at 700∼900 .deg. C in high pressure steam is approximately propotion to the power of 1.0∼1.6 of the ratio of experimental steam pressure to critical steam pressure. There is a critical steam pressure above that the oxidation rate enhances. The critical steam pressure was measured as 30∼40 bar. The enhanced oxidation seems from the oxide cracking due to the tetragonal to monoclinic phase transformation at high pressure steam

  19. Deformation of volcanic materials by pore pressurization: analog experiments with simplified geometry

    Science.gov (United States)

    Hyman, David; Bursik, Marcus

    2018-03-01

    The pressurization of pore fluids plays a significant role in deforming volcanic materials; however, understanding of this process remains incomplete, especially scenarios accompanying phreatic eruptions. Analog experiments presented here use a simple geometry to study the mechanics of this type of deformation. Syrup was injected into the base of a sand medium, simulating the permeable flow of fluids through shallow volcanic systems. The experiments examined surface deformation over many source depths and pressures. Surface deformation was recorded using a Microsoft® Kinect™ sensor, generating high-spatiotemporal resolution lab-scale digital elevation models (DEMs). The behavior of the system is controlled by the ratio of pore pressure to lithostatic loading (λ =p/ρ g D). For λ 10, fluid expulsion from the layer was much faster, vertically fracturing to the surface with larger pressure ratios yielding less deformation. The temporal behavior of deformation followed a characteristic evolution that produced an approximately exponential increase in deformation with time until complete layer penetration. This process is distinguished from magmatic sources in continuous geodetic data by its rapidity and characteristic time evolution. The time evolution of the experiments compares well with tilt records from Mt. Ontake, Japan, in the lead-up to the deadly 2014 phreatic eruption. Improved understanding of this process may guide the evolution of magmatic intrusions such as dikes, cone sheets, and cryptodomes and contribute to caldera resurgence or deformation that destabilizes volcanic flanks.

  20. Ignition during hydrogen release from high pressure into the atmosphere

    Science.gov (United States)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  1. Experimental Spectroscopic Studies of Carbon Monoxide (CO) Fluorescence at High Temperatures and Pressures.

    Science.gov (United States)

    Carrivain, Olivier; Orain, Mikael; Dorval, Nelly; Morin, Celine; Legros, Guillaume

    2017-10-01

    Two-photon excitation laser-induced fluorescence of carbon monoxide (CO-LIF) is investigated experimentally in order to determine the applicability of this technique for imaging CO concentration in aeronautical combustors. Experiments are carried out in a high temperature, high-pressure test cell, and in a laminar premixed CH 4 /air flame. Influence of temperature and pressure on CO-LIF spectra intensity and shape is reported. The experimental results show that as pressure increases, the CO-LIF excitation spectrum becomes asymmetric. Additionally, the spectrum strongly shifts to the red with a quadratic dependence of the collisional shift upon pressure, which is different from the classical behavior where the collisional shift is proportional to pressure. Moreover, pressure line broadening cannot be reproduced by a Lorenztian profile in the temperature range investigated here (300-1750 K) and, therefore, an alternative line shape is suggested.

  2. Terbium oxide at high pressures

    International Nuclear Information System (INIS)

    Dogra, Sugandha; Sharma, Nita Dilawar; Singh, Jasveer; Bandhyopadhyay, A.K.

    2011-01-01

    In this work we report the behaviour of terbium oxide at high pressures. The as received sample was characterized at ambient by X-ray diffraction and Raman spectroscopy. The X-ray diffraction showed the sample to be predominantly cubic Tb 4 O 7 , although a few peaks also match closely with Tb 2 O 3 . In fact in a recent study done on the same sample, the sample has been shown to be a mixture of Tb 4 O 7 and Tb 2 O 3 . The sample was subjected to high pressures using a Mao-Bell type diamond anvil cell upto a pressure of about 42 GPa with ruby as pressure monitor

  3. Concerning evaluation of eco-geochemical background in remediation strategy

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey

    2015-04-01

    plants and animals (Kovalsky, 1974; Letunova, Kovalsky, 1978, Ermakov, 1999). Obtained zones of different eco-geochemical risk need particular strategy basing on maximum possible correspondence to the natural geochemical conditions. For example, the assessment of effects of the nuclear accident in any case needs taking into account the synergetic results of ionizing radiation in different eco-geochemical conditions. In this respect the most contaminated areas should be withdrawn from living but some spatial arable lands can be used for seeds or technical crops production. The less contaminated areas still used in agriculture need shifting to fodder or species giving non-contaminated products (e.g. oil). Wet meadows of superaqueous landscapes with a relatively high radionuclide transfer to the plants should be excluded from grazing but other areas with lower transfer to forage may be used. In all the cases the resultant remediation should achieve first of all the maximum decrease of the summary negative health effect for the residents or working personnel. References Vernadsky V.I., 1926. Biosphere. Leningrad, Nauch. khim.-tekhn. izd-vo, 147 p. Vernadsky V.I., 1960. Selected works, Vol. 5. Moscow, izd-vo AN SSSR, 422 p. Kovalsky V.V., 1974. Geochemical ecology. Moscow, Nauka, Letunova S.V., Kovalsky V.V., 1978. Geochemical ecology of microorganisms. Moscow, Nauka, 148 pp. Ermakov V.V., 1999.Geochemical ecology as a result of the system-based study of the biosphere. Problems of biogeochemistry and geochemical ecology. Transactions of the Biogeochem. Lab., 23, Moscow, Nauka, 152-182.

  4. High-pressure phase transitions of strontianite

    Science.gov (United States)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  5. The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature

    OpenAIRE

    Liu Gang; Wang Jianlong; Dang Kexin; Yuan Shijian

    2015-01-01

    High pressure gas forming is a tubular component forming technology with pressurized gas at elevated temperature, based on QPF, HMGF and Hydroforming. This process can be used to form tube blank at lower temperatures with high energy efficiency and also at higher strain rates. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPGF was studied further through experiments at the elevated temperatures of 650 ∘C and 700 ∘C. In order to know the formability of the Ti-alloy tube, tensile tests were ...

  6. Proceedings of the workshop on geochemical modeling

    International Nuclear Information System (INIS)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices

  7. Proceedings of the workshop on geochemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices.

  8. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  9. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review.

    Science.gov (United States)

    Santos, Lígia Mr; Oliveira, Fabiano A; Ferreira, Elisa Hr; Rosenthal, Amauri

    2017-10-01

    Beer is the most consumed beverage in the world, especially in countries such as USA, China and Brazil.It is an alcoholic beverage made from malted cereals, and the barley malt is the main ingredient, added with water, hops and yeast. High-pressure processing is a non-traditional method to preserve food and beverages. This technology has become more interesting compared to heat pasteurization, due to the minimal changes it brings to the original nutritional and sensory characteristics of the product, and it comprises two processes: high hydrostatic pressure, which is the most industrially used process, and high-pressure homogenization. The use of high pressure almost does not affect the molecules that are responsible for the aroma and taste, pigments and vitamins compared to the conventional thermal processes. Thus, the products processed by high-pressure processing have similar characteristics compared to fresh products, including beer. The aim of this paper was to review what has been investigated about beer processing using this technology regarding the effects on physicochemical, microbiology and sensory characteristics and related issues. It is organized by processing steps, since high pressure can be applied to malting, mashing, boiling, filtration and pasteurization. Therefore, the beer processed with high-pressure processing may have an extended shelf-life because this process can inactivate beer spoilage microorganisms and result in a superior sensory quality related to freshness and preservation of flavors as it does to juices that are already commercialized. However, beyond this application, high-pressure processing can modify protein structures, such as enzymes that are present in the malt, like α- and β-amylases. This process can activate enzymes to promote, for example, saccharification, or instead inactivate at the end of mashing, depending on the pressure the product is submitted, besides being capable of isomerizing hops to raise beer bitterness

  10. High pressure stability of lithium metatitanate and metazirconate: Insight from experiments & ab-initio calculations

    Science.gov (United States)

    Chitnis, Abhishek; Chakraborty, B.; Tripathi, B. M.; Tyagi, A. K.; Garg, Nandini

    2018-02-01

    Lithium metatitanate (LTO) and lithium metazirconate (LZO) are lithium rich ceramics which can be used as tritium breeder materials for thermonuclear reactors. In-situ x-ray diffraction and ab-initio studies at high pressure show that LTO has a higher bulk modulus than that of LZO. In fact these studies indicate that they are the least compressible of the known lithium rich ceramics like Li2O or Li4SiO4, which are potential candidates for blanket materials. These studies show that the TiO6 octahedra are responsible for the higher bulk modulus of LTO when compared to that of LZO. It has also been shown that the compressibility and distortion of the softer LiO6 octahedra can be controlled by altering the stacking sequence of the more rigid covalently bonded octahedra. This knowledge can be used by chemists to design new lithium based ceramics with higher bulk modulus. It was observed that LTO was stable upto 34 GPa. Ab initio DFT calculations helped to understand the anisotropy in compressibility of both LZO and LTO. This study also shows, that even though the empirical potentials developed by Vijaykumar et al. successfully determine the ambient pressure structure of lithium metatitanate, they cannot be used at non ambient conditions like high pressure [1].

  11. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  12. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.

    Science.gov (United States)

    Yang, Lei; Guo, Yanjie; Diao, Dongfeng

    2017-05-31

    Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.

  13. Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes

    Directory of Open Access Journals (Sweden)

    K. Dontsova

    2009-12-01

    Full Text Available A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2 synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled to reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.

  14. Advances in high pressure science and technology: proceedings of the fourth national conference on high pressure science and technology

    International Nuclear Information System (INIS)

    Yousuf, Mohammad; Subramanian, N.; Govinda Rajan, K.

    1997-09-01

    The proceedings of the fourth National Conference on High Pressure Science and Technology covers a wide area of research and development activities in the field of high pressure science and technology, broadly classified into the following themes: mechanical behaviour of materials; instrumentation and methods in high pressure research; pressure calibration, standards and safety aspects; phase transitions; shock induced reactions; mineral science, geophysics, geochemistry and planetary sciences; optical, electronic and transport properties; synthesis of materials; soft condensed matter physics and liquid crystals; computational methods in high pressure research. Papers relevant to INIS are indexed separately

  15. High beta experiments in CHS

    International Nuclear Information System (INIS)

    Okamura, S.; Matsuoka, K.; Nishimura, K.

    1994-09-01

    High beta experiments were performed in the low-aspect-ratio helical device CHS with the volume-averaged equilibrium beta up to 2.1 %. These values (highest for helical systems) are obtained for high density plasmas in low magnetic field heated with two tangential neutral beams. Confinement improvement given by means of turning off gas puffing helped significantly to make high betas. Magnetic fluctuations increased with increasing beta, but finally stopped to increase in the beta range > 1 %. The coherent modes appearing in the magnetic hill region showed strong dependence on the beta values. The dynamic poloidal field control was applied to suppress the outward plasma movement with the plasma pressure. Such an operation gave fixed boundary operations of high beta plasmas in helical systems. (author)

  16. Impact of CO2 injection protocol on fluid-solid reactivity: high-pressure and temperature microfluidic experiments in limestone

    Science.gov (United States)

    Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari

    2017-04-01

    Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.

  17. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  18. The use of high pressure in basic, materials, and life sciences

    International Nuclear Information System (INIS)

    Schilling, James S.

    2000-01-01

    Four of the most important applications of the high pressure technique in today's science are: (1) to help identify the materials which reside deep within our earth or other heavenly bodies and determine their properties, (2) to uncover underlying systematics and critically test theoretical models, (3) to synthesize novel and useful materials not readily available by other means, and (4) to determine the effect of pressure on living organisms and explore the conditions favorable for the origin of life itself. High pressure studies currently enjoy an increasing popularity which is fueled by recent advances in the notably difficult experimental techniques. In this paper I will attempt to capture some of the current excitement in this field by offering brief synopses of selected experiments in the basic, materials, and life sciences

  19. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  20. Speciation in Aqueous MgSO4 Fluid at High Pressures and Temperatures Studied by First-Principles Modeling and Raman Spectroscopy

    Science.gov (United States)

    Jahn, S.; Schmidt, C.

    2008-12-01

    Aqueous fluids play an essential role in mass and energy transfer in the lithosphere. Their presence has also a large effect on physical properties of rocks, e.g. the electrical conductivity. Many chemical and physical properties of aqueous fluids strongly depend on the speciation, but very little is known about this fundamental parameter at high pressures and temperatures, e.g. at subduction zone conditions. Here we use a combined approach of first-principles molecular dynamics simulation and Raman spectroscopy to study the molecular structure of aqueous 2~mol/kg MgSO4 fluids up to pressures of 3~GPa and temperatures of 750~°C. MgSO4-H2O is selected as a model system for sulfate bearing subduction zone fluids. The simulations are performed using Car-Parrinello dynamics, a system size of 120 water and four MgSO4 molecules with production runs of at least 10~ps at each P and T. Raman spectra were obtained in situ using a Bassett-type hydrothermal diamond anvil cell with external heating. Both simulation and spectroscopic data show a dynamic co-existence of various associated molecular species as well as dissociated Mg2+ and SO42- in the single phase fluid. Fitting the Raman signal in the frequency range of the ν1-SO42- stretching mode yields the P-T dependence of the relative proportions of different peaks. The latter can be assigned to species based on literature data and related to the species found in the simulation. The dominant associated species found in the P-T range of interest here are Mg-SO4 ion pairs with one (monodentate) and two (bidentate) binding sites. At the highest P and T, an additional peak is identified. At low pressures and high temperature (T>230~°C), kieserite, MgSO4·H2O, nucleated in the experiment. At the same conditions the simulations show a clustering of Mg, which is interpreted as a precursor of precipitation. In conclusion, the speciation of aqueous MgSO4 fluid shows a complex behavior at high P and T that cannot be extrapolated

  1. Strain measurements during pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Tarso Vida Gomes, P. de; Julio Ricardo Barreto Cruz; Tanius Rodrigues Mansur; Denis Henrique Bianchi Scaldaferri; Miguel Mattar Neto

    2005-01-01

    For the life extension of nuclear power plants, the residual life of most of their components must be evaluated along all their operating time. Concerning the reactor pressure vessel, the pressurized thermal shock (PTS) is a very important event to be considered. For better understanding the effects of this kind of event, tests are made. The approach described here consisted of building a simplified in-scale physical model of the reactor pressure vessel, submitting it to the actual operating temperature and pressure conditions and provoking a thermal shock by means of cold water flow in its external surface. To conduct such test, the Nuclear Technology Development Center (CDTN) has been conducting several studies related to PTS and has also built a laboratory that has made possible the simulation of the PTS loading conditions. Several cracks were produced in the external surface of the reactor pressure vessel model. Strain gages were fixed by means of electrical discharge welding over the cracks regions in both external and internal surfaces. The temperature was monitored in 10 points across the vessel wall. The internal pressure was manually controlled and monitored using a pressure transducer. Two PTS experiments were conducted and this paper presents the strain measurement procedures applied to the reactor pressure vessel model, during the PTS, using strain gages experimental methodology. (authors)

  2. PuBr3-type as high pressure modification of rare earth trihalides LnX3 (X = Cl, Br, I)

    International Nuclear Information System (INIS)

    Beck, H.P.; Gladrow, E.

    1983-01-01

    High pressure experiments in a belt-type apparatus were performed on rare earth trichlorides, -bromides and -iodides. The results underline the importance of the PuBr 3 -type arrangement. The range of existence of this structure type is considerably increased under pressure. X-ray high temperature investigations at ambient pressure on the quenched high pressure phases show a marked correlation between the transformation pressures, which rise with smaller cations, and the temperatures at which the high pressure phases are reconverted to the thermodynamically stable ones. (author)

  3. High Blood Pressure

    Science.gov (United States)

    ... factors Diabetes High blood pressure Family history Obesity Race/ethnicity Full list of causes and risk factors ... give Give monthly Memorials and tributes Donate a car Donate gently used items Stock donation Workplace giving ...

  4. High Blood Pressure

    Science.gov (United States)

    ... kidney disease, diabetes, or metabolic syndrome Read less Unhealthy lifestyle habits Unhealthy lifestyle habits can increase the risk of high blood pressure. These habits include: Unhealthy eating patterns, such as eating too much sodium ...

  5. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.

    Science.gov (United States)

    Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi

    2015-06-04

    Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.

  6. Radionuclide field lysimeter experiment (RadFLEx): geochemical and hydrological data for SRS performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Powell, B. [Clemson Univ., SC (United States); Barber, K. [Clemson Univ., SC (United States); Devol, T. [Clemson Univ., SC (United States); Dixon, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Erdmann, B. [Clemson Univ., SC (United States); Maloubier, M. [Clemson Univ., SC (United States); Martinez, N. [Clemson Univ., SC (United States); Montgomery, D. [Clemson Univ., SC (United States); Peruski, K. [Clemson Univ., SC (United States); Roberts, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Witmer, M. [Clemson Univ., SC (United States)

    2017-12-12

    The SRNL Radiological Field Lysimeter Experiment (RadFLEx) is a one-of-a-kind test bed facility designed to study radionuclide geochemical processes in the Savannah River Site (SRS) vadose zone at a larger spatial scale (from grams to tens of kilograms of sediment) and temporal scale (from months to decade) than is readily afforded through laboratory studies. RadFLEx is a decade-long project that was initiated on July 5, 2012 and is funded by six different sources. The objective of this status report is as follows: 1) to report findings to date that have an impact on SRS performance assessment (PA) calculations, and 2) to provide performance metrics of the RadFLEx program. The PA results are focused on measurements of transport parameters, such as distribution coefficients (Kd values), solubility, and unsaturated flow values. As this is an interim report, additional information from subsequent research may influence our interpretation of current results. Research related to basic understanding of radionuclide geochemistry in these vadose zone soils and other source terms are not described here but are referenced for the interested reader.

  7. Highly Reducing Partitioning Experiments Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER on the planet's surface suggests a low oxygen fugacity of the present planetary materials. Estimates of the oxygen fugacity for Mercurian magmas are approximately 3-7 log units below the Iron-Wüstite (Fe-FeO) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from such as the Earth, Moon, or Mars. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions are available in our collections (e.g., enstatite chondrites, achondrites, aubrites). With this limited amount of material, we must perform experiments to determine the elemental partitioning behavior of typically lithophile elements as a function of decreasing oxygen fugacity. Experiments are being conducted at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were selected for the final run products to contain metal, silicate melt, and sulfide melt phases. Oxygen fugacity is controlled in the experiments by adding silicon metal to the samples, using the Si-SiO2 oxygen buffer, which is approximately 5 log units more reducing than the Fe-FeO oxygen buffer at our temperatures of interest. The target silicate melt compositional is diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. Elements detected on Mercury

  8. Using NIF to Test Theories of High-Pressure, High-Rate Plastic Flow in Metals

    Science.gov (United States)

    Rudd, Robert E.; Arsenlis, A.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Park, H. S.; Powell, P.; Prisbrey, S. T.; Remington, B. A.; Swift, D.; Wehrenberg, C. E.; Yang, L.

