WorldWideScience

Sample records for high-pressure destruction kinetics

  1. Empirical model based on Weibull distribution describing the destruction kinetics of natural microbiota in pineapple (Ananas comosus L.) puree during high-pressure processing.

    Science.gov (United States)

    Chakraborty, Snehasis; Rao, Pavuluri Srinivasa; Mishra, Hari Niwas

    2015-10-15

    High pressure inactivation of natural microbiota viz. aerobic mesophiles (AM), psychrotrophs (PC), yeasts and molds (YM), total coliforms (TC) and lactic acid bacteria (LAB) in pineapple puree was studied within the experimental domain of 0.1-600 MPa and 30-50 °C with a treatment time up to 20 min. A complete destruction of yeasts and molds was obtained at 500 MPa/50 °C/15 min; whereas no counts were detected for TC and LAB at 300 MPa/30 °C/15 min. A maximum of two log cycle reductions was obtained for YM during pulse pressurization at the severe process intensity of 600 MPa/50 °C/20 min. The Weibull model clearly described the non-linearity of the survival curves during the isobaric period. The tailing effect, as confirmed by the shape parameter (β) of the survival curve, was obtained in case of YM (β1) was observed for the other microbial groups. Analogous to thermal death kinetics, the activation energy (Ea, kJ·mol(-1)) and the activation volume (Va, mL·mol(-1)) values were computed further to describe the temperature and pressure dependencies of the scale parameter (δ, min), respectively. A higher δ value was obtained for each microbe at a lower temperature and it decreased with an increase in pressure. A secondary kinetic model was developed describing the inactivation rate (k, min(-1)) as a function of pressure (P, MPa) and temperature (T, K) including the dependencies of Ea and Va on P and T, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  3. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Electrochemical cell and electrode designs for high-temperature/high-pressure kinetic measurements

    International Nuclear Information System (INIS)

    Nagy, Z.; Yonco, R.M.

    1987-05-01

    Many corrosion processes of interest to the nuclear power industry occur in high-temperature/high-pressure aqueous systems. The investigation of the kinetics of the appropriate electrode reactions is a serious experimental challenge, partially because of the high temperatures and pressures and partially because many of these reactions are very rapid, requiring fast relaxation measurements. An electrochemical measuring system is described which is suitable for measurements of the kinetics of fast electrode reactions at temperatures extending to at least 300 0 C and pressures to at least 10 MPa (100 atmospheres). The system includes solution preparation and handling equipment, the electrochemical cell, and several electrode designs. One of the new designs is a coaxial working electrode-counter electrode assembly; this electrode can be used with very fast-rising pulses, and it provides a well defined, repeatedly-polishable working surface. Low-impedance reference electrodes are also described, based on electrode concepts responding to the pH or the redox potential of the test solution. Additionally, a novel, long-life primary reference electrode design is reported, based on a modification of the external, pressure-balanced Ag/AgCl reference electrode

  5. Electrochemical cell and electrode designs for high-temperature/high-pressure kinetic measurements

    International Nuclear Information System (INIS)

    Nagy, Z.; Yonco, R.M.

    1988-01-01

    Many corrosion processes of interest to the nuclear power industry occur in high-temperature/high-pressure aqueous systems. The investigation of the kinetics of the appropriate electrode reactions is a serious experimental challenge, partially because of the high temperatures and pressures and partially because many of these reactions are very rapid, requiring fast relaxation measurements. An electrochemical measuring system is described which is suitable for measurements of the kinetics of fast electrode reactions at temperatures extending to at least 300 0 C and pressures to at least 10 MPa (100 atmospheres). The system includes solution preparation and handling equipment, the electrochemical cell, and several electrode designs. One of the new designs is a coaxial working electrode-counter electrode assembly; this electrode can be used with very fast-rising pulses, and it provides a well defined, repeatedly-polishable working surface. Low-impedance reference electrodes are also described, based on electrode concepts responding to the pH or the redox potential of the test solution. Additionally, a novel, long-life primary reference electrode design is reported, based on a modification of the external, pressure-balanced Ag/AgCl reference electrode

  6. High-pressure processing of apple juice: kinetics of pectin methyl esterase inactivation.

    Science.gov (United States)

    Riahi, Esmaeil; Ramaswamy, Hosahalli S

    2003-01-01

    High-pressure (HP) inactivation kinetics of pectin methyl esterase (PME) in apple juice were evaluated. Commercial PME was dispensed in clarified apple juice, sealed in dual peel sterilizable plastic bags, and subjected to different high-pressure processing conditions (200-400 MPa, 0-180 min). Residual enzyme activity was determined by a titration method estimating the rate of free carboxyl group released by the enzyme acting on pectin substrate at pH 7.5 (30 degrees C). The effects of pressure level and pressure holding time on enzyme inactivation were significant (p < 0.05). PME from the microbial source was found to be more resistant (p < 0.05) to pressure inactivation than PME from the orange peel. Almost a full decimal reduction in the activity of commercial PME was achieved by HP treatment at 400 MPa for 25 min. Inactivation kinetics were evaluated on the basis of a dual effect model involving a pressure pulse effect and a first-order rate model, and the pressure sensitivity of rate constants was modeled by using the z-value concept.

  7. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  8. Measurement of the C2H2 destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    International Nuclear Information System (INIS)

    Rousseau, A; Guaitella, O; Gatilova, L; Hannemann, M; Roepcke, J

    2007-01-01

    The kinetics of destruction of C 2 H 2 is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm -1 ) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C 2 H 2 concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C 2 H 2 depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C 2 H 2 is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO 2 photocatalyst on the C 2 H 2 oxidation rate is reported

  9. Destructive distillation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    1932-09-08

    A process of destructive distillation of distillable carbonaceous material under pressure is described, consisting of regulating the temperature by introducing the carbonaceous materials to a point where the reaction of hydrogenation has begun but has not stopped, by placing it in indirect heat-exchange with a cooling agent at a critical temperature below the reaction temperature, the agent being under pressure and introduced in the liquid state. Water is used as the cooling agent.

  10. Modeling the high pressure inactivation kinetics of Listeria monocytogenes on RTE cooked meat products

    DEFF Research Database (Denmark)

    Hereu, A.; Dalgaard, Paw; Garriga, M.

    2012-01-01

    High pressure (HP) inactivation curves of Listeria monocytogenes CTC1034 (ca. 107CFU/g) on sliced RTE cooked meat products (ham and mortadella) were obtained at pressures from 300 to 800MPa. A clear tail shape was observed at pressures above 450MPa and the log-linear with tail primary model...... provided the best fit to the HP-inactivation kinetics. The relationships between the primary kinetic parameters (log kmax and log Nres) and pressure treatments were described by a polynomial secondary model. To estimate HP-inactivation of L. monocytogenes in log (N/N0) over time, a one-step global fitting...

  11. Kinetic and thermodynamic analysis of ultra-high pressure and heat ...

    African Journals Online (AJOL)

    Purpose: To undertake comparative kinetic and thermodynamic analyses of the interaction of bovine serum albumin (BSA) with IgG pre-treated with ultra-high pressure (UHP) and moderate heat. Methods: BSA solutions were processed at 100 – 600 MPa and 25 – 40 °C. We applied an optical biosensor based on surface ...

  12. Carbonate mineral dissolution kinetics in high pressure experiments

    Science.gov (United States)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the

  13. Measurement of the C{sub 2}H{sub 2} destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Guaitella, O [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Gatilova, L [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Hannemann, M [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany); Roepcke, J [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany)

    2007-04-07

    The kinetics of destruction of C{sub 2}H{sub 2} is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm{sup -1}) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C{sub 2}H{sub 2} concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C{sub 2}H{sub 2} depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C{sub 2}H{sub 2} is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO{sub 2} photocatalyst on the C{sub 2}H{sub 2} oxidation rate is reported.

  14. Stages of destruction and elastic compression of granular nanoporous carbon medium at high pressures

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Ledenyov, O.P.; Bobrova, N.B.; Chupikov, A.A.

    2015-01-01

    The granular nanoporous carbon medium, made of the cylindrical coal granules of the adsorbent of CKT-3, at an influence by the high pressures from 1 MPa to 3 GPa has been researched. The eight consecutive stages of the material's specific volume change, which is characterized by a certain dependence of the volume change on the pressure change, have been registered. It is shown that there is a linear dependence on the double log-log plot of the material's specific volume change on the pressure for an every stage of considered process. The two stages are clearly distinguished: a stage of material's mechanical destruction, and a stage of elastic compression of material without the disintegration of structure at a nano-scale. The hysteresis dependence of the material's specific volume change on the pressure change at the pressure decrease is observed. The small disperse coal dust particles jettisoning between the high pressure cell and the base plate was observed, resulting in the elastic stress reduction in relation to the small disperse coal dust particles volume. The obtained research data can be used to improve the designs of air filters for the radioactive chemical elements absorption at the NPP with the aims to protect the environment

  15. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  16. Fully kinetic particle simulations of high pressure streamer propagation

    Science.gov (United States)

    Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert

    2012-10-01

    Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].

  17. Fresh tar (from biomass gasification) destruction with downstream catalysts: comparison of their intrinsic activity with a realistic kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A model for fresh tar destruction over catalysts placed downstream a biomass gasifier is presented. It includes the stoichio-metry and the calculation of the kinetic constants for the tar destruction. Catalysts studied include commercial Ni steam reforming catalysts and calcinated dolomites. Kinetic constants for tar destruction are calculated for several particle sizes, times- on-stream and temperatures of the catalyst and equivalence ratios in the gasifier. Such intrinsic kinetic constants allow a rigorous or scientific comparison of solids and conditions to be used in an advanced gasification process. (orig.) 4 refs.

  18. Fresh tar (from biomass gasification) destruction with downstream catalysts: comparison of their intrinsic activity with a realistic kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J; Narvaez, I; Orio, A [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1997-12-31

    A model for fresh tar destruction over catalysts placed downstream a biomass gasifier is presented. It includes the stoichio-metry and the calculation of the kinetic constants for the tar destruction. Catalysts studied include commercial Ni steam reforming catalysts and calcinated dolomites. Kinetic constants for tar destruction are calculated for several particle sizes, times- on-stream and temperatures of the catalyst and equivalence ratios in the gasifier. Such intrinsic kinetic constants allow a rigorous or scientific comparison of solids and conditions to be used in an advanced gasification process. (orig.) 4 refs.

  19. Development of Kinetics for Soot Oxidation at High Pressures Under Fuel-Lean Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, JoAnn [Univ. of Utah, Salt Lake City, UT (United States); Vander Wal, Randy [Pennsylvania State Univ., University Park, PA (United States)

    2014-04-21

    The focus of the proposed research was to develop kinetic models for soot oxidation with the hope of developing a validated, predictive, multi-­scale, combustion model to optimize the design and operation of evolving fuels in advanced engines for transportation applications. The work focused on the relatively unstudied area of the fundamental mechanism for soot oxidation. The objectives include understanding of the kinetics of soot oxidation by O2 under high pressure which require: 1) development of intrinsic kinetics for the surface oxidation, which takes into account the dependence of reactivity upon nanostructure and 2) evolution of nanostructure and its impact upon oxidation rate and 3) inclusion of internal surface area development and possible fragmentation resulting from pore development and /or surface oxidation. These objectives were explored for a variety of pure fuel components and surrogate fuels. This project was a joint effort between the University of Utah (UU) and Pennsylvania State University (Penn State). The work at the UU focuses on experimental studies using a two-­stage burner and a high- pressure thermogravimetric analyzer (TGA). Penn State provided HRTEM images and guidance in the fringe analysis algorithms and parameter quantification for the images. This report focuses on completion done under supplemental funding.

  20. Influence of high-pressure torsion on formation/destruction of nano-sized spinodal structures

    Science.gov (United States)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji

    2018-04-01

    The microstructures and hardness of Al - 30 mol.% Zn are investigated after processing by high-pressure torsion (HPT) for different numbers of revolutions, N = 1, 3, 10 or 25, as well as after post-HPT annealing at different temperatures, T = 373 K, 473 K, 573 K and 673 K. It was found that a work softening occurs by decreasing the grain size to the submicrometer level and increasing the fraction of high-angle boundaries. As a result of HPT processing, a complete decomposition of supersaturated solid solution of Zn in Al occurs and the spinodal structure is destroyed. This suggests that softening of the Al-Zn alloys after HPT is due to the decomposition of the supersaturated solid solution and destruction of spinodal decomposition. After post-HPT annealing, ultrafine-grained Al-Zn alloys show an unusual mechanical properties and its hardness increased to 187 HV. Microstructural analysis showed that the high hardness after post-HPT annealing is due to the formation of spinodal structures.

  1. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  2. Protein destruction by a helium atmospheric pressure glow discharge: Capability and mechanisms

    International Nuclear Information System (INIS)

    Deng, X. T.; Shi, J. J.; Kong, M. G.

    2007-01-01

    Biological sterilization represents one of the most exciting applications of atmospheric pressure glow discharges (APGD). Despite the fact that surgical instruments are contaminated by both microorganisms and proteinaceous matters, sterilization effects of APGD have so far been studied almost exclusively for microbial inactivation. This work presents the results of a detailed investigation of the capability of a helium-oxygen APGD to inactivate proteins deposited on stainless-steel surfaces. Using a laser-induced fluorescence technique for surface protein measurement, a maximum protein reduction of 4.5 logs is achieved by varying the amount of the oxygen admixture into the background helium gas. This corresponds to a minimum surface protein of 0.36 femtomole/mm 2 . It is found that plasma reduction of surface-borne protein is through protein destruction and degradation, and that its typically biphasic reduction kinetics is influenced largely by the thickness profile of the surface protein. Also presented is a complementary study of possible APGD protein inactivation mechanisms. By interplaying the protein inactivation kinetics with optical emission spectroscopy, it is shown that the main protein-destructing agents are excited atomic oxygen (via the 777 and 844 nm emission channels) and excited nitride oxide (via the 226, 236, and 246 nm emission channels). It is also demonstrated that the most effective protein reduction is achieved possibly through a synergistic effect between atomic oxygen and nitride oxide. This study is a useful step toward a full confirmation of the efficacy of APGD as a sterilization technology for surgical instruments contaminated by prion proteins

  3. Experimental and Kinetic Modeling Study of Methanol Ignition and Oxidation at High Pressure

    DEFF Research Database (Denmark)

    Aranda, V.; Christensen, J. M.; Alzueta, Maria

    2013-01-01

    A detailed chemical kinetic model for oxidation of CH3OH at high pressure and intermediate temperatures has been developed and validated experimentally. Ab initio calculations and Rice–Ramsperger–Kassel–Marcus/transition state theory (RRKM/TST) analysis were used to obtain rate coefficients for CH...... the conditions studied, the onset temperature for methanol oxidation was not dependent on the stoichiometry, whereas increasing pressure shifted the ignition temperature toward lower values. Model predictions of the present experimental results, as well as rapid compression machine data from the literature, were...

  4. Kinetic boundaries and phase transformations of ice i at high pressure

    Science.gov (United States)

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.

    2018-01-01

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  5. Data on blueberry peroxidase kinetic characterization and stability towards thermal and high pressure processing

    Directory of Open Access Journals (Sweden)

    Netsanet Shiferaw Terefe

    2017-08-01

    Full Text Available The data presented in this article are related to a research article entitled ‘Thermal and high pressure inactivation kinetics of blueberry peroxidase’ (Terefe et al., 2017 [1]. In this article, we report original data on the activity of partially purified blueberry peroxidase at different concentrations of hydrogen peroxide and phenlylenediamine as substrates and the effects of thermal and high pressure processing on the activity of the enzyme. Data on the stability of the enzyme during thermal (at temperatures ranging from 40 to 80 °C and combined thermal-high pressure processing (100–690 MPa, 30–90 °C are included in this report. The data are presented in this format in order to facilitate comparison with data from other researchers and allow statistical analyses and modeling by others in the field.

  6. Combined pressure and cosolvent effects on enzyme activity - a high-pressure stopped-flow kinetic study on α-chymotrypsin.

    Science.gov (United States)

    Luong, Trung Quan; Winter, Roland

    2015-09-21

    We investigated the combined effects of cosolvents and pressure on the hydrolysis of a model peptide catalysed by α-chymotrypsin. The enzymatic activity was measured in the pressure range from 0.1 to 200 MPa using a high-pressure stopped-flow systems with 10 ms time resolution. A kosmotropic (trimethalymine-N-oxide, TMAO) and chaotropic (urea) cosolvent and mixtures thereof were used as cosolvents. High pressure enhances the hydrolysis rate as a consequence of a negative activation volume, ΔV(#), which, depending on the cosolvent system, amounts to -2 to -4 mL mol(-1). A more negative activation volume can be explained by a smaller compression of the ES complex relative to the transition state. Kinetic constants, such as kcat and the Michaelis constant KM, were determined for all solution conditions as a function of pressure. With increasing pressure, kcat increases by about 35% and its pressure dependence by a factor of 1.9 upon addition of 2 M urea, whereas 1 M TMAO has no significant effect on kcat and its pressure dependence. Similarly, KM increases upon addition of urea 6-fold. Addition of TMAO compensates the urea-effect on kcat and KM to some extent. The maximum rate of the enzymatic reaction increases with increasing pressure in all solutions except in the TMAO : urea 1 : 2 mixture, where, remarkably, pressure is found to have no effect on the rate of the enzymatic reaction anymore. Our data clearly show that compatible solutes can easily override deleterious effects of harsh environmental conditions, such as high hydrostatic pressures in the 100 MPa range, which is the maximum pressure encountered in the deep biosphere on Earth.

  7. Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemical and Biomolecular Engineering

    2016-12-20

    The overall objective of the current project was to investigate the high pressure gasification characteristics of a feed containing both coal and biomass. The two feed types differ in their ash contents and ash composition, particularly the alkali content. Gasification of a combined feed of coal and biomass has the potential for considerable synergies that might lead to a dramatic improvement in process economics and flexibility. The proposed study aimed to develop a detailed understanding of the chemistry, kinetics, and transport effects during high pressure gasification of coal-biomass blend feed. Specifically, we studied to develop: (a) an understanding of the catalytic effect of alkali and other inorganic species present in the biomass and coal, (b) an understanding of processing conditions under which synergistic effects of the blending of coal and biomass might be observed. This included the role of particle size, residence time, and proximity of the two feed types, (c) kinetics of high pressure gasification of individual feeds as well as the blends, and (d) development of mathematical models that incorporate kinetics and transport models to enable prediction of gasification rate at a given set of operating conditions, and (e) protocols to extend the results to other feed resources. The goal was to provide a fundamental understanding of the gasification process and guide in optimizing the configurations and design of the next generation of gasifiers. The approach undertaken was centered on two basic premises: (1) the gasification for small particles without internal mass transfer limitations can be treated as the sum of two processes in series (pyrolysis and char gasification) , and (2) the reactivity of the char generated during pyrolysis not only depends on the pressure and temperature but is also affected by the heating rates. Thus low heating rates (10-50 °C/min) typical of PTGA fail to produce char that would typically be formed at high heating rates

  8. Experimental and kinetic modeling study of C2H4 oxidation at high pressure

    DEFF Research Database (Denmark)

    Lopez, Jorge Gimenez; Rasmussen, Christian Lund; Alzueta, Maria

    2009-01-01

    of conditions (0.003-100 bar, 200-3000 K). The results indicate that at 60 bar and medium temperatures vinyl peroxide, rather than CH2O and HCO, is the dominant product. The experiments, involving C2H4/O-2 mixtures diluted in N-2, were carried out in a high pressure flow reactor at 600-900 K and 60 bar, varying......A detailed chemical kinetic model for oxidation of C2H4 in the intermediate temperature range and high pressure has been developed and validated experimentally. New ab initio calculations and RRKM analysis of the important C2H3 + O-2 reaction was used to obtain rate coefficients over a wide range...

  9. Experimental and Kinetic Modeling Study of C2H2Oxidation at High Pressure

    DEFF Research Database (Denmark)

    Lopez, Jorge Gimenez; Rasmussen, Christian Tihic; Hashemi, Hamid

    2016-01-01

    diagram for C2H3 + O2 by Goldsmith et al. and on new ab initio calculations, respectively. The C2H2 + HO2 reaction involves nine pressure- and temperature-dependent product channels, with formation of triplet CHCHO being dominant under most conditions. The barrier to reaction for C2H2 + O2 was found......A detailed chemical kinetic model for oxidation of acetylene at intermediate temperatures and high pressure has been developed and evaluated experimentally. The rate coefficients for the reactions of C2H2 with HO2 and O2 were investigated, based on the recent analysis of the potential energy...... to be more than 50 kcal mol−1 and predictions of the initiation temperature were not sensitive to this reaction. Experiments were conducted with C2H2/O2 mixtures highly diluted in N2 in a high-pressure flow reactor at 600–900 K and 60 bar, varying the reaction stoichiometry from very lean to fuel...

  10. Kinetics and mechanism of azo dye destruction in advanced oxidation processes

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Palfi, T.; Takacs, E.

    2007-01-01

    The kinetics and mechanism of dye destruction in advanced oxidation processes is discussed on the example of Apollofix Red (Ar-28) radiolysis in aqueous solution. When the reactive intermediate reacts with the color bearing part of the molecule causing with nearly 100% efficiency destruction of the conjugation, the dose dependence, or time dependence of color disappearance is linear. In this case, spectrophotometry can be used to follow-up dye decomposition. Linear dependence was observed when hydrated electrons or hydrogen atoms reacted with the dye. In hydroxyl radical reactions some colored products form with spectra similar to those of the starting dye molecules. For that reason, spectrophotometry gives false result about the intact dye molecule concentration. Analysis by the HPLC reveals logarithmic time dependence in agreement with a theoretical model developed

  11. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Science.gov (United States)

    He, Jin-Song; Yang, Hongwei; Zhu, Wanpeng; Mu, Tai-Hua

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum Im and the corresponding wavenumber qm could be described in terms of the power-law relationship as Im~fβ and qm~f-α, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  12. Non-destructive testing of high pressure fibre reinforced composites tubes by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, L. [Qualitaetszentrum Dortmund (Germany); Monstadt, H.; Boedecker, T. [EFMT, Bochum (Germany)

    1995-12-31

    For new applications of fibre reinforced composites, new non-destructive testing methods are required which on the one hand can be used as a quality testing method and on the other hand as an in-service inspection method during the life of a product. Special attention should be paid to the defect sensitivity and to a detailed classification of visible defects. Defining a detectable standard, comparable investigations were carried out using the Ultra Fast Scanner which is located at the Entwicklungs- und Forschungszentrum fuer Mikrotherapie gGmbH (EFMT) and the industrial scanner of the Qualitaetszentrum Dortmund GmbH u. Co. KG (QZ-DO). The investigation object is a high pressure tube which is made up of three different diameter structures. There can be distinguished between three types of tube layers. Digital image processing has been used to get more information form measured data. We developed two different types of digital image filters: A SIGMA and a Contrast Sensitive Weights (CSW) image filter and made a comparative study. (orig./RHM)

  13. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    International Nuclear Information System (INIS)

    He Jinsong; Yang Hongwei; Zhu Wanpeng; Mu Taihua

    2010-01-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I m and the corresponding wavenumber q m could be described in terms of the power-law relationship as I m ∼f β and q m ∼f -α , respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  14. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose

    2014-12-01

    This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.

  15. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Energy Technology Data Exchange (ETDEWEB)

    He Jinsong; Yang Hongwei; Zhu Wanpeng [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Mu Taihua, E-mail: mutaihuacaas@126.co [Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100094 (China)

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I{sub m} and the corresponding wavenumber q{sub m} could be described in terms of the power-law relationship as I{sub m}{approx}f{sup {beta}} and q{sub m}{approx}f{sup -}{alpha}, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  16. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  17. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  18. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process

    Science.gov (United States)

    Cho, Seok-Cheol; Choi, Woon-Yong; Oh, Sung-Ho; Lee, Choon-Geun; Seo, Yong-Chang; Kim, Ji-Seon; Song, Chi-Ho; Kim, Ga-Vin; Lee, Shin-Young; Kang, Do-Hyung; Lee, Hyeon-Yong

    2012-01-01

    Marine microalga, Scenedesmus sp., which is known to be suitable for biodiesel production because of its high lipid content, was subjected to the conventional Folch method of lipid extraction combined with high-pressure homogenization pretreatment process at 1200 psi and 35°C. Algal lipid yield was about 24.9% through this process, whereas only 19.8% lipid can be obtained by following a conventional lipid extraction procedure using the solvent, chloroform : methanol (2 : 1, v/v). Present approach requires 30 min process time and a moderate working temperature of 35°C as compared to the conventional extraction method which usually requires >5 hrs and 65°C temperature. It was found that this combined extraction process followed second-order reaction kinetics, which means most of the cellular lipids were extracted during initial periods of extraction, mostly within 30 min. In contrast, during the conventional extraction process, the cellular lipids were slowly and continuously extracted for >5 hrs by following first-order kinetics. Confocal and scanning electron microscopy revealed altered texture of algal biomass pretreated with high-pressure homogenization. These results clearly demonstrate that the Folch method coupled with high-pressure homogenization pretreatment can easily destruct the rigid cell walls of microalgae and release the intact lipids, with minimized extraction time and temperature, both of which are essential for maintaining good quality of the lipids for biodiesel production. PMID:22969270

  19. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process

    Directory of Open Access Journals (Sweden)

    Seok-Cheol Cho

    2012-01-01

    Full Text Available Marine microalga, Scenedesmus sp., which is known to be suitable for biodiesel production because of its high lipid content, was subjected to the conventional Folch method of lipid extraction combined with high-pressure homogenization pretreatment process at 1200 psi and 35°C. Algal lipid yield was about 24.9% through this process, whereas only 19.8% lipid can be obtained by following a conventional lipid extraction procedure using the solvent, chloroform : methanol (2 : 1, v/v. Present approach requires 30 min process time and a moderate working temperature of 35°C as compared to the conventional extraction method which usually requires >5 hrs and 65°C temperature. It was found that this combined extraction process followed second-order reaction kinetics, which means most of the cellular lipids were extracted during initial periods of extraction, mostly within 30 min. In contrast, during the conventional extraction process, the cellular lipids were slowly and continuously extracted for >5 hrs by following first-order kinetics. Confocal and scanning electron microscopy revealed altered texture of algal biomass pretreated with high-pressure homogenization. These results clearly demonstrate that the Folch method coupled with high-pressure homogenization pretreatment can easily destruct the rigid cell walls of microalgae and release the intact lipids, with minimized extraction time and temperature, both of which are essential for maintaining good quality of the lipids for biodiesel production.

  20. Turbulent kinetic energy balance measurements in the wake of a low-pressure turbine blade

    International Nuclear Information System (INIS)

    Sideridis, A.; Yakinthos, K.; Goulas, A.

    2011-01-01

    The turbulent kinetic energy budget in the wake generated by a high lift, low-pressure two-dimensional blade cascade of the T106 profile was investigated experimentally using hot-wire anemometry. The purpose of this study is to examine the transport mechanism of the turbulent kinetic energy and provide validation data for turbulence modeling. Point measurements were conducted on a high spatial resolution, two-dimensional grid that allowed precise derivative calculations. Positioning of the probe was achieved using a high accuracy traversing mechanism. The turbulent kinetic energy (TKE) convection, production, viscous diffusion and turbulent diffusion were all obtained directly from experimental measurements. Dissipation and pressure diffusion were calculated indirectly using techniques presented and validated by previous investigators. Results for all terms of the turbulent kinetic energy budget are presented and discussed in detail in the present work.

  1. Reverse spin-crossover and high-pressure kinetics of the heme iron center relevant for the operation of heme proteins under deep-sea conditions.

    Science.gov (United States)

    Troeppner, Oliver; Lippert, Rainer; Shubina, Tatyana E; Zahl, Achim; Jux, Norbert; Ivanović-Burmazović, Ivana

    2014-10-20

    By design of a heme model complex with a binding pocket of appropriate size and flexibility, and by elucidating its kinetics and thermodynamics under elevated pressures, some of the pressure effects are demonstrated relevant for operation of heme-proteins under deep-sea conditions. Opposite from classical paradigms of the spin-crossover and reaction kinetics, a pressure increase can cause deceleration of the small-molecule binding to the vacant coordination site of the heme-center in a confined space and stabilize a high-spin state of its Fe center. This reverse high-pressure behavior can be achieved only if the volume changes related to the conformational transformation of the cavity can offset the volume changes caused by the substrate binding. It is speculated that based on these criteria nature could make a selection of structures of heme pockets that assist in reducing metabolic activity and enzymatic side reactions under extreme pressure conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  3. Platelet destruction in autoimmune thrombocytopenic purpura: kinetics and clearance of indium-111-labeled autologous platelets

    International Nuclear Information System (INIS)

    Stratton, J.R.; Ballem, P.J.; Gernsheimer, T.; Cerqueira, M.; Slichter, S.J.

    1989-01-01

    Using autologous 111 In-labeled platelets, platelet kinetics and the sites of platelet destruction were assessed in 16 normal subjects (13 with and three without spleens), in 17 studies of patients with primary autoimmune thrombocytopenic purpura (AITP), in six studies of patients with secondary AITP, in ten studies of patients with AITP following splenectomy, and in five thrombocytopenic patients with myelodysplastic syndromes. In normal subjects, the spleen accounted for 24 +/- 4% of platelet destruction and the liver for 15 +/- 2%. Untreated patients with primary AITP had increased splenic destruction (40 +/- 14%, p less than 0.001) but not hepatic destruction (13 +/- 5%). Compared with untreated patients, prednisone treated patients did not have significantly different spleen and liver platelet sequestration. Patients with secondary AITP had similar platelet counts, platelet survivals, and increases in splenic destruction of platelets as did patients with primary AITP. In contrast, patients with myelodysplastic syndromes had a normal pattern of platelet destruction. In AITP patients following splenectomy, the five nonresponders all had a marked increase (greater than 45%) in liver destruction compared to five responders (all less than 40%). Among all patients with primary or secondary AITP, there was an inverse relationship between the percent of platelets destroyed in the liver plus spleen and both the platelet count (r = 0.75, p less than 0.001) and the platelet survival (r = 0.86, p less than 0.001). In a stepwise multiple linear regression analysis, total liver plus spleen platelet destruction, the platelet survival and the platelet turnover were all significant independent predictors of the platelet count. Thus platelet destruction is shifted to the spleen in primary and secondary AITP. Failure of splenectomy is associated with a marked elevation in liver destruction

  4. Destruction kinetic of PCDDs/Fs in MSWI fly ash using microwave peroxide oxidation.

    Science.gov (United States)

    Chang, Yu-Min; Fang, Wen-Bin; Tsai, Kuo-Sheng; Kao, Jimmy C M; Lin, Kae-Long; Chen, Ching-Ho

    2015-01-01

    Microwave peroxide oxidation is a less greenhouse gas emission and energy-efficient technology to destroy toxic organic compounds in hazardous waste. The research novelty is to adopt the innovative microwave peroxide oxidation in H2SO4/HNO3 solution to efficiently destroy the polychlorinated dibenzo-p-dioxins (PCDDs)/Fs in municipal solid waste incineration fly ash. The major objective of this paper is to study dynamic destruction of PCDDs/Fs using the microwave peroxide oxidation. Almost all PCDDs/Fs in the raw fly ash can be destructed in 120 min at a temperature of 423 K using the microwave peroxide oxidation treatment. It was found that the microwave peroxide oxidation provides the potential to destruct the PCDDs/Fs content in municipal solid waste incinerator (MSWI) fly ash to a low level as a function of treatment time. A useful kinetic correlation between destruction efficiency and treatment conditions is proposed on the basis of the experimental data obtained in this study. The significance of this work in terms of practical engineering applications is that the necessary minimum treatment time can be solved using a proposed graphic illustration method, by which the minimum treatment time is obtained if the desired destruction efficiency and treatment temperature are known. Because of inorganic salt dissolution, the temperature would be a critical factor facilitating the parts of fly ash dissolution. Material loss problem caused by the microwave peroxide oxidation and the effects of treatment time and temperature are also discussed in this paper.

  5. Zirconium metal-water oxidation kinetics. V. Oxidation of Zircaloy in high pressure steam

    International Nuclear Information System (INIS)

    Pawel, R.E.; Cathcart, J.V.; Campbell, J.J.; Jury, S.H.

    1977-12-01

    A series of scoping tests to determine the influence of steam pressure on the isothermal oxidation kinetics of Zircaloy-4 PWR tubing was undertaken. The oxidation experiments were conducted in flowing steam at 3.45, 6.90, and 10.34 MPa (500, 1000, and 1500 psi) at 905 0 C (1661 0 F), and at 3.45 and 6.90 MPa at 1101 0 C (2014 0 F). A comparison of the results of these experiments with those obtained for oxidation in steam at atmospheric pressure under similar conditions indicated that measurable enhancement of the oxidation rate occurred with increasing pressure at 905 0 C, but not at 1100 0 C

  6. Drift-kinetic Alfven modes in high performance tokamaks

    International Nuclear Information System (INIS)

    Jaun, A.; Fasoli, A.F.; Testa, D.; Vaclavik, J.; Villard, L.

    2001-01-01

    The stability of fast-particle driven Alfven eigenmodes is modeled in high performance tokamaks, successively with a conventional shear, an optimized shear and a tight aspect ratio plasma. A large bulk pressure yields global kinetic Alfven eigenmodes that are stabilized by mode conversion in the presence of a divertor. This suggests how conventional reactor scenarii could withstand significant pressure gradients from the fusion products. A large safety factor in the core q 0 >2.5 in deeply shear reversed configurations and a relatively large bulk ion Larmor radius in a low magnetic field can trigger global drift-kinetic Alfven eigenmodes that are unstable in high performance JET, NSTX and ITER plasmas. (author)

  7. Radioresistance increase in polymers at high pressures

    International Nuclear Information System (INIS)

    Milinchuk, V.; Kirjukhin, V.; Klinshpont, E.

    1977-01-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibres were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures. (J.B.)

  8. Effects of Current Guides Destruction at Ultra-fast Acceleration of Macrobodies

    Science.gov (United States)

    Kataev, V. N.; Boriskin, A. S.; Golosov, S. N.; Demidov, V. A.; Klimashov, M. V.; Korolev, P. V.; Makartsev, G. F.; Pikar, A. S.; Russkov, A. S.; Shapovalov, E. V.; Shibitov, Yu. M.

    2006-08-01

    The paper is devoted to discussion of current guides destruction effects in different accelerators: thermal-electric and electro-magnetic rail accelerator at macrobodies acceleration value of 108-109 m/s2. Experimental results with thermal-electric accelerators powering from megajoule capacitor battery and helical magneto-cumulative generator MCG-100 at currents up to 3.5 MA are analyzed. The process of rails destruction at railgun at pressure magnetic field excess over the limit of metal fluidity is presented. Methods of efficiency coefficient increase of capacitive storage energy transmission to kinetic energy of accelerating body are discussed.

  9. High-molecular products analysis of VOC destruction in atmospheric pressure discharge

    International Nuclear Information System (INIS)

    Grossmannova, Hana; Ciganek, Miroslav; Krcma, Frantisek

    2007-01-01

    We investigate the issue of applicability of the solid phase microextraction (SPME) in the analysis of volatile organic compounds (VOCs) destruction products in the gliding arc discharge. Our research is focused on the measurements with the simple one stage gliding arc reactor, applied voltage was varied in the range of 3.5-4 kV. As a carrier gas, the dry air and its mixtures with nitrogen and oxygen, enriched by toluene, with flow rate of 1000-3500 ml/min was used. Total decomposition of toluene of 97 % was achieved at the oxygen content in carrier gas of 60 %. For measurements with air as a carrier gas, the highest efficiency was 95 %. We also tested the SPME technique suitability for the quantitative analysis of exhausts gases and if this technique can be used efficiently in the field to extract byproducts. Carbowax/divinylbenzene and Carboxen/polydimethylsiloxane/divinylbenzene fibres were chosen for sampling. Tens of various high-molecular substances were observed, especially a large number of oxygenous compounds and further several nitrogenous and C x H y compounds. The concentrations of various generated compounds strongly depend on the oxygen content in gas mixture composition. The results showed that the fiber coated by Carbowax/divinylbenzene can extract more products independently on the used VOC compound. The Carboxen/polydimethylsiloxane/divinylbenzene fiber is useful for the analysis of oxygenous compounds and its use will be recommended especially when the destruction is done in the oxygen rich atmosphere. With the higher ratio of oxygen in the carrier gas a distinctive decline of C x H y compounds amount have been observed. We also tried to describe the significant production of some compounds like benzyl alcohol, benzeneacetaldehyde, even in oxygen content is proximate 0 %. Experimental data demonstrated that it is necessary to use several SPME fibres for full-scale high-molecular products analysis

  10. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH){sub 2} at high H{sub 2}O partial pressures for thermo-chemical heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Schaube, F.; Koch, L. [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany); Woerner, A., E-mail: antje.woerner@dlr.de [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany); Mueller-Steinhagen, H. [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany)

    2012-06-20

    Highlights: Black-Right-Pointing-Pointer Investigation of the thermodynamic equilibrium and reaction enthalpy of 'Ca(OH){sub 2} {r_reversible} CaO + H{sub 2}O'. Black-Right-Pointing-Pointer Investigation of the reaction kinetics of the dehydration of Ca(OH){sub 2} at partial pressures up to 956 mbar. Black-Right-Pointing-Pointer Investigation of the reaction kinetics of the rehydration of Ca(OH){sub 2} at partial pressures up to 956 mbar. - Abstract: Heat storage technologies are used to improve energy efficiency of power plants and recovery of process heat. Storing thermal energy by reversible thermo-chemical reactions offers a promising option for high storage capacities especially at high temperatures. Due to its low material cost, the use of the reversible reaction Ca(OH){sub 2} Rightwards-Harpoon-Over-Leftwards-Harpoon CaO + H{sub 2}O has been proposed. This paper reports on the physical properties such as heat capacity, thermodynamic equilibrium, reaction enthalpy and kinetics. To achieve high reaction temperatures, high H{sub 2}O partial pressures are required. Therefore the cycling stability is confirmed for H{sub 2}O partial pressures up to 95.6 kPa and the dehydration and hydration kinetics are studied. Quantitative data are collected and expressions are derived which are in good agreement with the presented measurements. At 1 bar H{sub 2}O partial pressure the expected equilibrium temperature is 505 Degree-Sign C and the reaction enthalpy is 104.4 kJ/mol.

  11. Effects of high-pressure process on kinetics of leaching oil from soybean powder using hexane in batch systems.

    Science.gov (United States)

    Uhm, Joo Tae; Yoon, Won Byong

    2011-08-01

    Mass transfer models of leaching oil from soybean (Glycine max) flour with hexane after high-pressure process (HPP) treatment were developed. High pressure (450 MPa) was applied to the soybean flour (mean diameter of flour particle: 365 μm) for 30 min before leaching the oil components in the solvent. The ratio of solvent (volume, mL) to soybean flour (mass, g), such as 1:10 and 1:20, was employed to characterize the effect of solvent ratio on the leaching rate in the batch type of extraction process. Ultraviolet absorbance at 300 nm was used to monitor the extraction rate. Saturation solubility (C(AS)) was determined to be 21.73 kg/m³. The mass transfer coefficients (k) were determined based on the 1st- and 2nd-order kinetic models. The 2nd kinetic model showed better fit. The HPP treatment showed a higher extraction rate and yield compared to the control, while the amount of solvent did not affect the extraction rate and yield. The scanning electron microscope showed that HPP-treated soybean particles included more pores than the untreated. The pores observed in the HPP-treated soybean flours might help increase the mass transfer rate of solvent and solute in the solid matrix. High-pressure processing can help increase the extraction rate of oil from the soybean flour operated in batch systems. The conventional solid to solvent ratio (1:20) used to extract oil composition from the plant seed did not help increase the amount of oil extracted from the soybean flour. © 2011 Institute of Food Technologists®

  12. Kinetic analysis of volatile formation in milk subjected to pressure-assisted thermal treatments.

    Science.gov (United States)

    Vazquez-Landaverde, P A; Qian, M C; Torres, J A

    2007-09-01

    Volatile formation in milk subjected to pressure-assisted thermal processing (PATP) was investigated from a reaction kinetic analysis point of view to illustrate the advantages of this technology. The concentration of 27 volatiles of different chemical class in milk subjected to pressure, temperature, and time treatments was fitted to zero-, 1st-, and 2nd-order chemical reaction models. Temperature and pressure effects on rate constants were analyzed to obtain activation energy (E(a)) and activation volume (deltaV*) values. Hexanal, heptanal, octanal, nonanal, and decanal followed 1st-order kinetics with rate constants characterized by E(a) values decreasing with pressure reflecting negative deltaV* values. Formation of 2-methylpropanal, 2,3-butanedione, and hydrogen sulfide followed zero-order kinetics with rate constants increasing with temperature but with unclear pressure effects. E(a) values for 2-methylpropanal and 2,3-butanedione increased with pressure, that is, deltaV* > 0, whereas values for hydrogen sulfide remained constant, that is, deltaV* = 0. The concentration of all other volatiles, including methanethiol, remained unchanged in pressure-treated samples, suggesting large negative deltaV* values. The concentration of methyl ketones, including 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, 2-decanone, and 2-undecanone, was independent of pressure and pressure-holding time. PATP promoted the formation of few compounds, had no effect on some, and inhibited the formation of volatiles reported to be factors of the consumer rejection of "cooked" milk flavor. The kinetic behavior observed suggested that new reaction formation mechanisms were not likely involved in volatile formation in PATP milk. The application of the Le Chatelier principle frequently used to explain the high quality of pressure-treated foods, often with no supporting experimental evidence, was not necessary.

  13. Investigation of Kinetic Hydrate Inhibition Using a High Pressure Micro Differential Scanning Calorimeter

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Malmos, Christine; von Solms, Nicolas

    2013-01-01

    of hydrate growth. Additionally, hydrate formed in the presence of inhibitor decomposed at higher temperatures compared to pure water, indicating that while hydrate formation is initially inhibited; once hydrates form, they are more stable in the presence of inhibitor. Overall, this method proved a viable......Methane hydrate formation and decomposition were investigated in the presence of the kinetic inhibitor (Luvicap EG) and synergist (polyethylene oxide; PEO) using a high pressure micro-differential scanning calorimeter (HP-μDSC) with both temperature ramping and isothermal temperature programs....... These investigations were performed using small samples in four different capillary tubes in the calorimeter cell. When the isothermal method was employed, it was found that Luvicap EG significantly delays the hydrate nucleation time as compared to water. The results obtained from the ramping method demonstrated...

