Sample records for high-precision fringe tracking

  1. High-precision, large-volume, particle tracking

    CERN Document Server

    Bratzler, U


    Muon measurement in the ATLAS detector at the Large Hadron Collider (LHC) to be built at the European Center for Particle Physics, CERN, requires a tracking precision of 50 mu m along particle trajectories of typical path lengths of $9 5-20 m. The overall active area to be covered by the tracking devices, so-called Monitored Drift Tube Chambers, is 5,500 m/sup 2/. Requirements on fabrication, chamber alignment and operation are, in many respects, unprecedented and $9 can only be met by a combination of novel optical monitoring devices and a high-precision chamber construction technique. (1 refs).

  2. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking (United States)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.


    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  3. High Precision Control of Ship-Mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Mohsen, Soltani; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal


    The telecommunication on a modern merchandise ship is maintained by means of satellite communication. The task of the tracking system is to position the on-board antenna toward a chosen satellite. The control system is capable of rejecting the external disturbances which affect on the under...

  4. Design and Manufacturing of a High-Precision Sun Tracking System Based on Image Processing

    Directory of Open Access Journals (Sweden)

    Kianoosh Azizi


    Full Text Available Concentration solar arrays require greater solar tracking precision than conventional photovoltaic arrays. This paper presents a high precision low cost dual axis sun tracking system based on image processing for concentration photovoltaic applications. An imaging device is designed according to the principle of pinhole imaging, making sun rays to be received on a screen through pinhole and to be a sun spot. The location of the spot is used to adjust the orientation of the solar panel. A fuzzy logic controller is developed to achieve this goal. A prototype was built, and experimental results have proven the good performance of the proposed system and low error of tracking. The operation of this system is independent of geographical location, initial calibration, and periodical regulations.

  5. Optimization design about gimbal structure of high-precision autonomous celestial navigation tracking mirror system (United States)

    Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng


    High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.

  6. First fringe measurements with a phase-tracking stellar interferometer. (United States)

    Shao, M; Staelin, D H


    A prototype two-telescope stellar interferometer with a 1.5-m base line has been used to track the white-light fringes, 0.4-0.9 microm, from Polaris. Continuous fringe phase and amplitude measurements were made with ~220-photon/4-msec integration time and 1.27-cm(2) collecting area under 2-arc sec seeing conditions. The same control algorithm should be able to track fringes from an 8.7-mg star using the light from two 13-cm (5-in.) telescopes and a 10-msec integration time under 1-arc sec seeing conditions. When tracking, the servo maintained equal path lengths to 0.1-microm rms in the two arms of the interferometer, thus cancelling the path-length variations caused by earth rotation and atmospheric turbulence. In the future, two-color phase measurements will make optical aperture synthesis and optical very long-base-line astrometry possible.

  7. Studies on fast triggering and high precision tracking with Resistive Plate Chambers

    CERN Document Server

    Aielli, G.


    We report on studies of fast triggering and high-precision tracking using Resistive Plate Chambers (RPCs). Two beam tests were carried out with the 180 GeV muon beam at CERN using RPCs with gas gaps of 1.00 or 1.15 mm and equipped with readout strips with 1.27 mm pitch. This is the first beam test of RPCs with fine-pitch readout strips that explores simultaneously precision tracking and triggering capabilities. RPC signals were acquired with precision timing and charge integrating readout electronics at both ends of the strips. The time resolution was measured to be better than 600 ps and the average spatial resolution was found to be 220 um using charge information and 287 um using timing information. The dual-ended readout allows the determination of the average and the difference of the signal arrival times. The average time was found to be independent of the incident particle position along the strip and is useful for triggering purposes. The time difference yielded a determination of the hit position wit...

  8. A TPC-like readout method for high precision muon-tracking using GEM-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flierl, Bernhard; Biebel, Otmar; Bortfeldt, Jonathan; Hertenberger, Ralf; Klitzner, Felix; Loesel, Philipp; Mueller, Ralph [Ludwig-Maximilians-Universitaet Muenchen (Germany); Zibell, Andre [Julius-Maximilians-Universitaet Wuerzburg (Germany)


    Gaseous electron multiplier (GEM) detectors are well suited for tracking of charged particles. Three dimensional tracking in a single layer can be achieved by application of a time-projection-chamber like readout mode (μTPC), if the drift time of the electrons is measured and the position dependence of the arrival time is used to calculate the inclination angle of the track. To optimize the tracking capabilities for ion tracks drift gas mixtures with low drift velocity have been investigated by measuring tracks of cosmic muons in a compact setup of four GEM-detectors of 100 x 100 x 6 mm{sup 3} active volume each and an angular acceptance of -25 to 25 . The setup consists of three detectors with two-dimensional strip readout layers of 0.4 mm pitch and one detector with a single strip readout layer of 0.25 mm pitch. All strips are readout by APV25 frontend boards and the amplification stage in the detectors consists of three GEM-foils. Tracks are reconstructed by the μTPC-method in one of the detectors and are then compared to the prediction from the other three detectors defined by the center of charge in every detector. We report our study of Argon and Helium based noble gas mixtures with carbon-dioxide as quencher.

  9. High-precision radiometric tracking for planetary approach and encounter in the inner solar system (United States)

    Christensen, C. S.; Thurman, S. W.; Davidson, J. M.; Finger, M. H.; Folkner, W. M.


    The benefits of improved radiometric tracking data have been studied for planetary approach within the inner Solar System using the Mars Rover Sample Return trajectory as a model. It was found that the benefit of improved data to approach and encounter navigation was highly dependent on the a priori uncertainties assumed for several non-estimated parameters, including those for frame-tie, Earth orientation, troposphere delay, and station locations. With these errors at their current levels, navigational performance was found to be insensitive to enhancements in data accuracy. However, when expected improvements in these errors are modeled, performance with current-accuracy data significantly improves, with substantial further improvements possible with enhancements in data accuracy.

  10. Improved KLT Algorithm for High-Precision Wavelength Tracking of Optical Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Daniele Tosi


    Full Text Available Fiber Bragg Gratings (FBGs are among the most popular optical fiber sensors. FBGs are well suited for direct detection of temperature and strain and can be functionalized for pressure, humidity, and refractive index sensing. Commercial setups for FBG interrogation are based on white-light sources and spectrometer detectors, which are capable of decoding the spectrum of an FBG array. Low-cost spectrometers record the spectrum on a coarse wavelength grid (typically 78–156 pm, whereas wavelength shifts of 1 pm or lower are required by most of the applications. Several algorithms have been presented for detection of small wavelength shift, even with coarse wavelength sampling; most notably, the Karhunen-Loeve Transform (KLT was demonstrated. In this paper, an improved algorithm based on KLT is proposed, which is capable of further expanding the performances. Simulations show that, reproducing a commercial spectrometer with 156 pm grid, the algorithm estimates wavelength shift with accuracy well below 1 pm. In typical signal-to-noise ratio (SNR conditions, the root mean square error is 22–220 fm, while the accuracy is 0.22 pm, despite the coarse sampling. Results have been also validated through experimental characterization. The proposed method allows achieving exceptional accuracy in wavelength tracking, beating the picometer level resolution proposed in most commercial and research software, and, due to fast operation (>5 kHz, is compatible also with structural health monitoring and acoustics.

  11. A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry. (United States)

    Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing


    In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. High precision dual-axis tracking solar wireless charging system based on the four quadrant photoelectric sensor (United States)

    Liu, Zhilong; Wang, Biao; Tong, Weichao


    This paper designs a solar automatic tracking wireless charging system based on the four quadrant photoelectric sensor. The system track the sun's rays automatically in real time to received the maximum energy and wireless charging to the load through electromagnetic coupling. Four quadrant photoelectric sensor responsive to the solar spectrum, the system could get the current azimuth and elevation angle of the light by calculating the solar energy incident on the sensor profile. System driver the solar panels by the biaxial movement mechanism to rotate and tilt movement until the battery plate and light perpendicular to each other. Maximize the use of solar energy, and does not require external power supply to achieve energy self-sufficiency. Solar energy can be collected for portable devices and load wireless charging by close electromagnetic field coupling. Experimental data show that: Four quadrant photoelectric sensor more sensitive to light angle measurement. when track positioning solar light, Azimuth deviation is less than 0.8°, Elevation angle deviation is less than 0.6°. Use efficiency of a conventional solar cell is only 10% -20%.The system uses a Four quadrant dual-axis tracking to raise the utilization rate of 25% -35%.Wireless charging electromagnetic coupling efficiency reached 60%.

  13. Tissue thickness estimation for high precision head-tracking using a galvanometric laser scanner - a case study. (United States)

    Wissel, Tobias; Stüber, Patrick; Wagner, Benjamin; Dürichen, Robert; Bruder, Ralf; Schweikard, Achim; Ernst, Floris


    Marker-less optical head-tracking constitutes a comfortable alternative with no exposure to radiation for realtime monitoring in radiation therapy. Supporting information such as tissue thickness has the potential to improve spatial tracking accuracy. Here we study how accurate tissue thickness can be estimated from the near-infrared (NIR) backscatter obtained from laser scans. In a case study, optical data was recorded with a galvanometric laser scanner from three subjects. A tissue ground truth from MRI was robustly matched via customized bite blocks. We show that Gaussian Processes accurately model the relationship between NIR features and tissue thickness. They were able to predict the tissue thickness with less than 0.5 mm root mean square error. Individual scaling factors for all features and an additional incident angle feature had positive effects on this performance.

  14. Measurement-based perturbation theory and differential equation parameter estimation for high-precision high-resolution reconstruction of the Earth's gravitational field from satellite tracking measurements


    Xu, Peiliang


    The numerical integration method has been routinely used to produce global standard gravitational models from satellite tracking measurements of CHAMP/GRACE types. It is implemented by solving the differential equations of the partial derivatives of a satellite orbit with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical point of view, satellite gravimetry from satellite tracking is the problem of estimating unknown parameters in t...

  15. Ultrafast, high precision gated integrator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.


    An ultrafast, high precision gated integrator has been developed by introducing new design approaches that overcome the problems associated with earlier gated integrator circuits. The very high speed is evidenced by the output settling time of less than 50 ns and 20 MHz input pulse rate. The very high precision is demonstrated by the total output offset error of less than 0.2mV and the output droop rate of less than 10{mu}V/{mu}s. This paper describes the theory of this new gated integrator circuit operation. The completed circuit test results are presented.

  16. High Precision Pressure Measurement with a Funnel (United States)

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.


    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  17. Surface texture metrology for high precision surfaces

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Gasparin, Stefania; Tosello, Guido


    This paper introduces some of the challenges related to surface texture measurement of high precision surfaces. The paper is presenting two case studies related to polished tool surfaces and micro part surfaces. In both cases measuring instrumentation, measurement procedure and the measurement re...

  18. High precision x ray lithographic masks (United States)

    Pease, R. F.; Browning, R.


    This contract period was first concerned with winding up the projects on the embedded X-ray Mask structure and on the 'quantum lithography' idea. As a result of developments elsewhere it became clear that among the most critical issues in achieving high precision X-ray masks were those associated with achieving high precision in both feature size and feature placement in electron beam lithography. Most of the effort in this reporting period was aimed at achieving precision in feature size; notably an attack on the problem of proximity effects. There were two approaches: (1) A short term approach aimed at correcting effects in existing electron beam pattern generators (notably the ETEC MEBES 3 and 4) for feature sizes down 500 nm; and (2) A long term approach aimed at avoiding proximity effects by employing low energy electron exposure for feature size below 500 nm.

  19. High-Precision Computation and Mathematical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.


    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  20. High precision refractometry based on Fresnel diffraction from phase plates. (United States)

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow


    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  1. Localization of Interference Fringes. (United States)

    Simon, J. M.; Comastri, Silvia A.


    Discusses a proof for determining the localized fringes position arrived at when one considers the interference of two extended sources when one is able to observe fringes only at certain points in space. Shows how the localized fringes may be found in a device used to observe Newton's rings. (Author/CS)

  2. High precision detector robot arm system

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Chu, Yong


    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  3. High precision innovative micropump for artificial pancreas (United States)

    Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.


    The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.

  4. High precision laser photometer for laser optics (United States)

    Zhao, Yuan'an; Hu, Guohang; Cao, Zhen; Liu, Shijie; Zhu, Meiping; Shao, Jianda


    Development of laser systems requires optical components with high performance, and a high-precision double-beam laser photometer was designed and established to measure the optical performance at 1064nm. Double beam design and lock-in technique was applied to decrease the impact of light energy instability and electric noise. Pairs of samples were placed symmetrically to eliminate beam displacement, and laser scattering imaging technique was applied to determine the influence of surface defect on the optical performance. Based on the above techniques, transmittance and reflection of pairs of optics were obtained, and the measurement precision was improved to 0.06%. Different types of optical loss, such as total loss, volume loss, residual reflection and surface scattering loss, were obtained from the transmittance and reflection measurement of samples with different thickness. Comparison of optical performance of the test points with and without surface defects, the influence of surface defects on optical performance was determined. The optical performance of Nd-glass at 1064nm were measured as an example. Different types of optical loss and the influence of surface defects on the optical loss was determined.

  5. Fiber Scrambling for High Precision Spectrographs (United States)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.


    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  6. High precision kinematic surveying with laser scanners (United States)

    Gräfe, Gunnar


    The kinematic survey of roads and railways is becoming a much more common data acquisition method. The development of the Mobile Road Mapping System (MoSES) has reached a level that allows the use of kinematic survey technology for high precision applications. The system is equipped with cameras and laser scanners. For high accuracy requirements, the scanners become the main sensor group because of their geometric precision and reliability. To guarantee reliable survey results, specific calibration procedures have to be applied, which can be divided into the scanner sensor calibration as step 1, and the geometric transformation parameter estimation with respect to the vehicle coordinate system as step 2. Both calibration steps include new methods for sensor behavior modeling and multisensor system integration. To verify laser scanner quality of the MoSES system, the results are regularly checked along different test routes. It can be proved that a standard deviation of 0.004 m for height of the scanner points will be obtained, if the specific calibrations and data processing methods are applied. This level of accuracy opens new possibilities to serve engineering survey applications using kinematic measurement techniques. The key feature of scanner technology is the full digital coverage of the road area. Three application examples illustrate the capabilities. Digital road surface models generated from MoSES data are used, especially for road surface reconstruction tasks along highways. Compared to static surveys, the method offers comparable accuracy at higher speed, lower costs, much higher grid resolution and with greater safety. The system's capability of gaining 360 profiles leads to other complex applications like kinematic tunnel surveys or the precise analysis of bridge clearances.

  7. Wages or Fringes?

    DEFF Research Database (Denmark)

    Eriksson, Tor; Kristensen, Nicolai


    The two key predictions of hedonic wage theory are that there is a trade-off between wages and nonmonetary rewards and that the latter can be used as a sorting device by firms to attract and retain the kind of employees they desire. We use the vignettes method to estimate individuals' willingness......-to-pay for fringe benefits and job amenities. We find negative wage-fringe trade-offs, considerable heterogeneity in willingness-to-pay for fringe benefits, and signs of sorting....

  8. High-precision real-time 3D shape measurement using a bi-frequency scheme and multi-view system. (United States)

    Tao, Tianyang; Chen, Qian; Feng, Shijie; Hu, Yan; Da, Jian; Zuo, Chao


    High-speed and high-precision 3D shape measurement plays a central role in diverse applications such as automatic online inspection, robotics control, and human-computer interaction. Conventional multi-frame phase-shifting-based fringe projection profilometry techniques face inherent trade-offs between the speed and measurement precision, which are fundamentally limited by the fringe density and extra pattern projections used for de-ambiguity of fringe orders. Increasing the frequency of the projection fringes can obviously improve the measurement precision; however, it creates difficulties in the subsequent phase unwrapping. For this reason, to date, the frequency of the fringes in typical real-time 3D shape measurement techniques is generally less than 30 to guarantee a reasonable reliability of phase unwrapping. To overcome this limitation, a bi-frequency phase-shifting technique based on a multi-view fringe projection system is proposed, which significantly enhances the measurement precision without compromising the measurement speed. Based on the geometric constraints in a multi-view system, the unwrapped phase of the low-frequency (10-period) fringes can be obtained directly, which serves as a reference to unwrap the high-frequency phase map with a total number of periods of up to 160. Besides, the proposed scheme with 10-period and 160-period fringes is suitable for slightly defocusing projection, allowing a higher projection rate and measurement speed. Experiments on both static and dynamic scenes are performed, verifying that our method can achieve high-speed and high-precision 3D measurement at 300 frames per second with a precision of about 50 μm.

  9. Developing and implementing a high precision setup system (United States)

    Peng, Lee-Cheng

    The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from

  10. Wages or Fringes?

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Kristensen, Nicolai

    The two key predictions of hedonic wage theory are that there is a trade-o¤ between wages and nonmonetary rewards and that the latter can be used as a sorting device by firms to attract and retain the kind of employees they desire. Empirical analysis of these topics are scarce as they require...... negative wage-fringe trade-offs, con-siderable heterogeneity in willingness to pay for fringe benefits, and signs of sorting. The findings imply that personnel economics models can be applied also to the analysis of nonmonetary rewards....

  11. Fringe Mind Strategies

    NARCIS (Netherlands)

    Sleutels, J.J.M.


    This paper discusses a number of basic strategies for modeling the mind in historical perspective. The best-known strategies are expansionism and eliminativism, which are both problematic: eliminativism compromises our self-understanding, while expansionism is unable to cope with fringe minds. Using

  12. Preparing polished crystal slices with high precision orientation

    DEFF Research Database (Denmark)

    Mathiesen, S. Ipsen; Gerward, Leif; Pedersen, O.


    A polishing procedure is described which utilizes a high precision Laue technique for crystal orientation. Crystal slices with their final polished surfaces parallel to a crystallographic plane within 0.02° can be prepared. ©1974 The American Institute of Physics......A polishing procedure is described which utilizes a high precision Laue technique for crystal orientation. Crystal slices with their final polished surfaces parallel to a crystallographic plane within 0.02° can be prepared. ©1974 The American Institute of Physics...

  13. What can we learn from high precision measurements of neutrino ...

    Indian Academy of Sciences (India)

    Many experiments are being planned to measure the neutrino mixing angles more precisely. In this note, the theoretical significance of a high precision measurement of these parameters is discussed. It is emphasized that they can provide crucial information about different ways to understand the origin of large atmospheric ...

  14. Overview of the JYFLTRAP mass measurements and high-precision ...

    Indian Academy of Sciences (India)

    Abstract. The JYFLTRAP Penning trap set-up at the University of Jyväskylä, Finland, is a Penning trap facility that has provided high-precision atomic mass values for short-lived nuclides since 2003. Until now, masses of more than 250 short-lived nuclides have been measured. Since JYFLTRAP is coupled to the chemically ...


    Directory of Open Access Journals (Sweden)

    F. Zhang


    Full Text Available High precision 3D sculpture model can take the accurate records of the shape, material and color on the surface of the sculpture. It is an important foundation work of digital documentation, preservation, archaeological research and analysis for the sculpture types of cultural heritage. Constructing high precision 3D sculpture model includes two aspects: geometry modeling and texture reconstruction. But, there are many urgent problems still existing in the method of high precision texture reconstruction. This paper discussed a method of high precision texture reconstruction based on non-rigid transformation for 3D sculpture model. First, coarse registration of texture image to geometrical model is conducted with direct linear transformation (DLT method. Then, the registration is optimized with thin plane spline (TPS function to reduce local matching errors between texture image and geometrical model. Finally, texture mapping is implemented with optimized registration result. The experiments based on the sculpture in Dunhuang Mogao Grottoes of China are conducted, and the efficiency and feasibility of the proposed methods are proved.

  16. A Novel Gravity Compensation Method for High Precision Free-INS Based on "Extreme Learning Machine". (United States)

    Zhou, Xiao; Yang, Gongliu; Cai, Qingzhong; Wang, Jing


    In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM) method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method.

  17. Advanced split-illumination electron holography without Fresnel fringes

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki, E-mail: [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Aizawa, Shinji; Park, Hyun Soon [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Harada, Ken [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan)


    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible.

  18. Design and control of a high precision drive mechanism (United States)

    Pan, Bo; He, Yongqiang; Wang, Haowei; Zhang, Shuyang; Zhang, Donghua; Wei, Xiaorong; Jiang, Zhihong


    This paper summarizes the development of a high precision drive mechanism (HPDM) for space application, such as the directional antenna, the laser communication device, the mobile camera and other pointing mechanisms. In view of the great practical significance of high precision drive system, control technology for permanent magnet synchronous motor (PMSM) servo system is also studied and a PMSM servo controller is designed in this paper. And the software alignment was applied to the controller to eliminate the steady error of the optical encoder, which helps to realize the 1 arcsec (1σ) control precision. To assess its capabilities, the qualification environment testing including the thermal vacuum cycling testing, and the sinusoidal and random vibration were carried out. The testing results show that the performance of the HPDM is almost the same between the former and the end of each testing.

  19. Dual absolute and relative high precision laser metrology (United States)

    Ergenzinger, Klaus; Schuldt, Thilo; Berlioz, Philippe; Braxmaier, Claus; Johann, Ulrich


    Design, integration, test setup, test results, and lessons-learnt of a high precision laser metrology demonstrator for dual absolute and relative laser distance metrology are presented. The different working principles are described and their main subsystems and performance drivers are presented. All subsystems have strong commonalities with flight models as of LTP on LISA Pathfinder and laser communication missions, and different pathways to flight models for varying applications and missions are presented. The setup has initially been realized within the ESA project "High Precision Optical Metrology (HPOM)", originally initiated for DARWIN formation flying optical metrology, though now serves as demonstrator for a variety of future applications. These are sketched and brought into context (PROBA-3, IXO onboard metrology, laser gravimetry earth observation missions, fundamental science missions like LISA and Pioneer anomaly).

  20. High precision {sup 14}C AMS at CIRCE

    Energy Technology Data Exchange (ETDEWEB)

    Terrasi, Filippo [Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy)], E-mail:; De Cesare, Nicola [Dipartimento di Scienze della Vita, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy); D' Onofrio, Antonio; Lubritto, Carmine; Marzaioli, Fabio [Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy); Passariello, Isabella [CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy); Rogalla, Detlef [Institut fuer Experimentalphysik III, Ruhr-Universitaet Bochum, Bochum D-44780 (Germany); Sabbarese, Carlo [Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy); Borriello, Gianluca; Casa, Giovanni; Palmieri, Antonio [Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy)


    The CIRCE AMS system started operation in March 2005. The measurement of isotopic ratios {sup 14}C/{sup 12}C in samples of archaeological and environmental interest has rapidly attained high precision and accuracy levels in routine operation. The results of the intercomparison campaign in the framework of the VIRI program, as well as the outcome of a statistical analysis of the about 200 control measurements performed with standard samples, have shown the capability of the whole system for high precision measurements ({delta}R/R < 0.3%), allowing systematic investigations in both archaeological and environmental sciences. {sup 26}Al AMS has been implemented for the measurement of the astrophysically relevant {sup 25}Mg(p,{gamma}){sup 26}Al reaction cross section, while a beam line is under construction for the measurement of actinides isotopic ratios.

  1. High precision frequency estimation for harpsichord tuning classification


    Tidhar, D.; Mauch, M.; Dixon, S


    We present a novel music signal processing task of classifying the tuning of a harpsichord from audio recordings of standard musical works. We report the results of a classification experiment involving six different temperaments, using real harpsichord recordings as well as synthesised audio data. We introduce the concept of conservative transcription, and show that existing high-precision pitch estimation techniques are sufficient for our task if combined with conservative transcription. In...

  2. Nucleosynthesis Predictions and High-Precision Deuterium Measurements

    Directory of Open Access Journals (Sweden)

    Signe Riemer-Sørensen


    Full Text Available Two new high-precision measurements of the deuterium abundance from absorbers along the line of sight to the quasar PKS1937–1009 were presented. The absorbers have lower neutral hydrogen column densities (N(HI ≈ 18 cm − 2 than for previous high-precision measurements, boding well for further extensions of the sample due to the plenitude of low column density absorbers. The total high-precision sample now consists of 12 measurements with a weighted average deuterium abundance of D/H = 2 . 55 ± 0 . 02 × 10 − 5 . The sample does not favour a dipole similar to the one detected for the fine structure constant. The increased precision also calls for improved nucleosynthesis predictions. For that purpose we have updated the public AlterBBN code including new reactions, updated nuclear reaction rates, and the possibility of adding new physics such as dark matter. The standard Big Bang Nucleosynthesis prediction of D/H = 2 . 456 ± 0 . 057 × 10 − 5 is consistent with the observed value within 1.7 standard deviations.

  3. 3D hand and palmprint acquisition using full-field composite color fringe projection (United States)

    Feng, Hui; Wang, Zhaohui; Kuang, Dengfeng; Zhang, Zonghua; Zhang, Sixiang


    This paper presents a method to simultaneously get 3D hand and palmprint information by projecting composite color fringe patterns. The existing researches mainly focus on 2D biological features, and the extracted features from 2D image are distorted by pressure or lose the third dimensional information. But 3D features with non-contact operation can obtain the characteristic distribution patterns without distortion, and simultaneously obtain real hand morphology and the global properties of hand and palmprint. A prototype 3D imaging system is designed to capture and process the composite color fringe patterns on the hand surface. The hardware configuration comprises a DLP (digital light processing) projector, a color CCD camera with fireware port and a personal computer (PC). In order to fast acquire 3D accurate shape data, sinusoidal and binary fringe patterns are coded into red, green and blue channels to generate composite color fringe pattern images. The DLP projector projects composite RGB fringe patterns onto the surface of human hands. From another viewpoint, the CCD camera captures the images and saves them into the computer for postprocessing. Wrapped phase information can be calculated from the sinusoidal fringe patterns with high precision. While the absolute fringe order of each sinusoidal fringe pattern is determined by the binary fringe pattern sequences. The absolute phase map of each pixel can be calculated by combining the obtained wrapped phase and the absolute fringe order. Some experimental results on human hands show that the proposed method correctly obtains the absolute phase (shape) data of hand and palmprint.

  4. Whole 3D shape reconstruction of vascular segments under pressure via fringe projection techniques (United States)

    Genovese, Katia; Pappalettere, Carmine


    Understanding and modelling vascular wall mechanics is a primary issue in the study of circulatory diseases. Although theoretical and numerical studies on arteries compliance are continuously increasing, relatively little work has been documented on the use of non-invasive imaging techniques for monitoring 3D vascular wall deformations. Usually, 2D video dimension analyzer (VDA) systems recover diameter and length variations during inflation/extension tests by tracking position changes of few markers put on the blood vessel surface. Then, strain determination relies on the assumption of axisymmetric deformations. However, more rigorous evaluations of whole wall deformation map are required for properly modelling the highly anisotropic and inhomogeneous vascular tissue mechanical response. This paper describes the development and application of a fringe projection (FP)-based procedure for the 360° 3D shape reconstruction of tubular samples subjected to internal pressure. A specially designed fixture for mounting and inflating the tubular segment allows specimen rotation about its axis. Movement is controlled by a high-precision rotational stage. This yields accurate positioning of the surface to be investigated with respect to the viewing direction. Data point clouds obtained from multiple recorded images are then processed and merged in a CAD environment, thus providing the whole shape of the sample with very high spatial resolution. The entire procedure has successfully been applied to latex specimens and porcine vascular segments. Further improvements will make the present procedure suitable for in vitro tests under more closely reproduced physiological conditions.

  5. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.


    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  6. High-Precision Timing of Millisecond Pulsars and Precision Astrometry (United States)

    Kaspi, V.


    We present the technique of long-term, high-precision timing of millisecond pulsars as applied to precision astrometry. We provide a tutorial on pulsars and pulsar timing, as well as up-to-date results of long-term observation of two millisecond pulsars. We consider the feasibility of tying the extragalactic and optical reference frames to that defined by solar system objects, and we conclude that precision astrometry from millisecond pulsar timing will continue to yield interesting results at an accelerating pace in the next decade.

  7. High precision fundamental constants at the TeV scale

    CERN Document Server

    Moch, S.; Alekhin, S.; Blumlein, J.; de la Cruz, L.; Dittmaier, S.; Dowling, M.; Erler, J.; Espinosa, J.R.; Fuster, J.; Garcia i Tormo, X.; Hoang, A.H.; Huss, A.; Kluth, S.; Mulders, M.; Papanastasiou, A.S.; Piclum, J.; Rabbertz, K.; Schwinn, C.; Schulze, M.; Shintani, E.; Uwer, P.; Zerf, N.


    This report summarizes the proceedings of the 2014 Mainz Institute for Theoretical Physics (MITP) scientific program on "High precision fundamental constants at the TeV scale". The two outstanding parameters in the Standard Model dealt with during the MITP scientific program are the strong coupling constant $\\alpha_s$ and the top-quark mass $m_t$. Lacking knowledge on the value of those fundamental constants is often the limiting factor in the accuracy of theoretical predictions. The current status on $\\alpha_s$ and $m_t$ has been reviewed and directions for future research have been identified.

  8. High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses (United States)

    Barmes, Itan; Witte, Stefan; Eikema, Kjeld S. E.


    An experimental realization of high-precision direct frequency comb spectroscopy using counterpropagating femtosecond pulses on two-photon atomic transitions is presented. The Doppler broadened background signal, hampering precision spectroscopy with ultrashort pulses, is effectively eliminated with a simple pulse shaping method. As a result, all four 5S-7S two-photon transitions in a rubidium vapor are determined with both statistical and systematic uncertainties below 10-11, which is an order of magnitude better than previous experiments on these transitions.

  9. High-precision multi-node clock network distribution (United States)

    Chen, Xing; Cui, Yifan; Lu, Xing; Ci, Cheng; Zhang, Xuesong; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang


    A high precision multi-node clock network for multiple users was built following the precise frequency transmission and time synchronization of 120 km fiber. The network topology adopts a simple star-shaped network structure. The clock signal of a hydrogen maser (synchronized with UTC) was recovered from a 120 km telecommunication fiber link and then was distributed to 4 sub-stations. The fractional frequency instability of all substations is in the level of 10-15 in a second and the clock offset instability is in sub-ps in root-mean-square average.

  10. Fabrication and metrology of high-precision freeform surfaces (United States)

    Supranowitz, Chris; Dumas, Paul; Nitzsche, Tobias; DeGroote Nelson, Jessica; Light, Brandon B.; Medicus, Kate; Smith, Nathan


    Freeform applications are growing and include helmet-mounted displays, conformal optics (e.g. windows integrated into airplane wings), and those requiring the extreme precision of EUV. These non-rotationally symmetric surfaces pose challenges to optical fabrication, mostly in the areas of polishing and metrology. The varying curvature of freeform surfaces drives the need for smaller, more "conformal", tools for polishing and reference beams for interferometry. In this paper, we present fabrication results of a high-precision freeform surface. We will discuss the total manufacturing process, including generation, pre-polishing, MRF®, and metrology, highlighting the capabilities available in today's optical fabrication companies.

  11. High-precision micro/nano-scale machining system (United States)

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.


    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  12. High-Precision Computation: Mathematical Physics and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D. H.; Barrio, R.; Borwein, J. M.


    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  13. The high-precision Penning trap mass spectrometer PENTATRAP

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Andreas; Bekker, Hendrik; Blaum, Klaus; Goncharov, Mikhail; Hoekel-Schmoeger, Christian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet, Heidelberg (Germany); Boehm, Christine [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet, Heidelberg (Germany); Extreme Matter Institute EMMI, Helmholtz Gemeinschaft, Darmstadt (Germany); Crespo Lopez-Urrutia, Jose; Eliseev, Sergey; Repp, Julia; Roux, Christian; Sturm, Sven [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Novikov, Yuri [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Ulmer, Stefan [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama (Japan)


    Currently, the high-precision Penning trap mass spectrometer PENTATRAP is being built up at the Max-Planck-Institut fuer Kernphysik, Heidelberg, Germany. It aims at mass-ratio measurements of medium- to high-Z elements with uncertainties of a few parts in 10{sup 12}. Mass-ratios will be determined by the measurement of cyclotron frequency-ratios in the strong magnetic field of the trap. The experiment will host five identical cylindrical Penning traps and will allow for simultaneous cyclotron frequency determinations in all measurement traps. It will feature access to highly charged ions provided by EBITs. Measurements at PENTATRAP will contribute to various fields of physics. For example, input parameters for neutrino mass determinations will be provided with measurements of Q-values of relevant β-transitions. The current status of the experiment will be outlined in the talk.

  14. Flight Test Performance of a High Precision Navigation Doppler Lidar (United States)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George


    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  15. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing


    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  16. High Precision Renormalization Group Study of the Roughening Transition

    CERN Document Server

    Hasenbusch, M; Pinn, K


    We confirm the Kosterlitz-Thouless scenario of the roughening transition for three different Solid-On-Solid models: the Discrete Gaussian model, the Absolute-Value-Solid-On-Solid model and the dual transform of the XY model with standard (cosine) action. The method is based on a matching of the renormalization group flow of the candidate models with the flow of a bona fide KT model, the exactly solvable BCSOS model. The Monte Carlo simulations are performed using efficient cluster algorithms. We obtain high precision estimates for the critical couplings and other non-universal quantities. For the XY model with cosine action our critical coupling estimate is $\\beta_R^{XY}=1.1197(5)$. For the roughening coupling of the Discrete Gaussian and the Absolute-Value-Solid-On-Solid model we find $K_R^{DG}=0.6645(6)$ and $K_R^{ASOS}=0.8061(3)$, respectively.

  17. The NOVA Fringe Tracker: A second generation cophasing facility for up tósix telescopes at the VLTI

    NARCIS (Netherlands)

    Meisner, J.A.; Jaffe, W.J.; Poole, R.S. le


    The NOVA Fringe Tracker (NFT) is a proposed solution tóthe call by ESO for a second generation fringe tracking facility. This instrument at the VLTI will enable the cophasing of up tó6 telescopes simultaneously. Using broad band optics with detection from 1.2 tó2.4 microns, a unique configuration is

  18. Key techniques of the high precision gravity field system (United States)

    Xu, Weimin; Chen, Shi; Lu, Hongyan; Shi, Lei


    Ground-based gravity time series provide a direct method to monitor all sources of mass changes from local to global scale. But the effectively infinite spatial sensitivity of gravity measurements make it difficult to isolate the signal of interest. The high precision gravity field system is an alternative approach of modeling mass changes under-ground. The field system, consists of absolute gravity, gravity and gravity gradient, GNSS, leveling and climate hydrology measurements, can improve the signal-to-noise ratio for many applications by removing contributions of unwanted signal from elevation changes, air pressure changes, local hydrology, and others. The networks of field system combination, such as field-profile in more than 100 kilometers, can be used in critical zone with high seismic risk for monitoring earth dynamics, volcanic and seismic phenomena. The system is constituted by 9 typical observation stations in 3*3 array (or 4 in 2*2 array) in 60 square meters field, each station is designed for integrated measurements, including absolute gravity, gravity gradient, elevation changes, air pressure and hydrology. Time-lapse gravity changes resulting from absolute gravimeter (FG5 or A10) with standard deviation less than 2 μGal, without the contributions of Earth tides, loading and polar motion. Additional measurements such as air pressure change, local hydrology and soil moisture are indispensable. The elevation changes resulting from GNSS (on the base station) and leveling (between stations) with precision less than 10 mm. The gravity gradient is the significant measurement for delimiting the location of the related mass changes underground the station, which is measured by Scintrex CG-5 gravimeters in different height (80cm in the test field), with precision less than 10 E. It is necessary to improve the precision of gravity gradient measurements by certain method in field experiment for the high precision measurement system. Acknowledgment: This

  19. High precision ray tracing in cylindrically symmetric electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards Jr, David, E-mail:


    Highlights: • High precision ray tracing is formulated using power series techniques. • Ray tracing is possible for fields generated by solution to laplace's equation. • Spatial and temporal orders of 4–10 are included. • Precisions in test geometries of hemispherical deflector analyzer of ∼10{sup −20} have been obtained. • This solution offers a considerable extension to the ray tracing accuracy over the current state of art. - Abstract: With the recent availability of a high order FDM solution to the curved boundary value problem, it is now possible to determine potentials in such geometries with considerably greater accuracy than had been available with the FDM method. In order for the algorithms used in the accurate potential calculations to be useful in ray tracing, an integration of those algorithms needs to be placed into the ray trace process itself. The object of this paper is to incorporate these algorithms into a solution of the equations of motion of the ray and, having done this, to demonstrate its efficacy. The algorithm incorporation has been accomplished by using power series techniques and the solution constructed has been tested by tracing the medial ray through concentric sphere geometries. The testing has indicated that precisions of ray calculations of 10{sup −20} are now possible. This solution offers a considerable extension to the ray tracing accuracy over the current state of art.

  20. Electromagnetic Charge Radius of the Pion at High Precision (United States)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta


    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  1. High precision target center determination from a point cloud

    Directory of Open Access Journals (Sweden)

    K. Kregar


    Full Text Available Many applications of terrestrial laser scanners (TLS require the determination of a specific point from a point cloud. In this paper procedure of high precision planar target center acquisition from point cloud is presented. The process is based on an image matching algorithm but before we can deal with raster image to fit a target on it, we need to properly determine the best fitting plane and project points on it. The main emphasis of this paper is in the precision estimation and propagation through the whole procedure which allows us to obtain precision assessment of final results (target center coordinates. Theoretic precision estimations – obtained through the procedure were rather high so we compared them with the empiric precision estimations obtained as standard deviations of results of 60 independently scanned targets. An χ2-test confirmed that theoretic precisions are overestimated. The problem most probably lies in the overestimated precisions of the plane parameters due to vast redundancy of points. However, empirical precisions also confirmed that the proposed procedure can ensure a submillimeter precision level. The algorithm can automatically detect grossly erroneous results to some extent. It can operate when the incidence angles of a laser beam are as high as 80°, which is desirable property if one is going to use planar targets as tie points in scan registration. The proposed algorithm will also contribute to improve TLS calibration procedures.

  2. A portable laser system for high precision atom interferometry experiments

    CERN Document Server

    Schmidt, Malte; Giorgini, Antonio; Tino, Guglielmo M; Peters, Achim


    We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for the portable gravimeter GAIN, an atom interferometer that will be capable of performing high precision gravity measurements directly at sites of geophysical interest. This laser system is designed to be compact, mobile and robust, yet it still offers improvements over many conventional laboratory-based laser systems. Our system is contained in a standard 19" rack and emits light at five different wavelengths simultaneously on up to 12 fibre ports at a total output power of 800 mW. These wavelengths can be changed and switched between ports in less than a microsecond. The setup includes two phase-locked Raman lasers with a phase noise spectral density of less than 1 \\mu rad/sqrt(Hz) in the frequency range in which our gravimeter is most sensitive to noise. We characterize this laser system and evaluate the performance limits it imposes on an interferometer.

  3. High precision measurements on fission-fragment de-excitation (United States)

    Oberstedt, Stephan; Gatera, Angélique; Geerts, Wouter; Göök, Alf; Hambsch, Franz-Josef; Vidali, Marzio; Oberstedt, Andreas


    In recent years nuclear fission has gained renewed interest both from the nuclear energy community and in basic science. The first, represented by the OECD Nuclear Energy Agency, expressed the need for more accurate fission cross-section and fragment yield data for safety assessments of Generation IV reactor systems. In basic science modelling made much progress in describing the de-excitation mechanism of neutron-rich isotopes, e.g. produced in nuclear fission. Benchmarking the different models require a precise experimental data on prompt fission neutron and γ-ray emission, e.g. multiplicity, average energy per particle and total dissipated energy per fission, preferably as function of fission-fragment mass and total kinetic energy. A collaboration of scientists from JRC Geel (formerly known as JRC IRMM) and other institutes took the lead in establishing a dedicated measurement programme on prompt fission neutron and γ-ray characteristics, which has triggered even more measurement activities around the world. This contribution presents new advanced instrumentation and methodology we use to generate high-precision spectral data and will give a flavour of future data needs and opportunities.

  4. High-Precision Direct Mass Determination of Unstable Isotopes

    CERN Multimedia


    The extension of systematic high-precision measurements of the nuclear mass to nuclei far from the valley of $\\beta$ stability is of great interest in nuclear physics and astrophysics. The mass, or binding energy, is a fundamental gross property and a key input parameter for nuclear matter calculations. It is also a sensitive probe for collective and single-particle effects in nuclear structure. \\\\ \\\\ For such purposes, nuclear masses need to be known to an accuracy of about 10$^{-7}$ (i.e. $\\Delta$M~$\\leq$~10~keV for A~=~100). To resolve a particular mass from its nuclear isomers and isobars, resolving power of 10$^6$ are often required. To achieve this, the ions delivered by the on-line mass separator ISOLDE are confined in a Penning quadrupole trap. This trap is placed in the very homogeneous and stable magnetic field of a superconducting magnet. Here, the cyclotron frequency and hence the mass are determined. \\\\ \\\\ The first measurements using this new technique have been completed for a long chain of Cs ...

  5. A novel interference fringes software counting method (United States)

    Yang, Yuanzhao; Chen, Benyong; Wu, Xiaowei; Li, Dacheng


    Conventional interference fringes counting methods often process two sinusoidal interference signals with a phase difference of π/2 to realize fringe-counting. But when the signals fluctuate in half a period of the signal, the conventional fringe-counting method sometimes produces direction-distinguishing mistakes, then resulting in counting errors. To address the problem, this paper presents a novel interference fringes counting method that uses software to distinguish the forward or backward direction of interference fringe and to count. This fringe-counting method can accurately distinguish the moving direction induced by the fluctuation of interference fringes, so it has the advantages of exact counting, intelligence and reliability. An experimental setup based on a Michelson interferometer is constructed to demonstrate the utility of this fringe-counting method for displacement measurement, and experimental results with a range of 1036mm is presented.

  6. Analytical expressions for fringe fields in multipole magnets

    Directory of Open Access Journals (Sweden)

    B. D. Muratori


    Full Text Available Fringe fields in multipole magnets can have a variety of effects on the linear and nonlinear dynamics of particles moving along an accelerator beam line. An accurate model of an accelerator must include realistic models of the magnet fringe fields. Fringe fields for dipoles are well understood and can be modeled at an early stage of accelerator design in such codes as mad8, madx, gpt or elegant. Existing techniques for quadrupole and higher order multipoles rely either on the use of a numerical field map, or on a description of the field in the form of a series expansion about a chosen axis. Usually, it is not until the later stages of a design project that such descriptions (based on magnet modeling or measurement become available. Furthermore, series expansions rely on the assumption that the beam travels more or less on axis throughout the beam line; but in some types of machines (for example, Fixed Field Alternating Gradients or FFAGs this is not a good assumption. Furthermore, some tracking codes, such as gpt, use methods for including space charge effects that require fields to vary smoothly and continuously along a beam line: in such cases, realistic fringe field models are of significant importance. In this paper, a method for constructing analytical expressions for multipole fringe fields is presented. Such expressions allow fringe field effects to be included in beam dynamics simulations from the start of an accelerator design project, even before detailed magnet design work has been undertaken. The magnetostatic Maxwell equations are solved analytically and a solution that fits all orders of multipoles is derived. Quadrupole fringe fields are considered in detail as these are the ones that give the strongest effects. The analytic expressions for quadrupole fringe fields are compared with data obtained from numerical modeling codes in two cases: a magnet in the high luminosity upgrade of the Large Hadron Collider inner triplet, and a

  7. Quantum interference fringes beating the diffraction limit. (United States)

    Kawabe, Yoshio; Fujiwara, Hideki; Okamoto, Ryo; Sasaki, Keiji; Takeuchi, Shigeki


    Spatially formed two-photon interference fringes with fringe periods smaller than the diffraction limit are demonstrated. In the experiment, a fringe formed by two-photon NOON states with wavelength lambda=702.2 nm is observed using a specially developed near-field scanning optical microscope probe and two-photon detection setup. The observed fringe period of 328.2 nm is well below the diffraction limit (351 nm = lambda /2). Another experiment with a path-length difference larger than the coherent length of photons confirms that the observed fringe is due to two-photon interference.

  8. SALT, a dedicated readout chip for high precision tracking silicon strip detectors at the LHCb Upgrade (United States)

    Bugiel, Sz.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kuczynska, M.; Moron, J.; Swientek, K.; Szumlak, T.


    The Upstream Tracker (UT) silicon strip detector, one of the central parts of the tracker system of the modernised LHCb experiment, will use a new 128-channel readout ASIC called SALT. It will extract and digitise analogue signals from the UT sensors, perform digital signal processing and transmit a serial output data. The SALT is being designed in CMOS 130 nm process and uses a novel architecture comprising of analog front-end and fast (40 MSps) ultra-low power (fabricated and tested. A prototype of an 8-channel version of the SALT chip, comprising all important functionalities was also designed and fabricated. The architecture and design of the SALT, together with the selected preliminary tests results, are presented.

  9. PERSPECTIVE: Fire on the fringe (United States)

    Pyne, Stephen J.


    upgraded by further research, could solve. The drivers behind sprawl were fundamentally irrational: they resided in such inchoate urgings as aesthetics, a desire to `live in nature', a longing for personal privacy and social isolation. Correction required the imposition of science-based reason onto the scene, which argued for research. What you propose as a solution depends on how you define the problem. Houses were burning and residents too often dying; this was clearly a threat to public safety, an incitement for political action, and an incentive for research. But what were the causes? Scholarly disciplines and national traditions defined it differently. Europeans thought the issue fundamentally social. The breakdown in the old landscape created a disorder of which free-burning fire was a manifestation. This was in keeping with a long heritage of European thinking that identified fire with unrest and that argued that fire control was primarily a matter of social control. People needed to reassert their presence on the land. Those countries with large public estates such as Australia and the US conceived the problem in a converse way. At issue was the unwise (and unwarranted) encroachment of people into the bush. An ideal response would be to banish people from the fringe regions. Fire is `natural' and belongs in wildlands: it is people who upset the order of things. While government has a duty to shield its citizens from harm, it should not allow such measures to destroy nature preserves or the capacity of fire to propagate through them. People have to learn to `live with' fire. In both cases the prevailing assumption is that science will identify solutions, which society will apply. Yet here we have a case of countries implicitly pointing their national sciences in different directions because of their distinctive histories. It would seem that history as a discipline might also have something to contribute to this discourse both in terms of tracking land use and of

  10. High precision ages from the Torres del Paine Intrusion, Chile (United States)

    Michel, J.; Baumgartner, L.; Cosca, M.; Ovtcharova, M.; Putlitz, B.; Schaltegger, U.


    The upper crustal bimodal Torres del Paine Intrusion, southern Chile, consists of the lower Paine-Mafic- Complex and the upper Paine-Granite. Geochronologically this bimodal complex is not well studied except for a few existing data from Halpern (1973) and Sanchez (2006). The aim of this study is to supplement the existing data and to constrain the age relations between the major magmatic pulses by applying high precision U-Pb dating on accessory zircons and 40Ar/39Ar-laser-step-heating-ages on biotites from the Torres del Paine Intrusion. The magmatic rocks from mafic complex are fine to medium-grained and vary in composition from quartz- monzonites to granodiorites and gabbros. Coarse-grained olivine gabbros have intruded these rocks in the west. The granitic body is represented by a peraluminous, biotite-orthoclase-granite and a more evolved leucocratic granite in the outer parts towards the host-rock. Field observations suggest a feeder-zone for the granite in the west and that the granite postdates the mafic complex. Two granite samples of the outermost margins in the Northeast and South were analyzed. The zircons were dated by precise isotope-dilution U-Pb techniques of chemically abraded single grains. The data are concordant within the analytical error and define weighted mean 206/238U ages of 12.59 ± 0.03 Ma and 12.58 ± 0.01 Ma for the two samples respectively. A 40Ar/39Ar-age for the second sample yield a date of 12.37 ± 0.11 Ma. Three 40Ar/39Ar -ages of biotites were obtained for rocks belonging to the mafic complex. A hbl-bio- granodiorite from the central part, approximately 150 m below the subhorizontal contact with the granite, gives an age of 12.81 ± 0.11 Ma. A hbl-bio-granodiorite and an olivine-gabbro west of the feeder-zone date at 12.42 ± 0.14 Ma and 12.49 ± 0.11 Ma, respectively. The obtained older age of 12.81 Ma for the granodiorite in the central part is consistent with structural relationships of brittle fracturing of the mafic

  11. High Precision 40K/39K Ratio Determination (United States)

    Naumenko, M. O.; Mezger, K.; Nagler, T. F.; Villa, I. M.


    Potassium is one of the eight most abundant chemical elements in the Earth's crust and a major element in many rock-forming minerals. The isotope 40K is radioactive and undergoes β- decay to 40Ca (ca. 89.3%) and electron capture to 40Ar (ca. 10.7%). Both decays can potentially be used as dating systems. The most commonly used branch is the decay of 40K to 40Ar because it can yield highly precise ages. Both decay schemes rely on the knowledge of the 40K branching ratio and the natural 40K abundance. A 40K abundance of 0.011672±41 % was measured on terrestrial material [1]. The relative uncertainty of 0.35 % has not been improved since. Recent improvements in the precision of mass spectrometric measurements have led to the situation that the uncertainties on the K decay constant and the abundance of 40K are a major source of uncertainty on the measured ages. A more precise definition of the 40K decay constant was attempted by different research groups within the last decade [2-9] but the goal of obtaining 0.1 % relative uncertainty on K-Ar ages for geological materials, as requested by the EARTHtime initiative, has not been achieved yet. In order to improve on this situation we studied the abundances of the K isotopes in terrestrial standards. A ThermoFischer Triton+ thermal ionisation mass spectrometer was used for K isotope ratio measurements of the NIST SRM 918b K standard loaded on Ta filaments with 0.1M phosphoric acid. Three techniques were applied: (A) dynamic measurement with in-run normalisation to the IUPAC value 41K/39K=0.072168; (B) a simple total evaporation procedure; (C) the "NBL-modified" total evaporation [10]. The 40K ion beam was measured in a Faraday cup with a 1E12 Ω resistor; 39K and 41K were collected in Faraday cups with 1E11 Ω resistors. Amplifier gains were intercalibrated by supplying fixed voltages off-line. Different measurement techniques were combined with different loading procedures. We also tested ionisation yields for the

  12. A Novel Gravity Compensation Method for High Precision Free-INS Based on “Extreme Learning Machine”

    Directory of Open Access Journals (Sweden)

    Xiao Zhou


    Full Text Available In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros, gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS, especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method.

  13. Design and High Precision Monitoring of Detector Structures at CERN

    CERN Document Server

    Lackner, Friedrich; Riegler, Werner


    Situated on the outskirts of Geneva, CERN is the leading center for particle physics in the world. The Large Hadron Collider (LHC) with its 27 km ringshaped accelerator, which is currently under construction and will be operational in 2008, will begin a new era in high energy physics by revealing the basic constituents of the universe. One of the experiments is ALICE (A Large Ion - Colliding - Experiment), a detector consisting of multiple layers of sub detectors around the collision point to detect dierent types and properties of particles created in the collisions. Those particles are identified via their energy, momentum, track and decay products, and it is therefore important to align the various sub detectors very precisely to each other and monitor their position. The monitoring systems have to operate for an extended period of time under extreme conditions (e.g. high radiation) and must not absorb too many of the particles created in the collisions. This dissertation describes monitoring systems develo...

  14. Calibration, registration, and synchronization for high precision augmented reality haptics. (United States)

    Harders, Matthias; Bianchi, Gérald; Knoerlein, Benjamin; Székely, Gábor


    In our current research we examine the application of visuo-haptic augmented reality setups in medical training. To this end, highly accurate calibration, system stability, and low latency are indispensable prerequisites. These are necessary to maintain user immersion and avoid breaks in presence which potentially diminish the training outcome. In this paper we describe the developed calibration methods for visuo-haptic integration, the hybrid tracking technique for stable alignment of the augmentation, and the distributed framework ensuring low latency and component synchronization. Finally, we outline an early prototype system based on the multimodal augmented reality framework. The latter allows colocated visuo-haptic interaction with real and virtual scene components in a simplified open surgery setting.

  15. Geometric analysis of influence of fringe directions on phase sensitivities in fringe projection profilometry. (United States)

    Zhang, Ruihua; Guo, Hongwei; Asundi, Anand K


    In fringe projection profilometry, phase sensitivity is one of the important factors affecting measurement accuracy. A typical fringe projection system consists of one camera and one projector. To gain insight into its phase sensitivity, we perform in this paper a strict analysis in theory about the dependence of phase sensitivities on fringe directions. We use epipolar geometry as a tool to derive the relationship between fringe distortions and depth variations of the measured surface, and further formularize phase sensitivity as a function of the angle between fringe direction and the epipolar line. The results reveal that using the fringes perpendicular to the epipolar lines enables us to achieve the maximum phase sensitivities, whereas if the fringes have directions along the epipolar lines, the phase sensitivities decline to zero. Based on these results, we suggest the optimal fringes being circular-arc-shaped and centered at the epipole, which enables us to give the best phase sensitivities over the whole fringe pattern, and the quasi-optimal fringes, being straight and perpendicular to the connecting line between the fringe pattern center and the epipole, can achieve satisfyingly high phase sensitivities over whole fringe patterns in the situation that the epipole locates far away from the fringe pattern center. The experimental results demonstrate that our analyses are practical and correct, and that our optimized fringes are effective in improving the phase sensitivities and, further, the measurement accuracies.