    2017-10-01

    Precisely controlled plasmas are playing key roles both as pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theoretical advances, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on until the ultimate material response at the scale of an experiment. Experiments at the National Ignition Facility (NIF) probe strength in metals ramp compressed to 1-8 Mbar. The model is able to predict 1 Mbar experiments without adjustable parameters. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions. We also describe recent studies of lead compressed to 3-5 Mbar. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  9. Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods.

    Directory of Open Access Journals (Sweden)

    Maximilian B Maier

    Full Text Available The effect of high pressure thermal (HPT processing on the inactivation of spores of proteolytic type B Clostridium botulinum TMW 2.357 in four differently composed low-acid foods (green peas with ham, steamed sole, vegetable soup, braised veal was studied in an industrially feasible pressure range and temperatures between 100 and 120°C. Inactivation curves exhibited rapid inactivation during compression and decompression followed by strong tailing effects. The highest inactivation (approx. 6-log cycle reduction was obtained in braised veal at 600 MPa and 110°C after 300 s pressure-holding time. In general, inactivation curves exhibited similar negative exponential shapes, but maximum achievable inactivation levels were lower in foods with higher fat contents. At high treatment temperatures, spore inactivation was more effective at lower pressure levels (300 vs. 600 MPa, which indicates a non-linear pressure/temperature-dependence of the HPT spore inactivation efficiency. A comparison of spore inactivation levels achievable using HPT treatments versus a conventional heat sterilization treatment (121.1°C, 3 min illustrates the potential of combining high pressures and temperatures to replace conventional retorting with the possibility to reduce the process temperature or shorten the processing time. Finally, experiments using varying spore inoculation levels suggested the presence of a resistant fraction comprising approximately 0.01% of a spore population as reason for the pronounced tailing effects in survivor curves. The loss of the high resistance properties upon cultivation indicates that those differences develop during sporulation and are not linked to permanent modifications at the genetic level.

  10. The problem of modernization of the high-pressure pipelines clampers - Practice

    International Nuclear Information System (INIS)

    Komorowski, J.; Zajaczkowski, P.; Szteke, W.

    2008-01-01

    In the paper the problems connected with the modernization and repair of the clampers of high-pressure pipelines joining the boiler with the turbine, on the basis of authors experiences are presented. The basic scope of requirements and practice recommendation are also done. (author)

  11. Breakdown pressures and characteristic flaw sizes during fluid injection experiments in shale at elevated confining pressures.

    Science.gov (United States)

    Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.

    2017-12-01

    Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated

  12. A new design for high stability pressure-controlled ventilation for small animal lung imaging

    International Nuclear Information System (INIS)

    Kitchen, M J; Habib, A; Lewis, R A; Fouras, A; Dubsky, S; Wallace, M J; Hooper, S B

    2010-01-01

    We have developed a custom-designed ventilator to deliver a stable pressure to the lungs of small animals for use in imaging experiments. Our ventilator was designed with independent pressure vessels to separately control the Peak Inspiratory Pressure (PIP) and Positive End Expiratory Pressure (PEEP) to minimise pressure fluctuations during the ventilation process. The ventilator was computer controlled through a LabVIEW interface, enabling experimental manipulations to be performed remotely whilst simultaneously imaging the lungs in situ. Mechanical ventilation was successfully performed on newborn rabbit pups to assess the most effective ventilation strategies for aerating the lungs at birth. Highly stable pressures enabled reliable respiratory gated acquisition of projection radiographs and a stable prolonged (15 minute) breath-hold for high-resolution computed tomography of deceased rabbit pups at different lung volumes.

  13. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    Science.gov (United States)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  14. Impedance-match experiments using high intensity lasers

    International Nuclear Information System (INIS)

    Holmes, N.C.; Trainor, R.J.; Anderson, R.A.; Veeser, L.R.; Reeves, G.A.

    1981-01-01

    The results of a series of impedance-match experiments using copper-aluminum targets irradiated using the Janus Laser Facility are discussed. The results are compared to extrapolations of data obtained at lower pressures using impact techniques. The sources of errors are described and evaluated. The potential of lasers for high accuracy equation of state investigations are discussed

  15. High-pressure applications in medicine and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  16. High-pressure applications in medicine and pharmacology

    International Nuclear Information System (INIS)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C

    2004-01-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic

  17. Application of Fabry-Perot velocimeter to high-speed experiments

    International Nuclear Information System (INIS)

    Chaw, H.H.; McMillan, C.F.; Osher, J.E.

    1988-01-01

    The Fabry-Perot (F-P) velocimeter is a useful instrument for measuring the velocity of objects at speeds ranging from fractions of a kilometer per second to a few tens of kilometers per second and up. Because of its immunity to electromagnetic interference and its velocity resolution, it has become the prime diagnostic tool in our electric-gun facility. Examples of its application to high speed experiments are discussed, including: electric-gun flyer studies, spallation of materials under high-speed impact, momentum-transfer studies, pressure pulse created by high-velocity impact, and detonation-wave studies in high-explosive experiments

  18. What Is High Blood Pressure Medicine?

    Science.gov (United States)

    ... a medicine calendar. • Set a reminder on your smartphone. What types of medicine may be prescribed? One ... High Blood Pressure Medicine? What are their side effects? For many people, high blood pressure medicine can ...

  19. High Blood Pressure in Pregnancy

    Science.gov (United States)

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  20. Aging study of boiling water reactor high pressure injection systems

    International Nuclear Information System (INIS)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200 degrees C (2,200 degrees F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission's Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed

  1. Irradiation experiments on materials for core internals, pressure vessel and fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Materials degradation due to the aging phenomena is one of the key issues for the life assessment and extension of the light water reactors (LWRs). This presentation introduces JAERI`s activities in the field of LWR material researches which utilize the research and testing reactors for irradiation experiments. The activities are including the material studies for the core internals, pressure vessel and fuel cladding. These materials are exposed to the neutron/gamma radiation and high temperature water environments so that it is worth reviewing their degradation phenomena as the continuum. Three topics are presented; For the core internal materials, the irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels is the present major concern. At JAERI the effects of alloying elements on IASCC have been investigated through the post-irradiation stress corrosion cracking tests in high-temperature water. The radiation embrittlement of pressure vessel steels is still a significant issue for LWR safety, and at JAERI some factors affecting the embrittlement behavior such as a dose rate have been investigated. Waterside corrosion of Zircaloy fuel cladding is one of the limiting factors in fuel rod performance and an in-situ measurement of the corrosion rate in high-temperature water was performed in JMTR. To improve the reliability of experiments and to extent the applicability of experimental techniques, a mutual utilization of the technical achievements in those irradiation experiments is desired. (author)

  2. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  3. High repetition rate laser-driven MeV ion acceleration at variable background pressures

    Science.gov (United States)

    Snyder, Joseph; Ngirmang, Gregory; Orban, Chris; Feister, Scott; Morrison, John; Frische, Kyle; Chowdhury, Enam; Roquemore, W. M.

    2017-10-01

    Ultra-intense laser-plasma interactions (LPI) can produce highly energetic photons, electrons, and ions with numerous potential real-world applications. Many of these applications will require repeatable, high repetition targets that are suitable for LPI experiments. Liquid targets can meet many of these needs, but they typically require higher chamber pressure than is used for many low repetition rate experiments. The effect of background pressure on the LPI has not been thoroughly studied. With this in mind, the Extreme Light group at the Air Force Research Lab has carried out MeV ion and electron acceleration experiments at kHz repetition rate with background pressures ranging from 30 mTorr to >1 Torr using a submicron ethylene glycol liquid sheet target. We present these results and provide two-dimensional particle-in-cell simulation results that offer insight on the thresholds for the efficient acceleration of electrons and ions. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  4. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  5. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  6. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  7. High blood pressure and eye disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  8. Identification of hydrologic and geochemical pathways using high frequency sampling, REE aqueous sampling and soil characterization at Koiliaris Critical Zone Observatory, Crete

    Energy Technology Data Exchange (ETDEWEB)

    Moraetis, Daniel, E-mail: moraetis@mred.tuc.gr [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece); Stamati, Fotini; Kotronakis, Manolis; Fragia, Tasoula; Paranychnianakis, Nikolaos; Nikolaidis, Nikolaos P. [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece)

    2011-06-15

    Highlights: > Identification of hydrological and geochemical pathways within a complex watershed. > Water increased N-NO{sub 3} concentration and E.C. values during flash flood events. > Soil degradation and impact on water infiltration within the Koiliaris watershed. > Analysis of Rare Earth Elements in water bodies for identification of karstic water. - Abstract: Koiliaris River watershed is a Critical Zone Observatory that represents severely degraded soils due to intensive agricultural activities and biophysical factors. It has typical Mediterranean soils under the imminent threat of desertification which is expected to intensify due to projected climate change. High frequency hydro-chemical monitoring with targeted sampling for Rare Earth Elements (REE) analysis of different water bodies and geochemical characterization of soils were used for the identification of hydrologic and geochemical pathways. The high frequency monitoring of water chemical data highlighted the chemical alterations of water in Koiliaris River during flash flood events. Soil physical and chemical characterization surveys were used to identify erodibility patterns within the watershed and the influence of soils on surface and ground water chemistry. The methodology presented can be used to identify the impacts of degraded soils to surface and ground water quality as well as in the design of methods to minimize the impacts of land use practices.

  9. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  10. Experience of application of the general-purpose pressure and pressure drop transformers on nitrogen tetroxide

    International Nuclear Information System (INIS)

    Grishchuk, M.Kh.

    1979-01-01

    An experience of application of the general-purpose pressure and pressure drop transformers at the Nuclear Power Engineering Institute of the BSSR Academy of Sciences for measurements on nitrogen tetroxide has been described. The concrete recommendations on the types of transformers and the volume of preparational work before putting them into operation have been given

  11. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  12. Geochemical prospecting for uranium and thorium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1980-01-01

    A brief review of analytical geochemical prospecting methods for uranium and thorium is given excluding radiometric techniques, except those utilized in the determination of radon. The indicator (pathfinder) elements useful in geochemical surveys are listed for each of the types of known uranium and thorium deposits; this is followed by sections on analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys) and gases (atmochemical surveys). All of the analytical geochemical methods are applicable in prospecting for thorium and uranium, particularly where radiometric methods fail due to attenuation by overburden, water, deep leaching and so on. Efficiency in the discovery of uranium and/or thorium orebodies is promoted by an integrated methods approach employing geological pattern recognition in the localization of deposits, analytical geochemical surveys, and radiometric surveys. (author)

  13. A diamond-anvil high-pressure cell for X-ray diffraction on a single crystal

    International Nuclear Information System (INIS)

    Malinowski, M.

    1987-01-01

    A new diamond-anvil high-pressure cell is described which can be used in single-crystal X-ray diffraction instruments to collect X-ray intensity data from single-crystal samples up to hydrostatic pressures of about 10 GPa. A unique design allows two types of diffraction geometry to be applied in single-crystal high-pressure diffraction experiments. More than 85% of the Ewald sphere is accessible, and a continuous range of 2θ values is available from 0 up to about 160 0 . Pressure may be calibrated by the ruby fluorescence technique or by the use of an internal X-ray-standard single crystal. The design of our diamond-anvil cell would allow, with little or no modification, operation at high and low temperatures, optical studies and powder diffractometer work. (orig.)

  14. Structural distortion and electronic properties of NiO under high pressure: an ab initio GGA+U study

    International Nuclear Information System (INIS)

    Zhang Weibing; Hu Yulin; Han Keli; Tang Biyu

    2006-01-01

    The structural distortion and electronic properties of NiO under high pressure are investigated by means of first-principles calculations within the density functional theory (DFT) in the generalized gradient approximation (GGA). The strong electronic correlations are also taken into account in the form of GGA+U. Recent experiments implied that previous local density approximation (LDA) calculations incorrectly predicted structural distortion under high pressure, especially above 60 GPa. The present results show that even GGA calculations do not give a proper description of structural distortion under high pressure, although much improved structural and bulk properties are obtained. When strong correlations are included, overall agreement of the structural distortions of NiO under high pressure is obtained. The lattice constants a and c as well as the axial ratio c/a are in good agreement with experiment over the entire experimental pressure range. The successful prediction of the structural distortion of GGA+U can be attributed to the reasonable description of nearest-neighbour magnetic exchange interactions. In addition, we also analyse the density of states under different pressures. Present results indicate that, with increasing pressure, the bandwidth increases and the bandgap transits from being a mixture of charge-transfer and Mott-Hubbard type towards solely Mott-Hubbard type

  15. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  16. Professional Skepticism and Auditors’ Assessment of Misstatement Risks: The Moderating Effect of Experience and Time Budget Pressure

    Directory of Open Access Journals (Sweden)

    Sayed Alwee Hussnie Sayed Hussin

    2017-12-01

    Full Text Available Background: This study employs a field experiment to examine the relationship between professional skepticism, experience, and time budget pressure on auditors’ assessment of risk of misstatement. In addition, the study examines the moderating effect of experience and time budget pressure on the relationship between professional skepticism and auditors’ assessment of risk from material misstatements; 2 Method: This study employs a multiple regression analysis on 248 auditors from both Big4 and non-Big4 firms; 3 The results indicate that professional skepticism and experience have positive effects while time budget pressure has a negative effect on auditors’ assessment of risk from material misstatements; and 4 The positive effect of professional skepticism on auditors’ assessment of risk from material misstatement is stronger among more experienced auditors than that among less experienced. On the other hand, the positive effect of professional skepticism on risk assessment is weaker when auditors work under high time budget pressure than that when they work under low time budget pressure. Additional analysis on the samples from the two selected areas, Kuala Lumpur and Selangor, produces consistent results indicating that the use of separate models for different samples is not necessary. Hence, the study uses a single model for the final analysis. The results provide a better understanding on whether the auditors are able to sustain professional skepticism with a given amount of relevant audit experience and under different levels of time budget pressure.

  17. Arsenic mobilization in an oxidizing alkaline groundwater: Experimental studies, comparison and optimization of geochemical modeling parameters

    International Nuclear Information System (INIS)

    Hafeznezami, Saeedreza; Lam, Jacquelyn R.; Xiang, Yang; Reynolds, Matthew D.; Davis, James A.; Lin, Tiffany; Jay, Jennifer A.

    2016-01-01

    Arsenic (As) mobilization and contamination of groundwater affects millions of people worldwide. Progress in developing effective in-situ remediation schemes requires the incorporation of data from laboratory experiments and field samples into calibrated geochemical models. In an oxidizing aquifer where leaching of high pH industrial waste from unlined surface impoundments led to mobilization of naturally occurring As up to 2 mg L −1 , sequential extractions of solid phase As as well as, batch sediment microcosm experiments were conducted to understand As partitioning and solid-phase sorptive and buffering capacity. These data were combined with field data to create a series of geochemical models of the system with modeling programs PHREEQC and FITEQL. Different surface complexation modeling approaches, including component additivity (CA), generalized composite (GC), and a hybrid method were developed, compared and fitted to data from batch acidification experiments to simulate potential remediation scenarios. Several parameters strongly influence the concentration of dissolved As including pH, presence of competing ions (particularly phosphate) and the number of available sorption sites on the aquifer solids. Lowering the pH of groundwater to 7 was found to have a variable, but limited impact (<63%) on decreasing the concentration of dissolved As. The models indicate that in addition to lowering pH, decreasing the concentration of dissolved phosphate and/or increasing the number of available sorption sites could significantly decrease the As solubility to levels below 10 μg L −1 . The hybrid and GC modeling results fit the experimental data well (NRMSE<10%) with reasonable effort and can be implemented in further studies for validation. - Highlights: • Samples were collected from an oxidizing aquifer where high pH waste has led to mobilization of naturally occurring As. • Three surface complexation modeling approaches were used in modeling adsorption

  18. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    Science.gov (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  19. Feasibility studies of high-pressure 4π proportional counter for absolute activity measurement

    International Nuclear Information System (INIS)

    Hino, Y.; Kawada, Y.

    1988-01-01

    A high-pressure proportional counter system is constructed. The high pressure 4πβ counter system constructed is made of aluminum and is divided into two 2π counters. The gas pressure is controlled with a pressure regulator and very fine leak valves to keep the balance of a stable pressure and constant flow rate. Investigation of characteristics of th counter shows that there is an almost linear relation between voltage and pressure. The linearlity of gas gain of this counter to the electron energies is measured with different gas pressures. Quite good linear gas multiplication is obtained at 0.9 MPa. Another investigation is made of application of to activity measurement of 109 Cd. When the gas pressure is over 0.5 MPa, the proportion of collected conversion electrons to absolute activity comes to a constant value of 96 %. This is quite good agreement with the decay data of 96.4 % conversion electron emission rate. The study indicated many excellent features for activity measurement. Especially the efficiency variation technique is good for automatic data acquisition with a programmable high voltage supplier. Moreover, since it is possible to obtain absolute activity with only one sample, it will be quite useful for limited samples experiments. (N.K.)

  20. Study of Raman Spectroscopy on Phase Relations of CaCO3 at High Temperature and High Pressure

    Science.gov (United States)

    Li, M.; Zheng, H.; Duan, T.