  14. Destruction of energetic materials by supercritical water oxidation

    International Nuclear Information System (INIS)

    Beulow, S.J.; Dyer, R.B.; Harradine, D.M.; Robinson, J.M.; Oldenborg, R.C.; Funk, K.A.; McInroy, R.E.; Sanchez, J.A.; Spontarelli, T.

    1993-01-01

    Supercritical water oxidation is a relatively low-temperature process that can give high destruction efficiencies for a variety of hazardous chemical wastes. Results are presented examining the destruction of high explosives and propellants in supercritical water and the use of low temperature, low pressure hydrolysis as a pretreatment process. Reactions of cyclotrimethylene trinitramine (RDX), cyclotetramethylene tetranitramine (HMX), nitroguanidine (NQ), pentaerythritol tetranitrate (PETN), and 2,4,6-trinitrotoluene (TNT) are examined in a flow reactor operated at temperatures between 400 degrees C and 650 degrees C. Explosives are introduced into the reactor at concentrations below the solubility limits. For each of the compounds, over 99.9% is destroyed in less than 30 seconds at temperatures above 600 degrees C. The reactions produce primarily N 2 , N 2 O,CO 2 , and some nitrate and nitrite ions. The distribution of reaction products depends on reactor pressure, temperature, and oxidizer concentration. Kinetics studies of the reactions of nitrate and nitrite ions with various reducing reagents in supercritical water show that they can be rapidly and completely destroyed at temperatures above 525 degrees C. The use of slurries and hydrolysis to introduce high concentrations of explosives into a supercritical water reactor is examined. For some compounds the rate of reaction depends on particle size. The hydrolysis of explosives at low temperatures (<100 degrees C) and low pressures (<1 atm) under basic conditions produces water soluble, non-explosive products which are easily destroyed by supercritical water oxidation. Large pieces of explosives (13 cm diameter) have been successfully hydrolyzed. The rate, extent, and products of the hydrolysis depend on the type and concentration of base. Results from the base hydrolysis of triple base propellant M31A1E1 and the subsequent supercritical water oxidation of the hydrolysis products are presented

  15. Influence of Powder Injection Parameters in High-Pressure Cold Spray

    Science.gov (United States)

    Ozdemir, Ozan C.; Widener, Christian A.

    2017-10-01

    High-pressure cold spray systems are becoming widely accepted for use in the structural repair of surface defects of expensive machinery parts used in industrial and military equipment. The deposition quality of cold spray repairs is typically validated using coupon testing and through destructive analysis of mock-ups or first articles for a defined set of parameters. In order to provide a reliable repair, it is important to not only maintain the same processing parameters, but also to have optimum fixed parameters, such as the particle injection location. This study is intended to provide insight into the sensitivity of the way that the powder is injected upstream of supersonic nozzles in high-pressure cold spray systems and the effects of variations in injection parameters on the nature of the powder particle kinetics. Experimentally validated three-dimensional computational fluid dynamics (3D CFD) models are implemented to study the particle impact conditions for varying powder feeder tube size, powder feeder tube axial misalignment, and radial powder feeder injection location on the particle velocity and the deposition shape of aluminum alloy 6061. Outputs of the models are statistically analyzed to explore the shape of the spray plume distribution and resulting coating buildup.

  16. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate...

  17. Tantalum high-temperature oxidation kinetics

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.

    1981-01-01

    Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru

  18. Kinetics on the reaction of 6-chloroquinoline and p-substituted benzoylchlorides under high pressures

    International Nuclear Information System (INIS)

    Kim, Eung Ryul; Lim, Jong Wan; Kim, Se Kyong; Ko, Young Shin

    2002-01-01

    The reactions rates of substituted 6-chloroquinoline, with p-substituted benzoyichlorides (p-CH 3 , p-H, p-NO 2 ) have been measured by conductometry in acetonitrile, and the rate constants are determined at various temperatures (10,15,20,25 .deg. C) and pressures (1, 200, 500, 1000 bar). From the values of rate constants, the activation parameters (Ea, ΔV ≠ , ΔH ≠ , ΔS ≠ , and ΔG ≠ ) and the pressure dependence of Hammett ρ values were determined. The rate constants increased with increasing temperatures and pressures, and are further increased to introduction to the electron donor substituents in substrate (p-NO 2 ) with 6-chloroquinoline. When, the activation volume and the activation entropy are all negative. And the Hammett ρ values are positive for the substrate over the pressure and temperature range studied. The results of kinetic studies for pressure and substituent show that thease reactions proceed in typical S N 2 reaction mechanism and 'associative S N 2' in bond formation favored with increasing pressures

  19. A high pressure sample facility for neutron scattering

    International Nuclear Information System (INIS)

    Carlile, C.J.; Glossop, B.H.

    1981-06-01

    Commissioning tests involving deformation studies and tests to destruction as well as neutron diffraction measurements of a standard sample have been carried out on the SERC high pressure sample facility for neutron scattering studies. A detailed description of the pressurising equipment is given. (author)

  20. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    Science.gov (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  1. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    International Nuclear Information System (INIS)

    Visscher, A de; Dewulf, J; Durme, J van; Leys, C; Morent, R; Langenhove, H Van

    2008-01-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation

  2. High pressure thermal inactivation of Clostridium botulinum type E endospores – kinetic modeling and mechanistic insights

    Directory of Open Access Journals (Sweden)

    Christian Andreas Lenz

    2015-07-01

    Full Text Available Cold-tolerant, neurotoxigenic, endospore forming Clostridium (C. botulinum type E belongs to the non-proteolytic physiological C. botulinum group II, is primarily associated with aquatic environments, and presents a safety risk for seafood. High pressure thermal (HPT processing exploiting the synergistic effect of pressure and temperature can be used to inactivate bacterial endospores.We investigated the inactivation of C. botulinum type E spores by (near isothermal HPT treatments at 300 – 1200 MPa at 30 – 75 °C for 1 s – 10 min. The occurrence of heat and lysozyme susceptible spore fractions after such treatments was determined. The experimental data were modeled to obtain kinetic parameters and represented graphically by isoeffect lines. In contrast to findings for spores of other species and within the range of treatment parameters applied, zones of spore stabilization (lower inactivation than heat treatments alone, large heat susceptible (HPT-induced germinated or lysozyme-dependently germinable (damaged coat layer spore fractions were not detected. Inactivation followed 1st order kinetics. DPA release kinetics allowed for insights into possible inactivation mechanisms suggesting a (poorly effective physiologic-like (similar to nutrient-induced germination at ≤ 450 MPa/≤ 45 °C and non-physiological germination at >500 MPa/>60 – 70 °C.Results of this study support the existence of some commonalities in the HPT inactivation mechanism of C. botulinum type E spores and Bacillus spores although both organisms have significantly different HPT resistance properties. The information presented here contributes to closing the gap in knowledge regarding the HPT inactivation of spore formers relevant to food safety and may help industrial implementation of HPT processing. The markedly lower HPT resistance of C. botulinum type E spores than spores from other C. botulinum types, could allow for the implementation of milder processes without

  3. An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, Robers [Pennsylvania State Univ., State College, PA (United States); Dryer, Frederick [Princeton Univ., NJ (United States); Ju, Yiguang [Princeton Univ., NJ (United States)

    2013-09-30

    An integrated and collaborative effort involving experiments and complementary chemical kinetic modeling investigated the effects of significant concentrations of water and CO2 and minor contaminant species (methane [CH4], ethane [C2H6], NOX, etc.) on the ignition and combustion of HHC fuels. The research effort specifically addressed broadening the experimental data base for ignition delay, burning rate, and oxidation kinetics at high pressures, and further refinement of chemical kinetic models so as to develop compositional specifications related to the above major and minor species. The foundation for the chemical kinetic modeling was the well validated mechanism for hydrogen and carbon monoxide developed over the last 25 years by Professor Frederick Dryer and his co-workers at Princeton University. This research furthered advance the understanding needed to develop practical guidelines for realistic composition limits and operating characteristics for HHC fuels. A suite of experiments was utilized that that involved a high-pressure laminar flow reactor, a pressure-release type high-pressure combustion chamber and a high-pressure turbulent flow reactor.

  4. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms

    International Nuclear Information System (INIS)

    Zhang Shiqiang; Van Gessel, Bram; Hofmann, Sven; Van Veldhuizen, Eddie; Bruggeman, Peter; Van Gaens, Wouter; Bogaerts, Annemie

    2013-01-01

    In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O 2 , operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O 3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O 3 in the core of the plasma is mainly caused by an enhanced destruction of O 3 due to a large atomic oxygen density. (paper)

  5. Radioresistance increase in polymers at high pressures. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Milinchuk, V; KIRJUKHIN, V; KLINSHPONT, E

    1977-06-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibers were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene, 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures.

  6. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    Science.gov (United States)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  7. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  8. Kinetics of Inorganic Calcite Dissolution in Seawater under Pressure

    Science.gov (United States)

    Dong, S.; Subhas, A.; Rollins, N.; Berelson, W.; Adkins, J. F.

    2016-02-01

    While understanding calcium carbonate dissolution is vital in constructing global carbon cycles and predicting the effect of seawater acidification as a result of increasing atmospheric CO2, there is still a major debate over the basic formulation of a dissolution rate law. The kinetics of calcium carbonate dissolution are typically described by the equation: Rate=k(1-Ω)n, while Ω=[Ca2+][CO32-]/Ksp. In this study, 13C-labeled calcite is dissolved in unlabeled seawater and the evolving d13C composition of the fluid is traced over time to establish dissolution rate. Instead of changing ion concentration to obtain varying Ω (as in our previous study; Subhas et al. 2015), we changed Ksp by conducting experiments under different pressures (described in theory as ∂lnKsp/∂P=-ΔV/RT, where ΔV is partial molal volume). This involved the construction of a pressure vessel that could hold our sample bag and provide aliquots while remaining pressurized. Pressure experiments were conducted between 0-2000PSI. Results support the conclusion in our previous study that near-equilibrium dissolution rates are highly nonlinear, but give a disparate relationship between undersaturation and dissolution rate if Ω is calculated assuming the specific ΔV embedded in CO2SYS. A revised ΔV from -37cm3 to -65cm3 would make the dissolution formulation equation agree, but clearly appears unreasonable. Our results are explained by a pressure effect on carbonate dissolution kinetics over and above the influence of pressure on Ω. If this is a phenomenon that occurs in nature, then we would predict that dissolution should be occurring shallower in the water column (as sometimes observed) than indicated by standard Ω calculations.

  9. Bonding pathways of high-pressure chemical transformations

    International Nuclear Information System (INIS)

    Hu Anguang; Zhang Fan

    2013-01-01

    A three-stage bonding pathway towards high-pressure chemical transformations from molecular precursors or intermediate states has been identified by first-principles simulations. With the evolution of principal stress tensor components in the response of chemical bonding to compressive loading, the three stages can be defined as the van der Waals bonding destruction, a bond breaking and forming reaction, and equilibrium of new bonds. The three-stage bonding pathway leads to the establishment of a fundamental principle of chemical bonding under compression. It reveals that during high-pressure chemical transformation, electrons moving away from functional groups follow anti-addition, collision-free paths to form new bonds in counteracting the local stress confinement. In applying this principle, a large number of molecular precursors were identified for high-pressure chemical transformations, resulting in new materials. (fast track communication)

  10. Non-destructive measurement of Xe filling pressure in mercury-free metal halide lamp

    International Nuclear Information System (INIS)

    Motomura, Hideki; Enoki, Kyosuke; Jinno, Masafumi

    2010-01-01

    Mercury-free metal halide lamps (MHLs) for automotive purposes have been developing in the market. When mercury is not used, the electric and emission characteristics of the lamp strongly depend on the xenon filling pressure. Therefore a non-destructive gas pressure estimation technique is required to obtain stable performance of the lamps as commercial products. The authors have developed an estimation method by which the gas pressure is estimated from the current peak value at the initial stage of ignition under pulsed operation. It is shown that accuracy of the order of ±(0.1-0.3) atm is obtained using an empirical formula.

  11. High pressure gas driven liquid metal MHD homopolar generator

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki

    1988-01-01

    A liquid metal MHD homopolar generator is proposed to be used as a high repetition rate pulsed power supply. In the generator, the thermal energy stored in a high pressure gas (He) reservoir is rapidly converted into kinetic energy of a rotating liquid metal (NaK) cylinder which is contracted by a gas driven annular free piston. The rotational kinetic energy is converted into electrical energy by making use of the homopolar generator principle. The conversion efficiency is calculated to be 47% in generating electrical energy of 20 kJ/pulse (1.7 MW peak power) at a repetition rate of 7 Hz. From the viewpoint of energy storage, the high pressure gas reservoir with a charging pressure of 15 MPa is considered to ''electrically'' store the energy at a density of 10 MJ/m 3 . (author)

  12. Pressure-anisotropy-induced nonlinearities in the kinetic magnetorotational instability

    Science.gov (United States)

    Squire, J.; Quataert, E.; Kunz, M. W.

    2017-12-01

    In collisionless and weakly collisional plasmas, such as hot accretion flows onto compact objects, the magnetorotational instability (MRI) can differ significantly from the standard (collisional) MRI. In particular, pressure anisotropy with respect to the local magnetic-field direction can both change the linear MRI dispersion relation and cause nonlinear modifications to the mode structure and growth rate, even when the field and flow perturbations are very small. This work studies these pressure-anisotropy-induced nonlinearities in the weakly nonlinear, high-ion-beta regime, before the MRI saturates into strong turbulence. Our goal is to better understand how the saturation of the MRI in a low-collisionality plasma might differ from that in the collisional regime. We focus on two key effects: (i) the direct impact of self-induced pressure-anisotropy nonlinearities on the evolution of an MRI mode, and (ii) the influence of pressure anisotropy on the `parasitic instabilities' that are suspected to cause the mode to break up into turbulence. Our main conclusions are: (i) The mirror instability regulates the pressure anisotropy in such a way that the linear MRI in a collisionless plasma is an approximate nonlinear solution once the mode amplitude becomes larger than the background field (just as in magnetohyrodynamics). This implies that differences between the collisionless and collisional MRI become unimportant at large amplitudes. (ii) The break up of large-amplitude MRI modes into turbulence via parasitic instabilities is similar in collisionless and collisional plasmas. Together, these conclusions suggest that the route to magnetorotational turbulence in a collisionless plasma may well be similar to that in a collisional plasma, as suggested by recent kinetic simulations. As a supplement to these findings, we offer guidance for the design of future kinetic simulations of magnetorotational turbulence.

  13. Impact of pH and Total Soluble Solids on Enzyme Inactivation Kinetics during High Pressure Processing of Mango (Mangifera indica) Pulp.

    Science.gov (United States)

    Kaushik, Neelima; Nadella, Tejaswi; Rao, P Srinivasa

    2015-11-01

    This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6- to 20-min pressure-hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain. Exploration of additional hurdles such as pH, TSS, and temperature for enzyme inactivation during high pressure processing of fruits is useful from industrial point of view, as these parameters play key role in preservation process design. © 2015 Institute of Food Technologists®

  14. Pressure effect on crystallization kinetics in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gerward, Leif; Xu, Y.S.

    2002-01-01

    Crystallization kinetics of a Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass in the supercooled liquid region have been investigated by performing in situ high-temperature and high-pressure x-ray diffraction measurements using synchrotron radiation. A pressure-time-temperature-transformation diagram......, describing the onset of crystallization as a function of time during isothermal annealing under pressure, is presented. Different pressure dependences of crystallization kinetics in the temperature range for the glass have been observed and further be explained by a model of competing processes...

  15. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, S.J., E-mail: f62rugas@uco.es [Departamento de Fisica, Campus de Rabanales, Edificio Einstein, Planta Baja, Universidad de Cordoba (Spain); Quintero, M.C.; Rodero, A. [Departamento de Fisica, Campus de Rabanales, Edificio Einstein, Planta Baja, Universidad de Cordoba (Spain)

    2011-02-15

    In this study, the destruction rate of a volatile waste destruction system based on a microwave plasma torch operating at atmospheric pressure was investigated. Atmospheric air was used to maintain the plasma and was introduced by a compressor, which resulted in lower operating costs compared to other gases such as argon and helium. To isolate the output gases and control the plasma discharge atmosphere, the plasma was coupled to a reactor. The effect of the gas flow rate, microwave power and initial concentration of compound on the destruction efficiency of the system was evaluated. In this study, trichloroethylene and carbon tetrachloride were used as representative volatile organic compounds to determine the destruction rate of the system. Based on the experimental results, at an applied microwave power less than 1000 W, the proposed system can reduce input concentrations in the ppmv range to output concentrations at the ppbv level. High air flow rates and initial concentrations produced energy efficiency values greater than 1000 g/kW h. The output gases and species present in the plasma were analysed by gas chromatography and optical emission spectroscopy, respectively, and negligible amounts of halogenated compounds resulting from the cleavage of C{sub 2}HCl{sub 3} and CCl{sub 4} were observed. The gaseous byproducts of decomposition consisted mainly of CO{sub 2}, NO and N{sub 2}O, as well as trace amounts of Cl{sub 2} and solid CuCl.

  16. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure.

    Science.gov (United States)

    Rubio, S J; Quintero, M C; Rodero, A

    2011-02-15

    In this study, the destruction rate of a volatile waste destruction system based on a microwave plasma torch operating at atmospheric pressure was investigated. Atmospheric air was used to maintain the plasma and was introduced by a compressor, which resulted in lower operating costs compared to other gases such as argon and helium. To isolate the output gases and control the plasma discharge atmosphere, the plasma was coupled to a reactor. The effect of the gas flow rate, microwave power and initial concentration of compound on the destruction efficiency of the system was evaluated. In this study, trichloroethylene and carbon tetrachloride were used as representative volatile organic compounds to determine the destruction rate of the system. Based on the experimental results, at an applied microwave power less than 1000 W, the proposed system can reduce input concentrations in the ppmv range to output concentrations at the ppbv level. High air flow rates and initial concentrations produced energy efficiency values greater than 1000 g/kW h. The output gases and species present in the plasma were analysed by gas chromatography and optical emission spectroscopy, respectively, and negligible amounts of halogenated compounds resulting from the cleavage of C(2)HCl(3) and CCl(4) were observed. The gaseous byproducts of decomposition consisted mainly of CO(2), NO and N(2)O, as well as trace amounts of Cl(2) and solid CuCl. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet

    Science.gov (United States)

    Škoro, Nikola; Puač, Nevena; Živković, Suzana; Krstić-Milošević, Dijana; Cvelbar, Uroš; Malović, Gordana; Petrović, Zoran Lj.

    2018-01-01

    Today's reality is connected with mitigation of threats from the new chemical and biological warfare agents. A novel investigation of cold plasmas in contact with liquids presented in this paper demonstrated that the chemically reactive environment produced by atmospheric pressure plasma jet (APPJ) is potentially capable of rapid destruction of chemical warfare agents in a broad spectrum. The decontamination of three different chemical warfare agent surrogates dissolved in liquid is investigated by using an easily transportable APPJ. The jet is powered by a kHz signal source connected to a low-voltage DC source and with He as working gas. The detailed investigation of electrical properties is performed for various plasmas at different distances from the sample. The measurements of plasma properties in situ are supported by the optical spectrometry measurements, whereas the high performance liquid chromatography measurements before and after the treatment of aqueous solutions of Malathion, Fenitrothion and Dimethyl Methylphosphonate. These solutions are used to evaluate destruction and its efficiency for specific neural agent simulants. The particular removal rates are found to be from 56% up to 96% during 10 min treatment. The data obtained provide basis to evaluate APPJ's efficiency at different operating conditions. The presented results are promising and could be improved with different operating conditions and optimization of the decontamination process.

  18. Identification of the Thickness of Nugget on Worksheet Spot Welding Using Non Destructive Test (NDT) - Effect of Pressure

    Science.gov (United States)

    Sifa, A.; Baskoro, A. S.; Sugeng, S.; Badruzzaman, B.; Endramawan, T.

    2018-02-01

    Resistance Spot Welding (RSW) is a process of connecting between two worksheet with thermomechanical loading process, RSW is widely used in automotive industry, the quality of splicing spot welding is influenced by several factors. One of the factors at the time of the welding process is pressure. The quality of welding on the nuggets can be determined by undertaking non-destructive testing by using Non Destructive Test (NDT) - Ultrasonic Test. In the NDT test is done by detecting the thickness of the nugget area, the purpose of research conducted to determine the effect of pressure to welding quality with Nugget thickness gauge measurement with Non Destructive Test method and manual measurement with micrometer, Experimental welding process by entering the welding parameters that have been specified and pressure variables 1 -5 bars on the worksheet thickness of 1 mm. The results of testing with NDT show there is addition of thickness in nugget superiority after compare with measurement result of thickness of nugget with micrometer which slightly experience thickness in nugget area, this indicates that the welding results have a connection between worksheet 1 and worksheet 2.

  19. Effects of fuel properties, temperature, and pressure on fuel reactivity, formation and destruction of nitrogen oxides, and release of alkalis

    International Nuclear Information System (INIS)

    Aho, M.

    1998-01-01

    This study assists in the development of advanced combustion technologies (PFBC, IGCC) with high efficiency of electricity production from solid fuels (η = 47 - 50%) and in minimizing emissions of nitrogen oxides in atmospheric and pressurised FB combustion. In addition to the work done within the LIEKKI 2 programme, research work has been carried out inside the Joule 2 programme of EU. The research work may be divided into three parts: (1) Study of N x O y formation and destruction, (2) Study of fuel reactivity at elevated pressures, and (3) Study on alkali release from different coals. Experimental work was carried out utilizing a novel pressurized entrained flow reactor (PEFR) completed in VTT Energy in the autumn 1992. The device was unique in the world between 1992 and 1995. The effects of fuel properties on the formation of N 2 O and NO at conditions typical to FB combustion were studied for a large number of fuels including different coals, coal-derived char, peat, and bark. This work started before 1993 and was completed in 1995. FTIR technology was utilized for on-line gas analysis of N 2 O, NO, and NO 2 . The ratio fuel-O/fuel-N was found to be the most important fuel factor determining the formation of N 2 O and NO from volatile fuel-N. Only a small part of N 2 O is formed from char-N. The effect of pressure (0.2 - 2.0 MPa) on the formation of N 2 O, NO, and NO 2 , and destruction of NO with ammonia (Thermal DeNO x , experiments at 0.2, 0.5, and 1.5 MPa) and urea (NO x Out, experiments at 0.5 MPa) were studied in cooperation with Aabo Akademi University (AaAU). VTT performed the experimental work and AaAU the kinetic modelling. A part of these results are presented in the report by AaAU. Increase of pressure decreases NO formation and increases NO 2 formation. The behaviour of N 2 O is more complex. Both destruction processes for NO seem to operate well at elevated pressure, although clear effects of pressure on the temperature window of Thermal DeNO x

  20. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure

    International Nuclear Information System (INIS)

    Lin Feng; Meyer, Christian

    2009-01-01

    A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.

  1. Granulocyte kinetics

    International Nuclear Information System (INIS)

    Peters, A.M.; Lavender, J.P.; Saverymuttu, S.H.

    1985-01-01

    By using density gradient materials enriched with autologous plasma, the authors have been able to isolate granulocutes from other cellular elements and label them with In-111 without separation from a plasma environment. The kinetic behavior of these cells suggests that phenomena attributed to granulocyte activation are greatly reduced by this labeling. Here, they review their study of granulocyte kinetics in health and disease in hope of quantifying sites of margination and identifying principal sites of destruction. The three principle headings of the paper are distribution, life-span, and destruction

  2. High pressure treatment of human norovirus-like particles: factors affecting destruction efficacy

    Science.gov (United States)

    Human norovirus (HuNoV) is the leading cause of foodborne diseases worldwide. High pressure processing (HPP) is considered a promising non-thermal technology to inactivate viral pathogens in foods. However, the effectiveness of HPP on inactivating HuNoV remains poorly understood because it cannot be...

  3. The photochemistry and kinetics of chlorine compounds important to stratospheric mid-latitude ozone destruction

    Science.gov (United States)

    Goldfarb, Leah

    1997-09-01

    The catalytic destruction of stratospheric ozone via chlorinated species was first proposed in the 1970's. Since that time a decline in column ozone abundance in the polar regions as well as at mid-latitudes has been observed. Much of this reduction has been attributed to the increases in anthropogenic chlorine compounds such as CFCs. This study summarizes experimental results obtained using pulsed-photolysis resonance fluorescence and pulsed- photolysis long-path absorption methods to study processes important to chlorine-catalyzed ozone destruction: the quantum yields of the products in the dissociation of ClONO2 and the reactions of free radicals with ClONO2 and ClO. The quantum yields for the production of O, Cl and ClO from ClONO2 were studied at specific laser wavelengths (193, 222, 248, and 308 nm). Cl and ClO yields were comparable at nearly all the wavelengths, expect for 193 nm, where the O atom yield was appreciable. The yields at 308 nm (a wavelength available in the stratosphere) were 0.64 ± 0.17 for Cl, 0.37 ± 0.18 for ClO and product yield for the former reaction, previously unreported, was determined to be ~1. The kinetics of the reaction of O atoms with ClO were measured using a new experimental system built specifically to investigate such radical-radical reactions. A slight negative temperature dependence (E/B = -90 ± 30) was observed over the temperature range (227-363 K). From the measured Arrhenius equation the rate constant at 240 K is 4.1 × 10-11 cm3molecule-1s-1 which is in excellent agreement (l.4% greater) with the currently recommended value. This observation is significant, since this reaction is the rate limiting the dominate chlorine catalytic cycle that destroys O3 near 40 km. To analyze the implications of the kinetic and photochemical information from this work, a box model was constructed. The vertical profile of ozone concentrations and loss rates calculated by this simple model compare well with atmospheric measurements and

  4. MATHEMATICAL MODEL FOR CALCULATION OF MINIMUM PRESSURE PERTAINING TO DESTRUCTION OF SURFACE CORROSION LAYER DUE TO IMPACT OF WORKING LIQUID REVERSIVE STREAM

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2014-01-01

    Full Text Available Due to balance of external and internal force capacities a variation quasistatic problem has been solved in the paper. The problem allows to determine optimum values of α and β angles in the accepted field of sliding lines when destruction pressure takes on a minimum value pmin. It has been ascertained that the minimum pressure pmin which is necessary for destruction of a corrosion layer is registered at stream compression coefficient λ = 0,063 and the pressure is equal to 8-17 MPa for the investigated speed range v = 80-140 m/s.

  5. Thermophysical instruments for non-destructive examination of tightness and internal gas pressure or irradiated power reactor fuel rods

    International Nuclear Information System (INIS)

    Pastoushin, V.V.; Novikov, A.Yu.; Bibilashvili, Yu.K.

    1998-01-01

    The developed thermophysical method and technical instruments for non-destructive leak-tightness and gas pressure inspection inside irradiated power reactor fuel rods and FAs under poolside and hot cell conditions are described. The method of gas pressure measuring based on the examination of parameters of thermal convection that aroused in gas volume of rod plenum by special technical instruments. The developed method and technique allows accurate value determination of not only one of the main critical rod parameters, namely total internal gas pressure, that forms rod mean life in the reactor core, but also the partial pressure of every main constituent of gaseous mixture inside irradiated fuel rod, that provides the feasibility of authentic and reliable leak-tightness detection. The described techniques were experimentally checked during the examination of all types power reactor fuel rods existing in Russia (WWER, BN, RBMK) and could form the basis for new technique development for non-destructive examination of PWR (and other) type rods and FAs having gas plenum filled with spring or another elements of design. (author)

  6. High temperature mechanisms and kinetics of SiC oxidation under low partial pressures of oxygen: application to the fuel cladding of gas fast reactors

    International Nuclear Information System (INIS)

    Hun, N.

    2011-01-01

    Gas Fast Reactor (GFR) is one of the different Generation IV concepts under investigation for energy production. SiC/SiC composites are candidates of primary interest for a GFR fuel cladding use, thanks to good corrosion resistance among other properties. The mechanisms and kinetics of SiC oxidation under operating conditions have to be identified and quantified as the corrosion can decrease the mechanical properties of the composite. An experimental device has been developed to study the oxidation of silicon carbide under high temperature and low oxygen partial pressure. The results pointed out that not only parabolic oxidation, but also interfacial reactions and volatilization occur under such conditions. After determining the kinetics of each mechanism, as functions of oxygen partial pressure and temperature, the data are used for the modeling of the composites oxidation. The model will be used to predict the lifetime of the composite in operating conditions. (author) [fr

  7. Ozone mass transfer and kinetics experiments

    International Nuclear Information System (INIS)

    Bollyky, L.J.; Beary, M.M.

    1981-12-01

    Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction

  8. Pressure-dependent kinetics of initial reactions in iso-octane pyrolysis.

    Science.gov (United States)

    Ning, HongBo; Gong, ChunMing; Li, ZeRong; Li, XiangYuan

    2015-05-07

    This study focuses on the studies of the main pressure-dependent reaction types of iso-octane (iso-C8H18) pyrolysis, including initial C-C bond fission of iso-octane, isomerization, and β-scission reactions of the alkyl radicals produced by the C-C bond fission of iso-octane. For the C-C bond fission of iso-octane, the minimum energy potentials are calculated at the CASPT2(2e,2o)/6-31+G(d,p)//CAS(2e,2o)/6-31+G(d,p) level of theory. For the isomerization and the β-scission reactions of the alkyl radicals, the optimization of the geometries and the vibrational frequencies of the reactants, transition states, and products are performed at the B3LYP/CBSB7 level, and their single point energies are calculated by using the composite CBS-QB3 method. Variable reaction coordinate transition state theory (VRC-TST) is used for the high-pressure limit rate constant calculation and Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) is used to calculate the pressure-dependent rate constants of these channels with pressure varying from 0.01-100 atm. The rate constants obtained in this work are in good agreement with those available from literatures. We have updated the rate constants and thermodynamic parameters for species involved in these reactions into a current chemical kinetic mechanism and also have improved the concentration profiles of main products such as C3H6 and C4H6 in the shock tube pyrolysis of iso-octane. The results of this study provide insight into the pyrolysis of iso-octane and will be helpful in the future development of branched paraffin kinetic mechanisms.

  9. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  10. Destruction of Bacillus subtilis cells using an atmospheric-pressure dielectric capillary electrode discharge plasma

    International Nuclear Information System (INIS)

    Panikov, N.S.; Paduraru, S.; Crowe, R.; Ricatto, P.J.; Christodoulatos, C.; Becker, K.

    2002-01-01

    The results of experiments aimed at the investigation of the destruction of spore-forming bacteria, which are believed to be among the most resistant microorganisms, using a novel atmospheric-pressure dielectric capillary electrode discharge plasma are reported. Various well-characterized cultures of Bacillus subtilis were prepared, subjected to atmospheric-pressure plasma jets emanating from a plasma shower reactor operated either in He or in air (N 2 /O 2 mixture) at various power levels and exposure times, and analyzed after plasma treatment. Reductions in colony-forming units ranged from 10 4 (He plasma) to 10 8 (air plasma) for plasma exposure times of less than 10 minutes. (author)

  11. High-pressure torsion for new hydrogen storage materials.

    Science.gov (United States)

    Edalati, Kaveh; Akiba, Etsuo; Horita, Zenji

    2018-01-01

    High-pressure torsion (HPT) is widely used as a severe plastic deformation technique to create ultrafine-grained structures with promising mechanical and functional properties. Since 2007, the method has been employed to enhance the hydrogenation kinetics in different Mg-based hydrogen storage materials. Recent studies showed that the method is effective not only for increasing the hydrogenation kinetics but also for improving the hydrogenation activity, for enhancing the air resistivity and more importantly for synthesizing new nanostructured hydrogen storage materials with high densities of lattice defects. This manuscript reviews some major findings on the impact of HPT process on the hydrogen storage performance of different titanium-based and magnesium-based materials.

  12. Pressure Dependent Decomposition Kinetics of the Energetic Material HMX up to 3.6 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Zaug, J M; Burnham, A K

    2009-05-29

    The effect of pressure on the thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low to moderate pressures (i.e. between ambient pressure and 1 GPa) and decelerates the decomposition at higher pressures. The decomposition acceleration is attributed to pressure enhanced autocatalysis whereas the deceleration at high pressures is attributed pressure inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both {beta} and {delta} phase HMX are sensitive to pressure in the thermally induced decomposition kinetics.

  13. From simple to complex and backwards. Chemical reactions under very high pressure

    International Nuclear Information System (INIS)

    Bini, Roberto; Ceppatelli, Matteo; Citroni, Margherita; Schettino, Vincenzo

    2012-01-01

    Highlights: ► High pressure reactivity of several molecular systems. ► Reaction kinetics and dynamics in high density conditions. ► Key role of optical pumping and electronic excitation. ► Perspectives for the synthesis of hydrogen. - Abstract: High pressure chemical reactions of molecular systems are discussed considering the various factors that can affect the reactivity. These include steric hindrance and geometrical constraints in the confined environment of crystals at high pressure, changes of the free energy landscape with pressure, photoactivation by two-photon absorption, local and collective effects. A classification of the chemical reactions at high pressure is attempted on the basis of the prevailing factors.

  14. Sensitivity analysis of exergy destruction in a real combined cycle power plant based on advanced exergy method

    International Nuclear Information System (INIS)

    Boyaghchi, Fateme Ahmadi; Molaie, Hanieh

    2015-01-01

    Highlights: • The advanced exergy destruction components of a real CCPP are calculated. • The TIT and r c variation are investigated on exergy destruction parts of the cycle. • The TIT and r c growth increase the improvement potential in the most of components. • The TIT and r c growth decrease the unavoidable part in some components. - Abstract: The advanced exergy analysis extends engineering knowledge beyond the respective conventional methods by improving the design and operation of energy conversion systems. In advanced exergy analysis, the exergy destruction is splitting into endogenous/exogenous and avoidable/unavoidable parts. In this study, an advanced exergy analysis of a real combined cycle power plant (CCPP) with supplementary firing is done. The endogenous/exogenous irreversibilities of each component as well as their combination with avoidable/unavoidable irreversibilities are determined. A parametric study is presented discussing the sensitivity of various performance indicators to the turbine inlet temperature (TIT), and compressor pressure ratio (r c ). It is observed that the thermal and exergy efficiencies increase when TIT and r c rise. Results show that combustion chamber (CC) concentrates most of the exergy destruction (more than 62%), dominantly in unavoidable endogenous form which is decreased by 11.89% and 13.12% while the avoidable endogenous exergy destruction increase and is multiplied by the factors of 1.3 and 8.6 with increasing TIT and r c , respectively. In addition, TIT growth strongly increases the endogenous avoidable exergy destruction in high pressure superheater (HP.SUP), CC and low pressure evaporator (LP.EVAP). It, also, increases the exogenous avoidable exergy destruction of HP.SUP and low pressure steam turbine (LP.ST) and leads to the high decrement in the endogenous exergy destruction of the preheater (PRE) by about 98.8%. Furthermore, r c growth extremely rises the endogenous avoidable exergy destruction of gas

  15. High pressure cells for magnetic measurements - destruction and functional tests

    Czech Academy of Sciences Publication Activity Database

    Kamarád, Jiří; Machátová, Zuzana; Arnold, Zdeněk

    2004-01-01

    Roč. 75, č. 11 (2004), s. 5022-5025 ISSN 0034-6748 R&D Projects: GA ČR GA202/02/0739; GA AV ČR IAA1010315 Institutional research plan: CEZ:AV0Z1010914 Keywords : pressure cells * pressure transmitting media * CuBe * MP35N Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.226, year: 2004

  16. Kinetics of passivation of a nickel-base alloy in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Machet, A. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France)]|[Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Galtayries, A.; Zanna, S.; Marcus, P. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France); Jolivet, P.; Scott, P. [Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Foucault, M.; Combrade, P. [Framatome ANP, Centre Technique, F-71205 Le Creusot (France)

    2004-07-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr{sub 2}O{sub 3}) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr{sub 2}O{sub 3} oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  17. Kinetics of passivation of a nickel-base alloy in high temperature water

    International Nuclear Information System (INIS)

    Machet, A.; Galtayries, A.; Zanna, S.; Marcus, P.; Jolivet, P.; Scott, P.; Foucault, M.; Combrade, P.

    2004-01-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr 2 O 3 ) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr 2 O 3 oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  18. Non-destructive and destructive examination of the retired North Anna 2 Reactor Pressure Vessel Head

    International Nuclear Information System (INIS)

    Ahluwalia, Kawaljit; Barnes, Robert; Rao, Gutti; Cattant, Francois; Peat, Noel

    2006-09-01

    Stress corrosion cracking of Alloy 600 and nickel-based weld materials has been the single biggest challenge facing the PWR industry. A fundamental and thorough knowledge was needed to properly explain this phenomenon and develop appropriate mitigation strategies. Non Destructive Examination (NDE) of the North Anna Unit 2 Reactor Vessel Head (RVH) during the 2002 fall outage identified widespread crack indications in the Alloy 600 CRDM penetrations and associated Alloy 182 and 82 J-groove attachment welds. When the Utility decided to replace the RVH, a rare opportunity was provided to the industry to undertake in-depth studies of representative defective CRDM penetrations from a retired RVH. Accordingly, the Materials Reliability Program, undertook a two-phase program on the retired North Anna 2 Alloy 600 RVH. The first phase involved selection and removal of six penetrations from the RVH and penetration decontamination, replication and laboratory NDE. The second phase consisted of a detailed destructive examination of penetration number 54. This paper provides a summary of work undertaken during this program. Criteria for selection of penetrations for removal and procedures used in removal of the penetrations are described. Extreme care was undertaken in decontamination of the penetrations to facilitate laboratory NDE. Penetration number 54 was then subjected to destructive examination to establish a correlation between NDE findings (from both field and laboratory inspections) and actual flaws. Additional objectives of the destructive examination included mechanistic assessment of defect formation and investigation of the annulus environment and wastage characterization. Data obtained from these studies is invaluable in validating safety assessment statements by developing the correlation between field NDE and actual defects. In addition, information gathered from non-destructive and destructive examinations is used to assess accuracy of the NDE techniques

  19. Role of non destructive techniques for monitoring structural integrity of primary circuit of pressurized water reactor nuclear power plant

    International Nuclear Information System (INIS)

    Sharma, P.K.; Sreenivas, P.

    2015-01-01

    The safety of nuclear installations is ensured by assessing status of primary equipment for performing the intended function reliably and maintaining the integrity of pressure boundaries. The pressure boundary materials undergo material degradation during the plant operation. Pressure boundary materials are subjected to operating stresses and material degradation that results in material properties changes, discontinuities initiation and increase in size of existing discontinuities. Pre-Service Inspection (PSI) is performed to generate reference base line data of initial condition of the pressure boundary. In-Service Inspections (ISI) are performed periodically to confirm integrity of pressure boundaries through comparison with respect to base line data. The non destructive techniques are deployed considering nature of the discontinuities expected to be generated through operating conditions and degradation mechanisms. The paper is prepared considering Pressurized Water Reactor (PWR) Nuclear Power Plant. The paper describes the degradation mechanisms observed in the PWR nuclear power plants and salient aspect of PSI and ISI and considerations in selecting non destructive testing. The paper also emphasises on application of acoustic emission (AE) based condition monitoring systems that can supplement in-service inspections for detecting and locating discontinuities in pressure boundaries. Criticality of flaws can be quantitatively evaluated by determining their size through in-service inspection. Challenges anticipated in deployment of AE based monitoring system and solutions to cater those challenges are also discussed. (author)

  20. High pressure treatment of human norovirus virus-like particles: factors affecting destruction efficacy

    Science.gov (United States)

    Human norovirus (NoV) accounts for more than 90% of nonbacterial gastroenteritis. To date, the efficacy of human NoV inactivation interventions cannot be accurately evaluated because the virus is nonculturable. In this study, we aimed to estimate inactivation of human NoV by high pressure processing...

  1. Foam glass obtained through high-pressure sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2018-01-01

    Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use...... a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies...... are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic...

  2. Carbon dioxide storage in marine sediments - dissolution, transport and hydrate formation kinetics from high-pressure experiments

    Science.gov (United States)

    Bigalke, N. K.; Savy, J. P.; Pansegrau, M.; Aloisi, G.; Kossel, E.; Haeckel, M.

    2009-12-01

    By satisfying thermodynamic framework conditions for CO2 hydrate formation, pressures and temperatures of the deep marine environment are unique assets for sequestering CO2 in clathrates below the seabed. However, feasibility and safety of this storage option require an accurate knowledge of the rate constants governing the speed of physicochemical reactions following the injection of the liquefied gas into the sediments. High-pressure experiments designed to simulate the deep marine environment open the possibility to obtain the required parameters for a wide range of oceanic conditions. In an effort to constrain mass transfer coefficients and transport rates of CO2 in(to) the pore water of marine sediments first experiments were targeted at quantifying the rate of CO2 uptake by de-ionized water and seawater across a two-phase interface. The nature of the interface was controlled by selecting p and T to conditions within and outside the hydrate stability field (HSF) while considering both liquid and gaseous CO2. Concentration increase and hydrate growth were monitored by Raman spectroscopy. The experiments revealed anomalously fast transport rates of dissolved CO2 at conditions both inside and outside the HSF. While future experiments will further elucidate kinetics of CO2 transport and hydrate formation, these first results could have major significance to safety-related issues in the discussion of carbon storage in the marine environment.

  3. Pulsed photothermal radiometry in investigation of tissue destruction caused by CO2 laser action

    Science.gov (United States)

    Chebotareva, Galina P.; Zubov, Boris V.; Nikitin, Alexander P.; Rakcheev, Anatolii P.; Alexeeva, Larisa R.

    1994-12-01

    Pulsed photothermal radiometry (PPTR) of tissue based on the analysis of thermal radiation kinetics measured from tissue at laser heating is an effective method of laser-tissue interaction investigation. The processes of destruction under laser radiation action (coagulation, fusion and welding), which are characterized by definite dynamics of temperature in the region of laser heating, have been studied. The amplitude and kinetics of the thermal signal registered by PPTR technique depend on space and temporal temperature changes in the zone of heating, which is conditioned by the regime of laser action and internal processes in tissue. In the present study the investigation of thermal tissue destruction under action of high-power pulsed CO2 and YAG:Er-laser radiation has been carried out using PPTR. Soft and hard tissues have been examined. The nonlinear dependencies of thermal emission kinetics, the thermal signal amplitude, and the integral absorption on laser energy density are presented and discussed. We represent PPTR as a technique which can be used for the definition of the destruction threshold and for the regulation of laser action on tissue. PPTR method has been applied in clinics with the aim of more accurate definition of CO2 pulsed medical laser radiation dose for treatment of patients with different dermatological diseases.