  16. Calibration techniques for fringe projectors (United States)

    Peters, Joerg; Patzelt, Stefan; Horn, Frank; Goch, Gert


    Fringe Projection systems generate phase distributions of an object illuminated with a specific fringe pattern. These phase correspond to the object coordinates. It is mostly necessary to transform the dimension-less phases to a metric dimension. Until today this is realized by photogrammetric techniques, which are subdivided into three main processes. At first a reference plane is defined. Then a grid within this plane is fixed. In the third step, the height axis is calibrated by different methods, for example, by use of a single height step or another well defined base object. This article describes a new method to calibrate the measuring volume by a multi-value calibration algorithm. As a first step, the fringe projection systems detects the phase distribution of a plane, denoted as reference plane. The, the plane moves stepwise in z-direction. In each step the phase distribution is detected, while an interferometer measures the distance of the z-coordinate form the reference plane. Together with the discrete x-y-coordinates of a CCD- detection unit, a 3D measuring volume is defined. The volume calibration is performed by separate polynomials for each x- y-coordinate, which are derived from the corresponding values of the phase distributions and the interferometric height values. With this method some problems of the conventional 'single value calibration' can be solved. This contribution describes the theoretical solution of the problem and presents first experimental results.

  17. VLTI First Fringes with Two Auxiliary Telescopes at Paranal (United States)


    . Moreover, these moving ultra-high precision telescopes, each weighing 33 tonnes, fulfill very stringent mechanical stability requirements: "The telescopes are unique in the world", says Bertrand Koehler, the VLTI AT Project Manager. "After being relocated to a new position, the telescope is repositioned to a precision better than one tenth of a millimetre - that is, the size of a human hair! The image of the star is stabilized to better than thirty milli-arcsec - this is how we would see an object of the same size as one of the VLT enclosures on the Moon. Finally, the path followed by the light inside the telescope after bouncing on ten mirrors is stable to better than a few nanometres, which is the size of about one hundred atoms." A World Premiere ESO PR Photo 07e/05 ESO PR Photo 07e/05 "First Fringes" with two ATs [Preview - JPEG: 400 x 559 pix - 61k] [Normal - JPEG: 800 x 1134 pix - 357k] Caption: ESO PR Photo 07e/05 The "First Fringes" obtained with the first two VLTI Auxiliary Telescopes, as seen on the computer screen during the observation. The fringe pattern arises when the light beams from the two 1.8-m telescopes are brought together inside the VINCI instrument. The pattern itself contains information about the angular extension of the observed object, here the 6th-magnitude star HD62082. The fringes are acquired by moving a mirror back and forth around the position of equal path length for the two telescopes. One such scan can be seen in the third row window. This pattern results from the raw interferometric signals (the last two rows) after calibration and filtering using the photometric signals (the 4th and 5th row). The first two rows show the spectrum of the fringe pattern signal. More details about the interpretation of this pattern is given in Appendix A of PR 06/01. The possibility to move the ATs around and thus to perform observations with a large number of different telescope configurations ensures a great degree of flexibility, unique for an optical

  18. A high precision position sensor design and its signal processing algorithm for a maglev train. (United States)

    Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen


    High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.

  19. Quantum interference fringes beating the diffraction limit


    Kawabe, Yoshio; Fujiwara, Hideki; Okamoto, Ryo; Sasaki, Keiji; Takeuchi, Shigeki


    Spatially formed two-photon interference fringes with fringe periods smaller than the diffraction limit are demonstrated. In the experiment, a fringe formed by two-photon NOON states with wavelength λ=702.2 nm is observed using a specially developed near-field scanning optical microscope probe and two-photon detection setup. The observed fringe period of 328.2 nm is well below the diffraction limit (351 nm = λ/2). Another experiment with a path-length difference larger than the coherent lengt...

  20. American Involvement in Fringe Religious Cults (United States)

    Intellect, 1977


    "Twenty million Americans are involved in fringe religious cults such as spiritualism, Hare Krishna, Scientology, and Black Gospel groups," according to anthropologist Irving Zaretsky of the University of Chicago. He recently completed a 10-year period as a participant-observer of fringe religious groups in the San Francisco Bay area and the…

  1. 36 CFR 1211.525 - Fringe benefits. (United States)


    ... FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1211.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX... employment not subject to the provision of § 1211.515. (b) Prohibitions. A recipient shall not: (1...

  2. 44 CFR 19.525 - Fringe benefits. (United States)


    ... RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 19.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of... or service of employment not subject to the provision of § 19.515. (b) Prohibitions. A recipient...

  3. 32 CFR 196.525 - Fringe benefits. (United States)


    ... FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 196.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX... employment not subject to the provision of § 196.515. (b) Prohibitions. A recipient shall not: (1...

  4. Multiplication method for sparse interferometric fringes. (United States)

    Liu, Cong; Zhang, Xingyi; Zhou, Youhe


    Fringe analysis in the interferometry has been of long-standing interest to the academic community. However, the process of sparse fringe is always a headache in the measurement, especially when the specimen is very small. Through theoretical derivation and experimental measurements, our work demonstrates a new method for fringe multiplication. Theoretically, arbitrary integral-multiple fringe multiplication can be acquired by using the interferogram phase as the parameter. We simulate digital images accordingly and find that not only the skeleton lines of the multiplied fringe are very convenient to extract, but also the main frequency of which can be easily separated from the DC component. Meanwhile, the experimental results have a good agreement with the theoretic ones in a validation using the classical photoelasticity.

  5. High-precision 40Ar/39Ar age for the Jehol Biota (United States)

    Chang, S.; Zhang, H.; Renne, P. R.; Fang, Y.


    Abundant fossils of the terrestrial Jehol Biota, including plants, insects, dinosaurs, birds, mammals and freshwater invertebrates, were discovered from the Yixian Formation and the overlying Jiufotang Formation in Inner Mongolia, Hebei Province and Liaoning Province, northeastern China. Because of the exceptional preservation of fossils, the Jehol Biota is one of the most important Mesozoic fossil outcrops and referred to as a "Mesozoic Pompeii". The Jehol Biota has provided a rare opportunity to address questions about the origin of birds, the evolution of feathers and flight, the early diversification of angiosperms and the timing of the radiation of placental mammals. The Tuchengzi Formation, which lies unconformably just below the Yixian Formation and consists mainly of variegated sandstones, is less fossiliferous than the two overlying formations. However, dinosaur tracks, silicified wood and compressed plants are found in this formation. A systematic 40Ar/39Ar dating of the Yixian and the Jiufotang formations was undertaken to provide a framework for understanding the timing and duration of the Jehol Biota and evolutionary events represented within it. Furthermore, determining the absolute age of the Tuchengzi Formation provides information to interpret abundant dinosaur tracks within and provide better age constrains for the beginning of the Jehol Biota. Here we present robust high-precision 40Ar/39Ar data for six tuff samples and two basalt samples collected from the Tuchengzi, the Yixian and the Jiufotang formations near the classic outcrops in western Liaoning, NE China. We obtain an age of 139.5 ± 1.0 Ma for the uppermost Tuchengzi Formation, an age of 129.7 ± 0.5 Ma for a basaltic lava from the bottom of the Yixian Formation and an age of 122.1 ± 0.3 Ma for a tuff from the base of the overlying Jiufotang Formation. Our data indicate that the Yixian Formation was deposited during the Early Cretaceous, the Barremian to early Aptian, within a time span

  6. Single Crystal Piezomotor for Large Stroke, High Precision and Cryogenic Actuations Project (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes a novel single crystal piezomotor for large stroke, high precision, and cryogenic actuations with capability of position set-hold with...

  7. On the Mitigation of Solar Index Variability for High Precision Orbit Determination in Low Earth Orbit (United States)


    causing increased difficulty in achieving and maintaining high precision orbit predictions for satellites operating in low Earth orbit . In particular, the...Geodetic satellites with high precision satellite laser ranging data are used as test cases for the Naval Research Laboratory’s Orbit Covariance Estimation...forces imparted upon a satellite . For satellites in Low Earth Orbit (LEO), atmospheric drag forces are typically the largest source of force modeling error

  8. Flexible decoupled camera and projector fringe projection system using inertial sensors (United States)

    Stavroulakis, Petros; Sims-Waterhouse, Danny; Piano, Samanta; Leach, Richard


    Measurement of objects with complex geometry and many self-occlusions is increasingly important in many fields, including additive manufacturing. In a fringe projection system, the camera and the projector cannot move independently with respect to each other, which limits the ability of the system to overcome object self-occlusions. We demonstrate a fringe projection setup where the camera can move independently with respect to the projector, thus minimizing the effects of self-occlusion. The angular motion of the camera is tracked and recalibrated using an on-board inertial angular sensor, which can additionally perform automated point cloud registration.

  9. Frontiers of QC Laser spectroscopy for high precision isotope ratio analysis of greenhouse gases (United States)

    Emmenegger, Lukas; Mohn, Joachim; Harris, Eliza; Eyer, Simon; Ibraim, Erkan; Tuzson, Béla


    An important milestone for laser spectroscopy was achieved when isotope ratios of greenhouse gases were reported at precision levels that allow addressing research questions in environmental sciences. Real-time data with high temporal resolution at moderate cost and instrument size make the optical approach highly attractive, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. Especially appealing, in comparison to IRMS, is the inherent specificity to structural isomers having the same molecular mass. Direct absorption in the MIR in single or dual QCL configuration has proven highly reliable for the sta-ble isotopes of CO2, N2O and CH4. The longest time series of real-time measurements is currently available for δ13C and δ18O in CO2 at the high-alpine station Jung-fraujoch. At this well-equipped site, QCL based direct absorption spectroscopy (QCLAS) measurements are ongoing since 2008 1,2. Applications of QCLAS for N2O and CH4 stable isotopes are considerably more challenging because of the lower atmospheric mixing ratios, especially for the less abundant species, such as N218O and CH3D. For high precision (automated preconcentration unit yielding an up to 500 times concentration increase and the capability to separate the target gas from spectral interferants by se-quential desorption 3. Here, we review our recent developments on high precision isotope ratio analysis of greenhouse gases, with special focus on the isotopic species of N2O and CH4. Furthermore, we show environ-mental applications illustrating the highly valuable information that isotope ratios of atmospheric trace gases can carry. For example, the intramolecular distribution of 15N in N2O gives important information on the geochemical cycle of N2O4-6, while the analysis of δ13C and δ D in CH4 may be applied to disentangle microbial, fossil and landfill sources 7. 1 Sturm, P., Tuzson, B., Henne, S. & Emmenegger, L. Tracking isotopic signatures of CO2 at the high

  10. Phase demodulation for digital fringe projection profilometry: a review (United States)

    Martinez-Laguna, Juana; Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.


    Phase demodulation is an essential image processing stage required by digital fringe projection profilometers. Currently, several approaches for phase demodulation have been proposed. In this work, a set of phase demodulation methods useful for digital fringe projection profilometry is presented. This survey covers fringe pattern normalization, extraction of wrapped phase, and phase unwrapping. Experimental results obtained with a laboratory fringe projection system are presented.

  11. 29 CFR 1620.11 - Fringe benefits. (United States)


    ... benefits. Differences in the application of fringe benefit plans which are based upon sex-based actuarial studies cannot be justified as based on “any other factor other than sex.” (c) Where an employer...

  12. Optical helices and spiral interference fringes (United States)

    Harris, M.; Hill, C. A.; Vaughan, J. M.


    Very pure optical helices have been generated in an argon ion laser of low Fresnel number. The beam character, with continuous cophasal surface of helical form, is clearly demonstrated by spiral interference fringes produced in a novel interferometric arrangement. In addition to single-start helices the multistart fringe patterns establish both two-start and three-start helices (of pitch two and three wavelengths, respectively), and also the state of helicity (i.e. rotational hand) of the beams.

  13. Autonomous Navigation Airborne Forward-Looking SAR High Precision Imaging with Combination of Pseudo-Polar Formatting and Overlapped Sub-Aperture Algorithm

    Directory of Open Access Journals (Sweden)

    Xueming Peng


    Full Text Available Autonomous navigation airborne forward-looking synthetic aperture radar (SAR observes the anterior inferior wide area with a short cross-track dimensional linear array as azimuth aperture. This is an application scenario that is drastically different from that of side-looking space-borne or air-borne SAR systems, which acquires azimuth synthetic aperture with along-track dimension platform movement. High precision imaging with a combination of pseudo-polar formatting and overlapped sub-aperture algorithm for autonomous navigation airborne forward-looking SAR imaging is presented. With the suggested imaging method, range dimensional imaging is operated with wide band signal compression. Then, 2D pseudo-polar formatting is operated. In the following, azimuth synthetic aperture is divided into several overlapped sub-apertures. Intra sub-aperture IFFT (Inverse Fast Fourier Transform, wave front curvature phase error compensation, and inter sub-aperture IFFT are operated sequentially to finish azimuth high precision imaging. The main advantage of the proposed algorithm is its extremely high precision and low memory cost. The effectiveness and performance of the proposed algorithm are demonstrated with outdoor GBSAR (Ground Based Synthetic Aperture Radar experiments, which possesses the same imaging geometry as the airborne forward-looking SAR (short azimuth aperture, wide azimuth swath. The profile response of the trihedral angle reflectors, placed in the imaging scene, reconstructed with the proposed imaging algorithm and back projection algorithm are compared and analyzed.

  14. An Ultra-low Frequency Modal Testing Suspension System for High Precision Air Pressure Control

    Directory of Open Access Journals (Sweden)

    Qiaoling YUAN


    Full Text Available As a resolution for air pressure control challenges in ultra-low frequency modal testing suspension systems, an incremental PID control algorithm with dead band is applied to achieve high-precision pressure control. We also develop a set of independent hardware and software systems for high-precision pressure control solutions. Taking control system versatility, scalability, reliability, and other aspects into considerations, a two-level communication employing Ethernet and CAN bus, is adopted to complete such tasks as data exchange between the IPC, the main board and the control board ,and the pressure control. Furthermore, we build a single set of ultra-low frequency modal testing suspension system and complete pressure control experiments, which achieve the desired results and thus confirm that the high-precision pressure control subsystem is reasonable and reliable.

  15. Novel Method of Detecting Movement of the Interference Fringes Using One-Dimensional PSD

    Directory of Open Access Journals (Sweden)

    Qi Wang


    Full Text Available In this paper, a method of using a one-dimensional position-sensitive detector (PSD by replacing charge-coupled device (CCD to measure the movement of the interference fringes is presented first, and its feasibility is demonstrated through an experimental setup based on the principle of centroid detection. Firstly, the centroid position of the interference fringes in a fiber Mach-Zehnder (M-Z interferometer is solved in theory, showing it has a higher resolution and sensitivity. According to the physical characteristics and principles of PSD, a simulation of the interference fringe’s phase difference in fiber M-Z interferometers and PSD output is carried out. Comparing the simulation results with the relationship between phase differences and centroid positions in fiber M-Z interferometers, the conclusion that the output of interference fringes by PSD is still the centroid position is obtained. Based on massive measurements, the best resolution of the system is achieved with 5.15, 625 μm. Finally, the detection system is evaluated through setup error analysis and an ultra-narrow-band filter structure. The filter structure is configured with a one-dimensional photonic crystal containing positive and negative refraction material, which can eliminate background light in the PSD detection experiment. This detection system has a simple structure, good stability, high precision and easily performs remote measurements, which makes it potentially useful in material small deformation tests, refractivity measurements of optical media and optical wave front detection.

  16. Towards high precision measurements of nuclear g-factors for the Be isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Takamine, A., E-mail: [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wada, M. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Okada, K. [Department of Physics, Sophia University, Chiyoda Ward, Tokyo (Japan); Ito, Y. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Schury, P.; Arai, F. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Katayama, I. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Imamura, K. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Department of Physics, Meiji University, Kawasaki City, Kanagawa (Japan); Ichikawa, Y.; Ueno, H. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wollnik, H. [Department of Chemistry and BioChemistry, New Mexico State University, Las Cruces, NM (United States); Schuessler, H.A. [Department of Physics, Texas A& M University, College Station, TX (United States)


    We describe the present status of future high-precision measurements of nuclear g-factors utilizing laser-microwave double and laser-microwave-rf triple resonance methods for online-trapped, laser-cooled radioactive beryllium isotope ions. These methods have applicability to other suitably chosen isotopes and for beryllium show promise in deducing the hyperfine anomaly of {sup 11}Be with a sufficiently high precision to study the nuclear magnetization distribution of this one-neutron halo nucleus in a nuclear-model-independent manner.

  17. Towards high precision measurements of nuclear g-factors for the Be isotopes (United States)

    Takamine, A.; Wada, M.; Okada, K.; Ito, Y.; Schury, P.; Arai, F.; Katayama, I.; Imamura, K.; Ichikawa, Y.; Ueno, H.; Wollnik, H.; Schuessler, H. A.


    We describe the present status of future high-precision measurements of nuclear g-factors utilizing laser-microwave double and laser-microwave-rf triple resonance methods for online-trapped, laser-cooled radioactive beryllium isotope ions. These methods have applicability to other suitably chosen isotopes and for beryllium show promise in deducing the hyperfine anomaly of 11Be with a sufficiently high precision to study the nuclear magnetization distribution of this one-neutron halo nucleus in a nuclear-model-independent manner.

  18. Object detection via eye tracking and fringe restraint (United States)

    Pan, Fei; Zhang, Hanming; Zeng, Ying; Tong, Li; Yan, Bin


    Object detection is a computer vision problem which caught a large amount of attention. But the candidate boundingboxes extracted from only image features may end up with false-detection due to the semantic gap between the top-down and the bottom up information. In this paper, we propose a novel method for generating object bounding-boxes proposals using the combination of eye fixation point, saliency detection and edges. The new method obtains a fixation orientated Gaussian map, optimizes the map through single-layer cellular automata, and derives bounding-boxes from the optimized map on three levels. Then we score the boxes by combining all the information above, and choose the box with the highest score to be the final box. We perform an evaluation of our method by comparing with previous state-ofthe art approaches on the challenging POET datasets, the images of which are chosen from PASCAL VOC 2012. Our method outperforms them on small scale objects while comparable to them in general.

  19. High-precision photometry by telescope defocusing - I. The transiting planetary system WASP-5

    DEFF Research Database (Denmark)

    Southworth, J.; Hinse, T. C.; Jørgensen, U. G.


    We present high-precision photometry of two transit events of the extrasolar planetary system WASP-5, obtained with the Danish 1.54-m telescope at European Southern Obseratory La Silla. In order to minimize both random and flat-fielding errors, we defocused the telescope so its point spread...

  20. Experimental Contribution to High Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar


    contribution of the work is the characterization of magnetic forces by using two different experimental approaches. Such approaches are investigated and described in detail. A special test rig is designed where the 4 pole - AMB is able to generate forces up to 1900 N. The high precision characterization...

  1. Herschel-PACS high-precision FIR fluxes of NEAs and MBAs (United States)

    Müller, T.; Kiss, C.; Ali-Lagoa, V.


    We present unique and high-precision Herschel-PACS photometer far-IR observations of near-Earth and main-belt asteroids. These measurements are used for radiometric studies of unprecedented accuracy, resulting in sizes, albedos, thermal inertias, emissivities, and surface roughness for six important NEAs and more than 20 large MBAs.


    Directory of Open Access Journals (Sweden)

    J. Jeong


    Full Text Available Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.

  3. Color fringe projection profilometry using geometric constraints (United States)

    Cheng, Teng; Du, Qingyu; Jiang, Yaxi


    A recently proposed phase unwrapping method using geometric constraints performs well without requiring additional camera, more patterns or global search. The major limitation of this technique is the confined measurement depth range (MDR) within 2π in phase domain. To enlarge the MDR, this paper proposes using color fringes for three-dimensional (3D) shape measurement. Each six fringe periods encoded with six different colors are treated as one group. The local order within one group can be identified with reference to the color distribution. Then the phase wrapped period-by-period is converted into the phase wrapped group-by-group. The geometric constraints of the fringe projection system are used to determine the group order. Such that the MDR is extended from 2π to 12π by six times. Experiment results demonstrate the success of the proposed method to measure two isolated objects with large MDR.

  4. MultiSig: a new high-precision approach to the analysis of complex biomolecular systems


    Gillis, Richard B.; Adams, Gary G.; Heinze, Thomas; Nikolajski, Melanie; Harding, Stephen E.; Rowe, Arthur J.


    MultiSig is a newly developed mode of analysis of sedimentation equilibrium (SE) experiments in the analytical ultracentrifuge, having the capability of taking advantage of the remarkable precision (~0.1?% of signal) of the principal optical (fringe) system employed, thus supplanting existing methods of analysis through reducing the ?noise? level of certain important parameter estimates by up to orders of magnitude. Long-known limitations of the SE method, arising from lack of knowledge of th...

  5. Actin fringes of polar cell growth. (United States)

    Stephan, Octavian O H


    The eukaryotic actin cytoskeleton is a highly dynamic framework that is involved in many biological processes, such as cell growth, division, morphology, and motility. G-actin polymerizes into microfilaments that associate into bundles, patches, and networks, which, in turn, organize into higher order structures that are fundamental for the course of important physiological events. Actin rings are an example for such higher order actin entities, but this term represents an actually diverse set of subcellular structures that are involved in various processes. This review especially sheds light on a crucial type of non-constricting ring-like actin networks, and categorizes them under the term 'actin fringe'. These 'actin fringes' are visualized as highly dynamic and yet steady structures in the tip of various polarized growing cells. The present comprehensive overview compares the actin fringe characteristics of rapidly elongating pollen tubes with several related actin arrays in other cell types of diverse species. The current state of knowledge about various actin fringe functions is summarized, and the key role of this structure in the polar growth process is discussed. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email:

  6. 45 CFR 2555.525 - Fringe benefits. (United States)


    ... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 2555.525 Fringe..., families, or dependents of employees differently upon the basis of the employee's sex; (2) Administer...

  7. 13 CFR 113.525 - Fringe benefits. (United States)


    ... Nondiscrimination on the Basis of Sex in Education Programs or Activities Receiving Federal Financial Assistance Discrimination on the Basis of Sex in Employment in Education Programs Or Activities Prohibited § 113.525 Fringe..., families, or dependents of employees differently upon the basis of the employee's sex; (2) Administer...

  8. 38 CFR 23.525 - Fringe benefits. (United States)


    ...) NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 23.525 Fringe..., families, or dependents of employees differently upon the basis of the employee's sex; (2) Administer...

  9. 45 CFR 618.525 - Fringe benefits. (United States)


    ... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 618.525 Fringe..., families, or dependents of employees differently upon the basis of the employee's sex; (2) Administer...

  10. 24 CFR 3.525 - Fringe benefits. (United States)


    ... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 3.525 Fringe..., families, or dependents of employees differently upon the basis of the employee's sex; (2) Administer...

  11. 31 CFR 28.525 - Fringe benefits. (United States)


    ... OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.525 Fringe benefits..., families, or dependents of employees differently upon the basis of the employee's sex; (2) Administer...

  12. 18 CFR 1317.525 - Fringe benefits. (United States)


    ... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1317.525 Fringe..., families, or dependents of employees differently upon the basis of the employee's sex; (2) Administer...

  13. 29 CFR 1604.9 - Fringe benefits. (United States)


    ... prohibitions against sex discrimination contained in the act. (d) It shall be an unlawful employment practice... Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION GUIDELINES ON DISCRIMINATION BECAUSE... discriminate between men and women with regard to fringe benefits. (c) Where an employer conditions benefits...

  14. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization

    Directory of Open Access Journals (Sweden)

    Hu Ke-bin


    Full Text Available Owing to the platform instability and precision limitations of motion sensors, motion errors negatively affect the quality of synthetic aperture radar (SAR images. The autofocus Back Projection (BP algorithm based on the optimization of image sharpness compensates for motion errors through phase error estimation. This method can attain relatively good performance, while assuming the same phase error for all pixels, i.e., it ignores the spatial variance of motion errors. To overcome this drawback, a high-precision motion error compensation method is presented in this study. In the proposed method, the Antenna Phase Centers (APC are estimated via optimization using the criterion of maximum image intensity. Then, the estimated APCs are applied for BP imaging. Because the APC estimation equals the range history estimation for each pixel, high-precision phase compensation for every pixel can be achieved. Point-target simulations and processing of experimental data validate the effectiveness of the proposed method.

  15. In-Orbit Performance Evaluation of a Spaceborne High Precision Fiber Optic Gyroscope. (United States)

    Jin, Jing; Zhang, Ting; Kong, Linghai; Ma, Kun


    An in-orbit experiment was launched to evaluate the performance of the spaceborne high precision fiber optic gyroscopes (FOG). The three-axis in-orbit data of the FOG were analyzed using wavelet analysis method. Features of low frequency period terms and glitch noise were demonstrated. In addition, a method to extract the random noise from the in-orbit data is proposed based on the first-order difference method and the Pauta criterion. In addition, the random walk coefficient (RWC) of the FOG was calculated with the Allan variance method. Compared the ground test results, the in-orbit performance evaluation of Spaceborne High Precision Fiber Optic Gyroscope was verified.

  16. A High-Precision Registration Technology Based on Bundle Adjustment in Structured Light Scanning System

    Directory of Open Access Journals (Sweden)

    Jianying Yuan


    Full Text Available The multiview 3D data registration precision will decrease with the increasing number of registrations when measuring a large scale object using structured light scanning. In this paper, we propose a high-precision registration method based on multiple view geometry theory in order to solve this problem. First, a multiview network is constructed during the scanning process. The bundle adjustment method from digital close range photogrammetry is used to optimize the multiview network to obtain high-precision global control points. After that, the 3D data under each local coordinate of each scan are registered with the global control points. The method overcomes the error accumulation in the traditional registration process and reduces the time consumption of the following 3D data global optimization. The multiview 3D scan registration precision and efficiency are increased. Experiments verify the effectiveness of the proposed algorithm.

  17. Laser-generated ultrasound for high-precision cutting of tissue-mimicking gels (Conference Presentation) (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay


    Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).

  18. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel. (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Demirci, Hakan; Guo, L Jay


    Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high-precision cavitation treatment of tissue using laser-induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue-mimicking gels as well as accurate ablation of gels and animal eye tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High Precision Measurement of the differential W and Z boson cross-sections

    CERN Document Server

    Gasnikova, Ksenia; The ATLAS collaboration


    Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7. The measurements are performed for W+, W- and Z/gamma bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. Z cross sections are also measured at a center-of-mass energies of 8TeV and 13TeV, and cross-section ratios to the top-quark pair production have been derived. This ratio measurement leads to a cancellation of several systematic effects and allows therefore for a high precision comparison to the theory predictions.

  20. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)


    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.


    Directory of Open Access Journals (Sweden)

    M. Rieke


    Full Text Available Available micro-sized Unmanned Aerial Vehicles (UAVs in the civilian domain currently make use of common GPS receivers and do not address scenarios where high-precision positioning of the UAV is an inevitable requirement. However, for use cases such as creating orthophotos using direct georeferencing, an improved positioning needs to be developed. This article analyses the requirements for integrating Real Time Kinematic positioning into micro-sized UAVs. Additionally, it describes the data processing and synchronisation of the high-precision position data for a workflow of orthorectification of aerial imagery. Preliminary results are described for the use case of precision farming. The described approach for positioning has the potential to achieve a positional accuracy of 1–3 cm, which can be considered as adequate for direct georeferencing of aerial imagery.

  2. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Weiping Jiang


    Full Text Available A high-precision image-aided inertial navigation system (INS is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF. Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level and attitude (half-degree-level-integrated solutions can be achieved in a global reference.

  3. MRPC-PET: A new technique for high precision time and position measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doroud, K., E-mail: [World Laboratory, Geneva (Switzerland); Hatzifotiadou, D. [Sezione INFN, Bologna (Italy); Li, S. [World Laboratory, Geneva (Switzerland); Williams, M.C.S. [Sezione INFN, Bologna (Italy); Zichichi, A. [Dipartimento di Fisica dell' Universita, Bologna (Italy); PH Dept, CERN, Geneva (Switzerland); Zuyeuski, R. [World Laboratory, Geneva (Switzerland)


    The purpose of this paper is to consider a new technology for medical diagnosis: the MRPC-PET. This technology allows excellent time resolution together with 2-D position information thus providing a fundamental step in this field. The principle of this method is based on the Multigap Resistive Plate Chamber (MRPC) capable of high precision time measurements. We have previously found that the route to precise timing is differential readout (this requires matching anode and cathode strips); thus crossed strip readout schemes traditionally used for 2-D readout cannot be exploited. In this paper we consider the time difference from the two ends of the strip to provide a high precision measurement along the strip; the average time gives precise timing. The MRPC-PET thus provides a basic step in the field of medical technology: excellent time resolution together with 2-D position measurement.

  4. Development of a practical method of estimating electric power from various photovoltaic technologies with high precision (United States)

    Ishii, Tetsuyuki; Sato, Ritsuko; Choi, Sungwoo; Chiba, Yasuo; Masuda, Atsushi


    The purpose of this study is to develop a method of estimating the electric power from various photovoltaic technologies with high precision. The actual outdoor performance of eight kinds (12 types) of photovoltaic (PV) modules has been measured since January 2012 in order to verify the precision of the method. Using ambient climatic datasets including solar irradiance, module temperature, and solar spectrum, the performance of these PV modules is corrected to the performance under standard test conditions (STC), which should be constant ideally. The results indicate that the performance of bulk crystalline silicon (c-Si) and copper indium gallium diselenide (CIGS) PV modules can be estimated with high precision (approximately less than ±2%). However, the estimation precision of thin-film Si and cadmium telluride (CdTe) PV modules is low because of the initial light-induced degradation and seasonal variation due to metastability.

  5. Method of curved surface abnormal holes vision measurement based on high precision turntable (United States)

    Lyu, Laipeng; Bi, Chao; Fang, Jianguo; Zhu, Yong; Wang, Liping


    For solving the difficult problem that there is no effective way to measure abnormal holes located at blade erection loop of aero-engine case, an image measurement system based on high precision air-bearing turntable is established in this paper. The issue that monocular vision can't measure curved surface has overcome by using high precision turntable to make sure high positioning accuracy of the surface abnormal holes and high-resolution microscope lens which is used to image local tiny features. Besides, an algorithm of determining the boundary points of a trailing edge on the contour of abnormal hole is proposed to achieve a rapid fitting and accuracy. After experiments and analysis, results show that the system can be used to measure local tiny features on curved surfaces validly and efficiently.

  6. Reference satellite selection method for GNSS high-precision relative positioning


    Xiao Gao; Wujiao Dai; Zhiyong Song; Changsheng Cai


    Selecting the optimal reference satellite is an important component of high-precision relative positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection ...

  7. High-precision half-life measurement for the superallowed Fermi β+ emitter 22Mg (United States)

    Dunlop, M. R.; Svensson, C. E.; Ball, G. C.; Leslie, J. R.; Andreoiu, C.; Bernier, N.; Bidaman, H.; Bildstein, V.; Bowry, M.; Burbadge, C.; Caballero-Folch, R.; Varela, A. Diaz; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Jigmeddorj, B.; Leach, K. G.; MacLean, A. D.; Olaizola, B.; Measures, J.; Natzke, C.; Saito, Y.; Smith, J. K.; Turko, J.; Zidar, T.


    A high-precision half-life measurement for the superallowed Fermi β+ emitter 22Mg was performed at the TRIUMF-ISAC facility using a 4 π proportional gas counter. The result of T1 /2=3.87400 ±0.00079 s is a factor of 3 more precise than the previously adopted world average and resolves a discrepancy between the two previously published 22Mg half-life measurements.

  8. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses


    Das, Jayajit


    Single cells often generate precise responses by involving dissipative out-of-thermodynamic equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early time T cell signaling. I show usin...

  9. Development of a monoenergetic ultraslow antiproton beam source for high-precision investigation

    Directory of Open Access Journals (Sweden)

    N. Kuroda


    Full Text Available The ASACUSA collaboration developed an ultraslow antiproton beam source, monoenergetic ultraslow antiproton source for high-precision investigation (MUSASHI, consisting of an electromagnetic trap with a liquid He free superconducting solenoid and a low energy antiproton beam transport line. The MUSASHI was capable of trapping and cooling more than 1×10^{7} antiprotons and extracting them as an ultraslow antiproton beam with energy of 150–250 eV.

  10. Super high precision 200 ppi liquid crystal display series; Chokoseido 200 ppi ekisho display series

    Energy Technology Data Exchange (ETDEWEB)



    In mobile equipment, in demand is a high precision liquid crystal display (LCD) having the power of expression equivalent to printed materials like magazines because of the necessity of displaying a large amount of information on a easily potable small screen. In addition, with the spread and high-quality image of digital still cameras, it is strongly desired to display photographed digital image data in high quality. Toshiba Corp., by low temperature polysilicone (p-Si) technology, commercialized the liquid crystal display series of 200 ppi (pixels per inch) precision dealing with the rise of the high-precision high-image quality LCD market. The super high precision of 200 ppi enables the display of smooth beautiful animation comparable to printed sheets of magazines and photographs. The display series are suitable for the display of various information services such as electronic books and electronic photo-viewers including internet. The screen sizes lined up are No. 4 type VGA (640x480 pixels) of a small pocket notebook size and No. 6.3 type XGA (1,024x768 pixels) of a paperback size, with a larger screen to be furthered. (translated by NEDO)

  11. High-precision comparison of the antiproton-to-proton charge-to-mass ratio

    CERN Document Server

    Ulmer, S; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y


    Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available$^{4, 5, 6, 7, 8}$. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H$^−$) carried out in a Penning trap system. From 13,000 frequency measurements we compare th...

  12. Mathematical model for CO2 laser high precision ablation of fused silica (United States)

    He, Ting; Shao, Jianda; Wei, Chaoyang; Jiang, Zhigang; Zhao, Jiaoling


    Optics manufactured by mechanical grinding and polishing inevitably will bring surface/subsurface damages and defects during the machining process. Laser polishing has been demonstrated as a technique capable of achieving ultra-smooth surface with no damage and low-defects, but by far optics polished by this technology are only sufficient for illumination applications. To achieve high quality optics, high precision laser ablation has been proved to be a promising technology for shape correction. With pulsed CO2 laser, high precision laser ablation can be performed by direct evaporation of unwanted surface asperities. To acquire nanometer scale high precision ablation, an accurate control and meticulous adjustment of temperature should be needed. Herein, a mathematical model has been established to assist the understanding of the thermal mechanism of CO2 laser ablation and subsequently a series of simulations have been extended to investigate the phase change of evaporation. The temperature of fused silica irradiated by CO2 laser can be controlled via laser power and pulse duration. To achieve nanometer ablation depth, a gentle evaporation regime at low laser intensity is necessary. The results indicated that the ablation depth linearly depend on laser fluence and depth control levels of nanometer are obtainable with the control of laser fluence.

  13. Concept of modular flexure-based mechanisms for ultra-high precision robot design

    Directory of Open Access Journals (Sweden)

    M. Richard


    Full Text Available This paper introduces a new concept of modular flexure-based mechanisms to design industrial ultra-high precision robots, which aims at significantly reducing both the complexity of their design and their development time. This modular concept can be considered as a robotic Lego, where a finite number of building bricks is used to quickly build a high-precision robot. The core of the concept is the transformation of a 3-D design problem into several 2-D ones, which are simpler and well-mastered. This paper will first briefly present the theoretical bases of this methodology and the requirements of both types of building bricks: the active and the passive bricks. The section dedicated to the design of the active bricks will detail the current research directions, mainly the maximisation of the strokes and the development of an actuation sub-brick. As for the passive bricks, some examples will be presented, and a discussion regarding the establishment of a mechanical solution catalogue will conclude the section. Last, this modular concept will be illustrated with a practical example, consisting in the design of a 5-degree of freedom ultra-high precision robot.

  14. Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Minaya Ramirez, E., E-mail: [Helmholtz-Institut Mainz, 55099 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Ackermann, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Blaum, K. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Ruprecht-Karls-Universität, 69120 Heidelberg (Germany); Block, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Droese, C. [Ernst-Moritz-Arndt-Universität, 17487 Greifswald (Germany); Düllmann, Ch. E. [Johannes Gutenberg-Universität, 55099 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55099 Mainz (Germany); Eibach, M. [Ruprecht-Karls-Universität, 69120 Heidelberg (Germany); Johannes Gutenberg-Universität, 55099 Mainz (Germany); Eliseev, S. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Haettner, E. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Justus-Liebig-Universität, 35392 Gießen (Germany); Herfurth, F. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Heßberger, F.P. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55099 Mainz (Germany); and others


    Highlights: • Direct high-precision mass measurements of No and Lr isotopes performed. • High-precision mass measurements with a count rate of 1 ion/hour demonstrated. • The results provide anchor points for a large region connected by alpha-decay chains. • The binding energies determine the strength of the deformed shell closure N = 152. • Technical developments and new techniques will pave the way towards heavier elements. -- Abstract: Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further extend mass measurements to the region of superheavy elements, new technical developments are required to increase the performance of our setup. The sensitivity will increase through the implementation of a new detection method, where observation of one single ion is sufficient. Together with the use of a more efficient gas stopping cell, this will us allow to significantly enhance the overall efficiency of SHIPTRAP.

  15. Using Pharmacological Manipulation and High-precision Radio Telemetry to Study the Spatial Cognition in Free-ranging Animals. (United States)

    Roth, Timothy C; Krochmal, Aaron R; Gerwig, William B; Rush, Sage; Simmons, Nathaniel T; Sullivan, Jeffery D; Wachter, Katrina


    An animal's ability to perceive and learn about its environment plays a key role in many behavioral processes, including navigation, migration, dispersal and foraging. However, the understanding of the role of cognition in the development of navigation strategies and the mechanisms underlying these strategies is limited by the methodological difficulties involved in monitoring, manipulating the cognition of, and tracking wild animals. This study describes a protocol for addressing the role of cognition in navigation that combines pharmacological manipulation of behavior with high-precision radio telemetry. The approach uses scopolamine, a muscarinic acetylcholine receptor antagonist, to manipulate cognitive spatial abilities. Treated animals are then monitored with high frequency and high spatial resolution via remote triangulation. This protocol was applied within a population of Eastern painted turtles (Chrysemys picta) that has inhabited seasonally ephemeral water sources for ~100 years, moving between far-off sources using precise (± 3.5 m), complex (i.e., non-linear with high tortuosity that traverse multiple habitats), and predictable routes learned before 4 years of age. This study showed that the processes used by these turtles are consistent with spatial memory formation and recall. Together, these results are consistent with a role of spatial cognition in complex navigation and highlight the integration of ecological and pharmacological techniques in the study of cognition and navigation.

  16. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    Directory of Open Access Journals (Sweden)

    Wenwei Zuo


    Full Text Available Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS/Global Positioning System (GPS positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API of the original standard Global Navigation Satellite System (GNSS to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to

  17. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning. (United States)

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min


    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the

  18. Phase Analysis of Fringe Pattern In Shearography (United States)

    Yusof, M. Y.; Abdullah, W. S. Wan


    This paper discusses the phase analysis of interference pattern from coherent light Nd:YAG 532 nm laser source. The Twyman-Green Interferometer set-up is used for generating the fringe pattern in the phase calibration. The piezoelectric transducer (PZT) is used to achieve the required phase shift of the fringe pattern. It was found that the system required 8.8 volts of out-put DC voltage to shift 2π radians phase. The accuracy of optical phase measurement of the interference pattern is analyzed by wrapped phases of three-phase stepping and four-phase stepping procedures. Comparison of the experimental phase measurement data and the theoretical phase calculations are also highlighted.

  19. High-precision comparison of the antiproton-to-proton charge-to-mass ratio. (United States)

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y


    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of anomaly parameter of |α − 1| < 8.7 × 10(-7).

  20. Proceedings, High-Precision $\\alpha_s$ Measurements from LHC to FCC-ee

    Energy Technology Data Exchange (ETDEWEB)

    d' Enterria, David [CERN; Skands, Peter Z. [Monash U.


    This document provides a writeup of all contributions to the workshop on "High precision measurements of $\\alpha_s$: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling $\\alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $\\tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^\\pm$p DIS and $\\gamma$-p photoproduction, (ix) photon structure function in $\\gamma$-$\\gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in $e^+e^-$ collisions at the Future Circular Collider (FCC-ee) with $\\cal{O}$(1--100 ab$^{-1}$) integrated luminosities yielding 10$^{12}$ Z bosons and jets, and 10$^{8}$ W bosons and $\\tau$ leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, $\\alpha_s(m_Z)$ = 0.1177 $\\pm$ 0.0013, is about 1\\%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the $\\alpha_s$ uncertainty should be possible, mostly thanks to the huge Z and W data samples available.

  1. Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research (United States)

    Vaks, Vladimir L.; Domracheva, Elena G.; Pripolzin, Sergey I.; Chernyaeva, Mariya B.


    Nowadays the development of analytical spectroscopy with high performance, sensitivity and spectral resolution for exhaled breath research is attended. The method of two-frequency high precise THz spectroscopy and the method of high precise subTHz-THz-IR spectroscopy are presented. Development of a subTHz-THz-IR gas analyzer increases the number of gases that can be identified and the reliability of the detection by confirming the signature in both THz and MIR ranges. The testing measurements have testified this new direction of analytical spectroscopy to open widespread trends of its using for various problems of medicine and biology. First of all, there are laboratory investigations of the processes in exhaled breath and studying of their dynamics. Besides, the methods presented can be applied for detecting intermediate and short time living products of reactions in exhaled breath. The spectrometers have been employed for investigations of acetone, methanol and ethanol in the breath samples of healthy volunteers and diabetes patients. The results have demonstrated an increased concentration of acetone in breath of diabetes patients. The dynamic of changing the acetone concentration before and after taking the medicines is discovered. The potential markers of pre-cancer states and oncological diseases of gastrointestinal tract organs have been detected. The changes in the NO concentration in exhaled breath of cancer patients during radiotherapy as well as increase of the NH3 concentration at gastrointestinal diseases have been revealed. The preliminary investigations of biomarkers in three frequency ranges have demonstrated the advantages of the multifrequency high precise spectroscopy for noninvasive medical diagnostics.

  2. High-precision measurements of cementless acetabular components using model-based RSA: an experimental study

    DEFF Research Database (Denmark)

    Baad-Hansen, Thomas; Kold, Søren; Kaptein, Bart L


    BACKGROUND: In RSA, tantalum markers attached to metal-backed acetabular cups are often difficult to detect on stereo radiographs due to the high density of the metal shell. This results in occlusion of the prosthesis markers and may lead to inconclusive migration results. Within the last few years...... underwent migration analyses with 3 different RSA systems: conventional RSA using tantalum markers, an RSA system using a hemispherical cup algorithm, and a novel model-based RSA system. RESULTS: We found narrow confidence intervals, indicating high precision of the conventional marker system and model...

  3. Multiple-Stage Converter Topology for High-Precision High-Current Pulsed Sources

    CERN Document Server

    Wassinger, N; Benedetti, M; Carrica, D; Retegui, R G; Cravero, J M


    A new high-current, low-rise-time, and high-precision pulse generator is presented. The topology is based on the use of different stages, each one specific for a particular operation range in terms of power and switching frequency. This approach allows to accomplish current, voltage, and precision requirements with standard semiconductors. Moreover, the proposed topology provides an independent and flexible adjustment of the pulse parameters (rise and fall times, flat-top duration, pulse amplitude, etc.). Experimental results are provided to validate the control of the proposed topology.

  4. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Fasanella, Giuseppe


    The CMS Electromagnetic Calorimeter utilizes scintillating lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  5. High-precision gas gain and energy transfer measurements in Ar–CO{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Özkan, E-mail: [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Kowalski, Tadeusz Z. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków (Poland); Veenhof, Rob [Department of Physics, Uludağ University, 16059 Bursa (Turkey); RD51 collaboration, CERN, Genève (Switzerland)


    Ar–CO{sub 2} is a Penning mixture since a fraction of the energy stored in Ar 3p{sup 5}3d and higher excited states can be transferred to ionize CO{sub 2} molecules. In the present work, concentration and pressure dependence of Penning transfer rate and photon feedback parameter in Ar–CO{sub 2} mixtures have been investigated with recent systematic high-precision gas gain measurements which cover the range 1–50% CO{sub 2} at 400, 800, 1200, 1800 hPa and gas gain from 1 to 5×10{sup 5}.

  6. Lightweight Metal Matrix Composite Segmented for Manufacturing High-Precision Mirrors (United States)

    Vudler, Vladimir


    High-precision mirrors for space applications are traditionally manufactured from one piece of material, such as lightweight glass sandwich or beryllium. The purpose of this project was to develop and test the feasibility of a manufacturing process capable of producing mirrors out of welded segments of AlBeMet(Registered Trademark) (AM162H). AlBeMet(Registered Trademark) is a HIP'd (hot isostatic pressed) material containing approximately 62% beryllium and 38% aluminum. As a result, AlBeMet shares many of the benefits of both of those materials for use in high performance mirrors, while minimizing many of their weaknesses.

  7. Mechanical optimisation of a high-precision fast wire scanner at CERN

    CERN Document Server

    Samuelsson, Sebastian; Veness, Raymond

    Wire scanners are instruments used to measure the transverse beam prole in particle accelerators by passing a thin wire through the particle beam. To avoid the issues of vacuum leakage through the bellows and wire failure related to current designs of wire scanners, a new concept for a wire scanner has been developed at CERN. This design has all moving parts inside the beam vacuum and has a nominal wire scanning speed of 20 m/s. The demands on the design associated with this together with the high precision requirements create a need for\

  8. High precision measurement of the differential $W$ and $Z$ boson production cross sections

    CERN Document Server

    Sommer, Philip; The ATLAS collaboration


    Measurements of the Drell-Yan production of $W$ and $Z/\\gamma^*$ bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7 TeV. The measurements are performed for $W^+$, $W^-$ and $Z/\\gamma^*$ bosons integrated and as a function of the boson or lepton rapidity and the $Z/\\gamma^*$ mass. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. Slides for DIS 2017 in Birmingham

  9. High precision measurements of the neutron spin structure in Hall A at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Annand, R M; Cates, G; Cisbani, E; Franklin, G B; Liyanage, N; Puckett, A; Rosner, G; Wojtsekhowski, B


    Conclusions of this presentation are: (1) JLab energy upgrade will offer new exciting opportunities to study the nucleon (spin) structure such as high precision, unexplored phase space, flavor decomposition; (2) Large technological efforts is in progress to optimally exploit these opportunities; (3) HallA will be the first hall to get the new beam, first experiment expected to run in 2014; (4) A1n likely one of the first experiments to take data in the new 12 GeV era; and (5) SIDIS exp. will follow in couple of years.

  10. High-precision efficiency calibration of a high-purity co-axial germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B., E-mail: [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I. [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Bouzomita, H.; Delahaye, P.; Grinyer, G.F.; Thomas, J.C. [Grand Accélérateur National d' Ions Lourds, CEA/DSM, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France)


    A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.

  11. High-precision measurement of the associated strangeness production in proton-proton interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jowzaee, S. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Jagellonian University, Institute of Physics, Cracow (Poland); Borodina, E.; Dzhygadlo, R.; Gast, W.; Gillitzer, A.; Grzonka, D.; Kilian, K.; Mertens, M.; Roderburg, E.; Roeder, M.; Sefzick, T.; Wintz, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Clement, H. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); University of Tuebingen, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Doroshkevich, E.; Ehrhardt, K. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); University of Tuebingen, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Eyrich, W.; Kober, L.; Krapp, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); Hauenstein, F.; Klaja, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); Moskal, P.; Smyrski, J. [Jagellonian University, Institute of Physics, Cracow (Poland); Ritman, J. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forces and Matter Experiments (JARA-FAME), Juelich Aachen Research Allianz, Juelich (Germany); Ruhr-Universitaet Bochum, Experimentalphysik I, Bochum (Germany); Schroeder, W. [Forschungszentrum Juelich, Corporate Development, Juelich (Germany); Wuestner, P. [Elektronik und Analytik, Zentralinstitut fuer Engineering, Juelich (Germany); Collaboration: The COSY-TOF Collaboration


    A new high-precision measurement of the reaction pp → pK{sup +}Λ at a beam momentum of 2.95 GeV/c with more than 200 000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular distributions with momenta are examined. The invariant mass distributions are compared for different regions in the Dalitz plots. The cusp structure at the NΣ threshold is described with the Flatte formalism and its variation in the Dalitz plot is analyzed. (orig.)

  12. Reference satellite selection method for GNSS high-precision relative positioning

    Directory of Open Access Journals (Sweden)

    Xiao Gao


    Full Text Available Selecting the optimal reference satellite is an important component of high-precision relative positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.

  13. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Marzocchi, Badder


    The CMS Electromagnetic Calorimeter is made of scintillating lead tungstate crystals, using avalanche photodiodes (APD) as photo-detectors in the barrel part. The high voltage system, consisting of 1224 channels, biases groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  14. A simple high-precision Jacob's staff design for the high-resolution stratigrapher (United States)

    Elder, W.P.


    The new generation of high-resolution stratigraphic research depends upon detailed bed-by-bed analysis to enhance regional correlation potential. The standard Jacob's staff is not an efficient and precise tool for measuring thin-bedded strata. The high-precision Jacob's staff design presented and illustrated in this paper meets the qualifications required of such an instrument. The prototype of this simple design consists of a sliding bracket that holds a Brunton-type compass at right angles to a ruled-off staff. This instrument provides rapid and accurate measurement of both thick- or thin-bedded sequences, thus decreasing field time and increasing stratigraphic precision. -Author

  15. Generation of carrier fringes in holography and shearography. (United States)

    Shang, H M; Quan, C; Tay, C J; Hung, Y Y


    Double-exposure holography and double-exposure shearography are often used together with the carrier fringe technique, which requires additional shifting of the light source in a prescribed manner between exposures. In the holographic carrier fringe technique, difficulty in prescribing a suitable movement of the light source may be alleviated through visualization of the moiré fringes that are reconstructed by slight displacement of two overlaid families of ellipsoids in a holodiagram. Because shearography is the first differential of holography, it is often impractical to perform two successive optical differentiations on the ellipsoids to visualize the shearographic carrier fringes. A simple method of discerning holographic and shearographic carrier fringes is described. The method is based on the hyperboloids in a holodiagram that represent Young's (interference) fringes produced by the interference of two point sources. The hyperboloids are analogous to holographic carrier fringes, whereas the moiré patterns reconstructed from two overlaid hyperboloids are analogous to shearographic carrier fringes. Use of this method for explaining the formation of deformation fringes in plate bending, as well as the effect of light-source movement on the deformation fringes, is also illustrated.

  16. The honeycomb strip chamber: A two coordinate and high precision muon detector

    Energy Technology Data Exchange (ETDEWEB)

    Tolsma, H.P.T.


    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 {mu}m rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.).

  17. A Fast and High-precision Orientation Algorithm for BeiDou Based on Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    ZHAO Jiaojiao


    Full Text Available A fast and high-precision orientation algorithm for BeiDou is proposed by deeply analyzing the constellation characteristics of BeiDou and GEO satellites features.With the advantage of good east-west geometry, the baseline vector candidate values were solved by the GEO satellites observations combined with the dimensionality reduction theory at first.Then, we use the ambiguity function to judge the values in order to obtain the optical baseline vector and get the wide lane integer ambiguities. On this basis, the B1 ambiguities were solved. Finally, the high-precision orientation was estimated by the determinating B1 ambiguities. This new algorithm not only can improve the ill-condition of traditional algorithm, but also can reduce the ambiguity search region to a great extent, thus calculating the integer ambiguities in a single-epoch.The algorithm is simulated by the actual BeiDou ephemeris and the result shows that the method is efficient and fast for orientation. It is capable of very high single-epoch success rate(99.31% and accurate attitude angle (the standard deviation of pitch and heading is respectively 0.07°and 0.13°in a real time and dynamic environment.