    2006-05-01

    Laser Raman Spectroscopy was used to study phase relations between calcite I, calcite II and aragonite at high pressure and high temperature. The experiment was performed in an externally heated Basselt type diamond anvil cell (DAC). Natural calcite (calcite I) was used as starting mineral. The sample and a small chip of quartz were loaded in a cavity (300 μm in diameter and 250 μm in depth) in a rhenium gasket. The Na2CO3 aqueous solution of 1mol/L was also loaded as a pressure medium to yield hydrostatic pressure. The whole assembly was pressurized first and then heated stepwise to 400°C. Pressure and temperature in the chamber were determined by the shift of Raman band at 464 cm-1 of quartz and by NiCr-NiSi thermocouple, respectively. The Raman spectra were measured by a Renishaw 1000 spetrometer with 50 mW of 514.5nm argon-ion laser as the excitation light source. The slit width was 50 μm and the corresponding resolution was ±1 cm-1. From the experiments, we observed the phase transitions between calcite I and calcite II, calcite I and aragonite, calcite II and aragonite, respectively. Our data showed a negative slope for the boundary between calcite I and calcite II, which was similar to Bridgman's result, although Hess et al. gave a positive slope. The boundary with a negative slope for calcite II and aragonite was also defined, which had never been done before. And all these data can yield a more complete phase diagram of CaCO3 than the studies of Hess et al. and Suito et al.Reference:Bridgeman P. W.(1939) Journal: American Journal of Science, Vol. 237, p. 7-18Bassett W. A. et al. (1993) Journal: Review of Scientific Instruments, Vol. 64, p. 2340-2345Suito K. et al. (2001) Journal: American Mineralogist, Vol. 86, p. 997- 1002Hess N. J. et al. (1991) In A. K. Singh, Ed., Recent Trends in High Pressure Research; Proc. X IIIth AIRAPT International Conference on High Pressure Science and Technology, p. 236-241. Oxford & IBH Publishing Co. Pvt, Ltd., New

  1. Ab initio pseudopotential studies of cubic BC2N under high pressure

    International Nuclear Information System (INIS)

    Pan Zicheng; Sun Hong; Chen Changfeng

    2005-01-01

    We present the results of a systematic study of the structural, electronic, and vibrational properties of various cubic BC 2 N phases under high pressure. Ab initio pseudopotential total-energy and phonon calculations have been carried out to examine the changes in the structural parameters, bonding behaviours, band structures, and dynamic instabilities caused by phonon softening in these phases. We find that an experimentally synthesized high-density phase of cubic BC 2 N exhibits outstanding stability in the structural and electronic properties up to very high pressures. On the other hand, another experimentally identified phase with lower density and lower symmetry undergoes a dramatic structural transformation with a volume and bond-length collapse and a concomitant semi-metal to semiconductor transition. A third phase is predicted to be favourable over the above-mentioned lower-density phase by the enthalpy calculations. However, the dynamic phonon calculations reveal that it develops imaginary phonon modes and, therefore, is unstable in the experimental pressure range. The calculations indicate that its synthesis may be achieved at reduced pressures. These results provide a comprehensive understanding for the high-pressure behaviour of the cubic BC 2 N phases and reveal their interesting properties that can be verified by experiments

  2. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  3. Tandem-Mirror Experiment-Upgrade neutral pressure measurement diagnostic systems

    International Nuclear Information System (INIS)

    Pickles, W.L.; Allen, S.L.; Hill, D.N.; Hunt, A.L.; Simonen, T.C.

    1985-01-01

    The Tandem-Mirror Experiment-Upgrade (TMX-U) has a large and complex system of Bayard--Alpert, magnetron, and Penning gauges, in addition to mass spectrometers (RGA), all of which measure neutral pressures in the many internal regions of TMX-U. These pressure measurements are used as part of the confinement physics data base as well as for management of the TMX-U vacuum system. Dynamic pressures are modeled by a coupled-volumes simulation code, which includes wall reflux, getter pumping, and plasma pumping

  4. Investigation of density-wave oscillation in parallel boiling channels under high pressure

    International Nuclear Information System (INIS)

    Ming Xiao; Xuejun Chen; Mingyuan Zhang

    1992-01-01

    This paper presents experimental results on density-wave instability in parallel boiling channels. Experiments have been done in a high pressure steam-water loop. Different types of two-phase flow instabilities have been observed, including density-wave oscillation, pressure-drop type oscillation, thermal oscillation and secondary density-wave oscillation. The secondary density-wave oscillation appears at very low exit steam quality (less than 0.1) and at the positive portion of Δ P-G curves with both channels' flow rate oscillating in phase. Density-wave oscillation can appear at pressure up to 192 bar and disappear over 207 bar. (6 figures) (Author)

  5. Femtosecond pump-probe studies of phonons and carriers in bismuth under high pressure

    International Nuclear Information System (INIS)

    Kasami, M.; Ogino, T.; Mishina, T.; Yamamoto, S.; Nakahara, J.

    2006-01-01

    We investigate the high-pressure phase of Bi under hydrostatic pressure using pump-probe spectroscopy at pressures up to 3.0 GPa, and we observe coherent phonons signal and relaxation signal of photo-excited carriers at Bi(II) and Bi(III) phases. The pressure dependence of the coherent phonons shows that the amplitude of coherent phonons is extremely small and the frequency of coherent phonons changes at high-pressure phases. As results from our experiment, we obtain its frequencies are 2.5 and 2.2 THz at Bi(II) and Bi(III), respectively. Furthermore, photo-excited carrier relaxation indicates drastic changes near 2.5 GPa. Bismuth transforms from semimetal to semiconductor near 2.5 GPa, and band-overlapping between at L-point and at T-point disappears. We consider that the drastic changes of the photo-excited carrier relaxation are strongly correlated with the band-overlapping disappearing

  6. Acceptance of the 2014 Geochemical Society Distinguished Service Award by Carla Koretsky

    Science.gov (United States)

    Koretsky, Carla

    2015-06-01

    I am deeply touched to have received the Geochemical Society Distinguished Service Award. It was a great surprise when I received the notice that I had been chosen for the award. It has been a tremendous pleasure to work on behalf of student members of the Geochemical Society, Japanese Geochemical Society and the European Association of Geochemists to organize the student travel grants over the past few years. Certainly, this is not an effort that I undertook on my own. Many, many members of the GS, the JGS and the EAG generously donated their time and expertise to serve as reviewers for the many travel grant applicants we receive each year. Seth Davis, the GS Chief Operating Officer, spent countless hours helping to organize applications, the website, distribution of funds and many other aspects of the competition. Without Seth and the many expert reviewers, we could not run the travel grant program each year and provide this important financial support to allow more students to experience the Goldschmidt Conference. I also enjoyed my time as Geochemical News co-editor, and I should point out that GN during those years was ably co-edited by Johnson Haas. It has been a pleasure to see Elements take off, and GN evolve into a timely source of important announcements and information about cutting-edge science since I stepped down as co-editor. I feel very fortunate to work with so many outstanding colleagues in the global geochemical community, and I am a little embarrassed, and also very grateful, to have been selected for the Geochemical Society Distinguished Service Award. Thank you!

  7. Viscosity of komatiite liquid at high pressure and temperature

    Science.gov (United States)

    O Dwyer, L.; Lesher, C. E.; Wang, Y.

    2006-12-01

    The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.

  8. A low-background piston-cylinder-type hybrid high pressure cell for muon-spin rotation/relaxation experiments

    Science.gov (United States)

    Shermadini, Z.; Khasanov, R.; Elender, M.; Simutis, G.; Guguchia, Z.; Kamenev, K. V.; Amato, A.

    2017-10-01

    A low background double-wall piston-cylinder-type pressure cell is developed at the Paul Scherrer Institute. The cell is made from BERYLCO-25 (beryllium copper) and MP35N nonmagnetic alloys with the design and dimensions which are specifically adapted to muon-spin rotation/relaxation (μSR) measurements. The mechanical design and performance of the pressure cell are evaluated using finite-element analysis (FEA). By including the measured stress-strain characteristics of the materials into the finite-element model, the cell dimensions are optimized with the aim to reach the highest possible pressure while maintaining the sample space large (6 mm in diameter and 12 mm high). The presented unconventional design of the double-wall piston-cylinder pressure cell with a harder outer MP35N sleeve and a softer inner CuBe cylinder enables pressures of up to 2.6 GPa to be reached at ambient temperature, corresponding to 2.2 GPa at low temperatures without any irreversible damage to the pressure cell. The nature of the muon stopping distribution, mainly in the sample and in the CuBe cylinder, results in a low-background μSR signal.

  9. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G. [LANL; Sandberg, R. L. [LANL; Lalone, B. M. [NSTec; Marshall, B. R. [NSTec; Grover, M. [NSTec; Stevens, G. D. [NSTec; Udd, E. [Columbia Gorge Research

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  10. High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems

    Science.gov (United States)

    Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.; Marshall, B. R.; Grover, M.; Stevens, G.; Udd, E.

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  11. Evaluating the risk of eye injuries: intraocular pressure during high speed projectile impacts.

    Science.gov (United States)

    Duma, Stefan M; Bisplinghoff, Jill A; Senge, Danielle M; McNally, Craig; Alphonse, Vanessa D

    2012-01-01

    To evaluate the risk of eye injuries by determining intraocular pressure during high speed projectile impacts. A pneumatic cannon was used to impact eyes with a variety of projectiles at multiple velocities. Intraocular pressure was measured with a small pressure sensor inserted through the optic nerve. A total of 36 tests were performed on 12 porcine eyes with a range of velocities between 6.2 m/s and 66.5 m/s. Projectiles selected for the test series included a 6.35  mm diameter metal ball, a 9.25  mm diameter aluminum rod, and an 11.16  mm diameter aluminum rod. Experiments were designed with velocities in the range of projectile consumer products such as toy guns. A range of intraocular pressures ranged between 2017 mmHg to 26,426 mmHg (39 psi-511 psi). Four of the 36 impacts resulted in globe rupture. Intraocular pressures dramatically above normal physiological pressure were observed for high speed projectile impacts. These pressure data provide critical insight to chronic ocular injuries and long-term complications such as glaucoma and cataracts.

  12. Evaluation of disposal site geochemical performance using a containment factor

    International Nuclear Information System (INIS)

    Lerman, A.; Domenico, P.A.; Bartlett, J.W.

    1988-01-01

    The containment factor is a measure of retention by geologic setting of wastes released from a repository. The factor is alternatively defined either in terms of several measurable hydrological and geochemical parameters, or in terms of amounts of waste components that may be released to the geologic setting and, subsequently, to the environment. Containment factors for individual waste components in a given geologic setting are functions of groundwater to rock volume ratios, sorption or exchange characteristics of the rocks, and containment time to groundwater travel time ratios. For high-level radioactive wastes, containment factors based on the NRC and EPA limit values for cumulative releases from waste and to the environment provide a measure of the geochemical performance of the geologic setting in tuff, basalt, and salt. The containment factor values for individual nuclides from high-level wastes indicate that for some of the nuclides containment may be achieved by groundwater travel time along. For other nuclides, additional performance functions need to be allocated to geochemical retention by such processes as sorption, ion-exchange or precipitation

  13. Development of thermodynamic databases for geochemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.C. [Monitor Scientific, L.L.C., Denver, Colorado (United States); Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Neyama, Atsushi [Computer Software Development Corp., Tokyo (Japan)

    1999-09-01

    Two thermodynamic databases for geochemical calculations supporting research and development on geological disposal concepts for high level radioactive waste are described in this report. One, SPRONS.JNC, is compatible with thermodynamic relations comprising the SUPCRT model and software, which permits calculation of the standard molal and partial molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000degC. This database includes standard molal Gibbs free energies and enthalpies of formation, standard molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure (1 bar) and temperature (25degC) for 195 minerals and 16 gases. It also includes standard partial molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONS.JNC extends similar databases described elsewhere by incorporating new and revised data published in the peer-reviewed literature since 1991. The other database, PHREEQE.JNC, is compatible with the PHREEQE series of geochemical modeling codes. It includes equilibrium constants at 25degC and l bar for mineral-dissolution, gas-solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or coefficients in an empirical log K(T) function, are also included in this database, which permits calculation of equilibrium constants between 0 and 100degC at 1 bar. All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQE.JNC are calculated using SUPCRT and SPRONS.JNC, which ensures that these two databases are mutually consistent. They are also internally consistent insofar as all the data are compatible with basic thermodynamic definitions and functional relations in the SUPCRT model, and because primary

  14. Development of thermodynamic databases for geochemical calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu; Neyama, Atsushi

    1999-09-01

    Two thermodynamic databases for geochemical calculations supporting research and development on geological disposal concepts for high level radioactive waste are described in this report. One, SPRONS.JNC, is compatible with thermodynamic relations comprising the SUPCRT model and software, which permits calculation of the standard molal and partial molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000degC. This database includes standard molal Gibbs free energies and enthalpies of formation, standard molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure (1 bar) and temperature (25degC) for 195 minerals and 16 gases. It also includes standard partial molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONS.JNC extends similar databases described elsewhere by incorporating new and revised data published in the peer-reviewed literature since 1991. The other database, PHREEQE.JNC, is compatible with the PHREEQE series of geochemical modeling codes. It includes equilibrium constants at 25degC and l bar for mineral-dissolution, gas-solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or coefficients in an empirical log K(T) function, are also included in this database, which permits calculation of equilibrium constants between 0 and 100degC at 1 bar. All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQE.JNC are calculated using SUPCRT and SPRONS.JNC, which ensures that these two databases are mutually consistent. They are also internally consistent insofar as all the data are compatible with basic thermodynamic definitions and functional relations in the SUPCRT model, and because primary

  15. Geochemical characterization of Parana Basin volcanic rocks: petrogenetic implications

    International Nuclear Information System (INIS)

    Marques, L.S.

    1988-01-01

    A detailed study of the geochemical characteristics of Parana Basin volcanic rocks is presented. The results are based on the analyses of major and trace elements of 158 samples. Ninety three of these volcanic samples belong to 8 flow sequences from Rio Grande do Sul and Santa Catarina States. The remaining sixty five samples are distributed over the entire basin. In order to study the influence of crustal contamination processes in changing chemical characteristics of the volcanic rocks, 47 samples representative of the crystalline basement of the southern and southeastern Parana Basin were also analysed. Several petrogenetic models were tested to explain the compocional variability of the volcanic rocks, in particular those of southern region. The results obtained sugest an assimilation-fractional crystallization process as viable to explain the differences of both the chemical characteristics and Sr isotope initial ratios observed in basic and intermediate rocks. A model involving melting processes of basic material, trapped at the base of the crust, with composition similar to low and high TiO 2 basalts appears to be a possibility to originate the Palmas and Chapeco acid melts, respectively. The study of ''uncontaminated'' or poorly contaminated low TiO 2 basic rocks from the southern, central and northern regions shows the existence of significant differences in the geochemical charactetistics according to their geographical occurrence. A similar geochemical diversity is also observed in high TiO 2 basalts and Chapeco volcanics. Differences in incompatible element ratios between low and high TiO 2 ''uncontaminated'' or poorly contaminated basalts suggest that they could have been produced by different degrees of melting in a garnet peridotite source. Geochemical and isotopic (Sr and Nd) data also support the view that basalts from northern and southern regions of Parana Basin originated from mantle source with different composition. (author) [pt

  16. High Speed Optical Diagnostics in a High Pressure, GOx/RP 2 Combustor

    Science.gov (United States)

    2017-07-10

    essentially all the experiments. At higher pressures, helical spirals of luminosity near the GOx post are evident, apparently tracing the swirling fuel...At higher pressures, helical spirals of luminosity near the GOx post are evident, apparently tracing the swirling fuel patterns before more...Significant uncertainty exists, however, as to its utility for rocket-pressure, liquid fueled environments. This paper presents the methodology and

  17. Assessing the High Temperature, High Pressure Subsurface for Anaerobic Methane Oxidation

    Science.gov (United States)

    Harris, R. L.; Bartlett, D.; Byrnes, A. W.; Walsh, K. M.; Lau, C. Y. M.; Onstott, T. C.

    2017-12-01

    The anaerobic oxidation of methane (AOM) is an important sink in the global methane (CH4) budget. ANMEs are known to oxidize CH4 either independently or in consortia with bacteria, coupling the reduction of electron acceptors such as, SO42-, NO2-, NO3-, Mn4+, or Fe3+. To further constrain the contribution of AOM to the global CH4 budget, it is important to assess unexplored environments where AOM is thermodynamically possible such as the high pressure, high temperature deep biosphere. Provided plausible electron acceptor availability, increased temperature and pCH4 yield favorable Gibbs free energies for AOM reactions and the production of ATP (Fig. 1). To date, only sulfate-dependent AOM metabolism has been documented under high temperature conditions (50-72˚C), and AOM has not been assessed above 10.1 MPa. Given that ANMEs share close phylogenetic and metabolic heritage with methanogens and that the most heat-tolerant microorganism known is a barophilic methanogen, there possibly exist thermophilic ANMEs. Here we describe preliminary results from high pressure, high temperature stable isotope tracer incubation experiments on deep biosphere samples. Deep sub-seafloor sediments collected by IODP 370 from the Nankai Trough (257 - 865 m below seafloor) and deep fracture fluid from South Africa (1339 m below land surface) were incubated anaerobically in hydrostatic pressure vessels at 40 MPa in simulated in situ temperatures (40˚ - 80˚C). Sediments and fracture fluid were incubated in sulfate-free artificial seawater, a 2:98 13CH4:N2 headspace, and treated with one of the potential electron acceptors listed above in addition to kill and endogenous activity (i.e. no added electron acceptor) controls. Stable isotope analysis of dissolved inorganic carbon (DIC) suggests that AOM occurred within 60 days of incubation for all investigated electron acceptors and temperatures except 50˚C. Sulfate-dependent AOM rates are consistent with those previously reported in the

  18. Guidelines of the French Society of Otorhinolaryngology (SFORL). Epistaxis and high blood pressure.

    Science.gov (United States)

    Michel, J; Prulière Escabasse, V; Bequignon, E; Vérillaud, B; Robard, L; Crampette, L; Malard, O

    2017-02-01

    The authors present the guidelines of the French Oto-Rhino-Laryngology - Head and Neck Surgery Society (Société Française d'Oto-Rhino-Laryngologie et de Chirurgie de la Face et du Cou: SFORL) on epistaxis in high blood pressure. A multidisciplinary work group was entrusted with a review of the scientific literature on the above topic. Guidelines were drawn up, based on the articles retrieved and the group members' individual experience. They were then read over by an editorial group independent of the work group. The final version was established in a coordination meeting. The guidelines were graded as A, B, C or expert opinion, by decreasing level of evidence. It is recommended to measure the blood pressure of patients in acute-phase epistaxis (Grade A); to control high blood pressure medically in the acute phase of bleeding, to reduce its duration; to monitor blood pressure at the waning of nosebleed; and to control high blood pressure medically in the waning phase to reduce the risk of recurrence. In case of persistent high blood pressure on waning of severe epistaxis, it is recommended to prescribe cardiovascular evaluation to screen for underlying hypertensive disease (Grade B). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. 30 CFR 57.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  20. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  1. Appliance of geochemical engineering in radioactive waste disposal

    International Nuclear Information System (INIS)

    Li Shuang; Zhang Chengjiang; Ni Shijun; Li Kuanliang

    2008-01-01

    The basic foundation of applying geochemical engineering to control environment, common engineering models of disposal radioactive waste and the functions of the engineering barriers are introduced in this paper. The authors take the geochemical engineering barrier materiel research of a radioactive waste repository as an example to explain the appliance of geochemical engineering in the disposal of radioactive waste. And the results show that it can enhance the security of the nuclear waste repository if we use geochemical engineering barrier. (authors)

  2. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  3. Relationships between coal-quality and organic-geochemical parameters: A case study of the Hafik coal deposits (Sivas Basin, Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Erik, N. Yalcin; Sancar, S. [Cumhuriyet University, Department of Geological Engineering, Sivas (Turkey)