  4. Chemical Kinetic Influences of Alkyl Chain Structure on the High Pressure and Temperature Oxidation of a Representative Unsaturated Biodiesel: Methyl Nonenoate.

    Science.gov (United States)

    Fridlyand, Aleksandr; Goldsborough, S Scott; Brezinsky, Kenneth

    2015-07-16

    The high pressure and temperature oxidation of methyl trans-2-nonenoate, methyl trans-3-nonenoate, 1-octene, and trans-2-octene are investigated experimentally to probe the influence of the double bond position on the chemical kinetics of long esters and alkenes. Single pulse shock tube experiments are performed in the ranges p = 3.8-6.2 MPa and T = 850-1500 K, with an average reaction time of 2 ms. Gas chromatographic measurements indicate increased reactivity for trans-2-octene compared to 1-octene, whereas both methyl nonenoate isomers have reactivities similar to that of 1-octene. A difference in the yield of stable intermediates is observed for the octenes when compared to the methyl nonenoates. Chemical kinetic models are developed with the aid of the Reaction Mechanism Generator to interpret the experimental results. The models are created using two different base chemistry submodels to investigate the influence of the foundational chemistry (i.e., C0-C4), whereas Monte Carlo simulations are performed to examine the quality of agreement with the experimental results. Significant uncertainties are found in the chemistry of unsaturated esters with the double bonds located close to the ester groups. This work highlights the importance of the foundational chemistry in predictive chemical kinetics of biodiesel combustion at engine relevant conditions.

  5. A new contact electric resistance technique for in-situ measurement of the electric resistance of surface films on metals in electrolytes at high temperatures and pressures

    International Nuclear Information System (INIS)

    Saario, T.; Marichev, V.A.

    1993-01-01

    Surface films play a major role in corrosion assisted cracking. A new Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films. The method has been upgraded for high temperature high pressure application. The technique can be used for any electrically conductive material in any environment including liquid, gas or vacuum. The technique has been used to determine in situ the electric resistance of films on metals during adsorption of water and anions, formation and destruction of oxides and hydrides, electroplating of metals and to study the electric resistance of films on semiconductors. The resolution of the CER technique is 10 -9 Ω, which corresponds to about 0.03 monolayers of deposited copper during electrochemical deposition Cu/Cu 2+ . Electric resistance data can be measured with a frequency of the order of one hertz, which enables one to follow in situ the kinetics of surface film related processes. The kinetics of these processes and their dependence on the environment, temperature, pH and electrochemical potential can be investigated

  6. The Effect of pH and High-Pressure Homogenization on Droplet Size

    Directory of Open Access Journals (Sweden)

    Ah Pis Yong

    2017-12-01

    Full Text Available The aims of this study are to revisit the effect of high pressure on homogenization and the influence of pH on the emulsion droplet sizes. The high-pressure homogenization (HPH involves two stages of processing, where the first stage involves in blending the coarse emulsion by a blender, and the second stage requires disruption of the coarse emulsion into smaller droplets by a high-pressure homogenizer. The pressure range in this review is in between 10-500 MPa. The homogenised droplet sizes can be reduced by increasing the homogenization recirculation, and there is a threshold point beyond that by applying pressure only, the size cannot be further reduced. Normally, homogenised emulsions are classified by their degree of kinetic stability. Dispersed phase present in the form of droplets while continuous phase also known as suspended droplets. With a proper homogenization recirculation and pressure, a more kinetically stable emulsion can be produced. The side effects of increasing homogenization pressure are that it can cause overprocessing of the emulsion droplets where the droplet sizes become larger rather than the expected smaller size. This can cause kinetic instability in the emulsion. The droplet size is usually measured by dynamic light scattering or by laser light scattering technique. The type of samples used in this reviews are such as chocolate and vanilla based powders; mean droplet sizes samples; basil oil; tomato; lupin protein; oil; skim milk, soymilk; coconut milk; tomato homogenate; corn; egg-yolk, rapeseed and sunflower; Poly(4-vinylpyridine/silica; and Complex 1 until complex 4 approaches from author case study. A relationship is developed between emulsion size and pH. Results clearly show that lower pH offers smaller droplet of emulsion and the opposite occurs when the pH is increased.

  7. An experimental and kinetic modeling study of premixed nitroethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Zhang, Lidong; Xie, Mingfeng

    2013-01-01

    An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass spectrome......An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass...

  8. Pressure cylinders under fire condition

    Directory of Open Access Journals (Sweden)

    Jan Hora

    2016-03-01

    Full Text Available The presence of pressure cylinders under fire conditions significantly increases the risk rate for the intervening persons. It is considerably problematic to predict the pressure cylinders behaviour during heat exposition, its destruction progress and possible following explosion of the produced air–gas mixture because pressure cylinders and its environment generate a highly complicated dynamic system during an uncontrolled destruction. The large scale tests carried out by the Pilsen Fire and Rescue Department and the Rapid Response Unit of the Czech Republic Police in October 2012 and in May 2014 in the Military area Brdy and in the area of the former Lachema factory in Kaznějov had several objectives, namely, to record, qualify and quantify some of the aspects of an uncontrolled heat destruction procedure of an exposed pressure cylinder in an enclosed space and to qualify and describe the process of a controlled destruction of a pressure cylinder by shooting through it including basic tactical concepts. The article describes the experiments that were carried out.

  9. Comparative analysis on inactivation kinetics of between piezotolerant and piezosensitive mutant strains of Saccharomyces cerevisiae under combinations of high hydrostatic pressure and temperature.

    Science.gov (United States)

    Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru

    2017-12-01

    We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Highly efficient and selective pressure-assisted photon-induced polymerization of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jiwen [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Song, Yang, E-mail: yang.song@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7 (Canada)

    2016-06-07

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the sole product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.

  11. Kinetic energy definition in velocity Verlet integration for accurate pressure evaluation

    Science.gov (United States)

    Jung, Jaewoon; Kobayashi, Chigusa; Sugita, Yuji

    2018-04-01

    In molecular dynamics (MD) simulations, a proper definition of kinetic energy is essential for controlling pressure as well as temperature in the isothermal-isobaric condition. The virial theorem provides an equation that connects the average kinetic energy with the product of particle coordinate and force. In this paper, we show that the theorem is satisfied in MD simulations with a larger time step and holonomic constraints of bonds, only when a proper definition of kinetic energy is used. We provide a novel definition of kinetic energy, which is calculated from velocities at the half-time steps (t - Δt/2 and t + Δt/2) in the velocity Verlet integration method. MD simulations of a 1,2-dispalmitoyl-sn-phosphatidylcholine (DPPC) lipid bilayer and a water box using the kinetic energy definition could reproduce the physical properties in the isothermal-isobaric condition properly. We also develop a multiple time step (MTS) integration scheme with the kinetic energy definition. MD simulations with the MTS integration for the DPPC and water box systems provided the same quantities as the velocity Verlet integration method, even when the thermostat and barostat are updated less frequently.

  12. Kinetic energy definition in velocity Verlet integration for accurate pressure evaluation.

    Science.gov (United States)

    Jung, Jaewoon; Kobayashi, Chigusa; Sugita, Yuji

    2018-04-28

    In molecular dynamics (MD) simulations, a proper definition of kinetic energy is essential for controlling pressure as well as temperature in the isothermal-isobaric condition. The virial theorem provides an equation that connects the average kinetic energy with the product of particle coordinate and force. In this paper, we show that the theorem is satisfied in MD simulations with a larger time step and holonomic constraints of bonds, only when a proper definition of kinetic energy is used. We provide a novel definition of kinetic energy, which is calculated from velocities at the half-time steps (t - Δt/2 and t + Δt/2) in the velocity Verlet integration method. MD simulations of a 1,2-dispalmitoyl-sn-phosphatidylcholine (DPPC) lipid bilayer and a water box using the kinetic energy definition could reproduce the physical properties in the isothermal-isobaric condition properly. We also develop a multiple time step (MTS) integration scheme with the kinetic energy definition. MD simulations with the MTS integration for the DPPC and water box systems provided the same quantities as the velocity Verlet integration method, even when the thermostat and barostat are updated less frequently.

  13. High-pressure Raman spectroscopy of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Zalden, Peter [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen (Germany); JARA – Fundamentals of Future Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, PULSE Institute, Menlo Park, California 94025 (United States)

    2013-11-04

    We used high-pressure Raman spectroscopy to study the evolution of vibrational frequencies of the phase change materials (PCMs) Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 4}, and SnSb{sub 2}Te{sub 4}. We found that the critical pressure for triggering amorphization in the PCMs decreases with increasing vacancy concentration, demonstrating that the presence of vacancies, rather than differences in the atomic covalent radii, is crucial for pressure-induced amorphization in PCMs. Compared to the as-deposited amorphous phase, the pressure-induced amorphous phase has a similar vibrational spectrum but requires much lower laser power to transform into the crystalline phase, suggesting different kinetics of crystallization, which may have implications for applications of PCMs in non-volatile data storage.

  14. Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping, and proton/deuteron isotope effects.

    Science.gov (United States)

    Lemke, Sonja; Handle, Philip H; Plaga, Lucie J; Stern, Josef N; Seidl, Markus; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Köster, Karsten W; Gainaru, Catalin; Loerting, Thomas; Böhmer, Roland

    2017-07-21

    Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.

  15. Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping, and proton/deuteron isotope effects

    Science.gov (United States)

    Lemke, Sonja; Handle, Philip H.; Plaga, Lucie J.; Stern, Josef N.; Seidl, Markus; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Köster, Karsten W.; Gainaru, Catalin; Loerting, Thomas; Böhmer, Roland

    2017-07-01

    Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.

  16. Effects of time pressure and noise on non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology; Edland, A. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2001-12-01

    Manual ultrasonic testing (UT) is the most frequently used non-destructive testing (NDT) method for in-service inspection of components important to safety and/or plant availability. Earlier, great variations have been found in operator performance, often attributed to operator fatigue. However, no conclusive findings have been reported. According to the Yerkes-Dodson law there is an optimal arousal level where performance is highest, for simple tasks this optimum is higher than for more complex tasks. In the present study twenty operators performed manual ultrasonic inspections of six test pieces with manufactured flaws. The operators performed the inspections under stress (high arousal - time pressure and noise) and non-stress conditions; one condition the first day and the other the second and last day. It was hypothesised that the stress condition led to a level of arousal so high that it would affect the results negatively. The results confirmed that the operators were affected by the stress condition. However, contrary to the hypotheses it was found that the manipulation increased operator performance. Operators with the stress condition the first day performed better than the other operators did (under both the stress and the non-stress condition). This was interpreted as the 'stress first' (group 1) operators had established efficient performance patterns the first day - affecting also the second day. Operators beginning with stress condition also tended to be more motivated. It was concluded that operator performance is affected by arousal. The operators with non-stress first (group 2) worked hard with the complex task but their arousal level was assumed to be above the optimal, resulting in a low hit rate.

  17. Effects of time pressure and noise on non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology; Edland, A [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2001-12-01

    Manual ultrasonic testing (UT) is the most frequently used non-destructive testing (NDT) method for in-service inspection of components important to safety and/or plant availability. Earlier, great variations have been found in operator performance, often attributed to operator fatigue. However, no conclusive findings have been reported. According to the Yerkes-Dodson law there is an optimal arousal level where performance is highest, for simple tasks this optimum is higher than for more complex tasks. In the present study twenty operators performed manual ultrasonic inspections of six test pieces with manufactured flaws. The operators performed the inspections under stress (high arousal - time pressure and noise) and non-stress conditions; one condition the first day and the other the second and last day. It was hypothesised that the stress condition led to a level of arousal so high that it would affect the results negatively. The results confirmed that the operators were affected by the stress condition. However, contrary to the hypotheses it was found that the manipulation increased operator performance. Operators with the stress condition the first day performed better than the other operators did (under both the stress and the non-stress condition). This was interpreted as the 'stress first' (group 1) operators had established efficient performance patterns the first day - affecting also the second day. Operators beginning with stress condition also tended to be more motivated. It was concluded that operator performance is affected by arousal. The operators with non-stress first (group 2) worked hard with the complex task but their arousal level was assumed to be above the optimal, resulting in a low hit rate.

  18. Effects of time pressure and noise on non-destructive testing

    International Nuclear Information System (INIS)

    Enkvist, J.; Svenson, Ola

    2001-12-01

    Manual ultrasonic testing (UT) is the most frequently used non-destructive testing (NDT) method for in-service inspection of components important to safety and/or plant availability. Earlier, great variations have been found in operator performance, often attributed to operator fatigue. However, no conclusive findings have been reported. According to the Yerkes-Dodson law there is an optimal arousal level where performance is highest, for simple tasks this optimum is higher than for more complex tasks. In the present study twenty operators performed manual ultrasonic inspections of six test pieces with manufactured flaws. The operators performed the inspections under stress (high arousal - time pressure and noise) and non-stress conditions; one condition the first day and the other the second and last day. It was hypothesised that the stress condition led to a level of arousal so high that it would affect the results negatively. The results confirmed that the operators were affected by the stress condition. However, contrary to the hypotheses it was found that the manipulation increased operator performance. Operators with the stress condition the first day performed better than the other operators did (under both the stress and the non-stress condition). This was interpreted as the 'stress first' (group 1) operators had established efficient performance patterns the first day - affecting also the second day. Operators beginning with stress condition also tended to be more motivated. It was concluded that operator performance is affected by arousal. The operators with non-stress first (group 2) worked hard with the complex task but their arousal level was assumed to be above the optimal, resulting in a low hit rate

  19. Maintenance of breast milk Immunoglobulin A after high-pressure processing.

    Science.gov (United States)

    Permanyer, M; Castellote, C; Ramírez-Santana, C; Audí, C; Pérez-Cano, F J; Castell, M; López-Sabater, M C; Franch, A

    2010-03-01

    Human milk is considered the optimal nutritional source for infants. Banked human milk is processed using low-temperature, long-time pasteurization, which assures microbial safety but involves heat denaturation of some desirable milk components such as IgA. High-pressure processing technology, the subject of the current research, has shown minimal destruction of food macromolecules. The objective of this study was to investigate the influence of pressure treatments on IgA content. Moreover, bacterial load was evaluated after pressure treatments. The effects of high-pressure processing on milk IgA content were compared with those of low-temperature, long-time pasteurization. Mature human milk samples were heat treated at 62.5 degrees C for 30min or pressure processed at 400, 500, or 600MPa for 5min at 12 degrees C. An indirect ELISA was used to measure IgA in human milk whey obtained after centrifugation at 800xg for 10min at 4 degrees C. All 3 high-pressure treatments were as effective as low-temperature, long-time pasteurization in reducing the bacterial population of the human milk samples studied. After human milk pressure processing at 400MPa, 100% of IgA content was preserved in milk whey, whereas only 72% was retained in pasteurized milk whey. The higher pressure conditions of 500 and 600MPa produced IgA retention of 87.9 and 69.3%, respectively. These results indicate that high-pressure processing at 400MPa for 5min at 12 degrees C maintains the immunological protective capacity associated with IgA antibodies. This preliminary study suggests that high-pressure processing may be a promising alternative to pasteurization in human milk banking.

  20. Kinetic and thermodynamic analysis of ultra-high pressure and heat ...

    African Journals Online (AJOL)

    Agriculture/Synergetic Innovation Center of Food Safety and Nutrition, Nanjing ... Purpose: To undertake comparative kinetic and thermodynamic analyses of the interaction of bovine ..... efficacy evaluation of anti-cancer drugs in apoptosis.

  1. High-temperature oxidation chemistry of n-butanol--experiments in low-pressure premixed flames and detailed kinetic modeling.

    Science.gov (United States)

    Hansen, N; Harper, M R; Green, W H

    2011-12-07

    An automated reaction mechanism generator is used to develop a predictive, comprehensive reaction mechanism for the high-temperature oxidation chemistry of n-butanol. This new kinetic model is an advancement of an earlier model, which had been extensively tested against earlier experimental data (Harper et al., Combust. Flame, 2011, 158, 16-41). In this study, the model's predictive capabilities are improved by targeting isomer-resolved quantitative mole fraction profiles of flame species in low-pressure flames. To this end, a total of three burner-stabilized premixed flames are isomer-selectively analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry using photoionization by tunable vacuum-ultraviolet synchrotron radiation. For most species, the newly developed chemical kinetic model is capable of accurately reproducing the experimental trends in these flames. The results clearly indicate that n-butanol is mainly consumed by H-atom abstraction with H, O, and OH, forming predominantly the α-C(4)H(9)O radical (CH(3)CH(2)CH(2)˙CHOH). Fission of C-C bonds in n-butanol is only predicted to be significant in a similar, but hotter flame studied by Oßwald et al. (Combust. Flame, 2011, 158, 2-15). The water-elimination reaction to 1-butene is found to be of no importance under the premixed conditions studied here. The initially formed isomeric C(4)H(9)O radicals are predicted to further oxidize by reacting with H and O(2) or to decompose to smaller fragments via β-scission. Enols are detected experimentally, with their importance being overpredicted by the model.

  2. Destruction of high explosives and wastes containing high explosives using the molten salt destruction process

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Brummond, W.A.; Pruneda, C.O.

    1992-01-01

    This paper reports the Molten Salt Destruction (MSD) Process which has been demonstrated for the destruction of HE and HE-containing wastes. MSD has been used by Rockwell International and by Anti-Pollution Systems to destroy hazardous wastes. MSD converts the organic constituents (including the HE) of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. In the case of HE-containing mixed wastes, any actinides in the waste are retained in the molten salt, thus converting the mixed wastes into low-level wastes. (Even though the MSD process is applicable to mixed wastes, this paper will emphasize HE-treatment.) The destruction of HE is accomplished by introducing it, together with oxidant gases, into a crucible containing a molten salt, such as sodium carbonate, or a suitable mixture of the carbonates of sodium, potassium, lithium and calcium. The temperature of the molten salt can be between 400 to 900 degrees C. The combustible organic components of the waste react with oxygen to produce carbon dioxide, nitrogen and steam

  3. Comparison of BWR-6 pressurization transients with one-dimensional and point kinetics

    International Nuclear Information System (INIS)

    Serra, J.M.; Mata, P.; Cronin, J.T.

    1992-01-01

    This paper focuses on the differences between the results of core reload licensing calculations for the BWR-6 plant when performed with a one-dimensional (1-D) versus a point kinetics model. More specifically, the improvement in critical power ratio which would be expected from a change in methods from a point to a 1-D kinetics core wide transient calculation for pressurization transients is investigated. To qualitatively assess critical power ratio (CPR) improvement, core wide transient and hot channel calculations of a generator load rejection with failure of the steam by-pass system and a feedwater controller failure of maximum demand are performed with both, point and 1-D kinetics models in the core wide simulation. Additionally, a sensitivity study on the frequency of power shape function updating in the 1-D kinetics calculation is performed

  4. Sensitizing effects of NOx on CH4 oxidation at high pressure

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Rasmussen, Anja Egede; Glarborg, Peter

    2008-01-01

    The CH4/O2/NOx system is investigated in a laboratory-scale high pressure laminar flow reactor with the purpose of elucidating the sensitizing effects of NOx on CH4 oxidation at high pressures and medium temperatures. Experiments are conducted at 100, 50, and 20 bar, 600-900 K, and stoichiometric...... ratios ranging from highly reducing to oxidizing conditions. The experimental results are interpreted in terms of a detailed kinetic model drawn from previous work of the authors, including an updated reaction subset for the direct interactions of NOx and C1-2 hydrocarbon species relevant...

  5. Path Dependency of High Pressure Phase Transformations

    Science.gov (United States)

    Cerreta, Ellen

    2017-06-01

    At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.

  6. Combined osmodehydration and high pressure processing on the enzyme stability and antioxidant capacity of a grapefruit jam

    Science.gov (United States)

    A combined osmodehydration process and high pressure treatment (OD-HHP) was developed for grapefruit jam preservation. The inactivation kinetics of pectinmethylesterase (PME) and peroxidase (POD) in the osmodehydrated (OD) jam treated by combined thermal (45-75°C) and high pressure (550–700 MPa) pro...

  7. An operando FTIR spectroscopic and kinetic study of carbon monoxide pressure influence on rhodium-catalyzed olefin hydroformylation.

    Science.gov (United States)

    Kubis, Christoph; Sawall, Mathias; Block, Axel; Neymeyr, Klaus; Ludwig, Ralf; Börner, Armin; Selent, Detlef

    2014-09-08

    The influence of carbon monoxide concentration on the kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a phosphite-modified rhodium catalyst has been studied for the pressure range p(CO)=0.20-3.83 MPa. Highly resolved time-dependent concentration profiles of the organometallic intermediates were derived from IR spectroscopic data collected in situ for the entire olefin-conversion range. The dynamics of the catalyst and organic components are described by enzyme-type kinetics with competitive and uncompetitive inhibition reactions involving carbon monoxide taken into account. Saturation of the alkyl-rhodium intermediates with carbon monoxide as a cosubstrate occurs between 1.5 and 2 MPa of carbon monoxide pressure, which brings about a convergence of aldehyde regioselectivity. Hydrogenolysis of the acyl intermediate is fast at 30 °C and low pressure of p(CO)=0.2 MPa, but is of minus first order with respect to the solution concentration of carbon monoxide. Resting 18-electron hydrido and acyl complexes that correspond to early and late rate-determining states, respectively, coexist as long as the conversion of the substrate is not complete. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A model for plasticity kinetics and its role in simulating the dynamic behavior of Fe at high strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, J D; Minich, R W; Kalantar, D H

    2007-03-29

    The recent diagnostic capability of the Omega laser to study solid-solid phase transitions at pressures greater than 10 GPa and at strain rates exceeding 10{sup 7} s{sup -1} has also provided valuable information on the dynamic elastic-plastic behavior of materials. We have found, for example, that plasticity kinetics modifies the effective loading and thermodynamic paths of the material. In this paper we derive a kinetics equation for the time-dependent plastic response of the material to dynamic loading, and describe the model's implementation in a radiation-hydrodynamics computer code. This model for plasticity kinetics incorporates the Gilman model for dislocation multiplication and saturation. We discuss the application of this model to the simulation of experimental velocity interferometry data for experiments on Omega in which Fe was shock compressed to pressures beyond the {alpha}-to-{var_epsilon} phase transition pressure. The kinetics model is shown to fit the data reasonably well in this high strain rate regime and further allows quantification of the relative contributions of dislocation multiplication and drag. The sensitivity of the observed signatures to the kinetics model parameters is presented.

  9. Estimation of nuclear destruction in high energy nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Uzhinskij, V.V.

    1995-01-01

    It is assumed that: 1) a projectile particle invokes into target nucleus a cascade of quark-gluon exchanges; 2) the nucleons involved in the cascade are ejected from the nucleus which leads to the nuclear destruction. On these bases a simple model to estimate the nuclear destruction at the fast stage of the interaction is proposed. The allowed region of the model parameters is determined at the proton-emulsion high-energy interaction data analysis: an analysis of gold interactions with nuclei at an energy of 600 MeV/nucleon fixes the parameter values. The distributions on the energy in zero degree calorimeter (T ZDC ) in the interactions of Si+Al, Cu, Pb (14 GeV/nucleon) and Au+Au (10 GeV/nucleon) calculated in the framework of the model and in the cascade-evaporation model (CEM) are presented. The proposed model describes the nuclear destruction at intermediate and high energies better than CEM does. The estimation of the average values of impact parameter and the number of intra-nuclear collisions for Au+Au interactions in the events with different T ZDC is given. 34 refs., 11 figs

  10. Predicting Tropical Cyclone Destructive Potential by Integrated Kinetic Energy According to the Powell/Reinhold Scale

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method of predicting the destructive capacity of a tropical cyclone based on a new Wind Destructive Potential (WDP) and Storm Surge Destructive Potential (SDP)...

  11. High-beta plasma effects in a low-pressure helicon plasma

    International Nuclear Information System (INIS)

    Corr, C. S.; Boswell, R. W.

    2007-01-01

    In this work, high-beta plasma effects are investigated in a low-pressure helicon plasma source attached to a large volume diffusion chamber. When operating above an input power of 900 W and a magnetic field of 30 G a narrow column of bright blue light (due to Ar II radiation) is observed along the axis of the diffusion chamber. With this blue mode, the plasma density is axially very uniform in the diffusion chamber; however, the radial profiles are not, suggesting that a large diamagnetic current might be induced. The diamagnetic behavior of the plasma has been investigated by measuring the temporal evolution of the magnetic field (B z ) and the plasma kinetic pressure when operating in a pulsed discharge mode. It is found that although the electron pressure can exceed the magnetic field pressure by a factor of 2, a complete expulsion of the magnetic field from the plasma interior is not observed. In fact, under our operating conditions with magnetized ions, the maximum diamagnetism observed is ∼2%. It is observed that the magnetic field displays the strongest change at the plasma centre, which corresponds to the maximum in the plasma kinetic pressure. These results suggest that the magnetic field diffuses into the plasma sufficiently quickly that on a long time scale only a slight perturbation of the magnetic field is ever observed

  12. The non-destructive examination of reactor pressure vessel steels by positron annihilation

    International Nuclear Information System (INIS)

    Highton, J.P.

    1983-01-01

    The rapid radiation hardening of copper bearing reactor pressure vessel steels has been linked with microvoids that are associated with copper based complexes in the metal lattice. These microvoids are active in the sense that their size appears to be related to the temperature of irradiation, which thus determines their influence on dislocation mobility. These sites appear to grow by vacancy condensation which causes a reduction in the local lattice energy. Thus prolonged exposure to PWR temperatures, even in the absence of a neutron flux, may also cause embrittlement. It has been found that these sites, which represent a local negative charge, act as traps to positrons. The size of each site dictates its positron trapping potential. As the trapping potential increases so too does the probability that the positrons will annihilate with low momentum conduction electrons. The momentum of the annihilating electrons will determine the degree of Doppler broadening of the 511 keV annihilation gamma peak. Thus careful analysis of this peak can yield useful information on the degree of embrittlement caused by these active defect complexes. In this way positron annihilation offers a powerful non-destructive alternative to current methods of assessing the integrity of nuclear reactor pressure vessels. (author)

  13. Formation and destruction of nitrogen oxides at elevated pressures with mixed fuels; Typenoksidimuodostus ja tuhoaminen paineistetuissa olosuhteissa ja ongelmapolttoaineilla

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J.; Paakkinen, K.; Rantanen, J. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    Destruction of NO with NH{sub 3} (Thermal DeNO{sub x}) and formation of nitrogen oxides (especially NO{sub 2}) from fuel nitrogen were studied at elevated pressure (up to 15 bar) with a pressurized entrained flow reactor (PEFR) at conditions simulating freeboard area of pressurized fluidized bed boiler. Effect of HCl on the oxidation of CO was studied at atmospheric pressure. These results give information about emission formation during combustion of chlorine-containing wastes. N{sub x}O{sub y} formation from fuel mixtures will be studied with a new fluidized bed reactor (FBR) in 1997. Thermal DeNox-experiments were performed at p= 2-15 bar, T= 700-950 deg C. Concentrations of NO, N{sub 2}O, NO{sub 2} and NH{sub 3} were measured at different residence times (0.2-2s). After the experiments with the bare NH{sub 3}/NO mixture, the effects of two additional gases (N{sub 2}O and CO) were measured. A new reaction tube made of quartz was employed to prevent catalytic destruction of NH{sub 3}. Formation of NO{sub 2} was studied with eleven solid fuels. The first experiments were carried out at 12 bar, O{sub 2}=20-19 %, PO{sub 2}=2.4 bar and the additional ones at p=8 bar, O{sub 2}=4-5 % => PO{sub 2}=0.4 bar at 800- 900 deg C. PCA analysis was used for finding dependency between fuel properties and the convention of fuel-N to NO{sub 2}

  14. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  15. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    International Nuclear Information System (INIS)

    Klick, D.I.

    1977-01-01

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu + and Ag + and the heavy-metal ions In + and Tl + was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  16. Improving hot-spot pressure for ignition in high-adiabat Inertial Confinement Fusion implosion

    OpenAIRE

    Kang, Dongguo; Zhu, Shaoping; Pei, Wenbing; Zou, Shiyang; Zheng, Wudi; Gu, Jianfa; Dai, Zhensheng

    2017-01-01

    A novel capsule target design to improve the hot-spot pressure in the high-adiabat implosion for inertial confinement fusion is proposed, where a layer of comparatively high-density material is used as a pusher between the fuel and the ablator. This design is based on our theoretical finding of the stagnation scaling laws, which indicates that the hot spot pressure can be improved by increasing the kinetic energy density $\\rho_d V_{imp}^2/2$ ($\\rho_d$ is the shell density when the maximum she...

  17. Soluble and immobilized catalase. Effect of pressure and inhibition on kinetics and deactivation.

    Science.gov (United States)

    Vasudevan, P T; Thakur, D S

    1994-12-01

    This article examines the effect of pressure on the steady-state kinetics and long-term deactivation of the enzyme catalase supported on porous alumina. The reaction studied is the decomposition of hydrogen peroxide. The results of studies carried out in a continuous stirred-tank reactor under isothermal conditions are presented and compared with results obtained for soluble catalase. For soluble catalase, it is found that in the range of pressures studied, the oxygen flow rate increases with increase in pressure up to a certain value and then decreases. Hydrogen peroxide concentration appears to have a strong influence on pressure effects. With immobilized catalase, the pressure effects are not as prominent. Fluorescent microscopy studies of the immobilized enzyme suggest that this is probably because of pore diffusional limitations.

  18. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Science.gov (United States)

    Razavi, Behnaz; Song, Weihua; Santoke, Hanoz; Cooper, William J.

    2011-03-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( rad OH) and reducing aqueous electron (e -aq), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with rad OH determined, (6.96±0.16)×10 9, (2.92±0.06)×10 9, (4.16±0.13)×10 9, and (3.13±0.15)×10 9 M -1 s -1, and for e -aq (2.31±0.06)×10 9, (0.45±0.01)×10 9, (1.26±0.01)×10 9, and (0.69±0.02)×10 9 M -1 s -1, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  19. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    International Nuclear Information System (INIS)

    Razavi, Behnaz; Song Weihua; Santoke, Hanoz; Cooper, William J.

    2011-01-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( · OH) and reducing aqueous electron (e - aq ), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with · OH determined, (6.96±0.16)x10 9 , (2.92±0.06)x10 9 , (4.16±0.13)x10 9 , and (3.13±0.15)x10 9 M -1 s -1 , and for e - aq (2.31±0.06)x10 9 , (0.45±0.01)x10 9 , (1.26±0.01)x10 9 , and (0.69±0.02)x10 9 M -1 s -1 , respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137 Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  20. Qualification of non-destructive examination for belgian nuclear reactor pressure vessel inspection

    International Nuclear Information System (INIS)

    Couplet, D.; Francoise, T.

    2001-01-01

    In Service Inspection (ISI) participates to the assessment of Nuclear Reactor Pressure Vessel Integrity. The performance of Non Destructive Examination (NDE) techniques must be demonstrated according to predefined objectives. The qualification process is essential to trust the reliability of the information provided by NDE. In Belgian Nuclear Power Plants, the qualification was conducted through a collaboration between the vendor and a technical group from the Electricity Utility. The important facts of this qualification will be presented: - the detailed definition of the inspection and qualifications objectives, based on a combination of the ASME code and the European Methodology for Qualification; - the systematic verification of the NDE performance and limitations, for each ISI objective, through an adequate combination of tests on blocks and technical justification; - the continuous improvement of the NDE procedure; - the feedback and the lessons learnt from site experience; - the necessary multi-disciplinary approach (NDE, degradation mechanisms, structural integrity)

  1. Hydrogen oxidation at high pressure and intermediate temperatures: experiments and kinetic modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2015-01-01

    was varied from very oxidizing to strongly reducing conditions. The results supplement high-pressure data from RCM (900–1100 K) and shock tubes (900–2200 K). At the reducing conditions ( U = 12), oxidation started at 748–775 K while it was shifted to 798–823 K for stoichiometric and oxidizing conditions ( U...

  2. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Behnaz, E-mail: brazavi@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song Weihua, E-mail: wsong@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Santoke, Hanoz, E-mail: hsantoke@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Cooper, William J., E-mail: wcooper@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States)

    2011-03-15

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ({sup {center_dot}O}H) and reducing aqueous electron (e{sup -}{sub aq}), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with {sup {center_dot}O}H determined, (6.96{+-}0.16)x10{sup 9}, (2.92{+-}0.06)x10{sup 9}, (4.16{+-}0.13)x10{sup 9}, and (3.13{+-}0.15)x10{sup 9} M{sup -1} s{sup -1}, and for e{sup -}{sub aq} (2.31{+-}0.06)x10{sup 9}, (0.45{+-}0.01)x10{sup 9}, (1.26{+-}0.01)x10{sup 9}, and (0.69{+-}0.02)x10{sup 9} M{sup -1} s{sup -1}, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using {sup 137}Cs {gamma}-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  3. Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent.

    Science.gov (United States)

    Casciaro, Sergio; Palmizio Errico, Rosa; Errico, Rosa Palmizio; Conversano, Francesco; Demitri, Christian; Distante, Alessandro

    2007-02-01

    We sought to characterize the acoustical behavior of the experimental ultrasound contrast agent BR14 by determining the acoustic pressure threshold above which nonlinear oscillation becomes significant and investigating microbubble destruction mechanisms. We used a custom-designed in vitro setup to conduct broadband attenuation measurements at 3.5 MHz varying acoustic pressure (range, 50-190 kPa). We also performed granulometric analyses on contrast agent solutions to accurately measure microbubble size distribution and to evaluate insonification effects. Attenuation did not depend on acoustic pressure less than 100 kPa, indicating this pressure as the threshold for the appearance of microbubble nonlinear behavior. At the lowest excitation amplitude, attenuation increased during insonification, while, at higher excitation levels, the attenuation decreased over time, indicating microbubble destruction. The destruction rate changed with pressure amplitude suggesting different destruction mechanisms, as it was confirmed by granulometric analysis. Microbubbles showed a linear behavior until 100 kPa, whereas beyond this value significant nonlinearities occurred. Observed destruction phenomena seem to be mainly due to gas diffusion and bubble fragmentation mechanisms.

  4. Current developments in mechanized non-destructive testing in nuclear power plants

    International Nuclear Information System (INIS)

    Zeilinger, R.

    2008-01-01

    Nuclear power plants require frequent in-service activities to be carried out conscientiously in areas potentially hazardous to human operators (because of the associated radiation exposure), such as non-destructive testing of pressurized components of the steam system. Locations to be inspected in this way include the reactor pressure vessel, core internals, steam generators, pressurizers, and pipes. The codes to be used as a basis of these inspections demand high absolute positioning and repeating accuracy. These requirements can be met by mechanized test procedures. Accordingly, many new applications of, mostly mobile, robots have been developed over the past few years. The innovative control and sensor systems for stationary and mobile robots now on the market offer a potential for economic application in a large number of new areas in inspection, maintenance and service in nuclear power plants. More progress in this area is expected for the near future. Areva NP founded the new NDT Center, NETEC (Non-destructive Examination Technical Center), as a global technical center for non-destructive materials testing. NETEC is to advance research and development of all basic NDT technologies, robotics included. For many years, intelligeNDT has offered solutions and products for a variety of inspection and testing purposes and locations in nuclear power plants and is involved in continuous further development of the experience collected in nuclear power plants on the spot. (orig.)

  5. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankar; Sikes, Travis; Levacque, Anthony; Aul, Christopher; Peterson, Eric

    2011-09-30

    This progress report documents the first year of the project, from October 1, 2010 through September 30, 2011. Laminar flame speeds and ignition delay times have been measured for hydrogen and various compositions of H2/CO (syngas) at elevated pressures and elevated temperatures. Two constant-volume cylindrical vessels were used to visualize the spherical growth of the flame through the use of a schlieren optical setup to measure the laminar flame speed of the mixture. Hydrogen experiments were performed at initial pressures up to 10 atm and initial temperatures up to 443 K. A syngas composition of 50/50 was chosen to demonstrate the effect of carbon monoxide on H2-O2 chemical kinetics at standard temperature and pressures up to 10 atm. All atmospheric mixtures were diluted with standard air, while all elevated-pressure experiments were diluted with a He:O2 of 7:1 to minimize hydrodynamic instabilities. The laminar flame speed measurements of hydrogen and syngas are compared to available literature data over a wide range of equivalence ratios where good agreement can be seen with several data sets. Additionally, an improved chemical kinetics model is shown for all conditions within the current study. The model and the data presented herein agree well, which demonstrates the continual, improved accuracy of the chemical kinetics model. A high-pressure shock tube was used to measure ignition delay times for several baseline compositions of syngas at three pressures across a wide range of temperatures. The compositions of syngas (H2/CO) presented in this study include 80/20, 50/50, 40/60, 20/80, and 10/90, all of which are compared to previously published ignition delay times from a hydrogen-oxygen mixture to demonstrate the effect of carbon monoxide addition. Generally, an increase in carbon monoxide increases the ignition delay time, but there does seem to be a pressure dependency. At low temperatures and

  6. Computer simulations of high pressure systems

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1977-01-01

    Numerical methods are capable of solving very difficult problems in solid mechanics and gas dynamics. In the design of engineering structures, critical decisions are possible if the behavior of materials is correctly described in the calculation. Problems of current interest require accurate analysis of stress-strain fields that range from very small elastic displacement to very large plastic deformation. A finite difference program is described that solves problems over this range and in two and three space-dimensions and time. A series of experiments and calculations serve to establish confidence in the plasticity formulation. The program can be used to design high pressure systems where plastic flow occurs. The purpose is to identify material properties, strength and elongation, that meet the operating requirements. An objective is to be able to perform destructive testing on a computer rather than on the engineering structure. Examples of topical interest are given

  7. Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis

    KAUST Repository

    Eldeeb, Mazen A.

    2016-08-30

    A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range of 1049–1544 K and pressures of 3.0–12 atm. Pyrolysis is investigated at average pressures of 4.0 atm at temperatures of 1238, 1302, and 1406 K. By means of mid-infrared direct laser absorption at 3.39 μm, fuel concentration time histories are measured under ignition and pyrolytic conditions. A detailed chemical kinetic model for 13DMCH combustion is developed. Ignition measurements show that the ignition delay times of 13DMCH are longer than those of its isomer, ethylcyclohexane. The proposed chemical kinetic model predicts reasonably well the effects of equivalence ratio and pressure, with overall good agreement between predicted and measured ignition delay times, except at low dilution levels and high pressures. Simulated fuel concentration profiles agree reasonably well with the measured profiles, and both highlight the influence of pyrolysis on the overall ignition kinetics at high temperatures. Sensitivity and reaction pathway analyses provide further insight into the kinetic processes controlling ignition and pyrolysis. The work contributes toward improved understanding and modeling of the oxidation and pyrolysis kinetics of cycloalkanes.

  8. Formation of quasicrystals and amorphous-to-quasicrystalline phase transformation kinetics in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Zhuang, Yanxin; Rasmussen, Helge Kildahl

    2001-01-01

    The effect of pressure on the formation of quasicrystals and the amorphous-to-quasicrystalline phase transformation kinetics in the supercooled liquid region for a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass have been investigated by in situ high-pressure and high-temperature nonisothermal and isothermal...... of quasicrystals decrease, Atomic mobility is important for the formation of quasicrystals from the metallic glass whereas the relationship of the crystallization temperature vs pressure for the transition from the quasicrystalline state to intermetallic compounds may mainly depend on the thermodynamic potential...... energy barrier. To study the amorphous-to-quasicrystalline phase transformation kinetics in the metallic glass, relative volume fractions of the transferred quasicrystalline phase as a function of annealing time, obtained at 663, 673, 683, and 693 K, have been analyzed in details using 14 nucleation...

  9. Effects of high hydrostatic pressure or hydrophobic modification on thermal stability of xanthine oxidase.

    Science.gov (United States)

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-08-01

    The effect of high hydrostatic pressure (HHP) on the kinetics of thermal inactivation of xanthine oxidase (XOx) from bovine milk was studied. Inactivation of XOx followed pseudo-first-order kinetics at 0.1-300MPa and 55.0-70.0°C. High pressure up to at least 300MPa stabilized XOx at all the studied temperatures. The highest stabilization effect of HHP on XOx was at 200-300MPa at 55.0 and 58.6°C, and at 250-300MPa at 62.3-70.0°C. The stability of XOx increased 9.5 times at 300MPa and 70.0°C compared to atmospheric pressure at the same temperature. The activation energy of inactivation of XOx decreased with pressure and was 1.9 times less at 300MPa (97.0±8.2kJmol -1 ) than at 0.1MPa (181.7±12.1kJmol -1 ). High pressure decreased the dependence of the rate constant of inactivation to temperature effects compared to atmospheric pressure. The stabilizing effect of HHP on XOx was highest at 70.0°C where the activation volume of inactivation of XOx was 28.9±2.9cm 3 mol -1 . A second approach to try to increase XOx stability involved hydrophobic modification using aniline or benzoate. However, the thermal stability of XOx remained unaffected after 8-14 modifications of carboxyl side groups per XOx monomer with aniline, or 12-17 modifications of amino side groups per XOx monomer with benzoate. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  11. Destructive hydrogenation. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1929-07-15

    Liquid or readily liquefiable products are obtained from solid distillable carbonaceous materials such as coals, oil shales or other bituminous substances by subjecting the said initial materials to destructive hydrogenation under mild conditions so that the formation of benzine is substantially avoided, and then subjecting the treated material to extraction by solvents. By hydrogenating under mild conditions the heavy oils which prevent the asphaltic substances from being precipitated are preserved, and the separation of the liquid products from the solid residue is facilitated. Solid paraffins and high boiling point constituents suitable for the production of lubricating oils may be removed before or after the extraction process. The extraction is preferably carried out under pressure with solvents which do not precipitate asphaltic substances. Brown coal containing 11 per cent ash is passed at 450/sup 0/C, and 200 atmospheres pressure in counter current to hydrogen; 40 per cent of the coal is converted into liquid products which are condensed out of the hydrogen stream; the pasty residue, on extraction with benzene, yields 45 per cent of high molecular weight products suitable for the production of lubricating oil.