  18. Workshop on High-precision $\\alpha_s$ measurements from LHC to FCC-ee

    CERN Document Server

    S. Alekhin; d'Enterria, David; A. Banfi; S. Bethke; J. Blümlein; K.G. Chetyrkin; D. d’Enterria; G. Dissertori; X. Garcia i Tormo; A. H. Hoang; M. Klasen; T. Klijnsma; S. Kluth; J.-L. Kneur; B.A. Kniehl; D. W. Kolodrubetz; J. Kühn; P. Mackenzie; B. Malaescu; V. Mateu; L. Mihaila; S. Moch; K. Mönig; R. Pérez-Ramos; A. Pich; J. Pires; K. Rabbertz; G. P. Salam; F. Sannino; J. Soto i Riera; M. Srebre; I. W. Stewart


    This document provides a writeup of all contributions to the workshop on "High precision measurements of $\\alpha_s$: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling $\\alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $\\tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^\\pm$p DIS and $\\gamma$-p photoproduction, (ix) photon structure function in $\\gamma$-$\\gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experiment...

  19. Interaction between the low altitude atmosphere and clouds by high-precision polarization lidar (United States)

    Shiina, Tatsuo; Noguchi, Kazuo; Fukuchi, Tetsuo


    Lidar is a powerful remote sensing tool to monitor the weather changes and the environmental issues. This technique should not been restricted in those fields. In this study, the authors aim to be apply it to the prediction of weather disaster. The heavy rain and the lightning strike are our targets. The inline typed MPL (micro pulse lidar) has been accomplished to grasp the interaction between the low altitude cloud and the atmosphere and to predict the heavy rain, while it was hard to catch the sign of lightning strike. The authors introduced a new algorism to catch the direct sign of the lightning strike. Faraday effect is caused by lightning discharge in the ionized atmosphere. This effect interacts with the polarization of the propagating beam, that is, the polarization plane is rotated by the effect. In this study, high precision polarization lidar was developed to grasp the small rotation angle of the polarization of the propagating beam. In this report, the interaction between the low altitude cloud and the atmosphere was monitored by the high precision polarization lidar. And the observation result of the lightning discharge were analyzed.

  20. High-Precision Superallowed Fermi β Decay Measurements at TRIUMF-ISAC (United States)

    Svensson, C. E.


    High-precision measurements of the ft -values for superallowed Fermi β decays between nuclear isobaric analogue states provide demanding tests of the electroweak Standard Model, including confirmation of the Conserved Vector Current hypothesis at the level of 1 . 2 ×10-4 , the most stringent limits on weak scalar currents, and the most precise determination of the Vud element of the CKM quark-mixing matrix. The Isotope Separator and Accelerator (ISAC) facility at TRIUMF produces high-quality beams of several of the superallowed emitters with world-record intensities and hosts a suite of state-of-the-art spectrometers for the measurement of superallowed half-lives, branching ratios, QEC values, and charge-radii. Recent highlights from the superallowed program at ISAC, including high-precision half-life measurements for the light superallowed emitters 10C, 14O, 18Ne, and 26mAl and branching-ratio measurements for the heavy superallowed emitters 62Ga and 74Rb will be presented. The impact of these measurements on tests of the Standard Model, and future developments in the superallowed program at ISAC with the new high-efficiency GRIFFIN γ - ray spectrometer, will be discussed. Research supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Canada Research Chairs Program. TRIUMF receives federal funding via the National Research Council of Canada.

  1. A solution of High-precision WLAN positioning based on TDOA and PTP

    Directory of Open Access Journals (Sweden)

    Zhou Junjie


    Full Text Available For indoor WLAN positioning it is difficult to achieve decimeter or centimeter-level precision questions, to IEEE1588v2 (PTP precision network clock synchronization technology and the arrival time difference principle (TDOA, combined with non line of sight (NLOS error mitigation techniques ranging research and design a set based on the existing WLAN (IEEE802.11x series of standards device with high precision realtime location solutions. First, build a high-performance software-defined radio network communications platform, for accurate measurement of the radio signal arrival time and is calculated based on TDOA location. Secondly, the use of high-precision clock IEEE1588v2 standard equipment PTPGrand-2100 as a network clock source, through the integrated application of multi-hop latency compensation and asymmetric compensation algorithm to ensure nanosecond clock synchronization between the various WLAN access points (AP accuracy(Experiments show that 1 nanosecond time synchronization error is equivalent to 10 to 30 cm of positioning error. Finally, based NLOS error becomes stability principle, filtered NLOS error and pre-positioned before the data, eliminate the influence of the greatest degree of NLOS error, the time domain error control in wireless ranging 5ns or less to achieve decimeter or more accurately estimate the position. The case can be widely used in mobile Internet, logistics management, mineral exploration, health and other needs of the precise location services (LBS in other industry sectors.

  2. Measurement of different types of optical loss using high-precision laser photometer (United States)

    Cao, Zhen; Hu, Guohang; He, Hongbo; Zhao, Yuanan; Wang, Yueliang; Peng, Xiaocong


    The development of high-power laser systems requires optical components that function at peak performance. Here, a high-precision, double beam, 1064 nm laser photometer setup was developed to measure the following different forms of optical loss from Nd-glass samples: total loss, volume loss, and the residual reflection and surface loss. The double beam design and a lock-in technique were utilized to decrease the impact of light-source instabilities and signal noise, respectively. The stability of the signal was further improved by decreasing the amount of optical absorption along the light path and by increasing the detection responsivity. Paired samples were symmetrically placed to eliminate beam displacement, and a laser scattering imaging technique was used to determine the influence of surface defects on the optical performance. Using the above techniques, multiple measurements of the transmittance and reflection values of the sample were taken, which showed our transmittance measurement to be highly precise, exhibiting a relative standard deviation of less than 0.06%. Different types of optical loss were distinguished and obtained from the transmittance and reflection measurements of samples with different thicknesses. A comparison of the optical performance from test points with and without surface defects allowed us to determine the influence of surface defects on the optical performance.

  3. Performance of the LHCb Tracking Detectors


    Tobin, Mark


    The LHCb experiment is making high-precision measurements of CP violation and searching for New Physics using the enormous flux of beauty and charm hadrons produced at the LHC. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet, and three stations of silicon-strip detectors and straw drift tubes placed downstream. The performance of t...

  4. LineVISAR. A fringe-trace data analysis program

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, Michael D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The line-imaging ORVIS or VISAR provides velocity as a function of position and time for a line on an experimental setup via a streak camera record of interference fringes. This document describes a Matlab-based program which guides the user through the process of converting these fringe data to a velocity surface. The data reduction is of the "fringe trace" type, wherein the changes in velocity at a given position on the line are calculated based on fringe motion past that point. The analyst must establish the fringe behavior up front, aided by peak-finding routines in the program. However, the later work of using fringe jumps to compensate for phase problems in other analysis techniques is greatly reduced. This program is not a standard GUI construction, and is prescriptive. At various points it saves the progress, allowing later restarts from those points.

  5. Experimental Contribution to High-Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar


    Parameter identification procedures and model validation are major steps toward intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... contribution of the work is the characterization of magnetic forces by using two different experimental approaches. Such approaches are investigated and described in detail. A special test rig is designed where the four pole AMB is able to generate forces up to 1900 N. The high-precision characterization...... of the magnetic forces is conducted using different experimental tests: (i) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor (ii) by measuring the input current and bearing...

  6. New high precision data on the differential cross sections of the pion-proton elastic scattering

    Directory of Open Access Journals (Sweden)

    Alekseev I. G.


    Full Text Available The EPECUR collaboration presents new high precision data on the pion-proton elastic scattering in the second resonance region. The experiment EPECUR is placed on the universal beam channel of the accelerator ITEP. The setup features 0.1% beam pion momentum tagging system, 25 cm long liquid hydrogen target, placed in mylar container and beryllium outer shell, low material wire drift chambers and high performance DAQ. More than 3 billions of triggers have been collected. The data cover pion beam momentum range 0.8 - 1.3 GeV/c and 40-120 degrees center-of-mass scattering angle range for both positive and negative pions. The measured differential cross section has 2% statistical accuracy in 2 degrees angle and 5 MeV/c momentum intervals.

  7. Biocompatible, high precision, wideband, improved Howland current source with lead-lag compensation. (United States)

    Tucker, A S; Fox, R M; Sadleir, R J


    The Howland current pump is a popular bioelectrical circuit, useful for delivering precise electrical currents. In applications requiring high precision delivery of alternating current to biological loads, the output impedance of the Howland is a critical figure of merit that limits the precision of the delivered current when the load changes. We explain the minimum operational amplifier requirements to meet a target precision over a wide bandwidth. We also discuss effective compensation strategies for achieving stability without sacrificing high frequency output impedance. A current source suitable for Electrical Impedance Tomography (EIT) was simulated using a SPICE model, and built to verify stable operation. This current source design had stable output impedance of 3.3 MΩ up to 200 kHz, which provides 80 dB precision for our EIT application. We conclude by noting the difficulty in measuring the output impedance, and advise verifying the plausibility of measurements against theoretical limitations.

  8. Towards a high-precision measurement of the antiproton magnetic moment

    CERN Document Server

    Smorra, C.; Franke, K.; Matsuda, Y.; Mooser, A.; Nagahama, H.; Ospelkaus, C.; Quint, W.; Schneider, G.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.


    The recent observation of single spins flips with a single proton in a Penning trap opens the way to measure the proton magnetic moment with high precision. Based on this success, which has been achieved with our apparatus at the University of Mainz, we demonstrated recently the first application of the so called double Penning-trap method with a single proton. This is a major step towards a measurement of the proton magnetic moment with ppb precision. To apply this method to a single trapped antiproton our collaboration is currently setting up a companion experiment at the antiproton decelerator of CERN. This effort is recognized as the Baryon Antibaryon Symmetry Experiment (BASE). A comparison of both magnetic moment values will provide a stringent test of CPT invariance with baryons.

  9. ACADEMIC TRAINING: Probing nature with high precision; particle traps, laser spectroscopy and optical combs

    CERN Multimedia

    Françoise Benz


    17, 18, 19 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Probing nature with high precision; particle traps, laser spectroscopy and optical combs by G. GABRIELSE / Harvard University, USA Experiments with atomic energy scales probe nature and its symmetries with exquisite precision. Particle traps allow the manipulation of single charged particles for months at a time, allow the most accurate comparison of theory and experiment, and promise to allow better measurement of fundamental quantities like the fine structure constant. Ions and atoms can be probed with lasers that are phase locked to microwave frequency standards via optical combs, thus calibrating optical sources in terms of the official cesium second. A series of three lectures will illustrate what can be measured and discuss key techniques.  ACADEMIC TRAINING Françoise Benz Tel. 73127

  10. High-precision microscopic phase imaging without phase unwrapping for cancer cell identification. (United States)

    Watanabe, Eriko; Hoshiba, Takashi; Javidi, Bahram


    Experiments for cell identification are presented using a high-precision cell phase measurement system that does not require any phase unwrapping. This system is based on a Mach-Zehnder interferometer using a phase-locking technique, and it measures the change in optical path length while the sample is scanned across the optical axis. The spatial resolution is estimated to be less than 1.1 μm. The sensitivity of optical path length difference is estimated to be less than 2 nm. Using experiments, we investigate the potential of this approach for cancer cell identification. In our preliminary experiments, cancer cells were distinguished from normal cells through comparison of optical path length differences.

  11. Fundamental measurement by in-line typed high-precision polarization lidar (United States)

    Shiina, Tatsuo; Miyamoto, Masakazu; Umaki, Dai; Noguchi, Kazuo; Fukuchi, Tetsuo


    An in-line typed new concept lidar system for high precision polarization measurement was developed. A specially designed polarization-independent optical circulator, which was composed by Gran laser prisms and highly transparent Faraday rotators, was developed. Its isolation between the orthogonal polarizations was improved up to more than 30 dB. It is sufficient to detect small rotation of the polarization plane of the propagating beam caused by lightning discharges due to the Faraday effect. The rotation angle of the polarization plane is estimated by the differential detection between the orthogonal polarization components of the lidar echoes. The in-line optics enables near range measurement from the near range of >30 m with the narrow field of view of 0.17 mrad. The fundamental measurements of lidar echoes in near and far fields, and low cloud activities were examined.

  12. The High Precision Vibration Signal Data Acquisition System Based on the STM32

    Directory of Open Access Journals (Sweden)

    Zhu Hui-Ling


    Full Text Available Vibrating wire sensors are a class of sensors that are very popular used for strain measurements of structures in buildings and civil infrastructures. The use of frequency, rather than amplitude, to convey the signal means that vibrating wire sensors are relatively resistant signal degradation from electrical noise, long cable runs, and other changes in cable resistance. This paper proposed a high precision vibration signal acquisition with storage function based on STM32 microcontroller in order to promote safety in engineering construction. The instrument designed in this paper not only can directly collect vibrating signals, but also store data into SD card and communicate with computer so as to realize the real-time monitoring from point to point.

  13. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

    KAUST Repository

    Gunnels, John


    We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.

  14. Geometrical aspects of laser-drilled high precision holes for flow control applications (United States)

    Giedl, Roswitha; Helml, H.-J.; Wagner, F. X.; Wild, Michael J.


    Laser drilling has become a valuable tool for the manufacture of high precision micro holes in a variety of materials. Laser drilled precision holes have applications in the automotive, aerospace, medical and sensor industry for flow control applications. The technology is competing with conventional machining micro electro-discharge machining in the field of fuel injection nozzle for combustion engines. Depending on the application, laser and optics have to be chosen which suits the requirements. In this paper, the results achieved with different lasers and drilling techniques will be compared to the hole specifications in flow control applications. The issue of geometry control of high aspect ratio laser drilled holes in metals will be investigated. The comparison of flow measurement results to microscopic hole dimension measurement show that flow characteristics strongly depend on cavitation number during flow.

  15. High-precision two-way time transfer system via long-distance commercial fiber link (United States)

    Ci, Cheng; Zhao, Ying-xin; Wu, Hong; Liu, Bo; Zhang, Xue-song; Zhang, Yu


    Time synchronization techniques, especially on the pulse per second (PPS) temporal basis, have attracted growing research interests in recent years. In this paper, we have proposed and experimentally demonstrated a high-precision two-way time transfer (TWTT) system to realize long-distance dissemination of 1 PPS signal generated by a hydrogen maser. A dense-wavelength-division-multiplexing (DWDM) system and bi-directional erbium-doped fiber amplifiers (Bi-EDFAs) have also been adopted to suppress the impact of Rayleigh backscattering and optimize the signal to noise ratio ( SNR) as well. We have theoretically analyzed the systematic delay in detail. The ultimate root mean square ( RMS) variation of time synchronization accuracy is sub-26 ps and the time deviation can be reduced to as low as 1.2 ps at 100 s and 0.253 ps at 12 000 s, respectively.

  16. High-precision gravimetric survey in support of lunar laser ranging at Haleakala, Maui, 1976 - 1978 (United States)

    Schenck, B. E.; Laurila, S. H.


    The planning, observations and adjustment of high-precision gravity survey networks established on the islands of Maui and Oahu as part of the geodetic-geophysical program in support of lunar laser ranging at Haleakala, Maui, Hawaii are described. The gravity survey networks include 43 independently measured gravity differences along the gravity calibration line from Kahului Airport to the summit of Mt. Haleakala, together with some key points close to tidal gauges on Maui, and 40 gravity differences within metropolitan Honolulu. The results of the 1976-1978 survey are compared with surveys made in 1961 and in 1964-1965. All final gravity values are given in the system of the international gravity standardization net 1971 (IGSN 71); values are obtained by subtracting 14.57 mgal from the Potsdam value at the gravity base station at the Hickam Air Force Base, Honolulu.

  17. Modified hybrid control of robot manipulators for high precision assembly operations (United States)

    Nguyen, Charles C.; Pooran, Farhad J.; Premack, Timothy


    This paper is concerned with applications of robot manipulators in high precision assembly tasks that can be successfully performed by employing a hybrid control scheme that independently controls force and position. A traditional hybrid control scheme is implemented in Cartesian space. In the modified hybrid control scheme introduced in this paper, the error driven control signals are expressed in joint space. This paper studies the implementation of the modified hybrid control scheme on a two-degree-of-freedom robot manipulator with a closed-kinematic chain mechanism. The performance of the traditional and modified hybrid control schemes is comparatively evaluated by computer simulation in terms of computation time and accuracy for several study cases.

  18. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses. (United States)

    Das, Jayajit


    Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. High precision and convenient extension simulation platform for satellite attitude and orbit system (United States)

    Cui, Hongzheng; Han, Chao; Chen, Pei; Luo, Qinqin


    In this paper, a high precision and convenient extension simulation platform for satellite attitude and orbit system is developed, to demonstrate the satellite attitude and orbit system for given space mission, and test the new underdeveloped algorithms for attitude/orbit dynamics, attitude determination, orbit navigation, and attitude/orbit control. The simulation platform is based on Matlab/Simulink software, using the technique of Simulink modeling, importing C/Fortran code in Matlab/Simulink, and embedded Matlab function, with beautiful reusability, inheritability and expansibility. The paper orderly presents the background behind the development of the platform, the platform design architecture and capability, the validity of the platform, the inheritability and expansibility of the platform, the platform implementation example for Chinese weather satellite (FY-3), and the future development for the platform.

  20. The high precision measurement of the 144Ce activity in the SOX experiment (United States)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo—Berguño, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Cereseto, R.; Chepurnov, A.; Choi, K.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Göeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, C.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Veyssière, C.; Vivier, M.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.


    In order to perform a resolutive measurement to clarify the neutrino anomalies and to observe possible short distance neutrino oscillations, the SOX (Short distance neutrino Oscillations with BoreXino) experiment is under construction. In the first phase, a 100 kCi 144Ce-144Pr antineutrino source will be placed under the Borexino detector at the Laboratori Nazionali del Gran Sasso (LNGS), in center of Italy, and the rate measurement of the antineutrino events, observed by the very low radioactive background Borexino detector, will be compared with the high precision (< 1%) activity measurement performed by two calorimeters. The source will be embedded in a 19 mm thick tungsten alloy shield and both the calorimeters have been conceived for measuring the thermal heat absorbed by a water flow. In this report the design of the calorimeters will be described in detail and very preliminary results will be also shown.

  1. A new approach to the BFKL mechanism. Application to high-precision HERA data

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lipatov, L.N. [Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Ross, D.A. [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Schulz, O. [Max Planck Institute for Physics, Munich (Germany)


    We analyse here in NLO the physical properties of the discrete eigenvalue solution for the BFKL equation. We show that a set of positive ω eigenfunctions together with a small contribution from a continuum of negative ω's provide an excellent description of high-precision HERA F{sub 2} data in the region, x < 0.001, Q{sup 2} > 6 GeV{sup 2}. The phases of the eigenfunctions can be obtained from a simple parametrisation of the pomeron spectrum, which has a natural motivation within BFKL. The data analysis shows that the first eigenfunction decouples or nearly decouples from the proton. This suggests that there exist an additional ground state, which has no nodes.

  2. Upgrade of the SPIRAL identification station for high-precision measurements of nuclear β decay

    Energy Technology Data Exchange (ETDEWEB)

    Grinyer, G.F., E-mail: [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Thomas, J.C. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Blank, B. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1, UMR 5797, CNRS/IN2P3, Chemin de Solarium, BP 120, 33175 Gradignan (France); Bouzomita, H. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Austin, R.A.E. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia, Canada B3H 3C3 (Canada); Ball, G.C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Bucaille, F.; Delahaye, P. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Finlay, P. [Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Frémont, G. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Gibelin, J. [LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Giovinazzo, J. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1, UMR 5797, CNRS/IN2P3, Chemin de Solarium, BP 120, 33175 Gradignan (France); and others


    The low-energy identification station at SPIRAL (Système de Production d'Ions Radioactifs Accélérés en Ligne) has been upgraded for studying the β decays of short-lived radioactive isotopes and to perform high-precision half-life and branching-ratio measurements for superallowed Fermi and isospin T=1/2 mirror β decays. These new capabilities, combined with an existing Paul trap setup for measurements of β–ν angular-correlation coefficients, provide a powerful facility for investigating fundamental properties of the electroweak interaction through nuclear β decays. A detailed description of the design study, construction, and first results obtained from an in-beam commissioning experiment on the β{sup +} decays {sup 14} O and {sup 17}F are presented.

  3. SOLARIS 3-axis high load, low profile, high precision motorized positioner

    Energy Technology Data Exchange (ETDEWEB)

    Acome, Eric; Van Every, Eric; Deyhim, Alex, E-mail: [ADC USA Inc. 126 Ridge Road Lansing NY, 14882 (United States); Zajac, Marcin [National Synchrotron Radiation Centre Solaris Jagiellonian University ul. Czerwone Maki 98/p.3.03 0-392 Krakow (Poland)


    A 3-axis optical table, shown in Figure 1, was designed, fabricated, and assembled for the SOLARIS synchrotron facility at the Jagiellonian University in Krakow, Poland. To accommodate the facility, the table was designed to be very low profile, as seen in Figure 2, and bear a high load. The platform has degrees of freedom in the vertical (Z) direction as well as horizontal transversal (X and Y) directions. The table is intended to sustain loads as large as 1500 kg which will be sufficient to support a variety of equipment to measure and facilitate synchrotron radiation. After assembly, the table was tested and calibrated to find its position error in the vertical direction. ADC has extensive experience designing and building custom complex high precision motion systems [1,2].

  4. Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell


    Full Text Available Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications.

  5. High precision (14 bit), high density (octal) analog to digital converter for spectroscopy applications. (United States)

    Subramaniam, E T; Jain, Mamta; Bhowmik, R K; Tripon, Michel


    Nuclear and particle physics experiments with large number of detectors require signal processing and data collection strategies that call for the ability to collect large amount of data while not sacrificing the precision and accuracy of the data being collected. This paper deals with the development of a high precision pulse peak detection, analog to digital converter (ADC) module with eight independent channels in plug-in daughter card motherboard model, best suited for spectroscopy experiments. This module provides multiple channels without cross-talk and of 14 bit resolution, while maintaining high density (each daughter card has an area of just 4.2(")x0.51(")) and exhibiting excellent integral nonlinearity (< or = +/-2 mV or +/-0.02% full scale reading) and differential nonlinearity (< or = +/-1%). It was designed, developed and tested, in house, and gives added advantages of cost effectiveness and ease of maintenance.

  6. High-precision ultra-distal Holocene tephrochronology in North America (United States)

    Pyne-O'Donnell, Sean D. F.; Hughes, Paul D. M.; Froese, Duane G.; Jensen, Britta J. L.; Kuehn, Stephen C.; Mallon, Gunnar; Amesbury, Matthew J.; Charman, Dan J.; Daley, Tim J.; Loader, Neil J.; Mauquoy, Dmitri; Street-Perrott, F. Alayne; Woodman-Ralph, Jonathan


    Far-travelled volcanic ashes (tephras) from Holocene eruptions in Alaska and the Pacific northwest have been traced to the easternmost extent of North America, providing the basis for a new high-precision geochronological framework throughout the continent through tephrochronology (the dating and correlation of tephra isochrons in sedimentary records). The reported isochrons are geochemically distinct, with seven correlated to documented sources in Alaska and the Cascades, including the Mazama ash from Oregon (˜7600 years old) and the eastern lobe of the White River Ash from Alaska (˜1150 years old). These findings mark the beginning of a tephrochronological framework of enhanced precision across North America, with applications in palaeoclimate, surface process and archaeological studies. The particle travel distances involved (up to ˜7000 km) also demonstrate the potential for continent-wide or trans-Atlantic socio-economic disruption from similar future eruptions.

  7. Top-quark pair-production and decay at high precision (United States)

    Gao, Jun; Papanastasiou, Andrew S.


    We present a fully differential and high-precision calculation of top-quark pair-production and decay at the LHC, providing predictions for observables constructed from top-quark leptonic and b -flavored jet final states. The calculation is implemented in a parton-level Monte Carlo and includes an approximation to the next-to-next-to-leading-order (NNLO) corrections to the production and, for the first time, the exact NNLO corrections to the decay subprocesses. The corrections beyond NLO are sizable, and including them is crucial for an accurate description of the cross section constrained by experimental phase-space restrictions. We compare our predictions to published ATLAS and CMS measurements at the LHC, finding improved agreement compared with lower orders in the perturbative expansion.

  8. High-precision control of LSRM based X-Y table for industrial applications. (United States)

    Pan, J F; Cheung, Norbert C; Zou, Yu


    The design of an X-Y table applying direct-drive linear switched reluctance motor (LSRM) principle is proposed in this paper. The proposed X-Y table has the characteristics of low cost, simple and stable mechanical structure. After the design procedure is introduced, an adaptive position control method based on online parameter identification and pole-placement regulation scheme is developed for the X-Y table. Experimental results prove the feasibility and its priority over a traditional PID controller with better dynamic response, static performance and robustness to disturbances. It is expected that the novel two-dimensional direct-drive system find its applications in high-precision manufacture area. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Drag-Free Motion Control of Satellite for High-Precision Gravity Field Mapping

    DEFF Research Database (Denmark)

    Ziegler, Bent Lindvig; Blanke, Mogens


    High precision mapping of the geoid and the Earth's gravity field are of importance to a wide range of ongoing studies in areas like ocean circulation, solid Earth physics and ice sheet dynamics. Using a satellite in orbit around the Earth gives the opportunity to map the Earth's gravity field in 3...... dimensions with much better accuracy and spatial resolution than ever accomplished. To reach the desired quality of measurements, the satellite must fly in a low Earth orbit where disturbances from atmospheric drag and the Earth's magnetic field will perturb the satellite's motion. These effects...... will compromise measurement accuracy, unless they are accurately compensated by on-board thrusters. The paper concerns the design of a control system to performing such delicate drag compensation. A six degrees-of-freedom model for the satellite is developed with the model including dynamics of the satellite...

  10. High precision measurement of the topological Aharonov-Casher effect with neutrons

    CERN Document Server

    Cimmino, A; Klein, A G; Kaiser, H; Werner, S A


    The phase shift predicted by Aharonov and Casher (AC) for a magnetic dipole diffracting around a line charge was first observed by Cimmino et al. using a neutron interferometer. A number of subsequent atom interferometry experiments have been performed to observe this effect. These experiments measured the vxE phase shift due to the magnetic field induced in the rest frame of the atom, with no indication of the topological nature of the AC interaction. We intend to perform a high precision AC experiment with neutrons to improve the accuracy of our previous results and to highlight the topological nature of the effect. Finally, we present a novel geometry to achieve a spin-dependent magnetic phase shift.

  11. Determination of the half-life of 213Fr with high precision (United States)

    Fisichella, M.; Musumarra, A.; Farinon, F.; Nociforo, C.; Del Zoppo, A.; Figuera, P.; La Cognata, M.; Pellegriti, M. G.; Scuderi, V.; Torresi, D.; Strano, E.


    High-precision measurement of half-life and Qα value of neutral and highly charged α emitters is a major subject of investigation currently. In this framework, we recently pushed half-life measurements of neutral emitters to a precision of a few per mil. This result was achieved by using different techniques and apparatuses at Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud (INFN-LNS) and GSI Darmstadt. Here we report on 213Fr half-life determination [T1/2(213Fr) = 34.14±0.06 s] at INFN-LNS, detailing the measurement protocol used. Direct comparison with the accepted value in the literature shows a discrepancy of more than three sigma. We propose this new value as a reference, discussing previous experiments.

  12. A High Precision Feature Based on LBP and Gabor Theory for Face Recognition

    Directory of Open Access Journals (Sweden)

    Peng Ouyang


    Full Text Available How to describe an image accurately with the most useful information but at the same time the least useless information is a basic problem in the recognition field. In this paper, a novel and high precision feature called BG2D2LRP is proposed, accompanied with a corresponding face recognition system. The feature contains both static texture differences and dynamic contour trends. It is based on Gabor and LBP theory, operated by various kinds of transformations such as block, second derivative, direct orientation, layer and finally fusion in a particular way. Seven well-known face databases such as FRGC, AR, FERET and so on are used to evaluate the veracity and robustness of the proposed feature. A maximum improvement of 29.41% is achieved comparing with other methods. Besides, the ROC curve provides a satisfactory figure. Those experimental results strongly demonstrate the feasibility and superiority of the new feature and method.

  13. High-Precision Floating-Point Arithmetic in ScientificComputation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.


    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required: some of these applications require roughly twice this level; others require four times; while still others require hundreds or more digits to obtain numerically meaningful results. Such calculations have been facilitated by new high-precision software packages that include high-level language translation modules to minimize the conversion effort. These activities have yielded a number of interesting new scientific results in fields as diverse as quantum theory, climate modeling and experimental mathematics, a few of which are described in this article. Such developments suggest that in the future, the numeric precision used for a scientific computation may be as important to the program design as are the algorithms and data structures.

  14. Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder

    Directory of Open Access Journals (Sweden)

    Shuoyang Chen


    Full Text Available During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as “frame difference” and “optical flow”, may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a “multi-block temporal-analyzing LBP (Local Binary Pattern” algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor and FPGA (Field Programmable Gate Array platforms and the high-precision intelligent holder.

  15. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei


    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  16. High-precision soft x-ray polarimeter at Diamond Light Source. (United States)

    Wang, H; Dhesi, S S; Maccherozzi, F; Cavill, S; Shepherd, E; Yuan, F; Deshmukh, R; Scott, S; van der Laan, G; Sawhney, K J S


    The development and performance of a high-precision polarimeter for the polarization analysis in the soft x-ray region is presented. This versatile, high-vacuum compatible instrument is supported on a hexapod to simplify the alignment with a resolution less than 5 μrad, and can be moved with its own independent control system easily between different beamlines and synchrotron facilities. The polarimeter can also be used for the characterization of reflection and transmission properties of optical elements. A W/B(4)C multilayer phase retarder was used to characterize the polarization state up to 1200 eV. A fast and accurate alignment procedure was developed, and complete polarization analysis of the APPLE II undulator at 712 eV has been performed.

  17. High-precision soft x-ray polarimeter at Diamond Light Source (United States)

    Wang, H.; Dhesi, S. S.; Maccherozzi, F.; Cavill, S.; Shepherd, E.; Yuan, F.; Deshmukh, R.; Scott, S.; van der Laan, G.; Sawhney, K. J. S.


    The development and performance of a high-precision polarimeter for the polarization analysis in the soft x-ray region is presented. This versatile, high-vacuum compatible instrument is supported on a hexapod to simplify the alignment with a resolution less than 5 μrad, and can be moved with its own independent control system easily between different beamlines and synchrotron facilities. The polarimeter can also be used for the characterization of reflection and transmission properties of optical elements. A W/B4C multilayer phase retarder was used to characterize the polarization state up to 1200 eV. A fast and accurate alignment procedure was developed, and complete polarization analysis of the APPLE II undulator at 712 eV has been performed.

  18. High precision X-ray spectroscopy in hydrogen-like fermionic and bosonic atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Borchert, G.L.; Anagnostopoulos, D.; Augsburger, M.; Belmiloud, D.; Castelli, C.; Chatellard, D.; Daum, M.; Egger, J.P.; El-Khoury, P.; Elble, M.; Frosch, R.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O.W.B. (and others)


    Some time after its formation an exotic atom may be considered a hydrogen-like system consisting of a nucleus and an exotic particle in a bound state. In this situation it is an ideal tool to study cascade properties, while for the innermost orbits it can be used to probe the interaction with the nucleus. From an extended series of experiments using high resolution X-ray spectroscopy for both aspects typical examples are reported and preliminary results are given: 1. To determine the complex scattering length in p-barH the 3D{yields}2P hyperfine transitions have been measured. 2. To determine the pion mass the 5 {yields} 4 transitions in {pi}{sup 14}N have been studied. In all cases a major contribution to the uncertainty originates from the calibration. Therefore a new method is proposed that will establish a universal set of high precision calibration lines for pionic, muonic and electronic systems.

  19. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Xiaohui Zhan


    A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.

  20. Interacting sources for high-precision atom interferometry - a theoretical study (United States)

    Posso Trujillo, Katerine; Ahlers, Holger; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst; Gaaloul, Naceur


    We theoretically study the possibilities to use binary quantum mixtures as sources for high-precision atom interferometers with interferometry times ranging over several seconds. Such schemes are of timely interest in the context of inertial navigation or fundamental physics laws tests. The mixture expansion dynamics are solved by integrating a set of two coupled Gross-Pitaevskii equations. In order to satisfy the severe requirements of a precise differential interferometer, a common delta-kick cooling stage is applied to the two ensembles simultaneously to induce ultra-slow expansion (~ 50 pk regime). Other systematic effects are analysed and mitigation strategies identified. To illustrate this study, we consider the case of three mixtures of 87Rb/85Rb, 87Rb/39Kand87Rb/41K widely used in atom interferometry measurements. The advantages and drawbacks of every pair are highlighted and discussed. K. Posso-Trujillo. thanks the German Academic Exchange Service - DAAD (research grant No. A/10/74250).

  1. Fringe projection profilometry with portable consumer devices (United States)

    Liu, Danji; Pan, Zhipeng; Wu, Yuxiang; Yue, Huimin


    A fringe projection profilometry (FPP) using portable consumer devices is attractive because it can realize optical three dimensional (3D) measurement for ordinary consumers in their daily lives. We demonstrate a FPP using a camera in a smart mobile phone and a digital consumer mini projector. In our experiment of testing the smart phone (iphone7) camera performance, the rare-facing camera in the iphone7 causes the FPP to have a fringe contrast ratio of 0.546, nonlinear carrier phase aberration value of 0.6 rad, and nonlinear phase error of 0.08 rad and RMS random phase error of 0.033 rad. In contrast, the FPP using the industrial camera has a fringe contrast ratio of 0.715, nonlinear carrier phase aberration value of 0.5 rad, nonlinear phase error of 0.05 rad and RMS random phase error of 0.011 rad. Good performance is achieved by using the FPP composed of an iphone7 and a mini projector. 3D information of a facemask with a size for an adult is also measured by using the FPP that uses portable consumer devices. After the system calibration, the 3D absolute information of the facemask is obtained. The measured results are in good agreement with the ones that are carried out in a traditional way. Our results show that it is possible to use portable consumer devices to construct a good FPP, which is useful for ordinary people to get 3D information in their daily lives.

  2. Computational Calorimetry: High-Precision Calculation of Host-Guest Binding Thermodynamics. (United States)

    Henriksen, Niel M; Fenley, Andrew T; Gilson, Michael K


    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van't Hoff equation. Excellent agreement between the direct and van't Hoff methods is demonstrated for both host-guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design.

  3. High-precision method of binocular camera calibration with a distortion model. (United States)

    Li, Weimin; Shan, Siyu; Liu, Hui


    A high-precision camera calibration method for binocular stereo vision system based on a multi-view template and alternative bundle adjustment is presented in this paper. The proposed method could be achieved by taking several photos on a specially designed calibration template that has diverse encoded points in different orientations. In this paper, the method utilized the existing algorithm used for monocular camera calibration to obtain the initialization, which involves a camera model, including radial lens distortion and tangential distortion. We created a reference coordinate system based on the left camera coordinate to optimize the intrinsic parameters of left camera through alternative bundle adjustment to obtain optimal values. Then, optimal intrinsic parameters of the right camera can be obtained through alternative bundle adjustment when we create a reference coordinate system based on the right camera coordinate. We also used all intrinsic parameters that were acquired to optimize extrinsic parameters. Thus, the optimal lens distortion parameters and intrinsic and extrinsic parameters were obtained. Synthetic and real data were used to test the method. The simulation results demonstrate that the maximum mean absolute relative calibration errors are about 3.5e-6 and 1.2e-6 for the focal length and the principal point, respectively, under zero-mean Gaussian noise with 0.05 pixels standard deviation. The real result shows that the reprojection error of our model is about 0.045 pixels with the relative standard deviation of 1.0e-6 over the intrinsic parameters. The proposed method is convenient, cost-efficient, highly precise, and simple to carry out.

  4. New Models of the Milky Way's Dark Matter Distribution for the Era of High Precision Astrometry (United States)

    Besla, Gurtina


    Understanding the assembly history and dark matter distribution of our Milky Way (MW) is a major challenge for astrophysics. Thanks to the unique capabilities of HST, proper motions of satellite galaxies, globular clusters and stellar streams have been measured with accuracies of order 0.05 mas/yr ( 10 km/s) at distances of 50-300 kpc. When combined with detailed models of the MW's halo potential, such measurements become high-precision tools to constrain the dark matter mass profile of the MW and compute accurate orbital histories of satellites. However, the MW hosts a pair of massive dwarf galaxies, the LMC and SMC, that contribute to its dark matter distribution and change the shape of the potential in a non-symmetrical, time evolving manner. To date, these effects have not been accounted for in existing models of the MW halo. We propose to develop high resolution simulations to quantify the time evolving structure of the MW's dark matter halo owing to the influence of the LMC and SMC. These novel models will enable rapid orbital integration of halo objects (satelllites, globular clusters, stellar streams), using high accuracy HST proper motions, while also capturing the complex halo potential resulting from the LMC-SMC-MW interaction. The era of high-precision astrometry has arrived, yet we do not currently have an appropriate theoretical framework to study the assembly history of MW-like galaxies in the presence of massive satellite perturbers. Our proposed program is thus critical to ongoing HST programs and all efforts to understand the structure and evolution of the dark matter halo of our Galaxy and analogous systems like M31 and its massive satellite, M33.

  5. Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics (United States)


    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125

  6. Low-cost scheme for high-precision dual-wavelength laser metrology. (United States)

    Kok, Yitping; Ireland, Michael J; Robertson, J Gordon; Tuthill, Peter G; Warrington, Benjamin A; Tango, William J


    A method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology, which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application in which this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers, although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing the cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical to that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the noncommon path between metrology and science channels.

  7. Observation: Leafy spurge control in western prairie fringed orchid habitat (United States)

    Donald R. Kirby; Rodney G. Lym; John J. Sterling; Carolyn Hull Sieg


    The western prairie fringed orchid (Platanthera praeclara Sheviak and Bowles) is a threatened species of the tallgrass prairie. Invasion by leafy spurge (Euphorbiaes esula L.) is a serious threat to western prairie fringed orchid habitat. The obiectives of this study were to develop a herbicide treatment to control leafy spurge...

  8. Effects of diotic fringes on interaural disparity detection (L)

    DEFF Research Database (Denmark)

    Le Goff, Nicolas; Kohlrausch, Armin; Dau, Torsten


    Detection thresholds were measured for interaural time differences (ITDs) and interaural level differences (ILDs) that were carried by probe segments embedded in otherwise diotic broadband noise (fringe). The duration of the probe was varied between 5 and 200 ms, and the duration of the fringe wa...

  9. 26 CFR 1.132-6 - De minimis fringes. (United States)


    ... normally works from 8:00 am to 4:00 pm). Another example of unusual circumstances is a temporary change in...; occasional cocktail parties, group meals, or picnics for employees and their guests; traditional birthday or... performance, or family crisis). (2) Benefits not excludable as de minimis fringes. Examples of fringe benefits...

  10. Multimodal image registration for the identification of dominant intraprostatic lesion in high-precision radiotherapy treatments. (United States)

    Ciardo, Delia; Jereczek-Fossa, Barbara Alicja; Petralia, Giuseppe; Timon, Giorgia; Zerini, Dario; Cambria, Raffaella; Rondi, Elena; Cattani, Federica; Bazani, Alessia; Ricotti, Rosalinda; Garioni, Maria; Maestri, Davide; Marvaso, Giulia; Romanelli, Paola; Riboldi, Marco; Baroni, Guido; Orecchia, Roberto


    The integration of CT and multiparametric MRI (mpMRI) is a challenging task in high-precision radiotherapy for prostate cancer. A simple methodology for multimodal deformable image registration (DIR) of prostate cancer patients is presented. CT and mpMRI of 10 patients were considered. Organs at risk and prostate were contoured on both scans. The dominant intraprostatic lesion was additionally delineated on MRI. After a preliminary rigid image registration, the voxel intensity of all the segmented structures in both scans except the prostate was increased by a specific amount (a constant additional value, A), in order to enhance the contrast of the main organs influencing its position and shape. 70 couples of scans were obtained by varying A from 0 to 800 and they were subsequently non-rigidly registered. Quantities derived from image analysis and contour statistics were considered for the tuning of the best performing A. A = 200 resulted the minimum enhancement value required to obtain statistically significant superior registration results. Mean centre of mass distance between corresponding structures decreases from 7.4 mm in rigid registration to 5.3 mm in DIR without enhancement (DIR-0) and to 2.7 mm in DIR with A = 200 (DIR-200). Mean contour distance was 2.5, 1.9 and 0.67 mm in rigid registration, DIR-0 and DIR-200, respectively. In DIR-200 mean contours overlap increases of +13 and +24% with respect to DIR-0 and rigid registration, respectively. Contour propagation according to the vector field resulting from DIR-200 allows the delineation of dominant intraprostatic lesion on CT scan and its use for high-precision radiotherapy treatment planning. Advances in knowledge: We investigated the application of a B-spline, mutual information-based multimodal DIR coupled with a simple, patient-unspecific but efficient contrast enhancement procedure in the pelvic body area, thus obtaining a robust and accurate methodology to transfer the functional information

  11. Development of High Precision Tsunami Runup Calculation Method Coupled with Structure Analysis (United States)

    Arikawa, Taro; Seki, Katsumi; Chida, Yu; Takagawa, Tomohiro; Shimosako, Kenichiro


    The 2011 Great East Japan Earthquake (GEJE) has shown that tsunami disasters are not limited to inundation damage in a specified region, but may destroy a wide area, causing a major disaster. Evaluating standing land structures and damage to them requires highly precise evaluation of three-dimensional fluid motion - an expensive process. Our research goals were thus to develop a coupling STOC-CADMAS (Arikawa and Tomita, 2016) coupling with the structure analysis (Arikawa et. al., 2009) to efficiently calculate all stages from tsunami source to runup including the deformation of structures and to verify their applicability. We also investigated the stability of breakwaters at Kamaishi Bay. Fig. 1 shows the whole of this calculation system. The STOC-ML simulator approximates pressure by hydrostatic pressure and calculates the wave profiles based on an equation of continuity, thereby lowering calculation cost, primarily calculating from a e epi center to the shallow region. As a simulator, STOC-IC solves pressure based on a Poisson equation to account for a shallower, more complex topography, but reduces computation cost slightly to calculate the area near a port by setting the water surface based on an equation of continuity. CS3D also solves a Navier-Stokes equation and sets the water surface by VOF to deal with the runup area, with its complex surfaces of overflows and bores. STR solves the structure analysis including the geo analysis based on the Biot's formula. By coupling these, it efficiently calculates the tsunami profile from the propagation to the inundation. The numerical results compared with the physical experiments done by Arikawa et. al.,2012. It was good agreement with the experimental ones. Finally, the system applied to the local situation at Kamaishi bay. The almost breakwaters were washed away, whose situation was similar to the damage at Kamaishi bay. REFERENCES T. Arikawa and T. Tomita (2016): "Development of High Precision Tsunami Runup

  12. Novel High Precision Optoelectronic Device Fabrication Technique Using Guided Fluidic Assembly (United States)

    Singh, Brahm Pal; Onozawa, Kazutoshi; Yamanaka, Kazuhiko; Tojo, Tomaki; Ueda, Daisuke

    High precision assembly of laser diodes (LDs) on silicon wafer substrates for use in advanced optoelectronic devices is an important issue from a mass production point of view. An acceptable alternative to replace an obsolete pick and place flip chip bonding robotic technology with a simple, low cost and high speed technique is desired for industrial applications. We have investigated a novel assembling technique with micrometer order accuracy for LDs and other microchips. Its feasibility for rapidly assembling a large number of high power edge emitting LDs is practically demonstrated. A 150 mUm thick nickel metal mask is used to confine as well as guide the unassembled LDs into the recesses by its restricted displacements. This technique is based on guiding the LDs within a suitable fluidic medium and the assembling process is performed in two steps: (i) coarse precision with a confinement mask to bring LDs near the recesses to achieve high assembling efficiency and (ii) fine precision due to the electrode patterns on the base surface of LDs, under fluidic as well as gravitational force. The assembly of 80 red LDs of the same size and of 40 pairs of red and infrared LDs of two different sizes is successfully demonstrated within less than ±2 mUm precision and 100% efficiency in a few seconds after transferring them into a confinement mask region.

  13. High-precision predictions for the light CP-even Higgs boson mass of the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, T.; Hollik, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Rzehak, H. [Freiburg Univ. (Germany). Physikalisches Inst.; Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)


    For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realised in the Standard Model (SM) and its most commonly studied extension, the Minimal Supersymmetric SM (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, M{sub h}, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for M{sub h} in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FeynHiggs.

  14. A new high precision 14CO2 time series for North American continental air (United States)

    Turnbull, Jocelyn C.; Lehman, Scott J.; Miller, John B.; Sparks, Rodger J.; Southon, John R.; Tans, Pieter P.


    We develop a high precision Δ14CO2 measurement capability in 2-5 L samples of whole air for implementation within existing greenhouse gas flask sampling networks. The long-term repeatability of the measurement is 1.8‰ (1-sigma), as determined from repeated analyses of quality control standards and replicate extraction and measurement of authentic field samples. In a parallel effort, we have begun a Δ14CO2 measurement series from NOAA/ESRL's (formerly NOAA/CMDL) surface flask sampling site at Niwot Ridge, Colorado, USA (40.05°N, 105.58°W, 3475 masl) in order to monitor the isotopic composition of carbon dioxide in relatively clean air over the North American continent. Δ14CO2 at Niwot Ridge decreased by 5.7‰/yr from 2004 to 2006, with a seasonal amplitude of 3-5‰. A comparison with measurements from the free troposphere above New England, USA (41°N, 72°W) indicates that the Δ14CO2 series at the two sites are statistically similar at timescales longer than a few days to weeks (i.e., those of synoptic scale variations in transport), suggesting that the Niwot Ridge measurements can be used as a proxy for North American free tropospheric air in future carbon cycle studies.

  15. High Precision Oxygen Three Isotope Analysis of Wild-2 Particles and Anhydrous Chondritic Interplanetary Dust Particles (United States)

    Nakashima, D.; Ushikubo, T.; Zolensky, Michael E.; Weisberg, M. K.; Joswiak, D. J.; Brownlee, D. E.; Matrajt, G.; Kita, N. T.


    One of the most important discoveries from comet Wild-2 samples was observation of crystalline silicate particles that resemble chondrules and CAIs in carbonaceous chondrites. Previous oxygen isotope analyses of crystalline silicate terminal particles showed heterogeneous oxygen isotope ratios with delta(sup 18)O to approx. delta(sup 17)O down to -50% in the CAI-like particle Inti, a relict olivine grain in Gozen-sama, and an olivine particle. However, many Wild-2 particles as well as ferromagnesian silicates in anhydrous interplanetary dust particles (IDPs) showed Delta(sup 17)O values that cluster around -2%. In carbonaceous chondrites, chondrules seem to show two major isotope reservoirs with Delta(sup 17)O values at -5% and -2%. It was suggested that the Delta(sup 17)O = -2% is the common oxygen isotope reservoir for carbonaceous chondrite chondrules and cometary dust, from the outer asteroid belt to the Kuiper belt region. However, a larger dataset with high precision isotope analyses (+/-1-2%) is still needed to resolve the similarities or distinctions among Wild-2 particles, IDPs and chondrules in meteorites. We have made signifi-cant efforts to establish routine analyses of small particles (isotope analyses of Wild-2 particles and anhydrous chondritic IDPs, and discuss the relationship between the cometary dust and carbonaceous chondrite chondrules.

  16. Challenging the Standard Model: High-Precision Comparisons of the Fundamental Properties of Protons and Antiprotons

    CERN Multimedia

    CERN. Geneva


    The Baryon Antibaryon Symmetry Experiment (BASE-CERN) at CERN’s antiproton decelerator facility is aiming at high-precision comparisons of the fundamental properties of protons and antiprotons, such as charge-to-mass ratios, magnetic moments and lifetimes. Such experiments provide sensitive tests of the fundamental charge-parity-time invariance in the baryon sector. BASE was approved in 2013 and has measured since then, utilizing single-particle multi-Penning-trap techniques, the antiproton-to-proton charge-to-mass ratio with a fractional precision of 69 p.p.t. [1], as well as the antiproton magnetic moment with fractional precisions of 0.8 p.p.m. and 1.5 p.p.b., respectively [2]. At our matter companion experiment BASE-Mainz, we have performed proton magnetic moment measurements with fractional uncertainties of 3.3 p.p.b. [3] and 0.3 p.p.b. [4]. By combining the data of both experiments we provide a baryon-magnetic-moment based CPT test gpbar/gp = 1.000 000 000 2(15), which improves the uncertainty of p...

  17. Development of Models for High Precision Simulation of the Space Mission Microscope (United States)

    Bremer, Stefanie; List, Meike; Selig, Hanns; Lämmerzahl, Claus

    MICROSCOPE is a French space mission for testing the Weak Equivalence Principle (WEP). The mission goal is the determination of the Eötvös parameter with an accuracy of 10-15. This will be achieved by means of two high-precision capacitive differential accelerometers, that are built by the French institute ONERA. At the German institute ZARM drop tower tests are carried out to verify the payload performance. Additionally, the mission data evaluation is prepared in close cooperation with the French partners CNES, ONERA and OCA. Therefore a comprehensive simulation of the real system including the science signal and all error sources is built for the development and testing of data reduction and data analysis algorithms to extract the WEP violation signal. Currently, the High Performance Satellite Dynamics Simulator (HPS), a cooperation project of ZARM and the DLR Institute of Space Systems, is adapted to the MICROSCOPE mission for the simulation of test mass and satellite dynamics. Models of environmental disturbances like solar radiation pressure are considered, too. Furthermore detailed modeling of the on-board capacitive sensors is done.

  18. Fast and high precision algorithms for optimization in large-scale genomic problems. (United States)

    Mester, D I; Ronin, Y I; Nevo, E; Korol, A B


    There are several very difficult problems related to genetic or genomic analysis that belong to the field of discrete optimization in a set of all possible orders. With n elements (points, markers, clones, sequences, etc.), the number of all possible orders is n!/2 and only one of these is considered to be the true order. A classical formulation of a similar mathematical problem is the well-known traveling salesperson problem model (TSP). Genetic analogues of this problem include: ordering in multilocus genetic mapping, evolutionary tree reconstruction, building physical maps (contig assembling for overlapping clones and radiation hybrid mapping), and others. A novel, fast and reliable hybrid algorithm based on evolution strategy and guided local search discrete optimization was developed for TSP formulation of the multilocus mapping problems. High performance and high precision of the employed algorithm named guided evolution strategy (GES) allows verification of the obtained multilocus orders based on different computing-intensive approaches (e.g., bootstrap or jackknife) for detection and removing unreliable marker loci, hence, stabilizing the resulting paths. The efficiency of the proposed algorithm is demonstrated on standard TSP problems and on simulated data of multilocus genetic maps up to 1000 points per linkage group.

  19. High precision tools for slepton pair production processes at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Thier, Stephan Christoph


    In this thesis, we develop high precision tools for the simulation of slepton pair production processes at hadron colliders and apply them to phenomenological studies at the LHC. Our approach is based on the POWHEG method for the matching of next-to-leading order results in perturbation theory to parton showers. We calculate matrix elements for slepton pair production and for the production of a slepton pair in association with a jet perturbatively at next-to-leading order in supersymmetric quantum chromodynamics. Both processes are subsequently implemented in the POWHEG BOX, a publicly available software tool that contains general parts of the POWHEG matching scheme. We investigate phenomenological consequences of our calculations in several setups that respect experimental exclusion limits for supersymmetric particles and provide precise predictions for slepton signatures at the LHC. The inclusion of QCD emissions in the partonic matrix elements allows for an accurate description of hard jets. Interfacing our codes to the multi-purpose Monte-Carlo event generator PYTHIA, we simulate parton showers and slepton decays in fully exclusive events. Advanced kinematical variables and specific search strategies are examined as means for slepton discovery in experimentally challenging setups.

  20. High-Precision Half-Life Measurement for the Superallowed β+ Emitter 22Mg (United States)

    Dunlop, Michelle


    High precision measurements of the Ft values for superallowed Fermi beta transitions between 0+ isobaric analogue states allow for stringent tests of the electroweak interaction. These transitions provide an experimental probe of the Conserved-Vector-Current hypothesis, the most precise determination of the up-down element of the Cabibbo-Kobayashi-Maskawa matrix, and set stringent limits on the existence of scalar currents in the weak interaction. To calculate the Ft values several theoretical corrections must be applied to the experimental data, some of which have large model dependent variations. Precise experimental determinations of the ft values can be used to help constrain the different models. The uncertainty in the 22Mg superallowed Ft value is dominated by the uncertainty in the experimental ft value. The adopted half-life of 22Mg is determined from two measurements which disagree with one another, resulting in the inflation of the weighted-average half-life uncertainty by a factor of 2. The 22Mg half-life was measured with a precision of 0.02% via direct β counting at TRIUMF's ISAC facility, leading to an improvement in the world-average half-life by more than a factor of 3.