    2010-09-01

    This study provides coal-quality, organic-petrographic and organic-geochemical data on Tertiary subbituminous coal of the Hafik area, northwestern part of the Sivas Basin, Turkey. Coal-petrological studies along with proximate and ultimate analyses were undertaken to determine the organic-petrographic characteristics of the Hafik coals. Huminite reflectances were found to be between 0.38 and 0.48% (corresponding to an organic-material-rich and coal layers), values characteristic of low maturity. This parameter shows a good correlation with calorific values (average 21,060 kJ/kg) and average T{sub max} (422 C) mineral-matter diagenesis, indicating immaturity. The studied coals and organic material underwent only low-grade transformation, a consequence of low lithostatic pressure. Therefore, the Hafik coals are actually subbituminous in rank. Rock-Eval analysis results show types II/III and III kerogens. The organic fraction of the coals is mostly comprised of humic-group macerals (gelinites), with small percentages derived from the inertinite and liptinite groups. In this study, organic-petrographic, organic-geochemical and coal quality data were compared. The Hafik deposit is a high-ash, high-sulfur coal. The mineral matter of the coals is comprised mainly of calcite and clay minerals. (author)

  4. Experimental and theoretical studies on the high pressure vessel

    International Nuclear Information System (INIS)

    So, Dong Sup

    1992-02-01

    A High Pressure Melt Ejection (HPME) is one of the most important phenomena relevant to Direct Containment Heating(DCH) which could lead to an early containment failure in a several accident of PWRs. Dispersal of core debris following a postulated high pressure failure of PWR reactor vessel has been investigated by experimental works and one-dimensional computer modeling to find the relation between the fraction of melt simulant retained in the cavity and the reactor vessel initial conditions as well as to examine the hydrodynamic processes in a reactor cavity geometry. Simulated HPME experiments have been performed with two small-scale (1/25-th and 1/41-st) transparent reactor cavity models of the Young-Gwang unit 1 and 2. Wood's metal and water have been used as melt sumulants while high pressure nitrogen and carbon dioxide have been used as driver gases to simulate the blowdown steam and gas from the breach of the reactor pressure vessel. The high speed movies of the transient tests showed that no fraction of the melt simulant exits the cavity model via the vertical cavity tunnel under its own momentum, and that the discharged simulant from the pressure vessel exits the reactor cavity model during the gas blowdown. The principal removal mechanism seemed to be a combined mechanism of film entrainment and particle levitation due to the driving force of the blowdown gas. Experimental data for the fraction of melt simulant retained in the cavity model (Y f ) during a postulated scenario of the HPME from PWR pressure vessels have been obtained as a function of various test parameters. These data have been used to develop a correlation for Y f that fits all the data (a total of 313 data points) within the standard deviation of 0.054 by means of dimensional analysis and nonlinear least squares optimization technique. The basic effects of important parameters used to describe the HPME accident sequence on the Y f are determined based on the correlation obtained here and

  5. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment

    Science.gov (United States)

    Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui

    2018-03-01

    The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.

  6. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt

    2016-01-01

    Ammonia oxidation experiments were conducted at high pressure (30 bar and 100 bar) under oxidizing and stoichiometric conditions, respectively, and temperatures ranging from 450 to 925 K. The oxidation of ammonia was slow under stoichiometric conditions in the temperature range investigated. Under...... oxidizing conditions the onset temperature for reaction was 850–875 K at 30 bar, while at 100 bar it was about 800 K, with complete consumption of NH3 at 875 K. The products of reaction were N2 and N2O, while NO and NO2 concentrations were below the detection limit even under oxidizing conditions. The data...... was satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  7. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  8. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate...

  9. Modern methods of high-pressure fuel pump common rail power system diagnostics

    Directory of Open Access Journals (Sweden)

    Kyshchun В.

    2016-08-01

    Full Text Available We've considered high pressure fuel pumps design features and equipment for their diagnosis. It was noted that the reliability of the fuel elements Common Rail system primarily provide precision parts of the fuel equipment. As a consequence, the aim of study was comparative analysis and laborious of modern methods of the high pressure fuel pump diagnosing. In particular, the definition of a technical condition of the fuel pump was carried out using a special stand and by measuring the fuel pressure and duty cycle of the pressure regulator signal. As an object of our research we've chosen Bosch № 0445010008 fuel pump (from Mercedes Benz E320cdi in which the plunger pairs were changed alternately with different technical conditions. Preliminary fuel pump parameters were determined by hydraulic testing. Based on conducted experiments we've found out that fuel pressure measurement change method and the duty cycle of the pressure regulator signal at the starting and full load modes less laborious compared to the definition of a technical condition of the pump on the stand. The results of both methods of diagnosing confirmed identity of the fuel pumps.

  10. The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature

    Directory of Open Access Journals (Sweden)

    Liu Gang

    2015-01-01

    Full Text Available High pressure gas forming is a tubular component forming technology with pressurized gas at elevated temperature, based on QPF, HMGF and Hydroforming. This process can be used to form tube blank at lower temperatures with high energy efficiency and also at higher strain rates. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPGF was studied further through experiments at the elevated temperatures of 650 ∘C and 700 ∘C. In order to know the formability of the Ti-alloy tube, tensile tests were also carried out. The results show that: at the temperatures of 650 ∘C and 700 ∘C, the flow curves exhibit the power-law constitutive relation until peak stress is reached and the deformability is suitable for the HPGF process of Ti-3Al-2.5V alloy tube. The effects of pressurization path on the corner filling process and thickness profile are obvious. The high pressure inflow process can result in temperature difference between the straight wall area and corner area, which makes the thickness profile special. Besides, with the stepped pressurization path, the more constant filling rate and better thickness profile can be obtained.

  11. High-pressure X-ray diffraction studies of potassium chlorate

    Energy Technology Data Exchange (ETDEWEB)

    Pravica, Michael; Bai, Ligang; Bhattacharya, Neelanjan (UNLV)

    2012-03-15

    Two static high-pressure X-ray diffraction (XRD) studies of potassium chlorate have been performed at pressures of up to {approx}14.3 GPa in a diamond anvil cell at ambient temperature using the 16 ID-B undulator beamline at the Advanced Photon Source for the X-ray source. The first experiment was conducted to ascertain decomposition rates of potassium chlorate as a function of pressure. Below 2 GPa, the sample was observed to decompose rapidly in the presence of the X-ray beam and release oxygen. Above 2 GPa (near the phase I phase II transition), the decomposition rate dramatically slowed so that good quality XRD patterns could be acquired. This suggests a phase-dependent decomposition rate. In the second study, X-ray diffraction spectra were collected at pressures from 2 to 14.3 GPa by aligning virgin portions of the sample into the focused X-ray beam at each pressure. The results suggest the co-existence of mixed monoclinic (I) and rhombohedral (II) phases of potassium chlorate near 2 GPa. At pressures beyond 4 GPa, the XRD patterns show a very good fit to KClO{sub 3} in the rhombohedral phase with space group R3m, in agreement with earlier studies. No further phase transitions were observed with pressure. Decompression of the sample to ambient pressure indicated mixed phases I and II coupled with a small amount of synchrotron X-ray-induced decomposition product. The equation of state within this pressure regime has been determined.

  12. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States.

    Science.gov (United States)

    Zhang, Yi; Kitazawa, Soichiro; Peran, Ivan; Stenzoski, Natalie; McCallum, Scott A; Raleigh, Daniel P; Royer, Catherine A

    2016-11-23

    Understanding protein folding mechanisms and their sequence dependence requires the determination of residue-specific apparent kinetic rate constants for the folding and unfolding reactions. Conventional two-dimensional NMR, such as HSQC experiments, can provide residue-specific information for proteins. However, folding is generally too fast for such experiments. ZZ-exchange NMR spectroscopy allows determination of folding and unfolding rates on much faster time scales, yet even this regime is not fast enough for many protein folding reactions. The application of high hydrostatic pressure slows folding by orders of magnitude due to positive activation volumes for the folding reaction. We combined high pressure perturbation with ZZ-exchange spectroscopy on two autonomously folding protein domains derived from the ribosomal protein, L9. We obtained residue-specific apparent rates at 2500 bar for the N-terminal domain of L9 (NTL9), and rates at atmospheric pressure for a mutant of the C-terminal domain (CTL9) from pressure dependent ZZ-exchange measurements. Our results revealed that NTL9 folding is almost perfectly two-state, while small deviations from two-state behavior were observed for CTL9. Both domains exhibited large positive activation volumes for folding. The volumetric properties of these domains reveal that their transition states contain most of the internal solvent excluded voids that are found in the hydrophobic cores of the respective native states. These results demonstrate that by coupling it with high pressure, ZZ-exchange can be extended to investigate a large number of protein conformational transitions.

  13. The high pressure equation of state of the isotopes of solid hydrogen and helium

    International Nuclear Information System (INIS)

    Driessen, A.

    1982-01-01

    The initial aim of this thesis was to provide the high pressure equipment and the knowledge about the equation of state (EOS) necessary for a research program in a laboratory dealing with spectroscopy of solid hydrogen under high pressure. Once this first goal was reached, a logical step was to extend the work on the EOS to all three hydrogen isotopes and later also to the helium isotpes. During the experiments on the EOS of hydrogen, the effects of the concentration C 1 of the rotationally excited molecules provoked interest, resulting in an extensive experimental and theoretical study. Chapter I describes the results and experience with high pressure equipment for hydrogen up to 7 kbar and chapter II gives a short general introduction to the calculation of the EOS by introducing the Mie-Grueneisen picture and the Silvera-Goldman (SG) potential for hydrogen. Chapter III gives the results of the first EOS of H 2 and D 2 and chapter IV gives a prediction of the EOS of solid T 2 with aid of the SG potential and the experimental results of H 2 and D 2 . Chapter V presents calculations on the thermal expansion of the hydrogen isotopes, which are compared with direct experiments and chapter VI deals in detail with the influence of C 1 on the EOS of H 2 . Ortho-para conversion in hydrogen is considered in chapter VII, and chapter VIII describes experiments on 4 He. (Auth.)

  14. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Wu, Qiao [Oregon State Univ., Corvallis, OR (United States)

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  15. A New Approach for High Pressure Pixel Polar Distribution on Off-line Signature Verification

    Directory of Open Access Journals (Sweden)

    Jesús F. Vargas

    2010-06-01

    Full Text Available Features representing information of High Pressure Points froma static image of a handwritten signature are analyzed for an offline verification system. From grayscale images, a new approach for High Pressure threshold estimation is proposed. Two images, one containingthe High Pressure Points extracted and other with a binary version ofthe original signature, are transformed to polar coordinates where a pixel density ratio between them is calculated. Polar space had been divided into angular and radial segments, which permit a local analysis of the high pressure distribution. Finally two vectors containing the density distribution ratio are calculated for nearest and farthest points from geometric center of the original signature image. Experiments were carried out using a database containing signature from 160 individual. The robustness of the analyzed system for simple forgeries is tested out with Support Vector Machines models. For the sake of completeness, a comparison of the results obtained by the proposed approach with similar works published is presented.

  16. Structural stability of the smectite-doped lanthanum under high pressures and high temperatures

    International Nuclear Information System (INIS)

    Stefani, Vicente Fiorini

    2012-01-01

    Smectites are phyllosilicates that have a tetrahedron: octahedron structure ratio of 2:1, with high cation exchange capacity (CEC) in the interlayers. For these and other features, smectites have been used in many parts of the world as secondary barriers with the goal of containing a possible leak of radioactive elements in final disposal facilities for radioactive waste through cation exchange. Our aim in this work is to reach the cation exchange in calcium montmorillonite (smectite dioctahedral) by lanthanum to simulate trivalent radionuclides and to study the stability of this structure under high pressure and high temperature. To achieve high pressure it was used two different technique: DAC (Diamond Anvil Cell), achieving pressures up to 12GPa at room temperature and hydraulic press with a toroidal chamber profile to achieve pressures up to 7,7GPa and temperatures up to 900 degree C. The heating is achieved simultaneously by an electric system coupled in the hydraulic press. The outcomes show that the smectite structure doped with lanthanum remains stable under 12GPa at room temperature and 2.5GPa at 200 degree C. However, above 300 degree C at 2.5GPa the structure becomes a new phase of muscovite-like, rich of La, where it loses its interlayer water and turns out to be irreversible. Furthermore, it is important to point out that the higher temperature the better ordered is the structure and it is still stable under 7.7GPa and 900 degree C. Moreover, after all experiments the structure continues being dioctahedral. The new phase of muscovite-like, rich of La, in contact with a calcium solution remains partially unchanged, whereas the other part returns to the original structure (montmorillonite-Ca). The following analyses were performed: X-ray diffraction (XRD) for evaluating the spatial structure; Fourier transform infrared spectroscopy (FTIR) for getting information about the vibrational modes; scanning electron microscopy with dispersive Xray spectroscopy

  17. Analysis of the structural stability of the smectite submitted to high pressures and temperatures

    International Nuclear Information System (INIS)

    Alabarse, Frederico Gil

    2009-10-01

    The thermal stability of bentonite is of particular interest for containment barrier in nuclear waste disposal facilities. However, very little is known about the stability of smectite (principal component of bentonite) under high-pressure and high-temperature conditions (HPHT). The objective of this work was to investigate the stability of the smectite structure under HP-HT conditions. The HP-HT experiments were performed on toroidal chambers (TC) with pressure up 7.7 GPa and temperatures of 1000 deg C. The samples were characterized by X-ray diffraction after the HP-HT processing. Furthermore, one sample from the original material was analyzed using Fourier transformed infra-red (FTIR) in situ measurements on a diamond anvil cell (DAC) in experiments up to 12 GPa. The original sample of bentonite, calcium dioctahedral montmorillonite with small fraction of quartz, was characterized by FTIR, XRD, X-ray fluorescence (XRF), scanning electron microscopy (SEM), surface area, thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In the experiment performed using the DAC up to 12 GPa, the FTIR in situ measurements analysis showed that the smectite structure is stable with a reversible deformation in the Si-O bond and that the smectite did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 250 deg C of temperature, during 3.5 h showed, after analysis by XRD and FTIR, that the smectite structure is stable and did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 1000 deg C of temperature, during 3.5 h showed, after analysis by XRD and SEM, the transformation of bentonite to the mineral assemblage: Coesite, Quartz, Kyanite and Pyrope. (author)

  18. Operating experience with gas-bearing circulators in a high-pressure helium loop

    International Nuclear Information System (INIS)

    Sanders, J.P.; Gat, U.; Young, H.C.

    1988-01-01

    A high-pressure engineering test loop has been designed and constructed at the Oak Ridge National Laboratory for circulating helium through a test chamber at temperatures to 1,000 deg. C. The purpose of this loop is to determine the thermal and structural performance of proposed components for the primary loops of gas-cooled nuclear reactors. Three gas-bearing circulators, mounted in series, provide a maximum volumetric flow of 0.47 m 3 /s and a maximum head of 78 kJ/kg at operating pressures from 0.1 to 10.7 MPa. Control of gaseous impurities in the circulating gas was the significant operating requirement that dictated the choice of a circulator that is lubricated by the circulating gas. The motor for each circulator is contained within the pressure boundary, and it is cooled by circulating the gas in the motor cavity over water-cooled coils. Each motor is rated at 200 kW at a speed of 23,500 rpm. The circulators have been operated in the loop for more than 5,000 h. The flow of the gas in the loop is controlled by varying the speed of the circulators through the use of individual 250-kVA, solid state power supplies that can be continuously varied in frequency from 50 to 400 Hz. To prevent excessive wear on the gas bearings during startup, the circulator motor accelerates the rotor to 3,000 rpm in less than one second. During operation, no problems associated with the gas bearings, per se, were encountered; however, related problems pointed to design considerations that should be included in future applications of circulators of this type. The primary test that has been conducted in this loop required sustained operation for several weeks without interruption. After a number of unscheduled interruptions, the operating goals were attained. During part of this period, the loop was operated with only two circulators installed in the pressure vessels with a guard installed in the third vessel to protect the closure flange from the gas temperatures. Unattended

  19. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  20. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  1. Design, Construction and Calibration of a Near-Infrared Four-Color Pyrometry System for Laser-Driven High Pressure Experiments

    Science.gov (United States)

    Ali, S. J.; Jeanloz, R.; Collins, G.; Spaulding, D. K.

    2010-12-01

    Current dynamic compression experiments, using both quasi-isentropic and shock-compression, allow access to pressure-temperature states both on and off the principle Hugoniot and over a wide range of conditions of direct relevance to planetary interiors. Such studies necessitate reliable temperature measurements below 4000-5000 K. Such relatively low temperature states are also of particular interest for materials such as methane and water that do not experience much heating under shock compression. In order to measure these temperatures as a function of time across the sample, a four-color, near-infrared pyrometry system is being developed for use at the Janus laser facility (LLNL) with channels at wavelengths of 932nm-1008nm, 1008nm-1108nm, 1108nm-1208nm, and 1208nm-1300nm. Each color band is fiber-coupled to an InGaAs PIN photodiode with a rise time of less than 60 ps, read using an 18 GHz oscilloscope in order to ensure time resolutions of under 200 ps. This will allow for high temporal resolution measurements of laser-driven shock compression experiments with total durations of 5-15 ns as well as correlation with simultaneous time-resolved velocity interferometry and visual-wavelength pyrometry. Calibration of the system is being accomplished using quartz targets, as the EOS for quartz is well known, along with a calibrated integrating sphere of known spectral radiance.

  2. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    Science.gov (United States)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  3. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  4. Geochemical effects of electro-osmosis in clays

    KAUST Repository

    Loch, J. P. Gustav

    2010-02-13

    Geochemical effects of electro-osmosis in bentonite clay are studied in the laboratory, where a 6 mm thick bentonite layer is subjected to direct current. Acidification and alkalization near anode and cathode are expected, possibly causing mineral deterioration, ion mobilization and precipitation of new solids. Afterwards the clay is analysed by XRF and anolyte and catholyte are analysed by ICP-MS. In addition, as a preliminary experiment treated bentonite is analysed by high resolution μ-XRF. Electro-osmotic flow is observed. Due to its carbonate content the bentonite is pH-buffering. Alkalization in the catholyte is substantial. Ca, Na and Sr are significantly removed from the clay and accumulate in the catholyte. Recovery in the catholyte accounts for a small fraction of the element-loss from the clay. The rest will have precipitated in undetected solid phases. μ-XRF indicates the loss of Ca-content throughout the bentonite layer. © The Author(s) 2010.