  12. The effect of high hydrostatic pressure on black truffle (tuber melanosporum) flavour compounds

    International Nuclear Information System (INIS)

    Verret, C; Ballestra, P; Cruz, C; Moueffak, A H E; Pardon, P; Largeteau, A

    2008-01-01

    The effects of high hydrostatic pressure (HHP), at 4 0 C or -18 0 C, on black truffle flavour compounds, alteration enzymes (lipoxigenase (LOX), peroxidase (POD) and polyphenoloxidase (PPO)) and microbiological qualities were evaluated. The choosen analytes for this study are six alcohols, three aldehydes, one ketone and on sulfur component. The highest flavour stability was observed when samples were pressurized at 300 MPa / 4 0 C / 10 min. All the treatments induced a drastic decrease of LOX activity and a slight decrease of POD activity. On the other hand, the PPO was not inactivated by pressurization at sub-zero (200 MPa / -18 0 C / 10 min) and was strongly increased after the 300 MPa / 4 0 C / 10 min treatment. Pressurization at 300 and 550 MPa lead to an almost complete Pseudomonas fluorescens reduction (6 and 6.5 log destruction, respectively) whereas pressurization at -18 0 C (200MPa) allowed to obtain only 3 log reduction

  13. The effect of high hydrostatic pressure on black truffle (tuber melanosporum) flavour compounds

    Energy Technology Data Exchange (ETDEWEB)

    Verret, C; Ballestra, P; Cruz, C; Moueffak, A H E [Equipe de Recherche Agroalimentaire Perigourdine (ERAP) IUT de Perigueux Universite Bordeaux IV site universitaire F24019 Perigueux Cedex France (France); Pardon, P [Laboratoire d' analyses de l' Institut du pin Universite Bordeaux I France (France); Largeteau, A, E-mail: moueffak@u-bordeaux4.fr

    2008-07-15

    The effects of high hydrostatic pressure (HHP), at 4{sup 0}C or -18{sup 0}C, on black truffle flavour compounds, alteration enzymes (lipoxigenase (LOX), peroxidase (POD) and polyphenoloxidase (PPO)) and microbiological qualities were evaluated. The choosen analytes for this study are six alcohols, three aldehydes, one ketone and on sulfur component. The highest flavour stability was observed when samples were pressurized at 300 MPa / 4{sup 0}C / 10 min. All the treatments induced a drastic decrease of LOX activity and a slight decrease of POD activity. On the other hand, the PPO was not inactivated by pressurization at sub-zero (200 MPa / -18{sup 0}C / 10 min) and was strongly increased after the 300 MPa / 4{sup 0}C / 10 min treatment. Pressurization at 300 and 550 MPa lead to an almost complete Pseudomonas fluorescens reduction (6 and 6.5 log destruction, respectively) whereas pressurization at -18{sup 0}C (200MPa) allowed to obtain only 3 log reduction.

  14. A non-destructive, ultrasonic method for the determination of internal pressure and gas composition in an LWR fuel rod on-going and future programme

    International Nuclear Information System (INIS)

    Ferrandis, J.; Leveque, G.; Villard, J.

    2006-01-01

    Several possible non-destructive methods have been investigated in the past to measure the internal gas pressure e.g., measurement of 85 Kr directly, or after accumulation in the plenum by freezing with liquid nitrogen. However no satisfactory resolution to the problem has been found, so at present there is no rapid and accurate method of determining the fission gas pressure in a fuel rod without puncturing the cladding. This procedure is time-consuming and expensive and as a consequence a relatively small number of measurements are generally made compared with the number of fuel rods irradiated. In this paper it is proposed a new method for the measurement of pressure that is: Non-destructive; Non-invasive (i.e., allows re-irradiation of the measured rod); Easy to operate - directly in the reactor pool; Can be used on the critical path; Is inexpensive compared with the methods currently in use. This method is also being adapted to the on line measurement of fission gas release on fuel irradiation in research reactors. This method is based on the application of acoustic technology

  15. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric [Texas A & M Univ., College Station, TX (United States); Krejci, Michael [Texas A & M Univ., College Station, TX (United States); Mathieu, Olivier [Texas A & M Univ., College Station, TX (United States); Vissotski, Andrew [Texas A & M Univ., College Station, TX (United States); Ravi, Sankat [Texas A & M Univ., College Station, TX (United States); Plichta, Drew [Texas A & M Univ., College Station, TX (United States); Sikes, Travis [Texas A & M Univ., College Station, TX (United States); Levacque, Anthony [Texas A & M Univ., College Station, TX (United States); Camou, Alejandro [Texas A & M Univ., College Station, TX (United States); Aul, Christopher [Texas A & M Univ., College Station, TX (United States)

    2014-01-24

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  16. Photoconductivity studies of the ferrocyanide ion under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Finston, M. I.

    1979-01-01

    The photoaquation of the ferrocyanide ion was studied using a high-pressure photoconductivity apparatus and a steady-state high-pressure mercury lamp. The first-order photocurrent rise-time could be related to the relative quantum efficiency of the photoaquation process, while the dark decay of the photocurrent yielded a relative value of the bimolecular rate-constant for the reverse reaction. Kinetic measurements were carried out on dilute solutions of potassium ferrocyanide in pure water, and in 20% ethanol. The photocurrent yield in aqueous solution was dependent upon secondary chemical equilibria which were sensitive to pressure in a predictable way. In ethanolic solution, the dependence of photocurrent yield on pressure followed the variation of the reciprocal solvent vicosity. In both aqueous and alcoholic solution, the photoaquation quantum efficiency decreased exponentially with pressure, as did the biomolecular rate-constant for the dark reaction in aqueous solution. The pressure dependence of the bimolecular rate-constant in the alcoholic solution indicated a diffusion-limited process. The pressure dependence of the photoaquation quantum yield, and of the bimolecular rate-constant in aqueous solution, was interpreted in terms of an activation volume model. The photoaquation data for both the aqueous and the alcoholic solutions agreed with a hypothetical mechanism whereby ligand-to-metal bond-breaking, and solvent-to-metal bond-formation, are effectively simultaneous. The results for the aqueous dark reaction strongly indicated breaking of the solvent-to-metal bond as the rate-limiting step.

  17. Kinetic isotope effect in the thermolysis of methylenecyclobutane

    International Nuclear Information System (INIS)

    Chickos, J.S.

    1979-01-01

    The intramolecular kinetic isotope effect for the thermolysis of equilibrated methylenecyclobutane-d 2 was investigated at 515 0 C as a function of pressure. A high-pressure value of k/sub H/k/sub D/ (ethylene/ethylene-d 2 ) = 0.9 was obtained at 13 cm of N 2 pressure. This value decreased to 0.86 at 70 μm total pressure. No intermolecular kinetic isotope effect was measured for the formation of ethylene from labeled and unlabeled methylenecyclobutane. The pressure and temperature dependence of the intramolecular kinetic isotope effect was used as evidence in establishing the inverse nature of the effect. The isotope effect observed was explained in terms of competing equilibrium and kinetic isotope effects in which the equilibrium isotope effects dominate. It was concluded on the bases of these results that an acyclic intermediate is involved in the fragmentation of methylenecyclobutane to ethylene and allene. The results also support the notion that deuterium prefers to accumulate at the methylene group with the greatest p character in the carbon--hydrogen bond. 1 figure, 4 tables

  18. Influence of the product gases on the kinetics of water vapour gasification as a function of pressure and temperature

    International Nuclear Information System (INIS)

    Muehlen, H.J.

    1983-01-01

    The reaction kinetics of coal gasification by using the process heat is investigated. Pressure, temperature and composition of the gasifying agent are varied. Starting from other models, a kinetic model is derived and tested for its applicability. (PW) [de

  19. Soot Formation and Destruction in High-Pressure Flames with Real Fuels

    Science.gov (United States)

    2013-08-18

    Temperature and Oxygen Concentration on Diesel Spray Combustion Using a Single- Nozzle Injector in a Constant Volume Combustion Chamber, Combustion...enable the design of more efficient diesel engines. Higher efficiency will help reduce the logistical demand transportation fuels place on the entire...understanding of the soot formation processes at elevated pressure (e.g., 30 atm) will enable the design of more efficient diesel engines. Higher

  20. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  1. Scaling of silent electrical discharge reactors for hazardous organics destruction

    International Nuclear Information System (INIS)

    Coogan, J.J.; Rosocha, L.A.; Brower, M.J.; Kang, M.; Schmidt, C.A.

    1993-01-01

    Silent electrical discharges are used to produce highly reactive free radicals that destroy hazardous compounds entrained in gaseous effluents at ambient gas temperatures and pressures. We have carried out destruction experiments at Los Alamos on a range of volatile organic compounds (VOCs), including trichloroethylene (TCE), carbon tetrachloride, perchloroethylene (PCE), and chlorofluorocarbons (CFCs). We have measured a ''nine-factor'', the amount of energy required to reduce the VOC concentration by a factor of ten. For practical reactor power densities, the ''nine-factor'' can be used to predict the destruction an removal efficiency (DRE) in terms of gas flow rate and the number of reactor modules. This report proposes a modular, stackable architecture for scaling up the reactor throughput

  2. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, the mechanism is used to simulate published data on ignition delay time and laminar burning velocity of hydrogen. The flow reactor results show that at reducing, stoichiometric, and oxidizing conditions, conversion starts at temperatures of 750–775 K, 800–825 K, and 800–825 K, respectively. In oxygen atmosphere......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  3. A 2 TiO 5 (A = Dy, Gd, Er, Yb) at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sulgiye [Department of Geological Science, Stanford University, Stanford, California 94305, United States; Rittman, Dylan R. [Department of Geological Science, Stanford University, Stanford, California 94305, United States; Tracy, Cameron L. [Department of Geological Science, Stanford University, Stanford, California 94305, United States; Chapman, Karena W. [X-ray Science Division, Advanced Photon; Zhang, Fuxiang [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Park, Changyong [HPCAT, Carnegie Institution of Washington, Argonne, Illinois 60439, United States; Tkachev, Sergey N. [Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, United States; O’Quinn, Eric [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Shamblin, Jacob [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Lang, Maik [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Mao, Wendy L. [Department of Geological Science, Stanford University, Stanford, California 94305, United States; Stanford; amp, Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States; Ewing, Rodney C. [Department of Geological Science, Stanford University, Stanford, California 94305, United States

    2018-02-07

    The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressure range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.

  4. Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure

    CERN Document Server

    Dong Shu Shan; Cheng Hai Yong; Yang Hai Bin; Zou Guang Tian

    2002-01-01

    By using aluminium nanopowder prepared by wire electrical explosion, pure monophase NiAl compound with fine crystallites (<=10 mu m) and good densification (98% of the theoretical green density) was successfully fabricated by means of self-propagating high-temperature synthesis (SHS) under a high pressure of 50 MPa. Investigation shows that, due to the physical and chemical characteristics of the nanoparticles, the SHS reaction mode and mechanism are distinct from those when using conventional coarse-grained reactants. The SHS reaction process depends on the thermal conditions related to pressure and can occur at a dramatically low temperature of 308 sup o C, which cannot be expected in conventional SHS reaction. With increasing pressure, the SHS explosive ignition temperature (T sub i sub g) of forming NiAl decreases due to thermal and kinetic effects.

  5. A study with high resolution computed tomography of bone destruction in cholesteatoma

    International Nuclear Information System (INIS)

    Kikuchi, Shigeru; Yamaso, Tatsuya; Higo, Ryusaburo; Senba, Tetsuo; Iinuma, Yoshitaka.

    1992-01-01

    The modes and incidences of bone destruction in the middle ear cholesteatoma were evaluated by high resolution computed tomography, comparing with chronic otitis media with central perforation (COM) as control. The head of the malleus, the body and long process of the incus were more markedly destroyed in cholesteatoma than in COM with statistical significance. With the further extension of cholesteatoma into the antrum, the tegmen of the aditus ad antrum, the lateral semicircular canal, the handle of the malleus and the Korner's septum were involved in bone destruction. (author)

  6. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  7. Dynamic High Pressure Study of Chemistry and Physics of Molecular Materials

    Science.gov (United States)

    Jezowski, Sebastian Ryszard

    Both temperature and pressure control and influence the packing of molecules in crystalline phases. Our molecular simulations indicate that at ambient pressure, the cubic polymorph of tetracyanoethylene, TCNE, is the energetically stable form up to ˜ 160 K. The observed transition from the cubic to the monoclinic polymorph occurs however only at temperatures above ˜ 318 K due to the large transition barrier. The temperature-induced phase transition in TCNE studied with high-resolution IR spectroscopy is explained in terms of the increased vibrational entropy in the crystals of the monoclinic polymorph. Based upon the inverted design of the Merril-Bassett Diamond Anvil Cell, an improved, second generation dynamic Diamond Anvil Cell was developed. Based on the fluorescence of ruby crystals, we were able to demonstrate that the pressure variation range can be further increased at least up to 7 kbar and that the dynamic pressure compression of up to 1400 GPa/s can be achieved. A new class of mechanophoric system, bis-anthracene, BA, and its photoisomer, PI, is shown to respond reversibly to a mild, static pressure induced by a Diamond Anvil Cell as well as to shear deformation based on absorption spectroscopic measurements. The forward reaction occurs upon illumination with light while the back-reaction may be accelerated upon heating or mechanical stress, coupled to a rehybridization on four equivalent carbon atoms. It is an intriguing result as high pressure stabilizes the photodimerized species in related systems. Our molecular volume simulations ruled out significant differences in the volumes between bis-anthracene and its photoisomer. Kinetic absorption measurements at several different pressures reveal a negative volume of activation in the exothermic back-reaction at room temperature. Through a series of temperature-dependent kinetic measurements it is shown that the barrier of activation for the back-reaction is reduced by more than an order of magnitude at

  8. Kinetic and thermodynamic studies of reactional system (X-I-O-H) by high temperature mass spectrometry

    International Nuclear Information System (INIS)

    Roki, F.Z.

    2009-01-01

    High temperature mass spectrometry is used for analysis of vapors coming from iodine reaction with fission products in case of a severe nuclear accident in a pressurized water reactor. Two main ways are used, - (i) thermodynamic analysis of vaporization processes of CsOH, CsI and mixtures CsI-CsOH. - (ii) building a dedicated reactor for kinetic analysis of the recombination of atoms into these stables molecular species. The present study confirms the existence of Cs 2 IOH(g) molecule. Vapor pressures of gaseous molecules CsOH(g), Cs 2 O 2 H 2 (g) and Cs 2 IOH(g) have been determined. Molecular parameters of the mixed molecule have been estimated on the basis of the pure dimmers Cs 2 O 2 H 2 (g) and Cs 2 I 2 (g) and its enthalpy of formation are established. The acquisition of kinetic data needs a new reactor, the conception of which is presented in this work as well as qualification tests: thermal, flow regimes and pressure calibration tests. (author)

  9. System and method for high precision isotope ratio destructive analysis

    Science.gov (United States)

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  10. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  11. The Effect of High-Pressure Arc Discharge Plasma on the Degradation of Chlorpyrifos

    International Nuclear Information System (INIS)

    Yin Meiqiang; Ma Tengcai; Zhang Jialiang; Huang Mingjing; Ma Buzhou

    2006-01-01

    A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml

  12. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    Science.gov (United States)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  13. Effect of high hydrostatic pressure on cashew apple (Anacardium occidentale L.) juice preservation.

    Science.gov (United States)

    Lavinas, F C; Miguel, M A L; Lopes, M L M; Valente Mesquita, V L

    2008-08-01

    High hydrostatic pressure is an alternative to thermal processing to inactivate spoilage and pathogenic microorganisms. Cashew apple juice has a pleasant flavor and is rich in vitamin C. Studies to determine the effect of high pressure on microorganisms in cashew apple juice are still lacking. In this study, the inactivation of natural micropopulation and inoculated Escherichia coli by high pressure was evaluated in fresh cashew apple juice. The microbiological stability of pressure-treated juice was also evaluated. The applied high pressure levels ranged from 250 to 400 MPa for periods of 3 to 7 min. Treatments with 350 MPa for 7 min and 400 MPa for either 3 or 7 min reduced the aerobic mesophilic bacteria count to a level below the detection limit. Pressure treatments were also efficient in inactivating yeast and filamentous fungi. The inoculated E. coli (10(6) CFU/mL) was reduced to below 10 CFU/mL after a pressure treatment of 400 MPa for 3 min. The inactivation of this microorganism followed a 1st-order reaction kinetics. The decimal reduction time (D-value) ranged from 1.21 to 16.43 min, while pressure resistance value (z-value) was 123.46 MPa. Neither natural micropopulation growth nor E. coli repair was observed in postprocessed (400 MPa for 3 min) cashew apple juice kept under refrigerated storage (at 4 degrees C) during 8 wk. The results of this study demonstrated the efficacy of high-pressure treatment for preserving cashew apple juice.

  14. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.

    Science.gov (United States)

    Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi

    2015-06-04

    Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.

  15. High pressure inactivation of Pseudomonas in black truffle - comparison with Pseudomonas fluorescens in tryptone soya broth

    Science.gov (United States)

    Ballestra, Patricia; Verret, Catherine; Cruz, Christian; Largeteau, Alain; Demazeau, Gerard; El Moueffak, Abdelhamid

    2010-03-01

    Pseudomonas is one of the most common genera in black Perigord truffle. Its inactivation by high pressure (100-500 MPa/10 min) applied on truffles at sub-zero or low temperatures was studied and compared with those of Pseudomonas fluorescens in tryptone soya broth. Pressurization of truffles at 300 MPa/4 °C reduced the bacterial count of Pseudomonas by 5.3 log cycles. Higher pressures of 400 or 500 MPa, at 4 °C or 20 °C, allowed us to slightly increase the level of destruction to the value of ca. 6.5 log cycles but did not permit us to completely inactivate Pseudomonas. The results showed a residual charge of about 10 CFU/g. Pressure-shift freezing of truffles, which consists in applying a pressure of 200 MPa/-18 °C for 10 min and then quickly releasing this pressure to induce freezing, reduced the population of Pseudomonas by 3.3 log cycles. The level of inactivation was higher than those obtained with conventional freezing. Endogenous Pseudomonas in truffle was shown to be more resistant to high pressure treatments than P. fluorescens used for inoculation of broths.

  16. Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study

    KAUST Repository

    Wang, Zhandong

    2015-07-01

    Ethylcyclohexane (ECH) is a model compound for cycloalkanes with long alkyl side-chains. A preliminary investigation on ECH (Wang et al., Proc. Combust. Inst., 35, 2015, 367-375) revealed that an accurate ECH kinetic model with detailed fuel consumption mechanism and aromatic growth pathways, as well as additional ECH pyrolysis and oxidation data with detailed species concentration covering a wide pressure and temperature range are required to understand the ECH combustion kinetics. In this work, the flow reactor pyrolysis of ECH at various pressures (30, 150 and 760Torr) was studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS) and gas chromatography (GC). The mole fraction profiles of numerous major and minor species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high temperature pyrolysis and oxidation was developed and validated against the pyrolysis and flame data performed in this work. Further validation of the kinetic model is presented against literature data including species concentrations in jet-stirred reactor oxidation, ignition delay times in a shock tube, and laminar flame speeds at various pressures and equivalence ratios. The model well predicts the consumption of ECH, the growth of aromatics, and the global combustion properties. Reaction flux and sensitivity analysis were utilized to elucidate chemical kinetic features of ECH combustion under various reaction conditions. © 2015 The Combustion Institute.

  17. Influence of plutonium contents in MOX fuel on destructive forces at fuel failure in the NSRR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Jinichi; Sugiyama, Tomoyuki; Nakamura, Takehiko; Kanazawa, Toru; Sasajima, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    In order to confirm safety margins of the Mixed Oxide (MOX) fuel use in LWRs, pulse irradiation tests are planned in the Nuclear Safety Research Reactor (NSRR) with the MOX fuel with plutonium content up to 12.8%. Impacts of the higher plutonium contents on safety of the reactivity-initiated-accident (RIA) tests are examined in terms of generation of destructive forces to threat the integrity of test capsules. Pressure pulses would be generated at fuel rod failure by releases of high pressure gases. The strength of the pressure pulses, therefore, depends on rod internal - external pressure difference, which is independent to plutonium content of the fuel. The other destructive forces, water hammer, would be generated by thermal interaction between fuel fragments and coolant water. Heat flux from the fragments to the water was calculated taking account of changes in thermal properties of MOX fuels at higher plutonium contents. The results showed that the heat transfer from the MOX fuel would be slightly smaller than that from UO{sub 2} fuel fragments at similar size in a short period to cause the water hammer. Therefore, the destructive forces were not expected to increase in the new tests with higher plutonium content MOX fuels. (author)

  18. Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis

    NARCIS (Netherlands)

    Ray, A.K; Beenackers, A.A C M

    1997-01-01

    A new two-phase swirl-flow monolithic-type reactor was designed to study the kinetics of heterogeneous photocatalytic processes on immobilized semiconductor catalysts. True kinetic rate constants for destruction of a textile dye were measured as a function of wavelength of light intensity and angle

  19. The Effects of Noncontingent Delivery of High- and Low-Preference Stimuli on Attention-Maintained Destructive Behavior.

    Science.gov (United States)

    Fisher, Wayne W.; O'Connor, Julia T.; Kurtz, Patricia F.; DeLeon, Iser G.; Gotjen, Deidre L.

    2000-01-01

    An adolescent with severe mental retardation and cerebral palsy who displayed attention-maintained destructive behavior was exposed to noncontingent reinforcer delivery (NCR) with a high-preference or a low-preference stimulus while reinforcement for destructive behavior with attention remained in effect. NCR without extinction was effective only…

  20. Low pulmonary artery flush perfusion pressure combined with high positive end-expiratory pressure reduces oedema formation in isolated porcine lungs

    International Nuclear Information System (INIS)

    Schumann, Stefan; Schließmann, Stephan J; Wagner, Giskard; Goebel, Ulrich; Priebe, Hans-Joachim; Guttmann, Josef; Kirschbaum, Andreas

    2010-01-01

    Flush perfusion of the pulmonary artery with organ protection solution is a standard procedure before lung explantation. However, rapid flush perfusion may cause pulmonary oedema which is deleterious in the lung transplantation setting. In this study we tested the hypotheses that high pulmonary perfusion pressure contributes to the development of pulmonary oedema and positive end-expiratory pressure (PEEP) counteracts oedema formation. We expected oedema formation to increase weight and decrease compliance of the lungs on the basis of a decrease in alveolar volume as fluid replaces alveolar air spaces. The pulmonary artery of 28 isolated porcine lungs was perfused with a low-potassium dextrane solution at low (mean 27 mmHg) or high (mean 40 mmHg) pulmonary artery pressure (PAP) during mechanical ventilation at low (4 cmH 2 O) or high (8 cmH 2 O) PEEP, respectively. Following perfusion and storage, relative increases in lung weight were smaller (p < 0.05) during perfusion at low PAP (62 ± 32% and 42 ± 26%, respectively) compared to perfusion at high PAP (133 ± 54% and 87 ± 30%, respectively). Compared to all other PAP–PEEP combinations, increases in lung weight were smallest (44 ± 9% and 27 ± 12%, respectively), nonlinear intratidal lung compliance was largest (46% and 17% respectively, both p < 0.05) and lung histology showed least infiltration of mononuclear cells in the alveolar septa, and least alveolar destruction during the combination of low perfusion pressure and high PEEP. The findings suggest that oedema formation during pulmonary artery flush perfusion in isolated and ventilated lungs can be reduced by choosing low perfusion pressure and high PEEP. PAP–PEEP titration to minimize pulmonary oedema should be based on lung mechanics and PAP monitoring

  1. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  2. The non-destructive control, a major constituent of quality

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The number of continuous research and development works about non-destructive control in all sectors of activity is justified by the increasing need for high quality materials without anomalies. This paper gives a overview of the state of the art and of the recent trends in non-destructive testing researches in different sectors: aeronautics, nuclear industry, automotive industry. New studies and techniques are presented: ultrasonic testing of welds on large diameter pipes, automated applications of ultrasonic testing, ultrasound/computer-aided design coupling, pressure vessels inspection using acoustic emission testing (leaks detection, application to composite materials), numerical radiography (image visualisation and processing), magnetic testing (steel damage detection using Barkhausen noise testing), 'shearography' (detection of the loss of thickness in pipes due to corrosion), X-ray tomography (density measurement of sintered steels, fluid flow calculations in automobile parts). (J.S.)

  3. Effects of pressure, temperature and atomic exchanges on phase separation dynamics in Au/Ni(111) surface alloy: Kinetic Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Zvejnieks, G. [Institute for Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Ibenskas, A., E-mail: ibenskas@pfi.lt [Center for Physical Sciences and Technology, Semiconductor Physics Institute, Gostauto 11, LT-01108 Vilnius (Lithuania); Tornau, E.E. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, Gostauto 11, LT-01108 Vilnius (Lithuania)

    2015-11-15

    Instability of the Au/Ni(111) surface alloy is studied in different CO gas pressure, p, and temperature limits using kinetic Monte Carlo simulations. We analyze the reaction front dynamics and formation of Au clusters using the model which takes into account surface adatom pair and three-body interactions, CO adsorption and desorption, catalytic carbonyl formation reaction, Au and Ni adatom diffusion and their concerted exchange. Variation of interaction parameters allows us to identify three possible reaction front propagation limits with different pressure dependencies: (i) slow channel-like flow in agreement with experimental data [1] (step flow rate, R, increases with p), (ii) intermediate regime (weak p–dependence), and (iii) fast homogeneous flow (R decreases with p). We find that only Au–Ni exchange, contrary to both Ni–CO and Au–CO exchanges, significantly reduces the number of screened Ni atoms inside the Au clusters and stimulates the occurrence of Ni-free Au clusters. The size of Au islands depends on both pressure and temperature. At a fixed temperature it decreases with pressure due to an increased step flow rate. In the high temperature limit, despite the step flow rate exponential increase with temperature, the cluster size increases due to an enhanced Au mobility. - Highlights: • Kinetic Monte Carlo study of Au–Ni surface alloy instability to CO pressure and temperature. • Three reaction front propagation regimes. • In channel-like regime, the step flow rate increases with CO pressure as in experiment. • Ni-free Au islands are obtained when Au-Ni adatom exchange mechanism is considered. • The size of Au islands decreases with pressure and increases with temperature.

  4. Effects of pressure, temperature and atomic exchanges on phase separation dynamics in Au/Ni(111) surface alloy: Kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Zvejnieks, G.; Ibenskas, A.; Tornau, E.E.

    2015-01-01

    Instability of the Au/Ni(111) surface alloy is studied in different CO gas pressure, p, and temperature limits using kinetic Monte Carlo simulations. We analyze the reaction front dynamics and formation of Au clusters using the model which takes into account surface adatom pair and three-body interactions, CO adsorption and desorption, catalytic carbonyl formation reaction, Au and Ni adatom diffusion and their concerted exchange. Variation of interaction parameters allows us to identify three possible reaction front propagation limits with different pressure dependencies: (i) slow channel-like flow in agreement with experimental data [1] (step flow rate, R, increases with p), (ii) intermediate regime (weak p–dependence), and (iii) fast homogeneous flow (R decreases with p). We find that only Au–Ni exchange, contrary to both Ni–CO and Au–CO exchanges, significantly reduces the number of screened Ni atoms inside the Au clusters and stimulates the occurrence of Ni-free Au clusters. The size of Au islands depends on both pressure and temperature. At a fixed temperature it decreases with pressure due to an increased step flow rate. In the high temperature limit, despite the step flow rate exponential increase with temperature, the cluster size increases due to an enhanced Au mobility. - Highlights: • Kinetic Monte Carlo study of Au–Ni surface alloy instability to CO pressure and temperature. • Three reaction front propagation regimes. • In channel-like regime, the step flow rate increases with CO pressure as in experiment. • Ni-free Au islands are obtained when Au-Ni adatom exchange mechanism is considered. • The size of Au islands decreases with pressure and increases with temperature

  5. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  6. Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures

    International Nuclear Information System (INIS)

    Jie, J.C.; Zou, C.M.; Brosh, E.; Wang, H.W.; Wei, Z.J.; Li, T.J.

    2013-01-01

    Highlights: •Al–42.2Mg alloy was solidified under pressures of 1, 2, and 3 GPa and the microstructure analyzed. •A thermodynamic calculation of the Al–Mg phase diagram at high pressures was performed. •The phase content changes from predominantly γ-Al 12 Mg 17 at 1 GPa to FCC solid solution at 3 GPa. •The β-Al 3 Mg 2 is predicted to remain stable at low temperatures but is not observed. •The alloy solidified at high pressure has remarkably enhanced ultimate tensile strength. -- Abstract: Phase formation, the microstructure and its evolution, and the mechanical properties of an Al–42.2 at.% Mg alloy solidified under high pressures were investigated. After solidification at pressures of 1 GPa and 2 GPa, the main phase is the γ phase, richer in Al than in equilibrium condition. When the pressure is further increased to 3 GPa, the main phase is the supersaturated Al(Mg) solid solution with Mg solubility up to 41.6 at.%. Unlike in similar alloys solidified at ambient pressure, the β phase does not appear. Calculated high-pressure phase diagrams of the Al–Mg system show that although the stability range of the β phase is diminished with pressure, it is still thermodynamically stable at room temperature. Hence, the disappearance of the β phase is interpreted as kinetic suppression, due to the slow diffusion rate at high pressures, which inhibits solid–solid reactions. The Al–42.2 at.% Mg alloy solidified under 3 GPa has remarkably enhanced ultimate tensile strength compared to the alloy solidified under normal atmospheric pressure

  7. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal; Pryor, Owen; Koroglu, Batikan; Sarathy, Mani; Masunov, Artë m E.; Vasu, Subith S.

    2017-01-01

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  8. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal

    2017-03-10

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  9. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  10. Magnetic dipole self-organization of charge carriers in high-temperature superconductors and kinetics of phase transformation

    CERN Document Server

    Voronov, A V; Shuvalov, V V

    2001-01-01

    The phenomenological model, describing the magnetic dipole self-organization of charge carriers (formation of so-called stripe-structures and energy gap in the states spectrum), is designed for interpreting the data on the nonstationary nonlinear spectroscopy of the high-temperature superconductors. It is shown that after fast heating of the superconducting sample the kinetics of the subsequent phase transition depends on the initial temperature T. The destruction of the stripe-structures at low overheating T* < T < T sub m approx = (1.4-1.5)T*, whereby T sub c and T* approx = T sub c are the temperatures of transition into the superconducting state and formation of the stripe-structures occurs slowly (the times above 10 sup - sup 9 s) in spite of practically instantaneous disappearance of the superconductivity

  11. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  12. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  13. Gas-solids kinetics of CuO/Al2O3 as an oxygen carrier for high-pressure chemical looping processes : the influence of the total pressure

    NARCIS (Netherlands)

    San Pio Bordeje, M.A.; Gallucci, F.; Roghair, I.; van Sint Annaland, M.

    2017-01-01

    Copper oxide on alumina is often used as oxygen carrier for chemical looping combustion owing to its very high reduction rates at lower temperatures and its very good mechanical and chemical stability at not too high temperatures. In this work, the redox kinetics of CuO/Al2O3 have been studied at

  14. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet

    Directory of Open Access Journals (Sweden)

    Can Kang

    2013-08-01

    Full Text Available Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  15. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet.

    Science.gov (United States)

    Kang, Can; Liu, Haixia

    2013-08-14

    Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS) velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA) technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM) and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  16. Exergoeconomic optimization of coaxial tube evaporators for cooling of high pressure gaseous hydrogen during vehicle fuelling

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Rothuizen, Erasmus Damgaard; Markussen, Wiebke Brix

    2014-01-01

    Gaseous hydrogen as an automotive fuel is reaching the point of commercial introduction. Development of hydrogen fuelling stations considering an acceptable fuelling time by cooling the hydrogen to -40 C has started. This paper presents a design study of coaxial tube ammonia evaporators for three......-stage evaporator. The main contribution to the total cost was the cost associated with exergy destruction, the capital investment cost contributed with 5-14 %. The main contribution to the exergy destruction was found to be thermally driven. The pressure driven exergy destruction accounted for 3-9 %....

  17. Investigations on the determination of corrosion kinetics and the structure of corrosion products on high-temperature alloys under low oxygen partial pressures

    International Nuclear Information System (INIS)

    Poestges, A.; Naoumidis, A.; Nickel, H.

    1979-04-01

    On three nickel-base-alloys (NIMONIC 80A, INCONNEL 617 and ALLOY 713LC), which are planned as materials for components of the primary cooling circuit of high-temperature reactors, studies for the determination of the oxidation behaviour under reactor relevant conditions were performed. The test conditions were fixed at an oxygen partial pressure of 10 -16 bars with a total pressure of 0,2 bars and a temperature of 1080 0 C. The use of the X-ray diffraction analysis on the oxidised samples of type NIMONIC 80A showed the corrosion products Cr 2 O 3 , TiO 2 and Cr 2 Ti 2 O 7 in the outer oxide coating as well as Al 2 O 3 in the inner oxide zone. The samples of the alloy type INCOEL 617 showed the oxides Cr 2 O 3 and Cr 2 Ti 2 O 7 in the outer oxide coating. Samples of the alloy ALLOY 713LC showed Cr 2 O 3 and CrNbO 4 in the outer oxide coating and Al 2 O 3 in the zone of inner oxidation. Sufficient detection certainty was only ascertained by investigating samples with plane surface. For both alloys first mentioned, it was possible to prove the validity of the paralinear relationship W = k x t -1 / 2 - a x t for the increase in weight for the explanation of the time law of the oxidation. For the non-destructive determination of the oxide coating thickness on the alloys samples, the X-ray fluorescence analysis gave reproducible results of good precision. (orig.) [de

  18. High-Energy Corona for destruction of volatile organic contaminants in process off-gases

    International Nuclear Information System (INIS)

    Virden, J.W.; Heath, W.O.; Goheen, S.C.; Miller, M.C.; Mong, G.M.; Richardson, R.L.

    1992-08-01

    A small (2 scfm) High-Energy Corona (HEC) reactor was developed to produce a non-equilibrium plasma in a concentric-cylinder geometry. A volume-filling plasma was produced in a packed bed, and initial tests have demonstrated the ability to destroy up to 1500 ppM trichloroethylene at a flow rate of 1.4 scfm, with greater than 99% destruction observed. Destruction efficiency is examined as a function of inlet TCE concentration, bed height (residence time) and applied voltage. Hydrochloric acid appears to be the primary chlorinated byproduct, and can be removed by conventional wet or dry scrubbing

  19. A preliminary high-pressure thermogravimetric study of combustion reactivity of a Collie coal char

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yii Leng; Zhang, Zhezi; Zhu, Mingming; Zhang, Dongke [Western Australia Univ., Crawley, WA (Australia). Centre for Energy (M473); Luan, Chao [Western Australia Univ., Crawley, WA (Australia). Centre for Energy (M473); Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering; You, Changfu [Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering

    2013-07-01

    The effect of pressure(up to 20 bar)on the reactivity of a char(150-160 {mu}m) produced from Western Australian Collie coal has been studied using a high-pressure thermogravimetric analyser (HP TGA). The pressure demonstrated a positive effect in enhancing char combustion reactivities.Kinetic parameters have been determined from the experimental data.The apparent reaction order was found to be approximately 0.7 and the apparent activation energies were 91.0 kJ/mol at atmospheric pressure and 1.5 kJ/mol at an elevated pressure(10 bar),indicating a shift in the control regimes of the reaction at elevated pressures.The lumped effect of the sample size, bulk diffusion,interparticle and intraparticle diffusion at the elevated pressures played an important role in reducing the mass transfer during the HP-TGA experimentation.Thus the activation energy calculated at elevated pressures may not represent the intrinsic activation energy of the char particles but the apparent values of the bulk of the samples.

  20. Kinetics and sites of destruction of 111In-oxine-labeled platelets in idiopathic thrombocytopenic purpura: a quantitative study

    International Nuclear Information System (INIS)

    Heyns, A.D.; Loetter, M.G.; Badenhorst, P.N.; de Kock, F.; Pieters, H.; Herbst, C.; van Reenen, O.R.; Kotze, H.; Minnaar, P.C.

    1982-01-01

    Kinetics and quantification of the sites of destruction of 111 In-oxine-labeled autologous platelets were investigated in eight patients with idiopathic thrombocytopenic purpura. The mean platelet count was 17 +/- 9 X 10(9)/liter; platelets were separated by differential centrifugation and labeled with 5.6 +/- 2.5 MBq 111 In. Whole body and organ 111 In-platelet distribution was quantitated with a scintillation camera and a computer-assisted imaging system acquisition matrix. Areas of interest were selected with the computer and organ 111 In-radioactivity expressed as a percentage of whole body activity. Mean platelet survival was 49.5 +/- 29.6 hr and the survival curves were exponential. Equilibrium percentage organ 111 In-radioactivity was (normal values in parentheses): spleen 33.7 +/- 8.8 (31.1 +/- 10.2); liver 16.1 +/- 9.5 (13.1 +/- 1.3); thorax 22.8 +/- 3.7 (28.2 +/- 5.6). Percentage organ 111 In-activity at the time when labeled platelets had disappeared from the circulation was: spleen 44.5 +/- 16.4 (40 +/- 16); liver 16.0 +/- 11.5 (32.4 +/- 7.2); thorax 19.7 +/- 6.0 (17.7 +/- 10.3). Thorax activity corresponds to bone marrow radioactivity. Three patterns of platelet sequestration were evident. Three patients had mainly splenic sequestration, two mainly hepatic sequestration, and three diffuse reticuloendothelial system sequestration with a major component of platelets destroyed in the bone marrow. Splenectomy was performed in two patients. The pattern of 111 In-platelet sequestration was not predictive of response of glucocorticoid therapy or indicative of the necessity for splenectomy. Quantitative 111 In-labeled autologous platelet kinetic studies provide a new tool for the investigation of platelet disorders.U

  1. Self-Consistent System of Equations for a Kinetic Description of the Low-Pressure Discharges Accounting for the Nonlocal and Collisionless Electron Dynamics

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg

    2003-01-01

    In low-pressure discharges, when the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially non-local. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the non-local conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, non-uniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. The importance of accounting for the non-uniform plasma density profile on both the current density profile and the EEDF is demonstrated

  2. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  3. CO partial pressure dependence of the kinetics of melting of HbS aggregates studied in high concentration phosphate buffer

    Science.gov (United States)

    Aroutiounian, Svetlana

    2002-10-01

    Deoxygenated sickle cell hemoglobin (HbS) monomers enter the polymer phase either by incorporation into a critical nucleus, through heterogeneous nucleation and or through linear growth of the polymers when the concentration of monomers exceeds the solubility. CO-bound, R-state HbS monomers do not polymerize. Thus, polymer melting is enhanced by binding of carbon monoxide (CO) to HbS polymerized monomers. In our study, the melting of HbS aggregates mediated by dilution and CO binding to polymerized monomers is observed with time-resolved extinction spectroscopy. The CO partial pressure (pCO) dependence of the kinetics of melting is studied for pCO = 0, 0.25, 0.5, 0.75, 1 atm with difference progress curves. A phenomenological description with slow and fast relaxation modes reveals a variable relaxation time near the pCO=0.5 due to competition of kinetic mechanisms. The slow component increases with increasing pCO. It has a positive intercept due to the combined action of dilution of the sample and CO-ligation. The pCO dependence is near linear due to non-cooperative CO binding. Significant slowing down of aged samples, most likely due to gelation, is observed. As possible mechanism for variable relaxation time near pCO=0.5atm the fractional percolation threshold is discussed. This work was supported by NIH grant HL58091 (awarded to Daniel. B. Kim-Shapiro).

  4. Friction and wear studies of nuclear power plant components in pressurized high temperature water environments

    International Nuclear Information System (INIS)

    Ko, P.L.; Zbinden, M.; Taponat, M.C.; Robertson, M.F.

    1997-01-01

    The present paper is part of a series of papers aiming to present the friction and wear results of a collaborative study on nuclear power plant components tested in pressurized high temperature water. The high temperature test facilities and the methodology in presenting the kinetics and wear results are described in detail. The results of the same material combinations obtained from two very different high temperature test facilities (NRCC and EDF) are presented and discussed. (K.A.)

  5. Steam injection for the thermal plasma destruction of halons and chlorofluorocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, A.B.; Farmer, A.J.D.; Horrigan, E.C. [CSIRO Telecomunications and Industrial Physics, Lindfield NSW (Australia); Mc Allister, T. [CSIRO Telecomunications and Industrial Physics, Clifton Hill Vic (Australia)

    2001-07-01

    The destruction of ozone-depleting substances, in particular chlorofluorocarbons and halons, in the PLASCON plasma process is investigated. In particular, the use of oxygen and steam as oxidising gases is compared. Measurements of the exhaust gas composition are compared with the results Of calculations performed using a comprehensive chemical kinetic scheme. It is found that significant interconversion of ozone-depleting substances occurs, particularly for chloro-fluorocarbon destruction Steam is found to be a superior oxidising gas to oxygen, with greatly reduced levels of ozone-depleting substances and CF{sub 4} in the exhaust gas, particularly if the steam is input at close to or greater than stoichiometric levels. (authors)

  6. Combustion and gasification of coal and straw under pressurized conditions. Task 2: Determination of kinetic parameters in PTGA

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, O; Hald, P; Bak, J; Boll Illerup, J; Gjernes, E; Fjellerup, J; Olsen, A

    1995-10-01

    The reactivities of pulverized coal and straw fuels were investigated regarding pyrolysis, combustion and gasification with CO{sub 2} and H{sub 2}O by thermogravimetric analysis under pressurized conditions. The fuels were a Colombian coal, pulverized to 45-90 {mu}m particles, and wheat straw pulverized to 0-200 {mu}m particles. The pyrolysis studies were performed at 150-1000 deg. C in pure N{sub 2} at 1.5 to 40 bar. The combustion studies were performed at 300-550 deg. C, 1.5-40 bar total pressure with 0.08-0.8 bar of O{sub 2} partial pressure. The CO{sub 2} gasification studies were performed at 850-1200 deg. C, 4-40 bar of total pressure with 0.7-4 bar of CO{sub 2} partial pressure, also including studies with CO in combination with CO{sub 2}. A minor H{sub 2}O gasification study with straw was performed at 900-1050 deg. C at 1.5-2.0 bar of total pressure in an atmosphere containing partial pressures up to 0.32 bar of H{sub 2}O, o.2 bar of CO{sub 2}, 0.28 bar of CO and 0.12 bar of H{sub 2}. For combustion and CO{sub 2} gasification the results were analyzed with regard to reaction kinetics, and kinetic parameters that represent the experimental results were found. (AU) 11 tabs., 26 ills., 10 refs.

  7. The correlation between microstructure and mechanical properties of high-pressure die-cast AM50 alloy

    International Nuclear Information System (INIS)

    Song Jie; Xiong Shoumei; Li Mei; Allison, John

    2009-01-01

    Scanning acoustic microscopy was used to characterize the micro-voids distribution for specimens in non-destructive mode. In addition, the in-situ scanning electron microscopy observation was performed during tensile deformation of high-pressure die-cast (HPDC) of AM50 alloy to obtain the mechanism of fracture induced by micro-voids. The effects of micro-voids on the mechanical properties were discussed. The results obtained from the examination suggest that fracture tends to occur at bigger micro-voids or in the cluster micro-voids area.