  1. Physics of Eclipsing Binaries: Modelling in the new era of ultra-high precision photometry (United States)

    Bloemen, S.; Degroote, P.; Conroy, K.; Hambleton, K. M.; Giammarco, J. M.; Pablo, H.; Prša, A.


    Recent ultra-high precision observations of eclipsing binaries, especially data acquired by the Kepler satellite, have made accurate light curve modelling increasingly challenging but also more rewarding. In this contribution, we discuss low-amplitude signals in light curves that can now be used to derive physical information about eclipsing binaries but that were unaccessible before the Kepler era. A notable example is the detection of Doppler beaming, which leads to an increase in flux when a star moves towards the satellite and a decrease in flux when it moves away. Similarly, Rømer delays, or light travel time effects, also have to taken into account when modelling the supreme quality data that is now available. The detection of offsets between primary and secondary eclipse phases in binaries with extreme mass ratios, and the observation of Rømer delays in the signals of pulsators in binary stars, have allowed us to determine the orbits of several binaries without the need for spectroscopy. A third example of a small-scale effect that has to be taken into account when modelling specific binary systems, are lensing effects. A new binary light curve modelling code, PHOEBE 2.0, that takes all these effect into account is currently being developed.

  2. An approach to segment lung pleura from CT data with high precision (United States)

    Angelats, E.; Chaisaowong, K.; Knepper, A.; Kraus, T.; Aach, T.


    A new approach to segment pleurae from CT data with high precision is introduced. This approach is developed in the segmentation's framework of an image analysis system to automatically detect pleural thickenings. The new technique to carry out the 3D segmentation of lung pleura is based on supervised range-constrained thresholding and a Gibbs-Markov random field model. An initial segmentation is done using the 3D histogram by supervised range-constrained thresholding. 3D connected component labelling is then applied to find the thorax. In order to detect and remove trachea and bronchi therein, the 3D histogram of connected pulmonary organs is modelled as a finite mixture of Gaussian distributions. Parameters are estimated using the Expectation-Maximization algorithm, which leads to the classification of that pulmonary region. As consequence left and right lungs are separated. Finally we apply a Gibbs-Markov random field model to our initial segmentation in order to achieve a high accuracy segmentation of lung pleura. The Gibbs- Markov random field is combined with maximum a posteriori estimation to estimate optimal pleural contours. With these procedures, a new segmentation strategy is developed in order to improve the reliability and accuracy of the detection of pleural contours and to achieve a better assessment performance of pleural thickenings.

  3. High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes (United States)

    McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.


    Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.

  4. High precision calorimetry to determine the enthalpy of combustion of methane

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Andrew; Lythall, Christopher; Aucott, John; Sayer, Courtnay [Office of Gas and Electricity Markets, Technical Directorate, 3 Tigers Road, South Wigston, LE18 4UX Leicester (United Kingdom)


    The enthalpy of combustion of methane is the most important property used in the determination of the calorific value of natural gas. Only two sets of values with high accuracy and precision and measured under appropriate conditions have been published since it was first determined in 1848. These studies were done by Rossini, at the National Bureau of Standards in the USA in 1931, and Pittam and Pilcher, at the University of Manchester in 1972. This report details the design and operation of a high precision constant-pressure gas burning calorimeter, based on the design of those used in the previous studies, to measure the superior enthalpy of combustion of ultra-high purity methane at 25C.The use of modern equipment and automatic data collection leads to a value, traceable to national standards, of 890.61kJmol{sup -1} with a combined standard uncertainty of 0.21kJmol{sup -1}. This is in full accord with the value of 890.63kJmol{sup -1} calculated from the average of Rossini's and Pittam and Pilcher's work (with a random uncertainty based on 1 S.D. of 0.53kJmol{sup -1})

  5. High-precision thermal-insensitive strain sensor based on optoelectronic oscillator. (United States)

    Fan, ZhiQiang; Su, Jun; Zhang, Tianhang; Yang, Ning; Qiu, Qi


    A high-precision and thermal-insensitive strain sensor based on two self-starting optoelectronic oscillators (OEOs) is proposed and experimentally demonstrated. Two OEOs are grouped into a cross-referencing structure by dense wavelength division multiplexing (DWDM); the two OEOs have the same characters and they are placed in the same environment. In this frequency encoded strain sensor, it converts the strain information of the single mode fiber to the frequency information, and the frequency information is acquired by measuring the intermediate frequency (IF) mixed by the two OEOs. The accumulative magnification effect at high-order resonant frequency modes makes the strain sensor achieve high sensitivity, which significantly improves the precision of the measurement strain. The cross-referencing structure of the two OEOs makes the influence of the environment, such as temperature, greatly reduced. In the experiments, measurement errors less than ± 0.3 με at a measurement range of 600 με have been realized, including a drift error due to a variation in the environment such as temperature. Furthermore, a quasi-distributed strain measurement system based on the proposed strain sensor has been designed.

  6. Investigation of High Precision Marine Pressure Sensor Based on Silicon-on-Sapphire

    Directory of Open Access Journals (Sweden)

    LI Hong-Zhi


    Full Text Available As one of parameter in marine hydrographic survey, seawater pressure plays an important role in marine research, tsunami forecast, and marine engineering equipment. In practical application, many marine parameters are also relative to pressure value, and its value is helpful to provide a complete data model. Therefore, it makes a demand for high performance of pressure sensor. In order to realize a long-term and high precision measurement, a marine pressure sensor based on silicon stain resistance is presented. This sensor applies the sapphire as substrate material to reduce the error caused by inconsistent deformation between sensitive component and substrate. A stress cup structure is designed to improve its sensitivity. By using a series of processing technology and packaging method, the structure of marine pressure sensor has a good mechanical strength and corrosion resistance. Considered that the output signal is affected by temperature drift, a new algorithm compensation is introduced. From experimental results, the output voltage of sensor is almost independent of temperature and the maximum error is controlled within 0.05 %. This high performance pressure sensor could bring a large application in marine detection.

  7. High precision mobile location framework and its service based on virtual reference station of GPS (United States)

    Liu, Chun; Sun, Liangyu; Yao, Lianbi


    The wireless communication technology and space technology are synchronously developed in recent years, which bring up the development of location based service (LBS). At present, many location technology methods were developed. However, all these methods can only provide a relative poor location precision and depend on high cost. The technology of Virtual Reference Station (VRS) of GPS is then involved in this paper. One of the objective in this paper is aim to give the LBS position structure to improve the mobile location position when a mobile position instrument is connected with VRS network. The cheaper GPS built-in Personal Designer Aid (PDA) is then used to achieve a higher precision by using RTCM data from existing VRS network. In order to obtain a high precision position when using the low-cost GPS receiver as a rover, the infrusture of the mobile differential correction system is then put forward. According to network transportation of RTCM via internet protocol (NTRIP), the message is communicated through wireless network, such as GPRS, CDMA and so on. The rough coordinate information is sent to VRS control center continuously, and then the VRS correction information is replied to rover in the data format of RTCM3.1. So the position will be updated based on mathematic solution after the decoding of RTCM3.1 data. The thought of LBS position can improve the precision, and can speed the LBS.

  8. A method to enhance the measurement accuracy of Raman shift based on high precision calibration technique (United States)

    Ding, Xiang; Li, Fei; Zhang, Jiyan; Liu, Wenli


    Raman spectrometers are usually calibrated periodically to ensure their measurement accuracy of Raman shift. A combination of a piece of monocrystalline silicon chip and a low pressure discharge lamp is proposed as a candidate for the reference standard of Raman shift. A high precision calibration technique is developed to accurately determine the standard value of the silicon's Raman shift around 520cm-1. The technique is described and illustrated by measuring a piece of silicon chip against three atomic spectral lines of a neon lamp. A commercial Raman spectrometer is employed and its error characteristics of Raman shift are investigated. Error sources are evaluated based on theoretical analysis and experiments, including the sample factor, the instrumental factor, the laser factor and random factors. Experimental results show that the expanded uncertainty of the silicon's Raman shift around 520cm-1 can acheive 0.3 cm-1 (k=2), which is more accurate than most of currently used reference materials. The results are validated by comparison measurement between three Raman spectrometers. It is proved that the technique can remarkably enhance the accuracy of Raman shift, making it possible to use the silicon and the lamp to calibrate Raman spectrometers.

  9. Design and Analysis of a New High Precision Decoupled XY Compact Parallel Micromanipulator

    Directory of Open Access Journals (Sweden)

    Xigang Chen


    Full Text Available With the development of nanotechnology that contains automatic control, precision machinery and precise measurement, etc., micro/nano manipulation has become a new research direction in recent years. This paper presents the design and analysis procedures of a new high precision XY decoupled compact parallel micromanipulator (DCPM for micro scale positioning applications. The DCPM is made up of the decoupler, two-stage amplifier and the piezoelectric translator (PZT actuators, which utilizes the characteristics of flexure hinges. In this paper, firstly, a new two-stage bridge-principle amplifier is proposed by a serial connection of two fundamental bridge amplifiers in order to increase the ratio of amplification. It is pivotal for designing the micromanipulator. Then, the kinematic modeling of the micromanipulator is carried out by resorting to stiffness and compliance analysis via matrix method. Finally, the performance of the micromanipulator is validated by finite-element analysis (FEA which is preliminary job for fabricating the prototype and designing the control system of the XY stage that is expected to be adopted into micro/nano manipulations.

  10. High-precision measurement of the x-ray Cu Kα spectrum (United States)

    Mendenhall, Marcus H.; Henins, Albert; Hudson, Lawrence T.; Szabo, Csilla I.; Windover, Donald; Cline, James P.


    The structure of the x-ray emission lines of the Cu {{K}}{α } complex has been remeasured on a newly commissioned instrument, in a manner directly traceable to the Système Internationale definition of the meter. In this measurement, the region from 8000 to 8100 eV has been covered with a highly precise angular scale, and well-defined system efficiency, providing accurate wavelengths and relative intensities. This measurement updates the standard multi-Lorentzian-fit parameters from Härtwig, Hölzer, et al, and is in modest disagreement with their results for the wavelength of the {{K}}{α }1 line when compared via quadratic fitting of the peak top; the intensity ratio of {{K}}{α }1 to {{K}}{α }2 agrees within the combined error bounds. However, the position of the fitted top of {{K}}{α }1 is very sensitive to the fit parameters, so it is not believed to be a robust value to quote without further qualification. We also provide accurate intensity and wavelength information for the so-called {{K}}{α }{3,4} ‘satellite’ complex. Supplementary data, available online at, is provided which gives the entire shape of the spectrum in this region, allowing it to be used directly in cases where simplified, multi-Lorentzian fits to it are not sufficiently accurate.

  11. High-precision radiocarbon dating and historical biblical archaeology in southern Jordan (United States)

    Levy, Thomas E.; Higham, Thomas; Bronk Ramsey, Christopher; Smith, Neil G.; Ben-Yosef, Erez; Robinson, Mark; Münger, Stefan; Knabb, Kyle; Schulze, Jürgen P.; Najjar, Mohammad; Tauxe, Lisa


    Recent excavations and high-precision radiocarbon dating from the largest Iron Age (IA, ca. 1200–500 BCE) copper production center in the southern Levant demonstrate major smelting activities in the region of biblical Edom (southern Jordan) during the 10th and 9th centuries BCE. Stratified radiocarbon samples and artifacts were recorded with precise digital surveying tools linked to a geographic information system developed to control on-site spatial analyses of archaeological finds and model data with innovative visualization tools. The new radiocarbon dates push back by 2 centuries the accepted IA chronology of Edom. Data from Khirbat en-Nahas, and the nearby site of Rujm Hamra Ifdan, demonstrate the centrality of industrial-scale metal production during those centuries traditionally linked closely to political events in Edom's 10th century BCE neighbor ancient Israel. Consequently, the rise of IA Edom is linked to the power vacuum created by the collapse of Late Bronze Age (LB, ca. 1300 BCE) civilizations and the disintegration of the LB Cypriot copper monopoly that dominated the eastern Mediterranean. The methodologies applied to the historical IA archaeology of the Levant have implications for other parts of the world where sacred and historical texts interface with the material record. PMID:18955702

  12. High Precision Temperature Insensitive Strain Sensor Based on Fiber-Optic Delay

    Directory of Open Access Journals (Sweden)

    Ning Yang


    Full Text Available A fiber-optic delay based strain sensor with high precision and temperature insensitivity was reported, which works on detecting the delay induced by strain instead of spectrum. In order to analyze the working principle of this sensor, the elastic property of fiber-optic delay was theoretically researched and the elastic coefficient was measured as 3.78 ps/km·με. In this sensor, an extra reference path was introduced to simplify the measurement of delay and resist the cross-effect of environmental temperature. Utilizing an optical fiber stretcher driven by piezoelectric ceramics, the performance of this strain sensor was tested. The experimental results demonstrate that temperature fluctuations contribute little to the strain error and that the calculated strain sensitivity is as high as 4.75 με in the range of 350 με. As a result, this strain sensor is proved to be feasible and practical, which is appropriate for strain measurement in a simple and economical way. Furthermore, on basis of this sensor, the quasi-distributed measurement could be also easily realized by wavelength division multiplexing and wavelength addressing for long-distance structure health and security monitoring.

  13. Scanning near-field lithography with high precision flexure orientation stage control (United States)

    Qin, Jin; Zhang, Liang; Tan, Haosen; Wang, Liang


    A new design of an orientation stage for scanning near-field lithography is presented based on flexure hinges. Employing flexure mechanisms in place of rigid-body mechanisms is one of the most promising techniques to efficiently implement high precision motion and avoid problems caused by friction. For near-field scanning lithography with evanescent wave, best resolution can be achieved in contact mode. However, if the mask is fixed on a rigid stage, contact friction will deteriorate the lithography surface. To reduce friction while maintaining good contact between the mask and the substrate, the mask should be held with high lateral stiffness and low torsion stiffness. This design can hold the mask in place during the scanning process and achieve passive alignment. Circular flexure hinges, whose parameters are determined by motion requirements based on Schotborgh's equation, are used as the basic unit of the stage to achieve passive alignment by compensating motions from elastic deformation. A finite-element analysis is performed to verify this property of the stage. With the aid of this stage, 21 nm resolution is achieved in static near-field lithography and 18 nm line-width in scanning near-field lithography.

  14. High-precision solution to the moving load problem using an improved spectral element method (United States)

    Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li


    In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.

  15. Challenges in mold manufacturing for high precision molded diffractive optical elements (United States)

    Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas


    Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.

  16. submitter A High Precision 3D Magnetic Field Scanner for Small to Medium Size Magnets

    CERN Document Server

    Bergsma, F; Garnier, F; Giudici, P A


    A bench to measure the magnetic field of small to-medium-sized magnets with high precision was built. It uses a small-sized head with three orthogonal Hall probes, supported on a long pole at continuous movement during measurement. The head is calibrated in three dimensions by rotation over the full solid angle in a special device. From 0 to 2.5 T, the precision is ±0.2 mT in all components. The spatial range is 1 × 1 × 2 m with precision of ±0.02 mm. The bench and its controls are lightweight and easy to transport. The head can penetrate through small apertures and measure as close as 0.5 mm from the surface of a magnet. The bench can scan complicated grids in Cartesian or cylindrical coordinates, steered by a simple text file on an accompanying PC. The raw data is online converted to magnetic units and stored in a text file.

  17. Measuring the Deceleration of a Supernova Remnant Shock Wave using High-Precision Astrometry (United States)

    Williams, Brian


    We propose a third epoch of HST imaging of the NW filament of the remnant of SN 1006. Proper motions have been measured for this remnant in multiple wavelengths, and are nearly 0.3 per year in the NW filament, the only part of the remnant that is bright at optical wavelengths. A first epoch observation with HST was done in 2006, with a second epoch completed in 2013. We propose for a third epoch, with which we will measure, for the first time, the change in the velocity of the shock wave of a supernova remnant. Doing this will require high-precision astrometry, as we will need to measure the proper motions to an accuracy of a few tenths of a milliarcsecond per year. This is achievable with HST, and members of our group have made measurements even more accurate than this in recent years on other astronomical sources. A direct deceleration measurement would avoid the sources of uncertainty that are encountered by indirect inferences. This measurement would add an additional constraint to hydrodynamic simulations of the evolution of SN 1006, as well as serve as a diagnostic on the density of the interstellar medium that the shock wave is sweeping up. Only Hubble has the capabilities of performing a measurement like this, and a measurement of the deceleration of this shock wave would open a new window into SNR evolution for SN 1006 and other remnants with fast shock waves.

  18. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy. (United States)

    Vainio, Markku; Karhu, Juho


    A fully stabilized mid-infrared optical frequency comb spanning from 2.9 to 3.4 µm is described in this article. The comb is based on half-harmonic generation in a femtosecond optical parametric oscillator, which transfers the high phase coherence of a fully stabilized near-infrared Er-doped fiber laser comb to the mid-infrared region. The method is simple, as no phase-locked loops or reference lasers are needed. Precise locking of optical frequencies of the mid-infrared comb to the pump comb is experimentally verified at sub-20 mHz level, which corresponds to a fractional statistical uncertainty of 2 × 10-16 at the center frequency of the mid-infrared comb. The fully stabilized mid-infrared comb is an ideal tool for high-precision molecular spectroscopy, as well as for optical frequency metrology in the mid-infrared region, which is difficult to access with other stabilized frequency comb techniques.

  19. Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts (United States)

    Liao, Yunn-Shiuan; Chen, Shun-Tong; Lin, Chang-Sheng


    The micro-electrical discharge machining (micro-EDM) process has been proved to be appropriate for making 3D micro parts that are difficult and even impossible to manufacture by other processes. In this paper a high precision tabletop CNC wire electrical discharge machine (wire EDM) designed specifically for machining complex shape micro parts or structures is developed. In the machine developed, a novel micro-wire-cutting mechanism is designed, an approach to control wire tension by magnetic force is proposed and a servo feed control strategy, in accordance with the measured gap voltage, is designed and implemented. To verify the functions and capabilities of the machine developed, several thick micro outer and internal spur gears and rack are machined. It shows that the taper angle along the wall or cavity of a part that appears when other micro-EDM processes are applied can be avoided. A very good dimensional accuracy of 1 µm and a surface finish of Rmax equal to 0.64 µm are achieved. The satisfactory cutting of a miniature 3D pagoda with a micro-hooked structure also reveals that the machine developed is versatile, and can be used as a new tool for making intricate micro parts.

  20. High-precision gravity measurements using absolute and relative gravimeters at Mount Etna (Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro


    Full Text Available Accurate detection of time gravity changes attributable to the dynamics of volcanoes requires high-precision gravity measurements. With the aim of improving the quality of data from the Mount Etna gravity network, we used both absolute and relative gravimeters in a hybrid method. In this report, some of the techniques for gravity surveys are reviewed, and the results related to each method are compared. We show how the total uncertainty estimated for the gravity measurements performed with this combined use of absolute and relative gravimeters is roughly comparable to that calculated when the measurements are acquired using only relative gravimeters (the traditional method. However, the data highlight how the hybrid approach improves the measurement capabilities for surveying the Mount Etna volcanic area. This approach enhances the accuracy of the data, and then of the four-dimensional surveying, which minimizes ambiguities inherent in the gravity measurements. As a case study, we refer to two gravity datasets acquired in 2005 and 2010 from the western part of the Etna volcano, which included five absolute and 13 relative stations of the Etna gravity network.

  1. Development and simulation of microfluidic Wheatstone bridge for high-precision sensor (United States)

    Shipulya, N. D.; Konakov, S. A.; Krzhizhanovskaya, V. V.


    In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry. This process is based on the “etching in microchannel” technology we developed earlier (doi:10.1088/1742-6596/681/1/012035). Our method ensures a precise control of the flow rate and flow direction in the bridge microchannel. The advantage of our approach is the ability to work without any control valves and other active electronic systems, which are usually used for bridge balancing. The geometrical configuration of microchannels was selected based on the analytical estimations. A detailed 3D numerical model was based on Navier-Stokes equations for a laminar fluid flow at low Reynolds numbers. We investigated the behavior of the Wheatstone bridge under different process conditions; found a relation between the channel resistance and flow rate through the bridge; and calculated the pressure drop across the system under different total flow rates and viscosities. Finally, we describe a high-precision microfluidic pressure sensor that employs the Wheatstone bridge and discuss other applications in complex precision microfluidic systems.

  2. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli


    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  3. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, P


    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  4. Establishment of high-precision navigation system in the Republic of Armenia

    Directory of Open Access Journals (Sweden)

    Manukyan Larisa Vladimirovna


    Full Text Available Medium-Earth orbit satellite systems make it possible to provide services on time coordination and navigation support for a wide range of consumers. At present, there are global navigation satellite systems GLONASS (Russia and GPS (USA. Users of these systems have an opportunity to determine their location accurately with the given characteristics of their navigation devices. In all developed countries the progress of geodesy and cartography is closely related to the implementation of advanced new technologies in both scientific and industrial areas. The introduction of new technologies and equipment in production is essential for the development of geodesy and cartography, bringing the existing geodetic networks and cartographic materials to modern condition. In the Republic of Armenia there are also plans on introduction of the systems for monitoring and management of vehicles for various purposes, as well as it is proposed to establish and implement an effective satellite navigation system to monitor and control traffic on the basis of advanced satellite technology. The article describes the basic steps to create the network of reference stations, GPS, aerial photography of much of the territory of Armenia, the creation of digital terrain model and the new maps by orthophotoplans. The analysis of the materials were carried out, on the basis of which in the Republic in 2015 a high-precision navigation system will be created. Due to the hard work of surveyors, cartographers and topographers the Republic was brought to European states level.

  5. A High Precision Measurement Of The Neutron Magnetic Form Factor Using The Clas Detector

    CERN Document Server

    Lachniet, J D


    The neutron magnetic form factor GnM has been extracted from the ratio of quasi-elastic e-n to e-p scattering from a deuterium target using the CLAS detector. The measurement covers the range 0.5 to 4.5 (GeV/c)2 in four-momentum transfer squared. High precision was achieved by use of the ratio technique, with which many uncertainties cancel. A dual- cell target was used, featuring a deuterium cell and a hydrogen cell, which allowed a simultaneous in- situ calibration of the neutron detection efficiency. Neutrons were detected using the CLAS Time- of-Flight system and the Forward Electromagnetic Calorimeter. Data was taken at two different electron beam energies, allowing up to four semi-independent measurements of GnM to be made at each value of Q2. The data is compared to previous measurements, and with several theoretical and phenomenological models. It is found that for Q2 > 1 (GeV/c)2 the standard dipole parametrization gives a good representation of the data over a wide range of Q 2.

  6. Performance of the LHCb Tracking Detectors

    CERN Document Server

    Tobin, Mark


    The LHCb experiment is making high-precision measurements of CP violation and searching for New Physics using the enormous flux of beauty and charm hadrons produced at the LHC. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet, and three stations of silicon-strip detectors and straw drift tubes placed downstream. The performance of the individual silicon-strip detectors will be discussed together with the overall performance of the full tracking system.

  7. High precision numerical solutions to electric fields in a radial drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Faust, J.


    A modification to the proportional chamber design makes it possible to achieve 5{mu}m spatial resolution in particle tracking. Achieving this requires knowing exactly what the electric field is in the chamber, and simple approximations to the field are not accurate enough. The operation of the chamber and techniques which accurately evaluate the electric field are discussed.

  8. Domain wall fringe field coupled spin logic

    Directory of Open Access Journals (Sweden)

    Yu-Ming Hung


    Full Text Available A class of spin logic devices based on the spin-orbit induced spin-transfer torques requires magnetic coupling between electrically isolated ferromagnetic elements. Here we use micromagnetic modeling to study the magnetic coupling induced by fringe fields from chiral domain walls in perpendicularly magnetized nanowires. These domains can be displaced using spin-orbit torques from a proximal heavy metal layer. For a 16 nm width wire that is 1 nm thick, we find that spin-orbit torques induced domain wall propagation can reliably switch a proximal 16 nm diameter 1 nm thick nanomagnet. These results show a promising means of implementing spin logic with spin-orbit torques using elements with perpendicular magnetization, which does not require an applied magnetic field.

  9. Tracking Eyes using Shape and Appearance

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Nielsen, Mads; Hansen, John Paulin


    We propose a non-intrusive eye tracking system intended for the use of everyday gaze typing using web cameras. We argue that high precision in gaze tracking is not needed for on-screen typing due to natural language redundancy. This facilitates the use of low-cost video components for advanced...... multi-modal interactions based on video tracking systems. Robust methods are needed to track the eyes using web cameras due to the poor image quality. A real-time tracking scheme using a mean-shift color tracker and an Active Appearance Model of the eye is proposed. From this model, it is possible...

  10. Fabrication of the Long Bragg Grating by Excimer Laser Micro Machining with High-Precision Positioning XXY Platform

    Directory of Open Access Journals (Sweden)

    Jian-Zhong Wu


    Full Text Available With the advancement of technology, the application of fiber Bragg grating is widely used as a Bragg grating sensor. Fiber Bragg grating is fabrication using excimer laser machining with the phase masker. The grating length is decided by the width of laser beam. In this paper, we proposed fabrication of the long Bragg grating by excimer Laser micro machining with a high-precision positioning XXY platform. The high-precision positioning XXY platform plays an important role for long FBG. It needs seriously to combine three short FBGs. Therefore, we can obtain a long FBG with 15mm length. This method can provide a solution to fabricate long FBG by using cheap laser with high-precision positioning XXY platform.

  11. High precision series solutions of differential equations: Ordinary and regular singular points of second order ODEs (United States)

    Noreen, Amna; Olaussen, Kåre


    A subroutine for a very-high-precision numerical solution of a class of ordinary differential equations is provided. For a given evaluation point and equation parameters the memory requirement scales linearly with precision P, and the number of algebraic operations scales roughly linearly with P when P becomes sufficiently large. We discuss results from extensive tests of the code, and how one, for a given evaluation point and equation parameters, may estimate precision loss and computing time in advance. Program summary Program title: seriesSolveOde1 Catalogue identifier: AEMW_v1_0 Program summary URL: Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, No. of lines in distributed program, including test data, etc.: 991 No. of bytes in distributed program, including test data, etc.: 488116 Distribution format: tar.gz Programming language: C++ Computer: PC's or higher performance computers. Operating system: Linux and MacOS RAM: Few to many megabytes (problem dependent). Classification: 2.7, 4.3 External routines: CLN — Class Library for Numbers [1] built with the GNU MP library [2], and GSL — GNU Scientific Library [3] (only for time measurements). Nature of problem: The differential equation -s2({d2}/{dz2}+{1-ν+-ν-}/{z}{d}/{dz}+{ν+ν-}/{z2})ψ(z)+{1}/{z} ∑n=0N vnznψ(z)=0, is solved numerically to very high precision. The evaluation point z and some or all of the equation parameters may be complex numbers; some or all of them may be represented exactly in terms of rational numbers. Solution method: The solution ψ(z), and optionally ψ'(z), is evaluated at the point z by executing the recursion A(z)={s-2}/{(m+1+ν-ν+)(m+1+ν-ν-)} ∑n=0N Vn(z)A(z), ψ(z)=ψ(z)+A(z), to sufficiently large m. Here ν is either ν+ or ν-, and Vn(z)=vnz. The recursion is initialized by A(z)=δzν,for n

  12. Development of a mobile and high-precision atmospheric CO2 monitoring station (United States)

    Molnár, M.; Haszpra, L.; Major, I.; Svingor, É.; Veres, M.


    Nowadays one of the most burning questions for the science is the rate and the reasons of the recent climate change. Greenhouse gases (GHG), mainly CO2 and CH4 in the atmosphere could affect the climate of our planet. However, the relation between the amount of atmospheric GHG and the climate is complex, full with interactions and feedbacks partly poorly known even by now. The only way to understand the processes, to trace the changes, to develop and validate mathematical models for forecasts is the extensive, high precision, continuous monitoring of the atmosphere. Fossil fuel CO2 emissions are a major component of the European carbon budget. Separation of the fossil fuel signal from the natural biogenic one in the atmosphere is, therefore, a crucial task for quantifying exchange flux of the continental biosphere through atmospheric observations and inverse modelling. An independent method to estimate trace gas emissions is the top-down approach, using atmospheric CO2 concentration measurements combined with simultaneous radiocarbon (14C) observations. As adding fossil fuel CO2 to the atmosphere, therefore, leads not only to an increase in the CO2 content of the atmosphere but also to a decrease in the 14C/12C ratio in atmospheric CO2. The ATOMKI has more than two decade long experience in atmospheric 14CO2 monitoring. As a part of an ongoing research project being carried out in Hungary to investigate the amount and temporal and spatial variations of fossil fuel CO2 in the near surface atmosphere we developed a mobile and high-precision atmospheric CO2 monitoring station. We describe the layout and the operation of the measuring system which is designed for the continuous, unattended monitoring of CO2 mixing ratio in the near surface atmosphere based on an Ultramat 6F (Siemens) infrared gas analyser. In the station one atmospheric 14CO2 sampling unit is also installed which is developed and widely used since more than one decade by ATOMKI. Mixing ratio of CO2 is

  13. HPMSS(High Precision Magnetic Survey System) and InterRidge (United States)

    Isezaki, N.; Sayanagi, K.


    From the beginning of 1990s to the beginning of 2000s, the Japanese group of IntreRidge conducted many cruises for three component magnetic survey using Shipboard Three Component Magnetometer (STCM) and Deep Towed Three Component Magnetometer (DTCM) in the world wide oceans. We have been developing HPMSS during this time with support of Dr.Tamaki(the late representative of InterRidge Japan) who understood the advantages of three component geomagnetic anomalies (TCGA). TCGA measured by STCM determines the direction of geomagnetic anomaly lineations precisely at every point where TCGA were observed, which playes the important role in magnetic anomaly lineation analysis. Even in the beginning of 2000s, almost all marine magnetic scientists believed that the total intensity anomly (TIA) is the better data than TCGA for analysis because the scalar magnetometers (e.g. proton precession magnetometer) have the better accuracy than any other magnetometers (e.g.flux gate magnetometer (FGM)). We employed the high accrate gyroscope (e.g.ring lase gyroscope (RLG)/optical fiber gyroscope (OFG)) to improve the accuracy of STCM/DTCM equipped with FGM. Moreover we employed accurate and precise FGM which was selected among the market. Finally we developed the new magnetic survey system with high precision usable as airborn, shipboard and dee-ptowed magnetometers which we call HPMSS(High Precision Magnetic Survey System). As an optional equipment, we use LAN to communicate between a data aquisiitin part and a data logging part, and GPS for a position fix. For the deep-towed survey, we use the acoustic position fix (super short base line method) and the acoustic communication to monitor the DTCM status. First we used HPMSS to obtain the magnetization structure of the volcanic island, Aogashima located 300km south of Tokyo using a hellcopter in 2006 and 2009. Next we used HPMSS installed in DTCM in 2010,2011 and 2012 using R/V Bosei-maru belonging to Tokai University. Also we used

  14. Injection molding of high precision optics for LED applications made of liquid silicone rubber

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Christian; Röbig, Malte [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstraße 49, 52062 Aachen (Germany)


    Light Emitting Diodes (LED) conquer the growing global market of lighting technologies. Due to their advantages, they are increasingly used in consumer products, in lighting applications in the home and in the mobility sector as well as in industrial applications. Particularly, with regard to the increasing use of high-power LED (HP-LED) the materials in the surrounding area of the light emitting semiconductor chip are of utmost importance. While the materials behind the semiconductor chip are optimized for maximum heat dissipation, the materials currently used for the encapsulation of the semiconductor chip (primary optics) and the secondary optics encounter their limits due to the high temperatures. In addition certain amounts of blue UV radiation degrade the currently used materials such as epoxy resins or polyurethanes for primary optics. In the context of an ongoing joint research project with various partners from the industry, an innovative manufacturing method for high precision optics for LED applications made of liquid silicone rubber (LSR) is analyzed at the Institut of Plastics Processing (IKV), Aachen. The aim of this project is to utilize the material-specific advantages of high transparent LSR, especially the excellent high temperature resistance and the great freedom in design. Therefore, a high integrated injection molding process is developed. For the production of combined LED primary and secondary optics a LED board is placed in an injection mold and overmolded with LSR. Due to the integrated process and the reduction of subcomponents like the secondary optics the economics of the production process can be improved significantly. Furthermore combined LED optics offer an improved effectiveness, because there are no losses of the light power at the transition of the primary and secondary optics.

  15. Glue test results for high-precision large cryogenic lens holder (United States)

    Reutlinger, A.; Mottaghibonab, A.; Gal, C.; Boesz, A.; Grupp, F.; Geis, N.; Bode, A.; Katterloher, R.; Bender, R.


    The Near Infrared Spectrometer and Photometer (NISP) of EUCLID requires high precision large lens holders (Ø170 mm) at cryogenic temperatures (150 K). The lenses of the optical system are glued into separate lens holders, the so called adaption rings. For the selection and verification of a suitable adhesive extensive glue selection tests are performed and results presented in this paper. With potential glue candidates, handling, single lap shear, connection tension and shear tests are carried out at room temperature (RT) and 150 K (OPS). For the NISP optical system DP490 is selected as the most suitable adhesive. The test results have shown that an even distribution of the glue in the glue gap is of crucial importance for the functioning and performance of the bonded lens system. The different coefficients of thermal expansion (CTE) between lens and lens holder produce large local mechanical stress and might cause lens breakage or failure of bonding. The design of the injection channel and the gluing procedure are developed to meet the lens performance requirements. An example is shown that after thermal cycling the remaining 0.5 mm - 1 mm thick adhesive in the injection channel results in large local mechanical stresses, and hence, damage of the lens. For a successful performance of the glue interface not only an optimum glue gap of 80 - 150 μm is important, also micro-cracks of the glass at the gluing area have to be avoided. The performed glue tests with DP490 for 3 different lens/ring material combinations show sufficient mechanical tension and shear strength for bonding of the lens system. Titanium/LF5G15 and Invar/Fused Silica combinations have reached the strength of 30 MPa at RT and 50 GPa at 150 K. These results are presented on behalf of the EUCLID consortium.

  16. Development of a High Precision and Stability Ambient N2O and CO Analyzer (United States)

    Zhou, Jingang; Hoffnagle, John; Tan, Sze; Dong, Feng; Fleck, Derek; Yiu, John; Huang, Kuan; Leggett, Graham; He, Yonggang


    With a global warming potential of nearly 300, N2O is a critically important greenhouse gas, contributing about 5 % of the US total GHG emissions. Agriculture soil management practices are the dominant source of anthropogenic N2O emissions, contributing nearly 75 % of US N2O emissions. In urban areas, vehicle tailpipe emissions and waste water treatment plants are significant sources of N2O. We report here a new mid-infrared laser-based cavity ring-down spectrometer (Picarro G5310) that was recently developed to simultaneously measure sub-ppb ambient concentrations of two key greenhouse gas species, N2O and CO, while measuring H2O as well. It combines a quantum cascade laser with a proprietary 3-mirror optical cavity. The ambient N2O and CO measurement precisions are 0.1ppb (10sec), 0.014ppb (600sec), and 0.006ppb (3000sec); and the measurements could even be averaged down over 3 hours, giving measurement precisions of 0.003ppb. The measurable N2O and CO ranges have been tested up to 2.5ppm. With the high precision and unparalleled stability, G5310 is believed a promising tool for long-term monitoring in atmospheric sciences. The new optical analyzer was set up to monitor N2O and CO (G5310), along with CO2 and CH4(G4301), in ambient air obtained from a 10 meter tower in Santa Clara, California. Evidence of contributions from traffic and a nearby sewage treatment facility were expected in the measurement data.

  17. The continuous high-precision measurement of the density of flowing blood. (United States)

    Kenner, T; Leopold, H; Hinghofer-Szalkay, H


    The "mechanical oscillator" technique for the measurement of the density of fluids is based on the influence of mass on the natural frequency of a mechanical oscillator. The practical application of this principle was worked out by Kratky et al. (1969) and Leopold (1970). It is demonstrated in this study that the method permits the continuous high-precision measurement of the density of flowing blood in anesthetized animals. The accuracy is 10(5) g/ml, the maximum sampling rate 20/min. As found in rabbits and cats during the control state, physiological blood density changes related to spontaneous blood pressure variations are up to 2-10(4) g/ml. The method can be combined with i.v. injections of isotonic and iso-oncotic solutions to determine cardiac output and blood volume on the basis of a "density dilution" principle. Since the density of the interstitial fluid is lower than that of blood, fluid shifts through the capillary walls can be detected. The effects of hypertonic glucose and of hyperoncotic dextran have been examined. Changes in the density of the arterial blood appear within 10 s after i.v. injection of these fluids. Similarly, density changes result from hemorrhage and reinfusion. During and after i.v. administration of vasoactive drugs (noradrenaline, angiotensin II, acetylcholine), marked transient changes in blood density are seen which obviously reflect the effects of fluid shifts through the capillary walls. During hemorrhagic hypotension we found periodic variations in the blood density synchronous with spontaneously occurring Mayer waves. The new method seems to be a promising tool for investigations physiological and pathological capillary fluid dynamics.

  18. High-precision Gravity Measurements of the Superconducting Gravimeter 057 at Lhasa Station (United States)

    Chen, X. D.; Sun, H. P.; Xu, H. Z.; Xu, J. Q.; Hao, X. H.


    Among more than thirty superconducting gravimeters (SGs) all over the world, the superconducting gravimeter 057 (SG057) at Lhasa station is the unique one installed at the Tibetan Plateau, the highest plateau in the world. In the study, the new calibration factor of the SG057 is computed for the first time using gravity data recorded by LCR-ET20 gravimeter at the same station. The determined scale value of SG057 is -77.5585±0.0136 microgals / Volt, and the relative accuracy is about 5‰ . Because there are almost 1 year recordings of the LCR-ET20 gravimeter at Wuhan superconducting gravimeter station before it is installed at Lhasa station, the scale value of the LCR-ET20 gravimeter is recalibrated with the Wuhan international gravitational tidal benchmark values before it is used at Lhasa station. In this way, the gravity tidal observations recorded at Lhasa station can be unified to the Wuhan international gravitational tidal benchmark values. With the determined new scale value, the gravity tidal recordings of SG057 are calibrated and harmonic analysis is carried out with the calibrated data. Then, high-precision tidal parameters are obtained. Accurate tidal gravity correction is achieved in the Tibet area. After the gravity influence of the station air pressure is corrected, the gravity residual of SG057 is calculated. Further considering the absolute gravity measurements, the gravity residual of SG057 is expected to show the detailed behavior of the gravity variation caused by the uplift of the Tibetan plateau.

  19. Astrometric meaning and interpretation of high-precision time delay integration CCD data (United States)

    Bastian, U.; Biermann, M.


    We investigate the astrometric content of CCD charge images of stars collected in time delay integration (TDI) mode with a scanning (rotating) telescope. We focus on the ESA astrometric space mission Gaia, but the results are valid for other scanning telescopes too. The physical attitude of the telescope is shown to be unobservable. Instead, an effective astrometric attitude is observed which represents an average over the TDI exposure time. The effective astrometric attitudes “seen” by different instruments (in case of Gaia: Astro, Spectro, Astro with gates) differ in a non-trivial way. If e.g. the high-precision Astro attitude would be used for the astrometric exploitation of the Spectro data, the Spectro CCDs would be “seen” to float around on the focal plane by several milli-arcseconds. In addition we find that the TDI mode produces an attitude jitter with the period of TDI clocking. We prove that this is negligibly small in the case of Gaia. We point out that the effective instant of observation is not the instant of charge read-out from the CCDs, but about half an exposure time (i.e. up to a few seconds) earlier. This is particularly important for the astrometry of solar-system objects and for the photometry of rapidly varying objects. It is also relevant for all other objects because of the time dependence of aberration. It is not clear whether the differences between the astrometric attitudes of different instruments require separate attitude reconstructions, but an approximate transformation from Astro to Spectro probably will be sufficient.

  20. A near infrared laser frequency comb for high precision Doppler planet surveys

    Directory of Open Access Journals (Sweden)

    Bally J.


    Full Text Available Perhaps the most exciting area of astronomical research today is the study of exoplanets and exoplanetary systems, engaging the imagination not just of the astronomical community, but of the general population. Astronomical instrumentation has matured to the level where it is possible to detect terrestrial planets orbiting distant stars via radial velocity (RV measurements, with the most stable visible light spectrographs reporting RV results the order of 1 m/s. This, however, is an order of magnitude away from the precision needed to detect an Earth analog orbiting a star such as our sun, the Holy Grail of these efforts. By performing these observations in near infrared (NIR there is the potential to simplify the search for distant terrestrial planets by studying cooler, less massive, much more numerous class M stars, with a tighter habitable zone and correspondingly larger RV signal. This NIR advantage is undone by the lack of a suitable high precision, high stability wavelength standard, limiting NIR RV measurements to tens or hundreds of m/s [1, 2]. With the improved spectroscopic precision provided by a laser frequency comb based wavelength reference producing a set of bright, densely and uniformly spaced lines, it will be possible to achieve up to two orders of magnitude improvement in RV precision, limited only by the precision and sensitivity of existing spectrographs, enabling the observation of Earth analogs through RV measurements. We discuss the laser frequency comb as an astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.

  1. Project GeoWSN: High precision but low-cost GNSS landslide monitoring in Austria (United States)

    Koch, Daniel; Brandstätter, Michael; Kühtreiber, Norbert


    At present, GNSS monitoring of landslides is an accepted and approved method to detect movements of slopes at risk in the sub-centimetre level. However, high-precision geodetic GNSS-receivers are expensive, therefore this monitoring method is not widely applied. Recently low-cost GNSS-receivers are conquering the geodetic market and are well suited for a cost effective and yet precise GNSS-monitoring. During the project GeoWSN, which was funded by the Austrian Research Promotion Agency (FFG), an applicable low-cost monitoring system was developed at Graz University of Technology. The system is based on a so-called Wireless Sensor Network (WSN) consisting of low-cost GNSS-receivers, temperature and humidity sensors and inertial measurement units. Additionally energy-harvesting technologies and power-saving algorithms provide that the system is energy- autarkic. For real-time applications, a communication link between the sensor nodes is implemented. The relative positioning method RTK (Real Time Kinematic) is applied to reach the highest possible accuracy. The GeoWSN sensor nodes enable the detection of possible movements in the real-time processed positions of the sensor nodes. To ensure a real-time evaluation and interpretation of the data, the current status of the slope can be acquired by a local warning centre. Therefore, affected people can be warned within a short latency. Several test-scenarios have shown the acceptance of the system at the warning centre of Styria, Austria. This contribution should give an overview of the main idea of a low-cost warning system and results of the project GeoWSN.

  2. A high precision method for quantitative measurements of reactive oxygen species in frozen biopsies.

    Directory of Open Access Journals (Sweden)

    Kirsti Berg

    Full Text Available OBJECTIVE: An electron paramagnetic resonance (EPR technique using the spin probe cyclic hydroxylamine 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH was introduced as a versatile method for high precision quantification of reactive oxygen species, including the superoxide radical in frozen biological samples such as cell suspensions, blood or biopsies. MATERIALS AND METHODS: Loss of measurement precision and accuracy due to variations in sample size and shape were minimized by assembling the sample in a well-defined volume. Measurement was carried out at low temperature (150 K using a nitrogen flow Dewar. The signal intensity was measured from the EPR 1st derivative amplitude, and related to a sample, 3-carboxy-proxyl (CP• with known spin concentration. RESULTS: The absolute spin concentration could be quantified with a precision and accuracy better than ±10 µM (k = 1. The spin concentration of samples stored at -80°C could be reproduced after 6 months of storage well within the same error estimate. CONCLUSION: The absolute spin concentration in wet biological samples such as biopsies, water solutions and cell cultures could be quantified with higher precision and accuracy than normally achievable using common techniques such as flat cells, tissue cells and various capillary tubes. In addition; biological samples could be collected and stored for future incubation with spin probe, and also further stored up to at least six months before EPR analysis, without loss of signal intensity. This opens for the possibility to store and transport incubated biological samples with known accuracy of the spin concentration over time.

  3. Test of feasibility of a novel high precision test of time reversal invariance

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Deepak


    The first results of a feasibility test of a novel high precision test of time reversal invariance are reported. The Time Reversal Invariance test at COSY (TRIC) was planned to measure the time reversal violating observable A{sub y,xz} with an accuracy of 10{sup -6} in proton-deuteron (p-d) scattering. A novel technique for measuring total cross sections is introduced and the achievable precision of this measuring technique is tested. The correlation coefficient A{sub y,y} in p-d scattering fakes a time-reversal violating effect. This work reports the feasibility test of the novel method in the measurement of A{sub y,y} in p-p scattering. The first step in the experimental design was the development of a hard real-time data acquisition system. To meet stringent latency requirements, the capabilities of Windows XP had to be augmented with a real-time subsystem. The remote control feature of the data acquisition enables users to operate it from any place via an internet connection. The data acquisition proved its reliability in several beam times without any failures. The analysis of the data showed the presence of 1/f noise which substantially limits the quality of our measurements. The origin of 1/f noise was traced and found to be the Barkhausen noise from the ferrite core of the beam current transformer (BCT). A global weighted fitting technique based on a modified Wiener-Khinchin method was developed and used to suppress the influence of 1/f noise, which increased the error bar of the results by a factor 3. This is the only deviation from our expectations. The results are presented and discussed. (orig.)

  4. Three years of high precision gravity measurements at the gravimetric station of Brasimone - Italy

    Directory of Open Access Journals (Sweden)

    G. Casula


    Full Text Available From August 1995 up to now, at the Enea Research Center of Brasimone, in the Italian Apennines between Bologna and Florence (Italy: 44º07'N, 11º.07'E, 890 m height, the superconducting gravimeter GWR model TT70 number T015 has been continuously recording the variation of the local gravity field, in the frame of the Global Geodynamics Project. The gravimetric laboratory, being a room of the disused nuclear power plant of Brasimone, is a very stable site, free from noise due to human activities. Data blocks of several months of continuous gravity records have been collected over a time span of three years, together with the meteorological data. The gravimeter has been calibrated at relative accuracy better than 0.3% with the aid of a mobile mass system, by imposed perturbations of the local gravity field and recording the gravimeter response. The results of this calibration technique were checked by two comparison experiments with absolute gravimeters performed during this period: the first, in May 1994 with the aid of the symmetrical rise and fall gravimeter of the Institute of Metrology Colonnetti of Turin, and the second in October 1997 involving an FG5 absolute gravimeter of the Institute de Physique du Globe of Strasbourg. The gravimeter signal was analysed to compute a high precision tidal model for Brasimone site. Starting from a set of gravimetric and atmospheric pressure data of high quality, relative to 46 months of observation, we performed the tidal analysis using Eterna 3.2 software to compute amplitudes, gravimetric factors and phases of the main waves of the Tamura catalogue. Finally a comparison experiment between two of the STS-1/VBB broadband seismometers of the MedNet project network and the gravity records relative to the Balleny Islands earthquake (March 25, 1998 were analysed to look for evidence of normal modes due to the free oscillations of the Earth.

  5. High precision laser direct microstructuring system based on bursts of picosecond pulses (United States)

    Mur, Jaka; Petelin, Jaka; Osterman, Natan; Petkovšek, Rok


    We have developed an efficient, high precision system for direct laser microstructuring using fiber laser generated bursts of picosecond pulses. An advanced opto-mechanical system for beam deflection and sample movement, precise pulse energy control, and a custom built fiber laser with the pulse duration of 65 ps have been combined in a compact setup. The setup allows structuring of single-micrometer sized objects with a nanometer resolution of the laser beam positioning due to a combination of acousto-optical laser beam deflection and tight focusing. The precise synchronization of the fiber laser with the pulse burst repetition frequency of up to 100 kHz allowed a wide range of working parameters, including a tuneable number of pulses in each burst with the intra-burst repetition frequency of 40 MHz and delivering exactly one burst of pulses to every chosen position. We have demonstrated that tightly focused bursts of pulses significantly increase the ablation efficiency during the microstructuring of a copper layer and shorten the typical processing time compared to the single pulse per spot regime. We have used a simple short-pulse ablation model to describe our single pulse ablation data and developed an upgrade to the model to describe the ablation with bursts. Bursts of pulses also contribute to a high quality definition of structure edges and sides. The increased ablation efficiency at lower pulse energies compared to the single pulse per spot regime opens a window to utilize compact fiber lasers designed to operate at lower pulse energies, reducing the overall system complexity and size.


    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M. E.; Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Ferdman, R. D.; Lyne, A. G. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester, M13 9PL (United Kingdom); Freire, P. C. C.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Nice, D. J. [Physics Department, Lafayette College, Easton, PA 18042 (United States); Demorest, P. B.; Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hobbs, G.; Manchester, R. N., E-mail: gonzalez@phas.ubc.ca1 [Australia Telescope National Facility, CSIRO, Epping, NSW 1710 (Australia)


    We present high-precision timing of five millisecond pulsars (MSPs) carried out for more than seven years; four pulsars are in binary systems and one is isolated. We are able to measure the pulsars' proper motions and derive an estimate for their space velocities. The measured two-dimensional velocities are in the range 70-210 km s{sup -1}, consistent with those measured for other MSPs. We also use all the available proper motion information for isolated and binary MSPs to update the known velocity distribution for these populations. As found by earlier works, we find that the velocity distribution of binary and isolated MSPs are indistinguishable with the current data. Four of the pulsars in our observing program are highly recycled with low-mass white dwarf companions and we are able to derive accurate binary parameters for these systems. For three of these binary systems, we are able to place initial constraints on the pulsar masses with best-fit values in the range 1.0-1.6 M{sub Sun }. The implications of the results presented here to our understanding of binary pulsar evolution are discussed. The updated parameters for the binary systems studied here, together with recently discovered similar systems, allowed us to update previous limits on the violation of the strong equivalence principle through the parameter |{Delta}| to 4.6 Multiplication-Sign 10{sup -3} (95% confidence) and the violation of Lorentz invariance/momentum conservation through the parameter |{alpha}-hat3| to 5.5 Multiplication-Sign 10{sup -20} (95% confidence).


    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Mehta, Kushal; Metchnik, Marc; Padmanabhan, Nikhil; Pinto, Phillip; Takahashi, Ryuichi; White, Martin; Xu, Xiaoying


    We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5-sigma for shift values from different simulations and derive shift alpha(z) -1 = (0.300\\pm 0.015)% [D(z)/D(0)]^{2} using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations: after reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the low and the initial redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compared with Zeldovich approximation and the shifts measured from the chi^2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations: we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 (Gpc/h)^3 of cosmological PM simulations from Takahashi et al. (2009). (abridged)

  8. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining.

    Directory of Open Access Journals (Sweden)

    Aurélie Kapusta


    Full Text Available During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs, each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs, which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ, are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi-mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5'-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3' ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a "cut-and-close" mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new

  9. Progress in Bathymetric Surveys: Combining High Precision Positioning in Real Time with a Continuous Vertical Datum in Remote Areas (United States)

    Lévesque, S.; Robin, C. M. I.; MacLeod, K.; Fadaie, K.


    For most of its bathymetric survey activities, the Canadian Hydrographic Service (CHS) requires high precision, three dimensional positioning. As part of a pilot project, one of its launches was equipped with a GNSS receiver processing a high precision correction service in real time (HP-GPS*C) via the internet using satellite telecommunication. This service was provided by Natural Resources Canada/Canadian Geodetic Survey (NRCan/CGS). The bathymetric data from a survey in eastern Hudson Bay performed by CHS in Fall 2013 was post -processed using different standard methods. This resulted in high precision positions that were compared with positions corrected with the real-time precise point positioning (PPP) service (HP-GPS*C) from NRCan/CGS. CHS bathymetric surveys must be referred to chart datum, the hydrographical vertical datum defined for use on nautical charts. In the Canadian north, another limitation to high precision bathymetric work is the availability of tide observations and/or predictions. The territory is vast and tide data is limited in space and in time while predicted tides are not always accurate. This makes reductions of bathymetric soundings to Chart datum difficult. To address this problem, CHS and NRCan/CGS have collaborated to produce a Continuous Vertical Datum for Canadian Waters (CVDCW), which incorporates data from NRCan's geoid model, tide gauge and GPS data, satellite altimetry, and ocean models. Thus high precision positioning provides ellipsoidal heights for the bathymetric depths, and the CVDCW allows to correct these ellipsoidal heights to chart datum. Comparisons of the bathymetry from the pilot survey corrected for tide data versus the bathymetry referred to its ellipsoidal height corrected to chart datum with the CVDCW are given to demonstrate the relative changes to the depths. This also illustrates the advantage of a continuous vertical datum with its potential to be combined with real-time high precision positioning.

  10. Colloid mobilization and transport during capillary fringe fluctuations. (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L


    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  11. 3D mapping of breast surface using digital fringe projection (United States)

    Vairavan, Rajendaran; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Leng, Lai Siang; Wan Norhaimi, Wan Mokhzani; Marimuthu, Rajeswaran; Abdullah, Othman; Kirtsaeng, Supap


    Optical sensing technique has inherited non-contact nature for generating 3D surface mapping where its application ranges from MEMS component characterization, corrosion analysis, and vibration analysis. In particular, the digital fringe projection is utilized for 3D mapping of objects through the illumination of structured light for medical application extending from oral dental measurements, lower back deformation analysis, monitoring of scoliosis and 3D face reconstruction for biometric identification. However, the usage of digital fringe projection for 3D mapping of human breast is very minimal. Thus, this paper addresses the application of digital fringe projection for 3D mapping of breast surface based on total non-contact nature. In this work, phase shift method is utilized to perform the 3D mapping. The phase shifted fringe pattern are displayed through a digital projector onto the breast surface, and the distorted fringe patterns are captured by a CCD camera. A phase map is produced, and phase unwrapping was executed to obtain the 3D surface mapping of the breast. The surface height profile from 3D fringe projection was compared with the surface height measured by a direct method using electronic digital vernier caliper. Preliminary results showed the feasibility of digital fringe projection in providing a 3D mapping of breast and its application could be further extended for breast carcinoma detection.

  12. High-precision /sup 40/Ar//sup 39/Ar ages of widespread Oligocene ash-flow tuff sheets near Socorro, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Kedzie, L.L.; Sutter, J.F.; Chapin, C.E.


    High-precision /sup 40/Ar//sup 39/Ar age spectrum dating on 5 ash-flow tuff sheets erupted from a group of cauldrons in the Mogollon-Datil volcanic field near Socorro, New Mexico, has produced a precise stratigraphic framework. Previous dating by K-Ar and fission-track methods was not precise enough to distinguish units erupted during a short time (1 million-2 million years), and many K-Ar analyses of cogenetic biotite and Na-sanidine yielded discordant ages. The five units and their high-precision /sup 40/Ar//sup 39/Ar ages, compared to an adopted age of 519.4 Ma for the McClure Mountain hornblende standard (MMhb-1), are listed in ascending stratigraphic order: Hells Mesa Tuff, 32.04 Ma; La Jencia Tuff, 28.76 Ma; Vicks Peak Tuff, 28.46 Ma; Lemitar Tuff, 27.95 Ma; South Canyon Tuff, 27.36 Ma. The temporal resolution for each unit is about 150,000 years. Na-sanidines yield the most concordant age spectra; however, plateau ages of cogenetic sanidine and biotite are equivalent for most samples. Preliminary investigations suggest that the approximately 3.3-million-year hiatus between the Hells Mesa and La Jencia Tuffs may represent a regional lull in volcanic activity. If so, ash-flow tuffs erupted after the hiatus are unlikely to have been derived by differentiation from magmas that produced the underlying volcanic units. Eruption of 4 major ash-flow sheets in 1 million-1.5 million years following the hiatus coincides with the onset of strong, regional extension in the Rio Grande rift and may represent a different magma genesis.

  13. High precision measurement of the {eta} meson mass at COSY-ANKE

    Energy Technology Data Exchange (ETDEWEB)

    Goslawski, Paul


    Previous measurements of the {eta} meson mass performed at different experimental facilities resulted in very precise data but differ by up to more than eight standard deviations, i.e., 0.5 MeV/c. Interestingly, the difference seems to be dependent on the measuring method: two missing mass experiments, which produce the {eta} meson in the {sup 3}He{eta} final state, deviate from the recent invariant mass ones. In order to clarify this ambiguous situation a high precision mass measurement was realised at the COSY-ANKE facility. Therefore, a set of deuteron laboratory beam momenta and their associated {sup 3}He centre-of-mass momenta was measured in the dp{yields}{sup 3}HeX reaction near the {eta} production threshold. The {eta} meson was identified by the missing mass peak, whereas its mass was extracted by fixing the production threshold. The individual beam momenta were determined with a relative precision of 3 x 10{sup -5} for values just above 3 GeV/c by using a polarised deuteron beam and inducing an artificial depolarising spin resonance occurring at a well-defined frequency. The final state momenta in the two-body reaction dp{yields}{sup 3}He{eta} were investigated in detail by studying the size of the {sup 3}He momentum sphere with the forward detection system of the ANKE spectrometer. Final alignment and momentum calibration of the spectrometer was achieved by a comprehensive study of the {sup 3}He final state momenta as a function of the centre-of-mass angles, taking advantage of the full geometrical acceptance. The value obtained for the mass at COSY-ANKE m{sub {eta}}=(547.873{+-}0.005{sub stat.}{+-}0.027{sub syst.}) MeV/c{sup 2} is therefore worldwide the most precise one. This mass value is contrary to earlier missing mass experiments but it is consistent and competitive with recent invariant mass measurements, in which the meson was detected through its decay products.

  14. CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits (United States)

    Cessa, V.; Beck, T.; Benz, W.; Broeg, C.; Ehrenreich, D.; Fortier, A.; Peter, G.; Magrin, D.; Pagano, I.; Plesseria, J.-Y.; Steller, M.; Szoke, J.; Thomas, N.; Ragazzoni, R.; Wildi, F.


    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry whose launch readiness is expected end 2017. The CHEOPS instrument will be the first space telescope dedicated to search for transits on bright stars already known to host planets. By being able to point at nearly any location on the sky, it will provide the unique capability of determining accurate radii for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. CHEOPS will also provide precision radii for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The main science goals of the CHEOPS mission will be to study the structure of exoplanets with radii typically ranging from 1 to 6 Earth radii orbiting bright stars. With an accurate knowledge of masses and radii for an unprecedented sample of planets, CHEOPS will set new constraints on the structure and hence on the formation and evolution of planets in this mass range. To reach its goals CHEOPS will measure photometric signals with a precision of 20 ppm in 6 hours of integration time for a 9th magnitude star. This corresponds to a signal to noise of 5 for a transit of an Earth-sized planet orbiting a solar-sized star (0.9 solar radii). This precision will be achieved by using a single frame-transfer backside illuminated CCD detector cool down at 233K and stabilized within {10 mK . The CHEOPS optical design is based on a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star while minimizing straylight using a dedicated field stop and baffle system. As CHEOPS will be in a LEO orbit, straylight suppression is a key point to allow the observation of faint stars. The telescope will be the only payload on a spacecraft platform providing pointing stability of cost

  15. High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age (United States)

    Nissen, P. E.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Collet, R.; Grundahl, F.; Slumstrup, D.


    Context. A previous study of solar twin stars has revealed the existence of correlations between some abundance ratios and stellar age providing new knowledge about nucleosynthesis and Galactic chemical evolution. Aims: High-precision abundances of elements are determined for stars with asteroseismic ages in order to test the solar twin relations. Methods: HARPS-N spectra with signal-to-noise ratios S/N ≳ 250 and MARCS model atmospheres were used to derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B) selected to have metallicities in the range - 0.15 LTE iron abundances derived from Fe I and Fe II lines. Available non-LTE corrections were also applied when deriving abundances of the other elements. Results: The abundances of the Kepler stars support the [X/Fe]-age relations previously found for solar twins. [Mg/Fe], [Al/Fe], and [Zn/Fe] decrease by 0.1 dex over the lifetime of the Galactic thin disk due to delayed contribution of iron from Type Ia supernovae relative to prompt production of Mg, Al, and Zn in Type II supernovae. [Y/Mg] and [Y/Al], on the other hand, increase by 0.3 dex, which can be explained by an increasing contribution of s-process elements from low-mass AGB stars as time goes on. The trends of [C/Fe] and [O/Fe] are more complicated due to variations of the ratio between refractory and volatile elements among stars of similar age. Two stars with about the same age as the Sun show very different trends of [X/H] as a function of elemental condensation temperature Tc and for 16 Cyg, the two components have an abundance difference, which increases with Tc. These anomalies may be connected to planet-star interactions. Based on spectra obtained with HARPS-N@TNG under programme A33TAC_1.Tables 1 and 2 are also available at the CDS via anonymous ftp to ( or via http://cdsarc

  16. Correlation analysis of high precision blood flow imaging in secondary parathyroid function in maintenance hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Wen-Ze Du


    Full Text Available Objective: To investigate the value of high precision blood flow imaging (Fine-Flow in secondary parathyroid function (SHPT in patients with maintenance hemodialysis (MHD. Methods: A total of 95 MHD patients with SHPT in our hospital from January 2015 to June 2016 were selected as the research object. According to the Fine-Flow examination of parathyroid gland, 73 cases were divided into display group, 22 cases were not shown; Display group according to the hyperplasia of parathyroid diameter were divided into 1.5 cm group of 17 cases; display group according to the blood flow into the rich group of 41 cases, not rich group of 32 cases; according to whether calcification were divided into calcification group of 43 cases, non calcified group of 30 cases. CDFI was used for the anterior region of neck transverse and longitudinal scanning, check the thyroid and around the dorsal lobes.The size, echo, lesion number and blood flow were measured, parathyroid hormone (PTH, serum calcium (Ca, phosphorus (P, and calculate the Ca and P product (Ca×P were measured. Results: PTH and Ca of the display group were significantly higher than that of the non display group, and differences in P and Ca×P were not statistically significant; Parathyroid diameter >1.5 cm PTH levels were significantly higher than the other three groups, diameter 1-1.5 cm group and >1.5 cm group Ca, diameter Ca×P was higher than that in group <5 cm and 0.5-1.0 cm group, difference in P of four groups was not statistical significant; group PTH, P, abundant blood flow Ca×P were not significantly higher than the rich group, difference in P of two groups was no statistical significance; group Ca was significantly higher than that of calcification calcification group, differences in PTH, P, Ca×P of the two groups were not statistically significant. Conclusions: MHD patients with SHPT, parathyroid Fine-Flow display rate is high, and has the characteristic performance. Its operation is

  17. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition (United States)

    Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.


    An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require

  18. High-precision measurement of tidal current structures using coastal acoustic tomography (United States)

    Zhang, Chuanzheng; Zhu, Xiao-Hua; Zhu, Ze-Nan; Liu, Wenhu; Zhang, Zhongzhe; Fan, Xiaopeng; Zhao, Ruixiang; Dong, Menghong; Wang, Min


    A high-precision coastal acoustic tomography (CAT) experiment for reconstructing the current variation in Dalian Bay (DLB) was successfully conducted by 11 coastal acoustic tomography systems during March 7-8, 2015. The horizontal distributions of tidal currents and residual currents were mapped well by the inverse method, which used reciprocal travel time data along 51 successful sound transmission rays. The semi-diurnal tide is dominant in DLB, with a maximum speed of 0.69 m s-1 at the eastern and southwestern parts near the bay mouth that gradually decreases toward the inner bay with an average velocity of 0.31 m s-1. The residual current enters the observational domain from the two flanks of the bay mouth and flows out in the inner bay. One anticyclone and one cyclone were noted inside DLB as was one cyclone at the bay mouth. The maximum residual current in the observational domain reached 0.11 m s-1, with a mean residual current of 0.03 m s-1. The upper 15-m depth-averaged inverse velocities were in excellent agreement with the moored Acoustic Doppler Current Profiler (ADCP) at the center of the bay, with a root-mean-square difference (RMSD) of 0.04 m s-1 for the eastward and northward components. The precision of the present tomography measurements was the highest thus far owing to the largest number of transmission rays ever recorded. Sensitivity experiments showed that the RMSD between CAT and moored-ADCP increased from 0.04 m s-1 to 0.08 m s-1 for both the eastward and northward velocities when reducing the number of transmission rays from 51 to 11. The observational accuracy was determined by the spatial resolution of acoustic ray in the CAT measurements. The cost-optimal scheme consisted of 29 transmission rays with a spatial resolution of acoustic ray of 2.03 √{ km2 / ray numbers } . Moreover, a dynamic analysis of the residual currents showed that the horizontal pressure gradient of residual sea level and Coriolis force contribute 38.3% and 36

  19. Electron beam phase-space measurement using a high-precision tomography technique

    Directory of Open Access Journals (Sweden)

    V. Yakimenko


    Full Text Available We report a measurement of the multidimensional phase-space density distribution of an electron bunch. The measurement combines the techniques of picosecond slice-emittance measurement and high-resolution tomographic measurement of transverse phase space. This technique should have a significant impact on the development of low emittance beams and their many applications, such as short-wavelength free-electron lasers and laser accelerators. A diagnostic that provides detailed information on the density distribution of the electron bunch in multidimensional phase space is an essential tool for obtaining a small emittance at a reasonable charge and for understanding the physics of emittance growth. We previously reported a measurement of the slice emittance of a picosecond electron beam [J. S. Fraser, R. L. Sheffield, and E. R. Gray, Nucl. Instrum. Methods Phys. Res., Sect. A 250, 71 (1986.]. The tomographic reconstruction of the phase space was suggested [X. Qiu, K. Batchelor, I. Ben-Zvi, and X. J. Wang, Phys. Rev. Lett. 76, 3723 (1996.] and implemented [C. B. McKee, P. G. O’Shea, and J. M. J. Madey, Nucl. Instrum. Methods Phys. Res., Sect. A 358, 264 (1995; I. Ben-Zvi, J. X. Qiu, and X. J. Wang, in Proceedings of the Particle Accelerator Conference, Vancouver, 1997 (IEEE, Piscataway, NJ, 1997.] using a single quadrupole scan. In the present work we expand the tomographic reconstruction work and combine it with the slice-emittance method. Our present tomographic work pays special attention to the accuracy of the phase-space reconstruction. We use a transport line with nine focusing magnets, and present an analysis and technique aimed at the control of the optical functions and phases. This high-precision phase-space tomography together with the ability to modify the radial charge distribution of the electron beam presents an opportunity to improve the emittance and apply nonlinear radial emittance corrections. Combining the

  20. Advanced navigation and guidance for high-precision planetary landing on Mars (United States)

    Levesque, Jean-Francois

    Several international missions scheduled for years 2011--2013 have as objective a Mars surface sample return to Earth. In order to gather samples of high scientific quality, these missions require precise landing at preselected locations on Mars. Since the previous missions on Mars have flown unguided and highly inaccurate atmospheric entry, a new generation of landing systems must be developed. It was demonstrated by Wolf et al., [2004] that the most efficient way to increase the landing accuracy is achieved during the atmospheric entry by steering the vehicle trajectory in order to eliminate the dispersions caused at entry and accumulated during the hypersonic phase. Thus, the research project proposed here will investigate the problem and bring advances on atmospheric entry navigation, guidance and control techniques applied to atmospheric entry on Mars. The state-of-the-art revealed several limitations on the current techniques such as the lack of proper navigation system and the inability to guide the trajectory efficiently in presence of disturbances and entry conditions uncertainties. On the theoretical side, the nonlinear state estimators required for navigation use algorithms that are a heavy computational burden for the onboard processor. Following these limitations, the research presented in this document is conducted along three paths: estimation theory, entry navigation techniques and entry guidance techniques in order to investigate on advances to achieve high precision landing. After an in-depth investigation of the theoretical background required to understand the atmospheric entry dynamics, a number of issues are addressed and the following substantial contributions regarding Mars atmospheric entry navigation and guidance are achieved. (C1) A theoretical improvement of the unscented Kalman Filter by merging two variants in the literature. The resulting technique has the advantages of both former algorithms. (C2) Four navigation concepts using

  1. High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard


    This innovation has been developed to improve the resolutions of future spacebased active and passive microwave antennas for earth-science remote sensing missions by maintaining surface figure precisions of large membrane/thin-shell reflectors during orbiting. The intention is for these sensing instruments to be deployable at orbit altitudes one or two orders of magnitude higher than Low Earth Orbit (LEO), but still being able to acquire measurements at spatial resolution and sensitivity similar to those of LEO. Because active and passive microwave remote sensors are able to penetrate through clouds to acquire vertical profile measurements of geophysical parameters, it is desirable to elevate them to the higher orbits to obtain orbital geometries that offer large spatial coverage and more frequent observations. This capability is essential for monitoring and for detailed understanding of the life cycles of natural hazards, such as hurricanes, tropical storms, flash floods, and tsunamis. Major components of this high-precision antenna-surface-control system include a membrane/thin shell reflector, a metrology sensor, a controller, actuators, and corresponding power amplifier and signal conditioning electronics (see figure). Actuators are attached to the back of the reflector to produce contraction/ expansion forces to adjust the shape of the thin-material reflector. The wavefront-sensing metrology system continuously measures the surface figure of the reflector, converts the surface figure to digital data and feeds the data to the controller. The controller determines the control parameters and generates commands to the actuator system. The flexible, piezoelectric polymer actuators are thus activated, providing the control forces needed to correct any distortions that exist in the reflector surface. Piezoelectric polymer actuators are very thin and flexible. They can be implemented on the back of the membrane/thin-shell reflector without introducing significant

  2. High-precision measurement of strong-interaction effects in pionic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Thomas


    The hadronic ground state shift {epsilon}{sub 1s} and width {gamma}{sub 1s} in pionic deuterium were measured with high precision at the pion factory of the Paul Scherrer Institut (PSI), Switzerland (PSI-Experiment R-06.03). In this experiment the {pi}D(3p-1s) X-ray transition of about 3 keV was measured using a high-resolution Bragg crystal spectrometer equipped with a large-area position sensitive CCD detector. The characteristic X-radiation stems from a de-excitation cascade of the pionic atom. In order to produce an intense X-ray source, the cyclotron trap was used to stop pions in a cryogenic D{sub 2} target after winding up the pion beam in a magnetic field. The hadronic shift {epsilon}{sub 1s} is obtained from the measured transition energy by comparison to the pure electromagnetic value, where the determination of the broadening {gamma}{sub 1s} requires the precise knowledge of the spectrometer response, obtained from measurements of narrow X-ray transitions from highly ionised atoms, produced in an electron cyclotron resonance ion trap. As the formation rate is assumed to be density dependent, the {pi}D(3p-1s) X-ray energy was measured at three different D{sub 2} pressures. Another cascade process (Coulomb de-excitation) transforms the energy release of de-excitation steps into kinetic energy of the collision partners leading to a Doppler broadening of subsequent X-ray transitions. The hadronic broadening {gamma}{sub 1s} is only obtained after deconvolution of the spectrometer response function and the contributions from Doppler broadening. No energy dependence of the {pi}D(3p-1s) was found, and it is concluded that radiative de-excitation from molecular states is negligible within the experimental accuracy. Hence, the result for the shift reads {epsilon}{sub 1s} = (-2.325{+-}0.031) eV, corresponding to an accuracy of 1.3% and represents the average of the three measured densities. The uncertainty is dominated by the accuracy of the gallium K{alpha}{sub 2

  3. VeloTT tracking for LHCb Run II

    CERN Document Server

    Bowen, Espen Eie; Tresch, Marco


    This note describes track reconstruction in the LHCb tracking system upstream of the magnet, combining VELO tracks with hits in the TT sub-detector. The implementation of the VeloTT algorithm and its performance in terms of track reconstruction efficiency, ghost rate and execution time are presented. The algorithm has been rewritten for use in the first software trigger level for LHCb Run II. The momentum and charge information obtained for the VeloTT tracks (due to a fringe magnetic field between the VELO and TT sub-detectors) can reduce the total execution time for the full tracking sequence.

  4. High Precision Position Control of Electro-Hydraulic Servo System Based on Feed-Forward Compensation


    Yao Jian-jun; Di Duo-tao; Jiang Gui-lin; Liu. Sheng


    The study is focused on an electro-hydraulic servo system which is a position control system. It is a non-minimum phase system when it was discretized with a certain sample time. To improve its tracking performance and extend its bandwidth, based on invariance principle, feed-forward compensation is developed by pole-zero placement theory for the system. The task is accomplished by transforming instable zero of the system into pole of the fitted closed-loop transfer function, forming the zero...

  5. Coherent Integrations, Fringe Modeling, and Bootstrapping With the NPOI

    National Research Council Canada - National Science Library

    Jorgensen, Anders M; Mozurkewich, Dave; Schmitt, Henrique; Armstrong, J. T; Gilbreath, G. C; Hindsley, Robert; Pauls, Thomas A; Peterson, Deane M


    .... It causes fringes to move on ms time-scales, forcing very short exposures. Because of the semi-random phase shifts, the traditional approach averages exposure power spectra to build signal-to-noise ratio (SNR...

  6. Transverse vertical dispersion in groundwater and the capillary fringe. (United States)

    Klenk, I D; Grathwohl, P


    Transverse dispersion is the most relevant process in mass transfer of contaminants across the capillary fringe (both directions), dilution of contaminants, and mixing of electron acceptors and electron donors in biodegrading groundwater plumes. This paper gives an overview on literature values of transverse vertical dispersivities alpha(tv) measured at different flow velocities and compares them to results from well-controlled laboratory-tank experiments on mass transfer of trichloroethene (TCE) across the capillary fringe. The measured values of transverse vertical dispersion in the capillary fringe region were larger than in fully saturated media, which is credited to enhanced tortuosity of the flow paths due to entrapped air within the capillary fringe. In all cases, the values observed for alpha(tv) were model, based on the mean square displacement and the pore size accounting for only partial diffusive mixing at increasing flow velocities, shows very good agreement with measured and published data.

  7. 3D information detection with novel five composite fringe patterns (United States)

    Deng, Huaxia; Deng, Ji; Ma, Mengchao; Zhang, Jin; Yu, Liandong; Wang, Ziming


    A novel phase unwrapping method with five composite fringe patterns and phase-shifting method was proposed for three-dimensional information detection. The composite fringe patterns were composed of phase-shifted sinusoidal and stair phase-coding fringe patterns. The fringe patterns are five step phase-shifted. The relative phase and the stair code-words can be obtained simultaneously based on the five step phase-shifting algorithm. The monochrome composite structure has the improvement on the measurement speed and has the potential of solving the problem of color coupling and color imbalance. Combined with the modified minimum phase map theory, this method can provide more code-words for the full field measurement. Simulation and experimental results were presented in the final part to verify the flexibility and feasibility of the proposed method.

  8. Does Gender Influence the Provision of Fringe Benefits?

    DEFF Research Database (Denmark)

    Rand, John; Tarp, Finn


    leave, social benefits, and health insurance. This gender effect exists especially with regard to mandatory social insurance and is robust to the inclusion of standard determinants of wage compensation. The study also explores whether this finding is linked to gender differences in social networks......This contribution studies the provision of fringe benefits using a unique survey of small and medium-sized enterprises (SMEs) in Vietnam. Analysis of the survey reveals that women who own SMEs are more likely than men who own similar firms to provide employees with fringe benefits such as annual...... and workforce structure, worker recruitment mechanisms, and the degree of unionization. However, these factors cannot fully account for the observed differences in fringe benefits along the “gender of owner” dimension. There remains a sizable and unexplained fringe benefits premium paid to employees in women...

  9. Minimizing Fizeau Fringes During the Contact Printing of Diffraction Gratings

    Energy Technology Data Exchange (ETDEWEB)

    Ciarlo, D; Rushford, M; Kuzmenko, P; Ge, J


    An index matching fluid has been used to minimize the effect of interference fringes which develop when contact printing diffraction gratings on silicon wafers. These fringes are the result of interference effects when there is a small but uneven gap between the photomask and resist surface. They are especially troublesome when printing and etching large area, coarse diffraction gratings on the surface of silicon wafers and silicon disks.

  10. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition. (United States)

    Boehme, Mario; Ionescu, Emanuel; Fu, Ganhua; Ensinger, Wolfgang


    Conductive nanotubes consisting of indium tin oxide (ITO) were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs) with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  11. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme


    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  12. Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers

    Directory of Open Access Journals (Sweden)

    M. Gisi


    Full Text Available A new system to very precisely couple radiation of a moving source into a Fourier Transform Infrared (FTIR Spectrometer is presented. The Camtracker consists of a homemade altazimuthal solar tracker, a digital camera and a homemade program to process the camera data and to control the motion of the tracker. The key idea is to evaluate the image of the radiation source on the entrance field stop of the spectrometer. We prove that the system reaches tracking accuracies of about 10 arc s for a ground-based solar absorption FTIR spectrometer, which is significantly better than current solar trackers. Moreover, due to the incorporation of a camera, the new system allows to document residual pointing errors and to point onto the solar disk center even in case of variable intensity distributions across the source due to cirrus or haze.

  13. A High-precision Study Of The $z\\sp0$ Resonance At Opal (z Boson, Electroweek Standard Model)

    CERN Document Server

    Martínez-German, R


    The subject of this dissertation is the measurement of the properties of the Z0 gauge boson made by the OPAL collaboration. The results presented here constitute one of the main goals of the LEP project at CERN: the determination of a few basic parameters of nature, principally the Z 0 mass and its total decay width, as well as its couplings to all of its decay products. Thanks to the excellent performance of the LEP accelerator providing high luminosity with low backgrounds and extremely precise energy calibration, to the installation of a high precision small angle Bhabha luminometer: the Silicon-Tungsten detector (SiW), the careful analysis of event selection efficiencies, and to the increase in the theoretical knowledge of higher order corrections, the high precision finally achieved on these measurements allows the most stringent tests of the electroweak Standard Model of particle physics which have yet been made 1ù...

  14. A Multi-Channel, High-Precision Sensor Interface for Low-Power Applications – ZMD21013

    Directory of Open Access Journals (Sweden)

    Dr. Marko Mailand


    Full Text Available Today’s markets are eager for high precision combined with minimum power consumption in almost every technical application area. Detection, processing and analysis of environmental changes have also come to the fore. To address these additional requirements, well-designed sensors and sensor-interface systems are becoming essential for future technologies. To push forward to mobile sensor applications, designers must achieve both lower power consumption and better data accuracy. To support this demand, ZMD has developed the ZMD21013, a high-precision, low-power resistive sensor interface integrated circuit, which can enable implementing a large variety of sensors in mobile, battery-based applications. The IC provides programmable amplification and analog-to-digital (A/D conversion of the applied sensor signal with optional temperature and auto-zero measurements. The ZMD21013 is optimized for low voltage and low power resistive sensor bridge applications, such as battery-operated consumer or industrial products.

  15. Status update on the NIFFTE high precision fission cross section measurement program

    Energy Technology Data Exchange (ETDEWEB)

    Laptev, Alexander B [Los Alamos National Laboratory; Tovesson, Fredrik [Los Alamos National Laboratory; Burgett, Eric [GEORGIA INSTITUTE OF TECH; Greife, Uwe [COLORADO SCHOOL OF THE MINES; Grimes, Steven [OHIO UNIV; Heffner, Michael D [LLNL; Hertel, Nolan E [GEORGIA INSTITUTE OF TECH; Hill, Tony [IDAHO NATIONAL LABORATORY; Isenhower, Donald [ABILENE CHRISTIN UNIV; Klay, Jennifer L [CALIFORNIA POLYTECHNIC STATE UNIV; Kornilov, Nickolay [OHIO UNIV; Kudo, Ryuho [CALIFORNIA POLYTECHNIC STATE UNIV; Loveland, Walter [OREGON STATE UNIV; Massey, Thomas [OHIO UNIV; Mc Grath, Chris [IDAHO NATIONAL LABORATORY; Pickle, Nathan [ABILENE CHRISTIAN UNIV; Qu, Hai [ABILENE CHRISTIAN UNIV; Sharma, Sarvagya [ABILENE CHRISTIAN UNIV; Snyder, Lucas [COLORADO SCHOOL OF THE MINES; Thornton, Tyler [ABILENE CHRISTIAN UNIV; Towell, Rusty S [ABILENE CHRISTIAN UNIV; Watson, Shon [ABILENE CHRISTIAN UNIV


    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ({sup 235}U, {sup 239}Pu, {sup 238}U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of {sup 235}U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in {sup 235}U.

  16. Investigating uptake of N2O in agricultural soils using a high-precision dynamic chamber method (United States)

    Cowan, Nicholas


    Uptake (or negative flux) of nitrous oxide (N2O) in agricultural soils is a controversial issue which has proved difficult to investigate in the past due to constraints such as instrumental precision and methodological uncertainties. Using a recently developed high-precision quantum cascade laser gas analyser combined with a closed dynamic chamber, a well-defined detection limit of 4 μgN2O-Nm

  17. DInSAR fringes simulation of sandbox models (United States)

    Derron, Marc-Henri; Carrea, Dario; Michoud, Clément; Jaboyedoff, Michel


    Interpreting satellite DInSAR patterns of slope movements can be difficult because of unwrapping problems, loss of coherence or radar imaging geometry limitations (layover, shadowing …). We investigate the potential of simulating interferometric fringes as a tool to help understanding real DInSAR images. Various types of gravitational slope deformations (sliding, toppling …) have been produced in a sandbox in the lab. These experiments were monitored with a micro-lidar Minolta-Konika Vivid 9i to get successive Digital Elevation Models of the surface. A pair of DEM is then used to simulate DInSAR fringes patterns, with the possibility to vary the wavelength, the angle between the line of sight and the ground displacement, the look angle, the baseline, etc. DInSAR fringes simulated here are idealized. They are not affected by any noise, decoherence, layover or shadow effects; radar image deformations are computed in ancillary files. However it appears that even these ideal wrapped fringes patterns get rapidly very complex when deformation is strong. Then this kind of tool is of interest to better constrain ground surface deformations from resulting InSAR fringes (from lab models or real landslides data). It makes also possible to test how the acquisition geometry impacts the InSAR result depending on the type of slope movement considered.

  18. Novel fringe scanning/Fourier transform method of synthetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T.M.; Albano, R.K.


    We have developed a one-dimensional theory and a computer model for synthetically imaging scenes using a novel fringe scanning/Fourier transform technique. Our method probes a scene using two interfering beams of slightly different frequency. These beams form a moving fringe pattern which scans the scene and resonates with any spatial frequency components having the same spatial frequency as the scanning fringe pattern. A simple, non-imaging detector above the scene observes any scattered radiation from the scene falling onto it. If a resonance occurs between the scanning fringe pattern and the scene, then the scattered radiation will be modulated at the difference frequency between the two probing beams. By changing the spatial period of the fringe pattern and then measuring the amplitude and phase of the modulated radiation that is scattered from the scene, the Fourier amplitudes and phases of the different spatial frequency components making up the scene can be measured. A synthetic image of the scene being probed can be generated from this Fourier amplitude and phase data by taking the inverse Fourier transform of this information. This technique could be used to image objects using light, ultrasonic, or other electromagnetic or acoustic waves.

  19. Digital fringe projection for hand surface coordinate variation analysis caused by osteoarthritis (United States)

    Nor Haimi, Wan Mokhdzani Wan; Hau Tan, Cheek; Retnasamy, Vithyacharan; Vairavan, Rajendaran; Sauli, Zaliman; Roshidah Yusof, Nor; Hambali, Nor Azura Malini Ahmad; Aziz, Muhammad Hafiz Ab; Bakhit, Ahmad Syahir Ahmad


    Hand osteoarthritis is one of the most common forms of arthritis which impact millions of people worldwide. The disabling problem occurs when the protective cartilage on the boundaries of bones wear off over time. Currently, in order to identify hand osteoarthritis, special instruments namely X-ray scanning and MRI are used for the detection but it also has its limitations such as radiation exposure and can be quite costly. In this work, an optical metrology system based on digital fringe projection which comprises of an LCD projector, CCD camera and a personal computer has been developed to anticipate abnormal growth or deformation on the joints of the hand which are common symptoms of osteoarthritis. The main concept of this optical metrology system is to apply structured light as imaging source for surface change detection. The imaging source utilizes fringe patterns generated by C++ programming and is shifted by 3 phase shifts based on the 3 steps 2 shifts method. Phase wrapping technique and analysis were applied in order to detect the deformation of live subjects. The result has demonstrated a successful method of hand deformation detection based on the pixel tracking differences of a normal and deformed state.

  20. Beyond the Fringe: The Role of Recreation in Multi-Functional Urban Fringe Landscapes

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper reviews some of the academic literature and policy documents that relate to and promote the need for urban design and the re-invigoration of the processes and practices of ‘masterplanning’. Specifically, this paper concerns the implications for recreation in areas that have been conceptualised in a number of ways including ‘urban fringe’ and ‘fringe-belt’ and the ways in which these areas are being re-developed as multi-functional spaces in the planning process. The paper pays particular attention to the proposed development of the ‘North Plymouth Community Park’ examining the claims made for the sustainable characteristics of the development and questioning the absence of the cultural aspects of recreation.

  1. Comparison of infinite and wedge fringe settings in Mach Zehnder interferometer for temperature field measurement

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Divya [Department of Physics, National Institute of Technology Calicut, Kerala, 673601 (India); P, Vibin Antony; Sajith, V.; Sobhan, C. B. [School of Nano Science and Technology, National Institute of Technology Calicut, Kerala, 673601 (India)


    Interferometric method, which utilizes the interference of coherent light beams, is used to determine the temperature distribution in the vicinity of a vertical heater plate. The optical components are arranged so as to obtain wedge fringe and infinite fringe patterns and isotherms obtained in each case were compared. In wedge fringe setting, image processing techniques has been used for obtaining isotherms by digital subtraction of initial parallel fringe pattern from deformed fringe pattern. The experimental results obtained are compared with theoretical correlations. The merits and demerits of the fringe analysis techniques are discussed on the basis of the experimental results.

  2. The quest for synergy when developing the urban fringe

    DEFF Research Database (Denmark)

    Hansen, Jesper Rohr; Engberg, Lars A.

    How can planning policies related to urban fringe development and disadvantaged neighbourhoods create synergy? This question is approached and answered by various research fields and explored on various urban-planning levels, displaying case-studies related to urban regeneration, post-industrial...... and suburban development and urban fringe literature. The present paper adds to these discussions by analysing two case-studies in Denmark in which local government pursue traditional urban-growth strategies in urban-fringe development - a post-industrial harbour and a large suburb, located just outside...... the traditional city core. However, the traditional approach to growth is in both cases confronted with the presence of close-by disadvantaged neighbourhoods. Stakeholders are engaged in the difficult quest of creating synergy for both development and disadvantage by means of public investments. The paper...

  3. On the effects of fringe fields in the LHC ring

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F.


    The effects of the dipole and quadrupole fringe fields on such machine parameters as chromaticity, anharmonicity, closed orbit, etc are investigated by stepwise ray-tracing in the Version 4 of the LHC RING. First the ray-tracing method is described, then follows an overview of the relevant LHC characteristics and in particular the fringe filed data and the corresponding field models. Some key points concerning the application to the ray-tracing in the LHC ring are emphasized. Then follows a detailed study of the machine parameters. (author). 10 refs.

  4. Flexible geometrical calibration for fringe-reflection 3D measurement. (United States)

    Xiao, Yong-Liang; Su, Xianyu; Chen, Wenjing


    System geometrical calibration is a challenging task in fringe-reflection 3D measurement because the fringe displayed on the LCD screen does not lie within the camera's field of view. Commonly, a flat mirror with markers can accomplish system geometrical calibration. However, the position of the markers must be precisely located by photogrammetry in advance. In this Letter, we introduce a calibration method by use of a markerless flat mirror. Experiments in phase measuring deflectometry demonstrate that the proposed method is simple and flexible.

  5. Optimized fringe patterns based on dual-frequency phase-shift technology in fringe projection profilometry (United States)

    Yu, Hao; Lin, Liangzhao; Li, Xiaoying; Lu, Xiaoxu; Zhong, Liyun; Liu, Shengde


    A look-up table (LUT) method for solving the problem of phase unwrapping is presented. Considering the effect of noise on the unwrapping process, a concept called "tolerance" is advanced, and an associated algorithm called the "equipartition of tolerance" algorithm is proposed. The proposed algorithm eliminates the need for a high signal-to-noise ratio while retaining the LUT method's advantages of extended measurement range and high precision. Further, it improves the tolerance of the LUT method and enables reconstruction of discontinuous objects. In simulations and experiments conducted, the proposed algorithm successfully unwrapped the absolute phase of a slope model and a three-step model. The proposed algorithm is significantly more accurate and has better stability and sensitivity than the heterodyne algorithm.

  6. A new, highly precise measurement technology for the in vitro evaluation of the accuracy of digital imaging data. (United States)

    von Wilmowsky, Cornelius; Bergauer, Bastian; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Neuhuber, Winfried; Lell, Michael; Keller, Andrea; Eitner, Stephan; Matta, Ragai-Edward


    Three-dimensional radiological imaging data play an increasingly role in planning, simulation, and navigation in oral and maxillofacial surgery. The aim of this study was to establish a new, highly precise, in vitro measurement technology for the evaluation of the geometric accuracy down to the micrometric range of digital imaging data. A macerated human mandible was scanned optically with an industrial, non-contact, white light scanner, and a three-dimensional (3D) model was obtained, which served as a master model. The mandible was then scanned 10 times by cone beam computed tomography (CBCT), and the generated 3D surface bone model was virtually compared with the master model. To evaluate the accuracy of the CBCT scans, the standard deviation and the intraclass coefficient were determined. A total of 19 measurement points in 10 CBCT scans were investigated, and showed an average value of 0.2676 mm with a standard deviation of 0.0593 mm. The standard error of the mean was 0.0043 mm. The intraclass correlation coefficient (ICC) within the 10 CBCT scans was 0.9416. This highly precise measuring technology was demonstrated to be appropriate for the evaluation of the accuracy of digital imaging data, down to the micrometric scale. This method is able to exclude human measurement errors, as the software calculates the superimposition and deviation. Thus inaccuracies caused by measurement errors can be avoided. This method provides a highly precise determination of deviations of different CBCT parameters and 3D models for surgical, navigational, and diagnostic purposes. Thus, surgical procedures and the post-operative outcomes can be precisely simulated to benefit the patient. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. X-Lase CoreScriber, Picosecond Fiber Laser Tool for High-Precision Scribing and Cutting of Transparent Materials (United States)

    Kivistö, S.; Amberla, T.; Konnunaho, T.; Kangastupa, J.; Sillanpää, J.

    We have developed various industrial transparent material scribing processes and a laser tool, picosecond MHz-range all- fiber laser X-Lase CoreScriber. The remarkably high peak power, exceptionally good beam quality, and integrability of the X-Lase CoreScriber combined with high achievable material processing speeds provide tempting solutions for high- precision glass processing. Here presented sapphire and Gorilla glass dicing processes are based on transparent material internal modification with short and intense high repetition rate ps-laser pulses. Increased processing speeds and cutting qualities in comparison to other conventional processing methods are presented.

  8. High-precision half-life and branching-ratio measurements for superallowed Fermi β+ emitters at TRIUMF – ISAC

    Directory of Open Access Journals (Sweden)

    Laffoley A. T.


    Full Text Available A program of high-precision half-life and branching-ratio measurements for superallowed Fermi β emitters is being carried out at TRIUMF’s Isotope Separator and Accelerator (ISAC radioactive ion beam facility. Recent half-life measurements for the superallowed decays of 14O, 18Ne, and 26Alm, as well as branching-ratio measurements for 26Alm and 74Rb are reported. These results provide demanding tests of the Standard Model and the theoretical isospin symmetry breaking (ISB corrections in superallowed Fermi β decays.

  9. Characterization of an INVS Model IV Neutron Counter for High Precision ($\\gamma,n$) Cross-Section Measurements

    CERN Document Server

    Arnold, C W; Karwowski, H J; Rich, G C; Tompkins, J R; Howell, C R


    A neutron counter designed for assay of radioactive materials has been adapted for beam experiments at TUNL. The cylindrical geometry and 64% maximum efficiency make it well suited for ($\\gamma,n$) cross-section measurements near the neutron emission threshold. A high precision characterization of the counter has been made using neutrons from several sources. Using a combination of measurements and simulations, the absolute detection efficiency of the neutron counter was determined to an accuracy of $\\pm$ 3% in the neutron energy range between 0.1 and 1 MeV. It is shown that this efficiency characterization is generally valid for a wide range of targets.

  10. Effects of the Tax Treatment of Fringe Benefits on Labor Market Segmentation. (United States)

    Scott, Frank A.; And Others


    Argues that the provision of the same fringe benefits for all workers promotes labor market segmentation by inducing workers to sort themselves across the economy according to their demand for fringe benefits. (JOW)

  11. Slab track


    Golob, Tina


    The last 160 years has been mostly used conventional track with ballasted bed, sleepers and steel rail. Ensuring the high speed rail traffic, increasing railway track capacities, providing comfortable and safe ride as well as high reliability and availability railway track, has led to development of innovative systems for railway track. The so-called slab track was first built in 1972 and since then, they have developed many different slab track systems around the world. Slab track was also b...

  12. A comparative study on the antioxidant activity of fringe tree ...

    African Journals Online (AJOL)

    Fringe tree (Chionanthus virginicus L.) is used as a raw material by pharmaceutical industries for the preparation of homeopathy tinctures. In this study, antioxidant activity of ... The both extracts neutralized the activities of radicals and inhibited the peroxidation reactions of linoleic acid emulsion. Total antioxidant activity was

  13. Impact of Forest Reserves on Livelihoods of Fringe Communities...

    African Journals Online (AJOL)


    ABSTRACT. This study looked at how the livelihoods of forest fringe communities have been affected by the constitution of four forest reserves in Brong Ahafo and Ashanti Regions of Ghana. The selec- tion of the reserves for study was based on the fact that the reserves were surrounded by a num- ber of relatively new and ...

  14. Binaural interference: effects of temporal interferer fringe and interstimulus interval. (United States)

    Camalier, Corrie R; Grantham, D Wesley; Bernstein, Leslie R


    Binaural interference refers to the phenomenon in which the potency of binaural cues conveyed by a "target" stimulus occupying one spectral region is degraded by the presence of an "interferer" stimulus occupying a spectral region remote from the target. It is typified by conditions in which thresholds for detection of interaural temporal difference conveyed by a high-frequency target are elevated when the target is accompanied by a spectrally remote low-frequency interferer. This study explored effects of temporal relations between targets and interferers on binaural interference. In the first experiment, duration by which the interferer preceded and/or trailed the target (onset and offset "fringes") was varied. Results indicated binaural interference decreased with total duration of the temporal fringe, but did not depend on whether that duration was composed of onset, offset, or onset + offset fringes. In the second experiment, binaural interference was measured as a function of the interstimulus interval (ISI) between the two presentations of the target. Results indicated that shorter ISIs increased thresholds in both the interferer and no-interferer conditions, but did not affect binaural interference. These results suggest that the mechanisms underlying the effects of manipulations of the interferer temporal fringe and manipulation of the ISI are essentially independent.

  15. 26 CFR 1.61-21 - Taxation of fringe benefits. (United States)


    ... country club or other social club, and an employer-provided ticket to an entertainment or sporting event...) Effective date. (7) Outline of this section. § 1.61-21 (b) Valuation of fringe benefits (1) In general. (2...-provided aircraft for which the employer does not furnish a pilot. § 1.61-21 (c) Special valuation rules...

  16. Improved Goldstein Interferogram Filter Based on Local Fringe Frequency Estimation. (United States)

    Feng, Qingqing; Xu, Huaping; Wu, Zhefeng; You, Yanan; Liu, Wei; Ge, Shiqi


    The quality of an interferogram, which is limited by various phase noise, will greatly affect the further processes of InSAR, such as phase unwrapping. Interferometric SAR (InSAR) geophysical measurements', such as height or displacement, phase filtering is therefore an essential step. In this work, an improved Goldstein interferogram filter is proposed to suppress the phase noise while preserving the fringe edges. First, the proposed adaptive filter step, performed before frequency estimation, is employed to improve the estimation accuracy. Subsequently, to preserve the fringe characteristics, the estimated fringe frequency in each fixed filtering patch is removed from the original noisy phase. Then, the residual phase is smoothed based on the modified Goldstein filter with its parameter alpha dependent on both the coherence map and the residual phase frequency. Finally, the filtered residual phase and the removed fringe frequency are combined to generate the filtered interferogram, with the loss of signal minimized while reducing the noise level. The effectiveness of the proposed method is verified by experimental results based on both simulated and real data.

  17. Optical coherent control in semiconductors: Fringe contrast and inhomogeneous broadening

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Vadim, Lyssenko; Hvam, Jørn Märcher


    in the interplay between the homogeneous and inhomogeneous broadenings are measured. Based on these experiments, a coherent control model describing the optical fringe contrast using different detection schemes, such as photoluminescence or four-wave mixing, is established. Significant spectral modulation...

  18. Population growth and settlement expansion in the fringes of Addis ...

    African Journals Online (AJOL)

    This study focuses on estimating the rate of urban settlement expansion in the fringes of Addis Ababa, and on examining the causes for this and the impacts it has on the livelihoods of the farming households living there. For this purpose, aerial photographs covering the study area, GIS tools and GPS were used; ...

  19. The dynamics of infragravity wave transformation over a fringing reef

    NARCIS (Netherlands)

    Pomeroy, A.; Lowe, R.; Symonds, G.; Van Dongeren, A.; Moore, C.


    A 3 week field study was conducted to investigate the dynamics of low-frequency (infragravity) wave motions over a fringing reef at Ningaloo Reef, Western Australia. Short-period wave motions (0.04–0.2 Hz) were observed to dissipate on the reef crest beyond which infragravity wave motions

  20. VISAR fringe analysis under extreme spatially varying shock loading (United States)

    Erskine, David; Fratanduono, Dayne


    Many VISAR velocity interferometers employ a streak camera to record fringes along the spatial axis (Y) of a target, versus time. When the shock loading (thus velocity history) varies rapidly versus Y, the fringe analysis challenges traditional algorithms since the Y-spacing of fringes can vary strongly with Y, and be significantly different than the uniform pre-shock (bias) spacing. For traditional colum-by-column analysis the intensity signal shape would be a sinusoid with rapidly varying frequency (chirped), which can confuse a traditional algorithm expecting a monochromatic peak in Fourier space. And for a traditional push-pull row-by-row approach, the phase steps are irregular. We describe preliminary success in analyzing such data in simulation. We find it useful to (a) separate the nonfringing component from the data early; (b) maximize linearity of a plot of fringing magnitude versus nonfringing intensity to choose optimal weight values; (c) when using a row-by-row approach sampling 0, 90, 180, and 270 degrees phase we add a fifth sample at 360 degrees, which is averaged with the 0 degree sample and replaces it. This increases the robustness to variable phase step (following P. Hariharan). The pre-shock and post-shock regions are separately processed/concatenated. Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. Livelihood trends in Response to Climate Change in Forest Fringe ...

    African Journals Online (AJOL)

    One of the forest fringe communities in Ghana where the rural livelihoods of the people have been compromised due to deforestation and climate change is the Offin basin. The removal of forests impacts on local climate, water availability, and livelihoods due to influence of forests on precipitation and water balance. Fluxes ...

  2. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    Goetzmann, Christophe


    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  3. Track reconstruction in CMS high luminosity environment

    CERN Document Server



    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  4. LHCb: The LHCb tracking concept and performance

    CERN Multimedia

    Rodrigues, E


    The LHCb tracking system is designed to reconstruct charged particle trajectories in the forward spectrometer, in view of high precision studies of CP-violating phenomena and searches for rare b-hadron decays at the LHC. The system is composed of four major subdetectors and a dedicated magnet, providing an excellent momentum resolution just above 0.4%. The tracking model is based on the innovative trajectories concept introduced by the BaBar collaboration to reconstruct and fit the tracks, and has been further developed and improved. It is now able to cope with realistic geometries and misalignments in a sophisticated, robust and detector-independent way. The LHCb tracking concept including the interplay of various complementary pattern recognition algorithms and the bi-directional Kalman fitter will be described. The current performance of the tracking, based on the latest simulations, will be presented. Recent results obtained with the first LHC beam tracks from injection tests will be discussed.

  5. Fringe Benefits and the Value of Summer Leisure for Public School Teachers in the Southeast. (United States)

    Mabry, Rodney H.; And Others

    This report focuses on the fringe benefit element of total compensation for teachers in the Southeast. Study objectives include the following: (1) identifying teachers' fringe benefits in 12 Southeastern States; (2) examining the variation in fringe benefits within the region; (3) examining whether summer free time is a benefit or detriment; and…

  6. Analysis of the Localization of Michelson Interferometer Fringes Using Fourier Optics and Temporal Coherence (United States)

    Narayanamurthy, C. S.


    Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in "Principles of Optics" by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer…

  7. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy (United States)

    Kim-Hak, David; Leuenberger, Markus; Berhanu, Tesfaye; Nyfeler, Peter; Hoffnagle, John; Sun, Minghua


    Oxygen (O2) is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis and can be used as a top-down constraint on the carbon cycle. The observed variations of oxygen in the atmosphere are relatively small, in the order of a few ppm's. This presents the main technical challenge for the measurement since a very high level of precision on a large background is required. Only few analytical methods including mass spectrometry, fuel, ultraviolet[1] and paramagnetic cells are capable of achieving it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and its oxygen isotope ratio 18O/16O. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-50%. We will present comparative test results of this instrument against the incumbent technologies such as the mass spectrometer and the paramagnetic cell. In addition, we will demonstrate its long-term stability from a field deployment in Switzerland.

  8. "High-precision, reconstructed 3D model" of skull scanned by conebeam CT: Reproducibility verified using CAD/CAM data. (United States)

    Katsumura, Seiko; Sato, Keita; Ikawa, Tomoko; Yamamura, Keiko; Ando, Eriko; Shigeta, Yuko; Ogawa, Takumi


    Computed tomography (CT) scanning has recently been introduced into forensic medicine and dentistry. However, the presence of metal restorations in the dentition can adversely affect the quality of three-dimensional reconstruction from CT scans. In this study, we aimed to evaluate the reproducibility of a "high-precision, reconstructed 3D model" obtained from a conebeam CT scan of dentition, a method that might be particularly helpful in forensic medicine. We took conebeam CT and helical CT images of three dry skulls marked with 47 measuring points; reconstructed three-dimensional images; and measured the distances between the points in the 3D images with a computer-aided design/computer-aided manufacturing (CAD/CAM) marker. We found that in comparison with the helical CT, conebeam CT is capable of reproducing measurements closer to those obtained from the actual samples. In conclusion, our study indicated that the image-reproduction from a conebeam CT scan was more accurate than that from a helical CT scan. Furthermore, the "high-precision reconstructed 3D model" facilitates reliable visualization of full-sized oral and maxillofacial regions in both helical and conebeam CT scans. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. A High-Precision Control for a ZVT PWM Soft-Switching Inverter to Eliminate the Dead-Time Effect

    Directory of Open Access Journals (Sweden)

    Baoquan Kou


    Full Text Available Attributing to the advantages of high efficiency, low electromagnetic interference (EMI noise and closest to the pulse-width-modulation (PWM converter counterpart, zero-voltage-transition (ZVT PWM soft-switching inverters are very suitable for high-performance applications. However, the conventional control algorithms intended for high efficiency generally results in voltage distortion. Thus, this paper, for the first time, proposes a high-precision control method to eliminate the dead-time effect through controlling the auxiliary current in the auxiliary resonant snubber inverter (ARSI, which is a typical ZVT PWM inverter. The dead-time effect of ARSI is analyzed, which is distinguished from hard-switching inverters. The proposed high-precision control is introduced based on the investigation of dead-time effect. A prototype was developed to verify the effectiveness of the proposed control. The experimental results shows that the total harmonic distortion (THD of the output current of the ARSI can be reduced compared with that of the hard-switching inverter, because the blanking delay error is eliminated. The quality of the output current and voltage can be further improved by utilizing the proposed control method.

  10. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography (United States)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.


    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  11. Optical timing receiver for the NASA Spaceborne Ranging System. Part II: high precision event-timing digitizer

    Energy Technology Data Exchange (ETDEWEB)

    Leskovar, Branko; Turko, Bojan


    Position-resolution capabilities of the NASA Spaceborne Laser Ranging System are essentially determined by the timeresolution capabilities of its optical timing receiver. The optical timing receiver consists of a fast photoelectric device; (e.g., photomultiplier or an avalanche photodiode detector), a timing discriminator, a high-precision event-timing digitizer, and a signal-processing system. The time-resolution capabilities of the receiver are determined by the photoelectron time spread of the photoelectric device, the time walk and resolution characteristics of the timing discriminator, and the resolution of the event-timing digitizer. It is thus necessary to evaluate available fast photoelectronic devices with respect to the time-resolution capabilities, and to develop a very low time walk timing discriminator and a high-resolution event-timing digitizer to be used in the high-resolution spaceborne laser ranging system receiver. This part of the report describes the development of a high precision event-timing digitizer. The event-timing digitizer is basically a combination of a very accurate high resolution real time digital clock and an interval timer. The timing digitizer is a high resolution multiple stop clock, counting the time up to 131 days in 19.5 ps increments.

  12. Development and Preliminary Testing of a High Precision Long Stroke Slit Change Mechanism for the SPICE Instrument (United States)

    Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc


    In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a

  13. Decorrelation and fringe visibility: On the limiting behavior of varous electronic speckle pattern correlation interferometers

    DEFF Research Database (Denmark)

    Owner-Petersen, Mette


    I discuss the behavior of fringe formation in image-plane electronic speckle-pattern correlation interferometers as the limit of total decorrelation is approached. The interferometers are supposed to operate in the difference mode. The effect of decorrelation will be a decrease in fringe visibility...... until the limit of total decorrelation, when no fringes will be formed, is reached. A quantitative evaluation of the partially decorrelated fringe pattern is presented for the case of decorrelation due to both tilt and in-plane translation of an object surface element. It is shown that the fringe...

  14. High Precision GPS Measurements (United States)


    as reference systems, surveying, plate tectonic motion, crustal deformation and atmospheric sounding, low earth orbit (LEO) satellite radio...forecasting of scintillations in communication/navigaton links: current status and future plan,” J. Atmos. Solar- Terr Phy., 64, p1745-1754, 2002. [3

  15. High-precision half-life determination for 21Na using a 4 π gas-proportional counter (United States)

    Finlay, P.; Laffoley, A. T.; Ball, G. C.; Bender, P. C.; Dunlop, M. R.; Dunlop, R.; Hackman, G.; Leslie, J. R.; MacLean, A. D.; Miller, D.; Moukaddam, M.; Olaizola, B.; Severijns, N.; Smith, J. K.; Southall, D.; Svensson, C. E.


    A high-precision half-life measurement for the superallowed β+ transition between the isospin T =1 /2 mirror nuclei 21Na and 21Ne has been performed at the TRIUMF-ISAC radioactive ion beam facility yielding T1 /2=22.4506 (33 ) s, a result that is a factor of 4 more precise than the previous world-average half-life for 21Na and represents the single most precisely determined half-life for a transition between mirror nuclei to date. The contribution to the uncertainty in the 21Na F tmirror value due to the half-life is now reduced to the level of the nuclear-structure-dependent theoretical corrections, leaving the branching ratio as the dominant experimental uncertainty.

  16. libstable: Fast, Parallel, and High-Precision Computation of α-Stable Distributions in R, C/C++, and MATLAB

    Directory of Open Access Journals (Sweden)

    Javier Royuela-del-Val


    Full Text Available α-stable distributions are a family of well-known probability distributions. However, the lack of closed analytical expressions hinders their application. Currently, several tools have been developed to numerically evaluate their density and distribution functions or to estimate their parameters, but available solutions either do not reach sufficient precision on their evaluations or are excessively slow for practical purposes. Moreover, they do not take full advantage of the parallel processing capabilities of current multi-core machines. Other solutions work only on a subset of the α-stable parameter space. In this paper we present an R package and a C/C++ library with a MATLAB front-end that permit parallelized, fast and high precision evaluation of density, distribution and quantile functions, as well as random variable generation and parameter estimation of α-stable distributions in their whole parameter space. The described library can be easily integrated into third party developments.

  17. Extending and refining the mass surface around $^{208}$Pb by high-precision Penning-trap mass spectrometry with ISOLTRAP

    CERN Multimedia

    Herfurth, F; Stora, T; Blaum, K; Beck, D; Kowalska, M; Schwarz, S; Stanja, J; Herlert, A J; Yamaguchi, T

    We propose high-precision mass spectrometry of nuclides around the doubly magic $^{208}$Pb. On the neutron-rich side, we aim to extend the knowledge of Fr, At, Hg, and Au masses to study the robustness of the N = 126 shell closure and to provide mass data necessary for modeling the rapid-neutron-capture process. On the proton-rich side, we aim at high-resolution mass spectrometry of selected Au, At, and Fr isotopes to verify the predicted existence of very low-lying isomeric states. The proposal will make use of newly-available laser-ionization schemes for Au and At. Finally, the recently implemented multi-reflection time-of-flight mass separator for auxiliary isobaric purification now allows measurements which were not feasible before.

  18. Input and output filter design of current source PWM converter for high-precision magnet power supply

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Sung [Cheonan National Junior Technical College, Cheonan (Korea, Republic of); Choi, Jae Ho [Chungbuk National University, Chongju (Korea, Republic of)


    Current Source PWM converter is appropriate for the magnet power supply system which requests high power and high precision current control. Input and output filters should be installed to eliminate the current or voltage harmonics caused by the PWM switching for the current source PWM converter. But the input/output filters limit the output DC current range and may destroy the system with filter resonance, and make the system equation more complicated. In this paper, systematic and simple filter design method which considers not only the harmonic attenuation but also the total system good transfer function characteristics in the dc filter. The simulated and experimental results verify the proposed theory. (author). 14 refs., 12 figs., 8 tabs.

  19. High-precision mass measurements of nickel, copper, and gallium isotopes and the purported shell closure at N=40

    Energy Technology Data Exchange (ETDEWEB)

    Guenaut, C.; Audi, G. [CSNSM-IN2P3-CNRS, 91405 Orsay-Campus (France); Beck, D. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany)] (and others)


    High-precision mass measurement of more than thirty neutron-rich nuclides around the Z=28 closed proton shell were performed with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN to address the question of a possible neutron shell closure at N=40. The results for {sup 57,60,64-69}Ni, {sup 65-74,76}Cu (Z=29), and {sup 63-65,68-78}Ga (Z=31), have a relative uncertainty of the order of 10{sup -8}. In particular, the masses of {sup 72-74,76}Cu have been measured for the first time. We analyse the resulting mass surface for signs of magicity, comparing the behavior of N=40 to that of known magic numbers and to mid-shell behavior. Contrary to nuclear spectroscopy studies, no indications of a shell or sub-shell closure are found for N=40. (authors)

  20. High-precision gravimetric coulometry using the silver-perchloric acid coulometer: Titration of arsenious oxide with electrogenerated iodine. (United States)

    Newton, C M


    High-precision gravimetric coulometry with a silver-perchloric acid coulometer is evaluated as an alternative to the conventional titrimetric method. The loss of weight (caused by electrolytic dissolution) of a highly pure silver anode in series with the cathode of a conventional constant-current titration system is measured and related to the number of equivalents of substance titrated. The precision of the method is determined by titrations of the Standard Reference Material 83C arsenious oxide (99.99% pure) with electrogenerated iodine, using biamperometric end-point detection. Depending on the size of the sample, an ultimate precision of 25 ppm is obtained. The assay for 0.5-g samples of the SRM material is 99.993(9) +/- 0.002(5)% purity.

  1. Hazard Monitoring in a Spectrum-Challenged Future: US Department of Transportation Adjacent Band Compatibility Assessment of Interference on High-Precision GNSS Receivers (United States)

    Blume, F.; Berglund, H. T.


    the demand for spectrum for mobile applications increases, operators of hazard networks may need to consider the impact of RF interference on data quality and continuity. UNAVCO's participation ensures that our high precision GNSS community interests are represented in the future spectrum allocation decisions.

  2. Astronomical calibration of 40Ar/39Ar reference minerals using high-precision, multi-collector (ARGUSVI) mass spectrometry (United States)

    Phillips, D.; Matchan, E. L.; Honda, M.; Kuiper, K. F.


    The new generation of multi-collector mass spectrometers (e.g. ARGUSVI) permit ultra-high precision (1%) in 40K decay constants and the ages of natural reference minerals that form the basis of the technique. For example, reported ages for widely used 40Ar/39Ar reference materials, such as the ca. 28 Ma Fish Canyon Tuff sanidine (FCTs) and the ca. 1.2 Ma Alder Creek Rhyolite sanidine (ACRs), vary by >1%. Recent attempts to independently calibrate these reference minerals have focused on K-Ar analyses of the same minerals and inter-comparisons with astronomically tuned tephras in sedimentary sequences and U-Pb zircon ages from volcanic rocks. Most of these studies used older generation (effectively single-collector) mass spectrometers that employed peak-jumping analytical methods to acquire 40Ar/39Ar data. In this study, we reassess the inter-calibration and ages of commonly used 40Ar/39Ar reference minerals Fish Canyon Tuff sanidine (FCTs), Alder Creek Rhyolite sanidine (ACRs) and Mount Dromedary biotite (MD2b; equivalent to GA-1550 biotite), relative to the astronomically tuned age of A1 Tephra sanidine (A1Ts), Faneromeni section, Crete (Rivera et al., 2011), using a multi-collector ARGUSVI mass spectrometer. These analyses confirm the exceptional precision capability (0.1% in the 40Ar/39Ar ages of reference minerals without consideration of recoil artefacts, thus limiting the benefits of high precision multi-collector analyses. Significant improvement to the accuracy of the 40Ar/39Ar method (<0.1%) will require further inter-laboratory 40Ar/39Ar studies utilizing multi-collector mass spectrometry, additional constraints on recoil 39ArK loss from reference minerals, further resolution of discrepancies between astronomically tuned sedimentary successions and refinement of the 238U/206Pb zircon age cross-calibration approach.

  3. Development of Heavy-Duty and High-Precision Hydraulic Manipulator for Inspection, Maintenance and Decommission of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Seo, Yong-chil; Jung, Kyung Min; Kim, Chang-hoi; Choi, Byung-seon; Moon, Jei-kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Robotic manipulators have been used for inspection, maintenance and decommission of nuclear power plants because nuclear power plants have high radiation and human workers cannot easily access the plants. And also, to inspecting, maintaining and decommissioning nuclear power plants require various manipulators. Only one manipulator cannot response to many required tasks. The existing manipulators that was used at nuclear power plants can only operate only focused specific task and cannot be used at several tasks. The actuators used at manipulators are varied and many companies sell actuators depending on power, torque and speed. However, the commercial product is not standardized. Therefore, the development of manipulator is time consuming and expensive. The essential item of a manipulator is an actuator module. If actuator module is standardized, it’s easier to develop a manipulator and also maintain a manipulator. Recently, manipulator having high-radiation, high-duty and high-precision is necessary to inspection, maintain and decommissioning of nuclear power plants. Hydraulic actuator has been used to development high-duty manipulator. But control performance of a hydraulic actuator is not better than that of an electric actuator so that hydraulic manipulator cannot easily satisfy the required precision. In this paper, we developed high-duty and high-precision actuator modules and hydraulic manipulator using the developed actuator modules. The developed hydraulic manipulator have a payload of 250kg and a precision of ±1mm. Four modularized hydraulic actuator modules were developed for inspection, maintenance and decommission. Using the developed actuator modules, the manipulator for decommissioning is easily developed. And also, various manipulators having different kinematic structure for specific tasks will be easily developed by using hydraulic modules.

  4. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer. (United States)

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja


    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ41K (United States)

    Morgan, Leah; Santiago Ramos, Danielle P.; Davidheiser-Kroll, Brett; Faithfull, John; Lloyd, Nicholas S.; Ellam, Rob M.; Higgins, John A.


    Potassium is a major component in continental crust, the fourth-most abundant cation in seawater, and a key element in biological processes. Until recently, difficulties with existing analytical techniques hindered our ability to identify natural isotopic variability of potassium isotopes in terrestrial materials. However, measurement precision has greatly improved and a range of K isotopic compositions has now been demonstrated in natural samples. In this study, we present a new technique for high-precision measurement of K isotopic ratios using high-resolution, cold plasma multi-collector mass spectrometry. We apply this technique to demonstrate natural variability in the ratio of 41K to 39K in a diverse group of geological and biological samples, including silicate and evaporite minerals, seawater, and plant and animal tissues. The total range in 41K/39K ratios is ca. 2.6‰, with a long-term external reproducibility of 0.17‰ (2, N=108). Seawater and seawater-derived evaporite minerals are systematically enriched in 41K compared to silicate minerals by ca. 0.6‰, a result consistent with recent findings1, 2. Although our average bulk-silicate Earth value (-0.54‰) is indistinguishable from previously published values, we find systematic δ41K variability in some high-temperature sample suites, particularly those with evidence for the presence of fluids. The δ41K values of biological samples span a range of ca. 1.2‰ between terrestrial mammals, plants, and marine organisms. Implications of terrestrial K isotope variability for the atomic weight of K and K-based geochronology are discussed. Our results indicate that high-precision measurements of stable K isotopes, made using commercially available mass spectrometers, can provide unique insights into the chemistry of potassium in geological and biological systems. 

  6. The Ecology of Fringe Science and its Bearing on Policy

    CERN Document Server

    Collins, HM; Reyes-Galindo, LI


    In this paper we illustrate the tension between mainstream 'normal', 'unorthodox' and 'fringe' science that is the focus of two ongoing projects that are analysing the full ecology of physics knowledge. The first project concentrates on empirically understanding the notion of consensus in physics by investigating the policing of boundaries that is carried out at the arXiv preprint server, a fundamental element of the contemporary physics publishing landscape. The second project looks at physics outside the mainstream and focuses on the set of organisations and publishing outlets that have mushroomed outside of mainstream physics to cover the needs of 'alternative', 'independent' and 'unorthodox' scientists. Consolidating both projects into the different images of science that characterise the mainstream (based on consensus) and the fringe (based on dissent), we draw out an explanation of why today's social scientists ought to make the case that, for policy-making purposes, the mainstream's consensus should be...

  7. Hydrodynamic response of a fringing coral reef to a rise in mean sea level (United States)

    Taebi, Soheila; Pattiaratchi, Charitha


    Ningaloo Reef, located along the northwest coast of Australia, is one of the longest fringing coral reefs in the world extending ~300 km. Similar to other fringing reefs, it consists of a barrier reef ~1-6 km offshore with occasional gaps, backed by a shallow lagoon. Wave breaking on the reef generates radiation stress gradients that produces wave setup across the reef and lagoon and mean currents across the reef. A section of Ningaloo Reef at Sandy Bay was chosen as the focus of an intense 6-week field experiment and numerical simulation using the wave model SWAN coupled to the three-dimensional circulation model ROMS. The physics of nearshore processes such as wave breaking, wave setup and mean flow across the reef was investigated in detail by examining the various momentum balances established in the system. The magnitude of the terms and the distance of their peaks from reef edge in the momentum balance were sensitive to the changes in mean sea level, e.g. the wave forces decreased as the mean water depth increased (and hence, wave breaking dissipation was reduced). This led to an increase in the wave power at the shoreline, a slight shift of the surf zone to the lee side of the reef and changes in the intensity of the circulation. The predicted hydrodynamic fields were input into a Lagrangian particle tracking model to estimate the transport time scale of the reef-lagoon system. Flushing time of the lagoon with the open ocean was computed using two definitions in renewal of semi-enclosed water basins and revealed the sensitivity of such a transport time scale to methods. An increase in the lagoon exchange rate at smaller mean sea-level rise and the decrease at higher mean sea-level rise was predicted through flushing time computed using both methods.

  8. High-visibility interference fringes with femtosecond laser radiation. (United States)

    Martínez-Cuenca, Raúl; Martínez-León, Lluís; Lancis, Jesús; Mínguez-Vega, Gladys; Mendoza-Yero, Omel; Tajahuerce, Enrique; Clemente, Pere; Andrés, Pedro


    We propose and experimentally demonstrate an interferometer for femtosecond pulses with spectral bandwidth about 100 nm. The scheme is based on a Michelson interferometer with a dispersion compensating module. A diffractive lens serves the purpose of equalizing the optical-path-length difference for a wide range of frequencies. In this way, it is possible to register high-contrast interference fringes with micrometric resolution over the whole area of a commercial CCD sensor for broadband femtosecond pulses.

  9. Analysis of localized fringes in the holographic optical Schlieren system (United States)

    Kurtz, R. L.


    The relation between localization of interference fringes in classical and holographic interferometry is reviewed and an application of holographic interferometry is considered for which the object is a transparent medium with nonhomogeneous refractive index. The technique is based on the analysis of the optical path length change of the object wave as it propagates through a transparent medium. Phase shifts due to variations of the speed of light within the medium give rise to an interference pattern. The resulting interferogram can be used to determine the physical properties of the medium or transparent object. Such properties include the mass density of fluids, electron densities of plasmas, the temperature of fluids, the chemical species concentration of fluids, and the state of stress in solids. The optical wave used can be either a simple plane or spherical wave, or it may be a complicated spatial wave scattered by a diffusing screen. The mathematical theory on the formation and analysis of localized fringes, the general theoretical concepts used, and a computer code for analysis are included along with the inversion of fringe order data.

  10. Iterated unscented Kalman filter for phase unwrapping of interferometric fringes. (United States)

    Xie, Xianming


    A fresh phase unwrapping algorithm based on iterated unscented Kalman filter is proposed to estimate unambiguous unwrapped phase of interferometric fringes. This method is the result of combining an iterated unscented Kalman filter with a robust phase gradient estimator based on amended matrix pencil model, and an efficient quality-guided strategy based on heap sort. The iterated unscented Kalman filter that is one of the most robust methods under the Bayesian theorem frame in non-linear signal processing so far, is applied to perform simultaneously noise suppression and phase unwrapping of interferometric fringes for the first time, which can simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure, and even can remove the pre-filtering procedure. The robust phase gradient estimator is used to efficiently and accurately obtain phase gradient information from interferometric fringes, which is needed for the iterated unscented Kalman filtering phase unwrapping model. The efficient quality-guided strategy is able to ensure that the proposed method fast unwraps wrapped pixels along the path from the high-quality area to the low-quality area of wrapped phase images, which can greatly improve the efficiency of phase unwrapping. Results obtained from synthetic data and real data show that the proposed method can obtain better solutions with an acceptable time consumption, with respect to some of the most used algorithms.

  11. Fringe—A Java-based finite fringe analysis package (United States)

    McIntyre, Timothy J.; Bishop, Alexis I.


    A package for analysing two-dimensional finite fringe interferograms is described. Through a combination of automatic and interactive routines, an interferogram can be processed to extract the phase shift imparted on the recording light by a transparent object. The package consists of routines to condition and pad the original image for Fourier transform analysis, to filter the image and obtain the phase, to unwrap the phase, and to remove the background phase ramp. A sample image recorded using holographic interferometry is successfully analysed. Program summary Program title: FRINGE Catalogue identifier: AEMM_v1_0 Program summary URL: Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, No. of lines in distributed program, including test data, etc.: 134006 No. of bytes in distributed program, including test data, etc.: 4029801 Distribution format: tar.gz Programming language: Java. Computer: Personal Computers. Operating system: Mac OS X, Windows XP, Linux and any other system that can run Java Jar files. RAM: 1GB recommended Classification: 18. Nature of problem: A standalone multi-platform program to perform analysis of finite fringe interferograms. Solution method: Fourier filtering approach with phase unwrapping and background subtraction. Restrictions: Designed to analyse square images. Running time: Interactive processing takes several minutes. Minimal cpu time.

  12. Real-time analysis of δ13C- and δD-CH4 by high precision laser spectroscopy (United States)

    Eyer, Simon; Emmenegger, Lukas; Tuzson, Béla; Fischer, Hubertus; Mohn, Joachim


    Methane (CH4) is the most important non-CO2 greenhouse gas (GHG) contributing 18% to total radiative forcing. Anthropogenic sources (e.g. ruminants, landfills) contribute 60% to total emissions and led to an increase in its atmospheric mixing ratio from 700 ppb in pre-industrial times to 1819 ± 1 ppb in 2012 [1]. Analysis of the most abundant methane isotopologues 12CH4, 13CH4 and 12CH3D can be used to disentangle the various source/sink processes [2] and to develop target oriented reduction strategies. High precision isotopic analysis of CH4 can be accomplished by isotope-ratio mass-spectrometry (IRMS) [2] and more recently by mid-infrared laser-based spectroscopic techniques. For high precision measurements in ambient air, however, both techniques rely on preconcentration of the target gas [3]. In an on-going project, we developed a fully-automated, field-deployable CH4 preconcentration unit coupled to a dual quantum cascade laser absorption spectrometer (QCLAS) for real-time analysis of CH4 isotopologues. The core part of the rack-mounted (19 inch) device is a highly-efficient adsorbent trap attached to a motorized linear drive system and enclosed in a vacuum chamber. Thereby, the adsorbent trap can be decoupled from the Stirling cooler during desorption for fast desorption and optimal heat management. A wide variety of adsorbents, including: HayeSep D, molecular sieves as well as the novel metal-organic frameworks and carbon nanotubes were characterized regarding their surface area, isosteric enthalpy of adsorption and selectivity for methane over nitrogen. The most promising candidates were tested on the preconcentration device and a preconcentration by a factor > 500 was obtained. Furthermore analytical interferants (e.g. N2O, CO2) are separated by step-wise desorption of trace gases. A QCL absorption spectrometer previously described by Tuzson et al. (2010) for CH4 flux measurements was modified to obtain a platform for high precision and simultaneous

  13. High-precision extreme-mass-ratio inspirals in black hole perturbation theory and post-Newtonian theory (United States)

    Forseth, Erik Robert

    The recent detection of gravitational wave (GW) signal GW150914 by the Advanced LIGO experiment has inaugurated the long-anticipated era of GW astronomy. This event saw the merger of two black holes, having roughly 36 and 29 solar masses, as well as the ringdown of the resulting 62 solar mass black hole. The energy emitted in gravitational radiation was equivalent to about three solar masses. The detection underscored the importance of theoretical models for not only isolating signal from noise, but especially for the accurate estimation of source parameters. The two-body problem in Einstein's general theory has no exact solution, and so the development of these models is highly nontrivial. We present in this thesis a set of original results on the dynamics of the inspiral for a class of binary systems known as extreme-mass-ratio inspirals (EMRIs), comprised of a small compact object (generically a stellar mass black hole) in orbit about a supermassive black hole. Our work also has potential application to intermediate-mass-ratio inspirals (IMRIs). IMRIs are thought to be a potentially strong source for ground-based GW experiments such as Advanced LIGO/VIRGO. Though not generally a good source for the LIGO network, EMRIs on the other hand are well-suited for detection by proposed space-based detectors, e.g. eLISA. Our work particularly constitutes a program of developing computational tools, methods, and results for eccentric E/IMRIs, which are thought to be astrophysically important but are much more challenging to model theoretically compared with circular orbits. We begin with a brief review of relevant parts of general relativity (GR) theory, followed by overviews of two prevailing approximation formalisms in GR, black hole perturbation (BHP) theory and post-Newtonian (PN) theory. Our first original result is a high-precision computation of the first-order gravitational metric perturbation using a Lorenz gauge frequency domain procedure. Next, we present a fast

  14. Recent Progress in Development of a Laser Based, Ultra-High Precision Isotope Monitor for Carbon Dioxide (United States)

    Nelson, D. D.; McManus, J. B.; Herndon, S. C.; Zahniser, M. S.


    Greenhouse gas (GHG) emissions are the primary drivers of global climate change and hence there is a crucial need to quantify their sources and sinks. A general technique to help constrain source and sink strengths in GHG exchange processes is the analysis of the relative proportions of isotopic variants of GHG's. Very high precision measurements of isotopologue ratios are necessary in order to identify sources and sinks because the characteristic changes are small. The standard method of isotopologue measurement has been mass spectrometry, but this technique typically requires significant sample preparation and relatively high instrument maintenance. Laser spectroscopy has the potential to ease these burdens and also to allow easy separation and analysis of interfering isobars such as 13C-CO2 and 17O-CO2. We present recent results demonstrating ultra-high precision measurements of carbon dioxide isotope ratios which rival the accuracy of mass spectrometric measurements. These measurements were performed using Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS). We have developed a method for analyzing air samples from canisters by alternately and rapidly trapping sample gas and working reference gas in the optical cell. Using this technique, we have obtained isotopic measurement precisions of ~7 per meg for both 13C-CO2 and 18O-CO2 while measuring trapped ambient air samples with volumes as small as 200 ml with a 16 minute measurement duration. The figure shows a histogram of 2 minute measurements. Our current measurement precision for 17O-CO2 is 30 per meg, but we expect to reduce this to 10 per meg by working in a better spectral region. Our ultimate goal is to create an automated, ultra-high accuracy carbon dioxide isotope monitor able to quantify 13C-, 18O-, and 17O-CO2at the 10 per meg level using small (~100 standard ml), discreet air samples. We will also discuss recent progress in the measurement of the clumped isotopes of carbon dioxide in

  15. New high precision U-Pb calibration of the late Early-Triassic (Smithian-Spathian Boundary, South China) (United States)

    Widmann, Philipp; Leu, Marc; Goudemand, Nicolas; Schaltegger, Urs; Bucher, Hugo


    Following the Permian-Triassic mass extinction (PTME), the Early Triassic is characterized by large short-lived perturbations of the global carbon cycle associated with radiation and extinction pulses of the biota. More stable conditions resumed in the Middle Triassic (Anisian). The exact ages and duration of these short-lived but intense radiation-extinction events as well as carbon cycle perturbations are poorly constrained and a robust intercalibration of U-Pb dates, biochronozones and carbon isotope fluctuations is still lacking. An accurate and precise time frame is essential in order to quantify the dynamics of the underlying mechanistic processes and to assess the validity of the various explanatory scenarios. The most drastic Early Triassic extinction occurred at the Smithian-Spathian boundary (SSB) and is associated with a globally recognized sharp positive excursion of the marine d13C signal. Based on the most recently published ages for the Permian-Triassic boundary (251.938 ± 0.029 Ma, Baresel et al., 2016) and for the Early-Middle Triassic boundary (247.05 ± 0.16 Ma, Ovtcharova et al., 2015), we know the Early Triassic lasted 4.9 myr. However, neither the position of the SSB nor the durations of the major biotic and abiotic events around the SSB are constrained by radiometric dates. Here, we will present new high precision, chemical abrasion, isotope dilution, thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb ages from single zircon crystals, sampled from closely spaced volcanic ash layers that bracket the SSB in the Nanpanjiang Basin (Guizhou province, South China). These ash layers are found in a mixed carbonate-siliciclastic, conodont-rich sedimentary succession (Luolou Formation) that is well calibrated biochronologically. We obtained best estimates of the ages of the SSB and associated events by applying Bayesian age modelling. References: Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U., 2016. Precise age

  16. High-precision gamma-ray spectroscopy of 61Cu, an emerging medical isotope used in positron emission tomography (United States)

    Nelson, N.; Ellison, P.; Nickles, R.; McCutchan, E.; Sonzogni, A.; Smith, S.; Greene, J.; Carpenter, M.; Zhu, S.; Lister, C.; Moran, K.


    61Cu (t1 / 2 = 3.339h) is an important medical isotope used in positron emission tomography (PET) tumor hypoxia imaging scans; however, its beta-plus decay and the subsequent gamma decay of 61Ni has not been studied in over 30 years. Therefore, high quality decay data of 61Cu is desired to determine the overall dose delivered to a patient. In this study, 61Cu was produced at the University of Wisconsin - Madison cyclotron and then assayed using the Gammasphere array at Argonne National Laboratory. Consisting of 70 Compton-suppressed high-purity germanium (HPGe) detectors, Gammasphere provides precise decay data that exceeds that of previous 61Cu studies. γ-ray singles and coincident data were recorded and then analyzed using Radware gf3m software. Through γ- γ coincidence techniques, new γ-ray transitions were identified and high precision determination of γ-ray intensities were made. These modifications and additions to the current decay scheme will be presented, and their impact on the resulting does estimates will be discussed. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the U.S. DOE under Grant No. DE-FG02-94ER40848 and Contract Nos. DE-AC02-98CH10946 and DE-AC02-06CH11357 and by the Science Undergraduate Laboratory Internship Program (SULI).

  17. Quantifying the contribution of grape hexoses to wine volatiles by high-precision [U¹³C]-glucose tracer studies. (United States)

    Nisbet, Mark A; Tobias, Herbert J; Brenna, J Thomas; Sacks, Gavin L; Mansfield, Anna Katharine


    Many fermentation volatiles important to wine aroma potentially arise from yeast metabolism of hexose sugars, but assessing the relative importance of these pathways is challenging due to high endogenous hexose substrate concentrations. To overcome this problem, gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) was used to measure high-precision (13)C/(12)C isotope ratios of volatiles in wines produced from juices spiked with tracer levels (0.01-1 APE) of uniformly labeled [U-(13)C]-glucose. The contribution of hexose to individual volatiles was determined from the degree of (13)C enrichment. As expected, straight-chain fatty acids and their corresponding ethyl esters were derived almost exclusively from hexoses. Most fusel alcohols and their acetate esters were also majority hexose-derived, indicating the importance of anabolic pathways for their formation. Only two compounds were not derived primarily from hexoses (hexanol and isobutyric acid). This approach can be extended to other food systems or substrates for studying precursor-product relationships.

  18. Aberration measurement in HRTEM: Implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, J. [Institute of Solid State Research and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Thust, A., E-mail: [Institute of Solid State Research and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)


    The precise characterisation of the instrumental imaging properties in the form of aberration parameters constitutes an almost universal necessity in quantitative HRTEM, and is underlying most hardware and software techniques established in this field. We focus in this paper on the numerical analysis of individual diffractograms as a first preparatory step for further publications on HRTEM aberration measurement. The extraction of the defocus and the 2-fold astigmatism from a diffractogram is a classical pattern recognition problem, which we believe to have solved in a near-optimum way concerning precision, speed, and robustness. The newly gained measurement precision allows us to resolve fluctuations of the defocus and the 2-fold astigmatism and to assess thereby the optical stability of electron microscopes. Quantitative stability criteria are elaborated, which may serve as helpful guidelines for daily work as well as for microscope acceptance tests. -- Research Highlights: {yields} Algorithms for the highly precise diffractogram analysis in HRTEM are introduced. {yields} AMADEUS procedure measures defocus and astigmatism with a few Angstrom precision. {yields} Aberration measurement meets the precision requirements of 0.5 A microscopy. {yields} Quantitative criteria for the optical stability of HRTEMs are introduced.

  19. High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model. (United States)

    Hahn, T; Heinemeyer, S; Hollik, W; Rzehak, H; Weiglein, G


    For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realized in the standard model (SM) and its most commonly studied extension, the minimal supersymmetric standard model (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, Mh, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for Mh in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FEYNHIGGS.

  20. EFTofPNG: a package for high precision computation with the effective field theory of post-Newtonian gravity (United States)

    Levi, Michele; Steinhoff, Jan


    We present a novel public package ‘EFTofPNG’ for high precision computation in the effective field theory of post-Newtonian (PN) gravity, including spins. We created this package in view of the timely need to publicly share automated computation tools, which integrate the various types of physics manifested in the expected increasing influx of gravitational wave (GW) data. Hence, we created a free and open source package, which is self-contained, modular, all-inclusive, and accessible to the classical gravity community. The ‘EFTofPNG’ Mathematica package also uses the power of the ‘xTensor’ package, suited for complicated tensor computation, where our coding also strategically approaches the generic generation of Feynman contractions, which is universal to all perturbation theories in physics, by efficiently treating n-point functions as tensors of rank n. The package currently contains four independent units, which serve as subsidiaries to the main one. Its final unit serves as a pipeline chain for the obtainment of the final GW templates, and provides the full computation of derivatives and physical observables of interest. The upcoming ‘EFTofPNG’ package version 1.0 should cover the point mass sector, and all the spin sectors, up to the fourth PN order, and the two-loop level. We expect and strongly encourage public development of the package to improve its efficiency, and to extend it to further PN sectors, and observables useful for the waveform modelling.

  1. Development of a High Precision Oxygen, Carbon Dioxide, and Water Monitor for Fast Plume and Eddy Flux Measurements (United States)

    Zahniser, Mark; Nelson, David; Roscioli, Rob; Herndon, Scott; Jervis, Dylan; McManus, Barry; Yacovitch, Tara


    A central concept of the carbon cycle is the inverted relationship between CO2 and O2 , which provides detailed information about CO2 sources and sinks. For example, Keeling was able to use very precise O2 and CO2 measurements to understand oceanic vs terrestrial carbon sinks. It has been a long-standing challenge to measure both species with enough precision and response time to understand the CO2 /O2 exchange on a local scale. Such a capability would allow for detailed measurements of ecosystem exchange, fossil fuel burning processes, and emissions from carbon sequestration sites. Here we report on recent advances using near-infrared direct absorption spectroscopy to measure CO2 , O2 , and H2 O on timescales of 0.1 to 1 second and at high precision, for eddy flux quantification of ecosystem exchange. O2 is quantified using the A-band electronic absorption at 763 nm, yielding a 1 s precision of 6 ppm and 100 s precision of 1 ppm (30 and 5 per meg fractional precision, respectively). CO2 and H2 O are quantified using overtone transitions at 2 micron, providing 1 s precisions of cell with a time response is <0.3 s at 3 SLPM flow rate. We present long-term O2 and CO2 rooftop measurements, revealing multiple combustion sources contributing to the local CO2 enhancement.

  2. Exploratory study of a novel low occupancy vertex detector architecture based on high precision timing for high luminosity particle colliders

    Energy Technology Data Exchange (ETDEWEB)

    Orel, Peter, E-mail:; Varner, Gary S.; Niknejadi, Pardis


    Vertex detectors provide space–time coordinates for the traversing charged particle decay products closest to the interaction point. Resolving these increasingly intense particle fluences at high luminosity particle colliders, such as SuperKEKB, is an ever growing challenge. This results in a non-negligible occupancy of the vertex detector using existing low material budget techniques. Consequently, new approaches are being studied that meet the vertexing requirements while lowering the occupancy. In this paper, we introduce a novel vertex detector architecture. Its design relies on an asynchronous digital pixel matrix in combination with a readout based on high precision time-of-flight measurement. Denoted the Timing Vertex Detector (TVD), it consists of a binary pixel array, a transmission line for signal collection, and a readout ASIC. The TVD aims to have a spatial resolution comparable to the existing Belle2 vertex detector. At the same time it offers a reduced occupancy by a factor of ten while decreasing the channel count by almost three orders of magnitude. Consequently, reducing the event size from about 1 MB/event to about 5.9 kB/event.

  3. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy. (United States)

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei


    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm(-1) and 7185.6 cm(-1) by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance.

  4. High Precision and High Yield Fabrication of Dense Nanoparticle Arrays onto DNA Origami at Statistically Independent Binding Sites † (United States)

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph Tyler; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.


    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities. PMID:25311051

  5. High-precision robotic microcontact printing (R-μCP) utilizing a vision guided selectively compliant articulated robotic arm. (United States)

    McNulty, Jason D; Klann, Tyler; Sha, Jin; Salick, Max; Knight, Gavin T; Turng, Lih-Sheng; Ashton, Randolph S


    Increased realization of the spatial heterogeneity found within in vivo tissue microenvironments has prompted the desire to engineer similar complexities into in vitro culture substrates. Microcontact printing (μCP) is a versatile technique for engineering such complexities onto cell culture substrates because it permits microscale control of the relative positioning of molecules and cells over large surface areas. However, challenges associated with precisely aligning and superimposing multiple μCP steps severely limits the extent of substrate modification that can be achieved using this method. Thus, we investigated the feasibility of using a vision guided selectively compliant articulated robotic arm (SCARA) for μCP applications. SCARAs are routinely used to perform high precision, repetitive tasks in manufacturing, and even low-end models are capable of achieving microscale precision. Here, we present customization of a SCARA to execute robotic-μCP (R-μCP) onto gold-coated microscope coverslips. The system not only possesses the ability to align multiple polydimethylsiloxane (PDMS) stamps but also has the capability to do so even after the substrates have been removed, reacted to graft polymer brushes, and replaced back into the system. Plus, non-biased computerized analysis shows that the system performs such sequential patterning with <10 μm precision and accuracy, which is equivalent to the repeatability specifications of the employed SCARA model. R-μCP should facilitate the engineering of complex in vivo-like complexities onto culture substrates and their integration with microfluidic devices.

  6. High-precision QEC values of superallowed 0+ → 0+β-emitters 46Cr, 50Fe and 54Ni (United States)

    Zhang, P.; Xu, X.; Shuai, P.; Chen, R. J.; Yan, X. L.; Zhang, Y. H.; Wang, M.; Litvinov, Yu. A.; Blaum, K.; Xu, H. S.; Bao, T.; Chen, X. C.; Chen, H.; Fu, C. Y.; He, J. J.; Kubono, S.; Lam, Y. H.; Liu, D. W.; Mao, R. S.; Ma, X. W.; Sun, M. Z.; Tu, X. L.; Xing, Y. M.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhou, X.; Zhou, X. H.; Zhan, W. L.; Litvinov, S.; Audi, G.; Uesaka, T.; Yamaguchi, Y.; Yamaguchi, T.; Ozawa, A.; Sun, B. H.; Sun, Y.; Xu, F. R.


    Short-lived 46Cr, 50Fe and 54Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses (ME) of 46Cr, 50Fe and 54Ni are - 29471 (11) keV, - 34477 (6) keV and - 39278 (4) keV, respectively. The superallowed 0+ →0+β-decay Q values were derived to be QEC (46Cr) = 7604 (11) keV, QEC (50Fe) = 8150 (6) keV and QEC (54Ni) = 8731 (4) keV. The values for 50Fe and 54Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected Ft values to be Ft (50Fe) = 3103 (70) s and Ft (54Ni) = 3076 (50) s. The main contribution to the Ft uncertainties is now due to β-decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.

  7. Impact evaluation of environmental and geometrical parasitic effects on high-precision position measurement of the LHC collimator jaws (United States)

    Danisi, Alessandro; Losito, Roberto; Masi, Alessandro


    Measuring the apertures of the Large Hadron Collider (LHC) collimators, as well as the positions of their axes, is a challenging task. The LHC collimators are equipped with high-precision linear position sensors, the linear variable differential transformers (LVDTs). The accuracy of such sensors is limited by the peculiar parasitic effect of being rather sensitive to external magnetic fields. A new type of inductive sensor, the Ironless Inductive Position Sensor (I2PS), that keeps the advantages of the LVDTs but is insensitive to external magnetic fields has been designed, constructed, and tested at CERN. For this sensor, a detailed description of parasitic effects such as high-frequency capacitances and the presence of conductive shields and electric motor, in the surroundings is given, from analytical, numerical, and experimental viewpoints. In addition, proof is given of the I2PS’s radiation hardness. The aim of this paper is to give a complete and exhaustive impact evaluation, from the metrological viewpoint, of these parasitic effects on these two fundamental sensor solutions.

  8. Rapid subsidence in damaging sinkholes: Measurement by high-precision leveling and the role of salt dissolution (United States)

    Desir, G.; Gutiérrez, F.; Merino, J.; Carbonel, D.; Benito-Calvo, A.; Guerrero, J.; Fabregat, I.


    Investigations dealing with subsidence monitoring in active sinkholes are very scarce, especially when compared with other ground instability phenomena like landslides. This is largely related to the catastrophic behaviour that typifies most sinkholes in carbonate karst areas. Active subsidence in five sinkholes up to ca. 500 m across has been quantitatively characterised by means of high-precision differential leveling. The sinkholes occur on poorly indurated alluvium underlain by salt-bearing evaporites and cause severe damage on various human structures. The leveling data have provided accurate information on multiple features of the subsidence phenomena with practical implications: (1) precise location of the vaguely-defined edges of the subsidence zones and their spatial relationships with surveyed surface deformation features; (2) spatial deformation patterns and relative contribution of subsidence mechanisms (sagging versus collapse); (3) accurate subsidence rates and their spatial variability with maximum and mean vertical displacement rates ranging from 1.0 to 11.8 cm/yr and 1.9 to 26.1 cm/yr, respectively; (4) identification of sinkholes that experience continuous subsidence at constant rates or with significant temporal changes; and (5) rates of volumetric surface changes as an approximation to rates of dissolution-induced volumetric depletion in the subsurface, reaching as much as 10,900 m3/yr in the largest sinkhole. The high subsidence rates as well as the annual volumetric changes are attributed to rapid dissolution of high-solubility salts.

  9. High Precision Motion Control System for the Two-Stage Light Gas Gun at the Dynamic Compression Sector (United States)

    Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.


    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.

  10. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy (United States)

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei


    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm-1 and 7185.6 cm-1 by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance.

  11. Exploratory study of a novel low occupancy vertex detector architecture based on high precision timing for high luminosity particle colliders (United States)

    Orel, Peter; Varner, Gary S.; Niknejadi, Pardis


    Vertex detectors provide space-time coordinates for the traversing charged particle decay products closest to the interaction point. Resolving these increasingly intense particle fluences at high luminosity particle colliders, such as SuperKEKB, is an ever growing challenge. This results in a non-negligible occupancy of the vertex detector using existing low material budget techniques. Consequently, new approaches are being studied that meet the vertexing requirements while lowering the occupancy. In this paper, we introduce a novel vertex detector architecture. Its design relies on an asynchronous digital pixel matrix in combination with a readout based on high precision time-of-flight measurement. Denoted the Timing Vertex Detector (TVD), it consists of a binary pixel array, a transmission line for signal collection, and a readout ASIC. The TVD aims to have a spatial resolution comparable to the existing Belle2 vertex detector. At the same time it offers a reduced occupancy by a factor of ten while decreasing the channel count by almost three orders of magnitude. Consequently, reducing the event size from about 1 MB/event to about 5.9 kB/event.

  12. SEMICONDUCTOR INTEGRATED CIRCUITS: Design and implementation of a high precision and wide range adjustable LED drive controller (United States)

    Guoding, Dai; Feng, Yu; Xuan, Wang; Weimin, Li


    This paper presents a novel high precision and wide range adjustable LED constant-current drive controller design. Compared with the traditional technique, the conventional mirror resistance is substituted by a MOSFET with fixed drain voltage, and a negative feedback amplifier is used to keep all mirror device voltages equal, so that the output current is precise and not affected by the load supply voltage. In addition, the electric property of the mirror MOSFET is optimized by a current subsection mirror (CSM) mechanism, thus ensuring a wide range of output current with high accuracy. A three-channel LED driver chip based on this project is designed and fabricated in the TSMC 0.6 μm BCD process with a die area of 1.1 × 0.7 mm2. Experimental results show that the proposed LED drive controller works well, and, as expected, the output current can be maintained from 5 to 60 mA. A relative current accuracy error of less than 1% and a maximal relative current matching error of 1.5% are successfully achieved.

  13. The Dynamics of Spatial Structure and Spatial Pattern Changes at the Fringe Area of Makassar City

    Directory of Open Access Journals (Sweden)

    Batara Surya


    Full Text Available The study is conducted at the fringe area of Makassar City by analyzing dynamics of spatial structure and spatial pattern changes at the fringe area of Makassar City. It applies quantitative and qualitative approaches (mixed method. Data is acquired from some sources and informants living at the fringe area of Makassar City. Spatial utilization shift and development of transport infrastructure, especially for main road corridor connecting down town of Makassar City and fringe area, affect significantly spatial structure and spatial pattern changes at the fringe area of  Makassar City. Dynamics of spatial structure and spatial pattern changes contributes changes of resident mobility; while, development tendency of the existing spatial and land use is no longer determined based on productivity, but it is valued by functions of space and land at the fringe are of Makassar City.

  14. Online Tracking (United States)

    ... for other purposes, such as research, measurement, and fraud prevention. Mobile browsers work much like traditional web ... users’ Do Not Track preferences. Can I block online tracking? Consumers can learn about tracker-blocking browser ...

  15. Origins and evolution of rhyolitic magmas in the central Snake River Plain: insights from coupled high-precision geochronology, oxygen isotope, and hafnium isotope analyses of zircon (United States)

    Colón, Dylan P.; Bindeman, Ilya N.; Wotzlaw, Jörn-Frederik; Christiansen, Eric H.; Stern, Richard A.


    We present new high-precision CA-ID-TIMS and in situ U-Pb ages together with Hf and O isotopic analyses (analyses performed all on the same grains) from four tuffs from the 15-10 Ma Bruneau-Jarbidge center of the Snake River Plain and from three rhyolitic units from the Kimberly borehole in the neighboring 10-6 Ma Twin Falls volcanic center. We find significant intrasample diversity in zircon ages (ranges of up to 3 Myr) and in δ18O (ranges of up to 6‰) and ɛHf (ranges of up to 24 ɛ units) values. Zircon rims are also more homogeneous than the associated cores, and we show that zircon rim growth occurs faster than the resolution of in situ dating techniques. CA-ID-TIMS dating of a subset of zircon grains from the Twin Falls samples reveals complex crystallization histories spanning 104-106 years prior to some eruptions, suggesting that magma genesis was characterized by the cyclic remelting of buried volcanic rocks and intrusions associated with previous magmatic episodes. Age-dependent trends in zircon isotopic compositions show that rhyolite production in the Yellowstone hotspot track is driven by the mixing of mantle-derived melts (normal δ18O and ɛHf) and a combination of Precambrian basement rock (normal δ18O and ɛHf down to - 60) and shallow Mesozoic and Cenozoic age rocks, some of which are hydrothermally altered (to low δ18O values) by earlier stages of Snake River Plain magmatism. These crustal melts hybridize with juvenile basalts and rhyolites to produce the erupted rhyolites. We also observe that the Precambrian basement rock is only an important component in the erupted magmas in the first eruption at each caldera center, suggesting that the accumulation of new intrusions quickly builds an upper crustal intrusive body which is isolated from the Precambrian basement and evolves towards more isotopically juvenile and lower-δ18O compositions over time.

  16. Theory and algorithms of an efficient fringe analysis technology for automatic measurement applications. (United States)

    Juarez-Salazar, Rigoberto; Guerrero-Sanchez, Fermin; Robledo-Sanchez, Carlos


    Some advances in fringe analysis technology for phase computing are presented. A full scheme for phase evaluation, applicable to automatic applications, is proposed. The proposal consists of: a fringe-pattern normalization method, Fourier fringe-normalized analysis, generalized phase-shifting processing for inhomogeneous nonlinear phase shifts and spatiotemporal visibility, and a phase-unwrapping method by a rounding-least-squares approach. The theoretical principles of each algorithm are given. Numerical examples and an experimental evaluation are presented.

  17. Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report

    National Research Council Canada - National Science Library

    Demirbilek, Zeki; Nwogu, Okey G


    ..., for waves propagating over fringing reefs. The model evaluation had two goals: (a) investigate differences between laboratory and field characteristics of wave transformation processes over reefs, and (b...

  18. Parameter estimation of optical fringes with quadratic phase using the fractional Fourier transform (United States)

    Lu, Ming-Feng; Zhang, Feng; Tao, Ran; Ni, Guo-Qiang; Bai, Ting-Zhu; Yang, Wen-Ming


    Optical fringes with a quadratic phase are often encountered in optical metrology. Parameter estimation of such fringes plays an important role in interferometric measurements. A novel method is proposed for accurate and direct parameter estimation using the fractional Fourier transform (FRFT), even in the presence of noise and obstacles. We take Newton's rings fringe patterns and electronic speckle pattern interferometry (ESPI) interferograms as classic examples of optical fringes that have a quadratic phase and present simulation and experimental results demonstrating the performance of the proposed method.

  19. Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing. (United States)

    Wang, Yajun; Zhang, Song


    Recently, a study showed that generating sinusoidal fringe patterns by properly defocusing binary ones can significantly simplify three-dimensional shape measurement system development and drastically improve its speed. However, when the fringe stripes are very wide, it is very difficult for this technique to achieve high-quality measurement. This Letter presents a method to improve this technique by selectively eliminating high-frequency harmonics induced by a squared binary pattern. As a result, better sinusoidal fringe patterns can be generated with a small degree of defocusing even for wide fringe stripes. Simulation and experiments will be presented to verify the performance of this proposed technique.

  20. Feasibility study of performing high precision gamma spectroscopy of {lambda}{lambda} hypernuclei in the anti PANDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Lorente, Alicia


    Hypernuclear research will be one of the main topics addressed by the anti PANDA experiment at the planned Facility for Antiproton and Ion Research anti FAIR. Thanks to the use of stored anti p beams, copious production of double {lambda} hypernuclei is expected at the anti PANDA experiment, which will enable high precision {gamma} spectroscopy of such nuclei for the first time. At anti PANDA excited states of {xi}{sup -} hypernuclei will be used as a basis for the formation of double {lambda} hypernuclei. For their detection, a devoted hypernuclear detector setup is planned. This setup consists of a primary nuclear target for the production of {xi}{sup -}+ anti {xi} pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform {gamma} spectroscopy. In the present work, the feasibility of performing high precision {gamma} spectroscopy of double {lambda} hypernuclei at the anti PANDA experiment has been studied by means of a Monte Carlo simulation. For this issue, the designing and simulation of the devoted detector setup as well as of the mechanism to produce double {lambda} hypernuclei have been optimized together with the performance of the whole system. In addition, the production yields of double hypernuclei in excitedparticle stable states have been evaluated within a statistical decay model. A strategy for the unique assignment of various newly observed {gamma}-transitions to specific double hypernuclei has been successfully implemented by combining the predicted energy spectra of each target with the measurement of two pion momenta from the subsequent weak decays of a double hypernucleus. Indeed, based on these Monte Carlo simulation, the analysis of the statistical decay of {sup 13}{sub {lambda}}{sub {lambda}}B has been performed. As result, three {gamma}-transitions associated to the double hypernuclei {sup 11}{sub {lambda}}{sub {lambda}}Be and to the single

  1. Effects of fringing reefs on tsunami inundation: American Samoa (United States)

    Gelfenbaum, Guy; Apotsos, Alex; Stevens, Andrew W.; Jaffe, Bruce


    A numerical model of tsunami inundation, Delft3D, which has been validated for the 29 September 2009 tsunami in Tutuila, American Samoa, is used to better understand the impact of fringing coral reefs and embayments on tsunami wave heights, inundation distances, and velocities. The inundation model is used to explore the general conditions under which fringing reefs act as coastal buffers against incoming tsunamis. Of particular interest is the response of tsunamis to reefs of varying widths, depths, and roughness, as well as the effects of channels incised in the reef and the focusing effect of embayments. Model simulations for conditions similar to Tutuila, yet simplified to be uniform in the alongshore, suggest that for narrow reefs, less than about 200 m wide, the shoaling owing to shallow water depths over the fringing reef dominates, inducing greater wave heights onshore under some conditions and farther inundation inland. As the reef width increases, wave dissipation through bottom friction begins to dominate and the reef causes the tsunami wave heights to decrease and the tsunami to inundate less far inland. A sensitivity analysis suggests that coral reef roughness is important in determining the manner in which a fringing reef affects tsunami inundation. Smooth reefs are more likely to increase the onshore velocity within the tsunami compared to rough reefs. A larger velocity will likely result in an increased impact of the tsunami on structures and buildings. Simulations developed to explore 2D coastal morphology show that incised channels similar to those found around Tutuila, as well as coastal embayments, also affect tsunami inundation, allowing larger waves to penetrate farther inland. The largest effect is found for channels located within embayments, and for embayments that narrow landward. These simulations suggest that embayments that narrow landward, such as Fagafue Bay on the north side of Tutuila, and that have an incised deep channel, can

  2. The Carlina-type diluted telescope. Stellar fringes on Deneb (United States)

    Le Coroller, H.; Dejonghe, J.; Hespeels, F.; Arnold, L.; Andersen, T.; Deram, P.; Ricci, D.; Berio, P.; Blazit, A.; Clausse, J.-M.; Guillaume, C.; Meunier, J. P.; Regal, X.; Sottile, R.


    Context. The performance of interferometers has been much increased over the past ten years. But the number of observable objects is still limited by the low sensitivity and imaging capability of the current facilities. Studies have been conducted with the aim to propose a new generation of interferometers. Aims: The Carlina concept studied at the Haute-Provence Observatory consists of an optical interferometer configured as a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed co-spherical segments, a helium balloon or cables that are suspended between two mountains and/or pylons carry a gondola containing the focal optics. This concept does not require delay lines. Methods: Since 2003, we have been building a technical demonstrator of this diluted telescope. The main goals of this project were to find opto-mechanical solutions to stabilize the optics attached to cables at several tens of meters above the ground, and to characterize this diluted telescope under real conditions. In 2012, we obtained metrology fringes, and co-spherized the primary mirrors within one micron accuracy. In 2013, we tested the whole optical train: servo loop, metrology, and the focal gondola. Results: We obtained stellar fringes on Deneb in September 2013. We here present the characteristics of these observations: quality of the guiding, signal-to-noise ratio reached, and possible improvements for a future system. Conclusions: By detecting fringes on Deneb, we confirm that the entire system conceptually has worked correctly. It also proves that when the primary mirrors are aligned using the metrology system, we can directly record fringes in the focal gondola, even in blind operation. It is an important step that demonstrates the feasibility of building a diluted telescope using cables strained between cliffs or pylons. Carlina, like the Multiple Mirror Telescope (MMT) or Large Binocular Telescope (LBT), could be one of the first members of a

  3. Fringe pattern analysis for optical metrology theory, algorithms, and applications

    CERN Document Server

    Servin, Manuel; Padilla, Moises


    The main objective of this book is to present the basic theoretical principles and practical applications for the classical interferometric techniques and the most advanced methods in the field of modern fringe pattern analysis applied to optical metrology. A major novelty of this work is the presentation of a unified theoretical framework based on the Fourier description of phase shifting interferometry using the Frequency Transfer Function (FTF) along with the theory of Stochastic Process for the straightforward analysis and synthesis of phase shifting algorithms with desired properties such

  4. Application of a Compact High-Definition Exoscope for Illumination and Magnification in High-Precision Surgical Procedures. (United States)

    Krishnan, Kartik G; Schöller, Karsten; Uhl, Eberhard


    The basic necessities for surgical procedures are illumination, exposure, and magnification. These have undergone transformation in par with technology. One of the recent developments is the compact magnifying exoscope system. In this report, we describe the application of this system for surgical operations and discuss its advantages and pitfalls. We used the ViTOM exoscope mounted on the mechanical holding arm. The following surgical procedures were conducted: lumbar and cervical spinal canal decompression (n = 5); laminotomy and removal of lumbar migrated disk herniations (n = 4); anterior cervical diskectomy and fusion (n = 1); removal of intraneural schwannomas (n = 2); removal of an acute cerebellar hemorrhage (n = 1); removal of a parafalcine atypical cerebral hematoma caused by a dural arteriovenous fistula (n = 1); and microsutures and anastomoses of a nerve (n = 1), an artery (n = 1), and veins (n = 2). The exoscope offered excellent, magnified, and brilliantly illuminated high-definition images of the surgical field. All surgical operations were successfully completed. The main disadvantage was the adjustment and refocusing using the mechanical holding arm. The time required for the surgical operation under the exoscope was slightly longer than the times required for a similar procedure performed using an operating microscope. The magnifying exoscope is an effective and nonbulky tool for surgical procedures. In visualization around the corners, the exoscope has better potential than a microscope. With technical and technologic modifications, the exoscope might become the next generation in illumination, visualization, exposure, and magnification for high-precision surgical procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. New powerful thermal modelling for high-precision gravity missions with application to Pioneer 10/11

    Energy Technology Data Exchange (ETDEWEB)

    Rievers, Benny; Laemmerzahl, Claus; List, Meike; Bremer, Stefanie; Dittus, Hansjoerg [ZARM, Universitaet Bremen, Am Fallturm, 28359 Bremen (Germany)], E-mail:


    The evaluation of about 25 years of Doppler data has shown an anomalous constant deceleration of the deep space probes Pioneer 10 and 11. This observation became known as the Pioneer anomaly (PA) and has been confirmed independently by several groups. Many disturbing effects that could cause a constant deceleration of the craft have been excluded as possible source of the PA. However, a potential asymmetric heat dissipation of the spacecraft surface leading to a resulting acceleration still remains to be analysed in detail. We developed a method to calculate this force with very high precision by means of finite element (FE) modelling and ray tracing algorithms. The elaborated method is divided into two separate parts. The first part consists of the modelling of the spacecraft geometry in FE and the generation of a steady state temperature surface map of the craft. In the second part, this thermal map is used to compute the force with a ray-tracing algorithm, which gives the total momentum generated by the radiation emitted from the spacecraft surface. The modelling steps and the force computation are presented for a simplified geometry of the Pioneer 10/11 spacecraft including radioisotope thermoelectric generators (RTG), equipment/experiment section and the high gain antenna. Analysis results how that the magnitude of the forces to be expected are non-negligible with respect to the PA and that more detailed investigations are necessary. The method worked out here for the first time is not restricted to the modelling of the Pioneer spacecraft but can be used for many future fundamental physics (in particular gravitational physics) and geodesy missions like LISA, LISA Pathfinder or MICROSCOPE for which an exact disturbance modelling is crucial.

  6. High precision time calibration of the Permian-Triassic boundary mass extinction event in a deep marine context (United States)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs


    To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (1) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash layers interbedded with deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (2) accurate quantitative biochronology based on ammonoids, conodonts, radiolarians, and foraminifera and (3) tracers of marine bioproductivity (carbon isotopes) across the PTB. The unprecedented precision of the single grain chemical abrasion isotope-dilution thermal ionization mass spectrometry (CA-ID-TIMS) dating technique at sub-per mil level (radio-isotopic calibration of the PTB at the conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Here, we present new single grain U-Pb zircon data of volcanic ash layers from two deep marine sections (Dongpan and Penglaitan) revealing stratigraphic consistent dates over several volcanic ash layers bracketing the PTB. These analyses define weighted mean 206Pb/238U ages of 251.956±0.033 Ma (Dongpan) and 252.062±0.043 Ma (Penglaitan) for the last Permian ash bed. By calibration with detailed litho- and biostratigraphy new U-Pb ages of 251.953±0.038 Ma (Dongpan) and 251.907±0.033 Ma (Penglaitan) are established for the onset of the Triassic.

  7. High-precision 40Ar/39Ar ages for the Jehol fossil-bearing formations in SE China (United States)

    Chang, S.; Zhang, H.; Hemming, S. R.; Fang, Y.; Mesko, G. T.


    The Jehol Biota, defined as the characteristic Eosestheria-Ephemeropsis-Lycoptera assemblage, is known to be widely distributed in East Asia. The fossils of the Jehol Biota are magnificent, exquisitely preserved and extraordinarily diverse. Since the 1990s, abundant and varied fossils, including plants, insects, salamanders, dinosaurs, pterosaurs, choristoderes, birds, mammals and freshwater invertebrates, have been discovered from the Dabeigou, Yixian and Jiufotang Formations in Inner Mongolia, and Liaoning and Hebei Provinces of NE China. Each of these Jehol fossil-bearing formations has preserved a distinct assemblage of invertebrate and vertebrate fossils. Based on major invertebrates groups, the Jehol Biota has been divided into three developing stages and a hypothesis about its distribution and spread has been proposed. There is a clear progression towards greater diversity through the three phases and it corresponds to a progressive paleogeographic expansion through time. In addition to their extensive distribution in Inner Mongolia and NE China, other strata that contain Jehol related fossils have been identified in the central and most provinces of eastern China, the Korean Peninsula, Mongolia and Siberia. However, the detailed correlation between the classic Jehol outcrops and the less-studied localities requires further work, including high-resolution ages. We are analyzing sixteen volcanic samples from Zhejiang and Anhui Provinces to establish a high-precision chronostratigraphy for the less-studied localities across SE China and adjacent regions. Our work will provide important data to test the timing and the duration of three phases of the Jehol radiation. Furthermore, the age results will allow us to understand the temporal relationship among the Jehol localities and test if the later phases of the Jehol radiation had broader geographic distributions, as inferred from existing collections.

  8. The NANOGrav Observing Program: High-precision Millisecond Pulsar Timing and the Search for Nanohertz Gravitational Waves (United States)

    Nice, David; NANOGrav


    The North American Observatory for Nanohertz Gravitational Waves (NANOGrav) collaboration is thirteen years into a program of long-term, high-precision millisecond pulsar timing, undertaken with the goal of detecting and characterization nanohertz gravitational waves (i.e., gravitational waves with periods of many years) by measuring their effect on observed pulse arrival times. Our primary instruments are the Arecibo Observatory, used to observe 37 pulsars with declinations between 0 and 39 degrees; and the Green Bank Telescope, used for 24 pulsars, of which 22 are outside the Arecibo range, and 2 are overlaps with the Arecibo source list. Additional observations are made with the VLA and (soon) CHIME.Most pulsars in our program are observed at intervals of three to four weeks, and seven are observed weekly. Observations of each pulsar are made over a wide range of radio frequencies at each epoch in order to measure and mitigate effects of the ionized interstellar medium on the pulse arrival times. Our targets are pulsars for which we can achieve timing precision of 1 microsecond or better in at each epoch; we achieve precision better than 100 nanoseconds in the best cases. Observing a large number of pulsars will allow for robust measurements of gravitational waves by analyzing correlations in the timing of pairs of pulsars depending on their separation on the sky. Our data are pooled with data from telescopes worldwide via the International Pulsar Timing Array (IPTA) collaboration, further increasing our sensitivity to gravitational waves.We release data at regular intervals. We will describe the NANOGrav 5-, 9- and 11-year data sets and give a status report on the NANOGrav 12.5-year data set.

  9. Particle tracking

    CERN Document Server

    Safarík, K; Newby, J; Sørensen, P


    In this lecture we will present a short historical overview of different tracking detectors. Then we will describe currently used gaseous and silicon detectors and their performance. In the second part we will discuss how to estimate tracking precision, how to design a tracker and how the track finding works. After a short description of the LHC the main attention is drawn to the ALICE experiment since it is dedicated to study new states in hadronic matter at the LHC. The ALICE tracking procedure is discussed in detail. A comparison to the tracking in ATLAS, CMS and LHCb is given. (5 refs).

  10. Directly Measuring the Degree of Quantum Coherence using Interference Fringes. (United States)

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can


    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior-the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l_{1} norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  11. Holographic images reconstructed from GMR-based fringe pattern

    Directory of Open Access Journals (Sweden)

    Kikuchi Hiroshi


    Full Text Available We have developed a magneto-optical spatial light modulator (MOSLM using giant magneto-resistance (GMR structures for realizing a holographic three-dimensional (3D display. For practical applications, reconstructed image of hologram consisting of GMR structures should be investigated in order to study the feasibility of the MOSLM. In this study, we fabricated a hologram with GMR based fringe-pattern and demonstrated a reconstructed image. A fringe-pattern convolving a crossshaped image was calculated by a conventional binary computer generated hologram (CGH technique. The CGH-pattern has 2,048 × 2,048 with 5 μm pixel pitch. The GMR stack consists of a Tb-Fe-Co/CoFe pinned layer, a Ag spacer, a Gd-Fe free layer for light modulation, and a Ru capping layer, was deposited by dc-magnetron sputtering. The GMR hologram was formed using photo-lithography and Krion milling processes, followed by the deposition of a Tb-Fe-Co reference layer with large coercivity and the same Kerr-rotation angle compared to the free layer, and a lift-off process. The reconstructed image of the ON-state was clearly observed and successfully distinguished from the OFF-state by switching the magnetization direction of the free-layer with an external magnetic field. These results indicate the possibility of realizing a holographic 3D display by the MOSLM using the GMR structures.

  12. Holographic images reconstructed from GMR-based fringe pattern (United States)

    Kato, Daisuke; Aoshima, Kenichi; Machida, Kenji; Emoto, Akira; Kinjo, Hidekazu; Kuga, Kiyoshi; Ono, Hiroshi; Ishibashi, Takayuki; Kikuchi, Hiroshi; Shimidzu, Naoki


    We have developed a magneto-optical spatial light modulator (MOSLM) using giant magneto-resistance (GMR) structures for realizing a holographic three-dimensional (3D) display. For practical applications, reconstructed image of hologram consisting of GMR structures should be investigated in order to study the feasibility of the MOSLM. In this study, we fabricated a hologram with GMR based fringe-pattern and demonstrated a reconstructed image. A fringe-pattern convolving a crossshaped image was calculated by a conventional binary computer generated hologram (CGH) technique. The CGH-pattern has 2,048 × 2,048 with 5 μm pixel pitch. The GMR stack consists of a Tb-Fe-Co/CoFe pinned layer, a Ag spacer, a Gd-Fe free layer for light modulation, and a Ru capping layer, was deposited by dc-magnetron sputtering. The GMR hologram was formed using photo-lithography and Krion milling processes, followed by the deposition of a Tb-Fe-Co reference layer with large coercivity and the same Kerr-rotation angle compared to the free layer, and a lift-off process. The reconstructed image of the ON-state was clearly observed and successfully distinguished from the OFF-state by switching the magnetization direction of the free-layer with an external magnetic field. These results indicate the possibility of realizing a holographic 3D display by the MOSLM using the GMR structures.

  13. Glass fiber reinforced plastics within the fringe and flexure tracker of LINC-NIRVANA (United States)

    Smajic, Semir; Eckart, A.; Horrobin, M.; Lindhorst, B.; Pott, J.-U.; Rauch, C.; Rost, S.; Straubmeier, C.; Tremou, E.; Wank, I.; Zuther, J.


    The Fringe and Flexure Tracking System (FFTS) is meant to monitor and correct atmospheric piston varia­ tion and instrumental vibrations and flexure during near-infrared interferometric image acquisition of LING­ NIRVANA. In close work with the adaptive optics system the FFTS enables homothetic imaging for the Large Binocular Telescope. One of the main problems we had to face is the connection between the cryogenic upper part of the instrument, e.g. detector head, and the lower ambient temperature part. In this ambient temperature part the moving stages are situated that move the detector head in the given field of view (FOV). We show how we solved this problem using the versatile material glass fiber reinforced plastics (GFRP's) and report in what way this material can be worked. We discuss in detail the exquisite characteristics of this material which we use to combine the cryogenic and ambient environments to a fully working system. The main characteristics that we focus on are the low temperature conduction and the tensile strength of the GFRP's. The low temperature conduction is needed to allow for a low heat-exchange between the cryogenic and ambient part whereas the tensile strength is needed to support heavy structures like the baffle motor and to allow for a minimum of flexure for the detector head. Additionally, we discuss the way we attached the GFRP to the remaining parts of the FFTS using a two component encapsulant.

  14. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, Brian D. [Nevada Geothermal Power Company, Vancouver (Canada); Smith, Nicole [Nevada Geothermal Power Company, Vancouver (Canada)


    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag

  15. Lava Flow Emplacement Processes and Eruptive Characteristics of the Ontong Java Plateau: Inferences from High-Precision Glass Analysis (United States)

    Trowbridge, S. R.; Michael, P. J.


    High-precision major and volatile element analyses were performed on natural basaltic glass from ODP Leg 192 Sites 1185 and 1187 of the Ontong Java Plateau (OJP) as a way to correlate lava flows within and between ODP drill sites. The ultimate goal is to estimate the dimensions, emplacement style, and eruption characteristics of the high-MgO Kroenke-type lavas: the youngest known flows at the two sites. The 122-Ma Ontong Java Plateau is the largest known magmatic event in Earth's history, yet little is known of the emplacement style (e.g. flow dimensions and durations) of OJP lavas due to its submarine nature and burial beneath hundreds of meters of sediment. Basalt samples were recovered from 110- and 130-m thick core sections from Sites 1185B and 1187A, respectively. Total Kroenke-type lava thickness is 125 m at 1185B and >136 m at 1187. Site 1187A is located 146 km north of Site 1185B and lies ≈50 m shallower than Site 1187. Remarkably, all of the glass compositions from both sites fall on a common liquid line of descent, suggesting that all lavas were the product of a single eruption from a common magma chamber. The range of MgO compositions reflects a 20ºC range in temperature, representing ~1.9% crystallization of olivine + spinel. Using measured phenocryst abundance, we examine whether this crystallization occurred within the magma chamber or during long transport of lavas on the seafloor. More primitive lavas are present in the upper 30 m of Site 1185B (average of ~9.54 wt. % MgO), overlying more fractionated lavas (average of ~9.06 wt. % MgO). Lavas from Site 1187A bridge the gap between the high- and low-MgO groups of 1185B. In contrast to MORB, OJP glasses have no vesicles, suggesting they remained liquid for much longer during flow. Paleoeruption depths calculated from H2O and CO2 contents of glasses show no systematic variation with depth in Core 1185B, and range from ~2130-2650 mbsl, while Site 1187 shows deeper eruption depths of ~2410-3040 mbsl

  16. High-precision geologic mapping to evaluate the potential for seismic surface rupture at TA-55, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, J.N.; Lavine, A.; Vaniman, D.; WoldeGabriel, G.


    In this report the authors document results of high-precision geologic mapping in the vicinity of TA-55 that has been done to identify parts of the southern portion of the Rendija Canyon Fault, or any other faults, with the potential for seismic surface rupture. To assess the potential for surface rupture at TA-55, an area of approximately 3 square miles that includes the Los Alamos County Landfill and Twomile, Mortandad, and Sandia Canyons has been mapped in detail. Map units are mostly cooling or flow units within the Tshirege Member (1.2 Ma) of the Bandelier Tuff. Stratigraphic markers that are useful for determining offsets in the map area include a distinct welding break at or near the cooling Unit 2-Unit 3 contact, and the Unit 3-Unit 4 contact. At the County Landfill the contact between the Tshirege Member of the Bandelier Tuff and overlying Quaternary alluvium has also been mapped. The mapping indicates that there is no faulting in the near-surface directly below TA-55, and that the closest fault is about 1500 feet west of the Plutonium Facility. Faulting is more abundant on the western edge of the map area, west of TA-48 in uppermost Mortandad Canyon, upper Sandia Canyon, and at the County Landfill. Measured vertical offsets on the faults range from 1 to 8 feet on mapped Bandelier Tuff contacts. Faulting exposed at the Los Alamos County Landfill has deformed a zone over 1000 feet wide, and has a net vertical down-to-the-west displacement of at least 15 feet in the Bandelier Tuff. Individual faults at the landfill have from less than 1 foot to greater than 15 feet of vertical offset on the Bandelier Tuff. Most faults in the landfill trend N-S, N20W, or N45E. Results of the mapping indicate that the Rendija Canyon Fault does not continue directly south to TA-55. At present, the authors have insufficient data to connect faulting they have mapped to areas of known faulting to the north or south of the study area.

  17. Semi-robotic 6 degree of freedom positioning for intracranial high precision radiotherapy; first phantom and clinical results

    Directory of Open Access Journals (Sweden)

    Flentje Michael


    Full Text Available Abstract Background To introduce a novel method of patient positioning for high precision intracranial radiotherapy. Methods An infrared(IR-array, reproducibly attached to the patient via a vacuum-mouthpiece(vMP and connected to the table via a 6 degree-of-freedom(DoF mechanical arm serves as positioning and fixation system. After IR-based manual prepositioning to rough treatment position and fixation of the mechanical arm, a cone-beam CT(CBCT is performed. A robotic 6 DoF treatment couch (HexaPOD™ then automatically corrects all remaining translations and rotations. This absolute position of infrared markers at the first fraction acts as reference for the following fractions where patients are manually prepositioned to within ± 2 mm and ± 2° of this IR reference position prior to final HexaPOD-based correction; consequently CBCT imaging is only required once at the first treatment fraction. The preclinical feasibility and attainable repositioning accuracy of this method was evaluated on a phantom and human volunteers as was the clinical efficacy on 7 pilot study patients. Results Phantom and volunteer manual IR-based prepositioning to within ± 2 mm and ± 2° in 6DoF was possible within a mean(± SD of 90 ± 31 and 56 ± 22 seconds respectively. Mean phantom translational and rotational precision after 6 DoF corrections by the HexaPOD was 0.2 ± 0.2 mm and 0.7 ± 0.8° respectively. For the actual patient collective, the mean 3D vector for inter-treatment repositioning accuracy (n = 102 was 1.6 ± 0.8 mm while intra-fraction movement (n = 110 was 0.6 ± 0.4 mm. Conclusions This novel semi-automatic 6DoF IR-based system has been shown to compare favourably with existing non-invasive intracranial repeat fixation systems with respect to handling, reproducibility and, more importantly, intra-fraction rigidity. Some advantages are full cranial positioning flexibility for single and fractionated IGRT treatments and possibly increased patient

  18. A novel semi-robotized device for high-precision 18F-FDG-guided breast cancer biopsy. (United States)

    Hellingman, D; Teixeira, S C; Donswijk, M L; Rijkhorst, E J; Moliner, L; Alamo, J; Loo, C E; Valdés Olmos, R A; Stokkel, M P M

    To assess the 3D geometric sampling accuracy of a new PET-guided system for breast cancer biopsy (BCB) from areas within the tumour with high 18F-FDG uptake. In the context of the European Union project MammoCare, a prototype semi-robotic stereotactic prototype BCB-device was incorporated into a dedicated high resolution PET-detector for breast imaging. The system consists of 2 stacked rings, each containing 12 plane detectors, forming a dodecagon with a 186mm aperture for 3D reconstruction (1mm3 voxel). A vacuum-assisted biopsy needle attached to a robot-controlled arm was used. To test the accuracy of needle placement, the needle tip was labelled with 18F-FDG and positioned at 78 target coordinates distributed over a 35mm×24mm×28mm volume within the PET-detector field-of-view. At each position images were acquired from which the needle positioning accuracy was calculated. Additionally, phantom-based biopsy proofs, as well as MammoCare images of 5 breast cancer patients, were evaluated for the 3D automated locating of 18F-FDG uptake areas within the tumour. Needle positioning tests revealed an average accuracy of 0.5mm (range 0-1mm), 0.6mm (range 0-2mm), and 0.4mm (range 0-2mm) for the x/y/z-axes, respectively. Furthermore, the MammoCare system was able to visualize and locate small (<10mm) regions with high 18F-FDG uptake within the tumour suitable for PET-guided biopsy after being located by the 3D automated application. Accuracy testing demonstrated high-precision of this semi-automatic 3D PET-guided system for breast cancer core needle biopsy. Its clinical feasibility evaluation in breast cancer patients scheduled for neo-adjuvant chemotherapy will follow. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  19. Reassembling and testing of a high-precision heat capacity drop calorimeter. Heat capacity of some polyphenyls at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luis M.N.B.F., E-mail: [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Rocha, Marisa A.A.; Rodrigues, Ana S.M.C. [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Stejfa, Vojtech; Fulem, Michal [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, CZ-166 28 Prague 6 (Czech Republic); Bastos, Margarida [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)


    Graphical abstract: Highlights: > We present the reassembling, improvement and testing of a high-precision C{sub p} drop calorimeter. > The apparatus was tested, using benzoic acid and hexafluorobenzene. > The high sensitivity of the apparatus is comparable to the one obtained in adiabatic calorimetry. > Heat capacities at T = 298.15 K of some polyphenyls were measured. > Subtle heat capacity differences among position isomers (ortho, meta, para) were detected. - Abstract: The description of the reassembling and testing of a twin heat conduction, high-precision, drop microcalorimeter for the measurement of heat capacities of small samples are presented. The apparatus, originally developed and used at the Thermochemistry Laboratory, Lund, Sweden, has now been reassembled and modernized, with changes being made as regarding temperature sensors, electronics and data acquisition system. The apparatus was thereafter thoroughly tested, using benzoic acid and hexafluorobenzene as test substances. The accuracy of the C{sub p,m}{sup 0} (298.15 K) data obtained with this apparatus is comparable to that achieved by high-precision adiabatic calorimetry. Here we also present the results of heat capacity measurements on of some polyphenyls (1,2,3-triphenylbenzene, 1,3,5-triphenylbenzene, p-terphenyl, m-terphenyl, o-terphenyl, p-quaterphenyl) at T = 298.15 K, measured with the renewed high precision heat capacity drop calorimeter system. The high resolution and accuracy of the obtained heat capacity data enabled differentiation among the ortho-, meta-, and para-phenyl isomers.

  20. A new Time-of-Flight mass measurement project for exotic nuclei and ultra-high precision detector development

    Directory of Open Access Journals (Sweden)

    Sun Bao-Hua


    Full Text Available The time-of-flight (TOF mass spectrometry (MS, a high-resolution magnetic spectrometer equipped with a fast particle tracking system, is well recognized by its ability in weighing the most exotic nuclei. Currently such TOF-MS can achieve a mass resolution power of about 2×10−4. We show that the mass resolution can be further improved by one order of magnitude with augmented timing and position detectors. We report the progress in developing ultra-fast detectors to be used in TOF-MS.

  1. Frontal and Lateral Submarine Lobe Fringes: Comparing Sedimentary Facies, Architecture and Flow Processes

    NARCIS (Netherlands)

    Spychala, Yvonne T.; Hodgson, David M.; Prélat, Amandine; Kane, Ian A.; Flint, Stephen S.; Mountney, Nigel P.


    Submarine lobe-fringe deposits form heterolithic successions that may include a high proportion of hybrid beds. The identification of lobe-fringe successions aids interpretation of paleogeographic setting and the degree of basin confinement. Here, for the first time, the sedimentological and

  2. Community structure and abundance of benthic infaunal invertebrates in Maine fringing marsh ecosystems (United States)

    Richard A. MacKenzie; Michele Dionne; Jeremy Miller; Michael Haas; Pamela A. Morgan


    Fringing marshes are abundant ecosystems that dominate the New England coastline. Despite their abundance, very little baseline data is available from them and few studies have documented the ecosystems services that they provide. This information is important for conservation efforts as well as for an increased understanding of how fringing marshes function compared...

  3. 29 CFR 4.177 - Discharging fringe benefit obligations by equivalent means. (United States)


    ... into a pension fund, this fringe benefit obligation will be deemed to be met if, instead...) rate of pay, whichever is greater. For example, if the determination calls for a 5 percent pension fund... hour is to be paid into a pension fund, this fringe benefit obligation will be deemed to be met if...

  4. Commuting-related fringe benefits in the Netherlands : Interrelationships and company, employee and location characteristics

    NARCIS (Netherlands)

    Nijland, Linda; Dijst, Martin


    Mobility management measures taken by firms could potentially result in more sustainable transport choices and hence reduce traffic congestion and emissions. Fringe benefits offered to employees are a means to implement those measures. This paper explores the most common commuting-related fringe

  5. Distributed energy generation techniques and the competitive fringe effect in electricity markets

    NARCIS (Netherlands)

    Mulder, Machiel; Petrikaite, Vaiva; Scholtens, Bert


    We analyse the impact of two different generation techniques used by fringe suppliers on the intensity of competition in the electricity wholesale market. For that purpose, we derive a Cournot model of this market taking into account long-term contracts, international trade and fringe suppliers

  6. 26 CFR 1.61-2T - Taxation of fringe benefits-1985 through 1988 (temporary). (United States)


    ... perception of the value of a fringe benefit is not relevant to the determination of a fringe benefit's fair... outside the United States, Canada, and Mexico. For purposes of this section, the United States includes... employee and the employer must be disregarded. Also, the employee's subjective perception of the value of...

  7. Modeling of the fringe shift in multiple beam interference for glass ...

    Indian Academy of Sciences (India)

    the following paragraph. 3. A quadratic model for the fringe shift. A parabolic function is assumed to represent the fringe shift obtained in case of multiple beam interference occurred in a liquid wedge interferometer. It means utilization of the phase object of thickness tp(y) varied in a quadratic parabolic shape keeping the ...

  8. 48 CFR 22.406-2 - Wages, fringe benefits, and overtime. (United States)


    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Wages, fringe benefits... Contracts Involving Construction 22.406-2 Wages, fringe benefits, and overtime. (a) In computing wages paid... under the clause at 52.222-6, Davis-Bacon Act, by providing wages consisting of any combination of...

  9. Skeleton extraction and phase interpolation for single ESPI fringe pattern based on the partial differential equations. (United States)

    Zhang, Fang; Wang, Danyu; Xiao, Zhitao; Geng, Lei; Wu, Jun; Xu, Zhenbei; Sun, Jiao; Wang, Jinjiang; Xi, Jiangtao


    A novel phase extraction method for single electronic speckle pattern interferometry (ESPI) fringes is proposed. The partial differential equations (PDEs) are used to extract the skeletons of the gray-scale fringe and to interpolate the whole-field phase values based on skeleton map. Firstly, the gradient vector field (GVF) of the initial fringe is adjusted by an anisotropic PDE. Secondly, the skeletons of the fringe are extracted combining the divergence property of the adjusted GVF. After assigning skeleton orders, the whole-field phase information is interpolated by the heat conduction equation. The validity of the proposed method is verified by computer-simulated and experimentally obtained poor-quality ESPI fringe patterns.

  10. A dual-direction fringe projection method for the 3D measurement of translucent object (United States)

    Zhao, Huijie; Liang, Xiaoyue; Jiang, Hongzhi; Li, Hong


    The fringe projection technology is widely used in 3D measurement fields. However when the technology is applying to translucent objects, the subsurface scattering and absorbing always leads to a decline of the measurement accuracy. The aim of this paper is to propose a dual-direction fringe projection method in order to obtain an more accurate measurement result for the translucent objects as while as change the whole measurement system little and do not reduce the measuring rapidity. The paper mainly includes three parts: (1) The principle of dual-direction fringe projection method and different forms of dual-direction fringe; (2) Analysis of the different effect for the measurement accuracy brought by different factors; (3) Experiments for artificial tooth by various dual-direction fringes and accuracy analysis. The experiment results showed that by this method it is possible to improve the measurement accuracy for the translucent objects.

  11. Timber tracking

    DEFF Research Database (Denmark)

    Düdder, Boris; Ross, Omry


    Managing and verifying forest products in a value chain is often reliant on easily manipulated document or digital tracking methods - Chain of Custody Systems. We aim to create a new means of tracking timber by developing a tamper proof digital system based on Blockchain technology. Blockchain...

  12. Polygon approximation of the fringes of diffractive elements. (United States)

    Kallioniemi, I; Saarinen, J; Blomstedt, K; Turunen, J


    In the electron-beam fabrication of interferogram-type diffractive elements, such as diffractive lenses, continuous fringes are often approximated by polygons to reduce the data volume. Local wave-front errors are then generated that scatter light and give rise to background noise. A roughness parameter beta is introduced to quantify local phase errors in polygon-encoded diffractive structures. An efficient numerical method is developed to compute the Fresnel diffraction pattern of a polygon aperture. Polygon-approximated diffractive axicons and lenses are then investigated to determine the dependence of the signal fidelity on beta. It is found, e.g., that the maximum local phase error must be as large as pi/6 rad before the Strehl ratio S of a paraxial diffractive lens reduces below S = 0.9. However, much smaller errors can noticeably break the circular symmetry of the diffraction pattern.

  13. Engaging Fringe Stakeholders in Business and Society Research

    DEFF Research Database (Denmark)

    McCarthy, Lauren; Muthuri, Judy N.


    Business and society (B&S) researchers, as well as practitioners, have been critiqued for ignoring those with less voice and power (e.g., women, nonliterate, or indigenous peoples) often referred to as “fringe stakeholders.” Existing methods used in B&S research often fail to address issues...... of meaningful participation, voice and power, especially in developing countries. In this article, we stress the utility of visual participatory research (VPR) methods in B&S research to fill this gap. Through a case study on engaging Ghanaian cocoa farmers on gender inequality issues, we explore how VPR...... methods may be used by researchers to achieve more inclusive, and thus more credible, stakeholder research that can improve decision making within businesses. Furthermore, we argue that ingrained social and environmental problems tackled by B&S research and the unique context in which they occur may open...

  14. Improved zero-order fringe positioning algorithms in white light interference based atomic force microscopy (United States)

    Hu, Chi; Liu, Xiaojun; Yang, Wenjun; Lu, Wenlong; Yu, Nengguo; Chang, Suping


    In white light interference based atomic force microscopy (WLIAFM), the vertical displacement of the probe is obtained by zero-order fringe positioning on the probe cantilever, so the accuracy of zero-order fringe positioning will affect directly that of the WLIAFM. However, due to non-uniform distribution of light intensity and photoelectric noises, accurate zero-order fringe positioning becomes a problem. In this paper, two algorithms are proposed to improve the zero-order fringe positioning accuracy. In the first algorithm which is called improved maximum algorithm, multi-row maximum positions of the interference fringes are obtained and error theory is applied to eliminate erroneous maximum positions, then the average of remaining maximum positions is used as the zero-order fringe position. Another is called phase evaluation algorithm, in which wavelet transform is applied to eliminate effects from disturbances mentioned above and Hilbert transform is used for phase evaluation to obtain the zero-order fringe position. The practicability and accuracy of the two algorithms have been verified by series of experiments. The experiment results indicate that both two algorithms are suitable in this condition and the phase evaluation algorithm has higher accuracy while the improved maximum algorithm has higher processing speed.

  15. Value of Sample Return and High Precision Analyses: Need for A Resource of Compelling Stories, Metaphors and Examples for Public Speakers (United States)

    Allton, J. H.


    There is widespread agreement among planetary scientists that much of what we know about the workings of the solar system comes from accurate, high precision measurements on returned samples. Precision is a function of the number of atoms the instrumentation is able to count. Accuracy depends on the calibration or standardization technique. For Genesis, the solar wind sample return mission, acquiring enough atoms to ensure precise SW measurements and then accurately quantifying those measurements were steps known to be non-trivial pre-flight. The difficulty of precise and accurate measurements on returned samples, and why they cannot be made remotely, is not communicated well to the public. In part, this is be-cause "high precision" is abstract and error bars are not very exciting topics. This paper explores ideas for collecting and compiling compelling metaphors and colorful examples as a resource for planetary science public speakers.

  16. Comparison of ATLAS Tilecal MODULE No 8 high-precision metrology measurement results obtained by laser (JINR) and photogrammetric (CERN) methods

    CERN Document Server

    Batusov, V; Gayde, J C; Khubua, J I; Lasseur, C; Lyablin, M V; Miralles-Verge, L; Nessi, Marzio; Rusakovitch, N A; Sissakian, A N; Topilin, N D


    The high-precision assembly of large experimental set-ups is of a principal necessity for the successful execution of the forthcoming LHC research programme in the TeV-beams. The creation of an adequate survey and control metrology method is an essential part of the detector construction scenario. This work contains the dimension measurement data for ATLAS hadron calorimeter MODULE No. 8 (6 m, 22 tons) which were obtained by laser and by photogrammetry methods. The comparative data analysis demonstrates the measurements agreement within +or-70 mu m. It means, these two clearly independent methods can be combined and lead to the rise of a new-generation engineering culture: high-precision metrology when precision assembling of large scale massive objects. (3 refs).

  17. High-precision three-dimensional atom localization via phase-sensitive absorption spectra in a four-level atomic system (United States)

    Zhang, Duo; Yu, Rong; Sun, Zhaoyu; Ding, Chunling; Zubairy, M. Suhail


    We propose a new scheme for highly efficient three-dimensional (3D) atom localization in a coherently driven closed-loop four-level atomic system via measuring the probe absorption of the weak field. Due to the spatially dependent atom–field interaction, the absorption spectra of the weak probe laser field carry the information about the atomic position. By solving the density-matrix equations of motion and properly modulating the system parameters such as the probe detuning, the relative phase of three driving fields, and the intensity of the control and microwave fields, we can realize high-precision and high-resolution 3D atom localization. Furthermore, we can find the atom at a certain position with 100% probability under appropriate conditions, and then we employ the dressed-state analysis to explain qualitatively the reason of high-precision 3D atom localization.

  18. High-Precision Spectral Decomposition Method Based on VMD/CWT/FWEO for Hydrocarbon Detection in Tight Sandstone Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Hui Chen


    Full Text Available Seismic time-frequency analysis methods can be used for hydrocarbon detection because of the phenomena of energy and abnormal attenuation of frequency when the seismic waves travel across reservoirs. A high-resolution method based on variational mode decomposition (VMD, continuous-wavelet transform (CWT and frequency-weighted energy operator (FWEO is proposed for hydrocarbon detection in tight sandstone gas reservoirs. VMD can decompose seismic signals into a set of intrinsic mode functions (IMF in the frequency domain. In order to avoid meaningful frequency loss, the CWT method is used to obtain the time-frequency spectra of the selected IMFs. The energy separation algorithm based on FWEO can improve the resolution of time-frequency spectra and highlight abnormal energy, which is applied to track the instantaneous energy in the time-frequency spectra. The difference between the high-frequency section and low-frequency section acquired by applying the proposed method is utilized to detect hydrocarbons. Applications using the model and field data further demonstrate that the proposed method can effectively detect hydrocarbons in tight sandstone reservoirs, with good anti-noise performance. The newly-proposed method can be used as an analysis tool to detect hydrocarbons.

  19. The high-precision x-ray tomograph for quality control of the ATLAS MDT muon spectrometer

    CERN Document Server

    Drakoulakos, D G; Maugain, J M; Rohrbach, F; Sedykh, Yu


    For the Large Hadron Collider (LHC) of the next millennium, a large general-purpose high-energy physics experiment, the ATLAS project, is being designed by a world-wide collaboration. One of its detectors, the ATLAS muon tracking detector, the MDT project, is on the scale of a very large industrial project: the design, the construction and assembly of twelve hundred large muon drift chambers are aimed at producing an exceptional quality in terms of accuracy, material reliability, assembly, and monitoring. This detector, based on the concept of very high mechanical precision required by the physics goals, will use tomography as a quality control platform. An X-ray tomograph prototype, monitored by a set of interferometers, has been developed at CERN to provide high-quality control of the MDT chambers which will be built in the collaborating institutes of the ATLAS project. First results have been obtained on MDT prototypes showing the validity of the X-ray tomograph approach for mechanical control of the detec...

  20. Construction and test of high precision drift-tube (sMDT) chambers for the ATLAS muon spectrometer

    CERN Document Server

    Nowak, Sebastian; Kroha, Hubert; Schwegler, Philipp; Sforza, Federico


    For the upgrade of the ATLAS muon spectrometer in March 2014 new muon tracking chambers (sMDT) with drift-tubes of 15 mm diameter, half of the value of the standard ATLAS Monitored Drift-Tubes (MDT) chambers, and 10~$\\mu$m positioning accuracy of the sense wires have been constructed. The new chambers are designed to be fully compatible with the present ATLAS services but, with respect to the previously installed ATLAS MDT chambers, they are assembled in a more compact geometry and they deploy two additional tube layers that provide redundant rack information. The chambers are composed of 8 layers of in total 624 aluminium drift-tubes. The assembly of a chamber is completed within a week. A semi-automatized production line is used for the assembly of the drift-tubes prior to the chamber assembly. The production procedures and the quality control tests of the single components and of the complete chambers will be discussed. The wire position in the completed chambers have been measured by using a coordinate me...

  1. Application of high-precision 3D seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zuqing Chen


    Full Text Available The accumulation pattern of the marine shale gas in South China is different from that in North America. The former has generally thin reservoirs and complex preservation conditions, so it is difficult to make a fine description of the structural features of shale formations and to reflect accurately the distribution pattern of high-quality shale by using the conventional 2D and 3D seismic exploration technology, which has an adverse effect on the successful deployment of horizontal wells. In view of this, high-precision 3D seismic prospecting focusing on lithological survey was implemented to make an accurate description of the distribution of shale gas sweet spots so that commercial shale gas production can be obtained. Therefore, due to the complex seismic geological condition of Jiaoshiba area in Fuling, SE Sichuan Basin, the observation system of high-precision 3D seismic acquisition should have such features as wide-azimuth angles, small trace intervals, high folds, uniform vertical and horizontal coverage and long spread to meet the needs of the shale gas exploration in terms of structural interpretation, lithological interpretation and fracture prediction. Based on this idea, the first implemented high-precision 3D seismic exploration project in Jiaoshiba area played an important role in the discovery of the large Jiaoshiba shale gas field. Considering that the high-quality marine shale in the Sichuan Basin shows the characteristics of multi-layer development from the Silurian system to the Cambrian system, the strategy of shale gas stereoscopic exploration should be implemented to fully obtain the oil and gas information of the shallow, medium and deep strata from the high-precision 3D seismic data, and ultimately to expand the prospecting achievements in an all-round way to balance the high upstream exploration cost, and to continue to push the efficient shale gas exploration and development process in China.

  2. Damage and loss assessment on rubber trees caused by typhoon based on high-precision remote sensing data and field investigation (United States)

    Li, Jian; Fang, Weihua; Tan, Chenyan


    Forest dynamics are highly relevant to land hydrology, climate, carbon budget and biodiversity. Damage and loss assessment of forest caused by typhoon is essential to the understanding of ecosystem variations. Combination of high-precision remote sensing data and field investigation is critical to the assessment of forest damage loss. In this study, high-precision remote sensing data prior to and after typhoon from IKONOS, QuickBird, unmanned aerial vehicle (UAV) are used for identifying rubber tree disturbance. The ground truth data of rubber tree damage collected through field investigation are used to verify and compare the results. Taken the forest damage induced by typhoon Rammasun (201409) in Hainan as an example, 5 damage types (overthrown, trunk snapped below 2m, trunk snapped above 2m, half-overthrown, and sheared) of rubber trees are clearly interpreted compared with field investigation results. High-precision remote sensing data is then applied to other areas to evaluate the forest damage severity. At last, rubber tree damage severity is investigated with other typhoon hazard factors such as wind, topography, soil and precipitation.

  3. Direct high-precision measurement of the effective optical path length of multi-pass cell with optical frequency domain reflectometer. (United States)

    Du, Z H; Gao, H; Cao, X H


    Multi-pass cells (MPCs) are commonly used in trace-gas detection and weak spectrum measurement. It is essential to accomplish a high-precision measurement of MPCs' effective optical path length (EOPL). A direct high-precision measuring method of MPCs' EOPL with optical frequency domain reflectometer (OFDR) was reported and demonstrated in this paper. Several important parameters of a MPC, such as EOPL and base length, were derived with high-precision by identifying the complicated signal of OFDR. The MPC's EOPL was also verified with the prevailing absorbance method. The results showed that the MPC's EOPL measured by each of these two methods is highly consistent. However, the relative uncertainty with the OFDR dramatically decreased 2 orders of magnitude (about 0.0085%) than that with the absorbance method. It demonstrated that the OFDR method with fewer measurement links is more conducive to a direct measurement. The performances of beam spread and stray light in the White-cell were also evaluated with the method.

  4. Tracking FEMA


    Leskanic, Tyler; Kays, Kevin; Maier, Emily; Cannon, Seth


    The zip archive attached to this project is the compressed TrackingFEMA Git repository. It contains the CMS (RefineryCMS - Rails), processing scripts, as well as visualization sample code. The processing scripts are in a folder called TrackingFEMAProcessing. The visualizations are contained in Visualization. The rest of the rails files are contained within the usual Ruby on Rails file system structure. The finished product is a website visualizing the efforts of disaster response organizat...

  5. Determination of slope, curvature, and twist from a single shearography fringe pattern using derivative-based regularized phase tracker (United States)

    Deepan, Balakrishnan; Quan, Chenggen; Tay, Cho Jui


    A fringe analysis algorithm for determination of slope, curvature, and twist from a single fringe pattern in digital speckle-shearing interferometry is proposed. A method for estimation of biased curvature and twist maps from fringe orientation and fringe density maps is employed. The curvature and twist maps obtained are further processed by B-spline interpolation to achieve high quality curvature and twist maps. A derivative-based regularized phase tracker (RPT) utilizes these predetermined curvature and twist maps for determination of a slope map from a single shearography fringe pattern. The proposed model requires less computational time and it overcomes the limitations of the RPT model. The method is validated with an experimental fringe pattern. The results show that this method is robust against speckle noise and it is able to retrieve accurate slope, curvature, and twist maps from a single shearography fringe pattern.

  6. High-precision Dating of Metamorphism and Melt Segregation in a Convergent Margin Setting: the North Cascades Continental Magmatic Arc (United States)

    Gordon, S. M.; Bowring, S.; Whitney, D.; Miller, R.; McLean, N.


    Convergent plate margins represent areas where the crust has undergone intense physical and chemical changes that may be tracked through the use of accessory mineral chronometers. The Skagit Gneiss is located at the southernmost extent of the > 1500 km long Coast Plutonic-North Cascades arc system. The Skagit has experienced a protracted thermal and deformational history with the emplacement of plutons from ca. 96 to 45 Ma that overlaps a transition from transpression (ca. 73 to 58 Ma) to transtension (55-45 Ma). Migmatitic metapelites in the core of the Skagit record metamorphism during significant crustal thickening, heating, and possibly during decompression, with peak pressure-temperature conditions of 8-10 kbar and 650-725 °C. Electron backscatter diffraction (EBSD) was utilized to investigate the fabric of the leucosomes located throughout the Skagit core. The results show that the leucosomes were affected by an intense low-temperature deformation post-melt crystallization, with quartz results yielding basal-a and prism-a slip. In order to better understand the timescales of metamorphism, deformation and partial melting in the Skagit, both monazite and zircon were dated from leucosomes representing a variety of textures (stromatic/discordant; fine-grained/pegmatitic) and from the host metapelite. Zircons from the metapelite commonly yield Cretaceous dates, with a youngest date of ca. 60 Ma. Leucosomes yield zircon with concordant dates that range from 68 Ma to 47 Ma. In comparison, monazite from individual leucosomes yield a variety of dates, with one group clustering near 48 Ma and a second set of older dates from 69 to 65 Ma. The latter monazite dates are consistently older than the zircons from the same leucosome, consistent with the possibility that the older monazites record the timing of prograde to possibly peak metamorphism in the Skagit. Similar monazite dates have been revealed from the metapelite. The Cretaceous zircon results may either represent

  7. Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes. (United States)

    Reis, Carla Roberta Gonçalves; Nardoto, Gabriela Bielefeld; Rochelle, André Luis Casarin; Vieira, Simone Aparecida; Oliveira, Rafael Silva


    Mangroves exhibit low species richness compared to other tropical forests, but great structural and functional diversity. Aiming to contribute to a better understanding of the functioning of mangrove forests, we investigated nitrogen (N) dynamics in two physiographic types of mangroves (fringe and basin forests) in southeastern Brazil. Because fringe forests are under great influence of tidal flushing we hypothesized that these forests would exhibit higher N cycling rates in sediment and higher N losses to the atmosphere compared to basin forests. We quantified net N mineralization and nitrification rates in sediment and natural abundance of N stable isotopes (δ(15)N) in the sediment-plant-litter system. The fringe forest exhibited higher net N mineralization rates and δ(15)N in the sediment-plant-litter system, but net nitrification rates were similar to those of the basin forest. The results of the present study suggest that fringe forests exhibit higher N availability and N cycling in sediment compared to basin forests.

  8. Measurement to radius of Newton’s ring fringes using polar coordinate transform

    National Research Council Canada - National Science Library

    An, Ping; Bai, Fu-zhong; Liu, Zhen; Gao, Xiao-juan; Wang, Xiao-qiang


    Newton’s ring method is often used to measure many physical parameters. And some measured physical quantity can be extracted by calculating the radius parameter of circular fringes from Newton's ring...

  9. Observation of electron beam moiré fringes in an image conversion tube. (United States)

    Lei, Yunfei; Liao, Yubo; Long, Jing-Hua; Cai, Houzhi; Bai, Yanli; Liu, Jinyuan


    An image conversion tube with a magnetic lens was designed to observe electron beam moiré fringes. Electron beam moiré fringes result from the interference between the photocathode and the anode meshes. The photocathode had a strip line structure with a spatial frequency of 10L/mm. The anode mesh had a fixed spatial frequency of 10L/mm, and could be rotated around the axis of the image tube. The changes to the fringe direction and the spacing as a function of the rotation angle between the photocathode and the anode mesh were examined. The experimental results agreed with the theoretical analysis. Moiré fringes with a modulation of ~20% were obtained using a 3keV electron beam. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Pulse-width modulation in defocused three-dimensional fringe projection. (United States)

    Ayubi, Gastón A; Ayubi, Jaime A; Di Martino, J Matías; Ferrari, José A


    Shape measurements by fringe projection methods require high-quality sinusoidal fringes. We present a sinusoidal fringe generation technique that utilizes slightly defocused binary fringe projection. The proposed method is a spatial version of the well-known pulse-width modulation (PWM) technique of electrical engineering. PWM is easy to implement using off-the-shelf projectors, and it allows us to overcome the gamma problem (i.e., the nonlinear projector response) in the output light intensity. We will demonstrate that, with a small defocusing level--lower than with other techniques proposed in the literature--a high-quality sinusoidal pattern is obtained. Validation experiments using a commercial video projector are presented.

  11. Adaptive oriented PDEs filtering methods based on new controlling speed function for discontinuous optical fringe patterns (United States)

    Zhou, Qiuling; Tang, Chen; Li, Biyuan; Wang, Linlin; Lei, Zhenkun; Tang, Shuwei


    The filtering of discontinuous optical fringe patterns is a challenging problem faced in this area. This paper is concerned with oriented partial differential equations (OPDEs)-based image filtering methods for discontinuous optical fringe patterns. We redefine a new controlling speed function to depend on the orientation coherence. The orientation coherence can be used to distinguish the continuous regions and the discontinuous regions, and can be calculated by utilizing fringe orientation. We introduce the new controlling speed function to the previous OPDEs and propose adaptive OPDEs filtering models. According to our proposed adaptive OPDEs filtering models, the filtering in the continuous and discontinuous regions can be selectively carried out. We demonstrate the performance of the proposed adaptive OPDEs via application to the simulated and experimental fringe patterns, and compare our methods with the previous OPDEs.


    Naturally-occurring deuterium is a useful tracer of subsurface hydrologic processes. A possible application includes the identification of capillary fringes in the vadose zone. Multiple and discontinuous water tables persist in many temperate regions, under various hydrogeologi...

  13. Ultrasonography-based motion tracking for MRgFUS (United States)

    Jenne, Jürgen W.; Tretbar, Steffen H.; Hewener, Holger J.; Speicher, Daniel; Barthscherer, Tobias; Sarti, Cristina; Bongers, André; Schwaab, Julia; Günther, Matthias


    Non-invasive treatment of moving organs like liver and kidney with high intensity focused ultrasound (HIFU/FUS) is challenging. The highly precise HIFU ablation requires real-time knowledge of tumor position with mm precision. The aim of this work was to build up a magnetic resonance imaging compatible tracking device using diagnostic ultrasound imaging for MR guided FUS (MRgFUS). The hardware of the developed US-tracking system comprises the ultrasound beam former with a screen directly placed in front of the MR-magnet, a linear and a special ultrasound tracking probe. The tracking probe (2x64 element phased array) can acquire two perpendicularly oriented US-image planes for quasi 3D tracking. The US-data are sent to a workstation in the console room of the MRI scanner which controls the whole tracking device. The tracking software (Sonoplan II) analyzes the ultrasound image stream and calculates the actual position of pre-defined contours. Beside the 2D-translation, the tracking algorithm analyzes the rotation as well as the 2D scaling of the contour. The developed US-tracking system proved MR-compatibility in 1.5 and 3 T MR-systems and enabled simultaneous MR- and US-imaging and motion tracking. In the next step, the tracking system will be combined with an MRgFUS unit.

  14. The dynamics of infragravity wave transformation over a fringing reef (United States)

    Pomeroy, Andrew; Lowe, Ryan; Symonds, Graham; van Dongeren, Ap; Moore, Christine


    A 3 week field study was conducted to investigate the dynamics of low-frequency (infragravity) wave motions over a fringing reef at Ningaloo Reef, Western Australia. Short-period wave motions (0.04-0.2 Hz) were observed to dissipate on the reef crest beyond which infragravity wave motions (0.004-0.04 Hz) gradually dominated toward the lagoon. However, both the short waves and the infragravity waves were relatively small (both surf zone generation of free infragravity wave motions on the steep (˜1:20) fore-reef slope was dominated by breakpoint forcing (as opposed to shoaling bound waves), which was also supported by detailed numerical simulations of the generation process. This is consistent with theory suggesting the efficiency of the breakpoint forcing mechanism should be high in this steep-slope regime. Shoreward propagating infragravity waves traveled across the reef but were damped by bottom friction dissipation; however, this was at a rate much smaller than experienced by the residual short waves. With these rates of frictional dissipation also strongly dependent on the water depth over the reef, the infragravity wave heights increased at higher water levels and hence were strongly modulated by the tide. Due to the strong dissipation of infragravity waves over this wide and shallow reef that is hydraulically rough, any seaward propagating infragravity waves that reflected at the shoreline were small, leading to the dominance of progressive (shoreward propagating) infragravity wave motions throughout the reef and lagoon.


    Directory of Open Access Journals (Sweden)

    C. Bräuer-Burchardt


    Full Text Available A new, fringe projection based compact handheld 3D scanner for the surface reconstruction of measurement objects under water is introduced. The weight of the scanner is about 10 kg and can be used in a water depth of maximal 40 metres. A measurement field of about 250 mm x 200 mm is covered under water, and the lateral resolution of the measured object points is about 150 μm. Larger measurement objects can be digitized in a unique geometric model by merging subsequently recorded datasets. The recording time for one 3D scan is a third of a second. The projection unit for the structured illumination of the scene as well as the computer for device control and measurement data analysis are included into the scanners housing. A display on the backside of the device realizes the graphical presentation of the current measurement data. It allows the user to evaluate the quality of the measurement result in real-time already during the recording of the measurement under water. For the calibration of the underwater scanner a combined method of air- and water-calibration was developed which needs only a few recorded underwater images of a plane surface and an object with known lengths. First measurement results obtained with the new scanner are presented.