  5. Analysis of pressure drop accidents in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kameoka, Toshiyuki

    1980-01-01

    Research and development are carried out on various problems in order to realize a multi-purpose, high temperature gas-cooled experimental reactor by Japan Atomic Energy Research Institute and others. In the experimental reactor in consideration at present, it is planned to flow helium at 1000 deg C and 40 atm. For the purpose, high temperature heat insulation structures are designed and developed, which insulate heat on the internal surfaces of pressure vessels and pipings. Consideration must be given to these internal heat insulation structures about the various characteristics in the working environmental temperature and pressure conditions, the measures for preventing the by-pass flow due to the formation of gaps and the abnormal leak of heat through the natural convection in the heat insulators and others. In this paper, the experimental results on the rapid pressure reduction characteristics of ceramic fiber heat insulation structures are reported. The ceramic fiber heat insulation structures have the features such as the application to uneven surfaces and penetration parts, the prevention of by-pass flow, and very low permeability. The problem is the restoring force after the high temperature compression. The experiment on rapid pressure reduction due to the accidental release of gas and the results are reported. (Kako, I.)

  6. Laboratory investigations into the reactive transport module of carbon dioxide sequestration and geochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Heidaryan, E. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Masjidosolayman Branch; Enayati, M.; Mokhtari, B. [Iranian Offshore Oil Co., Tehran (Iran, Islamic Republic of)

    2008-07-01

    Over long time periods, geological sequestration in some systems shows mineralization effects or mineral sequestration of carbon dioxide, converting the carbon dioxide to a less mobile form. However, a detailed investigation of these geological systems is needed before disposing of carbon dioxide into these formations. Depleted oil and gas reservoirs and underground aquifers are proposed candidates for carbon dioxide injection. This paper presented an experimental investigation into the reactive transport module for handling aquifer sequestration of carbon dioxide and modeling of simultaneous geochemical reactions. Two cases of laboratory carbon dioxide sequestration experiments, conducted for different rock systems were modeled using the fully coupled geochemical compositional simulator. The relevant permeability relationships were compared to determine the best fit with the experimental results. The paper discussed the theory of modeling; geochemical reactions and mineral trapping of carbon dioxide; and application simulator for modeling including the remodeling of flow experiments. It was concluded that simulated changes in porosity and permeability could mimic experimental results to some extent. The study satisfactorily simulated the results of experimental observations and permeability results could be improved if the Kozeny-Carman equation was replaced by the Civan power law. 6 refs., 2 tabs., 21 figs.

  7. High pressure MHD coal combustors investigation, phase 2

    Science.gov (United States)

    Iwata, H.; Hamberg, R.

    1981-05-01

    A high pressure MHD coal combustor was investigated. The purpose was to acquire basic design and support engineering data through systematic combustion experiments at the 10 and 20 thermal megawatt size and to design a 50 MW/sub t/ combustor. This combustor is to produce an electrically conductive plasma generated by the direct combustion of pulverized coal with hot oxygen enriched vitiated air that is seeded with potassium carbonate. Vitiated air and oxygen are used as the oxidizer, however, preheated air will ultimately be used as the oxidizer in coal fired MHD combustors.

  8. Methodological approaches in estimating anomalous geochemical field structure

    International Nuclear Information System (INIS)

    Gavrilov, R; Rudmin, M

    2015-01-01

    Mathematical statistic methods were applied to analyze the core samples from vertical expendable wells in Chertovo Koryto gold ore field. The following methods were used to analyse gold in samples: assay tests and atomic absorption method (AAS), while emission spectrum semiquantative method was applied to identify traces. The analysis of geochemical association distribution in one central profile demonstrated that bulk metasomatic aureoles are characteristic of concentric zonal structure. The distribution of geochemical associations is correlated to the hydrothermal stages of mineral formation identified in this deposit. It was proved that the processed geochemical data by factor and cluster analyses provided additional information on the anomalous geochemical field structure in gold- bearing black-shale strata. Such methods are effective tools in interpretating specific features of geochemical field structures in analogous potential ore-bearing areas

  9. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  10. Ionizing radiation and radionuclides in the environment: sources, origin, geochemical processes and health risks

    International Nuclear Information System (INIS)

    Dangic, A.

    1995-01-01

    Ionizing radiation related to the radioactivity and radionuclides appears to be ones of most dangerous environmental risks to the human health. The paper considers appearance and importance of radionuclides, both natural (cosmogenic and Earth's) and anthropogenic, mode of their entering into and movement through the environment. Most risk to the population are radionuclides related to the geological-geochemical systems - in Serbia, high concentrations of radionuclides related to these sources were indicated at a number of localities. Movement of radionuclides through the environment is regulated by the geochemical processes i.e. the geochemical cycles of the elements. For the discovering of radionuclides in the nature, the assessment of the health risks to the population and the related protection are necessary multilayer geochemical studies. (author)

  11. Report on the geological-geochemical research carried out within the area of geochemical anomaly P7, Vathyrema, Drama Department

    International Nuclear Information System (INIS)

    Stavropoulos, Athanasios.

    1982-08-01

    The investigated area covering about 30 km 2 is situated in the crystalline massive of Rhodope (north of Drama deparment, E. Macedonia) where granitoids constitute its main petrological type. The geological-geochemical and radiometric investigations carried out so far in the area have localized a large number of places with high values of γ-radiation (1.000 - 15.000 c/s), as well as high concentrations of uranium (50-500 ppm). The uranium mineralization within the zone of oxidation is expressed by the uranium mineral autunite, accompanied by intensive hematitization-limonitization and chloritization-kaolinization, and additionally by small spots and veinlets of pyrite and galena. It seems that tectonic control exists on the uranium mineralization, since most of the anomalous concentrations of uranium are sitting along mylonite zones rich in chlorite and kaolin. There have been discerned seven more anomalous part areas which will have to be covered by geochemical stream sediment sampling (phase 3), as well as geological mapping (scale 1:5.000). The results from the research conducted within the concerned anomaly lead us to the conclusion that this area is very promising and possibilities of localization of uranium payable concentrations are very high. (N.Ch.)

  12. Large inelastic deformation analysis of steel pressure vessels at high temperature

    International Nuclear Information System (INIS)

    Ikonen, K.

    2001-01-01

    This publication describes the calculation methodology developed for a large inelastic deformation analysis of pressure vessels at high temperature. Continuum mechanical formulation related to a large deformation analysis is presented. Application of the constitutive equations is simplified when the evolution of stress and deformation state of an infinitesimal material element is considered in the directions of principal strains determined by the deformation during a finite time increment. A quantitative modelling of time dependent inelastic deformation is applied for reactor pressure vessel steels. Experimental data of uniaxial tensile, relaxation and creep tests performed at different laboratories for reactor pressure vessel steels are investigated and processed. An inelastic deformation rate model of strain hardening type is adopted. The model simulates well the axial tensile, relaxation and creep tests from room temperature to high temperature with only a few fitting parameters. The measurement data refined for the inelastic deformation rate model show useful information about inelastic deformation phenomena of reactor pressure vessel steels over a wide temperature range. The methodology and calculation process are validated by comparing the calculated results with measurements from experiments on small scale pressure vessels. A reasonably good agreement, when taking several uncertainties into account, is obtained between the measured and calculated results concerning deformation rate and failure location. (orig.)

  13. 7 CFR 58.219 - High pressure pumps and lines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The high...

  14. Lithology and mineralogy recognition from geochemical logging tool data using multivariate statistical analysis.

    Science.gov (United States)

    Konaté, Ahmed Amara; Ma, Huolin; Pan, Heping; Qin, Zhen; Ahmed, Hafizullah Abba; Dembele, N'dji Dit Jacques

    2017-10-01

    The availability of a deep well that penetrates deep into the Ultra High Pressure (UHP) metamorphic rocks is unusual and consequently offers a unique chance to study the metamorphic rocks. One such borehole is located in the southern part of Donghai County in the Sulu UHP metamorphic belt of Eastern China, from the Chinese Continental Scientific Drilling Main hole. This study reports the results obtained from the analysis of oxide log data. A geochemical logging tool provides in situ, gamma ray spectroscopy measurements of major and trace elements in the borehole. Dry weight percent oxide concentration logs obtained for this study were SiO 2 , K 2 O, TiO 2 , H 2 O, CO 2 , Na 2 O, Fe 2 O 3 , FeO, CaO, MnO, MgO, P 2 O 5 and Al 2 O 3 . Cross plot and Principal Component Analysis methods were applied for lithology characterization and mineralogy description respectively. Cross plot analysis allows lithological variations to be characterized. Principal Component Analysis shows that the oxide logs can be summarized by two components related to the feldspar and hydrous minerals. This study has shown that geochemical logging tool data is accurate and adequate to be tremendously useful in UHP metamorphic rocks analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fluorinert as a pressure-transmitting medium for high-pressure diffraction studies

    International Nuclear Information System (INIS)

    Varga, Tamas; Wilkinson, Angus P.; Angel, Ross J.

    2003-01-01

    Fluorinert is a liquid pressure-transmitting medium that is widely used in high-pressure diffraction work. A systematic study of five different fluorinerts was carried out using single-crystal x-ray diffraction in a diamond-anvil cell in order to determine the pressure range over which they provide a hydrostatic stress state to the sample. It was found that none of the fluorinerts studied can be considered hydrostatic above 1.2 GPa, a lower pressure than reported previously

  16. Thermodynamic relations in high temperature and high pressure physics of solids

    International Nuclear Information System (INIS)

    Kumar, Munish

    1998-01-01

    Various possible simple relations based on the exact and approximate thermodynamic relations are derived. These relations can be used to investigate the variation of unit cell volume under the effect of pressure and temperature. Thermal expansivity and compressibility can be investigated directly at any pressure or temperature, or through the knowledge of equation of state (EOS). A relation to determine Anderson-Grueneisen parameter δ T under the effect of pressure is predicted. It is discussed that δ T is independent of pressure and thus Murnaghan equation of state works well in low pressure ranges, while the variation of δ T under high pressure should be taken into account. The product of coefficient of volume thermal expansion and bulk modulus remains constant, is correct at high pressure, provided that the pressure dependence of δ T is considered. (author)

  17. Geochemical modeling: a review

    International Nuclear Information System (INIS)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted

  18. Geochemical modeling: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted.

  19. Nb effect on Zr-alloy oxidation under high pressure steam at high temperatures

    International Nuclear Information System (INIS)

    Park, Kwangheon; Yang, Sungwoo; Kim, Kyutae

    2005-01-01

    The high-pressure steam effects on the oxidation of Zircaloy-4 (Zry-4) and Zirlo (Zry-1%Nb) claddings at high temperature have been analyzed. Test temperature range was 700-900degC, and pressures were 1-150 bars. High pressure-steam enhances oxidation of Zry-4, and the dependency of enhancement looks exponential to steam pressure. The origin of the oxidation enhancement turned out to be the formation of cracks in oxide. The loss of tetragonal phase by high-pressure steam seems related to the crack formation. Addition of Nb as an alloying element to Zr alloy reduces significantly the steam pressure effects on oxidation. The higher compressive stresses and the smaller fraction of tetragonal oxides in Zry-1%Nb seem to be the diminished effect of high-pressure steam on oxidation. (author)

  20. Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases

    International Nuclear Information System (INIS)

    Haase, Christoph; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2013-01-01

    Highlights: • CO 2 and calcite dissolution is calculated. • The codes PHREEQC, Geochemist’s Workbench, EQ3/6, and FactSage are used. • Comparison with Duan and Li (2008) shows lowest deviation using phreeqc.dat and wateq4f.dat. • Using Pitzer databases does not improve accurate calculations. • Uncertainty in dissolved CO 2 is largest using the geochemical models. - Abstract: A prognosis of the geochemical effects of CO 2 storage induced by the injection of CO 2 into geologic reservoirs or by CO 2 leakage into the overlaying formations can be performed by numerical modelling (non-invasive) and field experiments. Until now the research has been focused on the geochemical processes of the CO 2 reacting with the minerals of the storage formation, which mostly consists of quartzitic sandstones. Regarding the safety assessment the reactions between the CO 2 and the overlaying formations in the case of a CO 2 leakage are of equal importance as the reactions in the storage formation. In particular, limestone formations can react very sensitively to CO 2 intrusion. The thermodynamic parameters necessary to model these reactions are not determined explicitly through experiments at the total range of temperature and pressure conditions and are thus extrapolated by the simulation code. The differences in the calculated results lead to different calcite and CO 2 solubilities and can influence the safety issues. This uncertainty study is performed by comparing the computed results, applying the geochemical modelling software codes The Geochemist’s Workbench, EQ3/6, PHREEQC and FactSage/ChemApp and their thermodynamic databases. The input parameters (1) total concentration of the solution, (2) temperature and (3) fugacity are varied within typical values for CO 2 reservoirs, overlaying formations and close-to-surface aquifers. The most sensitive input parameter in the system H 2 O–CO 2 –NaCl–CaCO 3 for the calculated range of dissolved calcite and CO 2 is the

  1. Impact of pore-pressure cycling on bentonite in constant volume experiments

    International Nuclear Information System (INIS)

    Graham, C.C.; Harrington, J.F.; Cuss, R.J.; Sellin, P.

    2012-01-01

    Document available in extended abstract form only. The SKB safety case for a KBS-3 repository highlights the potential importance of future successive glaciation events on repository functions. One particular uncertainty is the likely affect of elevated pore-water pressures on barrier safety functions. Over the repository lifetime such changes in pore-water pressure are likely to be cyclic in nature, as successive glacial episodes lead to loading and unloading of the engineered barrier. For a clay-water system with the pore-water in thermodynamic equilibrium with an external reservoir of water at pressure, p w , the total stress acting on the surrounding vessel can be expressed as: (1) σ = Π + αp w where Π is the swelling pressure and α is a proportionality constant. We present results from a series of laboratory experiments designed to investigate this relationship, in the context of glacial loading. Blocks of pre-compacted Mx80 bentonite were manufactured by Clay Technology AB (Lund, Sweden), by rapidly compacting bentonite granules in a mould under a one dimensionally applied stress (Johannesson et al., 1995). The blocks were then sub-sampled and cylindrical specimens prepared for testing (120 mm in length and 60 mm in diameter). The experiments were conducted using a specially designed constant volume cell, which allows the evolution of the total stresses acting on the surrounding vessel to be monitored during clay swelling (at three radial and two axial locations). A high precision syringe pump was used to maintain a constant applied pore pressure within the bentonite, while the rate of hydraulic inflow, and consequent stress development, were monitored to determine the point at which hydraulic equilibrium was reached. During the tests each sample was subjected to an incremental series of constant pore-pressure steps, with all samples experiencing at least one loading and unloading cycle. The resulting average total stress data yield alpha values in the

  2. NOAA and MMS Marine Minerals Geochemical Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Minerals Geochemical Database was created by NGDC as a part of a project to construct a comprehensive computerized bibliography and geochemical database...

  3. High-pressure differential scanning microcalorimeter.

    Science.gov (United States)

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  4. 30 CFR 56.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of high-pressure...

  5. Magnetization at high pressure in CeP

    Science.gov (United States)

    Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.

    1995-02-01

    We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.

  6. Use of partial dissolution techniques in geochemical exploration

    Science.gov (United States)

    Chao, T.T.

    1984-01-01

    Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.

  7. Trends in high pressure developments for new perspectives

    Science.gov (United States)

    Largeteau, Alain; Prakasam, Mythili

    2018-06-01

    Temperature and Pressure are two parameters in the universe, where pressure represents the largest scale in comparison to temperature. The design of high pressure equipment depends mainly on the media used which could be gas, liquid or solid and the objective could be synthesis of materials or in situ characterization. The development of new research fields requiring high pressure equipment which are currently in Bordeaux - France are based on the historical development of high pressure domain initiated by Professor Gerard DEMAZEAU and his team during the last half century, which is discussed here. The main concepts governing the effect of pressure on materials synthesis is by the combination of high pressure and high temperature which are described with apt examples. There is an upsurge in various technologies for strong development for the synthesis of materials to drive several possibilities, for example: to reach very high density to obtain optical ceramics (by conventional SPS), to diminish parameters (P, T, t) of synthesis (by HP-SPS), to sinter at low temperature thermal sensitive composition (by HyS), to consolidate porous materials (by FIP), to densify biocomposite with cold decontamination (by HHP) simultaneously, etc.

  8. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Alex M.; Gülder, Ömer L. [Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6 (Canada)

    2016-05-15

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  9. Petrologic and geochemical characterization of the Topopah Spring Member of the Paintbrush Tuff: outcrop samples used in waste package experiments

    International Nuclear Information System (INIS)

    Knauss, K.G.

    1984-06-01

    This report summarizes characterization studies conducted with outcrop samples of Topopah Spring Member of the Paintbrush Tuff (Tpt). In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), Tpt is being studied both as a primary object and as a constituent used to condition water that will be reacted with waste form, canister, or packing material. These studies directly or indirectly support NNWSI subtasks concerned with waste package design and geochemical modeling. To interpret the results of subtask experiments, it is necessary to know the exact nature of the starting material in terms of the intial bulk composition, mineralogy, and individual phase geochemistry. 31 figures, 5 tables

  10. Petrologic and geochemical characterization of the Topopah Spring Member of the Paintbrush Tuff: outcrop samples used in waste package experiments

    Energy Technology Data Exchange (ETDEWEB)

    Knauss, K.G.

    1984-06-01

    This report summarizes characterization studies conducted with outcrop samples of Topopah Spring Member of the Paintbrush Tuff (Tpt). In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), Tpt is being studied both as a primary object and as a constituent used to condition water that will be reacted with waste form, canister, or packing material. These studies directly or indirectly support NNWSI subtasks concerned with waste package design and geochemical modeling. To interpret the results of subtask experiments, it is necessary to know the exact nature of the starting material in terms of the intial bulk composition, mineralogy, and individual phase geochemistry. 31 figures, 5 tables.

  11. Proposed dedicated high pressure beam lines at CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Vohra, Y.K.; Bassett, W.A.; Batterman, B.W.; Bilderback, D.H.

    1988-01-01

    An instrumentation proposal for dedicated high pressure beam lines at CHESS is described. It is the purpose of this proposed program to provide researchers in high pressure science with beam lines for X-ray diffraction studies in the megabar regime. This will involve radiation from a bending magnet as well as from a wiggler. Examples of the high pressure results up to 2.16 Mbar are shown. Diffraction patterns from bending magnet and wiggler beams are shown and compared. The need for this facility by the high pressure community is discussed. (orig.)

  12. Decoupling Analysis on Pressure Fluctuation and Needle Valve Response for High Pressure Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-01-01

    Full Text Available In the process of multiple injections, the influence of different injections makes the controlling of cycle fuel injection quantity more difficult. The high pressure common rail (HPCR simulation model is established in AMESim environment. Through the method of combining numerical simulation and experiment test, it is found that the strong coupling of pressure fluctuation and needle valve response is the fundamental reason, which leads to the fluctuation of main injection fuel quantity (MIFQ with dwell time (DT. The result shows that the largest fluctuation quantity is 3.6mm3 when the reference value of main injection is 60.0mm3. Non-damping LC hydraulic system model is also established. Through the analysis of the model, reducing the length-diameter ratio of internal oil duct and the delivery chamber volume are decoupling methods to the strong coupling.

  13. High Pressure and Temperature Core Formation as an Alternative to the "Late Veneer" Hypothesis

    Science.gov (United States)

    Righter, Kevin; Pando, K.; Humayun, M.; Danielson, L.

    2011-01-01

    The highly siderophile elements (HSE; Re, Au and the Platinum Group Elements - Pd Pt, Rh, Ru, Ir, Os) are commonly utilized to constrain accretion processes in terrestrial differentiated bodies due to their affinity for FeNi metal [1]. These eight elements exhibit highly siderophile behavior, but nonetheless have highly diverse metal-silicate partition coefficients [2]. Therefore the near chondritic relative concentrations of HSEs in the terrestrial and lunar mantles, as well as some other bodies, are attributed to late accretion rather than core formation [1]. Evaluation of competing theories, such as high pressure metal-silicate partitioning or magma ocean hypotheses has been hindered by a lack of relevant partitioning data for this group of eight elements. In particular, systematic studies isolating the effect of one variable (e.g. temperature or melt compositions) are lacking. Here we undertake new experiments on all eight elements, using Fe metal and FeO-bearing silicate melts at fixed pressure, but variable temperatures. These experiments, as well as some additional planned experiments should allow partition coefficients to be more accurately calculated or estimated at the PT conditions and compositions at which core formation is thought to have occurred.

  14. DASH diet to lower high blood pressure

    Science.gov (United States)

    ... patientinstructions/000770.htm DASH diet to lower high blood pressure To use the sharing features on this page, ... Hypertension. The DASH diet can help lower high blood pressure and cholesterol and other fats in your blood. ...

  15. Thermoelasticity at High Temperatures and Pressures for Ta

    International Nuclear Information System (INIS)

    Orlikowski, D; Soderlind, P; Moriarty, J A

    2004-01-01

    A new methodology for calculating high temperature and pressure elastic moduli in metals has been developed accounting for both the electron-thermal and ion-thermal contributions. Anharmonic and quasi-harmonic thermoelasticity for bcc tantalum have thereby been calculated and compared as a function of temperature (<12,000 K) and pressure (<10 Mbar). In this approach, the full potential linear muffin-tin orbital (FP-LMTO) method for the cold and electron-thermal contributions is closely coupled with ion-thermal contributions obtained via multi-ion, quantum-based interatomic potentials derived from model generalized pseudopotential theory (MGPT). For the later contributions two separate approaches are used. In one approach, the quasi-harmonic ion-thermal contribution is obtained through a Brillouin zone sum of the strain derivatives of the phonons, and in the other the anharmonic ion-thermal contribution is obtained directly through Monte Carlo (MC) canonical distribution averages of strain derivatives on the multi-ion potentials themselves. The resulting elastic moduli compare well in each method and to available ultrasonic measurements and diamond-anvil-cell compression experiments indicating minimal anharmonic effects in bcc tantalum over the considered pressure range

  16. A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples

    DEFF Research Database (Denmark)

    Kallmeyer, J.; Ferdelman, TG; Jansen, KH

    2003-01-01

    Details about the construction and use of a high-pressure thermal gradient block for the simultaneous incubation of multiple samples are presented. Most parts used are moderately priced off-the-shelf components that easily obtainable. In order to keep the pressure independent of thermal expansion...... range of temperatures and pressures and can easily be modified to accommodate different experiments, either biological or chemical. As an application, we present measurements of bacterial sulfate reduction rates in hydrothermal sediments from Guyamas Basin over a wide range of temperatures and pressures...

  17. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  18. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  19. A modernized high-pressure heater protection system for nuclear and thermal power stations

    Science.gov (United States)

    Svyatkin, F. A.; Trifonov, N. N.; Ukhanova, M. G.; Tren'kin, V. B.; Koltunov, V. A.; Borovkov, A. I.; Klyavin, O. I.

    2013-09-01

    Experience gained from operation of high-pressure heaters and their protection systems serving to exclude ingress of water into the turbine is analyzed. A formula for determining the time for which the high-pressure heater shell steam space is filled when a rupture of tubes in it occurs is analyzed, and conclusions regarding the high-pressure heater design most advisable from this point of view are drawn. A typical structure of protection from increase of water level in the shell of high-pressure heaters used in domestically produced turbines for thermal and nuclear power stations is described, and examples illustrating this structure are given. Shortcomings of components used in the existing protection systems that may lead to an accident at the power station are considered. A modernized protection system intended to exclude the above-mentioned shortcomings was developed at the NPO Central Boiler-Turbine Institute and ZioMAR Engineering Company, and the design solutions used in this system are described. A mathematical model of the protection system's main elements (the admission and check valves) has been developed with participation of specialists from the St. Petersburg Polytechnic University, and a numerical investigation of these elements is carried out. The design version of surge tanks developed by specialists of the Central Boiler-Turbine Institute for excluding false operation of the high-pressure heater protection system is proposed.

  20. Dynamism or Disorder at High Pressures?

    Science.gov (United States)

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  1. Estimation of relative permeability and capillary pressure from mass imbibition experiments

    Science.gov (United States)

    Alyafei, Nayef; Blunt, Martin J.

    2018-05-01

    We perform spontaneous imbibition experiments on three carbonates - Estaillades, Ketton, and Portland - which are three quarry limestones that have very different pore structures and span wide range of permeability. We measure the mass of water imbibed in air saturated cores as a function of time under strongly water-wet conditions. Specifically, we perform co-current spontaneous experiments using a highly sensitive balance to measure the mass imbibed as a function of time for the three rocks. We use cores measuring 37 mm in diameter and three lengths of approximately 76 mm, 204 mm, and 290 mm. We show that the amount imbibed scales as the square root of time and find the parameter C, where the volume imbibed per unit cross-sectional area at time t is Ct1/2. We find higher C values for higher permeability rocks. Employing semi-analytical solutions for one-dimensional flow and using reasonable estimates of relative permeability and capillary pressure, we can match the experimental data. We finally discuss how, in combination with conventional measurements, we can use theoretical solutions and imbibition measurements to find or constrain relative permeability and capillary pressure.

  2. Fuel-disruption experiments under high-ramp-rate heating conditions

    International Nuclear Information System (INIS)

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident

  3. Geochemical monitoring using noble gases and carbon isotopes: study of a natural reservoir

    International Nuclear Information System (INIS)

    Jeandel, E.

    2008-12-01

    To limit emissions of greenhouse gases in the atmosphere, CO 2 geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO 2 . Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general information on its use. (author)

  4. Geochemical and mineralogical characteristics of Lithomargic clay

    African Journals Online (AJOL)

    Administrator

    Geochemical and mineralogical characteristics of Lithomargic clay. GEOCHEMICAL AND .... tries, as filling material in the pulp and paper, toothpaste and paint industries as well ..... tions very vital to human health and other ac- tivities of man.

  5. Rod-bundle transient-film boiling of high-pressure water in the liquid-deficient regime

    International Nuclear Information System (INIS)

    Morris, D.G.; Mullins, C.B.; Yoder, G.L.

    1982-01-01

    Results are reported from a recent experiment investigating dispersed flow film boiling of high pressure water in upflow through a rod bundle. The data, obtained under mildly transient conditions, are used to assess correlations currently used to predict heat transfer in these circumstances. In light of the scarcity of similar data, the data should prove useful in the development and assessment of new heat transfer models. The experiment was conducted at the Oak Ridge National Laboratory in the Thermal-Hydraulic Test Facility, a highly instrumented, non-nuclear, pressurized-water loop containing 64, 3.66-m (12-ft) long rods (of which 60 are electrically heated). The rods are arranged in a square array typical of 17 x 17 fuel rod assemblies in late generation PWRs. Data were collected over typical reactor blowdown parameter ranges

  6. Evaluation of heat transfer coefficient of tungsten filaments at low pressures and high temperatures

    International Nuclear Information System (INIS)

    Chondrakis, N.G.; Topalis, F.V.

    2011-01-01

    The paper presents an experimental method for the evaluation of the heat transfer coefficient of tungsten filaments at low pressures and high temperatures. For this purpose an electrode of a T5 fluorescent lamp was tested under low pressures with simultaneous heating in order to simulate the starting conditions in the lamp. It was placed in a sealed vessel in which the pressure was varied from 1 kM (kilo micron) to 760 kM. The voltage applied to the electrode was in the order of the filament's voltage of the lamp at the normal operation with the ballast during the preheating process. The operating frequency ranged from DC to 50 kHz. The experiment targeted on estimating the temperature of the electrode at the end of the first and the ninth second after initiating the heating process. Next, the heat transfer coefficient was calculated at the specific experimental conditions. A mathematical model based on the results was developed that estimates the heat transfer coefficient. The experiments under different pressures confirm that the filament's temperature strongly depends on the pressure.

  7. A High-Pressure Study of Manganese Metal and its Reactions with CO2 at 6, 23, and 44 GPa

    Science.gov (United States)

    Sawchuk, K. L. S.; McGuire, C. P.; Greenburg, A.; Makhluf, A.; Kavner, A.

    2017-12-01

    The free energies of formation of oxides and carbonates at the extreme pressures and temperatures of Earth's interior provides some of the thermodynamic constrains for models of mantle/core formation and subsequent chemical evolution. The broad goal of our research program is to measure the pressure- and temperature-dependence of free energies of formation of transition metal oxides and carbonates. This requires measurements of the phase stability, density, and thermoelastic properties of metals, oxides, and carbonates at deep-Earth and planetary conditions. Manganese is of interest because it is one of the most abundant transition metal geochemical tracers, it readily forms a carbonate at ambient pressure, and its high-pressure carbonate and oxide densities and equation of state parameters are relatively unknown. Here we report new data on the pressure/volume equation of state and structure of manganese metal as well as its reactions with CO2. These measurements were made using a laser heated diamond anvil cell in conjunction with synchrotron-based X-ray diffraction at beamline 12.2.2 at the Advanced Light Source. Three samples of manganese metal were gas-loaded in a CO2 pressure medium and pressurized to 6, 23, and 44 GPa. Upon laser heating, the CO2 reacted with the Mn metal generating new phases. To analyze the diffraction patterns, we we use a python-based program developed in-house for extracting high resolution 2-dimensional diffraction peak position and intensity information from two-dimensional X-ray diffraction patterns. At each pressure step, the structure and density of the quenched Mn metal phase was determined. At 6 GPa, Mn metal adopts a BCC structure, and at 23 GPa a tetragonal distortion is observed in the lattice. The measured equation of state is in good agreement with an existing meaurement by Fujihisa and Takemura (1995). MnCO3 rhodochrosite is observed in the sample quenched after heating at 6 GPa. Additional high pressure phases are evident

  8. Role of geochemical background at evaluation of investment attractiveness of recreational territories

    Directory of Open Access Journals (Sweden)

    Vdovina Ol'ga Konstantinovna

    2014-09-01

    Full Text Available The article shows the role of natural geochemical background when estimating investment attractiveness of recreational areas. It is noted, that geochemical background influence on people's sickness rate isn't considered now. Though it's understood, that even insignificant increase of geochemical background in relation to percentage abundance of Earth crest may lead to endemic diseases of people, animals and plants. An indicator of geochemical endemicity areas was proposed for assessing the impact of storage elements and of a lack of geological environment on human health. Thanks to this measure, and taking into account landscape features of the area, the authors allocated lands, dangerous and potentially dangerous in terms of endemicity. The importance of ratings was achieved by the use of those factors that could have a great influence on the cost of land development. This includes, first of all, the factors that affect population health, and economic and geographic factors that minimize the cost of the territory development and the factors that give rise to financial risks and risks of human losses. The main risk factors include: potential ecological and geochemical risk; high absolute heights, development and activity of dangerous geological processes and phenomena. Systemacity of researches was reached by using factors, that characterize the object from different aspects; readiness of area infrastructure to its exploration and possible risks. Objectivity was achieved by the use of figures obtained from the results of geochemical and engineering surveys with their metrological support.

  9. Mathematical Modeling of the Growth and Coarsening of Ice Particles in the Context of High Pressure Shift Freezing Processes

    KAUST Repository

    Smith, N. A. S.; Burlakov, V. M.; Ramos, Á . M.

    2013-01-01

    High pressure shift freezing (HPSF) has been proven more beneficial for ice crystal size and shape than traditional (at atmospheric pressure) freezing.1-3 A model for growth and coarsening of ice crystals inside a frozen food sample (either at atmospheric or high pressure) is developed, and some numerical experiments are given, with which the model is validated by using experimental data. To the best of our knowledge, this is the first model suited for freezing crystallization in the context of high pressure. © 2013 American Chemical Society.

  10. Mathematical Modeling of the Growth and Coarsening of Ice Particles in the Context of High Pressure Shift Freezing Processes

    KAUST Repository

    Smith, N. A. S.

    2013-07-25

    High pressure shift freezing (HPSF) has been proven more beneficial for ice crystal size and shape than traditional (at atmospheric pressure) freezing.1-3 A model for growth and coarsening of ice crystals inside a frozen food sample (either at atmospheric or high pressure) is developed, and some numerical experiments are given, with which the model is validated by using experimental data. To the best of our knowledge, this is the first model suited for freezing crystallization in the context of high pressure. © 2013 American Chemical Society.

  11. High-pressure vapor-liquid equilibrium data for CO2-orange peel oil

    Directory of Open Access Journals (Sweden)

    G.R. Stuart

    2000-06-01

    Full Text Available Recently, there has been a growing interest in fractionating orange peel oil by the use of supercritical carbon dioxide (SCCO2. However, progress in this area has been hindered by the lack of more comprehensive work concerning the phase equilibrium behavior of the SCCO2-orange peel oil system. In this context, the aim of this work is to provide new phase equilibrium data for this system over a wide range of temperatures and pressures, permitting the construction of coexistence PT-xy curves as well as the P-T diagram. The experiments were performed in a high-pressure variable-volume view cell in the temperature range of 50-70ºC from 70 to 135 atm and in the CO2 mass fraction composition range of 0.35-0.98. Based on the experimental phase equilibrium results, appropriate operating conditions can be set for high-pressure fractionation purposes.

  12. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aortic Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 29,2018 The importance of stress ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  13. High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline

    Science.gov (United States)

    Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren

    2018-06-01

    The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.

  14. Pressure balanced type membrane covered polarographic oxygen detectors for use in high temperature-high pressure water, (1)

    International Nuclear Information System (INIS)

    Nakayama, Norio; Uchida, Shunsuke

    1984-01-01

    A pressure balanced type membrane covered polarographic oxygen detector was developed to determine directly oxygen concentrations in high temperature, high pressure water without cooling and pressure reducing procedures. The detector is characterized by the following features: (1) The detector body and the membrane for oxygen penetration are made of heat resistant resin. (2) The whole detector body is contained in a pressure chamber where interior and exterior pressures of the detector are balanced. (3) Thermal expansion of the electrolyte is absorbed by deformation of a diaphragm attached to the detector bottom. (4) The effect of dissolved Ag + on the signal current is eliminated by applying a guard electrode. As a result of performance tests at elevated temperature, it was demonstrated that a linear relationship between oxygen concentration and signal current was obtained up to 285 0 C, which was stabilized by the guard electrode. The minimum O 2 concentration detectable was 0.03ppm (9.4 x 10 -7 mol/kg). (author)

  15. Diamonds: powerful tools for high-pressure physics

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Diamond-anvil high-pressure studies have progressed to the point where they complement shock-wave studies. Because they operate at static high pressure, they permit time-consuming procedures, such as x-ray diffraction measurements for determining crystal structure. The sample material is completely recoverable and the method is adaptable to minute advantage when dealing with rare or hazardous materials. One of our goals in investigating the high-pressure behavior of iridium was to test the theoretical prediction that iridium would exhibit a phase transformation from the face-centered cubic crystal structure at about 9 GPa. Our finding that no such transformation takes place even at pressures up to 30 GPa will need to be taken into account by physicsts working to improve solid-state theory

  16. A study on the shell wall thinning causes identified through experiment, numerical analysis and ultrasonic test of high-pressure feedwater heater

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Woo, Lee; Jin, Tae Eun; Kim, Kyung Hoon

    2008-01-01

    Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which accelerates as the operation progresses. Several nuclear power plants in Korea have undergone this damage around the impingement baffle - installed downstream of the high-pressure turbine extraction steam line - inside numbers 5A and 5B feedwater heaters. At that point, the extracted steam from the high-pressure turbine consists in the form of two-phase fluid at high temperature, high pressure and high velocity. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of number 5 high-pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the downscaled experimental data in an effort to determine root causes of the shell wall thinning of the high-pressure feedwater heaters. The numerical analysis and experimental data were also confirmed by the actual wall thickness measured by ultrasonic tests. From the comparison of the results for the local velocity profiles and the wall thinning measurements, the local velocity component only in the y-direction flowing vertically to the shell wall, and not in the x- and z-directions, was analogous to the wall thinning data

  17. Synthesis and high (pressure, temperature) stability of ZnTiO3 polymorphs studied by Raman spectroscopy

    Science.gov (United States)

    Bernert, T.; Ruiz-Fuertes, J.; Bayarjargal, L.; Winkler, B.

    2015-05-01

    The phase-purity of ilmenite-type ZnTiO3 prepared by the ceramic method was investigated in dependence of the conditions during ball milling. The previously proposed addition of 2 ml ethanol to the starting materials led to a significant contamination of the product phase after a subsequent sintering process at 1073 K. However, by omitting ethanol this synthesis route led to a phase-pure sample of ZnTiO3 as confirmed by X-ray powder diffraction and Raman spectroscopy. High-temperature high-pressure experiments gave an ilmenite-type to perovskite-type phase boundary with a slope of dT/dP∼-135 K GPa-1 crossing ambient temperature conditions at ∼ 24 GPa in good agreement with previous calculations. Room-temperature high-pressure Raman spectroscopy experiments have shown the stability of the ilmenite-type phase up to a pressure of at least 38.5 GPa, the highest pressure applied in this study, indicating the presence of a kinetic barrier in this phase transition. The synthesis of ferroelectric LiNbO3-type ZnTiO3 was confirmed by second harmonic generation.

  18. Geochemical evolution of the near field of a KBS-3 repository

    International Nuclear Information System (INIS)

    Arcos, David; Grandia, Fidel; Domenech, Cristina

    2006-09-01

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier

  19. Geochemical evolution of the near field of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, David; Grandia, Fidel; Domenech, Cristina [Enviros Spain S.L., Barcelona (Spain)

    2006-09-15

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier.

  20. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  1. Proceedings of 13. International Geochemical Exploration Symposium. 2. Brazilian Geochemical Congress

    International Nuclear Information System (INIS)

    1989-01-01

    Some works about geochemistry are presented, including themes about geochemical exploration, lithogeochemistry and isotope geochemistry, environmental geochemistry, analyical geochemistry, geochemistry of carbonatites and rare earth elements and organic geochemistry. (C.G.C.) [pt

  2. Geochemical of clay formations : study of Spanish clay REFERENCE

    International Nuclear Information System (INIS)

    Turrero, M. J.; Pena, J.

    2003-01-01

    Clay rocks are investigated in different international research programs in order to assess its feasibility for the disposal of high level radioactive wastes. This is because different sepcific aspects: they have low hydraulic conductivity (10''-11-10''-15 m/s), a high sorption capacity, self-sealing capacity of facults and discontinuities and mechanical resistance. Several research programs on clay formations are aimed to study the chemistry of the groundwater and the water-rock reactions that control it: e. g. Boom Clay (Mol, Belgium), Oxford Clay /Harwell, United Kingdom), Toarcian Clay (Tournemire, France), Palfris formation (Wellenberg, Switzerland), Opalinus Clay (Bure, France). Based on these studies, considerable progress in the development of techniques for hydrologic, geochemical and hydrogeochemical characterization of mudstones has been accomplished (e. g. Beaufais et al. 1994, De Windt el al. 1998. Thury and Bossart 1999, Sacchi and Michelot 2000) with important advances in the knowledge of geochemical process in these materials (e. g. Reeder et al. 1993, Baeyens and Brandbury 1994, Beaucaire et al. 2000, Pearson et al., 2003).Furtermore, geochemical modeling is commonly used to simulate the evolution of water chemistry and to understand quantitatively the processes controlling the groundwater chemistry (e. g. Pearson et al. 1998, Tempel and Harrison 2000, Arcos et al., 2001). The work presented here is part of a research program funded by Enresa in the context of its R and D program. It is focused on the characterization of a clay formation (reference Argillaceous Formation, RAF) located within the Duero Basin (north-centralSpain). The characterisation of th ephysical properties,, fluid composition, mineralogy, water-rock reaction processes, geochemical modelling and sorption properties of the clays from the mentioned wells is the main purpose of this work. (Author)

  3. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  4. Apparatus development for high-pressure X-ray diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Martinez, L.G.; Orlando, M.T.D.; Rossi, J.L.; Passamai Junior, J.L.; Melo, F.C.L.; Ferreira, F.F.

    2006-01-01

    Some phenomena in the field of condensed matter physics can be studied when the matter is submitted to extreme conditions of pressure, magnetic fields or temperatures. Once submitted to these conditions it is generally necessary to measure the properties of the matter in situ. The existence of a synchrotron light laboratory in Brazil opens up the chance of studying materials in extreme conditions by techniques like X-ray diffraction and absorption. However, when compared to high-energy synchrotrons accelerators, the Brazilian source offers a narrower energy range and lower flux. These facts impose limitation to perform diffraction experiments by energy dispersion and, consequently, the use of pressure cells with denser anvils like diamond. However, for a lower-pressure range, preliminary studies showed the viability of measurements in an angular dispersion configuration. This allows the use of silicon carbide anvils B 4C . In this work it is described the development of a hydrostatic pressure cell suitable for X-rays diffraction measurements in the Brazilian Synchrotron Light Laboratory using materials and technologies developed by the institutions and researchers involved in this project (IPEN, UFES, CTA and LNLS). This development can provide the scientific community with the possibility of performing X-ray diffraction measurements under hydrostatic pressure, initially up to 2 GPa, with possibilities of increasing the maximum pressure to higher values, with or without application of magnetic fields and high or low temperatures. (author)

  5. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  6. Structural changes and intermolecular interactions of filled ice Ic structure for hydrogen hydrate under high pressure

    International Nuclear Information System (INIS)

    Machida, S; Hirai, H; Kawamura, T; Yamamoto, Y; Yagi, T

    2010-01-01

    High-pressure experiments of hydrogen hydrate were performed using a diamond anvil cell under conditions of 0.1-44.2 GPa and at room temperature. Also, high pressure Raman studies of solid hydrogen were performed in the pressure range of 0.1-43.7 GPa. X-ray diffractometry (XRD) for hydrogen hydrate revealed that a known high-pressure structure, filled ice Ic structure, of hydrogen hydrate transformed to a new high-pressure structure at approximately 35-40 GPa. A comparison of the Raman spectroscopy of a vibron for hydrogen molecules between hydrogen hydrate and solid hydrogen revealed that the extraction of hydrogen molecules from hydrogen hydrate occurred above 20 GPa. Also, the Raman spectra of a roton revealed that the rotation of hydrogen molecules in hydrogen hydrate was suppressed at around 20 GPa and that the rotation recovered under higher pressure. These results indicated that remarkable intermolecular interactions in hydrogen hydrate between neighboring hydrogen molecules and between guest hydrogen molecules and host water molecules might occur. These intermolecular interactions could produce the stability of hydrogen hydrate.

  7. Progress in evaluation of radionuclide geochemical information developed by DOE high-level nuclear waste repository site projects. Annual report, October 1984-September 1985. Volume 4

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Blencoe, J.G.; Jacobs, G.K.; Kelmers, A.D.; Seeley, F.G.; Whatley, S.K.

    1986-05-01

    Information pertaining to the potential geochemical behavior of radionuclides at candidate sites for a high-level radioactive waste repository, which is being developed by projects within the Department of Energy (DOE), is being evaluated by Oak Ridge National Laboratory for the Nuclear Regulatory Commission (NRC). During this report period, emphasis was placed on the evaluation of information pertinent to the Hanford site in southeastern Washington. Results on the sorption/solubility behavior of technetium, neptunium, and uranium in the basalt/water geochemical system are summarized and compared to the results of DOE. Also, summaries of results are reported from two geochemical modeling studies: (1) an evaluation of the information developed by DOE on the native copper deposits of Michigan as a natural analog for the emplacement of copper canisters in a repository in basalt, and (2) calculation of the solubility and speciation of radionuclides for representative groundwaters from the Yucca Mountain site in Nevada

  8. Geochemical Anomalies in the Sediments of Lake Druksiai

    International Nuclear Information System (INIS)

    Kleinas, A.

    1999-01-01

    In order to evaluate the impact of Ignalina Nuclear Power Plant (NPP) on natural processes in Lake Druksiai and accumulation of pollutants, in 19931997, carrying on the state scientific program, the Marine Geochemistry Division of the Institute of Geography performed lithological geochemical mapping of lake bottom sediments on a scale of 1 .50 000. The results obtained enabled to distinguish zones of higher anthropogenous geochemical load, where geochemical anomalies of pollutants, including oil hydrocarbons and heavy metals, had been taken into account. Applying concentration coefficients for oil hydrocarbons and heavy metals (Cr, Cu, Ni, Pb, and Zn) and their natural background, the attempt was made to differentiate natural and technogenous components in the geochemical anomalies As expected, the finer sediments -aleurite-pelite mud - showed amounts of oil hydrocarbons and heavy metals being 12.1 times higher than in fine sand - the most coarse of the sediments studied Sediments with organic mater exceeding 20% contained 11.7 times more pollutants than those with organic matter below 1 .5%. Calculations of concentration coefficients (CC) showed no elements in no stations exceeded 10 - the sediments did not reach the category of high pollution However, in many sites, the coefficients exceeded values of 1-2, thus, showing sediments attributable to the categories of weakly polluted or just polluted. Mapping model done by GIS methods (by superimposing schemes of pollutant CCs distribution in the lake and summing them) for geochemical anomalies two derivative map-schemes were obtained for oil hydrocarbons and heavy metals. They showed that clean sediments cover just 24.75% (according to the pollutant background for soil types) and 12.35% (according to the organic matter background for its amount intervals) lake bottom area. Zones slightly polluted by an element at least cover 69.7 and 80.29% of lake area, correspondingly; whereas zones slightly polluted by all

  9. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  10. Alterations in geochemical associations in artificially disturbed deep-sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Parthiban, G.; Banaulikar, S.; Sarkar, S.

    Alterations in Geochemical Associations in Artificially Disturbed Deep-Sea Sediments B. NAGENDER NATH, G. PARTHIBAN, AND S. BANAULIKAR National Institute of Oceanography, Dona Paula, Goa, India SUBHADEEP SARKAR Department of Geology and Geophysics, Indian... the lithogenic component by transporting it from other locations within the Basin during commercial mining operations. Keywords manganese nodule mining, artificial benthic disturbance experiment, environmental impact assessment, metals Trace metals in marine...

  11. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53719 (United States)

    2015-10-15

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  12. Using geochemical indicators to distinguish high biogeochemical activity in floodplain soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Kenwell, Amy [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Navarre-Sitchler, Alexis, E-mail: asitchle@mines.edu [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Prugue, Rodrigo [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Spear, John R. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Hering, Amanda S. [Department of Applied Mathematics and Statistics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Maxwell, Reed M. [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Carroll, Rosemary W.H. [Desert Research Institute, Division of Hydrologic Sciences, 2215 Raggio Parkway, Reno, NV 89512 (United States); Williams, Kenneth H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-09-01

    A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict potential elevated rates of biogeochemical activity (microbial “hotspots”) in subsurface environments by correlating microbial DNA and aspects of the community structure with the spatial distribution of geochemical indicators in subsurface sediments. Multiple linear regression models of simulated precipitation leachate, HCl and hydroxylamine extractable iron and manganese, total organic carbon (TOC), and microbial community structure were used to identify sample characteristics indicative of biogeochemical hotspots within fluvially-derived aquifer sediments and overlying soils. The method has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 16 alluvial samples were taken from 8 sediment cores, and at the East River, 46 soil/sediment samples were collected across and perpendicular to 3 active meanders and an oxbow meander. Regression models using TOC and TOC combined with extractable iron and manganese results were determined to be the best fitting statistical models of microbial DNA (via 16S rRNA gene analysis). Fitting these models to observations in both contaminated and natural floodplain deposits, and their associated alluvial aquifers, demonstrates the broad applicability of the geochemical indicator based approach. - Highlights: • Biogeochemical characterization of alluvial floodplain soils and sediments was performed to investigate parameters that may indicate microbial hot spot formation. • A correlation between geochemical parameters (total organic carbon and

  13. Using geochemical indicators to distinguish high biogeochemical activity in floodplain soils and sediments

    International Nuclear Information System (INIS)

    Kenwell, Amy; Navarre-Sitchler, Alexis; Prugue, Rodrigo; Spear, John R.; Hering, Amanda S.; Maxwell, Reed M.; Carroll, Rosemary W.H.; Williams, Kenneth H.

    2016-01-01

    A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict potential elevated rates of biogeochemical activity (microbial “hotspots”) in subsurface environments by correlating microbial DNA and aspects of the community structure with the spatial distribution of geochemical indicators in subsurface sediments. Multiple linear regression models of simulated precipitation leachate, HCl and hydroxylamine extractable iron and manganese, total organic carbon (TOC), and microbial community structure were used to identify sample characteristics indicative of biogeochemical hotspots within fluvially-derived aquifer sediments and overlying soils. The method has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 16 alluvial samples were taken from 8 sediment cores, and at the East River, 46 soil/sediment samples were collected across and perpendicular to 3 active meanders and an oxbow meander. Regression models using TOC and TOC combined with extractable iron and manganese results were determined to be the best fitting statistical models of microbial DNA (via 16S rRNA gene analysis). Fitting these models to observations in both contaminated and natural floodplain deposits, and their associated alluvial aquifers, demonstrates the broad applicability of the geochemical indicator based approach. - Highlights: • Biogeochemical characterization of alluvial floodplain soils and sediments was performed to investigate parameters that may indicate microbial hot spot formation. • A correlation between geochemical parameters (total organic carbon and

  14. Experience in a 6.2 MW{sub e} pressurized fluidized bed gasifier with high ash Indian coals

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, G.; Rajasekaran, A.; Periyakaruppan, V.; Krishnamoorthy, S. [Bharat Heavy Electricals Ltd., Tiruchirappalli (India)

    2006-07-01

    Bharat Heavy Electrical Limited has installed a 165 tons/day air-blown pressurized fluidized bed gasifier (PFBG) as an add-on to their 6.2 MW IGCC demonstration plant and has operated it for more than 4000 hours. Improvements in the gasifier refractory lining, ash extraction and cooling devices, air distribution and temperature measuring devices were incorporated to improve the reliability and performance. Coal with 30-42% ash and high calorific value in the range of 15-20 MJ/kg was used during these operations with crushed coal of 1-4 mm as well as -6 mm coal with fines. Tests were conducted at gasifier pressure of 0.3-1.0 MPa, fluidized bed temperature of 980-1050{sup o}C and at various fluidized velocities and air to steam ratios. Once through carbon conversion efficiency of 90%, cold gas efficiency of 69% and dry gas calorific value of 4.4-4.6 MJ/Nm{sup 3} were obtained. About 15% char in fly ash (with 40% ash coal) was established by TGA. Seal pot system was added for recyling fly ash from the first cyclone to enhance carbon conversion, other parameters and to reduce the char in fly ash to acceptable level. Trends and correlations were established for constituents of gas, carbon conversion efficiency, cold gas efficiency, calorific value of gas and gas yield. BHEL is currently working with a partner to install a 125 MW IGCC plant. The paper elaborates the schematic and constructional details of the PFBG, operating experience and performance. 3 refs., 9 figs.

  15. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  16. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong

    2015-04-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  17. Low cost sonoluminescence experiment in pressurized water

    Science.gov (United States)

    Bernal, L.; Insabella, M.; Bilbao, L.

    2012-06-01

    We present a low cost design for demostration and mesurements of light emmision from a sonoluminescence experiment. Using presurized water introduced in an acrylic cylinder and one piezoelectric from an ultrasonic cleaner, we are able to generate cavitacion zones with emission of light. The use of argon to pressurize the water improves the emission an the light can be seen at naked eye in a softlit ambient.

  18. Constraints on the Parental Melts of Enriched Shergottites from Image Analysis and High Pressure Experiments

    Science.gov (United States)

    Collinet, M.; Medard, E.; Devouard, B.; Peslier, A.

    2012-01-01

    Martian basalts can be classified in at least two geochemically different families: enriched and depleted shergottites. Enriched shergottites are characterized by higher incompatible element concentrations and initial Sr-87/Sr-86 and lower initial Nd-143/Nd-144 and Hf-176/Hf-177 than depleted shergottites [e.g. 1, 2]. It is now generally admitted that shergottites result from the melting of at least two distinct mantle reservoirs [e.g. 2, 3]. Some of the olivine-phyric shergottites (either depleted or enriched), the most magnesian Martian basalts, could represent primitive melts, which are of considerable interest to constrain mantle sources. Two depleted olivine-phyric shergottites, Yamato (Y) 980459 and Northwest Africa (NWA) 5789, are in equilibrium with their most magnesian olivine (Fig. 1) and their bulk rock compositions are inferred to represent primitive melts [4, 5]. Larkman Nunatak (LAR) 06319 [3, 6, 7] and NWA 1068 [8], the most magnesian enriched basalts, have bulk Mg# that are too high to be in equilibrium with their olivine megacryst cores. Parental melt compositions have been estimated by subtracting the most magnesian olivine from the bulk rock composition, assuming that olivine megacrysts have partially accumulated [3, 9]. However, because this technique does not account for the actual petrography of these meteorites, we used image analysis to study these rocks history, reconstruct their parent magma and understand the nature of olivine megacrysts.

  19. Geochemical correlations between uranium and other components in U-bearing formations of Ogcheon belt

    International Nuclear Information System (INIS)

    Lee, M.S.; Chon, H.T.

    1980-01-01

    Some components in uranium-bearing formations which consist mainly of black shale, slate and low grade coal-bearing formation of Ogcheon Belt were processed statistically in order to find out the geochemical correlations with uranium. Geochemical enrichment of uranium, vanadium and molybdenum in low grade coal-bearing formations and surrounding rocks is remarkable in the studied area. Geochemical correlation coefficient of uranium and molybdenum in the rocks displays about 0.6 and that of uranium and fixed carbon about 0.4. Uranium and vanadium in uranium-bearing low grade coals denote very high correlation with fixed carbon, which is considered to be responsible for enrichment of metallic elements, especially molybdenum. Close geochemical correlation of uranium-molybdenum couple in the rocks can be applied as a competent exploration guide to low grade uranium deposits of this area. (author)

  20. Topological signature in the NEXT high pressure xenon TPC

    Science.gov (United States)

    Ferrario, Paola; NEXT Collaboration

    2017-09-01

    The NEXT experiment aims to observe the neutrinoless double beta decay of 136Xe in a high-pressure xenon gas TPC using electroluminescence to amplify the signal from ionization. One of the main advantages of this technology is the possibility to use the topology of events with energies close to Qββ as an extra tool to reject background. In these proceedings we show with data from prototypes that an extra background rejection factor of 24.3 ± 1.4 (stat.)% can be achieved, while maintaining an efficiency of 66.7 ± 1.% for signal events. The performance expected in NEW, the next stage of the experiment, is to improve to 12.9% ± 0.6% background acceptance for 66.9% ± 0.6% signal efficiency.

  1. High-pressure mechanical instability in rocks.

    Science.gov (United States)

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  2. Ultra-high pressure water jet: Baseline report

    International Nuclear Information System (INIS)

    1997-01-01

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky trademark pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems

  3. Hydrological and geochemical consequences of river regulation - hyporheic perspective

    Science.gov (United States)

    Siergieiev, Dmytro; Lundberg, Angela; Widerlund, Anders

    2014-05-01

    River-aquifer interfaces, essential for ecosystem functioning in terms of nutrient exchange and biological habitat, appear greatly threatened worldwide. Although river regulation is a vast pressure on river-aquifer interaction, influencing entire watersheds, knowledge about hyporheic exchange in regulated rivers is rather limited. In this study, we combine two decades of research on hydrological and geochemical impacts of hydropower regulation on river water and hyporheic zone in two large boreal rivers, unregulated Kalix River and regulated Lule River. Altered river discharge, with reduced spring peaks, daily summer fluctuations and elevated winter base flow severely modified Lule River water geochemistry and thus the transport of solutes to the Bothnian Bay (Baltic Sea). Further, these river modifications changed the river-aquifer exchange on both daily and seasonal scale, which resulted in deteriorated hyporheic conditions with reduced riverbed hydraulic conductivity (formation of a clogging layer) reflected in a declined hyporheic flux. Altered hydrological regime of the hyporheic zone created quasi-stagnant conditions beneath the river-aquifer interface and promoted the formation of geochemically suboxic environment. Taken that hyporheic water is a mixture of river water and groundwater, mixing models for the regulated site demonstrate a considerable addition of Fe, Mn, Al, NH4 and removal of dissolved oxygen and nitrate, which suggests the hyporheic zone in the Lule River to be a source of solutes. This contradicts the observations from the hyporheic zone in the unregulated river, with opposite behaviour functioning as a barrier. These results suggest that the hyporheic zone function is dependent on the river discharge and the state of the river-aquifer connectivity. Improved knowledge about the latter on a watershed scale will substantially increase our understanding about the status and potential pressures of riverine ecosystems and assist management and

  4. The accuracy of the crystal chemical parameters at high-pressure conditions from single-crystal X-ray diffraction in diamond-anvil cell

    DEFF Research Database (Denmark)

    Periotto, Benedetta

    -ray instruments. At the same time, the high-pressure experiments have benefited by the strong improvements on the high-pressure devices, in particular the diamond-anvil cell (DAC). The aim of this research project is to assess the quality of the data obtained by means of the single-crystal X-ray diffraction...... technique through the study of different mineral phases. The procedure for setting up an experiment under high-pressure conditions, using a single crystal as sample held within a DAC, are presented here with all the details of the in situ measurements at high-pressure conditions. The research project...... started with a comparison between two different DACs, in order to define the capabilities of one of the most common types of pressure device, the ETH-type DAC. Application examples of data quality analysis have been conducted on pyroxenes (NaInSi2O6, orthoenstatite MgSiO3 and LiCrSi2O6), which...

  5. Advances in high pressure research in condensed matter: proceedings of the international conference on condensed matter under high pressures

    International Nuclear Information System (INIS)

    Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.

    1997-01-01

    The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately

  6. The IUGS/IAGC Task Group on Global Geochemical Baselines

    Science.gov (United States)

    Smith, David B.; Wang, Xueqiu; Reeder, Shaun; Demetriades, Alecos

    2012-01-01

    The Task Group on Global Geochemical Baselines, operating under the auspices of both the International Union of Geological Sciences (IUGS) and the International Association of Geochemistry (IAGC), has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth’s surface or near-surface environment. The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified. In order to accomplish this long-term goal, the activities of the Task Group include: (1) developing partnerships with countries conducting broad-scale geochemical mapping studies; (2) providing consultation and training in the form of workshops and short courses; (3) organizing periodic international symposia to foster communication among the geochemical mapping community; (4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database; (5) acting as a repository for data collected by those projects meeting the criteria for standardization; (6) preparing complete metadata for the certified projects; and (7) preparing, ultimately, a global geochemical database. This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.

  7. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    resemble industrial settings, a custom STM motor has been designed and constructed in-house. The new STM design features a much reduced size and a rigid coupling to the sample, and has been tested to show considerably higher resonance frequency than conventional tripod designs, providing the ability to image faster and yielding smaller susceptibility to noise. A flow reactor cell of much reduced volume for pressures up to 35 atmospheres has also been designed and constructed to house the new STM. The small volume reduces gas consumption and sensitivity to impurities in high pressure gases, as well as maximizes product concentration and reduces response time. The ability to flow reactant gases also allows for continuous monitoring of reaction mixture by mass spectrometry or gas chromatography, and permits correlation of structural information from STM and reaction kinetics. The reactor cell containing the STM is placed inside an UHV system to allow cleaning and characterization of sample before and after experiments, as well as continuous monitoring by mass spectrometry or gas chromatography through a leak valve. The new ultra high pressure system also allows in vacuo sample and tip exchange through a load lock, without exposing the system to impurities in air. This new ultra high pressure, high temperature STM system has been shown to perform with major improvements over the existing high pressure, high temperature STM system. Unlike the older system which requires extensive vibration damping setup in order to operate, the new system is shown to be less susceptible to noise, and be able to image atomic steps with no vibration isolation and atomically resolve highly ordered pyrolytic graphite with only spring suspension and a cut tip. Extensive vibrational analysis of the new system is presented, as well as an appendix of AutoCAD-generated design schematics for the major components of the system is included at the end

  8. High-pressure portable pneumatic drive unit.

    Science.gov (United States)

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  9. Raman Spectroscopy of Serpentine and Reaction Products at High Pressure Using a Diamond Anvil Cell

    Science.gov (United States)

    Burgess, K.; Zinin, P.; Odake, S.; Fryer, P.; Hellebrand, E.

    2012-12-01

    Serpentine is one of the most abundant hydrous phases in the altered subducting plate, and contributes a large portion of the water flux in subduction zones. Measuring and understanding the structural changes in serpentine with pressure aids our understanding of the processes ongoing in oceanic crust and subduction zones. We have conducted high-pressure/high-temperature experiments on serpentine and its dehydration reaction products using a diamond anvil cell. We used the multifunctional in-situ measurement system equipped with a Raman device and laser heating system at the University of Hawaii. Well-characterized natural serpentinite was used in the study. Pressure was determined using the shift of the fluorescence line of a ruby placed next to the sample. Raman spectra of serpentine were obtained at higher pressures than previously published, up to 15 GPa; the peak shift with pressure fits the model determined by Auzende et al. [2004] at lower pressures. Heating was done at several different pressures up to 20 GPa, and reaction products were identified using Raman. Micro-Raman techniques allow us to determine reaction progress and heterogeneity within natural samples containing olivine and serpentine. Auzende, A-L., I. Daniel, B. Reynard, C. Lemaire, F. Guyot (2004). High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Phys. Chem. Minerals 31 269-277.

  10. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  11. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  12. Computer simulation at high pressure

    International Nuclear Information System (INIS)

    Alder, B.J.

    1977-11-01

    The use of either the Monte Carlo or molecular dynamics method to generate equations-of-state data for various materials at high pressure is discussed. Particular emphasis is given to phase diagrams, such as the generation of various types of critical lines for mixtures, melting, structural and electronic transitions in solids, two-phase ionic fluid systems of astrophysical interest, as well as a brief aside of possible eutectic behavior in the interior of the earth. Then the application of the molecular dynamics method to predict transport coefficients and the neutron scattering function is discussed with a view as to what special features high pressure brings out. Lastly, an analysis by these computational methods of the measured intensity and frequency spectrum of depolarized light and also of the deviation of the dielectric measurements from the constancy of the Clausius--Mosotti function is given that leads to predictions of how the electronic structure of an atom distorts with pressure

  13. Teaming Up Against High Blood Pressure PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    Nearly one-third of American adults have high blood pressure, and more than half of them don’t have it under control. Simply seeing a doctor and taking medications isn’t enough for many people who have high blood pressure. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.

  14. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet

    Directory of Open Access Journals (Sweden)

    Can Kang

    2013-08-01

    Full Text Available Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  15. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet.

    Science.gov (United States)

    Kang, Can; Liu, Haixia

    2013-08-14

    Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS) velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA) technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM) and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  16. Who Chokes Under Pressure? The Big Five Personality Traits and Decision-Making under Pressure.

    Science.gov (United States)

    Byrne, Kaileigh A; Silasi-Mansat, Crina D; Worthy, Darrell A

    2015-02-01

    The purpose of the present study was to examine whether the Big Five personality factors could predict who thrives or chokes under pressure during decision-making. The effects of the Big Five personality factors on decision-making ability and performance under social (Experiment 1) and combined social and time pressure (Experiment 2) were examined using the Big Five Personality Inventory and a dynamic decision-making task that required participants to learn an optimal strategy. In Experiment 1, a hierarchical multiple regression analysis showed an interaction between neuroticism and pressure condition. Neuroticism negatively predicted performance under social pressure, but did not affect decision-making under low pressure. Additionally, the negative effect of neuroticism under pressure was replicated using a combined social and time pressure manipulation in Experiment 2. These results support distraction theory whereby pressure taxes highly neurotic individuals' cognitive resources, leading to sub-optimal performance. Agreeableness also negatively predicted performance in both experiments.

  17. GENERATION OF HIGH SHOCK PRESSURES BY LASER PULSES

    OpenAIRE

    Romain , J.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 µm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of ...

  18. Reconnaissance Geochemical Study

    African Journals Online (AJOL)

    distribution patterns. The geochemical distribution maps of the elements reveal that Cu, Pb, Zn, Co, Sc, Ni, Cr, .... After filtration, the leached solutions were diluted with ultra ...... some other rare earth elements in the study area. The occurrence ...

  19. High Pressure Treatment in Foods

    OpenAIRE

    Edwin Fabian Torres Bello; Gerardo González Martínez; Bernadette F. Klotz Ceberio; Dolores Rodrigo; Antonio Martínez López

    2014-01-01

    Abstract: High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non...

  20. Blood pressure in childhood : epidemiological probes into the aetiology of high blood pressure

    NARCIS (Netherlands)

    A. Hofman (Albert)

    1983-01-01

    textabstractHigh arterial blood pressure takes a heavy toll in western populations (1 ). Its causes are still largely unknown, but its sequelae, a variety of cardiovascular and renal diseases, have been referred to as "a modern scourge" (2). High blood pressure of unknown cause, or

  1. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  2. Study on Transfer Rules of Coal Reservoir Pressure Drop Based on Coalbed Methane Well Drainage Experiments

    Science.gov (United States)

    Yuhang, X.

    2017-12-01

    A pumping test was carried out to explore the transfer rules of pressure drop in coal reservoir during the drainage. The experiment was divided into three stages. In the first stage, the pump displacement of 3m3/h was used to reduce the bottom hole flowing pressure and stopped until the continuous gas phase was produced; Undertaking the first stage, in the second stage, when the gas phase was continuously produced, the pump was stopped immediately. As the bottom hole flowing pressure going up without gas phase, pumping started again for a week. In the third stage ,the well pumping was carried out at the bottom hole pressure drop rate of 30Kpa/d after two months' recovery. Combined with the data of regional geology and fractured well, taking the characteristics of macroscopic coal rocks, development of pore and fracture in coal and isothermal adsorption test as the background, the features of reservoir output in each stage of the experiment were analyzed and compared, and then the transfer rules of pressure drop contained in the differences of the output was studied further. In the first and third stage of the experiment, the output of liquid phase was much larger than the space volume of coal reservoir pore and fracture in the range of 100m2. In the second stage, the output of the continuous gas phase appeared around 0.7Mpa when the continuous gas phase appears below the critical desorption pressure of 0.25Mpa during the whole experiment. The results indicate that, the transfer of pressure drop in the coal reservoir of this well is mainly horizontal, and the liquid phase produced in the reservoir mainly comes from the recharge of the reservoir at the far end of the relative high pressure area; the adsorption space of coalbed methane in the coal matrix as well as the main migration channel of fluid in the reservoir doesn't belong to the same pressure system and there exists the communication barrier between them. In addition, the increasing of the effective stress

  3. Evidence for photo-induced monoclinic metallic VO2 under high pressure

    International Nuclear Information System (INIS)

    Hsieh, Wen-Pin; Mao, Wendy L.; Trigo, Mariano; Reis, David A.; Andrea Artioli, Gianluca; Malavasi, Lorenzo

    2014-01-01

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M 1 )-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M 1 ) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions

  4. Geochemical modelling: what phenomena are missing

    International Nuclear Information System (INIS)

    Jacquier, P.

    1989-12-01

    In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments

  5. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  6. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  7. Photo-preionization stabilized high-pressure glow-discharge lasers

    International Nuclear Information System (INIS)

    Von Bergmann, H.M.

    1980-07-01

    Simple nanosecond stabilization and pulsing techniques were developed to excite high-pressure gas-discharge lasers at high overvoltages and high specific power loadings. The techniques were applied to a variety of ultraviolet and visible laser systems employing fast transmission line pulsers and conventional LC generators. The stabilization procedures are evaluated and the parameters which control the geometry and uniformity of the high-pressure glow discharges are investigated. A detailed study of the formation, distribution and spectral characteristics of the fast surface corona discharges is provided. The stabilization and pulsing techniques were used for the corona and glow discharge excitation of high-pressure ultraviolet N 2 lasers. A detailed spectrally- and temporally-resolved study of the gain, fluorescence and energy extraction characteristics of the atmospheric pressure N 2 plasmas is provided

  8. Microscopic Origins of the Anomalous Melting Behavior of Sodium under High Pressure

    Science.gov (United States)

    Eshet, Hagai; Khaliullin, Rustam Z.; Kühne, Thomas D.; Behler, Jörg; Parrinello, Michele

    2012-03-01

    X-ray diffraction experiments have shown that sodium exhibits a dramatic pressure-induced drop in melting temperature, which extends from 1000 K at ˜30GPa to as low as room temperature at ˜120GPa. Despite significant theoretical effort to understand the anomalous melting, its origins are still debated. In this work, we reconstruct the sodium phase diagram by using an ab initio quality neural-network potential. Furthermore, we demonstrate that the reentrant behavior results from the screening of interionic interactions by conduction electrons, which at high pressure induces a softening in the short-range repulsion.

  9. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  10. Stability of very-high pressure arc discharges against perturbations of the electron temperature

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S. [Departamento de Fisica, Ciencias Exactas e Engenharia, Universidade da Madeira, Largo do Municipio, Funchal 9000 (Portugal); Hechtfischer, U. [Philips Lighting, BU Automotive Lamps, Technology, Philipsstrasse 8, Aachen 52068 (Germany)

    2012-04-01

    We study the stability of the energy balance of the electron gas in very high-pressure plasmas against longitudinal perturbations, using a local dispersion analysis. After deriving a dispersion equation, we apply the model to a very high-pressure (100 bar) xenon plasma and find instability for electron temperatures, T{sub e}, in a window between 2400 K and 5500-7000 K x 10{sup 3} K, depending on the current density (10{sup 6}-10{sup 8} A/m{sup 2}). The instability can be traced back to the Joule heating of the electron gas being a growing function of T{sub e}, which is due to a rising dependence of the electron-atom collision frequency on T{sub e}. We then analyze the T{sub e} range occurring in very high-pressure xenon lamps and conclude that only the near-anode region exhibits T{sub e} sufficiently low for this instability to occur. Indeed, previous experiments have revealed that such lamps develop, under certain conditions, voltage oscillations accompanied by electromagnetic interference, and this instability has been pinned down to the plasma-anode interaction. A relation between the mechanisms of the considered instability and multiple anodic attachments of high-pressure arcs is discussed.

  11. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  12. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    and variations in water chemistry that are caused by large scale geochemical processes taking place at the timescale of thousands of years. The most important geochemical processes are ion exchange (Valreas and Aveiro) where freshwater solutes are displacing marine ions from the sediment surface, and carbonate......Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  13. Superconducting and Structural Transitions in the β-Pyrochlore Oxide KOs2O6 under High Pressure

    Science.gov (United States)

    Ogusu, Hiroki; Takeshita, Nao; Izawa, Koichi; Yamaura, Jun-ichi; Ohishi, Yasuo; Tsutsui, Satoshi; Okamoto, Yoshihiko; Hiroi, Zenji

    2010-11-01

    Rattling-induced superconductivity in the β-pyrochlore oxide KOs2O6 is investigated under high pressure up to 5 GPa. Resistivity measurements in a high-quality single crystal reveal a gradual decrease in the superconducting transition temperature Tc from 9.7 K at 1.0 GPa to 6.5 K at 3.5 GPa, followed by a sudden drop to 3.3 K at 3.6 GPa. Powder X-ray diffraction experiments show a structural transition from cubic to monoclinic or triclinic at a similar pressure. The sudden drop in Tc is ascribed to this structural transition, by which an enhancement in Tc due to a strong electron-rattler interaction present in the low-pressure cubic phase is abrogated as the rattling of the K ion is completely suppressed or weakened in the high-pressure phase of reduced symmetry. In addition, we find two anomalies in the temperature dependence of resistivity in the low-pressure phase, which may be due to subtle changes in rattling vibration.

  14. Research design and improvement of high temperature high pressure solenoid valve

    International Nuclear Information System (INIS)

    Luo Yongtang

    1987-12-01

    A process for development of the pilot type high temperature high pressure solenoid valve used in a PWR power plant is described. The whole development process might be divided into two phases: research design and improvement. In the former phase the questions had chiefly been approached in the following several aspects: the principle construction design, the determination of values for the constructionally key elements, the valve seal design and the solenoid actuator design, and made such valve's successful design in the main. In the latter phase an improvement had been made upon such valve against the problems during the testing use of the valve for a period of time, i.e. the unsatisfactory leak tightness, and achieved satisfactory results. The consummate success in this development not only has met the needs of the engineering project, but also made us obtain a valuable experience useful to design the similar valves

  15. The investigation of degradation reaction of various saccharides in high temperature and high pressure water

    Science.gov (United States)

    Saito, T.; Noguchi, S.; Matsumoto, T.; Sasaki, M.; Goto, M.

    2008-07-01

    Recently, conversions of polysaccharides included in biomass resources have been studied in order to recover valuable chemicals. Degradation of polysaccharides has been attracted by many researchers, whereas by-products from secondary reactions of the materials have not been studied very well. For the purpose of understanding reaction behavior of various monosaccharides in high-temperature and high-pressure water regions, we investigated reaction pathway and kinetics through reaction experiments of degradation of saccharides in subcritical water. The experiment was conducted by using continuous flow-type micro-reactors. Glucose was used as the starting material. From the experimental results, the conversion of glucose increased with increasing the residence time. The yields of fructose and 1, 6-anhydro-β-D-glucose decreased with increasing the residence time. The yields of organic acids and some aldehydes increased with increasing the residence time.

  16. The investigation of degradation reaction of various saccharides in high temperature and high pressure water

    International Nuclear Information System (INIS)

    Saito, T; Noguchi, S; Matsumoto, T; Sasaki, M; Goto, M

    2008-01-01

    Recently, conversions of polysaccharides included in biomass resources have been studied in order to recover valuable chemicals. Degradation of polysaccharides has been attracted by many researchers, whereas by-products from secondary reactions of the materials have not been studied very well. For the purpose of understanding reaction behavior of various monosaccharides in high-temperature and high-pressure water regions, we investigated reaction pathway and kinetics through reaction experiments of degradation of saccharides in subcritical water. The experiment was conducted by using continuous flow-type micro-reactors. Glucose was used as the starting material. From the experimental results, the conversion of glucose increased with increasing the residence time. The yields of fructose and 1, 6-anhydro-β-D-glucose decreased with increasing the residence time. The yields of organic acids and some aldehydes increased with increasing the residence time

  17. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  18. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... threatened with material injury by reason of LTFV and subsidized imports of high pressure steel cylinders... contained in USITC Publication 4241 (July 2011), entitled High Pressure Steel Cylinders from China...

  19. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-22

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculations and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, ks value, and the cementitious leachate impact factor.

  20. High pressure behaviour of uranium dicarbide (UC{sub 2}): Ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-08-28

    The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ∼8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressures placed at ∼24 GPa and ∼50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ∼17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC{sub 2} sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as