  8. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    International Nuclear Information System (INIS)

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.

    2011-01-01

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF 6 .

  9. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    Science.gov (United States)

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.

    2011-09-01

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.

  10. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    Energy Technology Data Exchange (ETDEWEB)

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Rambo, P. K.; Atherton, B. W. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2011-09-15

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF{sub 6}.

  11. Kinetic energy absorbing pad

    International Nuclear Information System (INIS)

    Bricmont, R.J.; Hamilton, P.A.; Ming Long Ting, R.

    1981-01-01

    Reactors, fuel processing plants etc incorporate pipes and conduits for fluids under high pressure. Fractures, particularly adjacent to conduit elbows, produce a jet of liquid which whips the broken conduit at an extremely high velocity. An enormous impact load would be applied to any stationary object in the conduit's path. The design of cellular, corrugated metal impact pads to absorb the kinetic energy of the high velocity conduits is given. (U.K.)

  12. Oxidation kinetics and mechanisms of carbon/carbon composites and their components in water vapour at high temperatures

    International Nuclear Information System (INIS)

    Qin, Fei; Peng, Li-na; He, Guo-qiang; Li, Jiang; Yan, Yong

    2015-01-01

    Highlights: • 4D-C/C composite was fabricated using carbon fibre and coal tar pitch. • The rate of mass loss and oxidation kinetics parameters of fibres-H 2 O and matrix-H 2 O are obtained. • The rate of mass loss and oxidation kinetics parameters of C/C–H 2 O are obtained. • Oxidation rate of the fibre bundle is greater than the oxidation rate of the matrix. - Abstract: Thermogravimetric analysis and scanning electron microscopy were used to study the oxidation kinetics of four-direction carbon/carbon composites and their components (fibres and matrices) in a H 2 O–Ar atmosphere at high temperatures. The oxidation processes were restricted to reaction-limited oxidation. The rate of mass loss was estimated for the four-direction carbon/carbon composites and their components at high temperature. The pressure exponent for the reaction of the carbon/carbon composites with H 2 O was 0.59, and the pre-exponential factor and activation energy for the reactions of H 2 O with the carbon/carbon composites, carbon fibres and matrices were determined

  13. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10-6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C6H11) and π-allyl C6H9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C6H9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C6H9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E2u mode of free benzene, which leads to catalysis. Linear C6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt

  14. Kinetics on the reaction of substituted quinolines and p-substituted benzoylchlorides under various pressures

    International Nuclear Information System (INIS)

    Kim, Young Cheul; Lim, Jong Wan; Choi, Sung Yong; Kim, Se Kyong

    1999-01-01

    The reaction rates of substituted quinolines(6-CH 3 C 9 H 7 N, C 9 H 7 N) with p-substituted benzoylchlorides(p-CH 3 , p-H, p-NO 2 ) have been measured by conductometry in acetonitrile, and the rate constants are determined at various temperatures (10,15, 20, 25 .deg. C) and pressures(1, 200, 500, 1000bar). From the values of rate constants, the activation parameters(Ea, ΔV ≠ , ΔS ≠ , and ΔG ≠ ) and the pressure dependence of Hammett ρ values were determined. The rate constants increase as a function of temperatures and pressures, and are further increase by introduction the electron donor substituents in nucleophile(p-CH 3 ) or electron acceptor(p-NO 2 ) substituents in substrate. The activation volume, and the activation entropy are all negative. Hammett ρ values are also negative for nucleophile (ρ X ) and positive for the substrate (ρ Y ) over the pressure range studied. The results of kinetic studies for pressure and substituent show that these reactions proceed in typical S N 2 reaction mechanism and 'associative S N 2' in which bond formation favored with increasing pressures

  15. OH kinetic in high-pressure plasmas of atmospheric gases containing C2H6 studied by absolute measurement of the radical density in a pulsed homogeneous discharge

    International Nuclear Information System (INIS)

    Magne, L; Pasquiers, S; Gadonna, K; Jeanney, P; Blin-Simiand, N; Jorand, F; Postel, C

    2009-01-01

    The absolute value of the hydroxyl radical was measured in the afterglow of an homogeneous photo-triggered discharge generated in N 2 /O 2 /H 2 O/C 2 H 6 mixtures, using a UV absorption diagnostic synchronized with the discharge current pulse. Measurements show that OH is efficiently produced even in the absence of water vapour in the mixture, and that the radical production is closely linked to the degradation kinetic of the hydrocarbon. Experimental results for dry mixtures, both for OH and for the removal of ethane in the discharge volume, are compared with predictions of a self-consistent 0D discharge and the kinetic model. It appears that the oxidation reaction of the ethane molecule by O( 3 P) atoms plays a minor role. Dissociation of the hydrocarbon through quenching collisions of the nitrogen metastable states are of great importance for a low oxygen concentration value. Also, the oxidation of ethane by O( 1 D) cannot be neglected at high oxygen concentration. The most probable exit channel for N 2 states quenching collisions by ethane is the production of ethene and hydrogen molecules. Afterwards C 2 H 4 should be dissociated to produce H and H 2 . As previously suggested from the study of the OH density time evolution in relative value, the recombination of H and O atoms appears as a main process for the production of OH in transient low temperature plasmas generated in atmospheric gases at high pressure. Another important reaction is the reduction of the HO 2 radical by O, this radical coming from the addition of H on the oxygen molecule. H atoms come from numerous kinetic processes, amongst which is the dissociation of ethene.

  16. [Complex formation between alpha-chymotrypsin and block copolymers based on ethylene and propylene oxide, induced by high pressure].

    Science.gov (United States)

    Topchieva, I N; Sorokina, E M; Kurganov, B I; Zhulin, V M; Makarova, Z G

    1996-06-01

    A new method of formation of non-covalent adducts based on an amphiphilic diblock copolymer of ethylene and propylene oxides with molecular mass of 2 kDa and alpha-chymotrypsin (ChT) under high pressure, has been developed. The composition of the complexes corresponds to seven polymer molecules per one ChT molecule in the pressure range of 1.1 to 400 MPa. The complexes fully retain the catalytic activity. Kinetic constants (Km and kcat) for enzymatic hydrolysis of N-benzoyl-L-tyrosine ethyl ester catalyzed by the complexes are identical with the corresponding values for native ChT. Analysis of kinetics of thermal inactivation of the complexes revealed that the constant of the rate of the slow inactivation step is markedly lower than for ChT.

  17. Static and kinetic friction of granite at high normal stress

    Science.gov (United States)

    Byerlee, J.D.

    1970-01-01

    Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.

  18. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis.

    Science.gov (United States)

    Dyverfeldt, Petter; Hope, Michael D; Tseng, Elaine E; Saloner, David

    2013-01-01

    The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance-measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R(2) = 0.91). Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss in aortic stenosis. Copyright © 2013 American

  19. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  20. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Parents / Hypertension (High Blood Pressure) What's ... High Blood Pressure) Treated? Print What Is Hypertension (High Blood Pressure)? Blood pressure is the pressure of blood against ...

  1. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    Science.gov (United States)

    Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew

    2018-02-01

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  2. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  3. Decontamination and recycle of zirconium pressure tubes from Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Gantayet, L.M.; Verma, R.; Remya Devi, P.S.; Banerjee, S.; Kotak, V.; Raha, A.; Sandeep, K.C.; Joshi, Shreeram W.; Lali, A.M.

    2009-01-01

    An ion exchange process has been developed for decontamination of zirconium pressure tubes from Pressurized Heavy Water Reactor and recycling of neutronically improved zirconium. Distribution coefficient, equilibrium isotherm, kinetic and breakthrough data were used to develop the separation process. Effect of gamma radiation on indigenous resins was also studied to assess their suitability in high radiation field. (author)

  4. Exergoeconomic optimization of coaxial tube evaporators for cooling of high pressure gaseous hydrogen during vehicle fuelling

    International Nuclear Information System (INIS)

    Jensen, Jonas K.; Rothuizen, Erasmus D.; Markussen, Wiebke B.

    2014-01-01

    Highlights: • Three concepts of cooling hydrogen were identified. • A numerical heat transfer model of a coaxial-tube evaporator was built. • The cost of exergy destruction and capital investment cost was evaluated for a range of feasible solution. • The exergoeconomic optimum design for all three concepts was identified. • Cooling with a two-stage evaporator reduces total cost 45% compared to a one-stage evaporator. - Abstract: Gaseous hydrogen as an automotive fuel is reaching the point of commercial introduction. Development of hydrogen fuelling stations considering an acceptable fuelling time by cooling the hydrogen to −40 °C has started. This paper presents a design study of coaxial tube ammonia evaporators for three different concepts of hydrogen cooling, one one-stage and two two-stage processes. An exergoeconomic optimization is imposed to all three concepts to minimize the total cost. A numerical heat transfer model is developed in Engineer Equation Solver, using heat transfer and pressure drop correlations from the open literature. With this model the optimal choice of tube sizes and circuit numbers are found for all three concepts. The results show that cooling with a two-stage evaporator after the pressure reduction valve yields the lowest total cost, 45% lower than the highest, which is with a one-stage evaporator. The main contribution to the total cost was the cost associated with exergy destruction, the capital investment cost contributed with 5–14%. The main contribution to the exergy destruction was found to be thermally driven. The pressure driven exergy destruction accounted for 3–9%

  5. High pressure study of Pu{sub 0.92}Am{sub 0.08} binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Klosek, V; Faure, P; Genestier, C [CEA, Valduc, F-21120 Is-sur-Tille (France); Griveau, J C; Wastin, F [European Commission JRC, Institute for Transuranium Elements, Postfach 2340, D-76125 Karlsruhe (Germany); Baclet, N [CEA, DRT/DTMN, F-38054 Grenoble (France)], E-mail: vincent.klosek@cea.fr

    2008-07-09

    The phase transitions (by means of x-ray diffraction) and electrical resistivity of a Pu{sub 0.92}Am{sub 0.08} binary alloy were determined under pressure (up to 2 GPa). The evolution of atomic volume with pressure gives detailed information concerning the degree of localization of 5f electronic states and their delocalization process. A quasi-linear V = f(P) dependence reflects subtle modifications of the electronic structure when P increases. The electrical resistivity measurements reveal the very high stability of the {delta} phase for pressures less than 0.7 GPa, since no martensitic-like transformation occurs at low temperature. Remarkable electronic behaviours have also been observed. Finally, resistivity curves have shown the temperature dependence of the phase transformations together with unexpected kinetic effects.

  6. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  7. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  8. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  9. Destruction of chlorine-containing organic agents in a system plasma - liquid

    International Nuclear Information System (INIS)

    Chernyak, V.Ya.; Yukhymenko, V.V.; Babich, I.L.; Slyusarenko, Y.I.; Tarasova, Ya.B.

    2005-01-01

    The plasma chemical destruction of persistent toxic agent 1,1-di(4-chlorophenol)-2,2,2-threechlorethane (DDT) in water solutions is researched in this work. The destruction of agricultural pesticide containing DDT was carried out in water solution at atmospheric pressure with usage of plasma treatment on the basis of secondary discharges with a 'liquid' electrode, and of combination of a plasma method with reagent method. The comparative analysis of results of the physical-chemical analysis and biological test of toxicity of solutions is carried out and the optimum regimes for destruction and detoxication of DDT in water are determined

  10. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  11. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies

    International Nuclear Information System (INIS)

    Tranter, Robert S.; Giri, Binod R.; Kiefer, John H.

    2007-01-01

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr

  12. High-Throughput Study of Diffusion and Phase Transformation Kinetics of Magnesium-Based Systems for Automotive Cast Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Alan A [The Ohio State Univ., Columbus, OH (United States); Zhao, Ji-Cheng [The Ohio State Univ., Columbus, OH (United States); Riggi, Adrienne [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Joost, William [US Dept. of Energy, Washington, DC (United States)

    2017-10-02

    The objective of the proposed study is to establish a scientific foundation on kinetic modeling of diffusion, phase precipitation, and casting/solidification, in order to accelerate the design and optimization of cast magnesium (Mg) alloys for weight reduction of U.S. automotive fleet. The team has performed the following tasks: 1) study diffusion kinetics of various Mg-containing binary systems using high-throughput diffusion multiples to establish reliable diffusivity and mobility databases for the Mg-aluminum (Al)-zinc (Zn)-tin (Sn)-calcium (Ca)-strontium (Sr)-manganese (Mn) systems; 2) study the precipitation kinetics (nucleation, growth and coarsening) using both innovative dual-anneal diffusion multiples and cast model alloys to provide large amounts of kinetic data (including interfacial energy) and microstructure atlases to enable implementation of the Kampmann-Wagner numerical model to simulate phase transformation kinetics of non-spherical/non-cuboidal precipitates in Mg alloys; 3) implement a micromodel to take into account back diffusion in the solid phase in order to predict microstructure and microsegregation in multicomponent Mg alloys during dendritic solidification especially under high pressure die-casting (HPDC) conditions; and, 4) widely disseminate the data, knowledge and information using the Materials Genome Initiative infrastructure (http://www.mgidata.org) as well as publications and digital data sharing to enable researchers to identify new pathways/routes to better cast Mg alloys.

  13. Kinetic modeling of ethane pyrolysis at high conversion.

    Science.gov (United States)

    Xu, Chen; Al Shoaibi, Ahmed Sultan; Wang, Chenguang; Carstensen, Hans-Heinrich; Dean, Anthony M

    2011-09-29

    The primary objective of this study is to develop an improved first-principle-based mechanism that describes the molecular weight growth kinetics observed during ethane pyrolysis. A proper characterization of the kinetics of ethane pyrolysis is a prerequisite for any analysis of hydrocarbon pyrolysis and oxidation. Flow reactor experiments were performed with ~50/50 ethane/nitrogen mixtures with temperatures ranging from 550 to 850 °C at an absolute pressure of ~0.8 atm and a residence time of ~5 s. These conditions result in ethane conversions ranging from virtually no reaction to ~90%. Comparisons of predictions using our original mechanism to these data yielded very satisfactory results in terms of the temperature dependence of ethane conversion and prediction of the major products ethylene and hydrogen. However, there were discrepancies in some of the minor species concentrations that are involved in the molecular weight growth kinetics. We performed a series of CBS-QB3 analyses for the C(3)H(7), C(4)H(7), and C(4)H(9) potential energy surfaces to better characterize the radical addition reactions that lead to molecular weight growth. We also extended a published C(6)H(9) PES to include addition of vinyl to butadiene. The results were then used to calculate pressure-dependent rate constants for the multiple reaction pathways of these addition reactions. Inclusion of the unadjusted rate constants resulting from these analyses in the mechanism significantly improved the description of several of the species involved in molecular weight growth kinetics. We compare the predictions of this improved model to those obtained with a consensus model recently published as well as to ethane steam cracking data. We find that a particularly important reaction is that of vinyl addition to butadiene. Another important observation is that several radical addition reactions are partially equilibrated. Not only does this mean that reliable thermodynamic parameters are essential

  14. Subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions

    Science.gov (United States)

    Sibatov, R. T.; Svetukhin, V. V.

    2015-06-01

    Based on fractional differential generalizations of the Ham and Aaron-Kotler precipitation models, we study the kinetics of subdiffusion-limited growth and dissolution of new-phase precipitates. We obtain the time dependence of the number of impurities and dimensions of new-phase precipitates. The solutions agree with the Monte Carlo simulation results.

  15. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  16. High pressure dielectric studies on the structural and orientational glass.

    Science.gov (United States)

    Kaminska, E; Tarnacka, M; Jurkiewicz, K; Kaminski, K; Paluch, M

    2016-02-07

    High pressure dielectric studies on the H-bonded liquid D-glucose and Orientationally Disordered Crystal (ODIC) 1,6-anhydro-D-glucose (levoglucosan) were carried out. It was shown that in both compounds, the structural relaxation is weakly sensitive to compression. It is well reflected in the low pressure coefficient of the glass transition and orientational glass transition temperatures which is equal to 60 K/GPa for both D-glucose and 1,6-anhydro-D-glucose. Although it should be noted that ∂Tg(0)/∂p evaluated for the latter compound seems to be enormously high with respect to other systems forming ODIC phase. We also found that the shape of the α-loss peak stays constant for the given relaxation time independently on the thermodynamic condition. Consequently, the Time Temperature Pressure (TTP) rule is satisfied. This experimental finding seems to be quite intriguing since the TTP rule was shown to work well in the van der Waals liquids, while in the strongly associating compounds, it is very often violated. We have also demonstrated that the sensitivity of the structural relaxation process to the temperature change measured by the steepness index (mp) drops with pressure. Interestingly, this change is much more significant in the case of D-glucose with respect to levoglucosan, where the fragility changes only slightly with compression. Finally, kinetics of ODIC-crystal phase transition was studied at high compression. It is worth mentioning that in the recent paper, Tombari and Johari [J. Chem. Phys. 142, 104501 (2015)] have shown that ODIC phase in 1,6-anhydro-D-glucose is stable in the wide range of temperatures and there is no tendency to form more ordered phase at ambient pressure. On the other hand, our isochronal measurements performed at varying thermodynamic conditions indicated unquestionably that the application of pressure favors solid (ODIC)-solid (crystal) transition in 1,6-anhydro-D-glucose. This result mimics the impact of pressure on the

  17. A DLTS study of the evolution of oxygen precipitates in Si at high temperature and high pressure

    International Nuclear Information System (INIS)

    Antonova, I.V.; Popov, V.P.; Fedina, L.I.; Shaimeev, S.S.; Misiuk, A.

    1996-01-01

    The effect of high hydrostatic pressure on the dissolution of oxygen precipitates introduced beforehand into Si at temperatures of 920-1000 K (over period of 96 h) is investigated by the DLTS method. A measurement procedure, based on the formation of electrically active complexes (interstitial oxygen atom-vacancy) during electron irradiation of the samples, is proposed. It is shown that the precipitates do not decompose when point defects are introduced at room temperature. As the treatment temperature increases (to 1220-1650 K), for the same values of the hydrostatic pressure (up to 1.3 GPa) the intensity of the decomposition of oxygen precipitates increases and at 1650 K they are completely dissolved. Study of the decomposition kinetics showed that hydrostatic pressure raises the limit of solubility of the oxygen atoms Oi and slows down their diffusion. It is determined that the diffusion activation energy Ea, just as the preexponential factor D0, in the expression for the diffusion decrease with increasing hydrostatic pressure, resulting in a lower diffusion. Possible mechanisms for the effect of hydrostatic pressure on oxygen diffusion near a precipitate are discussed

  18. Combustion characteristics and kinetic analysis of pulverized coal under different pressure grades

    Directory of Open Access Journals (Sweden)

    Qiwei ZUO

    2016-02-01

    Full Text Available By using thermo gravimetric balance, experimental research on combustion characteristics and dynamics parameters of the typical coal injection from some domestic steelworks are conducted with non-isothermal method. The combustion characteristic parameters of the sample pulverized coal such as ignition temperature, peak temperature at maximum weight loss rate, burnout temperature, general burn exponent(S, and maximum combustion rate are studied under pressure grades of 0.1, 1.1, 2.1, 3.1 and 4.1 MPa, the activation energy (E and pre-exponential factor in the combustion process are calculated. The results show that when the pressure increases from 0.1 to 4.1 MPa, ignition temperature decreases by 85.7 K at most, peak temperature at maximum weight loss rate decreases by 249.3 K at most, burnout temperature decreases by 375 K at most, maximum weight loss rate increases by 10 times, and S increases by 33.6 times at most. It is also shown that there exists a kinetic complementation between E and ln A from the view point of dynamics, and the critical pressure of pulverized coal reaction control requirement and combustion mode transform is 3.1 MPa for the pulverized coal.

  19. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  20. Expandable Polymer Enabled Wirelessly Destructible High-Performance Solid State Electronics

    KAUST Repository

    Gumus, Abdurrahman; Alam, Arsalan; Hussain, Aftab M.; Mishra, Kush; Wicaksono, Irmandy; Sevilla, Galo T.; Shaikh, Sohail F.; Diaz, Marlon; Velling, Seneca; Ghoneim, Mohamed T.; Ahmed, Sally; Hussain, Muhammad Mustafa

    2017-01-01

    In today's digital age, the increasing dependence on information also makes us vulnerable to potential invasion of privacy and cyber security. Consider a scenario in which a hard drive is stolen, lost, or misplaced, which contains secured and valuable information. In such a case, it is important to have the ability to remotely destroy the sensitive part of the device (e.g., memory or processor) if it is not possible to regain it. Many emerging materials and even some traditional materials like silicon, aluminum, zinc oxide, tungsten, and magnesium, which are often used for logic processor and memory, show promise to be gradually dissolved upon exposure of various liquid medium. However, often these wet processes are too slow, fully destructive, and require assistance from the liquid materials and their suitable availability at the time of need. This study shows Joule heating effect induced thermal expansion and stress gradient between thermally expandable advanced polymeric material and flexible bulk monocrystalline silicon (100) to destroy high-performance solid state electronics as needed and under 10 s. This study also shows different stimuli-assisted smartphone-operated remote destructions of such complementary metal oxide semiconductor electronics.

  1. High-resolution non-destructive three-dimensional imaging of integrated circuits.

    Science.gov (United States)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H R; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-15

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography-a high-resolution coherent diffractive imaging technique-can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  2. High-resolution non-destructive three-dimensional imaging of integrated circuits

    Science.gov (United States)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H. R.; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-01

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography—a high-resolution coherent diffractive imaging technique—can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  3. Expandable Polymer Enabled Wirelessly Destructible High-Performance Solid State Electronics

    KAUST Repository

    Gumus, Abdurrahman

    2017-03-29

    In today\\'s digital age, the increasing dependence on information also makes us vulnerable to potential invasion of privacy and cyber security. Consider a scenario in which a hard drive is stolen, lost, or misplaced, which contains secured and valuable information. In such a case, it is important to have the ability to remotely destroy the sensitive part of the device (e.g., memory or processor) if it is not possible to regain it. Many emerging materials and even some traditional materials like silicon, aluminum, zinc oxide, tungsten, and magnesium, which are often used for logic processor and memory, show promise to be gradually dissolved upon exposure of various liquid medium. However, often these wet processes are too slow, fully destructive, and require assistance from the liquid materials and their suitable availability at the time of need. This study shows Joule heating effect induced thermal expansion and stress gradient between thermally expandable advanced polymeric material and flexible bulk monocrystalline silicon (100) to destroy high-performance solid state electronics as needed and under 10 s. This study also shows different stimuli-assisted smartphone-operated remote destructions of such complementary metal oxide semiconductor electronics.

  4. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  5. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  6. Effect of high pressure treatment on microbiological quality of Indian white prawn (Fenneropenaeus indicus) during chilled storage.

    Science.gov (United States)

    Ginson, J; Panda, Satyen Kumar; Bindu, J; Kamalakanth, C K; Srinivasa Gopal, T K

    2015-04-01

    High pressure treatment of 250 MPa for 6 min at 25 °C was applied to headless Indian white prawn (Fenneropenaeus indicus) to evaluate changes in microbiological characteristics of the species during chilled storage. Changes in load of mesophilic bacteria, psychrotrophic bacteria, proteolytic bacteria, Enterobacteriaceae, Pseudomonas spp., H2S producing bacteria, lactic acid bacteria, Brochothrix thermosphacta and yeast & mold were estimated in pressurized and un-pressurized samples during chilled storage. All microbes were reduced significantly after high pressure treatment and there was significant difference in microbial quality of control and high pressure treated samples in the entire duration of chilled storage (p high pressure treated samples. In high pressure treated sample, no lag phase (λ) was observed for psychrotrophic bacteria, H2S producing bacteria, B. thermosphacta, Pseudomonas spp. and lactic acid bacteria; however, other bacteria showed a reduced lag phase during chilled storage. Kinetic parameter such as specific growth rate (μmax) in high pressure treated samples was significantly reduced in most of the bacterial groups except for psychrotrophic bacteria, Enterobacteriaceae and lactic acid bacteria. Mesophilic bacterial count of control samples crossed the marginal limit of acceptability on 12th day and unacceptable limit on 18th day of storage, whereas high pressure treated samples never breached the acceptability limit during entire duration of chilled storage. The present study indicated that application of high pressure processing can be used to improve microbial quality of Indian white prawn and extend the chilled storage life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Dehydrogenation Kinetics and Modeling Studies of MgH2 Enhanced by Transition Metal Oxide Catalysts Using Constant Pressure Thermodynamic Driving Forces

    Directory of Open Access Journals (Sweden)

    Saidi Temitope Sabitu

    2012-06-01

    Full Text Available The influence of transition metal oxide catalysts (ZrO2, CeO2, Fe3O4 and Nb2O5 on the hydrogen desorption kinetics of MgH2 was investigated using constant pressure thermodynamic driving forces in which the ratio of the equilibrium plateau pressure (pm to the opposing plateau (pop was the same in all the reactions studied. The results showed Nb2O5 to be vastly superior to other catalysts for improving the thermodynamics and kinetics of MgH2. The modeling studies showed reaction at the phase boundary to be likely process controlling the reaction rates of all the systems studied.

  8. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  9. High blood pressure - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  10. High Pressure Reduction of Selenite by Shewanella oneidensis MR-1

    Science.gov (United States)

    Picard, A.; Daniel, I.; Testemale, D.; Letard, I.; Bleuet, P.; Cardon, H.; Oger, P.

    2007-12-01

    High-pressure biotopes comprise cold deep-sea environments, hydrothermal vents, and deep subsurface or deep-sea sediments. The latter are less studied, due to the technical difficulties to sample at great depths without contamination. Nevertheless, microbial sulfate reduction and methanogenesis have been found to be spatially distributed in deep deep-sea sediments (1), and sulfate reduction has been shown to be actually more efficient under high hydrostatic pressure (HHP) in some sediments (2). Sulfate-reducing bacteria obtained from the Japan Sea are characterized by an increased sulfide production under pressure (3,4). Unfortunately, investigations of microbial metabolic activity as a function of pressure are extremely scarce due to the experimental difficulty of such measurements at high hydrostatic pressure. We were able to measure the reduction of selenite Se(IV) by Shewanella oneidensis MR-1 as a function of pressure, to 150 MPa using two different high-pressure reactors that allow in situ X-ray spectroscopy measurements on a synchrotron source. A first series of measurements was carried out in a low-pressure Diamond Anvil Cell (DAC) of our own design (5) at ID22 beamline at ESRF (European Synchrotron Radiation Facility); a second one was performed in an autoclave (6) at the BM30B beamline at ESRF. Selenite reduction by strain MR-17 was monitored from ambient pressure to 150 MPa over 25 hours at 30 deg C by XANES spectroscopy (X-ray Analysis of Near Edge Structure). Spectra were recorded hourly in order to quantify the evolution of the oxidation state of selenium with time. Stationary-phase bacteria were inoculated at a high concentration into fresh growth medium containing 5 or 10 M of sodium selenite and 20 mM sodium lactate. Kinetic parameters of the Se (IV) reduction by Shewanella oneidensis strain MR-1 could be extracted from the data, as a function of pressure. They show 1) that the rate constant k of the reaction is decreased by a half at high pressure

  11. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  12. Effects of high pressure homogenization on the activity, stability, kinetics and three-dimensional conformation of a glucose oxidase produced by Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Alline Artigiani Lima Tribst

    Full Text Available High pressure homogenization (HPH is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300% at pH 6.5 in all tested temperatures (15, 50 and 75°C. The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C also caused a reduction of activity. Interestingly, at lower temperatures (15°C the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.

  13. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  14. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  15. Psoriasis and high blood pressure.

    Science.gov (United States)

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  16. High-pressure torsion of hafnium

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  17. High resolution CT in the investigation of bone destruction in the outer ear

    International Nuclear Information System (INIS)

    Koester, O.; Straehler-Pohl, H.J.; Bonn Univ.

    1986-01-01

    Eleven patients with known malignant tumours of the outer ear and three patients with otitis externa maligna were examined by high resolution CT. CT provided accurate information concerning soft tissue infiltration into the parotid or subtemporal tissues, and of the bony destruction in the mastoid, meatus and tympanic cavity. Absolute differentiation between a malignant tumour and otitis cisterna maligna is not possible, not even by high resolution CT. (orig.) [de

  18. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  19. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1991-08-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag 2+ or Ce +4 are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs

  20. The catalytic oxidation of 1-butene over bismuth molybdate catalysts : V. The kinetics of the oxidation: A. Pulse reaction kinetics; exploratory experiments for a kinetic investigation

    NARCIS (Netherlands)

    Keizer, K.; Batist, P.A.; Schuit, G.C.A.

    1969-01-01

    The kinetics of oxidn. of 1-butene with O on three types of bismuth molybdate catalysts were investigated in pulse expts. For all the catalysts mentioned the kinetics can be expressed by a first-order dependency on the butene pressure and a zero-order dependency on the O pressure. A slight deviation

  1. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    International Nuclear Information System (INIS)

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H.

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford's Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste

  2. Experimental Simulation of Methane Hydrate Extraction at High Pressure Conditions: Influence of the Sediment Bed

    Science.gov (United States)

    Agudo, J. R.; Park, J.; Luzi, G.; Williams, M.; Rauh, C.; Wierschem, A.; Delgado, A.

    2017-10-01

    Being a clean alternative to other fossil fuels, Methane Hydrate (MH) is currently considered as one of the most important potential sources for hydrocarbon fuels [1]. In addition, the high energy density of MH and its stability at higher temperatures as compared to LNG (Liquefied Natural Gas) makes MH a potential greener method for energy transportation. At the same time, the low thermodynamic stability of MH strongly questions the future exploitation of gas hydrate deposits, turning its extraction into a possible geohazard [2]. Fluctuations in pressure, temperature, salinity, degree of saturation or sediment bed properties may cause methane gas release from the water lattice. We experimentally study the influence of the sediment bed geometry during formation-dissociation of MH. For this purpose, MH is synthesized within regular substrates in a 93 cm3 high pressure vessel. The regular substrates are triangular and quadratic arrangements of identical glass spheres with a diameter of 2 and 5 mm, respectively. MH formation within regular substrate reduces the possibility of spontaneous nucleation to a unique geometrical configuration. This fact permits us to characterize the kinetics of MH formation-dissociation as a function of the sediment bed geometry. Preliminary experimental results reveal a strong dependence of MH formation on the geometry of the regular substrate. For instance, under the same pressure and temperature, the kinetics of MH production is found to change by a factor 3 solely depending on the substrate symmetry, i.e. triangular or quadratic.

  3. Medium- and high-pressure gauges and transducers produced by laser welding technology

    Science.gov (United States)

    Daurelio, Giuseppe; Nenci, Fabio; Cinquepalmi, Massimo; Chita, Giuseppe

    1998-07-01

    Industrial manufacturers produce many types of pressure gauges and transducers according to the applications, for gas or liquid, for high-medium and low pressure ranges. Nowadays the current production technology generally prefers to weld by micro TIG source the metallic corrugated membranes to the gauge or transducer bodies for the products, operating on the low pressure or medium pressure ranges. For the other ones, operating to high pressure range, generally the two components of the transducers are both threaded only and threaded and then circularly welded by micro TIG for the other higher range, till to 1000 bar. In this work the products, operating on the approximately equals 30 divided by 200 bar, are considered. These, when assembled on industrial plants, as an outcome of a non-correct operating sequence, give a 'shifted' electrical signal. This is due to a shift of the 'zero electrical signal' that unbalances the electrical bridge - thin layer sensor - that is the sensitive part of the product. Moreover, for the same problem, often some mechanical settlings of the transducer happen during the first pressure semi-components, with an increasing of the product manufacturing costs. In light of all this, the above referred, in this work the whole transducer has been re-designed according to the specific laser welding technology requirements. On the new product no threaded parts exist but only a circular laser welding with a full penetration depth about 2.5 divided by 3 mm high. Three different alloys have been tested according to the applications and the mechanical properties requested to the transducer. By using a 1.5 KW CO2 laser system many different working parameters have been evaluated for correlating laser parameters to the penetration depths, crown wides, interaction laser-materia times, mechanical and metallurgical properties. Moreover during the laser welding process the measurements of the maximum temperature, reached by the transducer top, has been

  4. Reactivity of lignin and problems of its oxidative destruction with peroxy reagents

    International Nuclear Information System (INIS)

    Demin, Valerii A; Shereshovets, Valerii V; Monakov, Yurii B

    1999-01-01

    Published data on reactivity and oxidation of lignin and model compounds with hydrogen peroxide, ozone and chlorine dioxide as well as on oxidative destruction of the sulfate pulp lignin with various reagents during bleaching are systematised and generalised. Concepts of lignin activation towards its selective oxidation and kinetic features of sulfate pulp oxidative delignification are considered. The bibliography includes 157 references.

  5. Exocytosis from chromaffin cells: hydrostatic pressure slows vesicle fusion

    Science.gov (United States)

    Stühmer, Walter

    2015-01-01

    Pressure affects reaction kinetics because chemical transitions involve changes in volume, and therefore pressure is a standard thermodynamic parameter to measure these volume changes. Many organisms live in environments at external pressures other than one atmosphere (0.1 MPa). Marine animals have adapted to live at depths of over 7000 m (at pressures over 70 MPa), and microorganisms living in trenches at over 110 MPa have been retrieved. Here, kinetic changes in secretion from chromaffin cells, measured as capacitance changes using the patch-clamp technique at pressures of up to 20 MPa are presented. It is known that these high pressures drastically slow down physiological functions. High hydrostatic pressure also affects the kinetics of ion channel gating and the amount of current carried by them, and it drastically slows down synaptic transmission. The results presented here indicate a similar change in volume (activation volume) of 390 ± 57 Å3 for large dense-core vesicles undergoing fusion in chromaffin cells and for degranulation of mast cells. It is significantly larger than activation volumes of voltage-gated ion channels in chromaffin cells. This information will be useful in finding possible protein conformational changes during the reactions involved in vesicle fusion and in testing possible molecular dynamic models of secretory processes. PMID:26009771

  6. High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy.

    Science.gov (United States)

    Piccirilli, Federica; Plotegher, Nicoletta; Ortore, Maria Grazia; Tessari, Isabella; Brucale, Marco; Spinozzi, Francesco; Beltramini, Mariano; Mariani, Paolo; Militello, Valeria; Lupi, Stefano; Perucchi, Andrea; Bubacco, Luigi

    2017-10-17

    The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct β-sheets sequentially unfold using the unique possibility offered by high-pressure Fourier transform infrared spectroscopy. The results point toward the formation of kinetic traps in the energy landscape of aS fibril disassembly and the presence of transient partially folded species during the process. Since we found that the dissociation of wild-type aS fibrils by high pressure is reversible upon pressure release, the disassembled molecules likely retain structural information that favors fibril reformation. To deconstruct the role of the different regions of aS sequence in this process, we measured the high-pressure dissociation of amyloids formed by covalent chimeric dimers of aS (syn-syn) and by the aS deletion mutant that lacks the C-terminus, i.e., aS (1-99). The results allowed us to single out the role of dimerization and that of the C-terminus in the complete maturation of fibrillar aS. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. MODELING STYRENE HYDROGENATION KINETICS USING PALLADIUM CATALYSTS

    Directory of Open Access Journals (Sweden)

    G. T. Justino

    Full Text Available Abstract The high octane number of pyrolysis gasoline (PYGAS explains its insertion in the gasoline pool. However, its use is troublesome due to the presence of gum-forming chemicals which, in turn, can be removed via hydrogenation. The use of Langmuir-Hinshelwood kinetic models was evaluated for hydrogenation of styrene, a typical gum monomer, using Pd/9%Nb2O5-Al2O3 as catalyst. Kinetic models accounting for hydrogen dissociative and non-dissociative adsorption were considered. The availability of one or two kinds of catalytic sites was analyzed. Experiments were carried out in a semi-batch reactor at constant temperature and pressure in the absence of transport limitations. The conditions used in each experiment varied between 16 - 56 bar and 60 - 100 ºC for pressure and temperature, respectively. The kinetic models were evaluated using MATLAB and EMSO software. Models using adsorption of hydrogen and organic molecules on the same type of site fitted the data best.

  8. NO kinetics in pulsed low-pressure nitrogen plasmas studied by time resolved quantum cascade laser absorption spectroscopy

    NARCIS (Netherlands)

    Welzel, S.; Guaitella, O.; Lazzaroni, C.; Pintassilgo, C.; Rousseau, A.; Röpcke, J.

    2011-01-01

    Time-resolved quantum cascade laser absorption spectroscopy at 1897 cm-1 (5.27 µm) has been applied to study the NO(X) kinetics on the micro- and millisecond time scale in pulsed low-pressure N2/NO dc discharges. Experiments have been performed under flowing and static gas conditions to infer the

  9. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  10. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  11. High-speed image processing systems in non-destructive testing

    Science.gov (United States)

    Shashev, D. V.; Shidlovskiy, S. V.

    2017-08-01

    Digital imaging systems are using in most of both industrial and scientific industries. Such systems effectively solve a wide range of tasks in the field of non-destructive testing. There are problems in digital image processing for decades associated with the speed of the operation of such systems, sufficient to efficiently process and analyze video streams in real time, ideally in mobile small-sized devices. In this paper, we consider the use of parallel-pipeline computing architectures in image processing problems using the example of an algorithm for calculating the area of an object on a binary image. The approach used allows us to achieve high-speed performance in the tasks of digital image processing.

  12. Isothermal crystallization kinetics in simulated high-level nuclear waste glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.; Smith, D.E.

    1997-01-01

    Crystallization kinetics of a simulated high-level waste (HLW) glass were measured and modelled. Kinetics of acmite growth in the standard HW39-4 glass were measured using the isothermal method. A time-temperature-transformation (TTT) diagram was generated from these data. Classical glass-crystal transformation kinetic models were empirically applied to the crystallization data. These models adequately describe the kinetics of crystallization in complex HLW glasses (i.e., RSquared = 0.908). An approach to measurement, fitting, and use of TTT diagrams for prediction of crystallinity in a HLW glass canister is proposed

  13. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  14. The principles of ultra high pressure technology and its application ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... such as spoilage microorganisms, food pathogens, enzymes and food ... heavily preserved (e.g. less acid, salt, sugar) and less ... concerned with the mechanism and kinetics of pressure- .... training, food plant personnel can learn to safely operate ..... Milk was found to provide the microorganisms protection.

  15. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  16. Environmentally benign destruction of waste energetic materials (EMs)

    International Nuclear Information System (INIS)

    Schneider, R. L.; Donahue, B. A.

    1998-01-01

    Studies by the U. S. Army Corps of Engineers during 1991-1997 involving various methods for the destruction of waste generated by pyrotechnic, explosive and propellant materials are described. The methods assessed and evaluated include controlled incineration (CI), wet air oxidation (WAO), and hydrothermal oxidation (HTO), using a U.S. Army triple-base propellant as the initial common standard for all destructor comparative testing. All three of these methods has special feed line restrictions requiring mechanical diminution and comminution of the energetic material which, for safety reasons, cannot be used with contaminated heterogeneous production wastes. Supercritical fluid extraction with carbon dioxide, alkaline hydrolysis, electrolysis and fluid cutting with very high pressure water jets and liquid nitrogen are alternate technologies that were evaluated as pre-treatment for production wastes. Wet air oxidation and electrochemical reduction studies were conducted using the U.S. Navy double propellant NOSIH-AA2, which contains a lead-based ballistic modifier. Wet air oxidation and hydrothermal oxidation studies were done using potassium dinitramide phase-stabilized nitrate as an oxidizer. All of these technologies are considered to be suitable for the environmentally benign destruction of pyrotechnic materials, including fireworks. 17 refs., 8 tabs., 4 figs

  17. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  18. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  19. Energy convergence of shock waves and its destruction mechanism in cone-roof combustion chambers

    International Nuclear Information System (INIS)

    Xu, Han; Yao, Anren; Yao, Chunde; Gao, Jian

    2016-01-01

    Highlights: • Experiments with simulations are designed to probe into engine severe knock. • Energy convergence at central and edge region is observed in closed-limited space. • Modes with different intensities and mechanism of energy convergence are revealed. • Chamber shape and equivalence ratio can affect the energy convergence. • The destruction effects of energy convergence on pistons are recognized. - Abstract: Energy convergence is considered as an important phenomenon in internal combustion engines under severe knock, in which shock waves caused by violent combustion may aggregate the energy released by fuel burning to damage engine parts like pistons and spark plugs easily. In order to reveal such convergence mechanism and its destruction effects, a novel detonation bomb experiment combined with numerical simulations are conducted. In bomb experiments, a detonation wave is forcibly introduced into a clearance-variable cone-roof combustion chamber by a high energy spark ignition. Four pressure transducers were installed in different positions to monitor the energy convergence. Combined with the experiments, numerical simulations were conducted to reveal the convergence modes and mechanisms. Finally, destruction samples were presented to validate this research. It’s found that the energy convergence of shock waves always occurs in middle and edge region, which are vulnerable to be damaged. Three modes of energy convergence are concluded for middle region while several ways of energy convergence are concluded for edge region, which are all related with the chamber shape and may result in different levels of convergence. It’s also found that though detonation strength (knock intensity) can be changed by both equivalence ratios and initial pressures, only the equivalence ratios can change the convergence modes while the initial pressures cannot.

  20. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  1. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  2. Impurity incorporation, deposition kinetics, and microstructural evolution in sputtered Ta films

    Science.gov (United States)

    Whitacre, Jay Fredric

    There is an increasing need to control the microstructure in thin sputtered Ta films for application as high-temperature coatings or diffusion barriers in microelectronic interconnect structures. To this end, the relationship between impurity incorporation, deposition kinetics, and microstructural evolution was examined for room-temperature low growth rate DC magnetron sputtered Ta films. Impurity levels present during deposition were controlled by pumping the chamber to various base pressures before growth. Ar pressures ranging from 2 to 20 mTorr were used to create contrasting kinetic environments in the sputter gas. This affected both the distribution of adatom kinetic energies at the substrate as well as the rate of impurity desorption from the chamber walls: at higher Ar pressures adatoms has lower kinetic energies, and there was an increase in impurity concentration. X-ray diffraction, high-resolution transmission electron microscopy (HREM), transmission electron diffraction (TED), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and x-ray photoelectron. spectroscopy (XPS) were used to examine film crystallography, microstructure, and composition. A novel laboratory-based in-situ x-ray diffractometer was constructed. This new set-up allowed for the direct observation of microstructural evolution during growth. Films deposited at increasingly higher Ar pressures displayed a systematic decrease in grain size and degree of texturing, while surface morphology was found to vary from a nearly flat surface to a rough surface with several length scales of organization. In-situ x-ray results showed that the rate of texture evolution was found to be much higher in films grown using lower Ar pressures. These effects were studied in films less than 200 A thick using high resolution x-ray diffraction in conjunction with a synchrotron light source (SSRL B.L. 7-2). Films grown using higher Ar pressures (above 10 mTorr) with a pre-growth base

  3. Chemical kinetic modeling of H{sub 2} applications

    Energy Technology Data Exchange (ETDEWEB)

    Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-09-01

    Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamic computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.