  16. Single frame profilometry with rapid phase demodulation on colour-coded fringes (United States)

    Yee, Cong Kai; Yen, Kin Sam


    Digital fringe profilometry is a non-contact surface profiling technique with huge potential at real-time dynamic whole-field measurement. However, this technique is usually bottlenecked at the phase demodulation and unwrapping during fringe analysis. This paper proposes a single frame profilometry system that used direct arccosine function demodulation on colour-coded sinusoidal fringes to simplify the fringe analysis process. Since the range of arccosine function output is restricted from 0 to π, the intensity gradient was used along with arccosine function to demodulate the fringe intensity levels into wrapped phase map (0-2π). The projected fringes were coloured in red, green and blue according to the De Bruijn's sequence. The fringe order was identified directly from the colours of three consecutive fringes by matching to the De Bruijn's sequence to unwrap the wrapped phase map into continuous phase map. The phase differences between the continuous phase maps of reference plane and object surface were then obtained and related to the equipment setup position using trigonometry to rebuild the 3D model. The proposed method was tested experimentally by reconstructing three physical objects. Although the reconstructed surface contained phase errors due to gamma non-linearity, the geometrical shapes of the objects can be reconstructed with reasonable accuracy and consistency. The percentage deviations of dimensions in x, y and z-axis were 1.24%, -1.96% and -2.30% respectively. Meanwhile the uncertainties of dimensions in x, y and z-axis were ±0.15%, ±0.24% and ±1.07% respectively at 95% confidence level.

  17. The Impact of Masker Fringe and Masker Sparial Uncertainty on Sound Localization (United States)


    spatial uncertainty on sound localization and to examine how such effects might be related to binaural detection and informational masking. 2 Methods...AFRL-RH-WP-TP-2012-0037 THE IMPACT OF MASKER FRINGE AND MASKER SPARIAL UNCERTAINTY ON SOUND LOCALIZATION Brian D. Simpson¹, Robert H...MASKER FRINGE AND MASKER SPARIAL UNCERTAINTY ON SOUND LOCALIZATION 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER 5c

  18. Oil on the Water Characterization with Coherent Fringe Projection and Digital Holographic In-line Interferometry (United States)


    DW2A.19. pdf Digital Holography and 3D Imaging Technical Digest ©2013 OSA Oil on the water characterization with coherent fringe projection and digital...requires elaborate image processing. Coherent fringe projection (CFP) techniques proved to be efficient in non- contact metrology of microstructured...plane wave reflected from the water surface. Zo\\£l^iZ% DW2A.19. pdf Digital Holography and 3D Imaging Technical Digest ©2013 OSA 0 50

  19. Prism coupler jig: interference fringes enable observation of the coupling gap. (United States)

    Chilwell, J T


    A prism coupler jig is described which enables a coupling region to be quickly and easily found when the waveguide is a thin film on a microscope slide. Interference fringes formed on reflection allow observation of the air gap. Consideration is given to the formation of white light and quasi-monochromatic interference fringes. A suitable choice of the refractive index of the right-angle prism enables the m lines to be observed in a convenient observation space.

  20. Fringe-reflection photogrammetry based on poses calibration with planar mirror reflection (United States)

    Xiao, Yong-Liang; Zhong, Jianxin; Zhang, Qican; Su, Xianyu; You, Zhisheng


    Since liquid crystal display (LCD) screen locates outside of the camera's field of view in fringe-reflection photogrammetry, fringes displayed on LCD screen are obtained through specular reflection by a fixed camera. Thus, the pose calibration between camera and LCD screen is one of the main challenges in fringe-reflection photogrammetry. A markerless planar mirror is used to reflect the LCD screen more than three times, and the fringes are mapped into the fixed camera. The geometrical calibration can be accomplished by estimating the pose between the camera and virtual image of fringes. With the help of the relation between their pose, incidence and reflection ray can be unified in the camera frame, forward triangulation intersection can be operated in the camera frame to measure 3D coordinate of specular surface. In the final optimization, constraint bundle adjustment is operated to refine simultaneously the camera intrinsic parameters including distortion coefficients, estimated geometrical pose between LCD screen and camera, 3D coordinate of specular surface, with the help of absolute phase collinear constraint. Results of simulations and experiments demonstrate that the pose calibration with planar mirror reflection is simple, feasible and constraint bundle adjustment can enhance the three-dimensional coordinate measurement accuracy in fringe-reflection photogrammetry.

  1. The Prestressed Track Beam Testing Technology of Shanghai Electromagnetic Levitation Train


    Qing-biao WANG; Zhang, Cong; Xiao-kang WEN; Zhen-yue SHI


    Shanghai electromagnetic levitation train (maglev) is the first one that is constructed and operated commercially in the world. Many technological problems have to be tackled during its construction, and the most difficult problem in the civil engineering part is the making of prestressed track beam. It requires high precision because of its special function. The stretching control of the pre-tensioning force and the post-tensioning force in the making of prestressed track beam is ...

  2. Tracking Information

    NARCIS (Netherlands)

    van Benthem, J.; Bimbó, K.


    Depending on a relevant task at hand, information can be represented at different levels, less or more detailed, each supporting its own appropriate logical languages. We discuss a few of these levels and their connections, and investigate when and how information growth at one level can be tracked

  3. Feasibility and limitation of track studies using atomic force microscopy

    CERN Document Server

    Nikezic, D; Yip, C W Y; Koo, V S Y; Yu, K N


    Atomic force microscopy (AFM) has been employed to investigate characteristics of tracks of heavy charged particles in solid state nuclear track detectors (SSNTDs). In the present work, we have performed simulations of the track structures revealed by AFM based only on geometrical considerations of the tracks and two types of probes (the ultralever and the ultrahigh aspect ration probe). The purpose of this work is to determine the limitations and constraints of the AFM technique when it is applied to track investigations. The ultralever has comparable dimensions as the tracks in SSNTDs etched for a short time. In some cases, the ultralever is too large or its geometry does not match those of the tracks, so these tracks cannot be scanned properly. In most cases, the ultralever can measure the diameter of the tracks with a rather high precision, but measurements of the depths can be misleading if the track depths are larger than the length of the ultralever. The ultrahigh aspect ratio probe, with an aspect rat...

  4. Shelters and Their Use by Fishes on Fringing Coral Reefs (United States)

    Ménard, Alexandre; Turgeon, Katrine; Roche, Dominique G.; Binning, Sandra A.; Kramer, Donald L.


    Coral reef fish density and species richness are often higher at sites with more structural complexity. This association may be due to greater availability of shelters, but surprisingly little is known about the size and density of shelters and their use by coral reef fishes. We quantified shelter availability and use by fishes for the first time on a Caribbean coral reef by counting all holes and overhangs with a minimum entrance diameter ≥3 cm in 30 quadrats (25 m2) on two fringing reefs in Barbados. Shelter size was highly variable, ranging from 42 cm3 to over 4,000,000 cm3, with many more small than large shelters. On average, there were 3.8 shelters m−2, with a median volume of 1,200 cm3 and a total volume of 52,000 cm3m−2. The number of fish per occupied shelter ranged from 1 to 35 individual fishes belonging to 66 species, with a median of 1. The proportion of shelters occupied and the number of occupants increased strongly with shelter size. Shelter density and total volume increased with substrate complexity, and this relationship varied among reef zones. The density of shelter-using fish was much more strongly predicted by shelter density and median size than by substrate complexity and increased linearly with shelter density, indicating that shelter availability is a limiting resource for some coral reef fishes. The results demonstrate the importance of large shelters for fish density and support the hypothesis that structural complexity is associated with fish abundance, at least in part, due to its association with shelter availability. This information can help identify critical habitat for coral reef fishes, predict the effects of reductions in structural complexity of natural reefs and improve the design of artificial reefs. PMID:22745664

  5. Shelters and their use by fishes on fringing coral reefs.

    Directory of Open Access Journals (Sweden)

    Alexandre Ménard

    Full Text Available Coral reef fish density and species richness are often higher at sites with more structural complexity. This association may be due to greater availability of shelters, but surprisingly little is known about the size and density of shelters and their use by coral reef fishes. We quantified shelter availability and use by fishes for the first time on a Caribbean coral reef by counting all holes and overhangs with a minimum entrance diameter ≥3 cm in 30 quadrats (25 m(2 on two fringing reefs in Barbados. Shelter size was highly variable, ranging from 42 cm(3 to over 4,000,000 cm(3, with many more small than large shelters. On average, there were 3.8 shelters m(-2, with a median volume of 1,200 cm(3 and a total volume of 52,000 cm(3 m(-2. The number of fish per occupied shelter ranged from 1 to 35 individual fishes belonging to 66 species, with a median of 1. The proportion of shelters occupied and the number of occupants increased strongly with shelter size. Shelter density and total volume increased with substrate complexity, and this relationship varied among reef zones. The density of shelter-using fish was much more strongly predicted by shelter density and median size than by substrate complexity and increased linearly with shelter density, indicating that shelter availability is a limiting resource for some coral reef fishes. The results demonstrate the importance of large shelters for fish density and support the hypothesis that structural complexity is associated with fish abundance, at least in part, due to its association with shelter availability. This information can help identify critical habitat for coral reef fishes, predict the effects of reductions in structural complexity of natural reefs and improve the design of artificial reefs.

  6. Tracking inside the ALICE Inner Tracking System

    CERN Document Server

    Badalà, A; Lo Re, G; Palmeri, A; Pappalardo, G S; Pulvirenti, A; Riggi, F


    One of the main purposes of the ALICE Inner Tracking System (ITS) is to improve the resolution of the track parameters found in the main ALICE tracker detector, the Time Projector Chamber (TPC). Some results about tracking efficiency and resolution of track parameters obtained with a tracking code, based on the Kalman filter algorithm are presented.

  7. Digital beta counting and pulse-shape analysis for high-precision nuclear beta decay half-life measurements: Tested on Alm26 (United States)

    Chen, L.; Hardy, J. C.; Bencomo, M.; Horvat, V.; Nica, N.; Park, H. I.


    A digital β-counting method has been developed for high-precision nuclear β-decay half-life experiments that use a gas proportional counter. An 8-bit, 1-GS/s sampling-rate digitizer was used to record the waveforms from the detector and a software filter was designed, tested and applied successfully to discriminate genuine β-decay events from spurious signals by pulse-shape analysis. The method of using a high-speed digitizer for precision β counting is described in detail. We have extensively tested the digitizer and the off-line filter by analyzing saved waveforms from the decay of Alm26 acquired at rates up to 10,000 per second. The half-life we obtain for Alm26 is 6345.30±0.90 ms, which agrees well with previous published measurements and is as precise as the best of them. This work demonstrates the feasibility of applying a high-speed digitizer and off-line digital signal processing techniques for high-precision nuclear β-decay half-life measurements.

  8. State of the art of IT-based high precision patch/implant system technology development for building/large structure safety management in Korea (United States)

    Park, Ki-Tae; Yu, Young-Jun; Lee, Bomi; Lee, Jin-Hyung


    Damage to infrastructure is a real concern at present, caused primarily by worldwide climate anomalies, global warming, and natural disasters. Korea has begun research to develop a high precision patch/implant system using new IT as a basis, as critical element in building/large structure safety management, to adjust to this situation. Technologies which must be developed for this research are those which measure and evaluate the soundness and safety of structures based on the measurements of an attached sensor. During the research period, optical fiber sensor patches and wireless sensor capsule implants along with various sensor technologies, stress sensing and structure condition evaluation technologies, high durability sensors and low-power compact smart structure sensors will be developed effectively for network hardware technologies. Similarly high precision image processing for automatic crack extraction will be developed along with radiation sensor application technologies, combined management/control technologies for development systems, and practical technologies for building/large structure development systems. Through the results, we hope to acquire higher sensor system performance with a measurement scope (for precision, etc.) goal at least 200% better than conventional sensor systems. The goal is to attain safety management planning and commercialization for automatic and high technology buildings/large structures. If such research is successfully developed, groundbreaking developments for maintenance related facilities is expected.

  9. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    Directory of Open Access Journals (Sweden)

    E. J. Steig


    Full Text Available High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O, a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS. We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  10. Doppler tracking (United States)

    Thomas, Christopher Jacob

    This study addresses the development of a methodology using the Doppler Effect for high-resolution, short-range tracking of small projectiles and vehicles. Minimal impact on the design of the moving object is achieved by incorporating only a transmitter in it and using ground stations for all other components. This is particularly useful for tracking objects such as sports balls that have configurations and materials that are not conducive to housing onboard instrumentation. The methodology developed here uses four or more receivers to monitor a constant frequency signal emitted by the object. Efficient and accurate schemes for filtering the raw signals, determining the instantaneous frequencies, time synching the frequencies from each receiver, smoothing the synced frequencies, determining the relative velocity and radius of the object and solving the nonlinear system of equations for object position in three dimensions as a function of time are developed and described here.

  11. Tracking Porters

    DEFF Research Database (Denmark)

    Bruun, Maja Hojer; Krause-Jensen, Jakob; Saltofte, Margit


    Anthropology attempts to gain insight into people's experiential life-worlds through long-term fieldwork. The quality of anthropological knowledge production, however, does not depend solely on the duration of the stay in the field, but also on a particular way of seeing social situations. The an...... the students followed the work of a group of porters. Drawing on anthropological concepts and research strategies the students gained crucial insights about the potential effects of using tracking technologies in the hospital....

  12. Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes. (United States)

    Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong


    We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.

  13. Image decomposition model Shearlet-Hilbert-L2with better performance for denoising in ESPI fringe patterns. (United States)

    Xu, Wenjun; Tang, Chen; Su, Yonggang; Li, Biyuan; Lei, Zhenkun


    In this paper, we propose an image decomposition model Shearlet-Hilbert-L 2 with better performance for denoising in electronic speckle pattern interferometry (ESPI) fringe patterns. In our model, the low-density fringes, high-density fringes, and noise are, respectively, described by shearlet smoothness spaces, adaptive Hilbert space, and L 2 space and processed individually. Because the shearlet transform has superior directional sensitivity, our proposed Shearlet-Hilbert-L 2 model achieves commendable filtering results for various types of ESPI fringe patterns, including uniform density fringe patterns, moderately variable density fringe patterns, and greatly variable density fringe patterns. We evaluate the performance of our proposed Shearlet-Hilbert-L 2 model via application to two computer-simulated and nine experimentally obtained ESPI fringe patterns with various densities and poor quality. Furthermore, we compare our proposed model with windowed Fourier filtering and coherence-enhancing diffusion, both of which are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. We also compare our proposed model with the previous image decomposition model BL-Hilbert-L 2 .

  14. Influence of displacement and its first- and second-order derivative components on curvature fringe formations in speckle shearography. (United States)

    Wang, Kaifu; Tieu, Anh Kiet; Li, Enbang


    The influence of displacement and its first- and second-order derivative components on curvature fringe formations in speckle shearography is discussed. The results show that (a) all the displacement components have no direct influence on curvature fringe formations; (b) only the first-order derivative component along the centerline of three apertures has an influence on curvature fringe formations, whereas all the other first-order components have no influence; and (c) all the second-order derivative components have no influence on curvature fringe formations. Results from theory and experiments are in good agreement.

  15. Track Simulation and Reconstruction in the ATLAS experiment

    CERN Document Server

    Salzburger, Andreas; Elsing, Markus

    The reconstruction and simulation of particle trajectories is an inevitable part of the analysis strate- gies for data taken with the ATLAS detector. Many aspects and necessary parts of a high-quality track reconstruction will be presented and discussed in this work. At first, the technical realisation of the data model and the reconstruction geometry will be given; the reconstruction geometry is charac- terised by a newly developed navigation model and an automated procedure for the synchronisation of the detailed simulation geometry description with the simplified reconstruction geometry model, which allows a precise description of the tracker material in track reconstruction. Both components help the coherent and fast integration of material effects in a newly established track extrapolation package, that is discussed in the following. The extrapolation engine enables a highly precise trans- port of the track parameterisation and the associated covariances through the complex magnetic field and the detec...

  16. Artificial neural network approach for moiré fringe center determination (United States)

    Woo, Wing Hon; Ratnam, Mani Maran; Yen, Kin Sam


    The moiré effect has been used in high-accuracy positioning and alignment systems for decades. Various methods have been proposed to identify and locate moiré fringes in order to relate the pattern information to dimensional and displacement measurement. These methods can be broadly categorized into manual interpretation based on human knowledge and image processing based on computational algorithms. An artificial neural network (ANN) is proposed to locate moiré fringe centers within circular grating moiré patterns. This ANN approach aims to mimic human decision making by eliminating complex mathematical computations or time-consuming image processing algorithms in moiré fringe recognition. A feed-forward backpropagation ANN architecture was adopted in this work. Parametric studies were performed to optimize the ANN architecture. The finalized ANN approach was able to determine the location of the fringe centers with average deviations of 3.167 pixels out of 200 pixels (≈1.6%) and 6.166 pixels out of 200 pixels (≈3.1%) for real moiré patterns that lie within and outside the training intervals, respectively. In addition, a reduction of 43.4% in the computational time was reported using the ANN approach. Finally, the applicability of the ANN approach for moiré fringe center determination was confirmed.

  17. Scanning schemes in white light photoelasticity - Part II: Novel fringe resolution guided scanning scheme (United States)

    Ramakrishnan, Vivek; Ramesh, K.


    Varied spatial resolution of isochromatic fringes over the domain influences the accuracy of fringe order estimation using TFP/RGB photoelasticity. This has been brought out in the first part of the work. The existing scanning schemes do not take this into account, which leads to the propagation of noise from the low spatial resolution zones. In this paper, a method is proposed for creating a whole field map which represents the spatial resolution of the isochromatic fringe pattern. A novel scanning scheme is then proposed whose progression is guided by the spatial resolution of the fringes in the isochromatic image. The efficacy of the scanning scheme is demonstrated using three problems - an inclined crack under bi-axial loading, a thick ring subjected to internal pressure and a stress frozen specimen of an aerospace component. The proposed scheme has use in a range of applications. The scanning scheme is effective even if the model has random zones of noise which is demonstrated using a plate subjected to concentrated load. This aspect is well utilised to extract fringe data from thin slices cut from a stereo-lithographic model that has characteristic random noise due to layered manufacturing.

  18. Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V.V., E-mail:; Han, M.G.; Zhu, Y.


    We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. - Highlights: • We propose a fringe-shifting holographic method simple enough for practical implementations. • Our new image-wave-recovery algorithm follows from exact solution of holographic equations. • With autocorrelation band removal from holograms it is possible to achieve double-resolution electron holography data free from several commonly known artifacts. • The new fringe-shifting method can reach an image wave resolution close to single fringe spacing.

  19. Defining western prairie fringed orchid (Platanthera praeclara) habitat (United States)

    Knudson, Michael David

    Terrestrial orchids are at the forefront of the discussion about anthropogenically-driven extinction with more species threatened globally than any other plant family, mostly because of loss of habitat. The Western Prairie Fringed Orchid ( Platanthera praeclara) is a threatened species found on the Sheyenne National Grassland in southeast North Dakota, USA. This conservation area that is a vital refuge for this species is subject to management for multiple uses including livestock grazing and recreation. Orchids are subject to continuous monitoring, but knowledge of the relationship between landscape indicators and orchid locations is limited. Research is needed to provide a greater understanding of the landscape relative to orchid habitat to develop conservation management strategies suited to dealing with threats arising from future interactions between land management and use, and climate change. The spatial distribution of orchid habitat was defined using a suite of indicators that characterize topography, moisture, and vegetation cover and compared with orchid point-based field observations. High resolution infrared imagery, a LiDAR-derived DEM, and well observations were used to characterize landscape properties. The NDVI (a measure of vegetation cover), the Topographic Wetness Index (TWI: a measure of moisture on the landscape), the Topographic Position Index (TPI: a measure of position on the landscape), and the depth to groundwater (a measure of the depth from the land surface to the groundwater surface) provided the best set of indicators of orchid habitat. Comparison between orchid locations and landscape indicators identified orchid metrics (+/-2 sigma) used to classify landscape indicators which were combined to create orchid habitat maps. This study supports that distribution of orchid habitat are influenced by the selected landscape indicators, each providing important information to the analysis. Comparison of orchid metrics with groundwater

  20. Combined use of a priori data for fast system self-calibration of a non-rigid multi-camera fringe projection system (United States)

    Stavroulakis, Petros I.; Chen, Shuxiao; Sims-Waterhouse, Danny; Piano, Samanta; Southon, Nicholas; Bointon, Patrick; Leach, Richard


    In non-rigid fringe projection 3D measurement systems, where either the camera or projector setup can change significantly between measurements or the object needs to be tracked, self-calibration has to be carried out frequently to keep the measurements accurate1. In fringe projection systems, it is common to use methods developed initially for photogrammetry for the calibration of the camera(s) in the system in terms of extrinsic and intrinsic parameters. To calibrate the projector(s) an extra correspondence between a pre-calibrated camera and an image created by the projector is performed. These recalibration steps are usually time consuming and involve the measurement of calibrated patterns on planes, before the actual object can continue to be measured after a motion of a camera or projector has been introduced in the setup and hence do not facilitate fast 3D measurement of objects when frequent experimental setup changes are necessary. By employing and combining a priori information via inverse rendering, on-board sensors, deep learning and leveraging a graphics processor unit (GPU), we assess a fine camera pose estimation method which is based on optimising the rendering of a model of a scene and the object to match the view from the camera. We find that the success of this calibration pipeline can be greatly improved by using adequate a priori information from the aforementioned sources.

  1. Manufacturing of high precision bores

    NARCIS (Netherlands)

    Bana, I.V.


    Traditional finishing, like grinding, particularly in the machining of hardened parts, requires the consumption of a significant amount of coolant. This is harmful for the environment. Besides this, more initiatives were taken in process planning to improve the process economy and flexibility.

  2. Towards High Precision Deuteron Polarimetry

    NARCIS (Netherlands)

    da Silva e Silva, M.; Crabb, DG; Day, DB; Liuti, S; Zheng,; Poelker, M; Prok, Y


    A finite electric dipole moment (EDM) in any fundamental system would constitute a signal for new physics. The deuteron presents itself as an optimal candidate both experimentally and theoretically. A new storage ring technique is being developed for which a small change in the vertical polarization

  3. High precision thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B. [Brookhaven National Laboratory, Upton, NY (United States)


    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  4. Speckle and fringe dynamics in imagingspeckle-pattern interferometry for spatial-filtering velocimetry

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Iversen, Theis F. Q.; Yura, Harold T.


    This paper analyzes the dynamics of laser speckles and fringes, formed in an imaging-speckle-pattern interferometer with the purpose of sensing linear three-dimensional motion and out-of-plane components of rotation in real time, using optical spatial-filtering-velocimetry techniques. The ensemble......-average definition of the cross-correlation function is applied to the intensity distributions, obtained in the observation plane at two positions of the object. The theoretical analysis provides a description for the dynamics of both the speckles and the fringes. The analysis reveals that both the magnitude...... and direction of all three linear displacement components of the object movement can be determined. Simultaneously, out-ofplane rotation of the object including the corresponding directions can be determined from the spatial gradient of the in-plane fringe motion throughout the observation plane. The theory...

  5. Modeling of Dipole and Quadrupole Fringe-Field Effects for the Advanced Photon Source Upgrade Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Borland, M.; Lindberg, R.


    The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice requires shorter and much stronger quadrupole magnets than are present in the existing ring. This results in longitudinal gradient profiles that differ significantly from a hard-edge model. Additionally, the lattice assumes the use of five-segment longitudinal gradient dipoles. Under these circumstances, the effects of fringe fields and detailed field distributions are of interest. We evaluated the effect of soft-edge fringe fields on the linear optics and chromaticity, finding that compensation for these effects is readily accomplished. In addition, we evaluated the reliability of standard methods of simulating hardedge nonlinear fringe effects in quadrupoles.

  6. Simulation method for interference fringe patterns in measuring gear tooth flanks by laser interferometry. (United States)

    Fang, Suping; Wang, Leijie; Komori, Masaharu; Kubo, Aizoh


    We present a ray-tracing-based method for simulation of interference fringe patterns (IFPs) for measuring gear tooth flanks with a two-path interferometer. This simulation method involves two steps. In the first step, the profile of an IFP is achieved by means of ray tracing within the object path of the interferometer. In the second step, the profile of an IFP is filled with interference fringes, according to a set of functions from an optical path length to a fringe gray level. To examine the correctness of this simulation method, simulations are performed for two spur involute gears, and the simulated IFPs are verified by experiments using the actual two-path interferometer built on an optical platform.

  7. Texture analysis integrated to infrared light sources for identifying high fringe concentrations in digital photoelasticity (United States)

    Fandiño Toro, Hermes; Briñez de León, Juan Carlos; Restrepo Martínez, Alejandro; Branch Bedoya, John W.


    In digital photoelasticity images, regions with high fringe densities represent a limitation for unwrapping the phase in specific zones of the stress map. In this work, we recognize such regions by varying the light source wavelength from visible to far infrared, in a simulated experiment based on a circular polariscope observing a birefringent disk under diametral compression. The recognition process involves evaluating the relevance of texture descriptors applied to data sets extracted from regions of interest of the synthetic images, in the visible electromagnetic spectrum and different sub-bands of the infrared. Our results show that extending photoelasticity assemblies to the far infrared, the stress fields could be resolved in regions with high fringe concentrations. Moreover, we show that texture descriptors could overcome limitations associated to the identification of high-stress values in regions in which the fringes are concentrated in the visible spectrum, but not in the infrared.

  8. The effect of geographical centralization of education for outmigration from fringe areas

    DEFF Research Database (Denmark)

    Andersen, Hans Skifter

    During the last 25 years population in fringe areas in Denmark has declined. The main reason has been that young people leave these areas and seldom come back. In this study is examined the connection between young people’s outmigration, their choice of education and the location of educational i...... institutions. It is shown that geographical centralization of education since 1990 and the tendency for more young people to choose higher education has resulted in an increase in the outmigration of young people from fringe areas......During the last 25 years population in fringe areas in Denmark has declined. The main reason has been that young people leave these areas and seldom come back. In this study is examined the connection between young people’s outmigration, their choice of education and the location of educational...

  9. Ramsey fringe width compared to the spectral width of the driving pulse pair (United States)

    Supplee, James; Makhija


    In a population inversion versus detuning curve, fringes due to a Ramsey pulse-pair are vastly narrower than a peak due to just one of the pulses would be. For subtler reasons, the Ramsey fringe width is also less than the inversion peak that would be obtained using one long pulse with duration as long as the entire Ramsey pair including the time between pulses. This narrowing is by a factor of about 0.6 in many typical circumstances, but that factor can vary (sometimes significantly) depending on parameters such as pulse duration, pulse area, and time between pulses. We are doing calculations using an idealized semiclassical model with a two-level quantum system to address the following question: In which parameter regimes is the Ramsey fringe width well explained just by the spectral width of the driving pulse pair?

  10. Fringe projection application for surface variation analysis on helical shaped silicon breast (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Shahimin, M. M.; Kirtsaeng, S.; Sakuntasathien, S.; Alcain, J. B.; Paitong, P.; Retnasamy, V.


    Breast carcinoma is rated as a second collective cause of cancer associated death among adult females. Detection of the disease at an early stage would enhance the chance for survival. Established detection methods such as mammography, ultrasound and MRI are classified as non invasive breast cancer detection modality, but however they are not entire non-invasive as physical contact still occurs to the breast. Thus requirement for a complete non invasive and non contact is evident. Therefore, in this work, a novel application of digital fringe projection for early detection of breast cancer based on breast surface analysis is reported. Phase shift fringe projection technique and pixel tracing method was utilized to analyze the breast surface change due to the incidence of breast lump. Results have shown that the digital fringe projection is capable in detecting the existence of 1 cm sized lump within the breast sample.

  11. Complete polarization analysis in the 1keV to 2keV energy range using a high-precision polarimeter (United States)

    Wang, Hongchang; Dhesi, Sarnjeet; Bencok, Peter; Steadman, Paul; Maccherozzi, Francesco; Sawhney, Kawal


    The Beryl and YB66 crystals are proved to be suitable as analyzers in the energy range from 1.0keV to 2.0keV. The s-component reflectivity (Rs) of Beryl crystal reaches up to 10% with polarizing power Rs/Rp over 1000 at 1.1keV. The free-standing W/B4C multilayer has the phase shift over 5° with moderate transmission up to 1.7keV. The Bragg resonance width of the Beryl crystal is only 350 microradians at 1.1keV, and the incidence angle of the beam onto the crystal needs to be constant within 50 microradians or better. A high-precision polarimeter was used for the polarimetry experiment, and the complete polarization analysis of the APPLE II undulator at 1.1 keV and 1.56keV will be presented.

  12. New Insights of High-precision Asteroseismology: Acoustic Radius and χ2-matching Method for Solar-like Oscillator KIC 6225718 (United States)

    Wu, Tao; Li, Yan


    Asteroseismology is a powerful tool for probing stellar interiors and determining stellar fundamental parameters. In the present work, we adopt the χ2-minimization method but only use the observed high-precision seismic observations (i.e., oscillation frequencies) to constrain theoretical models for analyzing solar-like oscillator KIC 6225718. Finally, we find the acoustic radius τ0 is the only global parameter that can be accurately measured by the χ2-matching method between observed frequencies and theoretical model calculations for a pure p-mode oscillation star. We obtain seconds for KIC 6225718. It leads that the mass and radius of the CMMs are degenerate with each other. In addition, we find that the distribution range of acoustic radius is slightly enlarged by some extreme cases, which posses both a larger mass and a higher (or lower) metal abundance, at the lower acoustic radius end.

  13. Predicting the Oxygen-Binding Properties of Platinum Nanoparticle Ensembles by Combining High-Precision Electron Microscopy and Density Functional Theory. (United States)

    Aarons, Jolyon; Jones, Lewys; Varambhia, Aakash; MacArthur, Katherine E; Ozkaya, Dogan; Sarwar, Misbah; Skylaris, Chris-Kriton; Nellist, Peter D


    Many studies of heterogeneous catalysis, both experimental and computational, make use of idealized structures such as extended surfaces or regular polyhedral nanoparticles. This simplification neglects the morphological diversity in real commercial oxygen reduction reaction (ORR) catalysts used in fuel-cell cathodes. Here we introduce an approach that combines 3D nanoparticle structures obtained from high-throughput high-precision electron microscopy with density functional theory. Discrepancies between experimental observations and cuboctahedral/truncated-octahedral particles are revealed and discussed using a range of widely used descriptors, such as electron-density, d-band centers, and generalized coordination numbers. We use this new approach to determine the optimum particle size for which both detrimental surface roughness and particle shape effects are minimized.

  14. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. (United States)

    Millington, Michael; Grindlay, G Joan; Altenbach, Kirsten; Neely, Robert K; Kolch, Walter; Bencina, Mojca; Read, Nick D; Jones, Anita C; Dryden, David T F; Magennis, Steven W


    We have used widefield photon-counting FLIM to study FRET in fixed and living cells using control FRET pairs. We have studied fixed mammalian cells expressing either cyan fluorescent protein (CFP) or a fusion of CFP and yellow fluorescent protein (YFP), and living fungal cells expressing either Cerulean or a Cerulean-Venus fusion protein. We have found the fluorescence behaviour to be essentially identical in the mammalian and fungal cells. Importantly, the high-precision FLIM data is able to reproducibly resolve multiple fluorescence decays, thereby revealing new information about the fraction of the protein population that undergoes FRET and reducing error in the measurement of donor-acceptor distances. Our results for this simple control system indicate that the in vivo FLIM-FRET studies of more complex protein-protein interactions would benefit greatly from such quantitative measurements.

  15. High-precision masses of {sup 29-33}Mg and the N=20 shell ''closure''

    Energy Technology Data Exchange (ETDEWEB)

    Lunney, D.; Audi, G.; Gaulard, C.; Saint Simon, M. de; Thibault, C.; Vieira, N. [IN2P3/CNRS-Universite Paris Sud, Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), Orsay (France)


    High-precision mass measurements have been performed on the exotic magnesium isotopes {sup 29-33}Mg using the MISTRAL radiofrequency spectrometer, especially suited for very short-lived nuclides. This method, combined with the powerful tool of resonant laser ionization at ISOLDE, has provided a significant reduction of uncertainty for the masses of the most exotic Mg isotopes: a relative error of 7 x 10{sup -7} was achieved for the weakly produced {sup 33}Mg that has a half-life of only 90 ms. Moreover, the mass of {sup 33}Mg is found to change by over 250 keV. Verifying and minimizing binding energy uncertainties in this region of the nuclear chart is important for understanding the lack of binding energy that is normally associated with magic numbers. (orig.)

  16. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment (United States)

    Raaymakers, B. W.; Jürgenliemk-Schulz, I. M.; Bol, G. H.; Glitzner, M.; Kotte, A. N. T. J.; van Asselen, B.; de Boer, J. C. J.; Bluemink, J. J.; Hackett, S. L.; Moerland, M. A.; Woodings, S. J.; Wolthaus, J. W. H.; van Zijp, H. M.; Philippens, M. E. P.; Tijssen, R.; Kok, J. G. M.; de Groot-van Breugel, E. N.; Kiekebosch, I.; Meijers, L. T. C.; Nomden, C. N.; Sikkes, G. G.; Doornaert, P. A. H.; Eppinga, W. S. C.; Kasperts, N.; Kerkmeijer, L. G. W.; Tersteeg, J. H. A.; Brown, K. J.; Pais, B.; Woodhead, P.; Lagendijk, J. J. W.


    The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.

  17. High-precision mass measurements of neutron-deficient Tl isotopes at ISOLTRAP and the development of an ultra-stable voltage source for the PENTATRAP experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Christine


    Atomic masses and hence binding energies of nuclides are of great importance for studies of nuclear structure since they reflect all effective interactions in a nucleus. Within this thesis the masses of seven nuclides, namely {sup 194}Au, {sup 194}Hg, {sup 190,193,198}Tl and {sup 202,208}Pb, were determined at the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The thallium region in the chart of isotopes is of special interest due to the occurrence of nuclear structure effects like low-lying isomers, level inversion, shape coexistence and deformations. These effects are investigated by applying finite-difference mass formulas, such as the two-neutron separation energies or the so-called empirical pairing gaps. The second topic addressed within the present thesis is an ultra-stable voltage source, called StaReP (Stable Reference for Penning Trap Experiments), which was developed at the Max-Planck-Institut fuer Kernphysik. It is one of the key components of the high-precision mass spectrometer PENTATRAP, containing a tower of five Penning traps. A 25-channel voltage source with a relative stability of few 10{sup -8} over a period of 10 minutes in the range of 0 to -100V is mandatory for PENTATRAP aiming for mass measurements with relative mass uncertainties of ≤ 10{sup -11}. Mass values with such a high precision allow for stringent tests of quantum electrodynamics in strong electric fields, testing Einstein's mass-energy relation E = mc{sup 2} as well as measurements of decay energies (Q-values) with applications in neutrino physics.

  18. High precision, continuous measurements of water vapor isotopes using a field deployable analyzer with a novel automated calibration system to facilitate ecohydrological studies (United States)

    Gupta, P.; Crosson, E.; Richman, B. A.; Apodaca, R. L.; Green, I.


    The use of stable isotopic analysis techniques has proved quite valuable in establishing links between ecology and hydrology. We present an alternative and novel approach to isotope ratio mass spectrometry (IRMS) for making high-precision D/H and 18O/16O isotope ratio measurements of water vapor at a field site using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) based technology. This WS-CRDS analyzer allows continuous real-time measurements of water vapor with automated periodic calibration using liquid standards, needing no human intervention for weeks during deployment. The new automated calibration system, designed specifically for field deployment, uses syringe pumps and is robust, consistent and reliable. The advanced temperature and pressure control within the analyzer are some of the key design features that allow high precision (0.2‰ for δ18O and 1.0‰ for δD) performance at extremely low drift (physiology on the isotopic composition of water vapor in ambient air. Such measurements of water vapor, when combined with measurements of the isotopic composition of liquid water in plants, soil water and local water bodies, will close the eco-hydrological loop of any region. The ability of the WS-CRDS analyzer to make continuous, real-time measurements with a resolution on the order of a few seconds will aid in understanding the complex interdependencies between ecological and hydrological processes and will provide critical information in refining existing models of water transport in ecosystems. These studies are critical to understanding the impact of global climate change on landscapes.

  19. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. (United States)

    Raaymakers, B W; Jürgenliemk-Schulz, I M; Bol, G H; Glitzner, M; Kotte, A N T J; van Asselen, B; de Boer, J C J; Bluemink, J J; Hackett, S L; Moerland, M A; Woodings, S J; Wolthaus, J W H; van Zijp, H M; Philippens, M E P; Tijssen, R; Kok, J G M; de Groot-van Breugel, E N; Kiekebosch, I; Meijers, L T C; Nomden, C N; Sikkes, G G; Doornaert, P A H; Eppinga, W S C; Kasperts, N; Kerkmeijer, L G W; Tersteeg, J H A; Brown, K J; Pais, B; Woodhead, P; Lagendijk, J J W


    The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.

  20. Calibration of the Late Cretaceous to Paleocene geomagnetic polarity and astrochronological time scales: new results from high-precision U-Pb geochronology (United States)

    Ramezani, Jahandar; Clyde, William; Wang, Tiantian; Johnson, Kirk; Bowring, Samuel


    Reversals in the Earth's magnetic polarity are geologically abrupt events of global magnitude that makes them ideal timelines for stratigraphic correlation across a variety of depositional environments, especially where diagnostic marine fossils are absent. Accurate and precise calibration of the Geomagnetic Polarity Timescale (GPTS) is thus essential to the reconstruction of Earth history and to resolving the mode and tempo of biotic and environmental change in deep time. The Late Cretaceous - Paleocene GPTS is of particular interest as it encompasses a critical period of Earth history marked by the Cretaceous greenhouse climate, the peak of dinosaur diversity, the end-Cretaceous mass extinction and its paleoecological aftermaths. Absolute calibration of the GPTS has been traditionally based on sea-floor spreading magnetic anomaly profiles combined with local magnetostratigraphic sequences for which a numerical age model could be established by interpolation between an often limited number of 40Ar/39Ar dates from intercalated volcanic ash deposits. Although the Neogene part of the GPTS has been adequately calibrated using cyclostratigraphy-based, astrochronological schemes, the application of these approaches to pre-Neogene parts of the timescale has been complicated given the uncertainties of the orbital models and the chaotic behavior of the solar system this far back in time. Here we present refined chronostratigraphic frameworks based on high-precision U-Pb geochronology of ash beds from the Western Interior Basin of North America and the Songliao Basin of Northeast China that places tight temporal constraints on the Late Cretaceous to Paleocene GPTS, either directly or by testing their astrochronological underpinnings. Further application of high-precision radioisotope geochronology and calibrated astrochronology promises a complete and robust Cretaceous-Paleogene GPTS, entirely independent of sea-floor magnetic anomaly profiles.


    CERN Multimedia

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The Objective for 2006 was to complete all of the CMS Tracker sub-detectors and to start the integration of the sub-detectors into the Tracker Support Tube (TST). The Objective for 2007 is to deliver to CMS a completed, installed, commissioned and calibrated Tracking System (Silicon Strip and Pixels) aligned to < 100µ in April 2008 ready for the first physics collisions at LHC. In November 2006 all of the sub-detectors had been delivered to the Tracker Integration facility (TIF) at CERN and the tests and QA procedures to be carried out on each sub-detector before integration had been established. In December 2006, TIB/TID+ was integrated into TOB+, TIB/TID- was being prepared for integration, and TEC+ was undergoing tests at the final tracker operating temperature (-100 C) in the Lyon cold room. In February 2007, TIB/TID- has been integrated into TOB-, and the installation of the pixel support tube and the services for TI...

  2. Two parabolic-hyperbolic oriented partial differential equations for denoising in electronic speckle pattern interferometry fringes. (United States)

    Xu, Wenjun; Tang, Chen; Zhang, Junjiang; Su, Yonggang; Su, Ray Kai Leung


    Oriented partial differential equation (OPDE)-based filtering methods have been demonstrated to be a powerful tool for denoising while preserving all fringes. In this paper we propose new OPDE-filtering models, named parabolic-hyperbolic oriented partial differential equations (PH-OPDEs), based on variational methods. We test the proposed PH-OPDEs on two computer-simulated and two experimentally obtained ESPI fringe patterns with poor quality, and compare our models with related OPDE models. The experimental results have demonstrated that the new models have significantly better performance in numerical stability and computational efficiency as compared with the previous OPDE models.

  3. The linkage between car-related fringe benefits and the travel behavior of knowledge workers

    DEFF Research Database (Denmark)

    Bendit, Eduard; Frenkel, Amnon; Kaplan, Sigal


    This study focuses on the linkage between car-related fringe benefits and the travel behavior of knowledge workers in commute and leisure trips. Specifically, this study compares the commuting and leisure travel behavior of knowledge workers who receive either a company-car or car allowance...... and travel times and non-sustainable transport modes, and (iii) high frequency of long-distance leisure trips. Policy implications include (i) directing policies towards reducing car ownership induced by car-related fringe benefits, (ii) encouraging company-car holders to ‘pay their way’, and (iii......) encouraging workers to use sustainable transport modes for commuting and leisure travel....

  4. In-situ measurements of ions and neutrals near Saturn's F-ring (United States)

    Perry, M. E.; Cravens, T. E.; Smith, H. T.; Perryman, R. S.; Tseng, W. L.; Teolis, B. D.; Waite, J. H., Jr.; McNutt, R. L., Jr.


    Each week from December 2016 until April 2017, Cassini dove through a gap in the F-ring. During several of those traverses, the orientation of Cassini's Ion and Neutral Mass Spectrometer (INMS [1]) enabled in situ measurements of both ions and neutrals, providing data that contribute to improving our understanding of the rings, their interaction with Saturn, and the influence of the magnetosphere. The Enceladus plumes, Saturn's atmosphere, and ring sputtering (photolysis and radiolysis) are all potential sources of F-ring particles.

  5. Phase contrast microscopy with fringe contrast adjustable by using grating-based phase-shifter. (United States)

    Zheng, Juanjuan; Yao, Baoli; Gao, Peng; Ye, Tong


    In this paper a new phase contrast method with fringe contrast adjustable is proposed. In the Fourier plane of the object wave, two Ronchi gratings i.e., a central grating and a surrounding grating, are used to modulate the phases of the undiffracted and diffracted components, respectively. By loading the two gratings separately on spatial light modulator, the undiffracted and diffracted components can be measured independently, which simplify greatly the reconstruction process. Besides, the fringe contrast of the phase contrast interferogram can be adjusted by changing the modulation depth of the two gratings. The feasibility of the proposed method is verified by theoretical analysis and experiment.

  6. High-efficiency holograms fixed in lithium niobate after recording using a digital fringe stabilization system. (United States)

    Arizmendi, Luis; Ambite, Emilio J


    We used a digital feedback control loop system to produce reproducible fixed volume transmission holograms of high diffraction efficiency. Different strategies were investigated to obtain holograms of good quality and the highest refractive index modulation depth. Using this control system, we were able to record holograms with stationary fringes. Additionally to using the stationary fringe recording, a double recording-fixing schedule resulted in being the most appropriate one to produce reproducible holograms of better characteristics. This strategy is discussed and compared with other already established ones. © 2012 Optical Society of America

  7. Fringe-Field Switching Mode with Three Electrodes for Low Operating Voltage (United States)

    Park, Jun Baek; Kim, Hyang Yul; Jeong, Youn Hak; Kim, Seo Yoon; Lim, Young Jin


    In this paper, we proposed fringe-field switching (FFS) mode with new electrode structure whose additional slit electrode in addition to conventional slit electrode is located on gate insulator for low operating voltage. Using in-plane field between first and second slit electrode as well as fringe field between first slit electrode and box electrode, the overall operating voltage is decreased from over 5 to around 4 V. However, the maximum transmittance is decreased due to strong tilt-up and over twisting effect.

  8. 20 CFR 641.565 - What policies govern the provision of wages and fringe benefits to participants? (United States)


    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What policies govern the provision of wages... PROGRAM Services to Participants § 641.565 What policies govern the provision of wages and fringe benefits...: annual leave; sick leave; holidays; health insurance; social security; and any other fringe benefits...

  9. High-quality octa-level fringe pattern generation for improving the noise characteristics of measured depth maps (United States)

    Xu, Zi-Xin; Chan, Yuk-Hee; Lun, Daniel P. K.


    Since the introduction of the binary defocusing technique, various algorithms have been proposed to optimize binary fringe patterns for reducing the phase root mean square (rms) error. Our recent study showed that octa-level fringe patterns can further reduce the phase rms error at no extra cost and patch-based fringe patterns can cause harmonic distortion to the measured depth map. This paper presents a novel method to produce patch-based octa-level fringe patterns of ideal noise characteristics by (1) formulating the optimization problem in a better way, (2) starting the optimization process with a better initial estimate and (3) adopting a necessity-oriented strategy to refine the fringe patterns during the optimization process.

  10. Three-dimensional shape profiling by out-of-focus projection of colored pulse width modulation fringe patterns. (United States)

    Silva, Adriana; Flores, Jorge L; Muñoz, Antonio; Ayubi, Gastón A; Ferrari, José A


    Three-dimensional (3D) shape profiling by sinusoidal phase-shifting methods is affected by the non-linearity of the projector. To overcome this problem, the defocusing technique has become an important alternative to generate sinusoidal fringe patterns. The precision of this method depends on the binary pattern used and on the defocusing applied. To improve the defocusing technique, we propose the implementation of a color-based binary fringe patterns. The proposed technique involves the generation of colored pulse width modulation (PWM) fringe patterns, which are generated with different frequencies at the carrier signal. From an adequate selection of these frequencies, the colored PWM fringe patterns will lead to amplitude harmonics lower than the conventional PWM fringe patterns. Hence, the defocusing can decrease, and the 3D shape profiling can be more accurate. Numerical simulations and experimental results are presented as validation.

  11. Eye-Tracking as a Measure of Responsiveness to Joint Attention in Infants at Risk for Autism (United States)

    Navab, Anahita; Gillespie-Lynch, Kristen; Johnson, Scott P.; Sigman, Marian; Hutman, Ted


    Reduced responsiveness to joint attention (RJA), as assessed by the Early Social Communication Scales (ESCS), is predictive of both subsequent language difficulties and autism diagnosis. Eye-tracking measurement of RJA is a promising prognostic tool because it is highly precise and standardized. However, the construct validity of eye-tracking…

  12. RIA Beam Dynamics Comparing TRACK to IMPACT

    CERN Document Server

    Mustapha, Brahim; Ostroumov, Peter; Qiang, Ji; Ryne, Robert D


    In order to benchmark the newly developed beam dynamics code TRACK we have performed comparisons with well established existing codes. During code development, codes like TRANSPORT, COSY, GIOS and RAYTRACE were used to check TRACK's implementation of the different beam line elements. To benchmark the end-to-end simulation of the RIA driver linac, the simulation of the low-energy part (from the ion source to the entrance of the SC linac) was compared with PARMTEQ and found to agree well. For the simulation of the SC linac the code IMPACT is used. Prior to these simulations, the code IMPACT had to be updated to meet the special requirements of the RIA driver linac. Features such as multiple charge state acceleration, stripper simulation and beam collimation were added to the code. IMPACT was also modified to support new types of rf cavities and to include fringe fields for all the elements. This paper will present a comparison of the beam dynamics simulation in the RIA driver linac between the codes TRACK and I...

  13. Determination of phase derivatives from a single fringe pattern using Teager Hilbert Huang transform (United States)

    Deepan, B.; Quan, C.; Tay, C. J.


    In this paper, a novel sequential algorithm for the estimation of phase derivatives from a single fringe pattern using electronic speckle pattern interferometry (ESPI) is proposed. The algorithm is based on empirical mode decomposition (EMD), vortex operator (VO) and Teager-Kaiser energy operator (TKEO). The empirical mode decomposition normalizes the fringe pattern; while vortex operator provides a 2D complex image and the phase derivatives are obtained using a novel image demodulation method called discrete higher order image demodulation algorithm (DHODA). Unlike phase shifting and Fourier transform methods, the proposed method does not require complex experimental setup or more than one fringe pattern for each deformation state. The proposed method is also able to provide phase derivatives in both the x and ydirections from a single fringe pattern, which is difficult to achieve using shearography. Since the algorithm provides unwrapped phase derivatives directly, it does not require separate phase unwrapping process. Hence it is suitable for dynamic strain and curvature measurement. The proposed algorithm is validated by both simulation and experiment. The results are found to be accurate and the method requires less computation time than existing phase demodulation techniques.

  14. 29 CFR 4.176 - Payment of fringe benefits to temporary and part-time employees. (United States)


    ... 29 Labor 1 2010-07-01 2010-07-01 true Payment of fringe benefits to temporary and part-time... to temporary and part-time employees. (a) As set forth in § 4.165(a)(2), the Act makes no distinction, with respect to its compensation provisions, between temporary, part-time, and full-time employees...

  15. Application of robust color composite fringe in flip-chip solder bump 3-D measurement (United States)

    Kuo, Chung-Feng Jeffrey; Wu, Han-Cheng


    This study developed a 3-D measurement system based on flip-chip solder bump, used fringes with different modulation intensities in color channels, in order to produce color composite fringe with robustness, and proposed a multi-channel composite phase unwrapping algorithm, which uses fringe modulation weights of different channels to recombine the phase information for better measurement accuracy and stability. The experimental results showed that the average measurement accuracy is 0.43μm and the standard deviation is 1.38 μm. The results thus proved that the proposed 3-D measurement system is effective in measuring a plane with a height of 50 μm. In the flip-chip solder bump measuring experiment, different fringe modulation configurations were tested to overcome the problem of reflective coefficient between the flip-chip base board and the solder bump. The proposed system has a good measurement results and robust stability in the solder bump measurement, and can be used for the measurement of 3-D information for micron flip-chip solder bump application.

  16. High-speed digital color fringe projection technique for three-dimensional facial measurements (United States)

    Liu, Cheng-Yang; Chang, Li-Jen; Wang, Chung-Yi


    Digital fringe projection techniques have been widely studied in industrial applications because of the advantages of high accuracy, fast acquisition and non-contact operation. In this study, a single-shot high-speed digital color fringe projection technique is proposed to measure three-dimensional (3-D) facial features. The light source used in the measurement system is structured light with color fringe patterns. A projector with digital light processing is used as light source to project color structured light onto face. The distorted fringe pattern image is captured by the 3-CCD color camera and encoded into red, green and blue channels. The phase-shifting algorithm and quality guided path unwrapping algorithm are used to calculate absolute phase map. The detecting angle of the color camera is adjusted by using a motorized stage. Finally, a complete 3-D facial feature is obtained by our technique. We have successfully achieved simultaneous 3-D phase acquisition, reconstruction and exhibition at a speed of 0.5 s. The experimental results may provide a novel, high accuracy and real-time 3-D shape measurement for facial recognition system.

  17. New approach for identifying the zero-order fringe in variable wavelength interferometry (United States)

    Galas, Jacek; Litwin, Dariusz; Daszkiewicz, Marek


    The family of VAWI techniques (for transmitted and reflected light) is especially efficient for characterizing objects, when in the interference system the optical path difference exceeds a few wavelengths. The classical approach that consists in measuring the deflection of interference fringes fails because of strong edge effects. Broken continuity of interference fringes prevents from correct identification of the zero order fringe, which leads to significant errors. The family of these methods has been proposed originally by Professor Pluta in the 1980s but that time image processing facilities and computers were hardly available. Automated devices unfold a completely new approach to the classical measurement procedures. The Institute team has taken that new opportunity and transformed the technique into fully automated measurement devices offering commercial readiness of industry-grade quality. The method itself has been modified and new solutions and algorithms simultaneously have extended the field of application. This has concerned both construction aspects of the systems and software development in context of creating computerized instruments. The VAWI collection of instruments constitutes now the core of the Institute commercial offer. It is now practically applicable in industrial environment for measuring textile and optical fibers, strips of thin films, testing of wave plates and nonlinear affects in different materials. This paper describes new algorithms for identifying the zero order fringe, which increases the performance of the system as a whole and presents some examples of measurements of optical elements.

  18. 29 CFR 4.5 - Contract specification of determined minimum wages and fringe benefits. (United States)


    ... 29 Labor 1 2010-07-01 2010-07-01 true Contract specification of determined minimum wages and... of determined minimum wages and fringe benefits. (a) Any contract in excess of $2,500 shall contain, as an attachment, the applicable, currently effective wage determination specifying the minimum wages...

  19. Land Use Land Cover Change in the fringe of eThekwini ...

    African Journals Online (AJOL)

    Concerns on urban environmental quality, increasing knowledge on impacts of climate change and pursuit for sustainable development have increased the need for past, current and future knowledge on the transformation of remnant urban fringe green ecosystems. Using land-cover change modeler and a Markov chain ...

  20. Western Pairie Fringed Orchid: Its Status, Ecology, and in Vitro Propagation (United States)

    Jyotsna Sharma; J. W. Van Sambeek; Christopher J. Starbuck


    Western prairie fringed orchid (Platanthera praeclara Sheviak and Bowles), listed in 1989 as federally threatened, has been extirpated from 75% of historic sites throughout its range. We describe (a) threats to the orchid; (b) seed germination on synthetic medium; and (c) in vitro germination with mycorrhizal fungi. Destruction of prairies for...