  4. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  5. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  6. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  7. Improvement in reliability and accuracy of heater tube eddy current testing by integration with an appropriate destructive test

    International Nuclear Information System (INIS)

    Giovanelli, F.; Gabiccini, S.; Tarli, R.; Motta, P.

    1988-01-01

    A specially developed destructive test is described showing how the reliability and accuracy of a non-destructive technique can be improved if it is suitably accompanied by an appropriate destructive test. The experiment was carried out on samples of AISI 304L tubes from the low-pressure (LP) preheaters of a BWR 900 MW nuclear plant. (author)

  8. African Americans and High Blood Pressure

    Science.gov (United States)

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? African Americans in the U.S. have a higher prevalence of high blood pressure (HBP) than ...

  9. Non-destructive Engineering

    International Nuclear Information System (INIS)

    Ko, Jin Hyeon; Ryu, Taek In; Ko, Jun Bin; Hwang, Yong Hwa

    2006-08-01

    This book gives descriptions of non-destructive engineering on outline of non-destructive test, weld defects, radiographic inspection radiography, ultrasonic inspection, magnetic particle testing, liquid penetrant testing, eddy current inspection method, strain measurement, acoustic emission inspection method, other non-destructive testing like leakage inspection method, and non-destructive mechanics for fault analysis such as Griffiths creaking theory, and stress analysis of creaking.

  10. Corrosion kinetics at high pressure and temperature of Zr-2.5 Nb with different heat treatments

    International Nuclear Information System (INIS)

    Jaime Solis, F.; Bordoni, Roberto; Olmedo, Ana M.; Villegas, Marina; Miyagusuku, Marcela

    2003-01-01

    The corrosion behaviour of Zr-2.5 Nb pressure tube (PT) specimens, with ageing treatments at 400 and 500 C degrees for different times, was studied. The results were analyzed using the corrosion behavior of Zr-20 Nb and Zr-1 Nb samples heat treated during 1 hour at 850 C degrees, cooled in air and aged at the same temperature and times than the PT specimens. The comparison between the corrosion behaviour of Zr-1 Nb and Zr-20 Nb aged coupons with the aged pressure tube specimens, together with the metal/oxide interface morphology of Zr-2.5 Nb specimens, suggest that the increase in the corrosion resistance in the latter coupons is associated with the decomposition of the β-Zr phase. There is also a contribution of α-Zr phase when the ageing temperatures are high enough or the ageing times are long enough, due to a decrease in the Nb content of this phase. This last contribution is associated with an increase in the corrosion resistance of the central zone of pressure tube in the reactor. (author)

  11. The investigation of degradation reaction of various saccharides in high temperature and high pressure water

    Science.gov (United States)

    Saito, T.; Noguchi, S.; Matsumoto, T.; Sasaki, M.; Goto, M.

    2008-07-01

    Recently, conversions of polysaccharides included in biomass resources have been studied in order to recover valuable chemicals. Degradation of polysaccharides has been attracted by many researchers, whereas by-products from secondary reactions of the materials have not been studied very well. For the purpose of understanding reaction behavior of various monosaccharides in high-temperature and high-pressure water regions, we investigated reaction pathway and kinetics through reaction experiments of degradation of saccharides in subcritical water. The experiment was conducted by using continuous flow-type micro-reactors. Glucose was used as the starting material. From the experimental results, the conversion of glucose increased with increasing the residence time. The yields of fructose and 1, 6-anhydro-β-D-glucose decreased with increasing the residence time. The yields of organic acids and some aldehydes increased with increasing the residence time.

  12. The investigation of degradation reaction of various saccharides in high temperature and high pressure water

    International Nuclear Information System (INIS)

    Saito, T; Noguchi, S; Matsumoto, T; Sasaki, M; Goto, M

    2008-01-01

    Recently, conversions of polysaccharides included in biomass resources have been studied in order to recover valuable chemicals. Degradation of polysaccharides has been attracted by many researchers, whereas by-products from secondary reactions of the materials have not been studied very well. For the purpose of understanding reaction behavior of various monosaccharides in high-temperature and high-pressure water regions, we investigated reaction pathway and kinetics through reaction experiments of degradation of saccharides in subcritical water. The experiment was conducted by using continuous flow-type micro-reactors. Glucose was used as the starting material. From the experimental results, the conversion of glucose increased with increasing the residence time. The yields of fructose and 1, 6-anhydro-β-D-glucose decreased with increasing the residence time. The yields of organic acids and some aldehydes increased with increasing the residence time

  13. Ignition of DME and DME/CH4 at High Pressure: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    The pyrolysis and oxidation of dimethyl ether (DME) and its mixtures with methane were investigated at high pressures (50 and 100 bar) and intermediate temperatures (450―900 K) in a laminar flow reactor. DME pyrolysis started at 825 K (at 50 bar). The onset of DME reaction was detected at 525―550 K...

  14. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  15. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    forces. Raising the operating temperature offers a means to boost performance, as both ionic transport and reaction kinetics are exponentially activated with temperature. Indeed, we have demonstrated alkaline electrolysis cells operating at 200-250 °C and 20-50 bar at very high efficiencies and power...... been established enabling experiments with gaseous or liquids reactants/products at cell sizes of up to 25 cm2. Efforts are currently directed towards the investigation of the intrinsic activity of mixed oxides for the oxygen evolution reaction at elevated temperatures and pressures...

  16. Current developments in mechanized non-destructive testing in nuclear power plants; Aktuelle Entwicklungen bei mechanisierten, zerstoerungsfreien Pruefungen in Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Zeilinger, R. [intelligeNDT System und Services GmbH und Co. KG, Erlangen (Germany)

    2008-01-15

    Nuclear power plants require frequent in-service activities to be carried out conscientiously in areas potentially hazardous to human operators (because of the associated radiation exposure), such as non-destructive testing of pressurized components of the steam system. Locations to be inspected in this way include the reactor pressure vessel, core internals, steam generators, pressurizers, and pipes. The codes to be used as a basis of these inspections demand high absolute positioning and repeating accuracy. These requirements can be met by mechanized test procedures. Accordingly, many new applications of, mostly mobile, robots have been developed over the past few years. The innovative control and sensor systems for stationary and mobile robots now on the market offer a potential for economic application in a large number of new areas in inspection, maintenance and service in nuclear power plants. More progress in this area is expected for the near future. Areva NP founded the new NDT Center, NETEC (Non-destructive Examination Technical Center), as a global technical center for non-destructive materials testing. NETEC is to advance research and development of all basic NDT technologies, robotics included. For many years, intelligeNDT has offered solutions and products for a variety of inspection and testing purposes and locations in nuclear power plants and is involved in continuous further development of the experience collected in nuclear power plants on the spot. (orig.)

  17. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  18. Synthesis and high (pressure, temperature) stability of ZnTiO3 polymorphs studied by Raman spectroscopy

    Science.gov (United States)

    Bernert, T.; Ruiz-Fuertes, J.; Bayarjargal, L.; Winkler, B.

    2015-05-01

    The phase-purity of ilmenite-type ZnTiO3 prepared by the ceramic method was investigated in dependence of the conditions during ball milling. The previously proposed addition of 2 ml ethanol to the starting materials led to a significant contamination of the product phase after a subsequent sintering process at 1073 K. However, by omitting ethanol this synthesis route led to a phase-pure sample of ZnTiO3 as confirmed by X-ray powder diffraction and Raman spectroscopy. High-temperature high-pressure experiments gave an ilmenite-type to perovskite-type phase boundary with a slope of dT/dP∼-135 K GPa-1 crossing ambient temperature conditions at ∼ 24 GPa in good agreement with previous calculations. Room-temperature high-pressure Raman spectroscopy experiments have shown the stability of the ilmenite-type phase up to a pressure of at least 38.5 GPa, the highest pressure applied in this study, indicating the presence of a kinetic barrier in this phase transition. The synthesis of ferroelectric LiNbO3-type ZnTiO3 was confirmed by second harmonic generation.

  19. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States.

    Science.gov (United States)

    Zhang, Yi; Kitazawa, Soichiro; Peran, Ivan; Stenzoski, Natalie; McCallum, Scott A; Raleigh, Daniel P; Royer, Catherine A

    2016-11-23

    Understanding protein folding mechanisms and their sequence dependence requires the determination of residue-specific apparent kinetic rate constants for the folding and unfolding reactions. Conventional two-dimensional NMR, such as HSQC experiments, can provide residue-specific information for proteins. However, folding is generally too fast for such experiments. ZZ-exchange NMR spectroscopy allows determination of folding and unfolding rates on much faster time scales, yet even this regime is not fast enough for many protein folding reactions. The application of high hydrostatic pressure slows folding by orders of magnitude due to positive activation volumes for the folding reaction. We combined high pressure perturbation with ZZ-exchange spectroscopy on two autonomously folding protein domains derived from the ribosomal protein, L9. We obtained residue-specific apparent rates at 2500 bar for the N-terminal domain of L9 (NTL9), and rates at atmospheric pressure for a mutant of the C-terminal domain (CTL9) from pressure dependent ZZ-exchange measurements. Our results revealed that NTL9 folding is almost perfectly two-state, while small deviations from two-state behavior were observed for CTL9. Both domains exhibited large positive activation volumes for folding. The volumetric properties of these domains reveal that their transition states contain most of the internal solvent excluded voids that are found in the hydrophobic cores of the respective native states. These results demonstrate that by coupling it with high pressure, ZZ-exchange can be extended to investigate a large number of protein conformational transitions.

  20. Vacuum surface flashover and high pressure gas streamers

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.; Stolz, D.; Wright, S.N.

    1997-07-01

    Pre-breakdown current traces obtained during high pressure gas breakdown and vacuum surface flashover show similar signatures. The initial pre-breakdown current spike, a flat constant current phase, and the breakdown phase with voltage collapse and current surge differ mostly in magnitude. Given these similarities, a model, consisting of the initial current spike corresponding to a fast precursor streamer (ionization wave led by a photoionizing front), the flat current stage as the heating or glow phase, and the terminal avalanche and gap closure, is applied to vacuum surface flashover. A simple analytical approximation based on the resistivity changes induced in the vacuum and dielectric surface is presented. The approximation yields an excellent fit to pre-breakdown time delay vs applied field for previously published experimental data. A detailed kinetics model that includes surface and gas contributions is being developed based in the initial approximation

  1. High pressure oxidation of C2H4/NO mixtures

    DEFF Research Database (Denmark)

    Giménez-López, J.; Alzueta, M.U.; Rasmussen, C.T.

    2011-01-01

    An experimental and kinetic modeling study of the interaction between C2H4 and NO has been performed under flow reactor conditions in the intermediate temperature range (600–900K), high pressure (60bar), and for stoichiometries ranging from reducing to oxidizing conditions. The main reaction...... pathways of the C2H4/O2/NOx conversion, the capacity of C2H4 to remove NO, and the influence of the presence of NOx on the C2H4 oxidation are analyzed. Compared to the C2H4/O2 system, the presence of NOx shifts the onset of reaction 75–150K to lower temperatures. The mechanism of sensitization involves...... the reaction HOCH2CH2OO+NO→CH2OH+CH2O+NO2, which pushes a complex system of partial equilibria towards products. This is a confirmation of the findings of Doughty et al. [3] for a similar system at atmospheric pressure. Under reducing conditions and temperatures above 700K, a significant fraction of the NOx...

  2. Analysing and modelling the growth behaviour of Listeria monocytogenes on RTE cooked meat products after a high pressure treatment at 400 MPa

    DEFF Research Database (Denmark)

    Hereu, A.; Dalgaard, Paw; Garriga, M.

    2014-01-01

    Various predictive models are available for high pressure inactivation of Listeria monocytogenes in food, but currently available models do not consider the growth kinetics of surviving cells during the subsequent storage of products. Therefore, we characterised the growth of L. monocytogenes in ...

  3. High blood pressure - adults

    Science.gov (United States)

    ... pressure is found. This is called essential hypertension. High blood pressure that is caused by another medical condition or medicine you are taking is called secondary hypertension. Secondary hypertension may be due to: Chronic ...

  4. Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell

    2012-01-01

    Full Text Available Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications.

  5. Electro-Kinetic Pumping with Slip Irreversibility in Heat Exchange of CSP-Powered Bio-Digester Assemblies

    Directory of Open Access Journals (Sweden)

    Emmanuel O.B. Ogedengbe

    2012-12-01

    Full Text Available Parametric studies of the effects of slip irreversibility in concentrating solar power (CSP-powered bio-digester assemblies are investigated. Complexities regarding the identification of the appropriate electro-kinetic phenomena for certain electrolyte phases are reviewed. The application of exergy analysis to the design of energy conversion devices, like solar thermal collectors, for the required heat of formation in a downdraft waste food bio-digester, is discussed. Thermal management in the silicon-based substrate of the energy system is analyzed. The rectangular-shaped micro-channels are simulated with a finite-volume, staggered coupling of the pressure-velocity fields. Entropy generation transport within the energy system is determined and coupled with the solution procedure. Consequently, the effects of channel size perturbation, Reynolds number, and pressure ratios on the thermal performance and exergy destruction are presented. A comparative analysis of the axial heat conduction for thermal management in energy conversion devices is proposed.

  6. Destructive hydrogenation of carbonaceous materials, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-02-15

    A process is described for the destructive hydrogenation continuously of solid and infusible carbonaceous substances, consisting of heating the charge to the same temperature as the added hydrogen, under a pressure essentially equal to that of the reaction, from the first to at least 300/sup 0/C, but not more than 440/sup 0/C, while passing the heated charge through a zone the contents of which are equal to about 20 per cent to 40 per cent of that of the reaction space, maintaining the charge for a certain time at the temperature without sensible change in the pressure, then reheating the charge to at least the temperature to prime the reaction and finally to introduce the charge into the reaction space.

  7. High-pressure copolymerization of C 2H 4 and CO

    Science.gov (United States)

    Buback, M.; Tups, H.

    1986-05-01

    Kinetics of the free radical high-pressure copolymerization of ethylene and carbon monoxide using thermal, chemical, and laser-photochemical initiation have been investigated via quantitative infrared and near infrared spectroscopy up to 2300 bar and 513 K. The slow thermal copolymerization is influenced by the formation of metal carbonyls inside the stainless steel cell. With chemical initiation, using 120 ppm oxygen, ethylene and CO polymerize to polyketone without any indication of additional products. The photo-copolymerization induced by an exciplex laser working on the KrF line at 248 nm, has been studied between 486 K and 513 K up to 2300 bar and for CO mole fractions up to 3 percent. Overall quantum yields of about 2000 copolymerizing molecules per one absorbed laser photon are observed.

  8. High blood pressure - medicine-related

    Science.gov (United States)

    Drug-induced hypertension is high blood pressure caused by using a chemical substance or medicine. ... of the arteries There are several types of high blood pressure : Essential hypertension has no cause that can be ...

  9. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  10. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    Directory of Open Access Journals (Sweden)

    A. S. Tremsin

    2017-01-01

    Full Text Available Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (∼739 ± 98 kPa and ∼751 ± 154 kPa for two Xe resonances is in relatively good agreement with the pressure value of ∼758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ∼ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  11. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  12. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  13. Design and operational parameters of transportable supercritical water oxidation waste destruction unit

    International Nuclear Information System (INIS)

    McFarland, R.D.; Brewer, G.R.; Rofer, C.K.

    1991-12-01

    Supercritical water oxidation (SCWO) is the destruction of hazardous waste by oxidation in the presence of water at temperatures and pressures above its critical point. A 1 gal/h SCWO waste destruction unit (WDU) has been designed, built, and operated at Los Alamos National Laboratory. This unit is transportable and is intended to demonstrate the SCWO technology on wastes at Department of Energy sites. This report describes the design of the WDU and the preliminary testing phase leading to demonstration

  14. Non-destructive testing of electronic parts

    International Nuclear Information System (INIS)

    Widenhorn, G.

    1980-01-01

    The requirements on quality, safety, faultlessness and reliability of electric components increase because of the high complexity of the appliances in which they are used. By means of examples a survey is given on the common non-destructive testing methods, testing operation and evaluation of test results on electric components which must meet in their application high requirements on quality and reliability. Defective components, especially those with hidden failures are sorted out by non-destructive testing and the failure frequency of the appliances and plants in testing and operation is greatly reduced. (orig.) [de

  15. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:May 4,2018 Knowing the facts ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  16. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  17. High blood pressure and diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  18. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    resemble industrial settings, a custom STM motor has been designed and constructed in-house. The new STM design features a much reduced size and a rigid coupling to the sample, and has been tested to show considerably higher resonance frequency than conventional tripod designs, providing the ability to image faster and yielding smaller susceptibility to noise. A flow reactor cell of much reduced volume for pressures up to 35 atmospheres has also been designed and constructed to house the new STM. The small volume reduces gas consumption and sensitivity to impurities in high pressure gases, as well as maximizes product concentration and reduces response time. The ability to flow reactant gases also allows for continuous monitoring of reaction mixture by mass spectrometry or gas chromatography, and permits correlation of structural information from STM and reaction kinetics. The reactor cell containing the STM is placed inside an UHV system to allow cleaning and characterization of sample before and after experiments, as well as continuous monitoring by mass spectrometry or gas chromatography through a leak valve. The new ultra high pressure system also allows in vacuo sample and tip exchange through a load lock, without exposing the system to impurities in air. This new ultra high pressure, high temperature STM system has been shown to perform with major improvements over the existing high pressure, high temperature STM system. Unlike the older system which requires extensive vibration damping setup in order to operate, the new system is shown to be less susceptible to noise, and be able to image atomic steps with no vibration isolation and atomically resolve highly ordered pyrolytic graphite with only spring suspension and a cut tip. Extensive vibrational analysis of the new system is presented, as well as an appendix of AutoCAD-generated design schematics for the major components of the system is included at the end

  19. FEATURES OF WELDED TITANIUM STRUCTURE ELEMENT DESTRUCTION (RIBBED PANELS UNDER VIBRATION LOADS

    Directory of Open Access Journals (Sweden)

    Mr. Pavel V. Bakhmatov

    2016-12-01

    Full Text Available The article presents data on the experimental studies results of welded ribbed panel vibration load of the BT-20 titanium alloy. It was established that in the areas of attachment, there is elevated dynamic alternating stress, which in combination with the "hard" of the sample holder creates favorable conditions for the emergence and development of fatigue cracks, and stress concentrators greatly reduce the time before the formation of the hearth destruction. An exception in these zones of superficial defects do not affect the nature and kinetics of destruction. Construction of titanium alloys made in the application of gas-laser cutting blanks for optimal regimes in the technical environment of nitrogen and subsequent heat treatment on vibration reliability is not inferior to design, made by traditional technology.

  20. Destruction of organic wastes by ammonium peroxydisulfate with electrolytic regeneration of the oxidant

    International Nuclear Information System (INIS)

    Cooper, J.F.; Wang, J.F.; Krueger, R.; King, K.

    1997-01-01

    Research is reported concerning a new aqueous process for oxidative destruction of solid- and liquid organic wastes. This process uses acidified ammonium peroxydisulfate and operates at ambient pressure and at 80- to 100 degrees C. The oxidant may be efficiently regenerated by electrolysis of the sulfate by-product at Pt anodes, even in the presence of organic and inorganic contaminants expected to be entrained in the cycle. Integral rate constants were determined for the oxidation of 25 diverse organic compounds at low (50 ppm) concentrations through fixed-time experiments with excess oxidant and a Pt wire catalyst. For high initial concentrations, uncatalyzed mineralization rates were measured for waste surrogates including kerosene, triethylamine, ion exchange resin, oxalic acid, trinitrotoluene, and cellulose. A packed bed reactor was tested with ethylene glycol, with offgas analysis by mass spectroscopy. Rate data extrapolate to throughputs of approximately 200 kg/m 3 -day. The process may benefit the destruction of highly toxic or specialized industrial wastes as well as the organic fraction of mixed wastes

  1. The influence of peak shock stress on the high pressure phase transformation in Zr

    International Nuclear Information System (INIS)

    Cerreta, E K; Addessio, F L; Bronkhorst, C A; Brown, D W; Escobedo, J P; Fensin, S J; Gray, G T III; Lookman, T; Rigg, P A; Trujillo, C P

    2014-01-01

    At high pressures zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase to the simple hexagonal omega phase. Under conditions of shock loading, a significant volume fraction of high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams and the multi-phase plasticity under shock conditions is not well understood. For these reasons, the influence of peak shock stress and temperature on the retention of omega phase in Zr has been explored. VISAR and PDV measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase and qualitatively understand the kinetics of this transformation. In turn, soft recovered specimens with varying volume fractions of retained omega phase have been utilized to understand the contribution of omega and alpha phases to strength in shock loaded Zr.

  2. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  3. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  4. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  6. Kinetic properties of solid yttrium at high temperatures

    International Nuclear Information System (INIS)

    Ivliev, A.D.

    1993-01-01

    Analysis of results of experimental investigation into temperature-diffusivity, specific electroresistance and heat conductivity of yttrium is carried out. Peculiarities of variation of its kinetic characteristics under high temperatures are shown to result from two-band character of energy spectrum of collectivized electrons. In particular, growth of heat conductivity results from reduction of density of heavy electron states under heating. The suggested model describes kinetic characteristics of lutetium, as well. Usage of this model for the rest heavy rare-earth metals enables to make conclusion about reduction of magnetic scattering effcieincy in the rare-earth metals in proportion to approximation to melting temperature

  7. Fructose decomposition kinetics in organic acids-enriched high temperature liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinghua; Lu, Xiuyang; Yuan, Lei; Liu, Xin [Department of Chemical and Biochemical Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, Zhejiang (China)

    2009-09-15

    Biomass continues to be an important candidate as a renewable resource for energy, chemicals, and feedstock. Decomposition of biomass in high temperature liquid water is a promising technique for producing industrially important chemicals such as 5-hydroxymethylfurfural (5-HMF), furfural, levulinic acid with high efficiency. Hexose, which is the hydrolysis product of cellulose, will be one of the most important starting chemicals in the coming society that is highly dependent on biomass. Taking fructose as a model compound, its decomposition kinetics in organic acids-enriched high temperature liquid water was studied in the temperature range from 180 C to 220 C under the pressure of 10 MPa to further improve reaction rate and selectivity of the decomposition reactions. The results showed that the reaction rate is greatly enhanced with the addition of organic acids, especially formic acid. The effects of temperature, residence time, organic acids and their concentrations on the conversion of fructose and yield of 5-HMF were investigated. The evaluated apparent activation energies of fructose decomposition are 126.8 {+-} 3.3 kJ mol{sup -1} without any catalyst, 112.0 {+-} 13.7 kJ mol{sup -1} catalyzed with formic acid, and 125.6 {+-} 3.8 kJ mol{sup -1} catalyzed with acetic acid, respectively, which shows no significant difference. (author)

  8. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  9. Kinetics of Pressurized Water Reactors with Hot or Cold Moderators

    Energy Technology Data Exchange (ETDEWEB)

    Norinder, O

    1960-11-15

    The set of neutron kinetic equations developed in this report permits the use of long integration steps during stepwise integration. Thermal relations which describe the transfer of heat from fuel to coolant are derived. The influence upon the kinetic behavior of the reactor of a number of parameters is studied. A comparison of the kinetic properties of the hot and cold moderators is given.

  10. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  11. Influence of preliminary deformation and phase strengthening on γ reversible α transformation kinetics in cerium under pressure

    International Nuclear Information System (INIS)

    Larionov, L.V.; Livshits, L.D.; Peresada, G.I.; AN SSSR, Moscow. Inst. Fiziki Zemli)

    1985-01-01

    Using the methods of piezo- and resistometry the influence of preliminary plastic deformation, phase transformation induced strengthening and heat treatment on kinetics of γ reversible α transformation in cerium is studied. It is shown, that the used methods of preliminary treatment of sample material do not change pressure value of γ → α and α →γ transformation initiation and do not affect hysteresis value, but affect considerably its kinetics. Preliminary plastic deformation and structural strengthening increase the average formation rate of a new phase. According to the data of tensile tests, structural strengthening, apprearing as a result of one cycle of γ → α → γ transformation, increases cerium strength characteristics 6y 30-50% with simultaneous decrease in plasticity. Metallographic studies confirm martensitic character of γ → α → γ transformations in cerium

  12. Low-Temperature Oxidation of H2/CH4/C2H6/Ethanol/DME: Experiments and Modelling at High Pressures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob M.; Glarborg, Peter

    2015-01-01

    The main aim of this work was to measure the oxidation characteristics of H2, CH4, C2H6, DME,and ethanol at high pressures (20—100 bar) and low to intermediate temperatures (450—900K) in a laminar flow reactor. Furthermore, a detailed chemical kinetic model was sought to address the oxidation of ...

  13. High Blood Pressure - Multiple Languages

    Science.gov (United States)

    ... Being 8 - High Blood Pressure - Amarɨñña / አማርኛ (Amharic) MP3 Siloam Family Health Center Arabic (العربية) Expand Section ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  14. Singlet oxygen generation in a high pressure non-self-sustained electric discharge

    International Nuclear Information System (INIS)

    Hicks, Adam; Norberg, Seth; Shawcross, Paul; Lempert, Walter R; Rich, J William; Adamovich, Igor V

    2005-01-01

    This paper presents results of singlet oxygen generation experiments in a high-pressure, non-self-sustained crossed discharge. The discharge consists of a high-voltage, short pulse duration, high repetition rate pulsed discharge, which produces ionization in the flow, and a low-voltage dc discharge which sustains current in a decaying plasma between the pulses. The sustainer voltage can be independently varied to maximize the energy input into electron impact excitation of singlet delta oxygen (SDO). The results demonstrate operation of a stable and diffuse crossed discharge in O 2 -He mixtures at static pressures of at least up to P 0 = 380 Torr and sustainer discharge powers of at least up to 1200 W, achieved at P 0 = 120 Torr. The reduced electric field in the positive column of the sustainer discharge varies from E/N = 0.3 x 10 -16 to 0.65 X 10 -16 V cm 2 , which is significantly lower than E/N in self-sustained discharges and close to the theoretically predicted optimum value for O 2 (a 1 Δ) excitation. Measurements of visible emission spectra O 2 (b 1 Σ → X 3 Σ) in the discharge afterglow show the O 2 (b 1 Σ) concentration to increase with the sustainer discharge power and to decrease as the O 2 fraction in the flow is increased. Rotational temperatures inferred from these spectra in 10% O 2 -90% He flows at P 0 = 120 Torr and mass flow rates of m-dot = 2.2 are 365-465 K. SDO yield at these conditions, 1.7% to 4.4%, was inferred from the integrated intensity of the (0, 0) band of the O 2 (a 1 Δ → X 3 Σ) infrared emission spectra calibrated using a blackbody source. The yield remains nearly constant in the discharge afterglow, up to at least 15 cm distance from the discharge. Kinetic modelling calculations using a quasi-one-dimensional nonequilibrium pulser-sustainer discharge model coupled with the Boltzmann equation for plasma electrons predict gas temperature rise in the discharge in satisfactory agreement with the experimental measurements

  15. Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures

    Science.gov (United States)

    2016-07-26

    1. Introduction Fundamental knowledge of mechanisms of autoignition of condensed hydrocarbon fuels at elevated pressures is essential for accurate...particular JP-8) and surrogates of jet-fuels in laminar non-uniform flows at elevated pressures upto 2.5 MPa. Experimental and kinetic modeling studies...AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Combustion, Jet Fuels, JP-8, Elevated

  16. Anxiety: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... of high blood pressure? Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  17. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  18. Kinetics of the generation of the petroleum: Principles and application in the Colombian basins

    International Nuclear Information System (INIS)

    Goncalves, F T T; Garcia, D F; Penteado, H L B; Giraldo, B N; Bedregal, R P; Gomez

    2001-01-01

    Most of the mathematical models that describe the conversion of kerogen into petroleum are based on the formulations of first-order kinetics. Although the application of such models requires the knowledge of the kinetic parameters (activation energies and frequency factor) of the kerogen, the usual practice in basin modeling studies is to use kinetic data of standard kerogen types (I, II or III) when measured data are not available. In this study, Rock-Eval pyrolysis under different heating rates and numerical optimization techniques were used to determine the kinetic parameters of cretaceous and tertiary source rocks of the upper Magdalena and llanos basins. The obtained kinetic parameters revealed a significant variability, which appears to be unrelated to the kerogen type classification based on hydrogen and oxygen indices. Modeling exercises under a constant heating rate (1.25 degrades C/M.y., 274.5K/M.y.) using the measured kinetic data indicates that kerogen conversion of organic facies with distinct kinetic parameters may be out of phase by 20-30M.y. therefore, petroleum generation and expulsion history might be longer and more complex than if the kinetic behavior of these rocks was considered homogeneous. These differences are critical in defining the timing between petroleum generations a trap formation/destruction, particularly in the case of the Colombian sedimentary basins, characterized by a highly complex tectonic evolution

  19. Integrated kinematics-kinetics-plantar pressure data analysis: a useful tool for characterizing diabetic foot biomechanics.

    Science.gov (United States)

    Sawacha, Zimi; Guarneri, Gabriella; Cristoferi, Giuseppe; Guiotto, Annamaria; Avogaro, Angelo; Cobelli, Claudio

    2012-05-01

    The fundamental cause of lower-extremity complications in diabetes is chronic hyperglycemia leading to diabetic foot ulcer pathology. While the relationship between abnormal plantar pressure distribution and plantar ulcers has been widely investigated, little is known about the role of shear stress. Moreover, the mutual relationship among plantar pressure, shear stress, and abnormal kinematics in the etiology of diabetic foot has not been established. This lack of knowledge is determined by the lack of commercially available instruments which allow such a complex analysis. This study aims to develop a method for the simultaneous assessment of kinematics, kinetics, and plantar pressure on foot subareas of diabetic subjects by means of combining three commercial systems. Data were collected during gait on 24 patients (12 controls and 12 diabetic neuropathics) with a motion capture system synchronized with two force plates and two baropodometric systems. A four segment three-dimensional foot kinematics model was adopted for the subsegment angles estimation together with a three segment model for the plantar sub-area definition during gait. The neuropathic group exhibited significantly excessive plantar pressure, ground reaction forces on each direction, and a reduced loading surface on the midfoot subsegment (pfoot ulcerations, and help planning prevention programs. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. EAST kinetic equilibrium reconstruction combining with Polarimeter-Interferometer internal measurement constraints

    Science.gov (United States)

    Lian, H.; Liu, H. Q.; Li, K.; Zou, Z. Y.; Qian, J. P.; Wu, M. Q.; Li, G. Q.; Zeng, L.; Zang, Q.; Lv, B.; Jie, Y. X.; EAST Team

    2017-12-01

    Plasma equilibrium reconstruction plays an important role in the tokamak plasma research. With a high temporal and spatial resolution, the POlarimeter-INTerferometer (POINT) system on EAST has provided effective measurements for 102s H-mode operation. Based on internal Faraday rotation measurements provided by the POINT system, the equilibrium reconstruction with a more accurate core current profile constraint has been demonstrated successfully on EAST. Combining other experimental diagnostics and external magnetic fields measurement, the kinetic equilibrium has also been reconstructed on EAST. Take the pressure and edge current information from kinetic EFIT into the equilibrium reconstruction with Faraday rotation constraint, the new equilibrium reconstruction not only provides a more accurate internal current profile but also contains edge current and pressure information. One time slice result using new kinetic equilibrium reconstruction with POINT data constraints is demonstrated in this paper and the result shows there is a reversed shear of q profile and the pressure profile is also contained. The new improved equilibrium reconstruction is greatly helpful to the future theoretical analysis.

  1. High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure

    Directory of Open Access Journals (Sweden)

    Yancheng Meng

    2018-05-01

    Full Text Available To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs and poly (dimethylsiloxane (PDMS. In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa−1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 μs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz and large range of air pressure (6–101 kPa, both of which are not achieved before.

  2. Effect of total pressure on graphite oxidation

    International Nuclear Information System (INIS)

    Burnette, R.D.; Hoot, C.G.

    1983-04-01

    Graphite corrosion in the high-temperature gas-cooled reactor (HTGR) is calculated using two key assumptions: (1) the kinetic, catalysis, and transport characteristics of graphite determined by bench-scale tests apply to large components at reactor conditions and (2) the effects of high pressure and turbulent flow are predictable. To better understand the differences between laboratory tests and reactor conditions, a high-pressure test loop (HPTL) has been constructed and used to perform tests at reactor temperature, pressure, and flow conditions. The HPTL is intended to determine the functional dependence of oxidation rate and characteristics on total pressure and gas velocity and to compare the oxidation results with calculations using models and codes developed for the reactor

  3. Disclosure of the oscillations in kinetics of the reactor pressure vessel steel damage at fast neutron intensity decreasing

    Science.gov (United States)

    Krasikov, E.; Nikolaenko, V.

    2017-01-01

    Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self-organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (nanostructuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness self recovering smart materials.

  4. Calculation of the internal pressure of fuel rod from measurements of krypton-85 at its plenum

    International Nuclear Information System (INIS)

    Arana, I.; Doncel, N.; Casado, C.

    2012-01-01

    ENUSA carried out numerous campaigns of measurement internal pressure of fuel rod irradiated. All of them have been performed of form destructively in a hot cell laboratory which implies a time high to obtain results and a high economic cost to obtain a single data by rod, representative of the end of the irradiation. The objective of the project is to develop a non-destructive measurement and a methodology for reliable calculation that eliminates these problems.

  5. Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory.

    Science.gov (United States)

    Zhang, Hui; Zhang, Xin; Truhlar, Donald G; Xu, Xuefei

    2017-11-30

    The reaction between H and benzene is a prototype for reactions of radicals with aromatic hydrocarbons. Here we report calculations of the reaction rate constants and the branching ratios of the two channels of the reaction (H addition and H abstraction) over a wide temperature and pressure range. Our calculations, obtained with an accurate potential energy surface, are based on variational transition-state theory for the high-pressure limit of the addition reaction and for the abstraction reaction and on system-specific quantum Rice-Ramsperger-Kassel theory calibrated by variational transition-state theory for pressure effects on the addition reaction. The latter is a very convenient way to include variational effects, corner-cutting tunneling, and anharmonicity in falloff calculations. Our results are in very good agreement with the limited experimental data and show the importance of including pressure effects in the temperature interval where the mechanism changes from addition to abstraction. We found a negative temperature effect of the total reaction rate constants at 1 atm pressure in the temperature region where experimental data are missing and accurate theoretical data were previously missing as well. We also calculated the H + C 6 H 6 /C 6 D 6 and D + C 6 H 6 /C 6 D 6 kinetic isotope effects, and we compared our H + C 6 H 6 results to previous theoretical data for H + toluene. We report a very novel nonmonotonic dependence of the kinetic isotope effect on temperature. A particularly striking effect is the prediction of a negative temperature dependence of the total rate constant over 300-500 K wide temperature ranges, depending on the pressure but generally in the range from 600 to 1700 K, which includes the temperature range of ignition in gasoline engines, which is important because aromatics are important components of common fuels.

  6. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient

    KAUST Repository

    Sazhin, Sergei S.; Xie, Jianfei; Shishkova, Irina N.; Elwardani, Ahmed Elsaid; Heikal, Morgan Raymond

    2013-01-01

    The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation

  7. The use of non-destructive testing in COSY, an ultrahigh vacuum research plant of KFA, Juelich

    International Nuclear Information System (INIS)

    Schroeder, G.; Pauly, F.; Stechemesser, H.

    1993-01-01

    This report shows that the development, the construction and the later successful operation of ultra-high vacuum (UHV) plants in the pressure range of ≤ 10 -10 mbar is not possible without the use of highly sensitive non-destructive testing. Using the example of the large scale precision plant COSY, it is shown that only by observing basic UHV manufacturing conditions and the thorough use of the helium leak-finding technique and mass-spectrometric residual gas analysis can the required leakage rates ( -10 mbar. 1 . s -1 ) and surface cleanliness be achieved. (orig.) [de

  8. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  9. Terbium oxide at high pressures

    International Nuclear Information System (INIS)

    Dogra, Sugandha; Sharma, Nita Dilawar; Singh, Jasveer; Bandhyopadhyay, A.K.

    2011-01-01

    In this work we report the behaviour of terbium oxide at high pressures. The as received sample was characterized at ambient by X-ray diffraction and Raman spectroscopy. The X-ray diffraction showed the sample to be predominantly cubic Tb 4 O 7 , although a few peaks also match closely with Tb 2 O 3 . In fact in a recent study done on the same sample, the sample has been shown to be a mixture of Tb 4 O 7 and Tb 2 O 3 . The sample was subjected to high pressures using a Mao-Bell type diamond anvil cell upto a pressure of about 42 GPa with ruby as pressure monitor

  10. High-pressure phase transitions of strontianite

    Science.gov (United States)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  11. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  12. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review.

    Science.gov (United States)

    Santos, Lígia Mr; Oliveira, Fabiano A; Ferreira, Elisa Hr; Rosenthal, Amauri

    2017-10-01

    Beer is the most consumed beverage in the world, especially in countries such as USA, China and Brazil.It is an alcoholic beverage made from malted cereals, and the barley malt is the main ingredient, added with water, hops and yeast. High-pressure processing is a non-traditional method to preserve food and beverages. This technology has become more interesting compared to heat pasteurization, due to the minimal changes it brings to the original nutritional and sensory characteristics of the product, and it comprises two processes: high hydrostatic pressure, which is the most industrially used process, and high-pressure homogenization. The use of high pressure almost does not affect the molecules that are responsible for the aroma and taste, pigments and vitamins compared to the conventional thermal processes. Thus, the products processed by high-pressure processing have similar characteristics compared to fresh products, including beer. The aim of this paper was to review what has been investigated about beer processing using this technology regarding the effects on physicochemical, microbiology and sensory characteristics and related issues. It is organized by processing steps, since high pressure can be applied to malting, mashing, boiling, filtration and pasteurization. Therefore, the beer processed with high-pressure processing may have an extended shelf-life because this process can inactivate beer spoilage microorganisms and result in a superior sensory quality related to freshness and preservation of flavors as it does to juices that are already commercialized. However, beyond this application, high-pressure processing can modify protein structures, such as enzymes that are present in the malt, like α- and β-amylases. This process can activate enzymes to promote, for example, saccharification, or instead inactivate at the end of mashing, depending on the pressure the product is submitted, besides being capable of isomerizing hops to raise beer bitterness

  13. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  14. Advances in high pressure science and technology: proceedings of the fourth national conference on high pressure science and technology

    International Nuclear Information System (INIS)

    Yousuf, Mohammad; Subramanian, N.; Govinda Rajan, K.

    1997-09-01

    The proceedings of the fourth National Conference on High Pressure Science and Technology covers a wide area of research and development activities in the field of high pressure science and technology, broadly classified into the following themes: mechanical behaviour of materials; instrumentation and methods in high pressure research; pressure calibration, standards and safety aspects; phase transitions; shock induced reactions; mineral science, geophysics, geochemistry and planetary sciences; optical, electronic and transport properties; synthesis of materials; soft condensed matter physics and liquid crystals; computational methods in high pressure research. Papers relevant to INIS are indexed separately

  15. Evolution of the optical properties of chromium doped calcium tetraborate glass under high pressure

    International Nuclear Information System (INIS)

    Lesniewski, Tadeusz; Barzowska, Justyna; Mahlik, Sebastian; Behrendt, Mirosław; Padlyak, Bohdan V.; Grinberg, Marek

    2016-01-01

    In this contribution, we present luminescence properties of calcium tetraborate glass (CaB 4 O 7 ) activated with Cr 3+ ions. Excitation spectra, steady state and time resolved luminescence spectra at temperatures between 10 K and 300 K and at high hydrostatic pressure up to 120 kbar were measured. The excitation spectrum consists of two broad bands peaking at 420 nm and 580 nm related to transitions from the 4 A 2g ground state to 4 T 1g and 4 T 2g excited states, respectively. Ambient pressure luminescence spectrum consists of two bands peaking at 690 nm and 850 nm. First band is related to the spin forbidden 2 E g → 4 A 2g transition, whereas the second broad band is related to the spin allowed 4 T 2g → 4 A 2g transition. Widths of both bands are significantly greater than natural due to inhomogeneous broadening. The ratio between intensities of these bands is strongly temperature and pressure dependent. At pressure below 50 kbar relative contribution of the 2 E g → 4 A 2g luminescence decreases with increasing temperature and increases when pressure is applied. For pressure higher than 50 kbar only the emission related to the 2 E g → 4 A 2g transition is observed. Analysis of luminescence lineshape and kinetics allowed to estimate the width of the crystal field distribution and show that even at ambient pressure most of the Cr 3+ ions occupy high field sites with energy of the 4 T 2g higher than the energy of the 2 E g state.

  16. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  17. Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    Directory of Open Access Journals (Sweden)

    M.S. Rodrigues

    Full Text Available The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF or by rice husk ash (RHA, and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement and Portland cement replacement (10% by mass with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones.

  18. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  19. Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions

    International Nuclear Information System (INIS)

    Zhilyaev, A.P.; Sabirov, I.; Gonzalez-Doncel, G.; Molina-Aldareguia, J.; Srinivasarao, B.; Perez-Prado, M.T.

    2011-01-01

    Research highlights: → We analyze the influence of Nb additions on the shear-induced α → ω → β phase transformations in pure Zr by high pressure torsion (HPT). → Nb reduces the transition pressures and increases the transformation kinetics. → High pressure phases are retained under ambient conditions due to the presence of an internal stress. → Post-HPT annealing allows to fabricate bimodal/biphase nanostructures with enhanced mechanical behavior. - Abstract: This paper analyzes the influence of Nb on the shear-induced α → ω → β transformation taking place when processing Zr by high pressure torsion (HPT) under suitable conditions of pressure and shear. With that purpose, pure Zr and Zr-2.5%Nb were processed by HPT at room temperature and at pressures ranging from 0.25 to 6 GPa using 5 anvil turns. Nb causes a further reduction of the transition pressures, which are already lower when applying shear besides pressure. Thus, the transition pressure to the β phase is reduced at least 100 times in the Zr-Nb alloy. Alloying with Nb decreases the grain size of the transformed phases, significantly enhances their thermal stability and increases their UTS and elongation to failure. Selected post-HPT annealing treatments lead to the development of very tough, multiphase Zr and Zr-Nb with bimodal grain size distributions. The retention of the high pressure phases under ambient conditions is explained by the development of a high internal stress during processing. This stress is measured by synchrotron radiation diffraction at HZB-BESSY II. It is proposed that the presence of Nb reduces the internal stress level required for the retention of the high pressure phases.

  20. Sterilization of beehive material with a double inductively coupled low pressure plasma

    International Nuclear Information System (INIS)

    Priehn, M; Leichert, L I; Denis, B; Awakowicz, P; Aumeier, P; Kirchner, W H

    2016-01-01

    American Foulbrood is a severe, notifiable disease of the honey bee. It is caused by infection of bee larvae with spores of the gram-positive bacterium Paenibacillus larvae . Spores of this organism are found in high numbers in an infected hive and are highly resistant to physical and chemical inactivation methods. The procedures to rehabilitate affected apiaries often result in the destruction of beehive material. In this study we assess the suitability of a double inductively coupled low pressure plasma as a non-destructive, yet effective alternative inactivation method for bacterial spores of the model organism Bacillus subtilis on beehive material. Plasma treatment was able to effectively remove spores from wax, which, under protocols currently established in veterinary practice, normally is destroyed by ignition or autoclaved for sterilization. Spores were removed from wooden surfaces with efficacies significantly higher than methods currently used in veterinary practice, such as scorching by flame treatment. In addition, we were able to non-destructively remove spores from the highly delicate honeycomb wax structures, potentially making treatment of beehive material with double inductively coupled low pressure plasma part of a fast and reliable method to rehabilitate infected bee colonies with the potential to re-use honeycombs. (paper)

  1. Parametric studies on containment thermal hydraulic loads during high pressure melt ejection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silde, A.; Lindholm, I. [VTT Energy, Espoo (Finland)

    1997-12-01

    The containment thermal hydraulic loads during high pressure melt ejection in a Nordic BWR are studied parametrically with the CONTAIN and the MELCOR codes. The work is part of the Nordic RAK-2 project. The containment analyses were divided into two categories according to composition of the discharged debris: metallic and oxidic debris cases. In the base case with highly metallic debris, all sources from the reactor coolant system to the containment were based on the MELCOR/BH calculation. In the base case with the oxidic debris, the source data was specified assuming that {approx} 15% of the whole core material inventory and 34,000 kg of saturated water was discharged from the reactor pressure vessel (RPV) during 30 seconds. In this case, the debris consisted mostly of oxides. The highest predicted containment pressure peaks were about 8.5 bar. In the scenarios with highly metallic debris source, very high gas temperature of about 1900 K was predicted in the pedestal, and about 1400 K in the upper drywell. The calculations with metallic debris were sensititive to model parameters, like the particle size and the parameters, which control the chemical reaction kinetics. In the scenarios with oxidic debris source, the predicted pressure peaks were comparable to the cases with the metallic debris source. The maximum gas temperatures (about 450-500 K) in the containment were, however, significantly lower than in the respective metallic debris case. The temperatures were also insensitive to parametric variations. In addition, one analysis was performed with the MELCOR code for benchmarking of the MELCOR capabilities against the more detailed CONTAIN code. The calculations showed that leak tightness of the containment penetrations could be jeopardized due to high temperature loads, if a high pressure melt ejection occurred during a severe accident. Another consequence would be an early containment venting. (au). 28 refs.

  2. Disposition of smoked cannabis with high [Delta]9-tetrahydrocannabinol content: A kinetic model.

    NARCIS (Netherlands)

    Hunault, C.C.; van Eijkeren, J.C.; Mensinga, T.T.; de Vries, I.; Leenders, M.E.C.; Meulenbelt, J.

    2010-01-01

    Introduction No model exists to describe the disposition and kinetics of inhaled cannabis containing a high THC dose. We aimed to develop a kinetic model providing estimates of the THC serum concentrations after smoking cannabis cigarettes containing high THC doses (up to 69 mg THC).Methods

  3. Final Report for Award DE-FG02-99ER54554 Kinetics of Electron Fluxes in Low-Pressure Nonthermal Plasmas

    International Nuclear Information System (INIS)

    Uwe Kortshagen

    2004-01-01

    This grant has focused on the study of several aspects of electron kinetics in low pressure plasmas. Entirely new effects arise from the fact that the electron kinetics is governed by non-local effects, in which the electron distribution function is not equilibrium with the local electric field but is governed by spatial transport effects. In this grant, we were able to demonstrate several previously un-studied effects which are a direct result of the nonlocal transport. These are: (1) The existence of a ''convective cell' in electron phase space. The phenomenon was observed and studied in CW plasma conditions. (2) The occurrence of non-collisional cooling of electrons through an effect known as ''diffusive cooling''

  4. 3D studies of coarserning kinetics of individual grains

    DEFF Research Database (Denmark)

    Poulsen, Stefan Othmar

    Techniques for fast, non-destructive characterization of the microstructure of materials using synchrotron X-ray radiation have in recent years become an important tool in materials science. The non-destructive nature of the techniques allows for time-resolved characterization of three-dimensiona......Techniques for fast, non-destructive characterization of the microstructure of materials using synchrotron X-ray radiation have in recent years become an important tool in materials science. The non-destructive nature of the techniques allows for time-resolved characterization of three......-dimensional microstructures, i.e. direct probing of the evolution of specific microstructural features. Synchrotron X-ray radiation techniques have in the present work been employed for experimental characterization of microstructural evolution in individual grains during isothermal annealing: For a study of individual...... grains during recrystallization, where the recrystallization kinetics of individual grains and the temperature dependence of the recrystallization rate is examined, and for a study of grain structure and grain growth, where growth predictions are put forth in terms of the grain size and topology...

  5. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.

    Science.gov (United States)

    Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A

    2013-02-21

    A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.

  6. High Blood Pressure

    Science.gov (United States)

    ... factors Diabetes High blood pressure Family history Obesity Race/ethnicity Full list of causes and risk factors ... give Give monthly Memorials and tributes Donate a car Donate gently used items Stock donation Workplace giving ...

  7. High Blood Pressure

    Science.gov (United States)

    ... kidney disease, diabetes, or metabolic syndrome Read less Unhealthy lifestyle habits Unhealthy lifestyle habits can increase the risk of high blood pressure. These habits include: Unhealthy eating patterns, such as eating too much sodium ...

  8. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C.

    Science.gov (United States)

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-14

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm(2)/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  9. Photocatalysts: ambient temperature destruction of VOCs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R [IT Corp., Oak Ridge, TN (United States)

    1994-12-31

    Photocatalysis was a failure as a solar energy driven organic synthesis technique, but as this study indicates, it has undergone a renaissance as a promising treatment method for volatile organic compounds (VOCs) in air streams. Photocatalytic oxidation (PCO) relies upon the ability of certain semiconductors to be stimulated by UV radiation. UV light excites valence band electrons in the semiconductor catalyst to jump to a conductance band leaving holes in the valence band. The electrons and holes can react with compounds such as organic contaminants present in an air stream. Hallmarks of the technology include rapid destruction kinetics for many VOCs at ambient temperature and efficient use energy in the form of UV-A photons. Studies clearly indicate that PCO is competitive on capital cost and offers significant operating cost savings on selected applications. 6 refs., 3 tabs., 2 figs.

  10. Photocatalysts: ambient temperature destruction of VOCs

    International Nuclear Information System (INIS)

    Miller, R.

    1994-01-01

    Photocatalysis was a failure as a solar energy driven organic synthesis technique, but as this study indicates, it has undergone a renaissance as a promising treatment method for volatile organic compounds (VOCs) in air streams. Photocatalytic oxidation (PCO) relies upon the ability of certain semiconductors to be stimulated by UV radiation. UV light excites valence band electrons in the semiconductor catalyst to jump to a conductance band leaving holes in the valence band. The electrons and holes can react with compounds such as organic contaminants present in an air stream. Hallmarks of the technology include rapid destruction kinetics for many VOCs at ambient temperature and efficient use energy in the form of UV-A photons. Studies clearly indicate that PCO is competitive on capital cost and offers significant operating cost savings on selected applications. 6 refs., 3 tabs., 2 figs

  11. Advanced non-destructive methods for an efficient service performance

    International Nuclear Information System (INIS)

    Rauschenbach, H.; Clossen-von Lanken Schulz, M.; Oberlin, R.

    2015-01-01

    Due to the power generation industry's desire to decrease outage time and extend inspection intervals for highly stressed turbine parts, advanced and reliable Non-destructive methods were developed by Siemens Non-destructive laboratory. Effective outage performance requires the optimized planning of all outage activities as well as modern Non-destructive examination methods, in order to examine the highly stressed components (turbine rotor, casings, valves, generator rotor) reliably and in short periods of access. This paper describes the experience of Siemens Energy with an ultrasonic Phased Array inspection technique for the inspection of radial entry pinned turbine blade roots. The developed inspection technique allows the ultrasonic inspection of steam turbine blades without blade removal. Furthermore advanced Non-destructive examination methods for joint bolts will be described, which offer a significant reduction of outage duration in comparison to conventional inspection techniques. (authors)

  12. Spectroscopy and kinetics of combustion gases at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, R.K.; Bowman, C.T. [Stanford Univ., CA (United States)

    1993-12-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

  13. Energy-exergy analysis of compressor pressure ratio effects on thermodynamic performance of ammonia water combined cycle

    International Nuclear Information System (INIS)

    Mohtaram, Soheil; Chen, Wen; Zargar, T.; Lin, Ji

    2017-01-01

    Highlights: • Energy exergy analysis is conducted to find the effects of RP. • EES software is utilized to perform the detailed energy-exergy analyses. • Effects investigated through energy and exergy destruction, enthalpy, yields, etc. • Detailed results are reported showing the performance of gas and combined cycle. - Abstract: The purpose of this study is to investigate the effect of compressor pressure ratio (RP) on the thermodynamic performances of ammonia-water combined cycle through energy and exergy destruction, enthalpy temperature, yields, and flow velocity. The energy-exergy analysis is conducted on the ammonia water combined cycle and the Rankine cycle, respectively. Engineering Equation Solver (EES) software is utilized to perform the detailed analyses. Values and ratios regarding heat drop and exergy loss are presented in separate tables for different equipments. The results obtained by the energy-exergy analysis indicate that by increasing the pressure ratio compressor, exergy destruction of high-pressure compressors, intercooler, gas turbine and the special produced work of gas turbine cycle constantly increase and the exergy destruction of recuperator, in contrast, decreases continuously. In addition, the least amount of input fuel into the combined cycle is observed when the pressure ratio is no less than 7.5. Subsequently, the efficiency of the cycle in gas turbine and combined cycle is reduced because the fuel input into the combined cycle is increased.

  14. High-pressure system for Compton scattering experiments

    International Nuclear Information System (INIS)

    Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.

    1998-01-01

    High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model

  15. Investigation of atmospheric pressure capillary non-thermal plasmas and their applications to the degradation of volatile organic compounds

    Science.gov (United States)

    Yin, Shu-Min

    Atmospheric pressure capillary non-thermal plasma (AP-CNTP) has been investigated as a potential technology far the removal of volatile organic compounds (VOCs) in Advanced Life Support Systems (ALS). AP-CNTP is a destructive technology far the removal of VOCs from air streams by active plasma species, such as electrons, ions, and excited molecules. Complete VOC destruction ideally results in the formation of water, carbon dioxide (CO2), and other by-product's may also form, including ozone (O3), nitrous oxide (N2O), nitrogen dioxide (NO2), and decomposed hydrocarbons. Several organic compounds, such as BTEX, ethylene, n-heptane, isooctane, methanol and NH3, were tested in an AP-CNTP system. Parametric experiments were carried out by varying plasma discharge power, flowrates, and initial concentrations. The degradation efficiency varied depending on the chemical nature of the compounds. A plasmochemical kinetic model was derived for toluene, ethylbenzene, and m-xylene and n-heptane.

  16. High-pressure applications in medicine and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  17. High-pressure applications in medicine and pharmacology

    International Nuclear Information System (INIS)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C

    2004-01-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic

  18. What Is High Blood Pressure Medicine?

    Science.gov (United States)

    ... a medicine calendar. • Set a reminder on your smartphone. What types of medicine may be prescribed? One ... High Blood Pressure Medicine? What are their side effects? For many people, high blood pressure medicine can ...

  19. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.

    2005-05-15

    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  20. High Blood Pressure in Pregnancy

    Science.gov (United States)

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  1. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  2. Determination of kinetic coefficients for proton-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Rizzato, C.M.

    1987-01-01

    From the effective proton dynamics, the approximations in the context of high energy collisions which lead to the Boltzmann equation, are established. From this equation, general expressions for the kinetic coefficients are deduced. Using a simple model, analytical expressions for kinetic coefficients are obtained. The importance of the effect of Pauli blocking is also shown. (author) [pt

  3. On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Verscharen, Daniel [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Chen, Christopher H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Wicks, Robert T., E-mail: daniel.verscharen@unh.edu, E-mail: christopher.chen@imperial.ac.uk, E-mail: r.wicks@ucl.ac.uk [Mullard Space Science Laboratory, University College London, London WC1E 6BT (United Kingdom)

    2017-05-10

    Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.

  4. On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind

    International Nuclear Information System (INIS)

    Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T.

    2017-01-01

    Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.

  5. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  6. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  7. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  8. High blood pressure and eye disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  9. Parameters of the constricted plasma discharge produced by radio-frequency for atmospheric pressures

    International Nuclear Information System (INIS)

    Zambrano R, G.

    1987-01-01

    The main electrophysical characteristics of high-frequency discharge between two electrodes for pressures of the order of atmospheric pressure were investigated. The vibrational and kinetic temperatures of the discharge, and the possibilities for creating the conditions which using these type of discharge an instability between vibrational and kinetic temperatures can be obtained. For determining main characteristics of this type of discharge, argon gas, nitrogen gas and air, when oxygen and nitrogen are predominated, were used. The obtained electrical discharge parameters were: the high frequency voltage between electrocathodes, the current, the phase displacement between current and voltage, and the discharge power. The kinetic temperature distribution in the discharge region, and the vibrational temperature of the nitrogen molecules in discharge channel were also obtained. (M.C.K.) [pt

  10. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  11. Characterising multi-level effects of acute pressure exposure on a shallow-water invertebrate: insights into the kinetics and hierarchy of the stress response.

    Science.gov (United States)

    Morris, James P; Thatje, Sven; Ravaux, Juliette; Shillito, Bruce; Hauton, Chris

    2015-08-01

    Hydrostatic pressure is an important, ubiquitous, environmental variable of particular relevance in the marine environment. However, it is widely overlooked despite recent evidence that some marine ectotherms may be demonstrating climate-driven bathymetric range shifts. Wide-ranging effects of increased hydrostatic pressure have been observed from the molecular through to the behavioural level. Still, no study has simultaneously examined these multiple levels of organisation in a single experiment in order to understand the kinetics, hierarchy and interconnected nature of such responses during an acute exposure, and over a subsequent recovery period. Here, we quantify the transcription of a set of previously characterised genes during and after acute pressure exposure in adults of the shrimp Palaemonetes varians. Further, we perform respiratory rate and behavioural analysis over the same period. Increases in expression of genes associated with stress and metabolism were observed during and after high-pressure exposure. Respiratory rate increased during exposure and into the recovery period. Finally, differential behaviour was observed under elevated hydrostatic pressure in comparison to ambient pressure. Characterising generalised responses to acute elevated pressure is a vital precursor to longer-term, acclimation-based pressure studies. Results provide a novel insight into what we term the overall stress response (OSR) to elevated pressure; a concept that we suggest to be applicable to other environmental stressors. We highlight the importance of considering more than a single component of the stress response in physiological studies, particularly in an era where environmental multi-stressor studies are proliferating. © 2015. Published by The Company of Biologists Ltd.

  12. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  13. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  14. Insights into Sonogashira cross-coupling by high-throughput kinetics and descriptor modeling

    NARCIS (Netherlands)

    an der Heiden, M.R.; Plenio, H.; Immel, S.; Burello, E.; Rothenberg, G.; Hoefsloot, H.C.J.

    2008-01-01

    A method is presented for the high-throughput monitoring of reaction kinetics in homogeneous catalysis, running up to 25 coupling reactions in a single reaction vessel. This method is demonstrated and validated on the Sonogashira reaction, analyzing the kinetics for almost 500 coupling reactions.

  15. Evolution of the optical properties of chromium doped calcium tetraborate glass under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lesniewski, Tadeusz, E-mail: tadeusz.lesniewski@phdstud.ug.edu.pl [Institute of Experimental Physics, University of Gdansk, Wita Stwosza 57, 80-952 Gdansk (Poland); Barzowska, Justyna; Mahlik, Sebastian; Behrendt, Mirosław [Institute of Experimental Physics, University of Gdansk, Wita Stwosza 57, 80-952 Gdansk (Poland); Padlyak, Bohdan V. [Sector of Spectroscopy, Vlokh Institute of Physical Optics, Dragomanov St. 23, 79-005 Lviv (Ukraine); Division of Spectroscopy of Functional Materials, Institute of Physics, University of Zielona Gora, Szafrana St. 4a, 65-516 Zielona Gora (Poland); Grinberg, Marek, E-mail: fizmgr@ug.edu.pl [Institute of Experimental Physics, University of Gdansk, Wita Stwosza 57, 80-952 Gdansk (Poland)

    2016-09-15

    In this contribution, we present luminescence properties of calcium tetraborate glass (CaB{sub 4}O{sub 7}) activated with Cr{sup 3+} ions. Excitation spectra, steady state and time resolved luminescence spectra at temperatures between 10 K and 300 K and at high hydrostatic pressure up to 120 kbar were measured. The excitation spectrum consists of two broad bands peaking at 420 nm and 580 nm related to transitions from the {sup 4}A{sub 2g} ground state to {sup 4}T{sub 1g} and {sup 4}T{sub 2g} excited states, respectively. Ambient pressure luminescence spectrum consists of two bands peaking at 690 nm and 850 nm. First band is related to the spin forbidden {sup 2}E{sub g}→{sup 4}A{sub 2g} transition, whereas the second broad band is related to the spin allowed {sup 4}T{sub 2g}→{sup 4}A{sub 2g} transition. Widths of both bands are significantly greater than natural due to inhomogeneous broadening. The ratio between intensities of these bands is strongly temperature and pressure dependent. At pressure below 50 kbar relative contribution of the {sup 2}E{sub g}→{sup 4}A{sub 2g} luminescence decreases with increasing temperature and increases when pressure is applied. For pressure higher than 50 kbar only the emission related to the {sup 2}E{sub g}→{sup 4}A{sub 2g} transition is observed. Analysis of luminescence lineshape and kinetics allowed to estimate the width of the crystal field distribution and show that even at ambient pressure most of the Cr{sup 3+} ions occupy high field sites with energy of the {sup 4}T{sub 2g} higher than the energy of the {sup 2}E{sub g} state.

  16. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  17. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  18. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  19. Surface kinetics for catalytic combustion of hydrogen-air mixtures on platinum at atmospheric pressure in stagnation flows

    Science.gov (United States)

    Ikeda, H.; Sato, J.; Williams, F. A.

    1995-03-01

    Experimental studies of the combustion of premixed hydrogen-air mixtures impinging on the surface of a heated platinum plate at normal atmospheric pressure were performed and employed to draw inferences concerning surface reaction mechanisms and rate parameters applicable under practical conditions of catalytic combustion. Plate and gas temperatures were measured by thermocouples, and concentration profiles of major stable species in the gas were measured by gas-chromatographic analyses of samples withdrawn by quartz probes. In addition, ignition and extinction phenomena were recorded and interpreted with the aid of a heat balance at the surface and a previous flow-field analysis of the stagnation-point boundary layer. From the experimental and theoretical results, conclusions were drawn concerning the surface chemical-kinetic mechanisms and values of the elementary rate parameters that are consistent with the observations. In particular, the activation energy for the surface oxidation step H + OH → H 2O is found to be appreciably less at these high surface coverages than in the low-coverage limit.

  20. N Reactor pressure tube 2566 postirradiation examination

    International Nuclear Information System (INIS)

    Scott, K.V.

    1978-01-01

    Pressure tube 2566 was removed from N Reactor in July, 1977 to initiate the postirradiation examination program required by the Technical Specifications. Destructive examination of the pressure tube, after a maximum accumulated fluence of 4.6 x 10 21 n/cm 2 (E > 1 MeV), was conducted at the Hanford Engineering Development Laboratory to determine the effects of reactor service on the mechanical properties and hydrogen absorption and corrosion characteristics of the pressure tube. Tube 2566 is the sixth tube removed for destructive examination since the initial reactor startup. Evaluation of test results reveal that no significant detrimental changes have occurred in the parameters studied, since the last tube was removed in 1974

  1. Destruction of organic materials by pressurized microwave digestion

    Energy Technology Data Exchange (ETDEWEB)

    Schramel, P. (GSF - Research Center for Environment and Health, Inst. of Ecological Chemistry, Neuherberg (Germany)); Hasse, S. (GSF - Research Center for Environment and Health, Inst. of Ecological Chemistry, Neuherberg (Germany))

    This paper describes the utility of pressurized microwave digestion (up to 85 bar) for a broad spectrum of organic materials (blood, urine, milk powder, tissues). The 'quality' of the sample solution was tested by the determination of Pb, Cd and Cu (additionally Ni and Co in some of the matrices) by anodic stripping voltammetry (DPASV) and Hydride Generation AAS (HAAS) for As. It is clearly shown that no universal 'cooking recipe' can be given. The necessary oxidation potential is very dependent on the type of organic matrix and therefore the use of acid combinations (HNO[sub 3]/HClO[sub 4]/H[sub 2]SO[sub 4]) is generally necessary to obtain adequate solution of the sample. In some cases the power of the microwave oven was not high enough to digest two samples simultaneoulsy. (Significant differences in the ease of solution are shown in the digestion of one or two samples). Some important improvements for sample preparation, such as moistening the powdered material with water and mixing well with the acid used before closing the digestion vessel etc., are also given. (orig.)

  2. Reaction kinetic analysis of reactor surveillance data

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiie, T., E-mail: yoshiie@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka-fu 590-0494 (Japan); Kinomura, A. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka-fu 590-0494 (Japan); Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2017-02-15

    In the reactor pressure vessel surveillance data of a European-type pressurized water reactor (low-Cu steel), it was found that the concentration of matrix defects was very high, and a large number of precipitates existed. In this study, defect structure evolution obtained from surveillance data was simulated by reaction kinetic analysis using 15 rate equations. The saturation of precipitation and the growth of loops were simulated, but it was not possible to explain the increase in DBTT on the basis of the defect structures. The sub-grain boundary segregation of solutes was discussed for the origin of the DBTT increase.

  3. High Pressure Physics at Brigham Young University

    Science.gov (United States)

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  4. Creation of ultra-high-pressure shocks by the collision of laser-accelerated disks: experiment and theory

    International Nuclear Information System (INIS)

    Rosen, M.D.; Phillion, D.W.; Price, R.H.; Campbell, E.M.; Obenschain, S.P.; Whitlock, R.R.; McLean, E.A.; Ripin, B.H.

    1983-01-01

    We have used the SHIVA laser system to accelerate carbon disks to speeds in excess of 100 km/sec. The 3KJ/3 ns pulse, on a 1 mm diameter spot of a single disk produced a conventional shock of about 5 MB. The laser energy can, however, be stored in kinetic motion of this accelerated disk and delivered (reconverted to thermal energy) upon impact with another carbon disk. This collision occurs in a time much shorter than the 3 ns pulse, thus acting as a power amplifier. The shock pressures measured upon impact are estimated to be in the 20 MB range, thus demonstrating the amplification power of this colliding disk technique in creating ultra-high pressures. Theory and computer simulations of this process will be discussed, and compared with the experiment

  5. Automated Determination of Oxygen-Dependent Enzyme Kinetics in a Tube-in-Tube Flow Reactor.

    Science.gov (United States)

    Ringborg, Rolf H; Toftgaard Pedersen, Asbjørn; Woodley, John M

    2017-09-08

    Enzyme-mediated oxidation is of particular interest to synthetic organic chemists. However, the implementation of such systems demands knowledge of enzyme kinetics. Conventionally collecting kinetic data for biocatalytic oxidations is fraught with difficulties such as low oxygen solubility in water and limited oxygen supply. Here, we present a novel method for the collection of such kinetic data using a pressurized tube-in-tube reactor, operated in the low-dispersed flow regime to generate time-series data, with minimal material consumption. Experimental development and validation of the instrument revealed not only the high degree of accuracy of the kinetic data obtained, but also the necessity of making measurements in this way to enable the accurate evaluation of high K MO enzyme systems. For the first time, this paves the way to integrate kinetic data into the protein engineering cycle.

  6. Comparing kinetic curves in liquid chromatography

    Science.gov (United States)

    Kurganov, A. A.; Kanat'eva, A. Yu.; Yakubenko, E. E.; Popova, T. P.; Shiryaeva, V. E.

    2017-01-01

    Five equations for kinetic curves which connect the number of theoretical plates N and time of analysis t 0 for five different versions of optimization, depending on the parameters being varied (e.g., mobile phase flow rate, pressure drop, sorbent grain size), are obtained by means of mathematical modeling. It is found that a method based on the optimization of a sorbent grain size at fixed pressure is most suitable for the optimization of rapid separations. It is noted that the advantages of the method are limited by an area of relatively low efficiency, and the advantage of optimization is transferred to a method based on the optimization of both the sorbent grain size and the drop in pressure across a column in the area of high efficiency.

  7. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges

    Science.gov (United States)

    Fu, Yangyang; Parsey, Guy M.; Verboncoeur, John P.; Christlieb, Andrew J.

    2017-11-01

    In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.

  8. 9 CFR 51.6 - Destruction of animals; time limit for destruction of animals.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Destruction of animals; time limit for destruction of animals. 51.6 Section 51.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... ANIMALS DESTROYED BECAUSE OF BRUCELLOSIS Indemnity for Cattle, Bison, and Swine § 51.6 Destruction of...

  9. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    Science.gov (United States)

    Rotundu, Costel R.; Wen, Jiajia; He, Wei; Choi, Yongseong; Haskel, Daniel; Lee, Young S.

    2018-02-01

    The application of pressure reveals a rich phase diagram for the quantum S =1 /2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T =4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ˜6 GPa up to 215 K but possibly extends in temperature to above T =300 K, indicating the possibility of a quantum singlet state at room temperature. Near the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.

  10. Advanced Approach of Reactor Pressure Vessel In-service Inspection

    International Nuclear Information System (INIS)

    Matokovic, A.; Picek, E.; Pajnic, M.

    2006-01-01

    The most important task of every utility operating a nuclear power plant is the continuously keeping of the desired safety and reliability level. This is achieved by the performance of numerous inspections of the components, equipment and system of the nuclear power plant in operation and in particular during the scheduled maintenance periods at re-fueling time. Periodic non-destructive in-service inspections provide most relevant criteria of the integrity of primary circuit pressure components. The task is to reliably detect defects and realistically size and characterize them. One of most important and the most extensive examination is a reactor pressure vessel in-service inspection. That inspection demand high standards of technology and quality and continual innovation in the field of non-destructive testing (NDT) advanced technology as well as regarding reactor pressure vessel tool and control systems. A remote underwater contact ultrasonic technique is employed for the examination of the defined sections (reactor welds), whence eddy current method is applied for clad surface examinations. Visual inspection is used for examination of the vessel inner surface. The movement of probes and data positioning are assured by using new reactor pressure vessel tool concept that is fully integrated with NDT systems. The successful performance is attributed thorough pre-outage planning, training and successful performance demonstration qualification of chosen NDT techniques on the specimens with artificial and/or real defects. Furthermore, use of advanced approach of inspection through implementation the state of the art examination equipment significantly reduced the inspection time, radiation exposure to examination personnel, shortening nuclear power plant outage and cutting the total inspection costs. The advanced approach as presented in this paper offer more flexibility of application (non-destructive tests, local grinding action as well as taking of boat samples

  11. 30 CFR 57.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  12. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  13. High fidelity kinetic modeling of magnetic reconnection in laboratory plasma

    Science.gov (United States)

    Stanier, A.; Daughton, W. S.

    2017-12-01

    Over the past decade, a great deal of progress has been made towards understanding the physics of magnetic reconnection in weakly collisional regimes of relevance to both fusion devices, and to space and astrophysical plasmas. However, there remain some outstanding unsolved problems in reconnection physics, such as the generation and influence of plasmoids (flux ropes) within reconnection layers, the development of magnetic turbulence, the role of current driven and streaming instabilities, and the influence of electron pressure anisotropy on the layer structure. Due to the importance of these questions, new laboratory reconnection experiments are being built to allow controlled and reproducible study of such questions with the simultaneous acquisition of high time resolution measurements at a large number of spatial points. These experiments include the FLARE facility at Princeton University and the T-REX experiment at the University of Wisconsin. To guide and interpret these new experiments, and to extrapolate the results to space applications, new investments in kinetic modeling tools are required. We have recently developed a cylindrical version of the VPIC Particle-In-Cell code with the capability to perform first-principles kinetic simulations that approach experimental device size with more realistic geometry and drive coils. This cylindrical version inherits much of the optimization work that has been done recently for the next generation many-cores architectures with wider vector registers, and achieves comparable conservation properties as the Cartesian code. Namely it features exact discrete charge conservation, and a so-called "energy-conserving" scheme where the energy is conserved in the limit of continuous time, i.e. without contribution from spatial discretization (Lewis, 1970). We will present initial results of modeling magnetic reconnection in the experiments mentioned above. Since the VPIC code is open source (https

  14. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  15. PAUT-based defect detection method for submarine pressure hulls

    Directory of Open Access Journals (Sweden)

    Min-jae Jung

    2018-03-01

    Full Text Available A submarine has a pressure hull that can withstand high hydraulic pressure and therefore, requires the use of highly advanced shipbuilding technology. When producing a pressure hull, periodic inspection, repair, and maintenance are conducted to maintain its soundness. Of the maintenance methods, Non-Destructive Testing (NDT is the most effective, because it does not damage the target but sustains its original form and function while inspecting internal and external defects. The NDT process to detect defects in the welded parts of the submarine is applied through Magnetic particle Testing (MT to detect surface defects and Ultrasonic Testing (UT and Radiography Testing (RT to detect internal defects. In comparison with RT, UT encounters difficulties in distinguishing the types of defects, can yield different results depending on the skills of the inspector, and stores no inspection record. At the same time, the use of RT gives rise to issues related to worker safety due to radiation exposure. RT is also difficult to apply from the perspectives of the manufacturing of the submarine and economic feasibility. Therefore, in this study, the Phased Array Ultrasonic Testing (PAUT method was applied to propose an inspection method that can address the above disadvantages by designing a probe to enhance the precision of detection of hull defects and the reliability of calculations of defect size. Keywords: Submarine pressure hull, Non-destructive testing, Phased array ultrasonic testing

  16. Nanostructure evolution of neutron-irradiated reactor pressure vessel steels: Revised Object kinetic Monte Carlo model

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Messina, L. [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm (Sweden); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Olsson, P. [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm (Sweden); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2017-02-15

    This work presents a revised set of parameters to be used in an Object kinetic Monte Carlo model to simulate the microstructure evolution under neutron irradiation of reactor pressure vessel steels at the operational temperature of light water reactors (∼300 °C). Within a “grey-alloy” approach, a more physical description than in a previous work is used to translate the effect of Mn and Ni solute atoms on the defect cluster diffusivity reduction. The slowing down of self-interstitial clusters, due to the interaction between solutes and crowdions in Fe is now parameterized using binding energies from the latest DFT calculations and the solute concentration in the matrix from atom-probe experiments. The mobility of vacancy clusters in the presence of Mn and Ni solute atoms was also modified on the basis of recent DFT results, thereby removing some previous approximations. The same set of parameters was seen to predict the correct microstructure evolution for two different types of alloys, under very different irradiation conditions: an Fe-C-MnNi model alloy, neutron irradiated at a relatively high flux, and a high-Mn, high-Ni RPV steel from the Swedish Ringhals reactor surveillance program. In both cases, the predicted self-interstitial loop density matches the experimental solute cluster density, further corroborating the surmise that the MnNi-rich nanofeatures form by solute enrichment of immobilized small interstitial loops, which are invisible to the electron microscope.

  17. Corrosion kinetic of 2 and 4 zircaloys in air at high temperatures

    International Nuclear Information System (INIS)

    Goncalves, A.C.; Goncalves, Z.C.

    1986-01-01

    The corrosion results of 2 and 4 zircaloys obtained in a thermal balance between 500 and 850 0 C are discussed based on the model of 'reduction of diffusion path'. The behaviour of both alloys has shown almost similar in this interval of temperature, proving that the corrosion is processed by an identical kinetic mechanism. It is still analysed the formation of superposed layer of porous oxide and the possible influence of the oxygen partial pressure in inversion velocities between 750 and 800 0 C. (Author) [pt

  18. Bainite formation kinetics in high carbon alloyed steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Zhao, L.; Sietsma, J.

    2008-01-01

    In recent years, many investigations have been carried out on the modeling of the bainite formation. In the present work, a physical approach proposed in the literature is implemented to model the formation of lower bainite in high carbon steels (1 wt.% C). In this model, the carbon diffusion is assumed to control the kinetics of the bainite formation. Both the nucleation and the growth rates are considered in an Avrami type analysis. The effect of alloying elements is taken into account considering only the thermodynamics of the system. The results and the physical meaning of the model parameters are discussed. It is shown that the diffusional approach gives a reasonable description of bainite formation kinetics in high carbon steel. Only two fitting parameters are used: the first accounts for carbon grain-boundary diffusion and the second is the initial nucleation-site density. The model satisfactorily accounts for the effect of transformation temperature, but does not take into account the carbide precipitation during bainite formation and the effect of alloying elements on the diffusion coefficient of carbon

  19. Excitation of high frequency pressure driven modes in non-axisymmetric equilibrium at high βpol in PBX-M

    Science.gov (United States)

    Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.

    1993-12-01

    High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded

  20. Destructive examination of test plates 1 and 2 of the defects detection trials

    International Nuclear Information System (INIS)

    Crutzen, S.; Buergers, W.; Violin, F.; Di Piazza, L.; Cowburn, K.; Sargent, T.

    1983-01-01

    A further phase of the UKAEA defect detection trials (described previously) with PWR pressure vessel steels is reported. The evaluation of NDT exercise results must be based on destructive examination of the plates used during the exercise. Tests are described and results given. (U.K.)

  1. Guidebook on destructive examination of water reactor fuel

    International Nuclear Information System (INIS)

    1997-01-01

    As a result of common efforts of fuel vendors, utilities and research institutes the average burnup pf design batch fuels was increased for both PWRs and BWRs and the fuel failure rate has been reduced. The previously published Guidebook on Non-Destructive Examination of Water Reactor Fuel recommended that more detailed destructive techniques are required for complete understanding of fuel performance. On the basis of contributions of the 14 participants in the ED-WARF-II CRP and proceedings of IAEA Technical Committee on Recent Developments in Post-irradiation Examination Techniques for Water Reactor Fuel this guidebook was compiled. It gives a complete survey of destructive techniques available to date worldwide. The following examination techniques are described in detailed including major principles of equipment design: microstructural studies; elemental analysis; isotopic analysis; measurement of physical properties; measurement of mechanical properties. Besides the examination techniques, methods for refabrication of experimental rods from high burnup power reactor rods as well as methods for verification of non-destructive techniques by using destructive techniques is included

  2. Kinetics of high-temperature oxidation of (Ti,Ta)(C,N)-based cermets

    International Nuclear Information System (INIS)

    Chicardi, E.; Córdoba, J.M.; Gotor, F.J.

    2016-01-01

    Highlights: • The kinetic of high-temperature oxidation of (Ti,Ta)(C,N)-Co cermets was studied. • A parabolic oxidation kinetic was determined in cermets between 700 °C and 1200 °C. • This parabolic kinetic behaviour is due to the existence of a protective layer. • The protective layer formed was a complex Ti_xTa_1_−_xO_2 oxide with rutile structure. • The oxidation rate is controlled by the Ti and O_2 diffusion through the Ti_xTa_1_−_xO_2. - Abstract: The kinetics of the high-temperature oxidation of titanium–tantalum carbonitride-based cermets with different Ti/Ta ratios was studied. Isothermal oxidation tests were conducted under static air for 48 h at temperatures between 700 °C and 1200 °C. The oxidation satisfied the parabolic kinetics, characteristic of the existence of a protective oxide layer. The apparent activation energy suggests the rate-controlling process during oxidation is the simultaneous inward and outward diffusion of oxygen and titanium, respectively, through the formed protective layer, consisting mainly of a rutile phase. A higher Ta(V) content in the rutile decreased the oxygen diffusivity due to the reduction of oxygen vacancy concentration.

  3. High-temperature steam oxidation kinetics of the E110G cladding alloy

    International Nuclear Information System (INIS)

    Király, Márton; Kulacsy, Katalin; Hózer, Zoltán; Perez-Feró, Erzsébet; Novotny, Tamás

    2016-01-01

    In the course of recent years, several experiments were performed at MTA EK (Centre for Energy Research, Hungarian Academy of Sciences) on the isothermal high-temperature oxidation of the improved Russian cladding alloy E110G in steam/argon atmosphere. Using these data and designing additional supporting experiments, the oxidation kinetics of the E110G alloy was investigated in a wide temperature range, between 600 °C and 1200 °C. For short durations (below 500 s) or high temperatures (above 1065 °C) the oxidation kinetics was found to follow a square-root-of-time dependence, while for longer durations and in the intermediate temperature range (800–1000 °C) it was found to approach a cube-root-of-time dependence rather than a square-root one. Based on the results a new best-estimate and a conservative oxidation kinetics model were created. - Highlights: • Steam oxidation kinetics of E110G was studied at MTA EK based on old and new data. • New best-estimate and conservative steam oxidation kinetics were proposed for E110G. • The exponent of oxidation time changed depending on oxidation temperature. • A simple exponential curve was used instead of Arrhenius-type curve for the factor.

  4. Non-destructive control of castings

    International Nuclear Information System (INIS)

    Boutault, J.; Mascre, C.

    1978-01-01

    The object of non-destructive control in foundries is to verify the metal structure, the absence of unacceptable discontinuity, total tightness, etc. This leads to a range of very varied controls according to the importance of the series, the quality level required by the specifications, the nature of the alloy. The originality of the solutions which are imperative for castings is shown through examples: casting of high quality complex forms in short series; very thick unit parts; very large series of parts requiring on efficient automation of non-destructive control. Lastly the publishing of testing methods and interpretating rules, which are the base of a friendly understanding between constructors and founders are recalled [fr

  5. High-pressure X-ray diffraction, Raman, and computational studies of MgCl2 up to 1 Mbar: Extensive pressure stability of the β-MgCl2 layered structure.

    Science.gov (United States)

    Stavrou, Elissaios; Yao, Yansun; Zaug, Joseph M; Bastea, Sorin; Kalkan, Bora; Konôpková, Zuzana; Kunz, Martin

    2016-08-12

    Magnesium chloride (MgCl2) with the rhombohedral layered CdCl2-type structure (α-MgCl2) has been studied experimentally using synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy using a diamond-anvil cell up to 100 GPa at room temperature and theoretically using first-principles density functional calculations. The results reveal a pressure-induced second-order structural phase transition to a hexagonal layered CdI2-type structure (β-MgCl2) at 0.7 GPa: the stacking sequence of the Cl anions are altered resulting in a reduction of the c-axis length. Theoretical calculations confirm this phase transition sequence and the calculated transition pressure is in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phase. According to our experimental results MgCl2 remains in a 2D layered phase up to 100 GPa and further, the 6-fold coordination of Mg cations is retained. Theoretical calculations of relative enthalpy suggest that this extensive pressure stability is due to a low enthalpy of the layered structure ruling out kinetic barrier effects. This observation is unusual, as it contradicts with the general structural behavior of highly compressed AB2 compounds.

  6. Fuel spray combustion of waste cooking oil and palm oil biodiesel: Direct photography and detailed chemical kinetics

    KAUST Repository

    Kuti, Olawole

    2013-10-14

    This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle. Also a detailed chemical kinetics for the biodiesel fuels was carried out using ac chemical kinetics solver adopting a 0-D reactor model to obtain the chemical ignition delay of the combusting fuels. Equivalence ratios obtained from the experimental ignition delay were used for the detailed chemical kinetics analyses. The Politecnico di Milano\\'s thermochemical and reaction kinetic data were adopted to simulate the ignition processes of the biodiesels using the five fatty acid methyl esters (FAME) major components in the biodiesel fuels. From the high-speed video observations, it was observed that at increasing injection pressure, experimental ignition delay increased as a result of improvement in fuel and air mixing effects. Also the palm oil biodiesel has a shorter ignition delay compared to waste cooked oil biodiesel. This phenomenon could be attributed to the higher cetane number of palm biodiesel. The fuel spray ignition properties depend on both the physical ignition delay and chemical ignition delay. From the detailed chemical kinetic results it was observed that at the low temperature, high ambient pressure conditions reactivity increased as equivalent ratio

  7. Fuel spray combustion of waste cooking oil and palm oil biodiesel: Direct photography and detailed chemical kinetics

    KAUST Repository

    Kuti, Olawole; Nishida, Keiya; Sarathy, Mani; Zhu, Jingyu

    2013-01-01

    This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle. Also a detailed chemical kinetics for the biodiesel fuels was carried out using ac chemical kinetics solver adopting a 0-D reactor model to obtain the chemical ignition delay of the combusting fuels. Equivalence ratios obtained from the experimental ignition delay were used for the detailed chemical kinetics analyses. The Politecnico di Milano's thermochemical and reaction kinetic data were adopted to simulate the ignition processes of the biodiesels using the five fatty acid methyl esters (FAME) major components in the biodiesel fuels. From the high-speed video observations, it was observed that at increasing injection pressure, experimental ignition delay increased as a result of improvement in fuel and air mixing effects. Also the palm oil biodiesel has a shorter ignition delay compared to waste cooked oil biodiesel. This phenomenon could be attributed to the higher cetane number of palm biodiesel. The fuel spray ignition properties depend on both the physical ignition delay and chemical ignition delay. From the detailed chemical kinetic results it was observed that at the low temperature, high ambient pressure conditions reactivity increased as equivalent ratio

  8. Kinetic Energy from Supernova Feedback in High-resolution Galaxy Simulations

    Science.gov (United States)

    Simpson, Christine M.; Bryan, Greg L.; Hummels, Cameron; Ostriker, Jeremiah P.

    2015-08-01

    We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells’ mass and velocity in a distributed fashion. The method is explored in the context of supernova (SN) feedback in high-resolution (˜10 pc) hydrodynamic simulations of galaxy formation. Resolution dependence is a primary consideration in our application of the method, and simulations of isolated explosions (performed at different resolutions) motivate a resolution-dependent scaling for the injected fraction of kinetic energy that we apply in cosmological simulations of a 109 M⊙ dwarf halo. We find that in high-density media (≳50 cm-3) with coarse resolution (≳4 pc per cell), results are sensitive to the initial kinetic energy fraction due to early and rapid cooling. In our galaxy simulations, the deposition of small amounts of SN energy in kinetic form (as little as 1%) has a dramatic impact on the evolution of the system, resulting in an order-of-magnitude suppression of stellar mass. The overall behavior of the galaxy in the two highest resolution simulations we perform appears to converge. We discuss the resulting distribution of stellar metallicities, an observable sensitive to galactic wind properties, and find that while the new method demonstrates increased agreement with observed systems, significant discrepancies remain, likely due to simplistic assumptions that neglect contributions from SNe Ia and stellar winds.

  9. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  10. Destructiveness in Political Discourse

    Directory of Open Access Journals (Sweden)

    Яна Александровна Волкова

    2016-12-01

    Full Text Available Destructiveness is among the fundamental discourse categories that play a significant role in the organization of communicative interaction and define the pragmatics of discourse; its study helps to understand some mechanisms and principles of communication, identify strategies and tactics used by a destructive communicative personality. The relevance of this study is determined by the increasing aggressiveness in various types of discourse, and, accordingly, by the need to extend the knowledge of destructive behavior of a communicative personality. The study is based on the theory of discourse-analysis and theory of destructiveness (Z. Harris, T. van Dijk, A. Buss, E. Fromm, D. Ponton, K. Hacker, R. Wodak. N. Arutyunova, V. Karasik, M. Makarov, E. Sheigal et al. Developing the theory of destructiveness and relying on Erich Fromm’s research (1973, we specify the concept of “destructiveness” in relation to the political discourse and compare it with the related concept of aggressiveness. The paper analyses the category of destructiveness in modern US political discourse, using excerpts from the speeches of the candidates for presidency of 2016. Particular attention is paid to the dominant destructive intention - to harm the reputation of the opponent and reduce his political chances, as well as to the functions of verbal aggression: on the one hand - to discredit the opponent, bring accusations, on the other hand - to poison the audience mind against him/her and arouse the feeling of danger posed by a political opponent. The analysis of verbal and nonverbal means of destructiveness in the US political discourse is carried out. The article concludes that abusive remarks of politicians do not result from spontaneous emotional outburst, but from an elaborated destructive strategy where the agonistic nature of political discourse stipulates the use of instrumental aggression (Buss, 1971 for the sake of the conquest of power, lowering the

  11. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  12. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  13. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  14. First experimental results on the kinetic processes in a surface-wave-sustained argon discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Calzada, M.D.; Gamero, A.; Sola, A.

    1995-01-01

    This communication presents an advance of the results of an experimental study of the kinetic processes in a surface-wave-sustained argon discharge at atmospheric pressure. We utilize the study developed by Fujimoto on the population and depopulation processes of the excited levels of atoms and ions. This theory has been applied by S. Daviaud and A. Hirabayashi to explain the kinetic processes in helium plasma at low pressure. Fujimoto has studied the ionization and recombination mechanisms of the plasma under various conditions and its relation to the population density distributions. This study establishes, for an hydrogenic ion with a core charge z, different zones in the atomic system (level map). Each zone is characterized by the dominant mechanisms of the population and depopulation of their excited levels, A level is characterized for the effective principal quantum number p, where p = z (E H /|E p |) 1/2 , E H is the hydrogen ionization energy and |E p | is the energy required to ionize the atom from the level considered. The population of each level p can be expressed in terms of the parameter b(p) defined as n(p)/n SB (p), n(p) and n SB (p) being the actual population and the Saha-Boltzmann equilibrium population of the level, respectively. Figure I shows the population and depopulation processes of a level p, which are both collisional and radiative that are characterized by their respective coefficients

  15. Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor.

    Science.gov (United States)

    Wang, Xue; Wang, Shuang; Jiang, Junfeng; Liu, Kun; Zhang, Xuezhi; Xiao, Mengnan; Xiao, Hai; Liu, Tiegen

    2017-12-11

    We introduce a simple residual pressure self-measurement method for the Fabry-Perot (F-P) cavity of optical MEMS pressure sensor. No extra installation is required and the structure of the sensor is unchanged. In the method, the relationship between residual pressure and external pressure under the same diaphragm deflection condition at different temperatures is analyzed by using the deflection formula of the circular plate with clamped edges and the ideal gas law. Based on this, the residual pressure under the flat condition can be obtained by pressure scanning process and calculation process. We carried out the experiment to compare the residual pressures of two batches MEMS sensors fabricated by two kinds of bonding process. The measurement result indicates that our approach is reliable enough for the measurement.

  16. Kinetic studies of the radical oxidation in gaseous phase of organic iodides and of the formation of iodine oxide particles under the simulated conditions of a nuclear reactor containment submitted to a severe accident

    International Nuclear Information System (INIS)

    Zhang, S.

    2012-01-01

    Within the framework of the research in the nuclear reactor safety field, the iodine oxides formation by organic iodides destruction in the containment has been studied with the means of the atmospheric chemistry field. The destruction kinetics and their activation energy of organic iodides by . OH and . O radical has been quantified by a Flash Photolysis system able to monitor the oxidant radicals by resonance fluorescence. Those results have been published and some of them for the first time in the literature. The mechanisms leading to the organic iodides destruction are either by a hydrogen atom abstraction, either by the formation of a complex, depending on the organic iodide involved. Then, certain kinetics reactions have been updated in the IODAIR code. Other reactions have been added based on the recent literature available. A comparison of the kinetics destruction of CH 3 I by . OH and . O with IODAIR and the global kinetics of destruction in ASTEC/IODE showed a difference of about 2 which shows the importance of these two radicals (and mainly . O) in those destruction processes. The other main path of destruction would be by electron radiation. Other radicals like . H and . N would not contribute significantly to organic iodides destruction. A sensitivity analysis highlighted that organic iodides would mostly be destroyed into iodine oxides with a almost complete conversion within a few hours. Finally, an atmospheric chamber has been used to quantify iodine oxides growth, density and composition. Under the conditions studied, their formation is fast. Particles sizes of about 200-400 nm are formed within a few hours. The main parameters influencing their growth are the relative humidity and the presence of ozone (whose function is to create . O and . OH radicals). (author)

  17. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  18. Plastic Deformation of Pressured Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-11-01

    Full Text Available Although pressured metallic glass (MG has been reported in the literature; there are few studies focusing on pressure effects on the structure; dynamics and its plastic deformation. In this paper; we report on and characterize; via molecular dynamics simulation, the structure and dynamics heterogeneity of pressured MGs, and explore a causal link between local structures and plastic deformation mechanism of pressured glass. The results exhibit that the dynamical heterogeneity of metallic liquid is more pronounced at high pressure, while the MGs were less fragile after the release of external pressure, reflected by the non-Gaussian parameter (NGP. High pressure glass shows better plastic deformation; and the local strain zone distributed more uniformly than of in normal glass. Further research indicates that although the number of icosahedrons in pressured glass was much larger than that in normal glass, while the interpenetrating connections of icosahedra (ICOI exhibited spatial correlations were rather poor; In addition, the number of ‘fast’ atoms indexed by the atoms’ moving distance is larger than that in normal glass; leading to the sharp decreasing in number of icosahedrons during deformation. An uniform distribution of ‘fast’ atoms also contributed to better plastic deformation ability in the pressured glass. These findings may suggest a link between the deformation and destruction of icosahedra with short-range order.

  19. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  20. Procedure of Destructive Chemical Recovery of Precious Metals in Nitric Acid Production

    Directory of Open Access Journals (Sweden)

    Ljubičić, M.

    2012-07-01

    Full Text Available The heart of the nitric acid production process is the chemical reactor containing a platinum-based catalyst pack and an associated catchment system, which allows the ammonia oxidation reaction to take place efficiently. Under the severe operating conditions imposed by the high-pressure ammonia oxidation process, the catalyst gauzes experience progressive deterioration, as shown by the restricted surface of the catalyst wires, the loss of catalytic activity and the loss of catalytic materials. The higher the pressure of gaseous ammonia oxidation, the greater the loss of platinum group metals from the surface of the applied selective heterogeneous catalysts. Total losses for one batch over the whole period of using selective heterogeneous catalysts may account in the range from 20 to 40 % of the total installed quantity of precious metals. An important part of the platinum removed from the platinum-rhodium alloy wires can be recovered at the outlet of the reactor by means of palladium catchment gauzes. However, this catchment process, which is based on the great ability of palladium to alloy with platinum, is not 100 % effective and a fraction of the platinum and practically all of the rhodium lost by the catalyst wires, evades the catchment package and is then deposited in other parts of the plant, especially heat exchangers. From the above mentioned operating equipment, the retained mass of precious metals can be recovered by the technical procedure of non-destructive and destructive chemical solid-liquid extraction.Shown is the technical procedure of destructive chemical recovery of preheater and boiler for preheating and production of steam by applying sulfuric acid (w = 20 % and subsequent procedure of raffination of derived sludge, to the final recovery of precious metals. The technical procedure of destructive chemical recovery of precious metals from preheater and boiler for preheating and production of steam in nitric acid production is

  1. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  2. High temperature oxidation kinetics of dysprosium particles

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-09-25

    Highlights: • The oxidation behavior of dysprosium particles was studied from 500 to 1000 °C. • Activation energy in initial region found as 8–25 kJ/mol, depending on atmosphere. • Activation energy in intermediate region found as 80–95 kJ/mol. • The oxide grows at the metal–oxide interface. • Generally, the formed oxide behaved as a p-type semiconductor. - Abstract: Rare earth elements have been recognized as critical materials for the advancement of many strategic and green technologies. Recently, the United States Department of Energy has invested many millions of dollars to enhance, protect, and forecast their production and management. The work presented here attempts to clarify the limited and contradictory literature on the oxidation behavior of the rare earth metal, dysprosium. Dysprosium particles were isothermally oxidized from 500 to 1000 °C in N{sub 2}–(2%, 20%, and 50%) O{sub 2} and Ar–20% O{sub 2} using simultaneous thermal analysis techniques. Two distinct oxidation regions were identified at each isothermal temperature in each oxidizing atmosphere. Initially, the oxidation kinetics are very fast until the reaction enters a slower, intermediate region of oxidation. The two regions are defined and the kinetics of each are assessed to show an apparent activation energy of 8–25 kJ/mol in the initial region and 80–95 kJ/mol in the intermediate oxidation reaction region. The effects of varying the oxygen partial pressure on the reaction rate constant are used to show that dysprosium oxide (Dy{sub 2}O{sub 3}) generally acts as a p-type semiconductor in both regions of oxidation (with an exception above 750 °C in the intermediate region)

  3. 7 CFR 58.219 - High pressure pumps and lines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The high...

  4. Fluorinert as a pressure-transmitting medium for high-pressure diffraction studies

    International Nuclear Information System (INIS)

    Varga, Tamas; Wilkinson, Angus P.; Angel, Ross J.

    2003-01-01

    Fluorinert is a liquid pressure-transmitting medium that is widely used in high-pressure diffraction work. A systematic study of five different fluorinerts was carried out using single-crystal x-ray diffraction in a diamond-anvil cell in order to determine the pressure range over which they provide a hydrostatic stress state to the sample. It was found that none of the fluorinerts studied can be considered hydrostatic above 1.2 GPa, a lower pressure than reported previously

  5. Thermodynamic relations in high temperature and high pressure physics of solids

    International Nuclear Information System (INIS)

    Kumar, Munish

    1998-01-01

    Various possible simple relations based on the exact and approximate thermodynamic relations are derived. These relations can be used to investigate the variation of unit cell volume under the effect of pressure and temperature. Thermal expansivity and compressibility can be investigated directly at any pressure or temperature, or through the knowledge of equation of state (EOS). A relation to determine Anderson-Grueneisen parameter δ T under the effect of pressure is predicted. It is discussed that δ T is independent of pressure and thus Murnaghan equation of state works well in low pressure ranges, while the variation of δ T under high pressure should be taken into account. The product of coefficient of volume thermal expansion and bulk modulus remains constant, is correct at high pressure, provided that the pressure dependence of δ T is considered. (author)

  6. Nb effect on Zr-alloy oxidation under high pressure steam at high temperatures

    International Nuclear Information System (INIS)

    Park, Kwangheon; Yang, Sungwoo; Kim, Kyutae

    2005-01-01

    The high-pressure steam effects on the oxidation of Zircaloy-4 (Zry-4) and Zirlo (Zry-1%Nb) claddings at high temperature have been analyzed. Test temperature range was 700-900degC, and pressures were 1-150 bars. High pressure-steam enhances oxidation of Zry-4, and the dependency of enhancement looks exponential to steam pressure. The origin of the oxidation enhancement turned out to be the formation of cracks in oxide. The loss of tetragonal phase by high-pressure steam seems related to the crack formation. Addition of Nb as an alloying element to Zr alloy reduces significantly the steam pressure effects on oxidation. The higher compressive stresses and the smaller fraction of tetragonal oxides in Zry-1%Nb seem to be the diminished effect of high-pressure steam on oxidation. (author)

  7. Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process

    International Nuclear Information System (INIS)

    Wu Mengwu; Xiong Shoumei

    2012-01-01

    Two important microstructure characteristics of high pressure die cast magnesium alloy are the externally solidified crystals (ESCs) and the fully divorced eutectic which form at the filling stage of the shot sleeve and at the last stage of solidification in the die cavity, respectively. Both of them have a significant influence on the mechanical properties and performance of magnesium alloy die castings. In the present paper, a numerical model based on the cellular automaton (CA) method was developed to simulate the microstructure evolution of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. Modeling of dendritic growth of magnesium alloy with six-fold symmetry was achieved by defining a special neighbourhood configuration and calculating of the growth kinetics from complete solution of the transport equations. Special attention was paid to establish a nucleation model considering both of the nucleation of externally solidified crystals in the shot sleeve and the massive nucleation in the die cavity. Meanwhile, simulation of the formation of fully divorced eutectic was also taken into account in the present CA model. Validation was performed and the capability of the present model was addressed by comparing the simulated results with those obtained by experiments.

  8. Testing antifreeze protein from the longhorn beetle Rhagium mordax as a kinetic gas hydrate inhibitor using a high-pressure micro differential scanning calorimeter

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Perfeldt, Christine Malmos; von Solms, Nicolas

    2015-01-01

    Low dosage kinetic hydrate inhibitors are employed as alternatives to expensive thermodynamic inhibitors to manage the risk of hydrate formation inside oil and gas pipelines. These chemicals need to be tested at appropriate conditions in the laboratory before deployment in the field. A high press...

  9. High-pressure differential scanning microcalorimeter.

    Science.gov (United States)

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  10. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    International Nuclear Information System (INIS)

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO 2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239 Pu and ≥90% total Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products

  11. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  12. 30 CFR 56.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of high-pressure...

  13. Pressurized planar electrochromatography, high-performance thin-layer chromatography and high-performance liquid chromatography--comparison of performance.

    Science.gov (United States)

    Płocharz, Paweł; Klimek-Turek, Anna; Dzido, Tadeusz H

    2010-07-16

    Kinetic performance, measured by plate height, of High-Performance Thin-Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Pressurized Planar Electrochromatography (PPEC) was compared for the systems with adsorbent of the HPTLC RP18W plate from Merck as the stationary phase and the mobile phase composed of acetonitrile and buffer solution. The HPLC column was packed with the adsorbent, which was scrapped from the chromatographic plate mentioned. An additional HPLC column was also packed with adsorbent of 5 microm particle diameter, C18 type silica based (LiChrosorb RP-18 from Merck). The dependence of plate height of both HPLC and PPEC separating systems on flow velocity of the mobile phase and on migration distance of the mobile phase in TLC system was presented applying test solute (prednisolone succinate). The highest performance, amongst systems investigated, was obtained for the PPEC system. The separation efficiency of the systems investigated in the paper was additionally confirmed by the separation of test component mixture composed of six hormones. 2010 Elsevier B.V. All rights reserved.

  14. To the probe theory in a highly-ionized high-pressure plasma

    International Nuclear Information System (INIS)

    Baksht, F.G.; Rybakov, A.B.

    1997-01-01

    The probe theory in highly-ionized high-pressure plasma is presented. The situation typical for high-pressure plasma, when the plasma in the main part of the near-probe layer is in the state of local ionization equilibrium with general temperature for electrons and heavy particles. Possibility is discussed for determining the parameters of non-perturbed plasma through analysis of the probe characteristic at place of ion saturation, transition area and by the probe floating potential. The experiments were carried out by example of highly-ionized xenon plasma under atmospheric pressure

  15. Magnetization at high pressure in CeP

    Science.gov (United States)

    Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.

    1995-02-01

    We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.

  16. High pressure and high temperature EXAFS and diffraction study of AgI

    International Nuclear Information System (INIS)

    Yoshiasa, Akira; Arima, Hiroshi; Fukui, Hiroshi; Okube, Maki; Katayama, Yoshinori; Ohtaka, Osamu

    2009-01-01

    We have determined the precise P-T phase diagram of AgI by in-situ high-pressure high-temperature synchrotron experiments. X-ray diffraction and XAFS measurements were performed up to 6.0 GPa and 1100 K using a multi-anvil high-pressure device and synchrotron radiation from SPring-8. In the disordered rock-salt phase, Ag ions occupy both octahedral and tetrahedral sites and twenty percent of Ag ions occupy the tetrahedral site as a maximum value at 2 GPa. From the viewpoint of the local structure analyses, some sudden changes are recognized near broad phase transition point. Analysis of EXAFS Debye-Waller factor is useful because the force constant can be decided directly even at high pressure and high temperature. Pressure influences greatly the effective potential and anharmonicity decreases with increasing pressure. (author)

  17. Trends in high pressure developments for new perspectives

    Science.gov (United States)

    Largeteau, Alain; Prakasam, Mythili

    2018-06-01

    Temperature and Pressure are two parameters in the universe, where pressure represents the largest scale in comparison to temperature. The design of high pressure equipment depends mainly on the media used which could be gas, liquid or solid and the objective could be synthesis of materials or in situ characterization. The development of new research fields requiring high pressure equipment which are currently in Bordeaux - France are based on the historical development of high pressure domain initiated by Professor Gerard DEMAZEAU and his team during the last half century, which is discussed here. The main concepts governing the effect of pressure on materials synthesis is by the combination of high pressure and high temperature which are described with apt examples. There is an upsurge in various technologies for strong development for the synthesis of materials to drive several possibilities, for example: to reach very high density to obtain optical ceramics (by conventional SPS), to diminish parameters (P, T, t) of synthesis (by HP-SPS), to sinter at low temperature thermal sensitive composition (by HyS), to consolidate porous materials (by FIP), to densify biocomposite with cold decontamination (by HHP) simultaneously, etc.

  18. Proposed dedicated high pressure beam lines at CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Vohra, Y.K.; Bassett, W.A.; Batterman, B.W.; Bilderback, D.H.

    1988-01-01

    An instrumentation proposal for dedicated high pressure beam lines at CHESS is described. It is the purpose of this proposed program to provide researchers in high pressure science with beam lines for X-ray diffraction studies in the megabar regime. This will involve radiation from a bending magnet as well as from a wiggler. Examples of the high pressure results up to 2.16 Mbar are shown. Diffraction patterns from bending magnet and wiggler beams are shown and compared. The need for this facility by the high pressure community is discussed. (orig.)

  19. Explosive mechanism of metal destruction by intense electromagnetic radiation flux

    International Nuclear Information System (INIS)

    Martynyuk, M.M.

    1977-01-01

    The metal destruction by a powerful flux of electromagnetic radiation is considered on the basis of thermodynamics and kinetics of the transition of molten metal to vapour during its rapid heating. The possibility is discussed of obtaining a metastable liquid-metal phase and of its explosion transition to a stable two-phase state (phase explosion of metastable liquid). It has been shown that at densities of radiation beam ensuring the heating of the metal to the spinodal point Tsub(s) during a time tsub(s)=10 -5 -10 -7 s the vaporization of the matter from the surface of the liquid is negligible, and the main mechanism of the metal destruction is the phase explosion of the metastable liquid-metal phase which originates in the Tsub(s) vicinity. The experimental data on the electric explosion of conductors for tsub(s)=10 -6 -10 -5 s has served as a basis for calculating the excess enthalpy and the proportion of the vapour phase formed in the phase explosion of Cu, Ag, Au, Zn, Cd, Al, Pb, Zr, Nb, Mo, W, Pt and Re. The particularities of the phase explosion at flux densities corresponding to tsub(s)( -8 s are considered

  20. Neutron powder diffraction under high pressure at J-PARC

    International Nuclear Information System (INIS)

    Utsumi, Wataru; Kagi, Hiroyuki; Komatsu, Kazuki; Arima, Hiroshi; Nagai, Takaya; Okuchi, Takuo; Kamiyama, Takashi; Uwatoko, Yoshiya; Matsubayashi, Kazuyuki; Yagi, Takehiko

    2009-01-01

    It is expected that high-pressure material science and the investigation of the Earth's interior will progress greatly using the high-flux pulse neutrons of J-PARC. In this article, we introduce our plans for in situ neutron powder diffraction experiments under high pressure at J-PARC. The use of three different types of high-pressure devices is planned; a Paris-Edinburgh cell, a new opposed-anvil cell with a nano-polycrystalline diamond, and a cubic anvil high-pressure apparatus. These devices will be brought to the neutron powder diffraction beamlines to conduct a 'day-one' high-pressure experiment. For the next stage of research, we propose construction of a dedicated beamline for high-pressure material science. Its conceptual designs are also introduced here.

  1. DASH diet to lower high blood pressure

    Science.gov (United States)

    ... patientinstructions/000770.htm DASH diet to lower high blood pressure To use the sharing features on this page, ... Hypertension. The DASH diet can help lower high blood pressure and cholesterol and other fats in your blood. ...

  2. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  3. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  4. Effects of high hydrostatic pressure on bacterial growth on human ossicles explanted from cholesteatoma patients.

    Directory of Open Access Journals (Sweden)

    Steffen Dommerich

    Full Text Available BACKGROUND: High hydrostatic pressure (HHP treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. METHODOLOGY: Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. PRINCIPAL FINDINGS: A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion.

  5. Effects of High Hydrostatic Pressure on Bacterial Growth on Human Ossicles Explanted from Cholesteatoma Patients

    Science.gov (United States)

    Ostwald, Jürgen; Lindner, Tobias; Zautner, Andreas Erich; Arndt, Kathleen; Pau, Hans Wilhelm; Podbielski, Andreas

    2012-01-01

    Background High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. Methodology Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. Principal Findings A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion. PMID:22291908

  6. Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.

    Science.gov (United States)

    Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose

    2014-12-01

    Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Dynamism or Disorder at High Pressures?

    Science.gov (United States)

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  8. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    International Nuclear Information System (INIS)

    Li, T.; Dewhurst, R. J.

    2010-01-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  9. Lithiation Kinetics in High-Performance Porous Vanadium Nitride Nanosheet Anode

    International Nuclear Information System (INIS)

    Peng, Xiang; Li, Wan; Wang, Lei; Hu, Liangsheng; Jin, Weihong; Gao, Ang; Zhang, Xuming; Huo, Kaifu; Chu, Paul K.

    2016-01-01

    Vanadium nitride (VN) is promising in lithium ion battery (LIB) anode due to its high energy density, chemical stability, and corrosion resistivity. Herein, porous VN nanosheets are synthesized hydrothermally followed by an ammonia treatment. The porous nanosheets offer a large interfacial area between the electrode and electrolyte as well as short Li + diffusion path and consequently, the VN nanosheets electrode has high capacity and rate capability as an anode in LIB. The VN anode delivers a high reversible capacity of 455 mAh g −1 at a current density of 100 mA g −1 and it remains at 341 mAh g −1 when the current density is increased to 1 A g −1 . The charge transfer and Li + diffusion kinetics during the lithiation process is studied systematically. A highly stable SEI film is formed during the initial discharging-charging cycles to achieve a long cycle life and sustained capacity at a high level for 250 discharging-charging cycles without deterioration. This work demonstrates the preparation of high-performance LIB anode materials by a simple method and elucidates the lithiation kinetics.

  10. Capabilities for measuring physical and chemical properties of rocks at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. (comp.)

    1990-01-01

    The Experimental Geophysics Group of the Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) has experimental equipment that measures a variety of physical properties and phase equilibria and kinetics on rocks and minerals at extreme pressures (to 500 GPa) and temperatures (from 10 to 2800 K). These experimental capabilities are described in this report in terms of published results, photographs, and schematic diagrams.

  11. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  12. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aortic Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 29,2018 The importance of stress ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  13. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    Science.gov (United States)

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  14. In situ NMR studies of hydrogen storage kinetics and molecular diffusion in clathrate hydrate at elevated hydrogen pressures

    Energy Technology Data Exchange (ETDEWEB)

    Okuchi, T. [Okayama Univ., Misasa, Tottori (Japan); Moudrakovski, I.L.; Ripmeester, J.A. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences

    2008-07-01

    The challenge of storing high-density hydrogen into compact host media was investigated. The conventional storage scheme where an aqueous solution is frozen with hydrogen gas is too slow for practical use in a hydrogen-based society. Therefore, the authors developed a faster method whereby hydrogen was stored into gas hydrates. The hydrogen gas was directly charged into hydrogen-free, crystalline hydrate powders with partly empty lattices. The storage kinetics and hydrogen diffusion into the hydrate was observed in situ by nuclear magnetic resonance (NMR) in a pressurized tube cell. At pressures up to 20 MPa, the storage was complete within 80 minutes, as observed by growth of stored-hydrogen peak into the hydrate. Hydrogen diffusion within the crystalline hydrate media is the rate-determining step of current storage scheme. Therefore, the authors measured the diffusion coefficient of hydrogen molecules using the pulsed field gradient NMR method. The results show that the stored hydrogen is very mobile at temperatures down to 250 K. As such, the powdered hydrate media should work well even in cold environments. Compared with more prevailing hydrogen storage media such as metal hydrides, clathrate hydrates have the advantage of being free from hydrogen embrittlement, more chemically durable, more environmentally sound, and economically affordable. It was concluded that the powdered clathrate hydrate is suitable as a hydrogen storage media. 22 refs., 4 figs.

  15. The kinetics of dolomite reaction rim growth under isostatic and non-isostatic pressure conditions

    Science.gov (United States)

    Helpa, V.; Rybacki, E.; Morales, L. G.; Abart, R.; Dresen, G. H.

    2013-12-01

    During burial and exhumation, rocks are simultaneously exposed to metamorphic reactions and tectonic stresses. Therefore, the reaction rate of newly formed minerals may depend on chemical and mechanical driving forces. Here, we investigate the reaction kinetics of dolomite (CaMg[CO3]2) rim growth by solid-state reactions experiments on oriented calcite (CaCO3) and magnesite (MgCO3) single crystals under isostatic and non-isostatic pressure conditions. Cylindrical samples of 3-5 mm length and 7 mm diameter were drilled and polished perpendicular to the rhombohedral cleavage planes of natural clear crystals. The tests were performed using a Paterson-type deformation apparatus at P = 400 MPa confining pressure, temperatures, T, between 750 and 850°C, and reaction durations, t, of 2 - 146 h to calculate the kinetic parameters of dolomite rim growth under isostatic stress conditions. For non-isostatic reaction experiments we applied in addition differential stresses, σ, up to 40 MPa perpendicular to the contact interface at T = 750°C for 4 - 171 h duration, initiating minor inelastic deformation of calcite. The thickness of the resulting dolomite reaction rims increases linearly with the square root of time, indicating a diffusion-controlled reaction. The rims consist of two different textural domains. Granular dolomite grains (≈ 2 -5 μm grain size) form next to calcite and elongated palisade-shaped grains (1-6 μm diameter) grow perpendicular to the magnesite interface. Texture measurements with the electron backscatter diffraction technique indicate that the orientations of dolomite grains are mainly influenced by the orientation of the calcite educt crystal, in particular in the granular rim. To some extent, the texture of dolomite palisades is also influenced by the orientation of magnesite. The thickness of the two individual layers increases with temperature. At 400 MPa isostatic pressure, T = 750°C and t = 29 hours, a 5 μm thick granular dolomite layer

  16. Destruction of highly toxic chemical materials by using the energy of underground thermonuclear explosion

    International Nuclear Information System (INIS)

    Trutnev, Y.

    1991-01-01

    One of the main problems of modern technogenic civilisation is the evergrowing ecological crisis caused by the growth of industrial wastes harmful for biosphere. Among them the radioactive wastes of atomic energetics, worked out nuclear energy facilities and toxic wastes from various chemical plants begin to play a specific role. Traditional technologies of destruction and disposal of these wastes demand great investments up to many billions of dollars, enormous maintenance expenditures, occupation of substantial territories by new productions and security zones as well as many qualified specialists. On the other hand potential accidents during the conventional processes of waste reprocessing are fraught with the possibility of large ecological disasters, that are the reason of strong oppositions of population and 'green movement' to the foundation of such installations. So, rather progressive seem to be the technologies based on the utilisation of underground nuclear explosion energy for annihilations and disposal of high-level wastes of atomic energetics and nuclear facilities as well as for thermal decomposition of chemically toxic substances at extremely high temperatures. These technologies will be rather cheap, they will allow to process big amounts of materials in ecologically safe form far from the populated regions and will need a commercially beneficial if used for international purposes. The application of these technologies may be of great significance for realisation of disarmament process- destruction of chemical weapons and in future the nuclear warheads and some production components. (au)

  17. High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline

    Science.gov (United States)

    Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren

    2018-06-01

    The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.

  18. Elementary Processes and Kinetic Modeling for Hydrogen and Helium Plasmas

    Directory of Open Access Journals (Sweden)

    Roberto Celiberto

    2017-05-01

    Full Text Available We report cross-sections and rate coefficients for excited states colliding with electrons, heavy particles and walls useful for the description of H 2 /He plasma kinetics under different conditions. In particular, the role of the rotational states in resonant vibrational excitations of the H 2 molecule by electron impact and the calculation of the related cross-sections are illustrated. The theoretical determination of the cross-section for the rovibrational energy exchange and dissociation of H 2 molecule, induced by He atom impact, by using the quasi-classical trajectory method is discussed. Recombination probabilities of H atoms on tungsten and graphite, relevant for the determination of the nascent vibrational distribution, are also presented. An example of a state-to-state plasma kinetic model for the description of shock waves operating in H 2 and He-H 2 mixtures is presented, emphasizing also the role of electronically-excited states in affecting the electron energy distribution function of free electrons. Finally, the thermodynamic properties and the electrical conductivity of non-ideal, high-density hydrogen plasma are finally discussed, in particular focusing on the pressure ionization phenomenon in high-pressure high-temperature plasmas.

  19. Pressure balanced type membrane covered polarographic oxygen detectors for use in high temperature-high pressure water, (1)

    International Nuclear Information System (INIS)

    Nakayama, Norio; Uchida, Shunsuke

    1984-01-01

    A pressure balanced type membrane covered polarographic oxygen detector was developed to determine directly oxygen concentrations in high temperature, high pressure water without cooling and pressure reducing procedures. The detector is characterized by the following features: (1) The detector body and the membrane for oxygen penetration are made of heat resistant resin. (2) The whole detector body is contained in a pressure chamber where interior and exterior pressures of the detector are balanced. (3) Thermal expansion of the electrolyte is absorbed by deformation of a diaphragm attached to the detector bottom. (4) The effect of dissolved Ag + on the signal current is eliminated by applying a guard electrode. As a result of performance tests at elevated temperature, it was demonstrated that a linear relationship between oxygen concentration and signal current was obtained up to 285 0 C, which was stabilized by the guard electrode. The minimum O 2 concentration detectable was 0.03ppm (9.4 x 10 -7 mol/kg). (author)

  20. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.

    Science.gov (United States)

    Huang, Hao-Li; Chao, Wen; Lin, Jim Jr-Min

    2015-09-01

    Criegee intermediates are thought to play a role in atmospheric chemistry, in particular, the oxidation of SO2, which produces SO3 and subsequently H2SO4, an important constituent of aerosols and acid rain. However, the impact of such oxidation reactions is affected by the reactions of Criegee intermediates with water vapor, because of high water concentrations in the troposphere. In this work, the kinetics of the reactions of dimethyl substituted Criegee intermediate (CH3)2COO with water vapor and with SO2 were directly measured via UV absorption of (CH3)2COO under near-atmospheric conditions. The results indicate that (i) the water reaction with (CH3)2COO is not fast enough (kH2O SO2 at a near-gas-kinetic-limit rate (kSO2 = 1.3 × 10(-10) cm(3) s(-1)). These observations imply a significant fraction of atmospheric (CH3)2COO may survive under humid conditions and react with SO2, very different from the case of the simplest Criegee intermediate CH2OO, in which the reaction with water dimer predominates in the CH2OO decay under typical tropospheric conditions. In addition, a significant pressure dependence was observed for the reaction of (CH3)2COO with SO2, suggesting the use of low pressure rate may underestimate the impact of this reaction. This work demonstrates that the reactivity of a Criegee intermediate toward water vapor strongly depends on its structure, which will influence the main decay pathways and steady-state concentrations for various Criegee intermediates in the atmosphere.

  1. Diamonds: powerful tools for high-pressure physics

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Diamond-anvil high-pressure studies have progressed to the point where they complement shock-wave studies. Because they operate at static high pressure, they permit time-consuming procedures, such as x-ray diffraction measurements for determining crystal structure. The sample material is completely recoverable and the method is adaptable to minute advantage when dealing with rare or hazardous materials. One of our goals in investigating the high-pressure behavior of iridium was to test the theoretical prediction that iridium would exhibit a phase transformation from the face-centered cubic crystal structure at about 9 GPa. Our finding that no such transformation takes place even at pressures up to 30 GPa will need to be taken into account by physicsts working to improve solid-state theory

  2. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  3. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  4. Indirect Self-Destructiveness and Emotional Intelligence.

    Science.gov (United States)

    Tsirigotis, Konstantinos

    2016-06-01

    While emotional intelligence may have a favourable influence on the life and psychological and social functioning of the individual, indirect self-destructiveness exerts a rather negative influence. The aim of this study has been to explore possible relations between indirect self-destructiveness and emotional intelligence. A population of 260 individuals (130 females and 130 males) aged 20-30 (mean age of 24.5) was studied by using the Polish version of the chronic self-destructiveness scale and INTE, i.e., the Polish version of the assessing emotions scale. Indirect self-destructiveness has significant correlations with all variables of INTE (overall score, factor I, factor II), and these correlations are negative. The intensity of indirect self-destructiveness differentiates significantly the height of the emotional intelligence and vice versa: the height of the emotional intelligence differentiates significantly the intensity of indirect self-destructiveness. Indirect self-destructiveness has negative correlations with emotional intelligence as well as its components: the ability to recognize emotions and the ability to utilize emotions. The height of emotional intelligence differentiates the intensity of indirect self-destructiveness, and vice versa: the intensity of indirect self-destructiveness differentiates the height of emotional intelligence. It seems advisable to use emotional intelligence in the prophylactic and therapeutic work with persons with various types of disorders, especially with the syndrome of indirect self-destructiveness.

  5. Chemical and kinetic equilibrations via radiative parton transport

    International Nuclear Information System (INIS)

    Zhang Bin; Wortman, Warner A

    2011-01-01

    A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.

  6. HIPPO, the high-pressure preferred orientation diffractometer at LANSCE for characterization of bulk materials

    International Nuclear Information System (INIS)

    Bennett, K.; Dreele, R.B. von; Wenk, H.R.

    2001-01-01

    United States National Laboratory researchers and University of California faculty, representing a broad range of scientific disciplines, is building a novel time-of-flight (TOF) neutron diffractometer and associated in situ equipment at the Manuel Lujan Jr. Neutron Scattering Center (Lujan Center), under the auspices of the United States Department of Energy. The goal with the High-Pressure Preferred Orientation Instrument (HIPPO) is to investigate dynamic processes in heterogeneous bulk materials in a variety of environments. The instrument, which will become available in summer 2001, has the extremely high count-rates necessary to study time-dependent processes in small (1-mm diameter) and large (2-cm diameter) samples, and in a large variety of environmental conditions (10-2000 K cryostats and furnaces, 0-20 GPa pressure vessels, straining cells, goniometers, magnets, etc.). The 3-D arrangement of detectors allows direct measurements of crystal orientation distributions in polycrystalline materials. The analysis of TOF diffraction patterns with versatile Rietveld codes provides simultaneous information on crystal structure, texture, microstructure and phase proportions. While this instrument has many applications in materials science, it is also of great interest for geology and geophysics. Some applications include: kinetics of reactions, structure of silicate glasses and melts, high-pressure investigations of complex systems, evolution of texture and anisotropy during deformation and recrystallization. The Lujan Center aims at creating an instrument with high data through-put and easy access to researchers and students. While the HIPPO instrument will be part of the national user facility operated by the Lujan Center, the scientific program will be guided by the University of California consortium with the goal of satisfying national priorities and establishing an environment of scientific excellence. (author)

  7. HIPPO, the high-pressure preferred orientation diffractometer at LANSCE for characterization of bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K.; Dreele, R.B. von [Manuel Lujan Jr. Neutron Scattering Center, Los Alamos, NM (United States); Wenk, H.R. [Department of Geology and Geophysics, Univ. of California, Berkely, CA (United States)

    2001-03-01

    United States National Laboratory researchers and University of California faculty, representing a broad range of scientific disciplines, is building a novel time-of-flight (TOF) neutron diffractometer and associated in situ equipment at the Manuel Lujan Jr. Neutron Scattering Center (Lujan Center), under the auspices of the United States Department of Energy. The goal with the High-Pressure Preferred Orientation Instrument (HIPPO) is to investigate dynamic processes in heterogeneous bulk materials in a variety of environments. The instrument, which will become available in summer 2001, has the extremely high count-rates necessary to study time-dependent processes in small (1-mm diameter) and large (2-cm diameter) samples, and in a large variety of environmental conditions (10-2000 K cryostats and furnaces, 0-20 GPa pressure vessels, straining cells, goniometers, magnets, etc.). The 3-D arrangement of detectors allows direct measurements of crystal orientation distributions in polycrystalline materials. The analysis of TOF diffraction patterns with versatile Rietveld codes provides simultaneous information on crystal structure, texture, microstructure and phase proportions. While this instrument has many applications in materials science, it is also of great interest for geology and geophysics. Some applications include: kinetics of reactions, structure of silicate glasses and melts, high-pressure investigations of complex systems, evolution of texture and anisotropy during deformation and recrystallization. The Lujan Center aims at creating an instrument with high data through-put and easy access to researchers and students. While the HIPPO instrument will be part of the national user facility operated by the Lujan Center, the scientific program will be guided by the University of California consortium with the goal of satisfying national priorities and establishing an environment of scientific excellence. (author)

  8. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  9. Kinetics of full scrum and staggered scrum engagement in under 19 ...

    African Journals Online (AJOL)

    Two hundred and eight male Rugby Union players from 13 high schools, whose ages ranged from 16 to 19 years, were used to examine the kinetics of the full scrum versus staggered scrum engagement techniques. Telemetric pressure transducers were used to measure the engagement and sustained forces acting on the ...

  10. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  11. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    Science.gov (United States)

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  12. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  13. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi

    2016-05-24

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.

  14. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    Science.gov (United States)

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed. PMID:27219066

  15. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    Full Text Available High hydrostatic pressure (HHP has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*. The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution measured by FTIR and G* is proposed.

  16. Swelling kinetics and impregnation of PLA with thymol under supercritical CO2 conditions

    Directory of Open Access Journals (Sweden)

    Milovanović Stoja L.

    2016-01-01

    Full Text Available The present work was aimed to study swelling kinetics of polylactic acid (PLA and its impregnation with thymol in supercritical carbon dioxide (scCO2 medium. The influences of temperature and soaking time on the swelling kinetics and impregnation yield of PLA cylindrical disc and film were investigated. Swelling experiments were performed in a high pressure view cell at 10 MPa and temperatures of 40°C, 60°C and 75°C for 2 to 24 h. On the basis of swelling kinetics, pressure of 10 MPa and temperature of 40°C were chosen for supercritical solvent impregnation (SSI of the PLA samples during 2 to24 h. The highest swelling extent was observed for the PLA monolith after 24 h treatment with pure scCO2 (7.5% and scCO2 with thymol (118.3%. It was shown that sufficiently high amount of thymol can be loaded into both PLA monolith and film using SSI after only 2 h (10.0% and 6.6%, respectively. Monolith and film of PLA impregnated with thymol could be suitable for active food packaging and sterile medical disposables.

  17. Kinetics of the high- to low-density amorphous water transition

    International Nuclear Information System (INIS)

    Koza, M M; Schober, H; Fischer, H E; Hansen, T; Fujara, F

    2003-01-01

    In situ neutron diffraction experiments have been carried out to study the kinetics of the transformation of high-density amorphous (HDA) water into its low-density amorphous state at temperatures 87 K ≤ T ≤ 110 K. It is found that three different stages are comprised in this transformation, namely an annealing process of the high-density matrix followed by a first-order-like transition into a low-density state, which can be further annealed at higher temperatures T ≤ 127 K. The annealing kinetics of the HDA state follows the logarithm of time as found in other systems showing polyamorphism. According to the theory of transformation by nucleation and growth the apparent first-order transition follows an Avrami-Kolmogorov behaviour. An energy barrier ΔE ∼ 33 k Jmol -1 is estimated from the temperature dependence of this transition

  18. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  19. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53719 (United States)

    2015-10-15

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  20. Theoretical Kinetic Study of the Unimolecular Keto–Enol Tautomerism Propen-2-ol ↔ Acetone. Pressure Effects and Implications in the Pyrolysis of tert- and 2-Butanol

    KAUST Repository

    Grajales Gonzalez, Edwing

    2018-03-21

    The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with its favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Enols are important intermediates in the combustion of C4 alcohols, as well as in atmospheric processes. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular tautomerism of propen-2-ol ↔ acetone, which is included in butanol combustion kinetic models, is assigned rate parameters based on the tautomerism vinyl alcohol ↔ acetaldehyde as an analogy. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the titled reaction was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) ab initio calculations, with multistructural torsional anharmonicity and variational transition state theory considerations in a wide temperature and pressure range (200-3000 K; 0.1-108 kPa). Results differ from vinyl alcohol ↔ acetaldehyde analogue reaction, which shows lower rate constant values. It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption.