WorldWideScience

Sample records for high-power proton beam

  1. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao; 10.1103/PhysRevSTAB.10.091001

    2007-01-01

    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  2. High Power Proton Beam Shocks and Magnetohydrodynamics in a Mercury Jet Target for a Neutrino Factory

    CERN Document Server

    Fabich, A; Fabjan, Christian

    2002-01-01

    The feasibility of liquid metal jet targets for secondary particle production with high power proton beams has been studied. The main aspects of the thesis were benchmark experiments covering the behaviour of liquid targets under thermal shock waves induced by high power proton beams, and also magnetohydrodynamic effects. Severe challenges were imposed by safety issues and the restricted beam time to the tests in ISOLDE at CERN and at the High Magnetic Field Laboratory at Grenoble. Restricted access times in high radiation level areas were of the order of minutes and in this short time span, the complete experimental setup had to be performed and verified. The involvement of mercury as liquid target material and its activation during beam tests demanded special confinement precautions. The setup for both experiments was based on the use of a high speed camera system for observation of the mercury target. The presence of high radiation or high magnetic field required the installation of the sensitive camera sy...

  3. Neutronic performance of the MEGAPIE spallation target under high power proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Michel-Sendis, F. [CEA - Saclay, Irfu/Service de Physique Nucleaire, F91191 Gif-sur-Yvette (France); Chabod, S. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, 38000 Grenoble (France); Letourneau, A. [CEA - Saclay, Irfu/Service de Physique Nucleaire, F91191 Gif-sur-Yvette (France); Panebianco, S., E-mail: stefano.panebianco@cea.f [CEA - Saclay, Irfu/Service de Physique Nucleaire, F91191 Gif-sur-Yvette (France); Zanini, L. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2010-07-01

    The MEGAPIE project, aiming at the construction and operation of a megawatt liquid lead-bismuth spallation target, constitutes the first step in demonstrating the feasibility of liquid heavy metal target technologies as spallation neutron sources. In particular, MEGAPIE is meant to assess the coupling of a high power proton beam with a window-concept heavy liquid metal target. The experiment has been set at the Paul Scherrer Institute (PSI) in Switzerland and, after a 4-month long irradiation, has provided unique data for a better understanding of the behavior of such a target under realistic irradiation conditions. A complex neutron detector has been developed to provide an on-line measurement of the neutron fluency inside the target and close to the proton beam. The detector is based on micrometric fission chambers and activation foils. These two complementary detection techniques have provided a characterization of the neutron flux inside the target for different positions along its axis. Measurements and simulation results presented in this paper aim to provide important recommendations for future accelerator driven systems (ADS) and neutron source developments.

  4. Overview of laserwire beam profile and emittance measurements for high power proton accelerators

    CERN Document Server

    Gibson, S M; Bosco, A; Gabor, C; Pozimski, J; Savage, P; Hofmann, T

    2013-01-01

    Laserwires were originally developed to measure micron-sized electron beams via Compton scattering, where traditional wire scanners are at the limit of their resolution. Laserwires have since been applied to larger beamsize, high power H$^-$ ion beams, where the non-invasive method can probe beam densities that would damage traditional diagnostics. While photo-detachment of H$^-$ ions is now routine to measure beam profiles, extending the technique to transverse and longitudinal emittance measurements is a key aim of the laserwire emittance scanner under construction at the Front End Test Stand (FETS) at the RAL. A pulsed, 30 kHz, 8kW peak power laser is fibrecoupled to motorized collimating optics, which controls the position and thickness of the laserwire delivered to the H- interaction chamber. The laserwire slices out a beamlet of neutralized particles, which propagate to a downstream scintillator and camera. The emittance is reconstructed from 2D images as the laserwire position is scanned. Results from ...

  5. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana Univ., Bloomington, IN (United States)

    2015-12-01

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  6. Narrow Energy-Spread Proton Beams Generated in a Gas Jet by High-Power CO2 Laser Pulses

    Science.gov (United States)

    Haberberger, D.; Tochitsky, S.; Gong, C.; Mori, W.; Joshi, C.; Fiuza, F.; Fonseca, R.; Silva, L.

    2011-11-01

    At the UCLA Neptune Laboratory, we have investigated laser driven ion acceleration using a high-power CO2 laser pulse in a H2 gas jet tuned around the critical plasma density of 10^19cm-3 for 10μm light. The CO2 laser pulses consist of a train of 3ps pulses separated by 18ps with a peak power of up to 4TW and total energy of 50J [1]. Protons have been accelerated from this interaction to energies up to 22MeV, which far exceeds that predicted by ponderomotive force scaling for our vacuum ao˜2. Furthermore, these high energy protons are contained within an energy spread of δE/EFWHM ˜ 1%, and have an estimated transverse emittance of down to ˜1mm.mrad. The evolution of the plasma density profile was probed with 532nm interferometry revealing a steep rise (< 10 λ) to overcritical densities followed by long exponential fall on the back side of the plasma. 2D OSIRIS simulations run with the experimentally measured plasma density profile have uncovered a multistage process for the production of monoenergetic protons based on the shock acceleration mechanism which will be discussed.[4pt][1] D. Haberberger et. al., Opt. Exp. 18, 17865 (2010)

  7. Towards quantitative simulations of high power proton cyclotrons

    Directory of Open Access Journals (Sweden)

    Y. J. Bi

    2011-05-01

    Full Text Available We describe a large scale simulation effort using Object Oriented Parallel Accelerator Library, that leads to a better quantitative understanding of the existing Paul Scherrer Institut high power proton cyclotron facility. The 1.3 MW of beam power on target poses stringent constraints on the controlled and uncontrolled beam losses. We present initial conditions for the Ring simulation, obtained from the new time-structure measurement and the many profile monitors of the 72 MeV transfer line. A trim coil model is developed, including trim coil TC15, which is needed to avoid the dangerous ν_{r}=2ν_{z} resonance. By properly selecting the injection position and angle (eccentric injection, the flattop voltage, and phase, very good agreement between simulations and measurements at the radial probe RRE4 is obtained. We report on 3–4 orders of magnitude in dynamic range when comparing simulations with measurements. The relation between beam intensity, rms beam size, and accelerating voltage is studied and compared with measurement. The demonstrated capabilities are mandatory in the design and operation of the next generation high power proton drivers. In an outlook we discuss our future plans to include more physics into the model, which eventually leads to an even larger dynamic range in the simulation.

  8. Electron beam diagnostic for profiling high power beams

    Science.gov (United States)

    Elmer, John W [Danville, CA; Palmer, Todd A [Livermore, CA; Teruya, Alan T [Livermore, CA

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  9. Beam Delivery Systems For High Power Lasers

    Science.gov (United States)

    Hohberg, G.

    1986-10-01

    For materials processing with lasers, beam delivery systems are necessary for directing the radiation from the laser head to the working point on the workpiece. The more new fields of application are assumed by the laser, the greater the need for beam delivery systems which have been appropriately designed to meet the requirements of the task to be performed. Depending on the task on hand the appropriate design may be a fixed pipe with a focussing lens at its end or a six-axis articulated arm. This paper will describe the design principles and their optical and mechanical properties. The discussion of the advantages and disadvantages may be of some help in choosing an adequate delivery system.

  10. High power density proton exchange membrane fuel cells

    Science.gov (United States)

    Murphy, Oliver J.; Hitchens, G. Duncan; Manko, David J.

    1993-01-01

    Proton exchange membrane (PEM) fuel cells use a perfluorosulfonic acid solid polymer film as an electrolyte which simplifies water and electrolyte management. Their thin electrolyte layers give efficient systems of low weight, and their materials of construction show extremely long laboratory lifetimes. Their high reliability and their suitability for use in a microgravity environment makes them particularly attractive as a substitute for batteries in satellites utilizing high-power, high energy-density electrochemical energy storage systems. In this investigation, the Dow experimental PEM (XUS-13204.10) and unsupported high platinum loading electrodes yielded very high power densities, of the order of 2.5 W cm(exp -2). A platinum black loading of 5 mg per cm(exp 2) was found to be optimum. On extending the three-dimensional reaction zone of fuel cell electrodes by impregnating solid polymer electrolyte into the electrode structures, Nafion was found to give better performance than the Dow experimental PEM. The depth of penetration of the solid polymer electrolyte into electrode structures was 50-70 percent of the thickness of the platinum-catalyzed active layer. However, the degree of platinum utilization was only 16.6 percent and the roughness factor of a typical electrode was 274.

  11. Active beam integrator for high power coherent lasers

    Energy Technology Data Exchange (ETDEWEB)

    Laguarta, F.; Armengol, J.; Vega, F.; Lupon, N. [Univ. Politecnica de Catalunya, Terrassa (Spain). Dept. d`Optica i Optometria

    1996-12-31

    In laser materials processing applications it is often necessary to work with uniform intensity distributions. This goal is quite difficult to achieve when dealing with high power laser beams, and becomes critical for a successful application involving surface heat treatment of non-metallic materials. The authors have designed and tested a very simple beam shaper for transforming the initial intensity distribution of a CO{sub 2} laser beam mode into a more uniform intensity profile. The beam shaper is a two-faceted mirror for active integration of high power coherent laser beams. After reflection in the faceted mirror, a TEM00 or TEM01 CO{sub 2} laser beam is divided into two beamlets that overlap to give a more uniform intensity distribution. A sharp interference pattern due to the high spatial coherence of the incident beam appears. This interference pattern is actively integrated by a high-frequency longitudinal displacement of one of the facets. This provides a change in the relative phase of the two beamlets, and consequently the interference pattern vibrates and its contribution to the intensity distribution averages out. When sweeping this distribution over a sample, a uniform amount of energy is deposited at every point of its surface. It must be emphasized that unlike multifaceted mirrors, the two-facet integrator may provide uniform intensity profiles over any working distance. Finally, as in other integration devices an imaging system may be used to obtain a spot of the shape and the size desired for a particular application.

  12. Multiple pulse electron beam converter design for high power radiography

    Science.gov (United States)

    Pincosy, P. A.; Back, N.; Bergstrom, P. M.; Chen, Yu-Jiuan; Poulsen, P.

    2001-06-01

    The typical response of the x-ray converter material to the passage of a high-powered relativistic electron beam is vaporization and rapid dispersal. The effect of this dispersal on subsequent pulses for multi-pulse radiography is the collective effects on the propagation of the electron beam through the expanding plasma and the reduced number of electron to photon interactions. Thus, for the dual-axis radiographic hydrodynamic test facility, the converter material must either be replaced or confined long enough to accommodate the entire pulse train. Typically the 1-mm-thick high Z and full density converter material is chosen to give peak dose and minimum radiographic spot. For repeated pulses we propose a modified converter, constructed of either low density, high Z material in the form of foam or of foils spaced over ten times the axial thickness of the standard 1 mm converter. The converter material is confined within a tube to impede outward motion in radius outside the beam interaction region. We report single-pulse experiments which measure the dose and spot size produced by the modified converter and compare them to similar measurements made by the standard converter. For multiple pulses over a microsecond time scale, we calculate the radial and axial hydrodynamic flow to study the material reflux into the converter volume and the resultant density decrease as the electron beam energy is deposited. Both the electron transport through the expanding low density plasma and beam in the higher density material are modeled. The x-ray source dose and spot size are calculated to evaluate the impact of the changing converter material density distribution on the radiographic spot size and dose. The results indicate that a multiple-pulse converter design for three or four high-power beam pulses is feasible.

  13. Coherent beam combining architectures for high power tapered laser arrays

    Science.gov (United States)

    Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.

    2017-02-01

    Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.

  14. Multi-focus beam shaping of high power multimode lasers

    Science.gov (United States)

    Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei

    2017-08-01

    Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.

  15. High power, higher order ultrafast hollow Gaussian beams

    Science.gov (United States)

    Apurv Chaitanya, N.; Amrit Chaitanya, Banerji, J.; Samanta, G. K.

    2017-05-01

    We report on linear and nonlinear generation of ultrafast hollow Gaussian beams (HGBs). Using only two spiral phase plates (SPPs) having phase variation corresponding to vortex orders, l = 1 and 2, and an experimental scheme, we have generated high power, ultrafast HGBs of orders up to 3 at 1064 nm. Based on single-pass, frequency doubling of the HGBs in a 5 mm long, MgO doped, periodically poled LiNbO3 (MgO:PPLN) crystal, we have produced HGBs of average output power in excess of 250 mW at 532 nm and order as high as 6. Experimentally, we verified that the frequency doubled HGBs have orders twice those of the pump HGBs. Like the Gaussian beams, the HGBs of all orders have an optimum focusing condition for the highest conversion efficiency. On the contrary to previous reports, we observed that the propagation of the vortex beam of order, l, through a SPP corresponding to the vortex order of, -l, results in HGBs of the same order, | l | .

  16. Prospects for high-power radioactive beam facilities worldwide

    CERN Document Server

    Nolen, Jerry A

    2003-01-01

    Advances in accelerators, targets, ion sources, and experimental instrumentation are making possible ever more powerful facilities for basic and applied research with short-lived radioactive isotopes. There are several current generation facilities, based on a variety of technologies, operating worldwide. These include, for example, those based on the in-flight method such as the recently upgraded National Superconducting Cyclotron Laboratory at Michigan State University, the facility at RIKEN in Japan, GANIL in Caen, France, and GSI in Darmstadt, Germany. Present facilities based on the Isotope-Separator On-Line method include, for example, the ISOLDE laboratory at CERN, HRIBF at Oak Ridge, and the new high-power facility ISAC at TRIUMF in Vancouver. Next-generation facilities include the Radioactive-Ion Factory upgrade of RIKEN to higher energy and intensity and the upgrade of ISAC to a higher energy secondary beam; both of these projects are in progress. A new project, LINAG, to upgrade the capabilities at...

  17. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD

    DEFF Research Database (Denmark)

    Kubo, S.; Nishiura, M.; Tanaka, K.

    2010-01-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power ECRH system in LHD. The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH...

  18. High power electron and ion beam research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nation, J.A.; Sudan, R.N. (eds.)

    1977-01-01

    Topics covered in volume II include: collective accelerators; microwaves and unneutralized E-beams; technology of high-current E-beam accelerators and laser applications of charged-particle beams. Abstracts of twenty-nine papers from the conference were prepared for the data base in addition to six which appeared previously. (GHT)

  19. Coherent beam combiner for a high power laser

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  20. Design of measurement equipment for high power laser beam shapes

    DEFF Research Database (Denmark)

    Hansen, K. S.; Olsen, F. O.; Kristiansen, Morten

    2013-01-01

    -chip implemented in a camera system. Most available CCD-based systems do however suffer from a low maximum intensity threshold. Therefore attenuation is needed. This paper describes the construction of such a beam analysing system where beam patterns produced by single mode fiber laser on a diffractic optical...

  1. Proton acceleration experiments and warm dense matter research using high power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C R D [Plasma Physics Group, Imperial College London, SW7 2BZ (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory (RAL), Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory (LANL), Los Alamos, NM 87545 (United States); Geissel, M [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gregori, G, E-mail: markus.roth@physik.tu-darmstadt.d [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2009-12-15

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  2. Physics design of a CW high-power proton Linac for accelerator ...

    Indian Academy of Sciences (India)

    The accelerator for ADS should have high efficiency and reliability and very low beam losses to allow hands-on maintenance. With these criteria, the beam dynamics simulations for a 1 GeV, 30 mA proton Linac has been done. The Linac consists of normal-conducting radio-frequency quadrupole (RFQ), drift tube linac (DTL) ...

  3. Mechanical beam isolator for high-power laser systems

    Science.gov (United States)

    Post, Richard F.; Vann, Charles S.

    1998-01-01

    A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape.

  4. Diode pumped 1kHz high power Nd:YAG laser with excellent beam quality

    NARCIS (Netherlands)

    Godfried, Herman; Godfried, H.P; Offerhaus, Herman L.

    1997-01-01

    The design and operation of a one kilohertz diode pumped all solid-state Nd:YAG master oscillator power amplifier system with a phase conjugate mirror is presented. The setup allows high power scaling without reduction in beam quality.

  5. Efficient and high-power green beam generation by frequency ...

    Indian Academy of Sciences (India)

    power short pulse green beam is ... a two-stage KTP crystal architecture producing 30 W of average green power at 25 kHz repetition rate with. 941 .... ical design and fabrication of the pump head and crystal holders are gratefully acknowledged.

  6. Angled grating high-power semiconductor lasers: simulation of beam characteristics under thermal effects

    Science.gov (United States)

    Sarangan, Andrew M.

    2002-07-01

    The angled grating laser has been successful in achieving high-power diffraction-limited beams. The laser cavity utilizes a grating inclined at an angle to the facet to filter out the filamented beams. As a result, all of the filamented beams except the primary beam will be transmitted through the grating. In this paper we present the cavity resonance equation, and study temperature sensitivity of this device.

  7. Generation and application of high power flattened Gaussian beams

    CSIR Research Space (South Africa)

    Forbes, A

    2009-07-01

    Full Text Available Presented at the 2009 South African Institute of Physics Annual Conference University of KwaZulu-Natal Durban, South Africa 6-10 July 2009 Flattened Gaussian Beams (FGBs) change shape as they propagation ( ) ( ) ( ) m p nm n n p n nn n m p...OC n DOE        −= ∫∞+ 2 0 21 2 exp)( 2 exp)exp()/(),( ρρρ )],([ * Luphase DOEDOE ρφ = DOE DOE DOE u u t * = Proc. SPIE 7062, 706219-1, 2008 Design of a mirror to produce an N = 10 FGB 0 2 4 6 8 10 12...

  8. Method and apparatus for reducing coherence of high-power laser beams

    Science.gov (United States)

    Moncur, Norman K.; Mayer, Frederick J.

    1978-01-01

    Method and apparatus for reducing the coherence and for smoothing the power density profile of a collimated high-power laser beam in which the beam is focused at a point on the surface of a target fabricated of material having a low atomic number. The initial portion of the focused beam heats the material to form a hot reflective plasma at the material surface. The remaining, major portion of the focused beam is reflected by the plasma and recollected to form a collimated beam having reduced beam coherence.

  9. The clinical case for proton beam therapy

    Directory of Open Access Journals (Sweden)

    Foote Robert L

    2012-10-01

    Full Text Available Abstract Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Summary sentence Proton beam therapy is a technically advanced and promising form of radiation therapy.

  10. SNS Proton Beam Window Disposal

    Science.gov (United States)

    Popova, Irina; Gallmeier, Franz X.; Trotter, Steven

    2017-09-01

    In order to support the disposal of the proton beam window assembly of the Spallation Neutron Source beamline to the target station, waste classification analyses are performed. The window has a limited life-time due to radiation-induced material damage. Analyses include calculation of the radionuclide inventory and shielding analyses for the transport package/container to ensure that the container is compliant with the transportation and waste management regulations. In order to automate this procedure and minimize manual work a script in Perl language was written.

  11. SNS Proton Beam Window Disposal

    Directory of Open Access Journals (Sweden)

    Popova Irina

    2017-01-01

    Full Text Available In order to support the disposal of the proton beam window assembly of the Spallation Neutron Source beamline to the target station, waste classification analyses are performed. The window has a limited life-time due to radiation-induced material damage. Analyses include calculation of the radionuclide inventory and shielding analyses for the transport package/container to ensure that the container is compliant with the transportation and waste management regulations. In order to automate this procedure and minimize manual work a script in Perl language was written.

  12. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2010-09-21

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  13. Laser-Accelerated Proton Beams as a New Particle Source

    OpenAIRE

    Nürnberg, Frank

    2010-01-01

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. Today's high power, ultrashort pulse laser systems are capable of achieving laser intensities up to 10^21 W/cm^2. When focused onto thin foil targets, extremely high field gradients of the order of TV/m are produced on the rear side of the target resulting in the acceleration of protons to multi-MeV energies with an exponential spectrum including up to 10^13 particles. This a...

  14. A Family of L-band SRF Cavities for High Power Proton Driver Applications

    Energy Technology Data Exchange (ETDEWEB)

    Robert Rimmer, Frank Marhauser

    2009-05-01

    Recent global interest in high duty factor or CW superconducting linacs with high average beam power highlights the need for robust and reliable SRF structures capable of delivering high average RF power to the beam with moderate HOM damping, low interception of halo and good efficiency. Potential applications include proton or H- drivers for spallation neutron sources, neutrino physics, waste transmutation, subcritical reactors, and high-intensity high-energy physics experiments. We describe a family of SRF cavities with a range of Betas capable of transporting beam currents in excess of 10 mA CW with large irises for minimal interception of halo and HOM and power couplers capable of supporting high average power operation. Goals include an efficient cell shape, high packing factor for efficient real-estate gradient and strong HOM damping to ensure stable beam operation,

  15. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    Science.gov (United States)

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  16. Polarized proton beams since the ZGS

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D.

    1994-12-31

    The author discusses research involving polarized proton beams since the ZGS`s demise. He begins by reminding the attendee that in 1973 the ZGS accelerated the world`s first high energy polarized proton beam; all in attendance at this meeting can be proud of this accomplishment. A few ZGS polarized proton beam experiments were done in the early 1970`s; then from about 1976 until 1 October 1979, the majority of the ZGS running time was polarized running. A great deal of fundamental physics was done with the polarized beam when the ZGS ran as a dedicated polarized proton beam from about Fall 1977 until it shut down on 1 October 1979. The newly created polarization enthusiats then dispersed; some spread polarized seeds al over the world by polarizing beams elsewhere; some wound up running the High Energy and SSC programs at DOE.

  17. Small high-power electron-beam device for manufacturing work and physical experiments in space

    Science.gov (United States)

    Paton, B. E.; Sheliagin, V. D.; Nazarenko, O. K.; Lankin, Iu. N.; Mokhnach, V. K.

    The paper examines the design of a high-power electron-beam device with an autonomous dc-voltage source that was used for electron-beam injection in the Araks experiment and can be used for electron-beam welding in the context of space manufacturing. The design principle is described, and the specifications of the main units of the device are presented, including the units responsible for the conversion of the dc voltage of the primary source to ac voltage, the rectification of the high voltage, and electron-beam injection. Also considered are the units for electron-beam control and for the conversion of the telemetered parameters of the device into analog voltage. A block diagram is presented along with an oscillogram of the beam current and a cyclogram of device operation.

  18. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Energy Technology Data Exchange (ETDEWEB)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  19. Design Study for Pulsed Proton Beam Generation

    Directory of Open Access Journals (Sweden)

    Han-Sung Kim

    2016-02-01

    Full Text Available Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

  20. Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB

    Science.gov (United States)

    Avilov, Mikhail; Aaron, Adam; Amroussia, Aida; Bergez, Wladimir; Boehlert, Carl; Burgess, Thomas; Carroll, Adam; Colin, Catherine; Durantel, Florent; Ferrante, Paride; Fourmeau, Tiffany; Graves, Van; Grygiel, Clara; Kramer, Jacob; Mittig, Wolfgang; Monnet, Isabelle; Patel, Harsh; Pellemoine, Frederique; Ronningen, Reginald; Schein, Mike

    2016-06-01

    The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from 16O to 238U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti-6Al-4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.

  1. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza (Italy); Panasenkov, A. [NRC, Kurchatov Institute, 1, Kurchatov Sq, Moscow 123182 (Russian Federation); Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); INFN-LNL, viale dell’Università n. 2, 35020 Legnaro (Italy); Serianni, G.; Pasqualotto, R. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-11-15

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  2. Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Avilov, Mikhail [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Aaron, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Amroussia, Aida [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Bergez, Wladimir [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Boehlert, Carl [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Burgess, Thomas; Carroll, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Colin, Catherine [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Durantel, Florent [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Ferrante, Paride; Fourmeau, Tiffany [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Graves, Van [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Grygiel, Clara [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Kramer, Jacob [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Mittig, Wolfgang [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Monnet, Isabelle [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Patel, Harsh [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); and others

    2016-06-01

    The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from {sup 16}O to {sup 238}U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti–6Al–4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.

  3. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  4. How to emit a high-power electron beam from a magnetospheric spacecraft?

    Science.gov (United States)

    Lucco Castello, Federico; Delzanno, Gian Luca; Borovsky, Joseph; Miars, Grant; Leon, Omar; Gilchrist, Brian

    2017-10-01

    The idea of using high-power electron beams to actively probe magnetic-field-line connectivity in space has been discussed since the 1970's. It could solve longstanding questions in magnetospheric/ionospheric physics by establishing connectivity and causality between phenomena occurring in the magnetosphere and their image in the ionosphere. However, this idea has never been realized onboard a magnetospheric spacecraft because the tenuous magnetospheric plasma cannot provide the return current necessary to keep the spacecraft charging under control. Recently, we have used Particle-In-Cell simulations to propose a spacecraft-charging mitigation scheme that would enable the emission of a high-power electron beam from a magnetospheric spacecraft. In this work, we will present an overview of the concept and of our theoretical, computational and experimental effort to establish this idea conclusively.

  5. High-power spectral beam combining of linearly polarized Tm:fiber lasers.

    Science.gov (United States)

    Shah, Lawrence; Sims, R Andrew; Kadwani, Pankaj; Willis, Christina C C; Bradford, Joshua B; Sincore, Alex; Richardson, Martin

    2015-02-01

    To date, high-power scaling of Tm:fiber lasers has been accomplished by maximizing the power from a single fiber aperture. In this work, we investigate power scaling by spectral beam combination of three linearly polarized Tm:fiber MOPA lasers using dielectric mirrors with a steep transition from highly reflective to highly transmissive that enable a minimum wavelength separation of 6 nm between individual laser channels within the wavelength range from 2030 to 2050 nm. Maximum output power is 253 W with M(2)<2, ultimately limited by thermal lensing in the beam combining elements.

  6. Principles and practice of proton beam therapy

    CERN Document Server

    Das, Indra J

    2015-01-01

    Commissioned by The American Association of Physicists in Medicine (AAPM) for their June 2015 Summer School, this is the first AAPM monograph printed in full color. Proton therapy has been used in radiation therapy for over 70 years, but within the last decade its use in clinics has grown exponentially. This book fills in the proton therapy gap by focusing on the physics of proton therapy, including beam production, proton interactions, biology, dosimetry, treatment planning, quality assurance, commissioning, motion management, and uncertainties. Chapters are written by the world's leading medical physicists who work at the pioneering proton treatment centers around the globe. They share their understandings after years of experience treating thousands of patients. Case studies involving specific cancer treatments show that there is some art to proton therapy as well as state-of-the-art science. Even though the focus lies on proton therapy, the content provided is also valuable to heavy charged particle th...

  7. Active Stabilization of the Beam Pointing of a High- Power KrF Laser System

    Directory of Open Access Journals (Sweden)

    Barna1 A.

    2015-03-01

    Full Text Available An active beam-pointing stabilization system has been developed for a high-power KrF laser system to eliminate the long-term drift of the directional change of the beam in order to have a stable focusing to a high intensity. The control of the beam direction was achieved by a motor-driven mirror activated by an electric signal obtained by monitoring the position of the focus of the output beam. Instead of large sized UV-sensitive position sensitive detectors a simple arrangement with scatter plates and photodiodes are used to measure the directionality of the beam. After the beam stabilization the long-term residual deviation of the laser shots is ~14 μrad, which is comparable to the shot-to-shot variation of the beam (~12 μrad. This deviation is small enough to keep the focal spot size in a micrometer range when tightly focusing the beam using off-axis parabolic mirrors.

  8. High-power, high repetition rate, tunable, ultrafast vortex beam in the near-infrared

    Science.gov (United States)

    Aadhi, A.; Samanta, G. K.

    2018-01-01

    We report on experimental demonstration of high power, ultrafast, high repetition rate (RR) vortex beam source tunable in the near-IR wavelength range. Based on single-pass optical parametric generation of Yb-fiber laser of vortex order l p = 1 in a 50 mm long MgO doped periodically poled LiNbO3 crystal, the source produces signal beam in vortex profile of order l s = 1 across 1433–1553 nm. Additionally, the source produces broadband idler radiation tunable across 3379–4132 nm in the Gaussian beam profile. We observed that the vortex profile of the pump beam is always transferred to the signal beam due to the highest overlapping integral among the interacting beams and the idler maintains a Gaussian spatial profile owing to the conservation of orbital angular momentum in optical parametric processes. For a pump power of 4.72 W, the signal and idler beams have a maximum power of 1.7 W at 1509 nm and 0.48 W at 3625 nm respectively. The signal vortex beam has output pulses of width ∼637 fs at a RR of 78 MHz. The signal (idler) has a spectral width of 4.3 nm (129.5 nm) and a passive peak-to-peak power fluctuation better than 3% (1.1%) over 30 min, respectively.

  9. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers.

    Science.gov (United States)

    Drachenberg, Derrek R; Andrusyak, Oleksiy; Venus, George; Smirnov, Vadim; Glebov, Leonid B

    2014-02-20

    High-radiance lasers are desired for many applications in defense and manufacturing. Spectral beam combining (SBC) by volume Bragg gratings (VBGs) is a very promising method for high-radiance lasers that need to achieve 100 kW level power. Laser-induced heating of VBGs under high-power radiation presents a challenge for maintaining Bragg resonance at various power levels without mechanical realignment. A novel thermal tuning technique and apparatus is presented that enables maintaining peak efficiency operation of the SBC system at various power levels without any mechanical adjustment. The method is demonstrated by combining two high-power ytterbium fiber lasers with high efficiency from low power to full combined power of 300 W (1.5 kW effective power), while maintaining peak combining efficiency within 0.5%.

  10. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  11. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  12. Fan beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick M.

    A fan beam proton therapy is developed which delivers intensity modulated proton therapy using distal edge tracking. The system may be retrofit onto existing proton therapy gantries without alterations to infrastructure in order to improve treatments through intensity modulation. A novel range and intensity modulation system is designed using acrylic leaves that are inserted or retracted from subsections of the fan beam. Leaf thicknesses are chosen in a base-2 system and motivated in a binary manner. Dose spots from individual beam channels range between 1 and 5 cm. Integrated collimators attempting to limit crosstalk among beam channels are investigated, but found to be inferior to uncollimated beam channel modulators. A treatment planning system performing data manipulation in MATLAB and dose calculation in MCNPX is developed. Beamlet dose is calculated on patient CT data and a fan beam source is manually defined to produce accurate results. An energy deposition tally follows the CT grid, allowing straightforward registration of dose and image data. Simulations of beam channels assume that a beam channel either delivers dose to a distal edge spot or is intensity modulated. A final calculation is performed separately to determine the deliverable dose accounting for all sources of scatter. Treatment plans investigate the effects that varying system parameters have on dose distributions. Beam channel apertures may be as large as 20 mm because the sharp distal falloff characteristic of proton dose provides sufficient intensity modulation to meet dose objectives, even in the presence of coarse lateral resolution. Dose conformity suffers only when treatments are delivered from less than 10 angles. Jaw widths of 1--2 cm produce comparable dose distributions, but a jaw width of 4 cm produces unacceptable target coverage when maintaining critical structure avoidance. Treatment time for a prostate delivery is estimated to be on the order of 10 minutes. Neutron production

  13. Results of the High-Power Conditioning and the First Beam Acceleration of the DTL-1 for J-PARC

    CERN Document Server

    Naito, F; Chiba, J; Fukui, Y; Furukawa, K; Igarashi, Z; Ikegami, K; Ikegami, M; Kadokura, E; Kamikubota, N; Kato, T; Kawamura, M; Kobayashi, H; Kubota, C; Takasaki, E; Tanaka, H; Yamaguchi, S; Yoshino, K

    2004-01-01

    The first tank of the DTL for Japan Proton Accelerator Research Complex (J-PARC) was installed in the test facility at KEK. The DTL tank is 9.9 m in length and consists of the 76 cells. The resonant frequency of the tank is 324 MHz. After the installation of the tank, the high-power conditioning was carried out deliberately. Consequently the peak rf power of 1.3 MW (pulse repetition 50 Hz, pulse length 600 μs) was put into the tank stably. (The required power is about 1.1 MW for the designed accelerating field of 2.5 MV/m on the axis.) Following the conditioning, negative hydrogen beam, accelerated by the RFQ linac up to 3 MeV, was injected to the DTL and accelerated up to its design value of 19.7 MeV. The peak current of 30 mA was achieved with almost 100% transmission. In this paper, the conditioning history of the DTL and the result of the first beam test will be described.

  14. Method and apparatus for laser-controlled proton beam radiology

    Science.gov (United States)

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  15. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage.

    Science.gov (United States)

    Barberio, M; Veltri, S; Scisciò, M; Antici, P

    2017-03-07

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient.

  16. Sparse-view proton computed tomography using modulated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejon 305-701 (Korea, Republic of); Min, Byungjun [Department of Radiation Oncology, Kangbuk Samsung Hospital, 110–746 (Korea, Republic of); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, 138–736 (Korea, Republic of); Park, Seyjoon; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, 410–769 (Korea, Republic of); Park, Sungyong [Proton Therapy Center, McLaren Cancer Institute, Flint, Michigan 48532 (United States)

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  17. Beam Phase Detection for Proton Therapy Accelerators

    CERN Document Server

    Aminov, Bachtior; Getta, Markus; Kolesov, Sergej; Pupeter, Nico; Stephani, Thomas; Timmer, J

    2005-01-01

    The industrial application of proton cyclotrons for medical applications has become one of the important contributions of accelerator physics during the last years. This paper describes an advanced vector demodulating technique used for non-destructive measurements of beam intensity and beam phase over 360°. A computer controlled I/Q-based phase detector with a very large dynamic range of 70 dB permits the monitoring of beam intensity, phase and eventually energy for wide range of beam currents down to -130 dBm. In order to avoid interference from the fundamental cyclotron frequency the phase detection is performed at the second harmonic frequency. A digital low pass filter with adjustable bandwidth and steepness is implemented to improve accuracy. With a sensitivity of the capacitive pickup in the beam line of 30 nV per nA of proton beam current at 250 MeV, accurate phase and intensity measurements can be performed with beam currents down to 3.3 nA.

  18. Experimental validation of beam quality correction factors for proton beams.

    Science.gov (United States)

    Gomà, Carles; Hofstetter-Boillat, Bénédicte; Safai, Sairos; Vörös, Sándor

    2015-04-21

    This paper presents a method to experimentally validate the beam quality correction factors (kQ) tabulated in IAEA TRS-398 for proton beams and to determine the kQ of non-tabulated ionization chambers (based on the already tabulated values). The method is based exclusively on ionometry and it consists in comparing the reading of two ionization chambers under the same reference conditions in a proton beam quality Q and a reference beam quality (60)Co. This allows one to experimentally determine the ratio between the kQ of the two ionization chambers. In this work, 7 different ionization chamber models were irradiated under the IAEA TRS-398 reference conditions for (60)Co beams and proton beams. For the latter, the reference conditions for both modulated beams (spread-out Bragg peak field) and monoenergetic beams (pseudo-monoenergetic field) were studied. For monoenergetic beams, it was found that the experimental kQ values obtained for plane-parallel chambers are consistent with the values tabulated in IAEA TRS-398; whereas the kQ values obtained for cylindrical chambers are not consistent--being higher than the tabulated values. These results support the suggestion (of previous publications) that the IAEA TRS-398 reference conditions for monoenergetic proton beams should be revised so that the effective point of measurement of cylindrical ionization chambers is taken into account when positioning the reference point of the chamber at the reference depth. For modulated proton beams, the tabulated kQ values of all the ionization chambers studied in this work were found to be consistent with each other--except for the IBA FC65-G, whose experimental kQ value was found to be 0.6% lower than the tabulated one. The kQ of the PTW Advanced Markus chamber, which is not tabulated in IAEA TRS-398, was found to be 0.997 ± 0.042 (k = 2), based on the tabulated value of the PTW Markus chamber.

  19. Modernization of high-power (5 kW) broad ion beam source

    Science.gov (United States)

    Emlin, D. R.; Gavrilov, N. V.; Tretnikov, P. V.; Nasyrov, V. F.; Timerbaev, A. Z.

    2017-05-01

    In the course of the long-term performance (during 5 years) of a high-power source of gas ions (25 keV, 0.2 A, 600 cm2) with a plasma emitter based on cold cathode discharge, the character and rate of key constructive elements faults were determined, which allowed to calculate the inter-repair time, complexity and cost of the repair. The peculiarities of the gas-discharge system and the ion beam forming system limiting the effectiveness of ion beam treatment were revealed as well. Conditions favorable for the decrease in the discharge voltage by 50-200 V and igniting voltage up to 1.5-2 times are determined. The possibilities of lowering the minimal flow of working gas are demonstrated. The design of the discharge system with reduced sputtering rate of local areas of the hollow cathode is offered. The changes added to ion source design aimed to enhance the lifetime of the plasma chamber that is exposed to cyclic heating by the back electron beam leading to the development of through cracks, and to enlarge the rupture life of glow discharge hollow cathode by optimizing its configuration and the conditions of discharge ignition and burning, are described. The upgraded design of a multislit ion-optical system with enhanced performance ensures uniform surface distribution of ion fluence.

  20. Heavy-section welding with very high power laser beams: the challenge

    Science.gov (United States)

    Goussain, Jean-Claude; Becker, Ahim; Chehaibou, A.; Leca, P.

    1997-08-01

    The 45 kW CO2 laser system of Institut de Soudure was used to evaluate and explore the possibilities offered by the high power laser beams for welding different materials in various thickness and in different welding positions. Stainless steels, low carbon steels, aluminum and titanium alloys were studied. Butt joints in 10 to 35 mm thick plates were achieved and evaluated by radiographic, metallurgical and mechanical tests. Gaps and alignment tolerances were determined with and without filler wire in order to obtain acceptable welds concerning the weld geometry, the aspect on front and end root sides. The main problem raised by heavy section welding concerns weld porosity in the weld which increases drastically with the thickness of the weld. Indications are given on their origin and the way to proceed in order to better control them. Lastly some large parts, recently welded on the system, are presented and discussed before drawing some conclusions on the prospects of very high power laser welding.

  1. Maskless proton beam writing in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, P. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom) and Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)]. E-mail: p.mistry@surrey.ac.uk; Gomez-Morilla, I. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Smith, R.C. [Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Thomson, D. [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Grime, G.W. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Webb, R.P. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Gwilliam, R. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Jeynes, C. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Cansell, A. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Merchant, M. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Kirkby, K.J. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2007-07-15

    Proton beam writing (PBW) is a direct write technique that employs a focused MeV proton beam which is scanned in a pre-determined pattern over a target material which is subsequently electrochemically etched or chemically developed. By changing the energy of the protons the range of the protons can be changed. The ultimate depth of the structure is determined by the range of the protons in the material and this allows structures to be formed to different depths. PBW has been successfully employed on etchable glasses, polymers and semiconductor materials such as silicon (Si) and gallium arsenide (GaAs). This study reports on PBW in p-type GaAs and compares experimental results with computer simulations using the Atlas (copy right) semiconductor device package from SILVACO. It has already been proven that hole transport is required for the electrochemical etching of GaAs using Tiron (4,5-dihydroxy-m-benzenedisulfonic acid, di-sodium salt). PBW in GaAs results in carrier removal in the irradiated regions and consequently minimal hole transport (in these regions) during electrochemical etching. As a result the irradiated regions are significantly more etch resistant than the non-irradiated regions. This allows high aspect ratio structures to be formed.

  2. Data Processing Middleware in a High-Powered Neutral Beam Injection Control System

    Science.gov (United States)

    Sheng, Peng; Hu, Chundong; Song, Shihua; Liu, Zhimin; Zhao, Yuanzhe; Zhang, Xiaodan; Dou, Shaobin

    2013-06-01

    A set of data-processing middleware for a high-powered neutral beam injection (NBI) control system is presented in this paper. The middleware, based on TCP/IP and multi-threading technologies, focuses mainly on data processing and transmission. It separates the data processing and compression from data acquisition and storage. It provides universal transmitting interfaces for different software circumstances, such as WinCC, LabView and other measurement systems. The experimental data acquired on Windows, QNX and Linux platforms are processed by the middleware and sent to the monitoring applications. There are three middleware deployment models: serial processing, parallel processing and alternate serial processing. By using these models, the middleware solves real-time data-processing problems on heterogeneous environmental acquisition hardware with different operating systems and data applications.

  3. The R/D of high power proton accelerator technology in China

    Indian Academy of Sciences (India)

    Abstract. In China, a multipurpose verification system as a first phase of our ADS program con- sists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR ...

  4. Coupled-Multiplier Accelerator Produces High-Power Electron Beams for Industrial Applications

    Science.gov (United States)

    Hatridge, M.; McIntyre, P.; Roberson, S.; Sattarov, A.; Thomas, E.; Meitzler, Charles

    2003-08-01

    The coupled multiplier is a new approach to efficient generation of MeV d.c. power for accelerator applications. High voltage is produced by a series of modules, each of which consists of a high-power alternator, step-up transformer, and 3-phase multiplier circuit. The alternators are connected mechanically along a rotating shaft, and connected by insulating flexible couplers. This approach differs from all previous d.c. technologies in that power is delivered to the various stages of the system mechanically, rather than through capacitive or inductive electrical coupling. For this reason the capital cost depends linearly on required voltage and power, rather than quadratically as with conventional technologies. The CM technology enables multiple electron beams to be driven within a common supply and insulating housing. MeV electron beam is extremely effective in decomposing organic contaminants in water. A 1 MeV, 100 kW industrial accelerator using the CM technology has been built and is being installed for treatment of wastewater at a petrochemical plant.

  5. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    CERN Document Server

    De Melo Mendonca, T M

    2014-01-01

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  6. Aperture and Stability Studies for the CNGS Proton Beam Line

    OpenAIRE

    Herr, Werner; Meddahi, M

    2004-01-01

    The knowledge of the beam stability at the CNGS target is of great importance, both for the neutrino yield and for target rod resistance against non-symmetric beam impact. Therefore, simulating expected imperfections of the beam line elements and possible injection errors into the CNGS proton beam line, the beam spot stability at the target was investigated. Moreover, the mechanical aperture of the CNGS proton beam line was simulated and the results confirmed that the aperture is tight but su...

  7. Mechanical response of proton beam irradiated nitinol

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Naveed [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan); Ghauri, I.M., E-mail: ijaz.phys@gmail.co [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan); Mubarik, F.E.; Amin, F. [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2011-01-01

    The present investigation deals with the study of mechanical behavior of proton beam irradiated nitinol at room temperature. The specimens in austenitic phase were irradiated over periods of 15, 30, 45 and 60 min at room temperature using 2 MeV proton beam obtained from Pelletron accelerator. The stress-strain curves of both unirradiated and irradiated specimens were obtained using a universal testing machine at room temperature. The results of the experiment show that an intermediate rhombohedral (R) phase has been introduced between austenite and martensite phase, which resulted in the suppression of direct transformation from austenite to martensite (A-M). Stresses required to start R-phase ({sigma}{sub RS}) and martensitic phase ({sigma}{sub MS}) were observed to decrease with increase in exposure time. The hardness tests of samples before and after irradiation were also carried out using Vickers hardness tester. The comparison reveals that the hardness is higher in irradiated specimens than that of the unirradiated one. The increase in hardness is quite sharp in specimens irradiated for 15 min, which then increases linearly as the exposure time is increased up to 60 min. The generation of R-phase, variations in the transformation stresses {sigma}{sub RS} and {sigma}{sub MS} and increase in hardness of irradiated nitinol may be attributed to lattice disorder and associated changes in crystal structure induced by proton beam irradiation.

  8. Beam commissioning for a superconducting proton linac

    Science.gov (United States)

    Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei

    2016-12-01

    To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  9. Process control in continuous high-power CO2 laser beam welding

    Science.gov (United States)

    Seidel, Bernd; Beersiek, Jorg; Beyer, Eckhard

    1994-09-01

    The use of high power CO2 lasers in welding enables processing with high laser intensities at the workpiece which is connected with the formation of a laser induced plasma at the surface of the workpiece. Therefore the effect of deep penetration welding by formation of a plasma filled keyhole and plasma plume above the workpiece is possible, including the risk of plasma shielding, which means strong absorption of the incident laser beam above the workpiece and thus interruption of the welding process. The conditions for ignition of plasma shielding, which is determined by electron density, are mainly influenced by laser intensity, process gas and material. Variations of these parameters have been conducted in order to find limits for the appearance of plasma shielding. Experimental data are used to verify a model concerning the absorption mechanism of a stationary shielding plasma state. The dynamic behavior is treated by time resolved spectroscopic analysis of the light emitted by the plasma above the workpiece yielding monitoring signals that have a strong correlation with the formation of plasma shielding. Based on these investigations a closed-loop process control in continuous high power laser welding has been developed. Using the intensity of a spectral line of laser induced plasma as monitoring signal and the regulation of laser intensity via laser power, plasma shielding can be suppressed. From the industrial point of view increase in economy and reliability of the laser welding process combined with quality improvements which are induced by the application of the plasma shielding controller (PSC) are of great importance. For this reason three examples of PSC application are presented.

  10. The R/D of high power proton accelerator technology in China

    Indian Academy of Sciences (India)

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the ...

  11. Proton beam modification of lead white pigments

    Energy Technology Data Exchange (ETDEWEB)

    Beck, L., E-mail: lucile.beck@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Centre de recherche et de restauration des musées de France (C2RMF), Palais du Louvre – Porte des Lions, 14 quai François Mitterrand, 75001 Paris (France); Gutiérrez, P.C. [Centre de recherche et de restauration des musées de France (C2RMF), Palais du Louvre – Porte des Lions, 14 quai François Mitterrand, 75001 Paris (France); Centro de Micro-Análisis de Materiales (CMAM), Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Miserque, F. [CEA, DEN, DPC/SCCME/LECA, 91191 Gif-sur-Yvette (France); Thomé, L. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), CNRS/IN2P3 et Université Paris-Sud, Bât. 108, 91405 Orsay (France)

    2013-07-15

    Pigments and paint materials are known to be sensitive to particle irradiation. Occasionally, the analysis of paintings by PIXE can induce a slight or dark stain depending on the experimental conditions (beam current, dose, particle energy). In order to understand this discoloration, we have irradiated various types of art white pigments – lead white (hydrocerussite and basic lead sulfate), gypsum, calcite, zinc oxide and titanium oxide – with an external 3 MeV proton micro-beam commonly used for PIXE experiments. We have observed various sensitivities depending on the pigment. No visible change occurs for calcite and titanium oxide, whereas lead white pigments are very sensitive. For the majority of the studied compounds, the discoloration is proportional to the beam current and charge. The damage induced by proton beam irradiation in lead white pigments was studied by micro-Raman and XPS spectroscopies. Structural modifications and dehydration were detected. Damage recovery was investigated by thermal treatment and UV-light irradiation. The discoloration disappeared after one week of UV illumination, showing that PIXE experiments could be safely undertaken for pigments and paintings.

  12. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, N., E-mail: umeda.naotaka@jaea.go.jp; Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka-shi, Ibaraki 311-0193 Japan (Japan)

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  13. Pressure and stress waves in a spallation neutron source mercury target generated by high-power proton pulses

    CERN Document Server

    Futakawa, M; Conrad, H; Stechemesser, H

    2000-01-01

    The international ASTE collaboration has performed a first series of measurements on a spallation neutron source target at the Alternating Gradient Synchrotron (AGS) in Brookhaven. The dynamic response of a liquid mercury target hit by high-power proton pulses of about 40 ns duration has been measured by a laser Doppler technique and compared with finite elements calculations using the ABAQUS code. It is shown that the calculation can describe the experimental results for at least the time interval up to 100 mu s after the pulse injection. Furthermore, it has been observed that piezoelectric pressure transducers cannot be applied in the high gamma-radiation field of a spallation target.

  14. Influence of a high-power pulsed ion beam on the mechanical properties of corundum ceramics

    Science.gov (United States)

    Kostenko, V.; Pavlov, S.; Nikolaeva, S.

    2018-01-01

    The mechanical properties of near-surface layers of corundum ceramics treated by high-power pulsed ion beam of carbon are investigated. The samples for investigation were prepared from corundum substrate, which is usually used in microelectronic. The ion treatment was carried out at the TEMP-4M facility under the following conditions: an accelerating voltage of 160-200 keV, the current density in the pulse varied within 15-85 A/cm2. It was found that ion irradiation changes the structure and properties of near-surface layers of corundum ceramics. At the same time, melting and erosion of the surface layer takes place. These processes are accompanied by the formation of a network of microcracks. Microcracks are propagated only by the depth of melting layer. The mechanical properties were measured using a NanoTest600 nanohardness testing instrument. It was found that the nanohardness depends of the treatment modes. At a current density of 15A/cm2, with an increase treatment dose, the nanohardness of the irradiated surface layer increases in comparison with the initial value before irradiation. At higher current densities, the nanohardness of irradiated ceramics decreases relatively to the initial value before irradiation. The dependences of nanohardness off the irradiation dose in this case have the view of a curves with a minimum at irradiation doses of 2.5·1014 and 1.3·1014 cm-2, for current densities of 50 and 85 A/cm2, respectively.

  15. Geometry modeling of single track cladding deposited by high power diode laser with rectangular beam spot

    Science.gov (United States)

    Liu, Huaming; Qin, Xunpeng; Huang, Song; Hu, Zeqi; Ni, Mao

    2018-01-01

    This paper presents an investigation on the relationship between the process parameters and geometrical characteristics of the sectional profile for the single track cladding (STC) deposited by High Power Diode Laser (HPDL) with rectangle beam spot (RBS). To obtain the geometry parameters, namely cladding width Wc and height Hc of the sectional profile, a full factorial design (FFD) of experiment was used to conduct the experiments with a total of 27. The pre-placed powder technique has been employed during laser cladding. The influence of the process parameters including laser power, powder thickness and scanning speed on the Wc and Hc was analyzed in detail. A nonlinear fitting model was used to fit the relationship between the process parameters and geometry parameters. And a circular arc was adopted to describe the geometry profile of the cross-section of STC. The above models were confirmed by all the experiments. The results indicated that the geometrical characteristics of the sectional profile of STC can be described as the circular arc, and the other geometry parameters of the sectional profile can be calculated only using Wc and Hc. Meanwhile, the Wc and Hc can be predicted through the process parameters.

  16. Beam commissioning for a superconducting proton linac

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Wang

    2016-12-01

    Full Text Available To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today’s nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  17. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    Science.gov (United States)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  18. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  19. A study of radiation-hard detectors using proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Do, S. H. [Kyungbook National Univ., Daegu (Korea, Republic of)

    2007-04-15

    1) Proton flux monitoring with liquid and crystal scintillator a) development of radiation hard circulation type liquid scintillator b) proton flux monitoring with liquid scintillator system c) detector beam test with liquid scintillator trigger d) proton flux monitoring with GSO crystal. 2) Characterization of crystals with proton beam and beam energy monitoring a) Crystal growth and characterization of PbCl2 and CsCl b) Light output comparison of CsCl and CsCl:Ce with proton beam c) Proton beam energy measurement w/wo Al degrader by BGO, LYSO and GSO 3) Development of fast neutron detector a) neutron and gamma separation study with NE213 liquid scintillator and 400Mhz FADC b) A study of neutron and gamma separation with Cf-252 source.

  20. High-power proton linear accelerators for neutron generators and ADS (projects review)

    CERN Document Server

    Lazarev, N V

    2000-01-01

    The review of the suggestions of superpower linear accelerators for electric nuclear plants and high intensive neutron generators is given. The most important engineering resolutions, characteristics and state of the art of the linear accelerators with middle power of accelerated beam in the range from 1 to 100 MW: APT, SNS, JAERI/KEK, TRISPAL, TRASCO, ESS, KOMAC, Energy Amplifier, IFMIF, collaborative suggestions of ITEhF, MRTI and IFVEh, and other scientific centers are discussed

  1. Disposal strategy of proton irradiated mercury from high power spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Chiriki, Suresh

    2010-07-01

    Large spallation sources are intended to be constructed in Europe (EURISOL: nuclear physics research facility and ESS: European Spallation Source). These facilities would accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Liquid waste cannot be tolerated in European repositories. As part of this work on safety/decommissioning of high-power spallation sources, our investigations were focused mainly to study experimentally and theoretically the solidification of liquid mercury waste (selection of an adequate solid mercury form and of an immobilization matrix, chemical engineering process studies on solidification/stabilization and on encapsulating in a matrix). Based on experimental results and supported by literature Hg-chalcogens (HgS, HgSe) will be more stable in repositories than amalgams. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in possible accidents with water ingress in a repository. Additionally immobilization of mercury in a cement matrix and polysiloxane matrix were tested. HgS formation from liquid target mercury by a wet process is identified as a suitable formation procedure. These investigations reveal that an almost 99.9% elementary Hg conversion can be achieved and that wet process can be reasonably handled under hot cell conditions. (orig.)

  2. Proton radiography of magnetic fields generated with an open-ended coil driven by high power laser pulses

    Directory of Open Access Journals (Sweden)

    Guoqian Liao

    2016-07-01

    Full Text Available Recently generation of strong magnetic (B fields has been demonstrated in capacitor coils heated by high power laser pulses [S. Fujioka et al., Sci. Rep. 3, 1170 (2013]. This paper will present a direct measurement of B field generated with an open-ended coil target driven by a nanosecond laser pulse using ultrafast proton radiography. The radiographs are analyzed with particle-tracing simulations. The B field at the coil center is inferred to be ∼50 T at an irradiance of ∼5 × 1014 W·cm−2. The B field generation is attributed to the background cold electron flow pointing to the laser focal spot, where a target potential is induced due to the escape of energetic electrons.

  3. Compact Measurement Station for Low Energy Proton Beams

    CERN Document Server

    Yildiz, H.

    2017-02-24

    A compact, remote controlled, cost efficient diagnostic station has been developed to measure the charge, the profile and the emittance for low energy proton beams. It has been installed and tested in the proton beam line of the Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.

  4. High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array.

    Science.gov (United States)

    Wang, Zhenfu; Ning, Yongqiang; Zhang, Yan; Shi, Jingjing; Zhang, Xing; Zhang, Lisen; Wang, Wei; Liu, Di; Hu, Yongsheng; Cong, Haibing; Qin, Li; Liu, Yun; Wang, Lijun

    2010-11-08

    High power and good beam quality of two-dimensional bottom-emitting vertical-cavity surface-emitting laser array with GaAs microlens on the substrate is achieved. Uniform and matched convex microlens is directly fabricated by one-step diffusion-limited wet-etching techniques on the emitting windows. The maximum output power is above 1 W at continuous-wave operation at room temperature, and the far-field beam divergence is below 6.6° at a current of 4 A. These properties between microlens-integrated and conventional device at different operating current are demonstrated.

  5. AA, entrance of proton beam to antiproton production target

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Please look up 8010295 first. The intense proton beam from the 26 GeV PS arrives from the right, through the vacuum chamber. The big flange contains a thin window, after which the proton beam continues through free air. A beam transformer, affixed to the shielding block, measures its intensity, before it enters the hole in the concrete to hit the target behind it.

  6. High-power free-electron laser amplifier using a scalloped electron beam and a two-stage wiggler

    Directory of Open Access Journals (Sweden)

    D. C. Nguyen

    2006-05-01

    Full Text Available High-power free-electron laser (FEL amplifiers present many practical design and construction problems. One such problem is possible damage to any optical beam control elements beyond the wiggler. The ability to increase the optical beam’s divergence angle after the wiggler, thereby reducing the intensity on the first optical element, is important to minimize such damage. One proposal to accomplish this optical beam spreading is to pinch the electron beam thereby focusing the radiation as well. In this paper, we analyze an approach that relies on the natural betatron motion to pinch the electron beam near the end of the wiggler. We also consider a step-tapered, two-stage wiggler to enhance the efficiency. The combination of a pinched electron beam and step-taper wiggler leads to additional optical guiding of the optical beam. This novel configuration is studied in simulation using the MEDUSA code. For a representative set of beam and wiggler parameters, we discuss (i the effect of the scalloped beam on the interaction in the FEL and on the focusing and propagation of the radiation, and (ii the efficiency enhancement in the two-stage wiggler.

  7. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  8. Low-loss electron beam transport in a high-power, electrostatic free-electron maser

    NARCIS (Netherlands)

    Valentini, M.; van der Geer, C. A. J.; Verhoeven, A. G. A.; van der Wiel, M. J.; Urbanus, W. H.

    1997-01-01

    At the FOM Institute for Plasma Physics ''Rijnhuizen'', The Netherlands, the commissioning of a high-power, electrostatic free-electron maser is in progress. The design target is the generation of 1 MW microwave power in the frequency range 130-260 GHz. The foreseen application

  9. A study of radiation-hard detectors using proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Do, S. H. [Kyungpook Nat. Univ., Daegu (Korea, Republic of)

    2006-05-15

    We studied radiation damage effect of inorganic and organic scintillators developed in Korea by proton beam irradiation using the MC-50 Cyclotron facility in Atomic Cancer Hospital. After developing radiation hard detectors, it can be used for the proton beam flux and energy monitoring in a real time. We also perform a research on electronics and DAQ for such a device. The following is our major study : a development of liquid scintillator, a development of plastic scintillator, a study on liquid scintillator response, simulation study of liquid scintillator by proton beam interaction, detector irradiation at MC-50 Cyclotron facility and a study of response change, a development of electronics for proton flux monitoring and a feasibility study of low proton flux monitoring, initial study of inorganic scintillator by the proton beamtest.

  10. Interaction of high power laser beams with plasma in ICF hohlraum using the FDTD method

    Science.gov (United States)

    Lin, Zhili

    2016-11-01

    In the indirect-drive Inertial confinement fusion (ICF) system, groups of laser beams are injected into a gold cylindrical hohlraum and plasma is stimulated with the ablation of the wall of hohlraum by the laser beams. In our work, the finite-difference time-domain (FDTD) method associated with the bilinear transform and Maclaurin series expansion approaches is utilized to examine the laser beam propagation in plasma described by the Drude model. The state-of-the-art approaches for generating the laser beams are presented and realized according to the full utilization of the TF/SF source condition. Base on the previous technologies, the quantitatively numerical analysis of the propagation characteristics of laser beams in the plasma is conducted. The obtained results are illustrated and discussed that are helpful for the parameter optimization of laser beams for an ICF system.

  11. Pinched propagation of high-power, pulsed electron beams for welding and materials processing applications

    Science.gov (United States)

    Fernsler, Richard F.; Hubbard, Richard F.; Lampe, Martin

    1994-01-01

    Electron beams are used commercially as intense heating sources for welding and related materials processing applications. The beams used for welding operate continuously with energy up to 200 keV and current approximately 1 A. Because these beams are severely degraded by propagation in air over any substantial range, most present-day electron-beam welders require vacuum pumping and precision focusing, which has severely restricted utilization of the technology. Over the past few decades, a different class of electron-beam generators has been developed that produces pulsed beams with energies of several MeV, currents of 1 kA or more, radii as small as 1 mm, pulse lengths of tens of ns, and pulse repetition rates up to several kHz. We show here that beams of this type can propagate in ambient air, in a tightly pinched mode and with acceptable stability, over distances of a few tens of cm. We determine the constraints on the choice of beam parameters, due mainly to the effects of gas scattering and the resistive instability. We show that stability can be enhanced, and the acceptable parameter range extended considerably, by using a narrow conducting pipe filled with air or another gas to guide the beam to the workpiece.

  12. Determining beam parameters in a storage ring with a cylindrical hodoscope using elastic proton proton scattering

    Science.gov (United States)

    Rohdjeß, H.; Albers, D.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Diehl, O.; Dohrmann, F.; Engelhardt, H.-P.; Eversheim, P. D.; Gasthuber, M.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Igelbrink, M.; Langkau, R.; Maier, R.; Mosel, F.; Müller, M.; Münstermann, M.; Prasuhn, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Trelle, H. J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.

    2006-01-01

    The EDDA-detector at the cooler-synchrotron COSY/Jülich has been operated with an internal CH2 fiber target to measure proton-proton elastic scattering differential cross-sections. For data analysis knowledge of beam parameters, like position, width and angle, are indispensable. We have developed a method to obtain these values with high precision from the azimuthal and polar angles of the ejectiles only, by exploiting the coplanarity of the two final-state protons with the beam and the kinematic correlation. The formalism is described and results for beam parameters obtained during beam acceleration are given.

  13. Simulation of Proton Beam Effects in Thin Insulating Films

    Directory of Open Access Journals (Sweden)

    Ljubinko Timotijevic

    2013-01-01

    Full Text Available Effects of exposing several insulators, commonly used for various purposes in integrated circuits, to beams of protons have been investigated. Materials considered include silicon dioxide, silicon nitride, aluminium nitride, alumina, and polycarbonate (Lexan. The passage of proton beams through ultrathin layers of these materials has been modeled by Monte Carlo simulations of particle transport. Parameters that have been varied in simulations include proton energy and insulating layer thickness. Materials are compared according to both ionizing and nonionizing effects produced by the passage of protons.

  14. Development of a high power 2-MeV e-beam irradiation port

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Cho, Sung Oh; Jeong, Young Uk; Kim, Sun Kook

    2001-01-01

    A electron beam irradiator for the 2-MeV electron accelerator has been developed at the Korea Atomic Energy Research Institute. The irradiator is composed of the beamline, irradiation port, and e-beam monitoring system. The beamline is composed of two bending magnets, four solenoid magnets, two quadrupole magnets, and three steering magnets. The e-beam monitoring system is composed of a average current monitor, a beam position monitor, and an optical transition radiation monitor. The effective area of the irradiation port is 80 600 mm{sup 2}. The electron beam irradiator will be used for improvement of semiconductor performance, modification of polymer characteristics, sterilization of foods, treatment of waste water, etc.

  15. Technical And Economical Aspects Of Integrating, Handling And Exploiting High Power Laser Beams In Industrial Welding Systems

    Science.gov (United States)

    Sayegh, Georges

    1989-03-01

    Analysis of the different factors which affect the improvement of high power laser systems are presented. It concerns ; the laser sources and their power and mode structure stability, their pointing stability and their efficiency, the beam transport and handling with different morphologies of machines according to the dimensions of the parts and the production rate ; the control of the industrial process through a central computer which takes in charge all the functions of the machine. Next, factors to be considered in the economical analysis for installing high power laser systems are discussed ; this covers the investment cost for the source and the associated system, the cost for consummables, for maintenance for training and labor. Comparison of the investment cost as function of power for both laser and electrons beam welding, shows that, generally speaking, there are two regions of beam power : the first located at less than 3 to 4kW where the laser is more advantageous economically, the second located at higher than 10kW where the E.B. is more advantageous. An example of a multi-stations mock-up (12 welding heads) supplied by a single laser beam is finally presented. Located at about 20m from the laser source the welding heads receive the laser beam through a distributor of high alignement precision. A spot weld similar to what is usually obtained with resistance spot welding can be achieved in about 0,5 second. Some technical and scientific problems relative to this application and concerning the transfer of laser beam are presented.

  16. Recent progress of high-power negative ion beam development for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Akino, Noboru; Aoyagi, Tetsuo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-03-01

    A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D{sup -} ion beam. Beam acceleration test started in July, 1995 using one ion source. In the preliminary experiment, D{sup -} ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D{sup -} beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/I{sub D}- <1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. Neutral beam injection starts in March, 1996 using two ion sources. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a high energy test facility called MeV Test Facility (MTF) was constructed. The system consists of a 1 MV, 1 A acceleration power supply and a 100 kW power supply system for negative ion production. Up to now, an H{sup -} ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator. (author)

  17. High-power Bessel beams with orbital angular momentum in the terahertz range

    Science.gov (United States)

    Choporova, Yu. Yu.; Knyazev, B. A.; Kulipanov, G. N.; Pavelyev, V. S.; Scheglov, M. A.; Vinokurov, N. A.; Volodkin, B. O.; Zhabin, V. N.

    2017-08-01

    In this paper, we have performed experimental, analytical, and numerical studies of beams with topological charges of ±1 and ±2 formed by silicon binary phase axicons (BPAs) with spiral zone structures. The axicons were illuminated with the Novosibirsk free electron laser radiation (a continuous stream of 100-ps pulses at f =5.6 MHz). The cw power of the beams produced reached 30 W and can by doubled via antireflection coating of the axicons. The intensity distribution in the beam cross sections was in good agreement with the Bessel functions and was kept constant within a distance of about L /r ≈190 and 100, where the first ring radii of the beams r were 0.9 and 1.5 mm for the Bessel beams of the first and second orders, respectively. Although the characteristics of the beams (Bessel cross section, "diffraction-free" propagation, self-recovery after passing obstacles, and randomly inhomogeneous media) corresponded to the properties of ideal Bessel beams, their spatial Fourier spectrum (the image in the focal plane of the lens) was, instead of an ideal ring, intertwined segments of arcs with phases shifted by π , the number of which was equal to the double value of the topological charge. This feature can be used, for example, in a demultiplexing unit of a free vortex-wave communication system or for identification of beam topological charge. We also revisited Young's double-slit diffraction and rotation of beams obstructed by a half-plane, previously applied to Laguerre-Gaussian beam characterization, in the case of the Bessel beams. The Young diffraction pattern demonstrated in this case a complicated intensity-phase distribution. It was shown that the Bessel beams formed by BPAs have two important advantages, which can be used in applications, in comparison with other methods of generation, e.g., a combination of an axicon lens with a spiral phase plate. Although the phase jumps of the axicons are designed for a determined wavelength (141 μ m in our case

  18. Proton beam irradiation inhibits the migration of melanoma cells.

    Science.gov (United States)

    Jasińska-Konior, Katarzyna; Pochylczuk, Katarzyna; Czajka, Elżbieta; Michalik, Marta; Romanowska-Dixon, Bożena; Swakoń, Jan; Urbańska, Krystyna; Elas, Martyna

    2017-01-01

    In recent years experimental data have indicated that low-energy proton beam radiation might induce a difference in cellular migration in comparison to photons. We therefore set out to compare the effect of proton beam irradiation and X-rays on the survival and long-term migratory properties of two cell lines: uveal melanoma Mel270 and skin melanoma BLM. Cells treated with either proton beam or X-rays were analyzed for their survival using clonogenic assay and MTT test. Long-term migratory properties were assessed with time-lapse monitoring of individual cell movements, wound test and transpore migration, while the expression of the related proteins was measured with western blot. Exposure to proton beam and X-rays led to similar survival but the quality of the cell colonies was markedly different. More paraclones with a low proliferative activity and fewer highly-proliferative holoclones were found after proton beam irradiation in comparison to X-rays. At 20 or 40 days post-irradiation, migratory capacity was decreased more by proton beam than by X-rays. The beta-1-integrin level was decreased in Mel270 cells after both types of radiation, while vimentin, a marker of EMT, was increased in BLM cells only. We conclude that proton beam irradiation induced long-term inhibition of cellular motility, as well as changes in the level of beta-1 integrin and vimentin. If confirmed, the change in the quality, but not in the number of colonies after proton beam irradiation might favor tumor growth inhibition after fractionated proton therapy.

  19. Using Stable Distributions to Characterize Proton Pencil Beams

    CERN Document Server

    Heuvel, Frank Van den; Schreuder, Niek; George, Ben

    2016-01-01

    Purpose: To introduce and evaluate the use of stable distributions as a means of describing the behavior of charged particle pencil beams in a medium, with specific emphasis on proton beam scanning (PBS). Methods: The proton pencil beams of a clinically commissioned proton treatment facility are replicated in a Monte Carlo simulation system (FLUKA). For each available energy the beam deposition in water medium is characterized by the dose deposition. Using an alpha--stable distribution methodology each beam with a nominal energy $E$ is characterized by the lateral spread at depth $z$: $S(z;\\alpha,\\gamma,E)$ and a total energy deposition $I_D(z)$. The beams are then described as a function of the variation of the parameters at depth. Finally, an implementation in a freely available open source dose calculation suite (matRad, DKFZ, Heidelberg, Germany) is proposed. Results: Quantitatively, the fit of the stable distributions, compared to those implemented in standard treatment planning systems, are equivalent. ...

  20. High power coatings for line beam laser optics of up to 2-meter in length

    Science.gov (United States)

    Mende, Mathias; Kohlhaas, Jürgen; Ebert, Wolfgang

    2016-03-01

    Laser material processing plays an important role in the fabrication of the crucial parts for state-of-the-art smartphones and tablets. With industrial line beam systems a line shaped beam with a length above one meter and an average power of several thousand watts can be realized. To ensure excellent long axis beam homogeneity, demanding specifications regarding the substrate surface form tolerances and the coating uniformity have to be achieved for each line beam optic. In addition, a high laser damage threshold and a low defect density are required for the coatings. In order to meet these requirements, the MAXIMA ion beam sputtering machine was developed and built by LASEROPTIK. This contribution describes the functional principle of MAXIMA deposition machine, which adapts the ion beam sputtering technology with its highest coating quality to the field of large area deposition. Furthermore, recent developments regarding the process control by optical broadband monitoring are discussed. Finally experimental results on different thin film characteristics as for example the coating uniformity, the microstructure and the laser damage resistance of multilayers are presented.

  1. Design of a high-power load for millimetre-wave Gaussian beams

    Science.gov (United States)

    Bruschi, A.; Cirant, S.; Gandini, F.; Granucci, G.; Mellera, V.; Muzzini, V.; Nardone, A.; Simonetto, A.; Sozzi, C.; Spinicchia, N.

    2003-11-01

    The design of a compact matched load for high-power measurements and testing of gyrotrons and transmission lines in ECRH plants for fusion research applications is currently in an advanced phase. The aim is to provide more than 95% absorption and precise calorimetric measurement of the input power in CW. This work is based on the results of tests at high power and short pulse length (140 GHz, 0.5 MW, 0.5 s) on loads installed on the ECRH plant of the FTU Tokamak in Frascati. The loads consist basically of hollow spheres of copper with the inner wall covered by plasma-sprayed lossy ceramics. Tests at higher power and longer pulses on the ASDEX-Upgrade ECRH plant showed, after a number of successful pulses, progressive damage on the absorbing layer, marked by the appearance of electrical arcs. The absorber degradation, showing specific damage patterns, due to exposure to high-power millimetre waves, has been analysed in detail and strategies are proposed, in order to improve the power-handling capabilities and the energy extraction rate. New measurements of millimetric absorption and thermal conductivity have been performed on samples of different ceramics, for choosing the best absorbing layer. A modified expander mirror surface with a better deposition profile, numerically computed with a multi-reflection model of the sphere, is designed to avoid radiation accumulation close to the entrance port. Improved cooling channels, which in principle can exploit the increased heat transfer rate due to surface boiling, as used in high-performance cooling circuits such as plasma-facing components, will provide 1-MW CW power capability. In this paper, some technical solutions for the construction and the constraints on the allowable deformation during pulses are given.

  2. Interaction of Macro-particles with LHC proton beam

    CERN Document Server

    Zimmermann, F; Xagkoni, A

    2010-01-01

    We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermalinsulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macroparticles are solved numerically to determine the time spent by such “dust” particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.

  3. Influence of thermal deformation in cavity mirrors on beam propagation characteristics of high-power slab lasers

    Science.gov (United States)

    Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui

    2018-01-01

    Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.

  4. Monte Carlo evaluation of magnetically focused proton beams for radiosurgery.

    Science.gov (United States)

    McAuley, Grant A; Heczko, Sarah; Nyguen, Theodore; Slater, James M; Slater, Jerry D; Wroe, Andrew J

    2018-01-25

    The purpose of this project is to investigate the advantages in dose distribution and delivery of proton beams focused by a triplet of quadrupole magnets in the context of potential radiosurgery treatments. Monte Carlo simulations were performed using various configurations of three quadrupole magnets located immediately upstream of a water phantom. Magnet parameters were selected to match what can be commercially manufactured as assemblies of rare-earth permanent magnetic materials. Focused unmodulated proton beams with a range of ~10 cm in water were target matched with passive collimated beams (the current beam delivery method for proton radiosurgery) and properties of transverse dose, depth dose and volumetric dose distributions were compared. Magnetically focused beams delivered beam spots of low eccentricity to Bragg peak depth with full widths at the 90% reference dose contour from ~ 2.5 to 5 mm. When focused initial beam diameters were larger than matching unfocused beams (10 of 11 cases) the focused beams showed 16% to 83% larger peak-to-entrance dose ratios and 1.3 to 3.4-fold increases in dose delivery efficiency. Peak-to-entrance and efficiency benefits tended to increase with larger magnet gradients and larger initial diameter focused beams. Finally, it was observed that focusing tended to shift dose in the water phantom volume from the 80%-20% dose range to below 20% of reference dose, compared to unfocused beams. We conclude that focusing proton beams immediately upstream from tissue entry using permanent magnet assemblies can produce beams with larger peak-to-entrance dose ratios and increased dose delivery efficiencies. Such beams could potentially be used in the clinic to irradiate small-field radiosurgical targets with fewer beams, lower entrance dose and shorter treatment times. © 2018 Institute of Physics and Engineering in Medicine.

  5. Laser-accelerated proton beams as a new particle source

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberg, Frank

    2010-11-15

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10{sup 12} W/cm{sup 2}) prior to the main pulse ({proportional_to}ns), an optimum pre-plasma density scale length of 60 {mu}m is generated leading to an enhancement of the maximum proton energy ({proportional_to}25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 {mu}m foil irradiated with an intensity of 10{sup 19} W/cm{sup 2} onto a 60 {mu}m spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and

  6. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  7. Design and Operation of a High Power L-Band Multiple Beam Klystron

    CERN Document Server

    Balkcum, Adam; Cattelino, Mark; Cox, Lydia; Cusick, Mike; Eppley, Kenneth; Forrest, Scott; Friedlander, Fred; Staprans, Armand; Wright, Edward L; Zitelli, Lou

    2005-01-01

    A 1.3 GHz, 10 MW, higher-order-mode multiple beam klystron (MBK) has been developed for the TESLA program. The relative advantages of such a device are many-fold. Multiple beams generate higher beam currents and thereby require much lower operating voltages which allows for the use of smaller, less expensive modulators. A lower perveance per cathode can also be used which leads to higher operating efficiencies. Higher-order-mode cavities allow for the use of much larger cathodes which leads to lower cathode current density loadings and subsequently longer cathode lifetimes. This requires that the cathodes be located far off the geometric axis of the device. The compromise is an increase in the complexity of the magnetic focusing circuit required to transport the off-axis electron beams. Such a device has been successfully built and tested. Excellent beam transmission has been achieved (99.5% DC and 98% at RF saturation). A peak power of 10 MW with 150 kW of average power and 60% efficiency, 49 dB gain have al...

  8. A new method for process monitoring in high power simultaneous laser beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, B.; Koerber, C.; Behler, K.; Beyer, E. [Fraunhofer Inst. fuer Lasertechnik, Aachen (Germany)

    1996-12-31

    Simultaneous laser beam welding is a modified procedure of both sided laser beam welding. Two laser beams are focused in opposite direction at the same time and place onto the workpiece. The process is characterized by the formation of a joint keyhole opened to both sides of the workpiece. The main advantages in comparison with conventional laser welding processes are higher welding speed, avoidance of angular distortion due to a symmetrical field of thermal stresses, as well as minimum porosity, especially in the middle of the seam volume, and a high degree of process stability. The advantages are depending on the joint keyhole. In the case of small disadjustment of the two beam axes combined with inappropriate parameter settings this joint keyhole can collapse into two separated keyholes each having only an opening to one side of the workpiece. Therefore the process state with joint keyhole has to be monitored. According to this criterion a non-destructive on-line measurement technique has been developed. The measurement technique is based on RF-frequency modulation of one of the two applied laser beams. Since the results of the measurement are available in very short time scales a usage for on-line control is possible.

  9. Polarizing a stored proton beam by spin-flip?

    Energy Technology Data Exchange (ETDEWEB)

    Oellers, Dieter Gerd Christian

    2010-04-15

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections {sigma} {sub parallel} and {sigma} {sub perpendicular} {sub to} are deduced using the likelihood method. (orig.)

  10. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  11. High-power multi-beam diode laser transmitter for a flash imaging lidar

    Science.gov (United States)

    Holmlund, Christer; Aitta, Petteri; Kivi, Sini; Mitikka, Risto; Tyni, Lauri; Heikkinen, Veli

    2013-10-01

    VTT Technical Research Centre of Finland is developing the transmitter for the "Flash Optical Sensor for TErrain Relative NAVigation" (FOSTERNAV) multi-beam flash imaging lidar. FOSTERNAV is a concept demonstrator for new guidance, navigation and control (GNC) technologies to fulfil the requirements for landing and docking of spacecraft as well as for navigation of rovers. This paper presents the design, realisation and testing of the multi-beam continuous-wave (CW) laser transmitter to be used in a 256x256 pixel flash imaging lidar. Depending on the target distance, the lidar has three operation modes using either several beams with low divergence or one single beam with a large divergence. This paper describes the transmitter part of the flash imaging lidar with focus on the electronics and especially the laser diode drivers. The transmitter contains eight fibre coupled commercial diode laser modules with a total peak optical power of 32 W at 808 nm. The main requirement for the laser diode drivers was linear modulation up to a frequency of 20 MHz allowing, for example, low distortion chirps or pseudorandom binary sequences. The laser modules contain the laser diode, a monitoring photodiode, a thermo-electric cooler, and a thermistor. The modules, designed for non-modulated and low-frequency operation, set challenging demands on the design of the drivers. Measurement results are presented on frequency response, and eye diagrams for pseudo-random binary sequences.

  12. System analysis of wavelength beam combining of high-power diode lasers for photoacoustic endoscopy

    Science.gov (United States)

    Leggio, Luca; Gallego, Daniel C.; Gawali, Sandeep B.; Sánchez, Miguel; Rodriguez, Sergio; Osiński, Marek; Sacher, Joachim; Carpintero, Guillermo; Lamela, Horacio

    2016-04-01

    This paper, originally published on 27 April 2016, was replaced with a corrected/revised version on 8 June 2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The purpose of wavelength-beam combining (WBC) is to improve the output power of a multi-wavelength laser system while maintaining the quality of the combined beam. This technique has been primarily proposed for industrial applications, such as metal cutting and soldering, which require optical peak power between kilowatts and megawatts. In order to replace the bulkier solid-state lasers, we propose to use the WBC technique for photoacoustic (PA) applications, where a multi-wavelength focused beam with optical peak power between hundreds of watts up to several kilowatts is necessary to penetrate deeply into biological tissues. In this work we present an analytical study about the coupling of light beams emitted by diode laser bars at 808 nm, 880 nm, 910 nm, 940 nm, and 980 nm into a .

  13. High power beam dump project for the accelerator prototype LIPAc: cooling design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Parro Albeniz, M.

    2015-07-01

    In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with

  14. Proton beam emittance growth in the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    S. Y. Zhang

    2008-05-01

    Full Text Available With the significant beam intensity improvement in RHIC polarized proton run 2005 and run 2006, the emittance growth becomes a luminosity limiting factor. The beam emittance growth has a dependence on the dynamic pressure rise, which in RHIC proton runs is mainly caused by the electron cloud. The dependence of the emittance growth on other electron cloud related parameters is also identified. The beam instability is usually absent, and the emittance growth rate is much slower than the ones typically caused by the head-tail instability. It is suspected that the emittance growth is caused by the electron cloud below the instability threshold. A discussion follows.

  15. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  16. Beam dynamics simulation of a double pass proton linear accelerator

    Science.gov (United States)

    Hwang, Kilean; Qiang, Ji

    2017-04-01

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015, 10.1016/j.nima.2015.05.056)] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  17. Beam dynamics simulation of a double pass proton linear accelerator

    Directory of Open Access Journals (Sweden)

    Kilean Hwang

    2017-04-01

    Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  18. Coherent Structures and Chaos Control in High-Power Microwave and Charged-Particle Beam Devices

    Science.gov (United States)

    2009-01-31

    r==°. Since kBTt (s)=( myb /2)((y , -V , ) 2)r=my6<(i;A.-Vr)->r, (A-2)i-=/’,")rms(.v)/2, we can express the rms thermal emittance of the beam as 4...43) with nonzero initial thermal emittances, i.e., £th,x = kBTa 2{s = 0)1 myb fibc 2 and efh = kBTb 2(s = 0)/ myb ^c 2 . As shown in Fig. 6, 19

  19. Compact Low-Voltage, High-Power, Multi-beam Klystron for ILC: Initial Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Teryaev, V. E. [Omega-P, New Haven; Shchelkunov, S. V. [Yale U.; Kazakov, S. Yu. [Fermilab; Hirshfield, J. L. [Yale U.; Ives, R. L. [Calabazas Creek Res. Inc., San Mateo; Marsden, D. [Calabazas Creek Res. Inc., San Mateo; Collins, G. [Calabazas Creek Res. Inc., San Mateo; Karimov, R. [Calabazas Creek Res. Inc., San Mateo; Jensen, R. [CPI, Palo Alto

    2015-10-20

    Initial test results of an L-band multi-beam klystron with parameters relevant for ILC are presented. The chief distinction of this tube from MBKs already developed for ILC is its low operating voltage of 60 kV, a virtue that implies considerable technological simplifications in the accelerator complex. To demonstrate the concept underlying the tubes design, a six-beamlet quadrant (a 54 inch high one-quarter portion of the full 1.3 GHz tube) was built and recently underwent initial tests, with main goals of demonstrating rated gun perveance, rated gain, and at least one-quarter of the full 10-MW rated power. Our initial three-day conditioning campaign without RF drive (140 microsec pulses @ 60 Hz) was stopped at 53% of full rated duty because of time-limits at the test-site; no signs appeared that would seem to prevent achieving full duty operation (i.e., 1.6 msec pulses @ 10 Hz). The subsequent tests with 10-15 microsec RF pulses confirmed the rated gain, produced output powers of up to 2.86 MW at 60 kV with high efficiency and 56 dB gain, and showed acceptable beam interception. These results suggest that a full version of the tube should be able to produce up to 11.5 MW. Follow-on tests are planned for later in 2015.

  20. Single-Plane Magnetically Focused Elongated Small Field Proton Beams.

    Science.gov (United States)

    McAuley, Grant A; Slater, James M; Wroe, Andrew J

    2015-08-01

    We previously performed Monte Carlo simulations of magnetically focused proton beams shaped by a single quadrapole magnet and thereby created narrow elongated beams with superior dose delivery characteristics (compared to collimated beams) suitable for targets of similar geometry. The present study seeks to experimentally validate these simulations using a focusing magnet consisting of 24 segments of samarium cobalt permanent magnetic material adhered into a hollow cylinder. Proton beams with properties relevant to clinical radiosurgery applications were delivered through the magnet to a water tank containing a diode detector or radiochromic film. Dose profiles were analyzed and compared with analogous Monte Carlo simulations. The focused beams produced elongated beam spots with high elliptical symmetry, indicative of magnet quality. Experimental data showed good agreement with simulations, affirming the utility of Monte Carlo simulations as a tool to model the inherent complexity of a magnetic focusing system. Compared to target-matched unfocused simulations, focused beams showed larger peak to entrance ratios (26% to 38%) and focused simulations showed a two-fold increase in beam delivery efficiency. These advantages can be attributed to the magnetic acceleration of protons in the transverse plane that tends to counteract the particle outscatter that leads to degradation of peak to entrance performance in small field proton beams. Our results have important clinical implications and suggest rare earth focusing magnet assemblies are feasible and could reduce skin dose and beam number while delivering enhanced dose to narrow elongated targets (eg, in and around the spinal cord) in less time compared to collimated beams. © The Author(s) 2014.

  1. Ion temperature anisotropy in high power helium neutral beam fuelling experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Maas, A.C.; Core, W.G.F.; Gerstel, U.C.; Von Hellermann, M.G.; Koenig, R.W.T.; Marcus, F.B. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    During helium beam fuelling experiments in JET, distinctive anisotropic features have been observed in the velocity distribution function describing both fast and thermal alpha particle populations. During the initial fuelling phase the central helium ion temperature observed perpendicular to the magnetic field is higher than the central electron temperature, while the central helium ion temperature observed parallel to the magnetic field is lower than or equal to the central electron temperature. In order to verify temperature measurements of both perpendicular and parallel lines of sight, other independent methods of deducing the ion temperature are investigated: deuterium ion temperature, deuterium density, comparison with neutron rates and profiles (influence of a possible metastable population of helium). 6 refs., 7 figs.

  2. Review of medical radiography and tomography with proton beams

    Science.gov (United States)

    Johnson, Robert P.

    2018-01-01

    The use of hadron beams, especially proton beams, in cancer radiotherapy has expanded rapidly in the past two decades. To fully realize the advantages of hadron therapy over traditional x-ray and gamma-ray therapy requires accurate positioning of the Bragg peak throughout the tumor being treated. A half century ago, suggestions had already been made to use protons themselves to develop images of tumors and surrounding tissue, to be used for treatment planning. The recent global expansion of hadron therapy, coupled with modern advances in computation and particle detection, has led several collaborations around the world to develop prototype detector systems and associated reconstruction codes for proton computed tomography (pCT), as well as more simple proton radiography, with the ultimate intent to use such systems in clinical treatment planning and verification. Recent imaging results of phantoms in hospital proton beams are encouraging, but many technical and programmatic challenges remain to be overcome before pCT scanners will be introduced into clinics. This review introduces hadron therapy and the perceived advantages of pCT and proton radiography for treatment planning, reviews its historical development, and discusses the physics related to proton imaging, the associated experimental and computation issues, the technologies used to attack the problem, contemporary efforts in detector and computational development, and the current status and outlook.

  3. High-power diode lasers at 1178  nm with high beam quality and narrow spectra.

    Science.gov (United States)

    Paschke, K; Bugge, F; Blume, G; Feise, D; Erbert, G

    2015-01-01

    High-power distributed Bragg reflector tapered diode lasers (DBR-TPLs) at 1180 nm were developed based on highly strained InGaAs quantum wells. The lasers emit a nearly diffraction-limited beam with more than two watts with a narrow spectral width. These features are believed to make this type of diode laser a key component for the manufacturing of miniaturized laser modules in the yellow and orange spectral range by second-harmonic generation to cover a spectral region currently not accessible with direct emitting diode lasers. Future applications might be the laser-cooling of sodium, high-resolution glucose-content measurements, as well as spectroscopy on rare earth elements.

  4. Four channel high power rf source with beam steering based on gyromagnetic nonlinear transmission lines

    Science.gov (United States)

    Romanchenko, I. V.; Ulmaskulov, M. R.; Sharypov, K. A.; Shunailov, S. A.; Shpak, V. G.; Yalandin, M. I.; Pedos, M. S.; Rukin, S. N.; Konev, V. Yu.; Rostov, V. V.

    2017-05-01

    The synchronized operation of four gyromagnetic nonlinear transmission lines (NLTLs) was tested with a pulse repetition frequency up to 1 kHz during 1 s bursts. High voltage pulses with a duration of ˜5 ns from the solid state driver S-500 were split into four 48 Ω channels reaching about -200 kV in each channel with ˜10% variation in the amplitude. The maximum peak voltage at the NLTL output was within 220-235 kV with the maximum modulation depth of decaying oscillations up to 90% at the center frequency near 2.1 GHz. The relative delay between channels reached the half-period of the center frequency of oscillations. The associated beam steering by four element array of conical helical antennas was demonstrated in a horizontal plane at 17°. The effective potential of radiation reached 360 kV at the radiation axis. The effect of ferrite temperature on the shock wave velocity in gyromagnetic NLTL is observed.

  5. Four channel high power rf source with beam steering based on gyromagnetic nonlinear transmission lines.

    Science.gov (United States)

    Romanchenko, I V; Ulmaskulov, M R; Sharypov, K A; Shunailov, S A; Shpak, V G; Yalandin, M I; Pedos, M S; Rukin, S N; Konev, V Yu; Rostov, V V

    2017-05-01

    The synchronized operation of four gyromagnetic nonlinear transmission lines (NLTLs) was tested with a pulse repetition frequency up to 1 kHz during 1 s bursts. High voltage pulses with a duration of ∼5 ns from the solid state driver S-500 were split into four 48 Ω channels reaching about -200 kV in each channel with ∼10% variation in the amplitude. The maximum peak voltage at the NLTL output was within 220-235 kV with the maximum modulation depth of decaying oscillations up to 90% at the center frequency near 2.1 GHz. The relative delay between channels reached the half-period of the center frequency of oscillations. The associated beam steering by four element array of conical helical antennas was demonstrated in a horizontal plane at 17°. The effective potential of radiation reached 360 kV at the radiation axis. The effect of ferrite temperature on the shock wave velocity in gyromagnetic NLTL is observed.

  6. Structural dynamic response of target container against proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)

  7. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  8. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  9. Commissioning Preparation of the AWAKE Proton Beam Line

    OpenAIRE

    Schmidt, Janet; Biskup, Bartolomej; Bracco, Chiara; Goddard, Brennan; Gorbonosov, Roman; Gourber-Pace, Marine; Gschwendtner, Edda; Jensen, Lars; Jones, Owain Rhodri; Kain, Verena; Mazzoni, Stefano; Meddahi, Malika

    2016-01-01

    The AWAKE experiment at CERN will use a proton bunch with an momentum of 400 GeV/c from the SPS to drive large amplitude wakefields in a plasma. This will require a ~830 m long transfer line from the SPS to the experiment. The prepa- rations for the beam commissioning of the AWAKE proton transfer line are presented in this paper. They include the detailed planning of the commissioning steps, controls and beam instrumentation specifications as well as operational tools, which are developed for...

  10. Fabrication of BIT thick films patterned by proton beam writing

    Science.gov (United States)

    Yamaguchi, Masaki; Watanabe, Kazuki; Nishikawa, Hiroyuki; Masuda, Yoichiro

    2017-07-01

    In this study, we fabricated thick films with polyvinylpyrrolidone (PVP) added to bismuth titanate (Bi4Ti3O12) to form a lead-free ferroelectric material. We examined the direct patterning of these materials by using proton-beam irradiation. When 50% PVP was added to the organic source solution, the c-axis orientation was promoted and cracks were suppressed due to stress relaxation. In addition, a dot and an arbitrary-shape micro-pattern were formed on bismuth-titanate thick film by micromachining using a proton beam.

  11. Micro-patterns fabrication using focused proton beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Cutroneo, M., E-mail: cutroneo@ujf.cas.cz [Nuclear Physics Institute, AS CR, 25068 Rez (Czech Republic); Havranek, V. [Nuclear Physics Institute, AS CR, 25068 Rez (Czech Republic); Mackova, A. [Nuclear Physics Institute, AS CR, 25068 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Semian, V. [Nuclear Physics Institute, AS CR, 25068 Rez (Czech Republic); Torrisi, L. [Department of Physics and Earth Sciences, Messina University, V.le F.S. d’Alcontres 31, 98166 S. Agata, Messina (Italy); Calcagno, L. [Department of Physics, Catania University, V. S. Sofia 64, 95123 Catania (Italy)

    2016-03-15

    Proton beam writing technique was recently introduced at 3MV Tandetron accelerator at Nuclear Physics Institute in Rez (Czech Republic). It has been used, to produce three-dimensional (3D) micro-structures in poly(methylmethacrylate) by 2.0 MeV and 2.6 MeV protons micro-beam. Micro-channels (52 μm × 52 μm) have been realized. After chemical etching, the quality of the bottom and side walls of the produced structures in PMMA were analyzed using Scanning Transmission Ion Microscopy (STIM).

  12. Micro-patterns fabrication using focused proton beam lithography

    Science.gov (United States)

    Cutroneo, M.; Havranek, V.; Mackova, A.; Semian, V.; Torrisi, L.; Calcagno, L.

    2016-03-01

    Proton beam writing technique was recently introduced at 3MV Tandetron accelerator at Nuclear Physics Institute in Rez (Czech Republic). It has been used, to produce three-dimensional (3D) micro-structures in poly(methylmethacrylate) by 2.0 MeV and 2.6 MeV protons micro-beam. Micro-channels (52 μm × 52 μm) have been realized. After chemical etching, the quality of the bottom and side walls of the produced structures in PMMA were analyzed using Scanning Transmission Ion Microscopy (STIM).

  13. Thermal effects in high power cavities for photoneutralization of D{sup −} beams in future neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Fiorucci, Donatella; Feng, Jiatai; Pichot, Mikhaël; Chaibi, Walid, E-mail: chaibi@oca.eu [ARTEMIS, Université de Nice Sophia Antipolis, Observatoire de la Côte d' Azur and Centre National de la Recherche Scientifique, Boulevard de l' Observatoire - CS 34229 - F 06304 (France)

    2015-04-08

    Photoneutralization may represent a key issue in the neutral beam injectors for future fusion reactors. In fact, photodetachment based neutralization combined with an energy recovery system increase the injector overall efficiency up to 60%. This is the SIPHORE injector concept in which photoneutralization is realized in a refolded cavity [1]. However, about 1 W of the several megaWatts intracavity power is absorbed by the mirrors coatings and gives rise to important thermoelastic distortions. This is expected to change the optical behavior of the mirrors and reduce the enhancement factor of the cavity. In this paper, we estimate these effects and we propose a thermal system to compensate it.

  14. Study of a spoke-type superconducting cavity for high power proton accelerators; Etude d'une cavite acceleratrice supraconductrice Spoke pour les accelerateurs de protons de forte intensite

    Energy Technology Data Exchange (ETDEWEB)

    Olry, G

    2003-04-01

    Since a few years, a lot of projects (especially dedicated to transmutation, radioactive beams production, spallation neutron sources or neutrinos factories) are based on high power proton linear accelerators. It has been demonstrated, thanks to their excellent RF performances, that superconducting elliptical cavities represent the best technological solution for the high energy part of these linacs (proton energy from typically 100 MeV). On the contrary, between 5 and 100 MeV, nothing is clearly settled and intensive studies on low-beta cavities are under progress. The main objective of this thesis is the study of a new low-beta cavity, called 'spoke', which could be used in the low energy part of European XADS (experimental accelerator driven system) and EURISOL (European isotope separation on-line) accelerators projects. A complete study of a beta 0.35 spoke cavity has been done: from its electromagnetic and mechanical optimization to warm and, above all, cold experimental tests: an accelerating field of 12.2 MV/m has been reached at T=4.2 K, that is to say one of the best value among the spoke cavities performances in the world. It has been shown that the specific ratio of a third, between the spoke bar diameter and the cavity length, led to optimize the surface electromagnetic fields. Moreover, spoke cavities can be used without any trouble, in the low energy part, due to their good rigidity. The experimental measurements performed on the cavity have confirmed the theoretical calculations, especially, concerning the expected frequency and mechanical behavior. Another study, performed on elliptical cavities, gave an explanation of the discrepancies between the measured and calculated frequencies thanks to a precise 3-dimensional geometrical control. (author)

  15. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    Science.gov (United States)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  16. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.

    Science.gov (United States)

    Oborn, B M; Dowdell, S; Metcalfe, P E; Crozier, S; Mohan, R; Keall, P J

    2015-05-01

    This paper investigates, via magnetic modeling and Monte Carlo simulation, the ability to deliver proton beams to the treatment zone inside a split-bore MRI-guided proton therapy system. Field maps from a split-bore 1 T MRI-Linac system are used as input to geant4 Monte Carlo simulations which model the trajectory of proton beams during their paths to the isocenter of the treatment area. Both inline (along the MRI bore) and perpendicular (through the split-bore gap) orientations are simulated. Monoenergetic parallel and diverging beams of energy 90, 195, and 300 MeV starting from 1.5 and 5 m above isocenter are modeled. A phase space file detailing a 2D calibration pattern is used to set the particle starting positions, and their spatial location as they cross isocenter is recorded. No beam scattering, collimation, or modulation of the proton beams is modeled. In the inline orientation, the radial symmetry of the solenoidal style fringe field acts to rotate the protons around the beam's central axis. For protons starting at 1.5 m from isocenter, this rotation is 19° (90 MeV) and 9.8° (300 MeV). A minor focusing toward the beam's central axis is also seen, but only significant, i.e., 2 mm shift at 150 mm off-axis, for 90 MeV protons. For the perpendicular orientation, the main MRI field and near fringe field act as the strongest to deflect the protons in a consistent direction. When starting from 1.5 m above isocenter shifts of 135 mm (90 MeV) and 65 mm (300 MeV) were observed. Further to this, off-axis protons are slightly deflected toward or away from the central axis in the direction perpendicular to the main deflection direction. This leads to a distortion of the phase space pattern, not just a shift. This distortion increases from zero at the central axis to 10 mm (90 MeV) and 5 mm (300 MeV) for a proton 150 mm off-axis. In both orientations, there is a small but subtle difference in the deflection and distortion pattern between protons fired parallel to the

  17. TECHNOLOGIES FOR DELIVERY OF PROTON AND ION BEAMS FOR RADIOTHERAPY

    CERN Document Server

    Owen, H; Alonso, J; Mackay, R

    2014-01-01

    Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.

  18. Development of beam monitoring system for proton pencil beam scanning using fiber-optic radiation sensor

    Science.gov (United States)

    Son, Jaeman; Koo, Jihye; Moon, Sunyoung; Yoon, Myonggeun; Jeong, Jonghwi; Kim, Sun-Young; Lim, Youngkyung; Lee, Se Byeong; Shin, Dongho; Kim, Meyoung; Kim, Dongwook

    2017-10-01

    We aimed to develop a beam monitoring system based on a fiber-optic radiation sensor (FORS), which can be used in real time in a beam control room, to monitor a beam in proton therapy, where patients are treated using a pencil beam scanning (PBS) mode, by measuring the beam spot width (BSW) and beam spot position (BSP) of the PBS. We developed two-dimensional detector arrays to monitor the PBS beam in the beam control room. We measured the BSW for five energies of the PBS beam and compared the measurements with those of Lynx and EBT3 film. In order to confirm the BSP, we compared the BSP values of the PBS calculated from radiation treatment planning (RTP), to five BSP values measured using FORS at 224.2 MeV. When comparing BSW values obtained using developed monitoring system to the measurements obtained using commercial EBT3 film, the average difference in BSW value of the PBS beam was 0.1 ± 0.1 mm. In the comparison of BSW values with the measurements obtained using Lynx, the average difference was 0.2 ± 0.1 mm. When comparing BSP measurements to the values calculated from RTP, the average difference was 0.4 ± 0.2 mm. The study results confirmed that the developed FORS-based beam monitoring system can monitor a PBS beam in real time in a beam control room, where proton beam is controlled for the patient.

  19. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors

    Science.gov (United States)

    Chang, Doo-Hee; Jeong, Seung Ho; Park, Min; Kim, Tae-Seong; Jung, Bong-Ki; Lee, Kwang Won; In, Sang Ryul

    2016-12-01

    A large-area high-power radio-frequency (RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute (KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argon-gas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter, such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the short-and long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region. supported by the Ministry of Science, ICT and Future Planning of the Republic of Korea under the ITER Technology R&D Program, and National R&D Program Through the National Research Foundation of Korea (NRF) Funded by the Ministry of Science, ICT & Future Planning (NRF-2014M1A7A1A03045372)

  20. Proton-beam technique dates fine wine

    Science.gov (United States)

    Dumé, Belle

    2008-10-01

    Nuclear physicists in France have invented a way to authenticate the vintage of rare wine without needing a sommelier's keen nose or even a corkscrew. The technique, which involves firing high-energy protons at wine bottles, can determine how old the bottles are and even where they come from. The new method could help unmask counterfeit wines - a growing problem in the fine-wine industry, where a bottle can sell for thousands of Euros.

  1. YAG(Ce) crystal characterization with proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Sipala, V., E-mail: valeria.sipala@ct.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Randazzo, N.; Aiello, S.; Leonora, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania (Italy); Lo Presti, D.; Russo, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Stancampiano, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania (Italy); Cirrone, G.A.P.; Cuttone, G.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud (Italy); Civinini, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze (Italy); Scaringella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, Firenze (Italy); Bashkirov, V.A.; Schulte, R.W. [Department of Radiation Medicine, Loma Linda University Medical Center (United States)

    2011-10-21

    A YAG(Ce) crystal has been characterized with a proton beam up to 100 MeV. Tests were performed to investigate the possibility of using this detector as a proton calorimeter. A crystal size has been chosen that is able to stop up to 200 MeV. Energy resolution and light response have been measured at Laboratori Nazionali del Sud with a proton beam up to 60 MeV and a spatial homogeneity study of the crystal has been performed at Loma Linda University Medical Center with a 100 MeV proton beam. The YAG(Ce) crystal showed a good energy resolution equal to 3.7% at 60 MeV and measurements, performed in the 30-60 MeV proton energy range, were fitted by Birks' equation. Using a silicon tracker to determine the particle entry point in the crystal, a spatial homogeneity value of 1.7% in the light response has been measured.

  2. Crystal Collimation Cleaning Measurements with Proton Beams in LHC

    CERN Document Server

    Rossi, Roberto; Andreassen, Odd Oyvind; Butcher, Mark; Dionisio Barreto, Cristovao Andre; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Lamas Garcia, Inigo; Redaelli, Stefano; Scandale, Walter; Serrano Galvez, Pablo; Rijllart, Adriaan; Valentino, Gianluca; CERN. Geneva. ATS Department

    2016-01-01

    During this MD, performed on July 29th, 2016, bent silicon crystal were tested with proton beams for a possible usage of crystal-assisted collimation. Tests were performed at both injection energy and flat top using horizontal and vertical crystal. Loss maps with crystals at 6.5 TeV were measured.

  3. Proton beams emission from laser-generated plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2011-11-01

    Full Text Available An alternative method employing large dimension ion accelerator systems to generate proton beams can be the production of ions by using a power pulsed laser, operating at high intensity, irradiating in vacuum hydrogenated targets and by extracting the ions of interest from the generated plasma. The choice of the adequate target, of the laser pulse intensity regime and of the ion current obtainable, is strongly dependent of the type of experimental apparatus, as will be discussed in the article. Proton beam emission from experiments conduced at low and high laser intensities are presented, in order to generate protons from about 100 eV, as that prepared at the Physics Department of Messina University, up to about 100 keV, as prepared at INFN-LNS of Catania, and up to about 1 MeV obtained at the international PALS Laboratory of Prague, Czech Republic.

  4. Development of Intense Beam Proton Linac in China

    CERN Document Server

    Fu, S; Ouyang Hua Fu; Zhao, S

    2004-01-01

    Study on intense beam proton linac was started about four years ago in a national program for the basic research on ADS in China. This ADS program is meant for the future development of the clean nuclear power generation. Another important application of HPPA for Chinese Spallation Neutron Source was also proposed recently in China, and it is financially supported by Chinese Academy of Sciences. In this paper, the research progress on intense beam proton linac in these two application fields will be outlined. It involves the test result of an high-current ECR proton source, construction status of a 3.5 MeV RFQ accelerator and the design of a DTL linac.

  5. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method.

    Science.gov (United States)

    Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2015-08-01

    Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly.

  6. Preliminary results of proton beam characterization for a facility of broad beam in vitro cell irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wera, A.-C. [Laboratoire d' Analyses par Reactions Nucleaires (LARN), University of Namur-FUNDP, Rue de Bruxelles, 61, B-5000 Namur (Belgium)], E-mail: anne-catherine.wera@fundp.ac.be; Donato, K. [Ion Beam Application, Chemin du Cyclotron 3, B-1348 Louvain-la-Neuve (Belgium); Michiels, C. [Unite de Recherche en Biologie Cellulaire (URBC), University of Namur-FUNDP (Belgium); Jongen, Y. [Ion Beam Application, Chemin du Cyclotron 3, B-1348 Louvain-la-Neuve (Belgium); Lucas, S. [Laboratoire d' Analyses par Reactions Nucleaires (LARN), University of Namur-FUNDP, Rue de Bruxelles, 61, B-5000 Namur (Belgium)

    2008-05-15

    The interaction of charged particles with living matter needs to be well understood for medical applications. Particularly, it is useful to study how ion beams interact with tissues in terms of damage, dose released and dose rate. One way to evaluate the biological effects induced by an ion beam is by the irradiation of cultured cells at a particle accelerator, where cells can be exposed to different ions at different energies and flux. In this paper, we report the first results concerning the characterization of a broad proton beam obtained with our 2 MV tandem accelerator. For broad beam in vitro cell irradiation, the beam has to be stable over time, uniform over a {approx}0.5 cm{sup 2} surface, and a dose rate ranging from 0.1 to 10 Gy/min must be achievable. Results concerning the level of achievement of these requirements are presented in this paper for a 1 MeV proton beam.

  7. Studies of scintillator response to 60 MeV protons in a proton beam imaging system

    Directory of Open Access Journals (Sweden)

    Rydygier Marzena

    2015-09-01

    Full Text Available A Proton Beam Imaging System (ProBImS is under development at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN. The ProBImS will be used to optimize beam delivery at IFJ PAN proton therapy facilities, delivering two-dimensional distributions of beam profiles. The system consists of a scintillator, optical tract and a sensitive CCD camera which digitally records the light emitted from the proton-irradiated scintillator. The optical system, imaging data transfer and control software have already been developed. Here, we report preliminary results of an evaluation of the DuPont Hi-speed thick back screen EJ 000128 scintillator to determine its applicability in our imaging system. In order to optimize the light conversion with respect to the dose locally deposited by the proton beam in the scintillation detector, we have studied the response of the DuPont scintillator in terms of linearity of dose response, uniformity of light emission and decay rate of background light after deposition of a high dose in the scintillator. We found a linear dependence of scintillator light output vs. beam intensity by showing the intensity of the recorded images to be proportional to the dose deposited in the scintillator volume.

  8. Hadrontherapy: Cancer Treatment With Proton and Carbon Beams

    Science.gov (United States)

    Amaldi, Ugo; Kraft, Gerhard

    Sixty years ago accelerator pioneer Robert Wilson published the paper in which he proposed using protons for cancer therapy. The introduction of protontherapy has been very slow, but in the last 10 years the field is booming and five companies offer turn-key centres. Fully stripped ions leave much more energy in the nuclei of the traversed cells than protons of the same range and are thus effective in controlling radio-resistant tumours which cannot be controlled neither with X-rays nor with protons. Paying particular attention to the European contributions, this contribution shortly reviews the history and the developments of carbon ion therapy, a recent chapter of the "hadrontherapy" which covers also radiotherapy with proton and neutron beams.

  9. Stability Issues of the Mu2e Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2009-05-01

    Stability issues of the mu2e proton beam are discussed. These include space-charge distortion of bunch shape, microwave instabilities, mode-coupling instabilities, head-tail instabilities, as well as electron-cloud effects. We have studied several beam stability issues of the proton beam heading to the target for the mu2e experiment. We find bunch-shape distortions driven by the space charge force is reasonably small, and longitudinal microwave instability will unlikely to occur. Electron-cloud buildup, with density up to {rho}{sub e} {approx} 2 x 10{sup 12} m{sup -3} in the Accumulator, can probably drive head-tail instabilities. However, these, together with the instabilities driven by the resistive-wall impedance can be avoided by restricting the chromaticity to larger than {approx} 0.2. TMCI will not occur even when the electron-cloud wake is included.

  10. Beam forming system modernization at the MMF linac proton injector

    CERN Document Server

    Derbilov, V I; Nikulin, E S; Frolov, O T

    2001-01-01

    The isolation improvements of the beam forming system (BFS) of the MMF linac proton injector ion source are reported. The mean beam current and,accordingly, BFS electrode heating were increased when the MMF linac has began to operate regularly in long beam sessions with 50 Hz pulse repetition rate. That is why the BFS electrode high-voltage isolation that was made previously as two consequently and rigidly glued solid cylinder insulators has lost mechanical and electric durability. The substitution of large (160 mm) diameter cylinder insulator for four small diameter (20 mm) tubular rods has improved vacuum conditions in the space of beam forming and has allowed to operate without failures when beam currents being up to 250 mA and extraction and focusing voltage being up to 25 and 40 kV respectively. Moreover,the construction provides the opportunity of electrode axial move. The insulators are free from electrode thermal expansion mechanical efforts in a transverse direction.

  11. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    Science.gov (United States)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  12. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    Science.gov (United States)

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  13. Best use of high-voltage, high-powered electron beams: a new approach to contract irradiation services

    Science.gov (United States)

    Watanabe, T.

    2000-03-01

    Japan's first high-voltage, high-powered electron beam processing center is scheduled to come on-line during the first half of 1999. The center explores both challenges and opportunities of how best to use the 200 kW 10 MeV unit and its 5 MeV X-ray line. In particular, Nuclear Fuel Industries, Ltd. (NFI) has expanded the traditional model of a contract irradiation facility to include a much broader scope of services such as door-to-door transport, storage, and direct distribution to its customer's end-users. The new business scope not only finds new value-added components in a competitive marketplace, but serves to provide a viable mechanism to take advantage of the processing logistics of high throughput irradiation units. As such, the center features a high-capacity warehousing system, monitored by a newly developed PCMS (plant control management system), which has been comprehensively integrated into the irradiation unit's handling system, and will require only minimal human resources for its high rate of material handling. The identification and development of initial markets for this first unit will be discussed, concluding with how this same operational philosophy can help break open new irradiation segments in medical devices, consumer goods, animal feed, and food markets and NFI's other efforts in these same areas.

  14. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.

  15. Distribution uniformity of laser-accelerated proton beams

    Science.gov (United States)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  16. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  17. Commissioning of the KOALA experiment by proton beam at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Institute of Modern Physics, CAS, Lanzhou (China); Forschungszentrum Juelich (Germany); Xu, Huagen; Ritman, James [Forschungszentrum Juelich (Germany)

    2015-07-01

    The KOALA Experiment at HESR is dedicated to measure counts of antiproton-proton elastic scattering in a large range of squared 4-momentum transfer, t, from 0.0008 to 0.1 GeV{sup 2}. The goal of the KOALA Experiment is to determine the antiproton-proton elastic scattering forward parameters (i.e. σ{sub tot}, ρ and b) to save as a calibration for the anti PANDA luminosity detector. The scattered antiprotons will be measured by tracking detectors in the forward angle region and the recoil protons will be detected with energy detectors near polar angles of 90 . One recoil arm has been built and commissioned at COSY by measuring proton-proton elastic scattering in the beam momentum region from 1.7 to 3.2 GeV/c. The data at beam momentum of 2.8 GeV/c and 3.2 GeV/c have been analyzed. Preliminary results of the analysis are presented.

  18. Linac4 45 keV Proton Beam Measurements

    CERN Document Server

    Bellodi, G; Hein, L M; Lallement, J-B; Lombardi, A M; Midttun, O; Scrivens, R; Posocco, P A

    2013-01-01

    Linac4 is a 160 MeV normal-conducting H- linear accelerator, which will replace the 50 MeV proton Linac2 as injector for the CERN proton complex. Commissioning of the low energy part - comprising the H - source, a 45 keV Low Energy Beam Transport line (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) - will start in fall 2012 on a dedicated test stand installation. In preparation to this, preliminary measurements were taken using a 45 keV proton source and a temporary LEBT setup, with the aim of characterising the output beam by comparison with the predictions of simulations. At the same time this allowed a first verification of the functionalities of diagnostics instrumentation and acquisition software tools. Measurements of beam profile, emittance and intensity were taken in three different setups: right after the source, after the first and after the second LEBT solenoids respectively. Particle distributions were reconstructed from emittance scan...

  19. High field superconducting beam transport in a BNL primary proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Allinger, J.; Brown, H.N.; Carroll, A.S.; Danby, G.; DeVito, B.; Glenn, J.W.; Jackson, J.; Keith, W.; Lowenstein, D.; Prodell, A.G.

    1979-01-01

    Construction of a slow external beam switchyard at the BNL AGS requires a rapid 20.4/sup 0/ bend in the upstream end of the beam line. Two curved superconducting window dipole magnets, operating at 6.0 T and about 80% of short sample magnetic field, will be utilized with two small superconducting sextupoles to provide the necessary deflection for a 28.5 GeV/c primary proton beam. Because the magnets will operate in a primary proton beam environment, they are designed to absorb large amounts of radiation heating from the beam without quenching. The field quality of the superconducting magnets is extremely good. Computer field calculations indicate a field error, ..delta..B/B/sub 0/, equivalent to approx. = 1 x 10/sup -4/ up to 75% of the 8.26 cm full aperture diameter in the magnet.

  20. The Beam Profile Monitoring System for the CERN IRRAD Proton Facility

    CERN Document Server

    Ravotti, F; Glaser, M; Matli, E; Pezzullo, G; Gan, K K; Kagan, H; Smith, S; Warner, J D

    2016-01-01

    To perform proton irradiation experiments, CERN built during LS1 a new irradiation facility in the East Area at the Proton Synchrotron accelerator. At this facility, named IR-RAD, a high-intensity 24 GeV/c proton beam is used. During beam steering and irradiation, the intensity and the transverse profile of the proton beam are monitored online with custom-made Beam Profile Monitor (BPM) devices. In this work, we present the design and the architecture of the IRRAD BPM system, some results on its performance with the proton beam, as well as its planned grades.

  1. Studies of beam heating of proton beam profile monitor SEM's

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovich, Zarko; Osiecki, Thomas H.; Kopp, Sacha E.; /Texas U.

    2005-05-01

    The authors present calculations of the expected temperature rise of proton beam profile monitors due to beam heating. The profile monitors are secondary emission monitors (SEM's) to be made of Titanium foils. The heating is studied to understand whether there is any loss of tension or alignment of such devices. Additionally, calculations of thermally-induced dynamic stress are presented. Ti foil is compared to other materials and also to wire SEM's. The calculations were initially performed for the NuMI beam, where the per-pulse intensity is quite high; for completeness the calculations are also performed for other beam energies and intensities.

  2. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  3. Monoenergetic proton beams accelerated by a radiation pressure driven shock

    CERN Document Server

    Palmer, C A J; Pogorelsky, I; Babzien, M; Dudnikova, G I; Ispiriyan, M; Polyanskiy, M N; Schreiber, J; Shkolnikov, P; Yakimenko, V; Najmudin, Z

    2010-01-01

    High energy ion beams (> MeV) generated by intense laser pulses promise to be viable alternatives to conventional ion beam sources due to their unique properties such as high charge, low emittance, compactness and ease of beam delivery. Typically the acceleration is due to the rapid expansion of a laser heated solid foil, but this usually leads to ion beams with large energy spread. Until now, control of the energy spread has only been achieved at the expense of reduced charge and increased complexity. Radiation pressure acceleration (RPA) provides an alternative route to producing laser-driven monoenergetic ion beams. In this paper, we show the interaction of an intense infrared laser with a gaseous hydrogen target can produce proton spectra of small energy spread (~ 4%), and low background. The scaling of proton energy with the ratio of intensity over density (I/n) indicates that the acceleration is due to the shock generated by radiation-pressure driven hole-boring of the critical surface. These are the fi...

  4. Proton beam micromachining on PMMA, Foturan and CR-39 materials

    CERN Document Server

    Rajta, I; Kiss, A Z; Gomez-Morilla, I; Abraham, M H

    2003-01-01

    Proton Beam Micromachining was demonstrated at the Institute of Nuclear Research of the Hungarian Academy of Sciences using three different types of resists: PMMA, Foturan and CR-39 type Solid State Nuclear Track Detector material. Irradiations have been performed on the nuclear microprobe facility at ATOMKI. The beam scanning was done using a National Instruments (NI) card (model 6711), and the new C++ version of the program IonScan, developed specifically for PBM applications called IonScan 2.0. (R.P.)

  5. Proton beam irradiation and hyperthermia. Effects on experimental choroidal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, K.G.; Svitra, P.P.; Seddon, J.M.; Albert, D.M.; Gragoudas, E.S.; Koehler, A.M.; Coleman, D.J.; Torpey, J.; Lizzi, F.L.; Driller, J.

    1985-12-01

    Ultrasonically induced hyperthermia (4.75 MHz) and proton irradiation (160 meV) were evaluated alone and combined to treat experimental choroidal melanoma in 58 rabbit eyes. Threshold tumoricidal doses were established for each modality. Therapy was performed combining subthreshold doses of heat and radiation. Focused ultrasonic energy via an external beam was found to deliver well-localized heat to an intraocular tumor. Ectopic temperature elevations due to soft-tissue-bone interfaces were alleviated by modifying beam alignment. The results indicate that hyperthermia (43 degrees C for one hour) potentiated the tumoricidal effects of radiation, while sparing normal ocular structures. Therefore, we believe that experimental hyperthermia is suitable as an adjuvant treatment modality. This shows that ultrasound hyperthermia has the potential to increase the efficacy of proton irradiation by lowering radiation doses and thus decreasing posttreatment ocular morbidity in human intraocular malignancies.

  6. Comments on Injector Proton Beam Study in Run 2014

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-15

    During the entire period of injector proton study in run 2014, it seems that the beam transverse emittance out of Booster is larger than that in run 2013. The emittance measured at the BtA transfer line and also the transmission from Booster late to AGS late are presented for this argument. In addition to this problem, it seems that the multiturn Booster injection, which defines the transverse emittance, needs more attention. Moreover, for high intensity operations, the space charge effect may be already relevant in RHIC polarized proton runs. With the RHIC proton intensity improvement in the next several years, higher Booster input intensity is needed, therefore, the space charge effect at the Booster injection and early ramp may become a new limiting factor.

  7. Dense monoenergetic proton beams from chirped laser-plasma interaction

    CERN Document Server

    Galow, Benjamin J; Liseykina, Tatyana V; Harman, Zoltan; Keitel, Christoph H

    2011-01-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen plasma cell is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10^7 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1 %) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10^21 W/cm^2.

  8. The potential of proton beam radiation for palliation and reirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk-Eriksson, Thomas [Sahlgrenska Univ. Hospital, Goeteborg (Sweden). Dept. of Oncology; Ask, Anders [Univ. Hospital, Lund (Sweden). Dept. of Oncology; Glimelius, Bengt [Karolinska Inst., Stockholm (Sweden). Dept. of Oncology and Pathology; Akademiska sjukhuset, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology

    2005-12-01

    A group of Swedish oncologists and hospital physicists have estimated the number of patients in Sweden suitable for proton beam therapy. The estimations have been based on current statistics of tumour incidence, number of patients potentially eligible for radiation treatment, scientific support from clinical trials and model dose planning studies and knowledge of the dose-response relations of different tumours and normal tissues. If an estimated 1% of the palliative treatments can be administered by protons with substantial benefits to the patient, almost 100 patients per year in Sweden would be eligible. It is further estimated that around 150 patients per year in need of reirradiation would benefit from radiation with protons compared to photons.

  9. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianxing; Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-07-01

    Interactions of linearly and radially polarized frequency-chirped laser pulses with single protons and hydrogen gas targets are studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  10. Compact, high-power, high-beam-quality quasi-CW microsecond five-pass zigzag slab 1319  nm amplifier.

    Science.gov (United States)

    Guo, Chuan; Zuo, Junwei; Bian, Qi; Xu, Chang; Zong, Qinshuang; Bo, Yong; Shen, Yu; Zong, Nan; Gao, Hongwei; Lin, Yanyong; Yuan, Lei; Liu, Yang; Cui, Dafu; Peng, Qinjun; Xu, Zuyan

    2017-04-20

    We demonstrate a compact, high-power, quasi-continuous-wave (QCW) end-pumped 1319 nm Nd:YAG slab amplifier laser with good beam quality. The laser is based on a QCW pulse Nd:YAG master oscillator and Nd:YAG slab amplifier with multi-pass zigzag architecture. The amplifier operates at a pulse repetition frequency of 500 Hz and pulse width of ∼105  μs, delivering a maximum output power of 51.5 W under absorbed pump power of 217.8 W and corresponding to an extraction efficiency of 14.2%. The beam quality factor is measured to be Mx2=1.61 and My2=1.81 in the orthogonal directions. To the best of our knowledge, this is the first compact, high-power, high-beam-quality QCW Nd:YAG amplifier at 1319 nm based on a multi-pass zigzag slab structure.

  11. Proton external beam in the TANDAR Accelerator; Haz externo de protones en el acelerador TANDAR

    Energy Technology Data Exchange (ETDEWEB)

    Rey, R.; Schuff, J.A.; Perez de la Hoz, A.; Debray, M.E.; Hojman, D.; Kreiner, A.J.; Kesque, J.M.; Saint-Martin, G.; Oppezzo, O.; Bernaola, O.A.; Molinari, B.L.; Duran, H.A.; Policastro, L.; Palmieri, M.; Ibanez, J.; Stoliar, P.; Mazal, A.; Caraballo, M.E.; Burlon, A.; Cardona, M.A.; Vazquez, M.E.; Salfity, M.F.; Ozafran, M.J.; Naab, F.; Levinton, G.; Davidson, M.; Buhler, M. [Departamento de Fisica, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, C.P. 1650 San Martin, Buenos Aires (Argentina)

    1998-12-31

    An external proton beam has been obtained in the TANDAR accelerator with radiological and biomedical purposes. The protons have excellent physical properties for their use in radiotherapy allowing a very good accuracy in the dose spatial distribution inside the tissue so in the side direction as in depth owing to the presence of Bragg curve. The advantage of the accuracy in the dose localization with proton therapy is good documented (M. Wagner, Med. Phys. 9, 749 (1982); M. Goitein and F. Chen, Med. Phys. 10, 831 (1983); M.R. Raju, Rad. Res. 145, 391 (1996)). It was obtained external proton beams with energies between 15-25 MeV, currents between 2-10 p A and a uniform transversal sections of 40 mm{sup 2} approximately. It was realized dosimetric evaluations with CR39 and Makrofol foliation. The irradiations over biological material contained experiences In vivo with laboratory animals, cellular and bacterial crops. It was fixed the optimal conditions of position and immobilization of the Wistar rats breeding for the In vivo studies. It was chosen dilutions and sowing techniques adequate for the exposition at the cellular and bacterial crops beam. (Author)

  12. Proton Beam Intensity Upgrades for the Neutrino Program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2016-12-15

    Fermilab is committed to upgrading its accelerator complex towards the intensity frontier to pursue HEP research in the neutrino sector and beyond. The upgrade has two steps: 1) the Proton Improvement Plan (PIP), which is underway, has its primary goal to start providing 700 kW beam power on NOvA target by the end of 2017 and 2) the foreseen PIP–II will replace the existing LINAC, a 400 MeV injector to the Booster, by an 800 MeV superconducting LINAC by the middle of next decade, with output beam intensity from the Booster increased significantly and the beam power on the NOvA target increased to <1.2 MW. In any case, the Fermilab Booster is going to play a very significant role for the next two decades. In this context, we have recently developed and commissioned an innovative beam injection scheme for the Booster called "early injection scheme". This scheme is already in operation and has a potential to increase the Booster beam intensity from the PIP design goal by a considerable amount with a reduced beam emittance and beam loss. In this paper, we will present results from our experience from the new scheme in operation, current status and future plans.

  13. Determining beam parameters in a storage ring with a cylindrical hodoscope using elastic proton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rohdjess, H.; Bisplinghoff, J.; Diehl, O.; Engelhardt, H.-P.; Eversheim, P.D.; Gross-Hardt, R.; Hinterberger, F.; Mosel, F.; Scheid, H.; Schwandt, F.; Trelle, H.J.; Wiedmann, W.; Ziegler, R. [Helmholtz-Institut fuer Strahlen- und Kernphysik, Universitaet Bonn (Germany); Albers, D. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Bollmann, R. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Buesser, K. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Dohrmann, F. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Gasthuber, M. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Greiff, J. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Gross, A. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Igelbrink, M. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Langkau, R. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Maier, R. [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Mueller, M. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Muenstermann, M. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Prasuhn, D. [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Rossen, P. von [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Schirm, N. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Scobel, W. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany)]. E-mail: wolfgang.scobel@desy.de; Wellinghausen, A. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Woller, K. [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany)

    2006-01-01

    The EDDA-detector at the cooler-synchrotron COSY/Julich has been operated with an internal CH{sub 2} fiber target to measure proton-proton elastic scattering differential cross-sections. For data analysis knowledge of beam parameters, like position, width and angle, are indispensable. We have developed a method to obtain these values with high precision from the azimuthal and polar angles of the ejectiles only, by exploiting the coplanarity of the two final-state protons with the beam and the kinematic correlation. The formalism is described and results for beam parameters obtained during beam acceleration are given.

  14. Development of a Compton Camera for Online Range Monitoring of Laser-Accelerated Proton Beams via Prompt-Gamma Detection

    Directory of Open Access Journals (Sweden)

    Thirolf P.G.

    2014-03-01

    Full Text Available Presently large efforts are conducted in Munich towards the development of proton beams for bio-medical applications, generated via the technique of particle acceleration from high-power, short-pulse lasers. While so far mostly offline diagnostics tools are used in this context, we aim at developing a reliable and accurate online range monitoring technique, based on the position-sensitive detection of prompt γ rays emitted from nuclear reactions between the proton beam and the biological sample. For this purpose, we develop a Compton camera, designed to be able to track not only the Compton scattering of the primary photon, but also to detect the secondary Compton electron, thus reducing the Compton cone to an arc segment and by this increasing the source reconstruction efficiency. Design specifications and the status of the protype system are discussed.

  15. Proton radiography to improve proton radiotherapy: Simulation study at different proton beam energies

    CERN Document Server

    Biegun, A K; van Goethem, M-J; van der Graaf, E R; van Beuzekom, M; Visser, J; Brandenburg, S

    2016-01-01

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a patient of typically 3-4\\% and even up to 10\\% in region containing bone~\\cite{USchneider1995,USchneider1996,WSchneider2000,GCirrone2007,HPaganetti2012,TPlautz2014,GLandry2013,JSchuemann2014}. As a consequence, part of a tumor may receive no dose, or a very high dose can be delivered in healthy ti\\-ssues and organs at risks~(e.g. brain stem)~\\cite{ACKnopf2013}. A transmission radiograph of high-energy protons measuring proton stopping powers directly will allow to reduce these uncertainties, and thus improve the quality of treatment. The best way to obtain a sufficiently accurate radiograph is by tracking individual protons traversing the phantom (patient)~\\cite{GCirrone2007,TPlautz2014,VSipala2013}. In our simulations ...

  16. Resonant beam behavior studies in the Proton Storage Ring

    Directory of Open Access Journals (Sweden)

    S. Cousineau

    2003-07-01

    Full Text Available We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.

  17. Beam dynamics studies on the stored proton beam in the SPS

    CERN Document Server

    Boussard, Daniel; Gareyte, Jacques; Graziani, C; Linnecar, Trevor Paul R; Scandale, Walter; Thomas, D; CERN. Geneva

    1980-01-01

    Recent improvements to the low-level radiofrequency system have resulted in a considerable increase in bunched beam lifetime. Single proton bunches have been stored for up to 18 hours. In the course of these studies, new instrumentation has been developed and other experiments relevant to pp operation have been performed. (9 refs).

  18. Catastrophic optical bulk damage (COBD) processes in aged and proton-irradiated high power InGaAs-AlGaAs strained quantum well lasers

    Science.gov (United States)

    Sin, Yongkun; LaLumondiere, Stephen; Foran, Brendan; Lotshaw, William; Moss, Steven C.

    2013-02-01

    Recent remarkable success of fiber lasers and amplifiers results from continued improvements in performance characteristics of broad-area InGaAs-AlGaAs strained quantum well (QW) lasers. Unprecedented characteristics of single emitters include optical output powers of over 20 W and power conversion efficiencies of over 70% under CW operation. Leading high power laser diode manufacturers have recently demonstrated encouraging reliability in these lasers mainly targeted for industrial applications, but long-term reliability of these lasers has never been demonstrated for satellite communication systems in the space environment. Furthermore, as reported by two groups in 2009, the dominant failure mode of these lasers is catastrophic optical bulk damage (COBD), which is a new failure type that requires physics of failure investigation to understand its root causes. For the present study, we investigated reliability, proton radiation effects, and the root causes of COBD processes in MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers using various failure mode analysis (FMA) techniques. Two different approaches, accelerated life-testing and proton irradiation, were taken to generate lasers at different stages of degradation. Our objectives were to (i) study the effects of point defects introduced during crystal growth and those induced by proton irradiation with different energies and fluences in the lasers on degradation processes and to (ii) compare trap characteristics and carrier dynamics in pre- and post-stressed lasers with those in pre- and post-proton irradiated lasers. During entire accelerated life-tests, time resolved electroluminescence (TREL) techniques were employed to observe formation of a hot spot and subsequent formation and progression of dark spots and dark lines through windowed n-contacts.

  19. The formation of nanostructured carbon material on a ferrocene-containing polymer surface induced by a high-power ion beam

    Science.gov (United States)

    Kovivchak, V. S.; Kryazhev, Yu. G.; Zapevalova, E. S.

    2016-02-01

    The surface morphology and the composition of polymer layers based on chlorinated polyvinylchloride with addition of ferrocene (up to 10% of the polymer mass) subject to the action of a nanosecond high-power ion beam are studied. It is demonstrated that carbon material in the form of nanofibers with an average diameter of 80 nm and a length of up to 10 μm is formed on a surface singly irradiated by such beam with a current density of ˜100 A/cm2. A possible mechanism of the observed phenomenon is discussed.

  20. Impact of beam angle choice on pencil beam scanning breath-hold proton therapy for lung lesions

    DEFF Research Database (Denmark)

    Gorgisyan, Jenny; Perrin, Rosalind; Lomax, Antony J

    2017-01-01

    INTRODUCTION: The breath-hold technique inter alia has been suggested to mitigate the detrimental effect of motion on pencil beam scanned (PBS) proton therapy dose distributions. The aim of this study was to evaluate the robustness of incident proton beam angles to day-to-day anatomical variation...

  1. Proton beam therapy for hepatocellular carcinoma patients with severe cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Hata, M.; Tokuuye, K.; Fukumitsu, N.; Hashimoto, T.; Akine, Y. [Proton Medical Research Center, Univ. of Tsukuba, Ibaraki (Japan); Dept. of Radiation Oncology, Univ. of Tsukuba, Ibaraki (Japan); Sugahara, S.; Ohnishi, K.; Nemoto, K.; Ohara, K. [Dept. of Radiation Oncology, Univ. of Tsukuba, Ibaraki (Japan); Matsuzaki, Y. [Dept. of Gastroenterology and Hepatology, Univ. of Tsukuba, Ibaraki (Japan)

    2006-12-15

    Background and purpose: hepatocellular carcinoma (HCC) patients with severe cirrhosis are usually treated with supportive care because of their poor prognosis. However, the survival of severe cirrhotic patients has recently improved due to advanced treatments. The aim of this study was to define the role of proton beam therapy for HCC patients with severe cirrhosis. Patients and methods: 19 HCC patients with Child-Pugh class C cirrhosis received proton beam therapy. The hepatic tumors were solitary in 14 patients and multiple in five, and the tumor size was 25-80 mm (median 40 mm) in maximum diameter. No patient had regional lymph node or distant metastasis. Total doses of 50-84 Gy (median 72 Gy) in ten to 24 fractions (median 16) were delivered to the tumors. Results: of the 19 patients, six, eight and four died of cancer, liver failure and intercurrent diseases, respectively, during the follow-up period of 3-63 months (median 17 months) after treatment. A remaining patient was alive with no evidence of disease 33 months after treatment. All but one of irradiated tumors were controlled during the follow-up period. Ten patients had new intrahepatic tumors outside the irradiated volume. The overall and progression-free survival rates were 53% and 47% at 1 year, respectively, and 42% each at 2 years. Performance status and Child-Pugh score were significant prognostic factors for survival. Therapy-related toxicity of grade 3 or more was not observed. Conclusion: proton beam therapy for HCC patients with severe cirrhosis was tolerable. It may improve survival for patients with relatively good general condition and liver function. (orig.)

  2. Adjuvant Ab Interno Tumor Treatment After Proton Beam Irradiation.

    Science.gov (United States)

    Seibel, Ira; Riechardt, Aline I; Heufelder, Jens; Cordini, Dino; Joussen, Antonia M

    2017-06-01

    This study was performed to show long-term outcomes concerning globe preservation in uveal melanoma patients after proton beam therapy with the main focus on outcomes according to different adjuvant ab interno surgical procedures. Retrospective cohort study. All patients treated with primary proton beam therapy for choroidal or ciliary body melanoma between June 1998 and June 2015 were included. A total of 2499 patients underwent primary proton beam therapy, with local tumor control and globe preservation rates of 95.9% and 94.8% after 5 years, respectively. A total of 110 (4.4%) patients required secondary enucleation. Unresponsive neovascular glaucoma was the leading cause of secondary enucleation in 78 of the 2499 patients (3.1%). The 5-year enucleation-free survival rate was 94.8% in the endoresection group, 94.3% in the endodrainage group, and 93.5% in the comparator group. The log-rank test showed P = .014 (comparator group vs endoresection group) and P = .06 (comparator group vs endodrainage-vitrectomy group). Patients treated with endoresection or endodrainage-vitrectomy developed less radiation retinopathy (30.5% and 37.4% after 5 years, P = .001 and P = .048 [Kaplan-Meier], respectively) and less neovascular glaucoma (11.6% and 21.3% after 5 years, P = .001 and P = .01 [Kaplan-Meier], respectively) compared with the comparator group (52.3% radiation retinopathy and 57.8% neovascular glaucoma after 5 years). This study suggests that in larger tumors the enucleation and neovascular glaucoma rates might be reduced by adjuvant surgical procedures. Although endoresection is the most promising adjuvant treatment option, the endodrainage-vitrectomy is recommended in patients who are ineligible for endoresection. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Proton beam writing of dye doped polymer microlasers

    Energy Technology Data Exchange (ETDEWEB)

    Vanga, Sudheer Kumar, E-mail: physkv@nus.edu.sg; Bettiol, Andrew A.

    2015-04-01

    Proton beam writing is employed to fabricate smooth sidewall whispering gallery mode microcavities in dye-doped polymer. These microcavities acts as microlasers under optical excitation in ambient atmosphere. Different cavity designs are implemented to obtain directional laser emission from the whispering gallery mode lasers. The microcavities are fabricated in Rhodamine B doped SU-8 polymer and are optically pumped with 532 nm pulsed laser. These microlasers emit light within the emission band of Rhodamine B with operational wavelength around 600 nm and the required pumping laser threshold is lower than 3 μJ/mm{sup 2} for all the micro-lasers.

  4. Supine proton beam craniospinal radiotherapy using a novel tabletop adapter

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, Jeffrey C., E-mail: jbuchsba@iupui.edu [IU Health Proton Therapy Center, Bloomington, IN (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States); Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN (United States); Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN (United States); Besemer, Abby; Simmons, Joseph; Hoene, Ted; Simoneaux, Victor; Sandefur, Amy [IU Health Proton Therapy Center, Bloomington, IN (United States); Wolanski, Mark; Li, Zhao; Cheng, Chee-Wei [IU Health Proton Therapy Center, Bloomington, IN (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2013-04-01

    To develop a device that allows supine craniospinal proton and photon therapy to the vast majority of proton and photon facilities currently experiencing limitations as a result of couch design issues. Plywood and carbon fiber were used for the development of a prototype unit. Once this was found to be satisfactory after all design issues were addressed, computer-assisted design (CAD) was used and carbon fiber tables were built to our specifications at a local manufacturer of military and racing car carbon fiber parts. Clinic-driven design was done using real-time team discussion for a prototype design. A local machinist was able to construct a prototype unit for us in <2 weeks after the start of our project. Once the prototype had been used successfully for several months and all development issues were addressed, a custom carbon fiber design was developed in coordination with a carbon fiber manufacturer in partnership. CAD methods were used to design the units to allow oblique fields from head to thigh on patients up to 200 cm in height. Two custom-designed carbon fiber craniospinal tabletop designs now exist: one long and one short. Four are in successful use in our facility. Their weight tolerance is greater than that of our robot table joint (164 kg). The long unit allows for working with taller patients and can be converted into a short unit as needed. An affordable, practical means of doing supine craniospinal therapy with protons or photons can be used in most locations via the use of these devices. This is important because proton therapy provides a much lower integral dose than all other therapy methods for these patients and the supine position is easier for patients to tolerate and for anesthesia delivery. These units have been successfully used for adult and pediatric supine craniospinal therapy, proton therapy using oblique beams to the low pelvis, treatment of various spine tumors, and breast-sparing Hodgkin's therapy.

  5. Search for Dark Matter with LHC proton Beam Dump

    CERN Document Server

    Kumar, Ashok; Sharma, Archana

    2016-01-01

    Dark Matter (DM) comprising particles in the mass range of a few MeV to GeV is waiting to be explored, given the many theoretical models accommodating cosmological abundance. We hereby propose an experiment with the LHC proton beam of 7 TeV striking onto the beam dump target, emitting neutrinos and possibly, Dark Matter candidates. This experiment would also permit to observe signatures involving elastic and inelastic processes involving DM candidates, electrons and strongly interacting particles present in nuclei of the dump target. There will be residual neutrino background present in each of these signatures, hence the proposed experimental detector sub-systems would be such that they would involve as final states, elastically or inelasticity scattered, standard model particles. The bump or the excess in the tail of the kinematic distributions will eventually give us glimpse of presence of new particles which could possibly be Dark Matter candidates. Given the parameters of the LHC machine, the sensitivity...

  6. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  7. Focussed ion beam lithography using a MeV proton beam microprobe for microoptics fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Mason, L.M.; Roberts, A.; Jamieson, D.N.; Saint, A.

    1995-10-01

    Deep, high-aspect ratio trenches have been fabricated in the resist polymethyl methacrylate by exposure to a focussed beam of MeV protons followed by development. The depth of the trenches depends on the energy of the protons and simulations suggest that this can be up to 300 {mu}m. The University of Melbourne Microprobe is capable of producing a focussed spot size of the order of a few microns. This opens up the possibility of fabrication extremely high-aspect ratio microstructures for use as optical components. 9 refs., 3 figs.

  8. A system for online beam emittance measurements and proton beam characterization

    Science.gov (United States)

    Nesteruk, K. P.; Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Scampoli, P.

    2018-01-01

    A system for online measurement of the transverse beam emittance was developed. It is named 4PrOBεaM (4-Profiler Online Beam Emittance Measurement) and was conceived to measure the emittance in a fast and efficient way using the multiple beam profiler method. The core of the system is constituted by four consecutive UniBEaM profilers, which are based on silica fibers passing across the beam. The 4PrOBεaM system was deployed for characterization studies of the 18 MeV proton beam produced by the IBA Cyclone 18 MeV cyclotron at Bern University Hospital (Inselspital). The machine serves daily radioisotope production and multi-disciplinary research, which is carried out with a specifically conceived Beam Transport Line (BTL). The transverse RMS beam emittance of the cyclotron was measured as a function of several machine parameters, such as the magnetic field, RF peak voltage, and azimuthal angle of the stripper. The beam emittance was also measured using the method based on the quadrupole strength variation. The results obtained with both techniques were compared and a good agreement was found. In order to characterize the longitudinal dynamics, the proton energy distribution was measured. For this purpose, a method was developed based on aluminum absorbers of different thicknesses, a UniBEaM detector, and a Faraday cup. The results were an input for a simulation of the BTL developed in the MAD-X software. This tool allows machine parameters to be tuned online and the beam characteristics to be optimized for specific applications.

  9. Effect of the electron lenses on the RHIC proton beam closed orbit

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X.; Luo, Y.; Pikin, A.; Okamura, M.; Fischer, W.; Montag, C.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2011-02-01

    We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed at RHIC IR10. The transverse fields of the E-lenses bending solenoids and the fringe field of the main solenoids will shift the proton beam. We calculate the transverse kicks that the proton beam receives in the electron lens via Opera. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.

  10. Investigations of high power laser beam interaction with material by means of hybrid FVM-FEM and digital image correlation methods

    Science.gov (United States)

    Kujawińska, M.; Łapka, P.; Malesa, M.; Malowany, K.; Prasek, M.; Marczak, J.

    2016-12-01

    The paper presents the new approach to the analysis of interaction between a high power laser beam and matter. The method relies on the combined experimental-numerical spatio-temporal analysis of temperature, displacement and strain maps which are generated at a surface of an object illuminated by a high power laser beam. Transient heat transfer numerical simulations were carried out applying the FVM, while the quasi-transient structural analyses were performed with the aid of the FEM. The displacement maps were captured by means of 3D Digital Image Correlation method, and temperature maps were provided by a high speed IR camera. The experimental data are compared to the initial model of laser induced heat transfer in an object and resulting displacements/strains. The first approach to hybrid experimental-numerical method which aims in indirect determination of laser beam profile is described. The monitoring of displacement/strain maps directly at an illuminated object may be also used for a structural integrity analysis of a target. In the paper at first the numerical simulations applied to model laser beam thermal interaction with solid bodies are presented. Next the laboratory experimental stand is described and the results of the initial tests performed at aluminum and bronze samples are shown and compared with numerical simulations. The advantages and disadvantages of the proposed methodology are discussed in relation to the two applications mentioned above.

  11. Collimation quench test with 4 TeV proton beams

    CERN Document Server

    Salvachua, B; Cauchi, M; Deboy, D; Hofle, W; Holzer, EB; Jacquet, D; Lari, L; Nebot, E; Mirarchi, D; Quaranta, E; Redaelli, S; Sapinski, M; Schmidt, R; Valentino, G; Valuch, D; Wenniger, J; Wollmann, D; Zerlauth, M; CERN. Geneva. ATS Department

    2014-01-01

    In 2013, at the end of the LHC physics run I, several quench tests took place with the aim to measure the quench limit of the LHC superconducting magnets. The LHC superconducting magnets in the dispersion suppressor of IR7 are the most exposed to beam losses leaking from the betatron collimation system and represent the main limitation for the halo cleaning. A collimation quench test was performed with 4 TeV proton beams to improve the quench limit estimates, which determine the maximum allowed beam loss rate for a given collimation cleaning. The main goal of the collimation quench test was to try to quench the magnets by increasing losses at the collimators. This note describes the procedure during the test and the first results with the data. Losses of up to 1 MW over a few seconds were generated by blowing up the beam, achieving total losses of about 5.8 MJ. These controlled losses exceeded by a factor 2 the collimation design value, and the magnets did not quench.

  12. High-energy polarized proton beams a modern view

    CERN Document Server

    Hoffstaetter, Georg Heinz

    2006-01-01

    This monograph begins with a review of the basic equations of spin motion in particle accelerators. It then reviews how polarized protons can be accelerated to several tens of GeV using as examples the preaccelerators of HERA, a 6.3 km long cyclic accelerator at DESY / Hamburg. Such techniques have already been used at the AGS of BNL / New York, to accelerate polarized protons to 25 GeV. But for acceleration to energies of several hundred GeV as in RHIC, TEVATRON, HERA, LHC, or a VLHC, new problems can occur which can lead to a significantly diminished beam polarization. For these high energies, it is necessary to look in more detail at the spin motion, and for that the invariant spin field has proved to be a useful tool. This is already widely used for the description of high-energy electron beams that become polarized by the emission of spin-flip synchrotron radiation. It is shown that this field gives rise to an adiabatic invariant of spin-orbit motion and that it defines the maximum time average polarizat...

  13. Multiharmonic rf feedforward system for compensation of beam loading and periodic transient effects in magnetic-alloy cavities of a proton synchrotron

    Science.gov (United States)

    Tamura, Fumihiko; Ohmori, Chihiro; Yamamoto, Masanobu; Yoshii, Masahito; Schnase, Alexander; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo

    2013-05-01

    Beam loading compensation is a key for acceleration of a high intensity proton beam in the main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC). Magnetic alloy loaded rf cavities with a Q value of 22 are used to achieve high accelerating voltages without a tuning bias loop. The cavity is driven by a single harmonic (h=9) rf signal while the cavity frequency response also covers the neighbor harmonics (h=8,10). Therefore the wake voltage induced by the high intensity beam consists of the three harmonics, h=8,9,10. The beam loading of neighbor harmonics is the source of periodic transient effects and a possible source of coupled bunch instabilities. In the article, we analyze the wake voltage induced by the high intensity beam. We employ the rf feedforward method to compensate the beam loading of these three harmonics (h=8,9,10). The full-digital multiharmonic feedforward system was developed for the MR. We describe the system architecture and the commissioning methodology of the feedforward patterns. The commissioning of the feedforward system has been performed by using high intensity beams with 1.0×1014 proteins per pulse. The impedance seen by the beam is successfully reduced and the longitudinal oscillations due to the beam loading are reduced. By the beam loading compensation, stable high power beam operation is achieved. We also report the reduction of the momentum loss during the debunching process for the slow extraction by the feedforward.

  14. Prototype Digital Beam Position and Phase Monitor for the 100-MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Kim, Sung-Chul; Park, In-Soo; Park, Sung-Ju; Tae Kim, Do

    2005-01-01

    The PEFP (Proton Engineering Frontier Project) at the KAERI (Korea Atomic Energy Research Institute) is building a high-power proton linear accelerator aiming to generate 100-MeV proton beams with 20-mA peak current (pulse width and max. repetition rate of 1 ms and 120 Hz respectively). We are developing a prototype digital BPPM (Beam Position and Phase Monitor) for the PEFP linac utilizing the digital technology with field programmable gate array (FPGA). The RF input signals are down converted to 10 MHz and sampled at 40 MHz with 14-bit ADC to produce I and Q data streams. The system is designed to provide a position and phase resolution of 0.1% and 0.1? RMS respectively. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the prototype digital beam position and phase monitor will be described with the performance test results.

  15. Vertical perturbation of high energy proton beams in the AGOR cyclotron

    NARCIS (Netherlands)

    Roobol, LP; Brandenburg, S; Post, H; Marti, F

    2001-01-01

    Using a layered target on the radial probe, we have measured the vertical beam current distribution for several high energy proton beams ranging from 150 to 190 MeV. In particular, this allows us to measure the vertical centring of the beam. The 150 MeV beam with high transmission (83 %) through the

  16. Full-beam performances of a PET detector with synchrotron therapeutic proton beams

    Science.gov (United States)

    Piliero, M. A.; Pennazio, F.; Bisogni, M. G.; Camarlinghi, N.; Cerello, P. G.; Del Guerra, A.; Ferrero, V.; Fiorina, E.; Giraudo, G.; Morrocchi, M.; Peroni, C.; Pirrone, G.; Sportelli, G.; Wheadon, R.

    2016-12-01

    Treatment quality assessment is a crucial feature for both present and next-generation ion therapy facilities. Several approaches are being explored, based on prompt radiation emission or on PET signals by {β+} -decaying isotopes generated by beam interactions with the body. In-beam PET monitoring at synchrotron-based ion therapy facilities has already been performed, either based on inter-spill data only, to avoid the influence of the prompt radiation, or including both in-spill and inter-spill data. However, the PET images either suffer of poor statistics (inter-spill) or are more influenced by the background induced by prompt radiation (in-spill). Both those problems are expected to worsen for accelerators with improved duty cycle where the inter-spill interval is reduced to shorten the treatment time. With the aim of assessing the detector performance and developing techniques for background reduction, a test of an in-beam PET detector prototype was performed at the CNAO synchrotron-based ion therapy facility in full-beam acquisition modality. Data taken with proton beams impinging on PMMA phantoms showed the system acquisition capability and the resulting activity distribution, separately reconstructed for the in-spill and the inter-spill data. The coincidence time resolution for in-spill and inter-spill data shows a good agreement, with a slight deterioration during the spill. The data selection technique allows the identification and rejection of most of the background originated during the beam delivery. The activity range difference between two different proton beam energies (68 and 72 MeV) was measured and found to be in sub-millimeter agreement with the expected result. However, a slightly longer (2 mm) absolute profile length is obtained for in-spill data when compared to inter-spill data.

  17. ISABELLE: a 400 x 400 GeV proton--proton colliding beam facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    A conceptual design report is presented for the construction of an Intersecting Storage Accelerator, ISABELLE, to be located at Brookhaven National Laboratory. At this major research facility beams of protons with energies up to 400 GeV will be collided in six experimental areas. At each area particle physicists will install detector apparatus to study the interaction and reaction products for such very high energy collisions. The proposal results from several years of study and development work on such a facility. Topics discussed include: (1) introduction and summary of the proposal; (2) physics at ISABELLE (including physics objectives and typical experiments and detectors); description of ISABELLE (overview; magnetic ring structure and lattice characteristics; performance; beam transfer, stacking, and acceleration; magnet system; refrigeration system; vacuum system; power supplies, instrumentation, and control system; physical plant and experimental halls; and operation and safety); and (3) cost estimate and schedule.

  18. Beam tests on a proton linac booster for hadron therapy

    CERN Document Server

    De Martinis, C; Berra, P; Birattari, C; Calabretta, L; Crandall, K; Giove, D; Masullo, M R; Mauri, M; Rosso, E; Rovelli, A; Serafini, L; Szeless, Balázs; Toet, D Z; Vaccaro, Vittorio G; Weiss, M; Zennaro, R

    2002-01-01

    LIBO is a 3 GHz modular side-coupled proton linac booster designed to deliver beam energies up to 200 MeV, as required for the therapy of deep seated tumours. The injected beam of 50 to 70 MeV is produced by a cyclotron like those in several hospitals and research institutes. A full-scale prototype of the first module with an input/output energy of 62/74 MeV, respectively, was designed and built in 1999 and 2000. Full power RF tests were carried out successfully at CERN using a test facility at LIL at the end of the year 2000. In order to prove the feasibility of the acceleration process, an experimental setup with this module was installed at the INFN Laboratorio Nazionale del Sud (LNS) in Catania during 2001. The superconducting cyclotron provided the 62 MeV test beam. A compact solid-state RF modulator with a 4 MW klystron, made available by IBA-Scanditronix, was put into operation to power the linac. In this paper the main features of the accelerator are reviewed and the experimental results obtained duri...

  19. Development of new target concepts for proton beams at CERN/ISOLDE

    CERN Document Server

    Delonca, Melanie; Montavon, Ghislain; Peyraut, Francois

    More and more, the power of primary beam sent onto targets increases until reaching several kiloWatts of magnitude, inducing new problematic and challenges. Consequently, the need of new target design arises and leads to new conceptual design proposal. Amongst them, a concept of Lead Bismuth Eutectic (LBE) loop target making use of an heat exchanger (HEX) and a pump has been proposed during the European project EURISOL Design Study. This concept proposed an improvement in terms of release efficiency of short-lived species by transforming the irradiated liquid into droplets shape. This thesis presents the development of this target design proposal. A prototype target has been developed and will be tested under proton beam at ISOLDE at Cern, Geneva. Several analytical tools for the study of this kind of targets are proposed, taking into account different design parameters. These tools can be applied for other high power target concept and allow an easy dimensioning of this kind of targets. As well, an innovativ...

  20. Proton beam shaped by “particle lens” formed by laser-driven hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, S. H.; Shen, B. F., E-mail: bfshen@mail.shcnc.ac.cn, E-mail: wwpvin@hotmail.com, E-mail: yqgu@caep.cn; Wang, W. P., E-mail: bfshen@mail.shcnc.ac.cn, E-mail: wwpvin@hotmail.com, E-mail: yqgu@caep.cn; Zhang, H.; Zhang, L. G.; Huang, S.; Xu, Z. Z. [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q., E-mail: bfshen@mail.shcnc.ac.cn, E-mail: wwpvin@hotmail.com, E-mail: yqgu@caep.cn; Zhang, B. H. [Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-05-23

    Two-dimensional tailoring of a proton beam is realized by a “particle lens” in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a “fountain-like” pattern when these hot electrons diffuse after propagating a distance.

  1. Formation of the active medium in high-power repetitively pulsed gas lasers pumped by an electron-beam-controlled discharge

    Science.gov (United States)

    Bulaev, V. D.; Lysenko, S. L.

    2015-07-01

    A high-power repetitively pulsed e-beam-controlled discharge CO2 laser is simulated numerically; the simulation results are compared with experimental data. Optimal sizes and design of electrodes and configuration of the external magnetic field are found, which allow one to introduce no less than 90% electric pump energy into a specified volume of the active medium, including the active volume of a laser with an aperture of 110 × 110 cm. The results obtained can also be used to design other types of highpower gas lasers.

  2. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  3. Mutant breeding of ornamental trees for creating variations with high value using Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. J.; Lim, J. H.; Woo, S. M.; Hwang, M. J.; Pyo, S. H.; Woo, J. S. [Phygen Co., Daejeon (Korea, Republic of)

    2009-04-15

    It is necessary to induce the improved strains of ornamental plants with more disease-resistant and useful for landscape or phytoremediation. Mutation breeding has played an important role in crop improvement, and more than 2,000 mutant cultivars have been released. For the induction of mutation, gamma rays and X-rays are widely used as a mutagen. Proton beam had higher energy than -ray and worked with localized strength, so that proton-beam radiation could be valuable tool to induce useful strains of ornamental plants. Proton ion beam irradiation was used to induce a useful mutant in rice, chrysanthemum, carnation, and so on in Japan. Also, proton ion beam was used to select a useful host strain, in polyhydroxybutyrate (PHB), a member of biodegradable plastic, could be overproduced in Korea. Therefore, we surmise that the effects of proton beam is different from those of gamma rays and X-rays, and we expect proton beam to be a new mutagen. This research was conducted to investigate the proton-beam radiation sensitivity and seed germination rate of the various ornamental plants like as Albizia julibrissin, Ficus religiosa, Rhus chinensis, Sorbaria sorbilfolia and Spiraea chinensis, to survey the quantitative characteristics of proton beam induced strains. To induce the variants of ornamental plants, seeds were irradiated at the dose of 0{approx}2kGy of proton beam at room temperature. Proton beam energy level was 45 MeV and was irradiated at dose of 0{approx}2kGy by MC-50 Cyclotron. After irradiation, to assess the effects of proton beam on radiation sensitivity and morphological changes of the plants and the seed germination rate were analysed. By the proton beam radiation, the germination rate decreased at the higher dose. The other hand, the germination rate of Rhus chinensis increased the dose higher, so that it need to investigate the germination rate over 2kGy radiation. The effects of mutation induction by proton beam irradiation on seeds in Lagerstroemia

  4. Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis.

    Science.gov (United States)

    Min, Hyemin; Sung, Minhee; Son, Miseol; Kawasaki, Ichiro; Shim, Yhong-Hee

    2017-08-26

    When treating cancer using radiation therapy, it is critical to increase patient survival rates and to reduce side effects. In this respect, proton beam radiation treatment performs better than other radiation treatments because of its high target specificity. However, complications still remain after proton beam radiation treatment. Among them, the risk to progeny after irradiation of their parents is a major concern. In this study, we analyzed the transgenerational effects of proton beam irradiation using the model organism Caenorhabditis. elegans. We found that germline apoptosis increased after proton beam irradiation and its effects were sustained transgenerationally. Moreover, we identified that a germline-specific histone methyltransferase component, SET-2, has a critical role in transmitting the transgenerational effect on germline apoptosis to the next generation after proton beam irradiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model

    Directory of Open Access Journals (Sweden)

    Joakim eda Silva

    2015-12-01

    Full Text Available The highly conformal dose distributions produced by scanned proton pencil beams are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a pencil beam algorithm running on graphics processing units (GPUs intended specifically for online dose calculation. Here we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such pencil beam algorithm for proton therapy running on a GPU. We employ two different parametrizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of pencil beams in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included whilst prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Further, the calculation time is relatively unaffected by the parametrization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  6. Improving Outcomes for Esophageal Cancer using Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chuong, Michael D. [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Hallemeier, Christopher L. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Jabbour, Salma K. [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Yu, Jen; Badiyan, Shahed [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Merrell, Kenneth W. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Mishra, Mark V. [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Li, Heng [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Verma, Vivek [Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska (United States); Lin, Steven H., E-mail: shlin@mdanderson.org [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States)

    2016-05-01

    Radiation therapy (RT) plays an essential role in the management of esophageal cancer. Because the esophagus is a centrally located thoracic structure there is a need to balance the delivery of appropriately high dose to the target while minimizing dose to nearby critical structures. Radiation dose received by these critical structures, especially the heart and lungs, may lead to clinically significant toxicities, including pneumonitis, pericarditis, and myocardial infarction. Although technological advancements in photon RT delivery like intensity modulated RT have decreased the risk of such toxicities, a growing body of evidence indicates that further risk reductions are achieved with proton beam therapy (PBT). Herein we review the published dosimetric and clinical PBT literature for esophageal cancer, including motion management considerations, the potential for reirradiation, radiation dose escalation, and ongoing esophageal PBT clinical trials. We also consider the potential cost-effectiveness of PBT relative to photon RT.

  7. Three-dimensional metamaterials fabricated using Proton Beam Writing

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A., E-mail: a.bettiol@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Turaga, S.P.; Yan, Y.; Vanga, S.K. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Chiam, S.Y. [NUS High School for Maths and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)

    2013-07-01

    Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.

  8. Scintillator-based transverse proton beam profiler for laser-plasma ion sources.

    Science.gov (United States)

    Dover, N P; Nishiuchi, M; Sakaki, H; Alkhimova, M A; Faenov, A Ya; Fukuda, Y; Kiriyama, H; Kon, A; Kondo, K; Nishitani, K; Ogura, K; Pikuz, T A; Pirozhkov, A S; Sagisaka, A; Kando, M; Kondo, K

    2017-07-01

    A high repetition rate scintillator-based transverse beam profile diagnostic for laser-plasma accelerated proton beams has been designed and commissioned. The proton beam profiler uses differential filtering to provide coarse energy resolution and a flexible design to allow optimisation for expected beam energy range and trade-off between spatial and energy resolution depending on the application. A plastic scintillator detector, imaged with a standard 12-bit scientific camera, allows data to be taken at a high repetition rate. An algorithm encompassing the scintillator non-linearity is described to estimate the proton spectrum at different spatial locations.

  9. First high-power model of the annular-ring coupled structure for use in the Japan Proton Accelerator Research Complex linac

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ao

    2012-01-01

    Full Text Available A prototype cavity for the annular-ring coupled structure (ACS for use in the Japan Proton Accelerator Research Complex (J-PARC linac has been developed to confirm the feasibility of achieving the required performance. This prototype cavity is a buncher module, which includes ten accelerating cells in total. The ACS cavity is formed by the silver brazing of ACS half-cell pieces stacked in a vacuum furnace. The accelerating cell of the ACS is surrounded by a coupling cell. We, therefore, tuned the frequencies of the accelerating and coupling cells by an ultraprecision lathe before brazing, taking into account the frequency shift due to brazing. The prototype buncher module was successfully conditioned up to 600 kW, which corresponds to an accelerating field that is higher than the designed field of 4.1  MV/m by 30%. We describe the frequency-tuning results for the prototype buncher module and its high-power conditioning.

  10. Proton beam therapy for malignancy in Bloom syndrome.

    Science.gov (United States)

    Mizumoto, M; Hashii, H; Senarita, M; Sakai, S; Wada, T; Okumura, T; Tsuboi, K; Sakurai, H

    2013-04-01

    Bloom syndrome is a DNA repair disorder that is hypersensitive to radiotherapy. We describe the first case in which proton beam therapy (PBT) was used in a patient with Bloom syndrome to treat oropharyngeal cancer. The patient was a 32-year-old woman with Bloom syndrome who was diagnosed with oropharyngeal cancer staged as T2N2bM0 poorly differentiated squamous cell carcinoma. The primary tumor was located on the right tongue base and extended to the right lateral pharyngeal wall. Several right upper region lymph nodes were positive for metastases. We selected PBT in anticipation of dose reduction to normal tissue. The clinical target volume was defined as the area of the primary tumor and lymph node metastases plus an 8-mm margin. After treatment with 36 GyE (Gray equivalent) in 20 fractions (4-5 fractions per week), dietary intake was decreased by mucositis and intravenous hyperalimentation was started. Termination of treatment for 2.5 weeks was required to relieve mucositis. Administration of 59.4 GyE in 33 fractions markedly reduced the size of the primary tumor, but also caused moderate mucositis that required termination of PBT. One month later, lung metastases and breast cancer developed and the patient died 9 months after PBT. At this time the reduction in size of the primary tumor was maintained without severe late toxicity. We obtained almost complete response for a radiosensitive patient with a deficiency of DNA repair, indicating the excellent dose concentration of proton beam therapy.

  11. A study on 3-GeV proton beam transport line for JSNS

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, S.; Harada, M.; Konno, C. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-03-01

    For the neutron science and the muon science, experimental facilities are to be built in the JAERI/KEK joint project on multi purpose high intensity proton accelerator. In the first phase of the project the proton beam power is l MW which will be up graded to 5 MW in the second phase. In the first phase both neutron and muon facilities utilize a common proton beam from the 3-GeV rapid cycling synchrotron. The muon science facility is located at upper stream of neutron facility. This configuration creates various technical problems. As in the first phase the intensity is high up to 333 {mu}A, optimization of beam optics is stringently requires to provide adequate beam profile on the targets and minimize the beam loss. Beam optics, profile and spill of 3-GeV proton beam are thoughtfully studied. At the initial stage a 2-cm thick carbon target for the muon experiment will be placed in the beam line. This scheme, so called cascade targets, shares the beam efficiently. The beam optics and beam spill were calculated with the TRANSPORT and DECAY-TURTLE codes. A reference beam line was established, which had about 70 m in length. The profile and spill of the beam were calculated by taking into account of the coulomb and nuclear elastic scattering. The beam can be shaped at 13 and 5 cm in full width and height, respectively, on the neutron target, these dimensions satisfy the requirement from the neutron target. (author)

  12. Characterization of the optical beam emitted by high-power phase-locked arrays of diode lasers (P = 1 W CW)

    Science.gov (United States)

    Sobczak, Grzegorz; Dabrowska, ElŻbieta; Teodorczyk, Marian; Kalbarczyk, Joanna; Malag, Andrzej

    2013-07-01

    The quality of the beam emitted by high-power laser diodes is still the main disadvantage of these devices. One of the ways to improve it is to design diode as a matrix of narrow active stripes - so called: phase-locked arrays. The optical coupling which is occurs in such devices causes the emission in the form of a few almost diffraction limited beams (lobes). Unfortunately, because of temperature dependence of refractive indices this coupling often disappears at high drive currents. In this paper the CW operation (up to 4Ith) of the phase-locked semiconductor laser arrays is reported. The devices are based on asymmetric heterostructure which is designed for improving thermal and electrical resistances. The single supermode operation is obtained and the lasers are emitted up to 1 W of the optical power in CW.

  13. Structural design study of a proton beam window for a 1-MW spallation neutron source

    CERN Document Server

    Teraoku, T; Ishikura, S; Kaminaga, M; Maekawa, F; Meigo, S I; Terada, A

    2003-01-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to m...

  14. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept

    Science.gov (United States)

    Gomà, Carles; Safai, Sairos; Vörös, Sándor

    2017-06-01

    This paper describes a novel approach to the reference dosimetry of proton pencil beams based on dose-area product (DAPw ). It depicts the calibration of a large-diameter plane-parallel ionization chamber in terms of dose-area product in a 60Co beam, the Monte Carlo calculation of beam quality correction factors—in terms of dose-area product—in proton beams, the Monte Carlo calculation of nuclear halo correction factors, and the experimental determination of DAPw of a single proton pencil beam. This new approach to reference dosimetry proves to be feasible, as it yields DAPw values in agreement with the standard and well-established approach of determining the absorbed dose to water at the centre of a broad homogeneous field generated by the superposition of regularly-spaced proton pencil beams.

  15. High power 1 MeV neutral beam system and its application plan for the international tokamak experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hemsworth, R.S. [ITER Joint Central Team, Naka, Ibaraki (Japan)

    1997-03-01

    This paper describes the Neutral Beam Injection system which is presently being designed for the International Tokamak Experimental Reactor, ITER, in Europe Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D{sup 0} to the ITER plasma for a pulse length of >1000 s. Each injectors uses a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D{sup -}. This will be neutralized by collisions with D{sub 2} in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. ITER is scheduled to produce its first plasma at the beginning of 2008, and the planning of the R and D, construction and installation foresees the neutral injection system being available from the start of ITER operations. (author)

  16. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.; Destler, W.W.; Granatstein, V.L. [Univ. of Maryland, College Park, MD (United States)] [and others

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  17. Proton therapy

    Science.gov (United States)

    Proton beam therapy; Cancer - proton therapy; Radiation therapy - proton therapy; Prostate cancer - proton therapy ... that use x-rays to destroy cancer cells, proton therapy uses a beam of special particles called ...

  18. Study of the anode plasma dynamics under the action of a high-power electron beam on epoxy resin

    Science.gov (United States)

    Ananyev, S. S.; Bagdasarov, G. A.; Gasilov, V. A.; Dan'ko, S. A.; Demidov, B. A.; Kazakov, E. D.; Kalinin, Yu. G.; Kurilo, A. A.; Ol'khovskaya, O. G.; Strizhakov, M. G.; Tkachenko, S. I.

    2017-07-01

    Results are presented from experimental studies of plasma dynamics in a diode gap under the action of a high-current relativistic electron beam on epoxy resin at energy densities in the range of 170-860 J/cm2. The plasma expansion was studied by means of an optical streak camera. Three-dimensional numerical simulations in the one-temperature hydrodynamic approximation were also performed. The experimental data are compared with the results of numerical simulations.

  19. A high power Fabry-Perot resonator for precision Compton polarimetry with the longitudinally polarised lepton beams at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Zomer, F

    2003-12-01

    The new polarimeter, currently installed at HERA and waiting for its commissioning, is the main topic of this document. In the first chapter, studies of the impact of the polarization measurement accuracy on 3 observables, the right-handed and the standard charged current cross-sections and the determination of the light quark couplings to the Z{sup 0} are presented. The main point is that, unlike small polarisation asymmetry measurements, absolute cross section measurements are very sensitive to the polarization uncertainties. In the second chapter, the beam polarization built up and the Compton polarimetry are presented. Compton polarimetry consists in measuring and analysing the energy spectrum of photons backscattered after laser-electron interactions. The proposed polarimeter upgrade is described in chapter 3. The core of this polarimeter is a high finesse Fabry-Perot cavity filled by a 750 mW ND:YaG laser. This optical resonator, made up of 2 super-mirrors located around the electron beam, provides a few kilo Watt laser beam. The mechanical implementation at HERA and the conditions to maintain the optical resonance are discussed. The chapter 4 is dedicated to the control and measurement of the laser light polarisation. This is a very important aspect of our polarimeter since the determination of the electron beam polarization depends directly on the level of the laser circular polarisation. Before reaching the final design of the cavity installed at HERA, a prototype cavity has been built and operated at Orsay. Results of the laser/cavity alignments and performances of the laser power amplification with this prototype are described in chapter 5. (A.C.)

  20. Cascaded acceleration of proton beams in ultrashort laser-irradiated microtubes

    Science.gov (United States)

    Wang, H. C.; Weng, S. M.; Murakami, M.; Sheng, Z. M.; Chen, M.; Zhao, Q.; Zhang, J.

    2017-09-01

    A cascaded ion acceleration scheme is proposed by use of ultrashort laser-irradiated microtubes. When the electrons of a microtube are blown away by intense laser pulses, strong charge-separation electric fields are formed in the microtube along both the axial and radial directions. By controlling the time delay between the laser pulses and a pre-accelerated proton beam injected along the microtube axis, we demonstrate that this proton beam can be further accelerated by the transient axial electric field in the laser-irradiated microtube. Moreover, the collimation of the injected proton beam can be enhanced by the inward radial electric field. Numerical simulations show that this cascaded ion acceleration scheme works efficiently even at non-relativistic laser intensities, and it can be applied to injected proton beams in the energy range from 1 to 100 MeV. Therefore, it is particularly suitable for cascading acceleration of protons to higher energy.

  1. Beam collimation and transport of laser-accelerated protons by a solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstrasse 9, 64289 Darmstadt (Germany); Tauschwitz, A; Bagnoud, V [GSI - Hemholtzzentrum fur Schwerionenforschung GmbH, Plasmaphysik and PHELIX, Planckstrasse 1, 64291 Darmstadt (Germany); Daido, H; Tampo, M [Photo Medical Research Center, JAEA, 8-1 Umemidai, Kizugawa-city, Kyoto, 619-0215 (Japan); Schollmeier, M, E-mail: k.harres@gsi.d [Sandia National Laboratories, Albuquerque NM 87185 (United States)

    2010-08-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10{sup 12} particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  2. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    N. A. Tahir

    2012-05-01

    Full Text Available The Large Hadron Collider (LHC is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%–20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect. It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials at CERN using the proton beam from the Super Proton Synchrotron (SPS, to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle

  3. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Science.gov (United States)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  4. Effects of proton beam irradiation on mitochondrial biogenesis in a human colorectal adenocarcinoma cell line.

    Science.gov (United States)

    Ha, Byung Geun; Jung, Sung Suk; Shon, Yun Hee

    2017-09-01

    Proton beam therapy has recently been used to improve local control of tumor growth and reduce side-effects by decreasing the global dose to normal tissue. However, the regulatory mechanisms underlying the physiological role of proton beam radiation are not well understood, and many studies are still being conducted regarding these mechanisms. To determine the effects of proton beams on mitochondrial biogenesis, we investigated: mitochondrial DNA (mtDNA) mass; the gene expression of mitochondrial transcription factors, functional regulators, and dynamic-related regulators; and the phosphorylation of the signaling molecules that participate in mitochondrial biogenesis. Both the mtDNA/nuclear DNA (nDNA) ratio and the mitochondria staining assays showed that proton beam irradiation increases mitochondrial biogenesis in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced aggressive HT-29 cells. Simultaneously, proton beam irradiation increases the gene expression of the mitochondrial transcription factors PGC-1α, NRF1, ERRα, and mtTFA, the dynamic regulators DRP1, OPA1, TIMM44, and TOM40, and the functional regulators CytC, ATP5B and CPT1-α. Furthermore, proton beam irradiation increases the phosphorylation of AMPK, an important molecule involved in mitochondrial biogenesis that is an energy sensor and is regulated by the AMP/ATP ratio. Based on these findings, we suggest that proton beam irradiation inhibits metastatic potential by increasing mitochondrial biogenesis and function in TPA-induced aggressive HT-29 cells.

  5. Structure modification and medical application of the natural products by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. W.; Park, J. K.; Kang, J. E.; Shin, S. C.; Ahn, J. H.; Lee, E. S. [Dongguk University, Gyeongju (Korea, Republic of)

    2008-04-15

    This study was performed for the investigation of changes of constituent contents of Korean ginseng (Panax genseng C.A. Meyer) after proton beam irradiation (Beam energy from MC-50 cyclotron : 36.5MeV) with beam range of 500 - 10000Gy

  6. Short-lived positron emitters in beam-on PET imaging during proton therapy

    NARCIS (Netherlands)

    Dendooven, P.; Buitenhuis, H. J. T.; Diblen, F.; Heeres, P. N.; Biegun, A. K.; Fiedler, F.; van Goethem, M-J; van der Graaf, E. R.; Brandenburg, Sijtze

    2015-01-01

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option,

  7. Industrial mJ-class all-fiber front end with spatially coherent top-hat beam output used as seeder for high power laser

    Science.gov (United States)

    Gleyze, Jean-François; Perrin, A.; Calvet, Pierre; Gouriou, Pierre; Scol, Florent; Valentin, Constance; Bouwmans, Géraud; Lecren, E.; Hugonnot, Emmanuel

    2015-05-01

    In large scale laser facility dedicated to laser-matter interaction including inertial confinement fusion, such as LMJ or NIF, high-energy main amplifier is injected by a laser source in which the beam parameters must be controlled. For many years, the CEA has developed nano-joule pulses all-fiber front end sources, based on the telecommunications fiber optics technologies. Thanks to these technologies, we have been able to precisely control temporal shaping and phase-modulated pulse. Nowadays, fiber lasers are able to deliver very high power beams and high energy pulses for industrial needs (laser marking, welding,…). Therefore, we have currently developed new nanosecond pulses fibered amplifiers able to increase output pulse energy up to the mJ level. These amplifiers are based on flexible fibers and not on rod type. This allows us to achieve a compact source. Nevertheless the intensity profile of theses fibers usually has a Gaussian shape. To be compatible with main amplifier section injection, the Gaussian intensity profile must then be transformed into `top-hat' profile. To reach the goal, we have recently developed an elegant and efficient solution based on a single-mode fiber which directly delivers a spatially coherent `top-hat' beam. In the conference, we will present this mJ-class top-hat all-fiber laser system, the results and the industrial prototype which can be used as a front-end of high-power lasers or as a seeder for other types of lasers.

  8. Characteristics of a high-power RF source of negative hydrogen ions for neutral beam injection into controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.; Ivanov, A. A.; Kondakov, A. A.; Sanin, A. L.; Sotnikov, O. Z., E-mail: O.Z.Sotnikov@inp.nsk.su; Shikhovtsev, I. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2017-01-15

    An injector of hydrogen atoms with an energy of 0.5–1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.

  9. ISABELLE: a proton-proton colliding beam facility. [Proposal for the construction of ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-04-01

    A proposal is presented for the construction of an Intersecting Storage Accelerator, ISABELLE, to be located at Brookhaven National Laboratory. At this major research facility, colliding beams of protons will be produced and studied by particle physicists. This proposal combines the interests of these particle physicists in exploring a new energy regime with the challenge of building a new research instrument. The proposal results from several years of considering such devices in parallel with extensive developmental work. The proposal is divided into several major parts. Following an introduction is an overall summary of the proposal covering its highlights. Part II contains a thorough discussion of the physics objectives that can be addressed by the storage ring. It begins with an explanation of current theoretical concepts that occupy the curiosity of high energy physicists. Then follows a brief discussion of possible experiments that might be assembled at the interaction regions to test these concepts. The third part of the proposal goes into the details of the design of the intersecting storage accelerators. It begins with a description of the entire facility and the design of the magnet ring structure. The processes of proton beam accumulation and acceleration are thoroughly described. The discussion then turns to the design of the components and subsystems for the accelerator. The accelerator elements are described followed by a description of the physical plant. The cost estimate and time scales are displayed in Part IV. Here the estimate has been based on the experience gained from working with the prototype units at the laboratory. The appendices are an important part of the proposal. The parameter list for the 200 x 200 GeV ISABELLE is carefully documented. An example of a possible research program can be found in an appendix. The performance of prototype units is documented in one of the appendices.

  10. Geant4 simulations of proton beam transport through a carbon or beryllium degrader and following a beam line

    NARCIS (Netherlands)

    van Goethem, M. J.; van der Meer, R.; Reist, H. W.; Schippers, J. M.

    2009-01-01

    Monte Carlo simulations based on the Geant4 simulation toolkit were performed for the carbon wedge degrader used in the beam line at the Center of Proton Therapy of the Paul Scherrer Institute (PSI). The simulations are part of the beam line studies for the development and understanding of the

  11. SU-E-T-439: Fundamental Verification of Respiratory-Gated Spot Scanning Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hamano, H; Yamakawa, T [Graduate School of Health Sciences, Fujita Health University, Toyoake (Japan); Hayashi, N; Kato, H [School of Health Sciences, Fujita Health University, Tayoake (Japan); Yasui, K [Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya (Japan)

    2015-06-15

    Purpose: The spot-scanning proton beam irradiation with respiratory gating technique provides quite well dose distribution and requires both dosimetric and geometric verification prior to clinical implementation. The purpose of this study is to evaluate the impact of gating irradiation as a fundamental verification. Methods: We evaluated field width, flatness, symmetry, and penumbra in the gated and non-gated proton beams. The respiration motion was distinguished into 3 patterns: 10, 20, and 30 mm. We compared these contents between the gated and non-gated beams. A 200 MeV proton beam from PROBEAT-III unit (Hitachi Co.Ltd) was used in this study. Respiratory gating irradiation was performed by Quasar phantom (MODUS medical devices) with a combination of dedicated respiratory gating system (ANZAI Medical Corporation). For radiochromic film dosimetry, the calibration curve was created with Gafchromic EBT3 film (Ashland) on FilmQA Pro 2014 (Ashland) as film analysis software. Results: The film was calibrated at the middle of spread out Bragg peak in passive proton beam. The field width, flatness and penumbra in non-gated proton irradiation with respiratory motion were larger than those of reference beam without respiratory motion: the maximum errors of the field width, flatness and penumbra in respiratory motion of 30 mm were 1.75% and 40.3% and 39.7%, respectively. The errors of flatness and penumbra in gating beam (motion: 30 mm, gating rate: 25%) were 0.0% and 2.91%, respectively. The results of symmetry in all proton beams with gating technique were within 0.6%. Conclusion: The field width, flatness, symmetry and penumbra were improved with the gating technique in proton beam. The spot scanning proton beam with gating technique is feasible for the motioned target.

  12. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy.

    Science.gov (United States)

    Islam, M R; Collums, T L; Zheng, Y; Monson, J; Benton, E R

    2013-11-21

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy−1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy−1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  13. Response of a tungsten powder target to an incident high energy proton beam

    Directory of Open Access Journals (Sweden)

    O. Caretta

    2014-10-01

    Full Text Available The experiment described in this paper is the first study of the response of a static tungsten powder sample to an impinging high energy proton beam pulse. The experiment was carried out at the HiRadMat facility at CERN. Observations include high speed videos of a proton beam induced perturbation of the powder sample as well as data from a laser Doppler vibrometer measuring the oscillations of the powder container. A comparison with a previous analogous experiment which studied a proton beam interaction with mercury is made.

  14. Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Steven H., E-mail: shlin@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Komaki, Ritsuko; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Myles, Bevan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guo Xiaomao [Department of Radiation Oncology, Fudan University Cancer Hospital, Shanghai (China); Palmer, Matthew [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Swisher, Stephen G.; Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-01

    Purpose: Proton beam therapy (PBT) is a promising modality for the management of thoracic malignancies. We report our preliminary experience of treating esophageal cancer patients with concurrent chemotherapy (CChT) and PBT (CChT/PBT) at MD Anderson Cancer Center. Methods and Materials: This is an analysis of 62 esophageal cancer patients enrolled on a prospective study evaluating normal tissue toxicity from CChT/PBT from 2006 to 2010. Patients were treated with passive scattering PBT with two- or three-field beam arrangement using 180 to 250 MV protons. We used the Kaplan-Meier method to assess time-to-event outcomes and compared the distributions between groups using the log-rank test. Results: The median follow-up time was 20.1 months for survivors. The median age was 68 years (range, 38-86). Most patients were males (82%) who had adenocarcinomas (76%) and Stage II-III disease (84%). The median radiation dose was 50.4 Gy (RBE [relative biologic equivalence]) (range, 36-57.6). The most common grade 2 to 3 acute toxicities from CChT/PBT were esophagitis (46.8%), fatigue (43.6%), nausea (33.9%), anorexia (30.1%), and radiation dermatitis (16.1%). There were two cases of grade 2 and 3 radiation pneumonitis and two cases of grade 5 toxicities. A total of 29 patients (46.8%) received preoperative CChT/PBT, with one postoperative death. The pathologic complete response (pCR) rate for the surgical cohort was 28%, and the pCR and near CR rates (0%-1% residual cells) were 50%. While there were significantly fewer local-regional recurrences in the preoperative group (3/29) than in the definitive CChT/PBT group (16/33) (log-rank test, p = 0.005), there were no differences in distant metastatic (DM)-free interval or overall survival (OS) between the two groups. Conclusions: This is the first report of patients treated with PBT/CChT for esophageal cancer. Our data suggest that this modality is associated with a few severe toxicities, but the pathologic response and clinical

  15. A Prospective Study of Proton Beam Reirradiation for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Annemarie, E-mail: Annemarie.fernandes@gmail.com [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Berman, Abigail T. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Mick, Rosemarie [Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Both, Stefan; Lelionis, Kristi; Lukens, John N.; Ben-Josef, Edgar; Metz, James M.; Plastaras, John P. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2016-05-01

    Purpose: Reirradiation to the esophagus carries a significant risk of complications. Proton therapy may offer an advantage in the reirradiation setting due to the lack of exit dose and potential sparing of previously radiated normal tissues. Methods and Materials: Between June 2010 and February 2014, 14 patients with a history of thoracic radiation and newly diagnosed or locally recurrent esophageal cancer began proton beam reirradiation on a prospective trial. Primary endpoints were feasibility and acute toxicity. Toxicity was graded according Common Toxicity Criteria version 4.0. Results: The median follow-up was 10 months (2-25 months) from the start of reirradiation. Eleven patients received concurrent chemotherapy. The median interval between radiation courses was 32 months (10-307 months). The median reirradiation prescription dose was 54.0 Gy (relative biological effectiveness [RBE]) (50.4-61.2 Gy[RBE]), and the median cumulative prescription dose was 109.8 Gy (76-129.4 Gy). Of the 10 patients who presented with symptomatic disease, 4 patients had complete resolution of symptoms, and 4 had diminished or stable symptoms. Two patients had progressive symptoms. The median time to symptom recurrence was 10 months. Maximum acute nonhematologic toxicity attributable to radiation was grade 2 (64%, N=9), 3 (29%, N=4), 4 (0%), and 5 (7%, N=1). The acute grade 5 toxicity was an esophagopleural fistula more likely related to tumor progression than radiation. Grade 3 nonhematologic acute toxicities included dysphagia, dehydration, and pneumonia. There was 1 late grade 5 esophageal ulcer more likely related to tumor progression than radiation. There were 4 late grade 3 toxicities: heart failure, esophageal stenosis requiring dilation, esophageal ulceration from tumor, and percutaneous endoscopic gastrostomy tube dependence. The median time to local failure was 10 months, and the median overall survival was 14 months. Conclusions: Our data demonstrate that

  16. Development of new generation software tools for simulation of electron beam formation in novel high power gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Sabchevski, S [Institute of Electronics, Bulgarian Academy of Sciences, BG-1784 Sofia (Bulgaria); Zhelyazkov, I [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria); Benova, E [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria); Atanassov, V [Institute of Electronics, Bulgarian Academy of Sciences, BG-1784 Sofia (Bulgaria); Dankov, P [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria); Thumm, M [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institute for Pulsed Power and Microwave Technology, D-76021 Karlsruhe (Germany); Dammertz, G [University of Karlsruhe, Institute of High Frequency Techniques and Electronics, D-76128 Karlsruhe (Germany); Piosczyk, B [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institute for Pulsed Power and Microwave Technology, D-76021 Karlsruhe (Germany); Illy, S [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institute for Pulsed Power and Microwave Technology, D-76021 Karlsruhe (Germany); Tran, M Q [Centre de Recherches en Physique des Plasmas, Association EURATOM-CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Alberti, S [Centre de Recherches en Physique des Plasmas, Association EURATOM-CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Hogge, J-Ph [Centre de Recherches en Physique des Plasmas, Association EURATOM-CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2006-07-15

    Computer aided design (CAD) based on numerical experiments performed by using adequate physical models and efficient simulation codes is an indispensable tool for development, investigation, and optimization of gyrotrons used as radiation sources for electron cyclotron resonance heating (ECRH) of fusion plasmas. In this paper, we review briefly the state-of-the-art in the field of modelling and simulation of intense, relativistic, helical electron beams formed in the electron-optical systems (EOS) of powerful gyrotrons. We discuss both the limitations of the known computer codes and the requirements for increasing their capabilities for solution of various design problems that are being envisaged in the development of the next generation gyrotrons for ECRH. Moreover, we present the concept followed by us in an attempt to unite the advantages of the modern programming techniques with self-consistent, first-principles 3D physical models in the creation of a new highly efficient and versatile software package for simulation of powerful gyrotrons.

  17. Design of a Millimeter-Wave Concentrator for Beam Reception in High-Power Wireless Power Transfer

    Science.gov (United States)

    Fukunari, Masafumi; Wongsuryrat, Nat; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Koizumi, Hiroyuki

    2017-02-01

    This study examined the performance of a developed taper-tube concentrator for 94-GHz millimeter-wave beam reception during wireless power transfer. The received energy is converted into kinetic energy of a working gas in the tube to drive an engine or thruster. The concentrator, which is assumed to have mirror reflection of millimeter waves in it, is designed to be shorter than conventional tapered waveguides of millimeter waves. A dimensionless design law of a concentrator is proposed based on geometric optics theory. Because the applicability of geometric optics theory is unclear, the ratio of its bore diameter to its wavelength was set as small compared to those in other possible applications. Then, the discrepancy between the designed and measured power reception was examined. Results show that the maximum discrepancy was as low as 7 % for the bore-to-wavelength ratio of 20 at the narrow end of the concentrator.

  18. Structural design study of a proton beam window for a 1-MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Terada, Atsuhiko; Maekawa, Fujio; Meigo, Shin-ichiro; Kaminaga, Masanori; Ishikura, Syuichi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to manufacture, and the other, curved-type that has high stress resistivity. As a part of design study for the windows, evaluation of strength of structure and thermal hydraulic analysis were conducted. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and stress caused by internal water pressure and thermal stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible. (author)

  19. Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers.

    Science.gov (United States)

    Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C

    2013-04-08

    In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.

  20. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  1. High power coaxial ubitron

    Science.gov (United States)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  2. Proof-of-principle demonstration of high efficiency laser-assisted H^{-} beam conversion to protons

    Directory of Open Access Journals (Sweden)

    V. Danilov

    2007-05-01

    Full Text Available Thin carbon foils are used as strippers for charge exchange injection into high intensity proton rings. However, the stripping foils become radioactive and produce uncontrolled beam loss, which is one of the main factors limiting beam power in high intensity proton rings. Recently, we presented a scheme for laser stripping an H^{-} beam for the Spallation Neutron Source (SNS ring. First, H^{-} atoms are converted to H^{0} by a magnetic field, then H^{0} atoms are excited from the ground state to the upper levels by a laser, and the excited states are converted to protons by a magnetic field. In this paper we report on the proof-of-principle demonstration of this scheme to give high efficiency (around 90% conversion of H^{-} beam into protons at SNS in Oak Ridge. The experimental setup is described, and comparison of the experimental data with simulations is presented.

  3. First tests for an online treatment monitoring system with in-beam PET for proton therapy

    CERN Document Server

    Kraan, Aafke C; Belcari, N; Camarlinghi, N; Cappucci, F; Ciocca, M; Ferrari, A; Ferretti, S; Mairani, A; Molinelli, S; Pullia, M; Retico, A; Sala, P; Sportelli, G; Del Guerra, A; Rosso, V

    2014-01-01

    PET imaging is a non-invasive technique for particle range verification in proton therapy. It is based on measuring the beta+ annihilations caused by nuclear interactions of the protons in the patient. In this work we present measurements for proton range verification in phantoms, performed at the CNAO particle therapy treatment center in Pavia, Italy, with our 10 x 10 cm^2 planar PET prototype DoPET. PMMA phantoms were irradiated with mono-energetic proton beams and clinical treatment plans, and PET data were acquired during and shortly after proton irradiation. We created 1-D profiles of the beta+ activity along the proton beam-axis, and evaluated the difference between the proximal rise and the distal fall-off position of the activity distribution. A good agreement with FLUKA Monte Carlo predictions was obtained. We also assessed the system response when the PMMA phantom contained an air cavity. The system was able to detect these cavities quickly after irradiation.

  4. Hydrogel Nanosensors for Colorimetric Detection and Dosimetry in Proton Beam Radiotherapy.

    Science.gov (United States)

    Inamdar, Sahil; Pushpavanam, Karthik; Lentz, Jarrod M; Bues, Martin; Anand, Aman; Rege, Kaushal

    2018-01-31

    Proton beam therapy (PBT) is a state-of-the-art radiotherapy treatment approach that uses focused proton beams for tumor ablation. A key advantage of this approach over conventional photon radiotherapy (XRT) is the unique dose deposition characteristic of protons, which results in superior healthy tissue sparing. This results in fewer unwanted side effects and improved outcomes for patients. Currently available dosimeters are intrinsic, complex, and expensive and are not routinely used to determine the dose delivered to the tumor. Here, we report a hydrogel-based plasmonic nanosensor for detecting clinical doses used in conventional and hyperfractionated proton beam radiotherapy. In this nanosensor, gold ions, encapsulated in a hydrogel, are reduced to gold nanoparticles following irradiation with proton beams. Formation of gold nanoparticles renders a color change to the originally colorless hydrogel. The intensity of the color can be used to calibrate the hydrogel nanosensor in order to quantify different radiation doses employed during proton treatment. The potential of this nanosensor for clinical translation was demonstrated using an anthropomorphic phantom mimicking a clinical radiotherapy session. The simplicity of fabrication, detection range in the fractionated radiotherapy regime, and ease of detection with translational potential makes this a first-in-kind plasmonic colorimetric nanosensor for applications in clinical proton beam therapy.

  5. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    NARCIS (Netherlands)

    Zhang, Ye; Knopf, A; Tanner, Colby; Boye, Dirk; Lomax, Antony J.

    2013-01-01

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At

  6. Outcomes of treatment with stereotactic radiosurgery or proton beam therapy for choroidal melanoma.

    Science.gov (United States)

    Sikuade, M J; Salvi, S; Rundle, P A; Errington, D G; Kacperek, A; Rennie, I G

    2015-09-01

    To present our experience of the use of stereotactic radiosurgery and proton beam therapy to treat posterior uveal melanoma over a 10 year period. Case notes of patients treated with stereotactic radiosurgery (SRS), or Proton beam therapy (PBT) for posterior uveal melanoma were reviewed. Data collected included visual acuity at presentation and final review, local control rates, globe retention and complications. We analysed post-operative visual outcomes and if visual outcomes varied with proximity to the optic nerve or fovea. 191 patients were included in the study; 85 and 106 patients received Stereotactic radiosurgery and Proton beam therapy, respectively. Mean follow up period was 39 months in the SRS group and 34 months in the PBT group. Both treatments achieved excellent local control rates with eye retention in 98% of the SRS group and 95% in the PBT group. The stereotactic radiosurgery group showed a poorer visual prognosis with 65% losing more than 3 lines of Snellen acuity compared to 45% in the PBT group. 33% of the SRS group and 54% of proton beam patients had a visual acuity of 6/60 or better. Stereotactic radiosurgery and proton beam therapy are effective treatments for larger choroidal melanomas or tumours unsuitable for plaque radiotherapy. Our results suggest that patients treated with proton beam therapy retain better vision post-operatively; however, possible confounding factors include age, tumour location and systemic co-morbidities. These factors as well as the patient's preference should be considered when deciding between these two therapies.

  7. Potential proton beam therapy for recurrent endometrial cancer in the vagina.

    Science.gov (United States)

    Yanazume, Shintaro; Arimura, Takeshi; Kobayashi, Hiroaki; Douchi, Tsutomu

    2015-05-01

    Proton beam radiotherapy mainly has been used in the gynecological field in patients with cervical cancer. The efficacy of proton beam therapy in patients with recurrent endometrial cancer has not yet been determined. A 77-year-old endometrial cancer patient presented with recurrence in the vagina without distant metastasis following hysterectomy. A hard mass measuring 6 cm originated from the apex of the vagina, surrounded the vaginal cavity, and infiltrated the proximal and distal vagina. The patient received proton beam radiotherapy using a less invasive particle treatment system while minimizing the dose to the surrounding normal tissues. The dose to the planning target volume was 74 Gy (relative biological effectiveness) with 37 fractions. The patient was treated with 150-210-MeV proton beams for 53 days. Proton beam therapy led to the disappearance of tumors without any complications except for grade 1 cystitis although evidence of further complications is not available past our 6-month follow-up period. Proton beam therapy may become a useful treatment modality for recurrent endometrial cancer as well as cervical uterine cancer. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  8. Induction of cancer cell death by proton beam in tumor hypoxic region

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. M.; Hur, T. R.; Lee, K. B.; Jeong, M. H.; Park, J. W. [Kyungbook National Univ., Daegu (Korea, Republic of)

    2007-04-15

    Proton beam induced apoptosis significantly in Lewis lung carcinoma cells and hepatoma HepG2 cells in a dose- and time-dependent manner, but slightly in leukemia Molt-4 cells. Relative biological effectiveness (RBE) values for death rate relative to gamma ray were ranged from 1.3 to 2.1 in LLC or HepG2 but 0.7 in Molt-4 cells at 72h after irradiation. The typical apoptosis was observed by nuclear DNA staining with DAPI. By FACS analysis after stained with PI, sub-G1 cell fraction was significantly increased but G2/M phase was not altered by proton beam irradiation measured at 24 h after irradiation. Proton beam-irradiated tumor cells induced cleavage of PARP-1 and procaspases (-3 and -9) and increased the level of p53 and p21. decreased pro-lamin B. Acitivity of caspases was significantly increased after proton beam irradiation. Furthermore, ROS were significantly increased and N-acetyl cystein (NAC) pretreatment restored the apoptotic cell death induced in proton beam-irradiated cells. In conclusion, single treatment of low energy proton beam with SOBP induced apoptosis of solid tumor cells via increased ROS, active caspase -3,-9 and p53, p2.

  9. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  10. High power gas laser amplifier

    Science.gov (United States)

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  11. Pencil beam proton radiography using a multilayer ionization chamber

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  12. Transport of laser accelerated proton beams and isochoric heating of matter

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Inst. fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum f. Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C; Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Makita, M, E-mail: markus.roth@physik.tu-darmstadt.d [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2010-08-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  13. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron.

    Science.gov (United States)

    Jones, Kevin C; Vander Stappen, François; Bawiec, Christopher R; Janssens, Guillaume; Lewin, Peter A; Prieels, Damien; Solberg, Timothy D; Sehgal, Chandra M; Avery, Stephen

    2015-12-01

    To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  14. Hyperfractionated Concomitant Boost Proton Beam Therapy for Esophageal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Masashi [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Sugahara, Shinji [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Tokyo Medical University Ibaraki Medical Center, Ibaraki (Japan); Okumura, Toshiyuki; Hashimoto, Takayuki; Oshiro, Yoshiko; Fukumitsu, Nobuyoshi [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Nakahara, Akira [Department of Gastroenterological Medicine, University of Tsukuba, Tsukuba, Ibaraki (Japan); Terashima, Hideo [Department of Surgery, University of Tsukuba, Tsukuba, Ibaraki (Japan); Tsuboi, Koji [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Sakurai, Hideyuki, E-mail: hsakurai@pmrc.tsukuba.ac.jp [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki (Japan)

    2011-11-15

    Purpose: To evaluate the efficacy and safety of hyperfractionated concomitant boost proton beam therapy (PBT) for patients with esophageal cancer. Methods and Materials: The study participants were 19 patients with esophageal cancer who were treated with hyperfractionated photon therapy and PBT between 1990 and 2007. The median total dose was 78 GyE (range, 70-83 GyE) over a median treatment period of 48 days (range, 38-53 days). Ten of the 19 patients were at clinical T Stage 3 or 4. Results: There were no cases in which treatment interruption was required because of radiation-induced esophagitis or hematologic toxicity. The overall 1- and 5-year actuarial survival rates for all 19 patients were 79.0% and 42.8%, respectively, and the median survival time was 31.5 months (95% limits: 16.7- 46.3 months). Of the 19 patients, 17 (89%) showed a complete response within 4 months after completing treatment and 2 (11%) showed a partial response, giving a response rate of 100% (19/19). The 1- and 5-year local control rates for all 19 patients were 93.8% and 84.4 %, respectively. Only 1 patient had late esophageal toxicity of Grade 3 at 6 months after hyperfractionated PBT. There were no other nonhematologic toxicities, including no cases of radiation pneumonia or cardiac failure of Grade 3 or higher. Conclusions: The results suggest that hyperfractionated PBT is safe and effective for patients with esophageal cancer. Further studies are needed to establish the appropriate role and treatment schedule for use of PBT for esophageal cancer.

  15. Measurements on Fast switches and combiners (FADIS-BC for High-Power Millimeter-wave beams based on dielectric beam splitters

    Directory of Open Access Journals (Sweden)

    Moro A.

    2012-09-01

    Full Text Available An upgraded version of a quasi-optical diplexer combiner, based on a resonating system coupling two transmission lines using three Dielectric Beam Splitters, has been realized and tested. This device is principally thought to combine power coming from different transmission lines into a single output or to switch the injected power between different outputs, but it could also be used as mode filter or in line viewing system for Electron Cyclotron Emission (ECE or Collective Thomson Scattering (CTS diagnostics. The design was implemented in order to link two transmission lines of the ECRH system on FTU, for power combination of two beams into a single line of the new ECRH launcher recently installed. This device is based on Dielectric Beam Splitters (DBS; it has been tested at low power in order to confirm the splitting ratio foreseen from simulation and its efficiency has been evaluated measuring the beam exiting the system. The design and the characterization of the diplexer combiner are reported in this paper.

  16. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  17. A study on the proton beam energy(50 MeV) measurement and diagnosis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jong Suh; Lee, Dong Hoon; Kim, Yoo Suk; Park, Chan Won; Lee, Yong Min; Hong, Sung Suk; Lee, Min Yong; Lee, Ji Sub; Hah, Hang Hoh [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1995-02-01

    The main purpose of this project is the precise ion measurement of proton beam energy extracted at RF 25.89 MHz from the MC-50 cyclotron of SF type. There are several method for particle energy measurement. We measured the 50 MeV proton energy by using the E-{Delta}E method in 1993. And also in our experiment used range, reapproval of energy of extracted proton beam at RF 25.89 MHz was performed, which attained the same energy with the result used elastic scattering within the error range. 10 figs, 2 pix, 3 tabs, 3 refs. (Author).

  18. Manipulation of laser-accelerated proton beam profiles by nanostructured and microstructured targets

    Directory of Open Access Journals (Sweden)

    L. Giuffrida

    2017-08-01

    Full Text Available Nanostructured and microstructured thin foils have been fabricated and used experimentally as targets to manipulate the spatial profile of proton bunches accelerated through the interaction with high intensity laser pulses (6×10^{19}  W/cm^{2}. Monolayers of polystyrene nanospheres were placed on the rear surfaces of thin plastic targets to improve the spatial homogeneity of the accelerated proton beams. Moreover, thin targets with grating structures of various configurations on their rear sides were used to modify the proton beam divergence. Experimental results are presented, discussed, and supported by 3D particle-in-cell numerical simulations.

  19. Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system.

    Science.gov (United States)

    Mojżeszek, N; Farah, J; Kłodowska, M; Ploc, O; Stolarczyk, L; Waligórski, M P R; Olko, P

    2017-02-01

    To measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique. Measurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100-220MeV), field sizes ((2×2)-(20×20)cm(2)) and modulation widths (0-15cm). For pristine proton peak irradiations, large variations of neutron H(∗)(10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H(∗)(10)/D for pristine proton pencil beams varied between 0.04μSvGy(-1) at beam energy 100MeV and a (2×2)cm(2) field at 2.25m distance and 90° angle with respect to the beam axis, and 72.3μSvGy(-1) at beam energy 200MeV and a (20×20) cm(2) field at 1m distance along the beam axis. The obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruce, Roderik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guido, Elisa; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-07-17

    This paper presents a summary of beam-induced backgrounds observed in the ATLAS detector and discusses methods to tag and remove background contaminated events in data. Trigger-rate based monitoring of beam-related backgrounds is presented. The correlations of backgrounds with machine conditions, such as residual pressure in the beam-pipe, are discussed. Results from dedicated beam-background simulations are shown, and their qualitative agreement with data is evaluated. Data taken during the passage of unpaired, i.e. non-colliding, proton bunches is used to obtain background-enriched data samples. These are used to identify characteristic features of beam-induced backgrounds, which then are exploited to develop dedicated background tagging tools. These tools, based on observables in the Pixel detector, the muon spectrometer and the calorimeters, are described in detail and their efficiencies are evaluated. Finally an example of an application of these techniques to a monojet analysis is given, which demonstra...

  1. Luminescence imaging of water during proton-beam irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya 462-8508 (Japan)

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  2. High-power radio frequency pulse generation and extration based on wakefield excited by an intense charged particle beam in dielectric-loaded waveguides.

    Energy Technology Data Exchange (ETDEWEB)

    Gao, F.; High Energy Physics; Illinois Inst. of Tech

    2009-07-24

    Power extraction using a dielectric-loaded (DL) waveguide is a way to generate high-power radio frequency (RF) waves for future particle accelerators, especially for two-beam-acceleration. In a two-beam-acceleration scheme, a low-energy, high-current particle beam is passed through a deceleration section of waveguide (decelerator), where the power from the beam is partially transferred to trailing electromagnetic waves (wakefields); then with a properly designed RF output coupler, the power generated in the decelerator is extracted to an output waveguide, where finally the power can be transmitted and used to accelerate another usually high-energy low-current beam. The decelerator, together with the RF output coupler, is called a power extractor. At Argonne Wakefield Accelerator (AWA), we designed a 7.8GHz power extractor with a circular DL waveguide and tested it with single electron bunches and bunch trains. The output RF frequency (7.8GHz) is the sixth harmonic of the operational frequency (1.3GHz) of the electron gun and the linac at AWA. In single bunch excitation, a 1.7ns RF pulse with 30MW of power was generated by a single 66nC electron bunch passing through the decelerator. In subsequent experiments, by employing different splitting-recombining optics for the photoinjector laser, electron bunch trains were generated and thus longer RF pulses could be successfully generated and extracted. In 16-bunch experiments, 10ns and 22ns RF pulses have been generated and extracted; and in 4-bunch experiments, the maximum power generated was 44MW with 40MW extracted. A 26GHz DL power extractor has also been designed to test this technique in the millimeter-wave range. A power level of 148MW is expected to be generated by a bunch train with a bunch spacing of 769ps and bunch charges of 20nC each. The arrangement for the experiment is illustrated in a diagram. Higher-order-mode (HOM) power extraction has also been explored in a dual-frequency design. By using a bunch

  3. Proton Beam Focusing and Heating in Petawatt Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Snavely, R A; Gu, P; King, J; Hey, D; Akli, K; Zhang, B B; Freeman, R; Hatchett, S; Key, M H; Koch, J; Langdon, A B; Lasinsky, B; MacKinnon, A; Patel, P; Town, R; Wilks, S; Stephens, R; Tsutsumi, T; Chen, Z; Yabuuchi, T; Kurahashi, T; Sato, T; Adumi, K; Toyama, Y; Zheng, J; Kodama, R; Tanaka, K A; Yamanaka, T

    2003-08-13

    It has recently been demonstrated that femtosecond-laser generated proton beams may be focused. These protons, following expansion of the Debye sheath, emit off the inner concave surface of hemispherical shell targets irradiated at their outer convex pole. The sheath normal expansion produces a rapidly converging proton beam. Such focused proton beams provide a new and powerful means to achieve isochoric heating to high temperatures. They are potentially important for measuring the equation of state of materials at high energy density and may provide an alternative route to fast ignition. We present the first results of proton focusing and heating experiments performed at the Petawatt power level at the Gekko XII Laser Facility at ILE Osaka Japan. Solid density Aluminum slabs are placed in the proton focal region at various lengths. The degree of proton focusing is measured via XUV imaging of Planckian emission of the heated zone. Simultaneous with the XUV measurement a streaked optical imaging technique, HISAK, gave temporal optical emission images of the focal region. Results indicate excellent coupling between the laser-proton conversion and subsequent heating.

  4. An efficient method to determine double Gaussian fluence parameters in the eclipse™ proton pencil beam model.

    Science.gov (United States)

    Shen, Jiajian; Liu, Wei; Stoker, Joshua; Ding, Xiaoning; Anand, Aman; Hu, Yanle; Herman, Michael G; Bues, Martin

    2016-12-01

    To find an efficient method to configure the proton fluence for a commercial proton pencil beam scanning (PBS) treatment planning system (TPS). An in-water dose kernel was developed to mimic the dose kernel of the pencil beam convolution superposition algorithm, which is part of the commercial proton beam therapy planning software, eclipse™ (Varian Medical Systems, Palo Alto, CA). The field size factor (FSF) was calculated based on the spot profile reconstructed by the in-house dose kernel. The workflow of using FSFs to find the desirable proton fluence is presented. The in-house derived spot profile and FSF were validated by a direct comparison with those calculated by the eclipse TPS. The validation included 420 comparisons of the FSFs from 14 proton energies, various field sizes from 2 to 20 cm and various depths from 20% to 80% of proton range. The relative in-water lateral profiles between the in-house calculation and the eclipse TPS agree very well even at the level of 10(-4). The FSFs between the in-house calculation and the eclipse TPS also agree well. The maximum deviation is within 0.5%, and the standard deviation is less than 0.1%. The authors' method significantly reduced the time to find the desirable proton fluences of the clinical energies. The method is extensively validated and can be applied to any proton centers using PBS and the eclipse TPS.

  5. Analytical model of ionization and energy deposition by proton beams in subcellular compartments

    Science.gov (United States)

    de Vera, Pablo; Surdutovich, Eugene; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2014-04-01

    We present an analytical model to evaluate in a fast, simple and effective manner the energy delivered by proton beams moving through a cell model made of nucleus and cytoplasm, taking into account the energy carried by the secondary electrons generated along the proton tracks. The electronic excitation spectra of these subcellular compartments have been modelled by means of an empirical parameterization of their dielectric properties. The energy loss rate and target ionization probability induced by swift protons are evaluated by means of the dielectric formalism. With the present model we have quantified the energy delivered, the specific energy, and the number of ionizations produced per incoming ion in a typical human cell by a typical hadrontherapy proton beam having energies usually reached around the Bragg peak (below 20 MeV). We find that the specific energy per incoming ion delivered in the nucleus and in the cytoplasm are rather similar for all the proton energy range analyzed.

  6. Efficient production and diagnostics of MeV proton beams from a cryogenic hydrogen ribbon

    Science.gov (United States)

    Velyhan, A.; Giuffrida, L.; Scuderi, V.; Perin, J. P.; Chatain, D.; Garcia, S.; Bonnay, P.; Dostal, J.; Ullschmied, J.; Dudzak, R.; Krousky, E.; Cykhardt, J.; Prokupek, J.; Pfeifer, M.; Rosinski, M.; Krasa, J.; Brabcova, K.; De Napoli, M.; Lastovicka, T.; Margarone, D.

    2017-06-01

    A solid hydrogen thin ribbon, produced by the cryogenic system ELISE (Experiments on Laser Interaction with Solid hydrogEn) target delivery system, was experimentally used at the PALS kJ-laser facility to generate intense proton beams with energies in the MeV range. This sophisticated target system operating at cryogenic temperature (~ 10 K) continuously producing a 62 μm thick target was combined with a 600 J sub-nanosecond laser pulse to generate a collimated proton stream. The accelerated proton beams were fully characterized by a number of diagnostics. High conversion efficiency of laser to energetic protons is of great interest for future potential applications in non-conventional proton therapy and fast ignition for inertial confinement fusion.

  7. Investigations of proton beam energy of the MC-50 cyclotron at KIRAMS

    Science.gov (United States)

    Khandaker, Mayeen Uddin; Kim, Guinyun; Kim, Kwangsoo; Bin Abu Kassim, Hasan; Nikouravan, Bijan

    2011-07-01

    The accuracy of the measured excitation functions of nuclear reactions largely depend on the precise measurements of the exposed beam energy in activation experiment. We investigated the proton beam energy of the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS) employing the method natCu(p,xn)62Zn / natCu(p,xn)65Zn together with a stacked-foil activation technique. The beam energy along with the stacked samples was also theoretically calculated using computer program SRIM-2003. The measured beam energy showed generally a good agreement with the calculated ones, and this fact demonstrated that the energy (<30 MeV) of the proton beam could be determined by irradiating thin metallic Cu foil target with natural isotopic compositions. Hence, this may be considered as a useful technique for beam monitoring purposes in activation experiment.

  8. EURISOL 100 kW Target Stations Operation and Implications for its Proton Driver Beam

    CERN Document Server

    Noah, Etam; Lettry, Jacques; Lindroos, Mats; Stora, Thierry

    EURISOL, the next European radioactive ion beam (RIB) facility calls for the development of target and ion source assemblies to dissipate deposited heat and to extract and ionize isotopes of interest efficiently. The EURISOL 100 kW direct targets should be designed for a goal lifetime of up to three weeks. Target operation from the moment it is installed on a target station until its exhaustion involves several phases with specific proton beam intensity requirements. This paper discusses operation of the 100 kW targets within the ongoing EURISOL Design Study, with an emphasis on the requirements for the proton driver beam.

  9. Transport of intense proton beams in an induction linac by solenoid lenses

    Science.gov (United States)

    Namkung, W.; Choe, J. Y.; Uhm, H. S.

    1986-01-01

    In the proposed proton induction linac at NSWC, a 100 A and 3 μs proton beam is accelerated to 5 MeV through a series of accelerating gaps. This beam can be effectively focused by solenoid lenses in this low energy regime and can be transported by adjusting the focusing strength in each period. For the transport channel design to reduce the number of independently controlled lenses, a theory of matched beams in the space-charge dominated regime has been developed. This study can be applied to cost efficient designs of induction accelerators for heavy ion fusion and free electron lasers.

  10. Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field

    Science.gov (United States)

    Harres, K.; Alber, I.; Tauschwitz, A.; Bagnoud, V.; Daido, H.; Günther, M.; Nürnberg, F.; Otten, A.; Schollmeier, M.; Schütrumpf, J.; Tampo, M.; Roth, M.

    2010-02-01

    This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 1012 could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid's axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications such as postacceleration by conventional accelerator structures.

  11. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE.

    Science.gov (United States)

    Schneider, Uwe; Hälg, Roger A; Baiocco, Giorgio; Lomax, Tony

    2016-08-21

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  12. An analytical reconstruction model of the spread-out Bragg peak using laser-accelerated proton beams.

    Science.gov (United States)

    Tao, Li; Zhu, Kun; Zhu, Jungao; Xu, Xiaohan; Lin, Chen; Ma, Wenjun; Lu, Haiyang; Zhao, Yanying; Lu, Yuanrong; Chen, Jia-Er; Yan, Xueqing

    2017-07-07

    With the development of laser technology, laser-driven proton acceleration provides a new method for proton tumor therapy. However, it has not been applied in practice because of the wide and decreasing energy spectrum of laser-accelerated proton beams. In this paper, we propose an analytical model to reconstruct the spread-out Bragg peak (SOBP) using laser-accelerated proton beams. Firstly, we present a modified weighting formula for protons of different energies. Secondly, a theoretical model for the reconstruction of SOBPs with laser-accelerated proton beams has been built. It can quickly calculate the number of laser shots needed for each energy interval of the laser-accelerated protons. Finally, we show the 2D reconstruction results of SOBPs for laser-accelerated proton beams and the ideal situation. The final results show that our analytical model can give an SOBP reconstruction scheme that can be used for actual tumor therapy.

  13. SU-E-T-443: Developmental Technique for Proton Pencil Beam Measurements: Depth Dose

    Energy Technology Data Exchange (ETDEWEB)

    Arjomandy, B; Lee, T; Schultz, T; Hsi, W; Park, S [McLaren Cancer Institute, Flint, MI (United States)

    2014-06-01

    Purpose: Measurements of depth dose distribution (DDD) of pencil beam in proton therapy can be challenging and time consuming. We have developed a technique that uses two Bragg peak chambers to expedite these measurements with a high accuracy. Methods and Material: We used a PTW water tank and two PTW 10.5 cm3 Bragg peak chambers; one as a field chamber and the other as a reference chamber to measure DDDs for 100–250 MeV proton pencil beams. The reference chamber was positioned outside of the water tank upstream with respect to field chamber. We used Geant4 Monte Carlo Simulation (MCS) to model the ProTom proton beam to generate DDDs. The MCS generated DDDs were used to account for halo effects of proton pencil beam that are not measureable with Bragg peak chambers. We also used PTW PEAKFINDER to measure DDDs for comparison purpose. Results: We compared measured and MCS DDDs with Continuous Slowing Down Approximation (CSDA) ranges to verify the range of proton beams that were supplied by the manufacturer. The agreements between all DDD with respect to CSDA were within ±0.5 mm. The WET for Bragg peak chamber for energies between 100–250 MeV was 12.7 ± 0.5 mm. The correction for halo effect was negligible below 150 MeV and was in order of ∼5-10% for 150–250 MeV. Conclusion: Use of Bragg Peak chamber as a reference chamber can facilitate DDD measurements in proton pencil beam with a high accuracy. Some corrections will be required to account for halo effect in case of high energy proton beams due to physical size of chamber.

  14. Comprehensive proton dose algorithm using pencil beam redefinition and recursive dynamic splitting

    CERN Document Server

    Gottschalk, Bernard

    2016-01-01

    We compute, from first principles, the absolute dose or fluence distribution per incident proton charge in a known heterogeneous terrain exposed to known proton beams. The algorithm is equally amenable to scattered or scanned beams. All objects in the terrain (including collimators) are sliced into slabs, of any convenient thickness, perpendicular to the nominal beam direction. Transport is by standard Fermi-Eyges theory. Transverse heterogeneities are handled by breaking up pencil beams (PBs) either by conventional redefinition or a new form of 2D recursive dynamic splitting: the mother PB is replaced, conserving emittance and charge, by seven daughters of equal transverse size. One has 1/4 the charge and travels in the mother's direction and six have 1/8 the charge, are arranged hexagonally and radiate from the mother's virtual point source. The longitudinal (energy-like) variable is pv (proton momentum times speed). Each material encountered is treated on its own merits, not referenced to water. Slowing do...

  15. Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron

    CERN Document Server

    Garcia, J B

    2011-01-01

    The proton beams used for the fixed target physics at the Super Proton Synchrotron (SPS) are extracted from the Proton Synchrotron ( PS) by a multiturn technique called continuous transfer (CT). During the CT extraction, large losses are observed in locations where the machine aperture should be large enough to accommodate the circulating beam. This limits the maximum intensity deliverable due to the induced stray radiation outside the PS tunnel. Scattered particles from the interaction with the electrostatic septum are identified as the possible source of these losses. This article presents a detailed study aiming to understand the origin of losses and propose possible cures. The simulations could reproduce accurately the beam loss pattern measured in real machine operation and determine the beam shaving, intrinsic to the extraction process, as the cause for the unexpected losses. Since these losses are unavoidable, the proposed solution implies a new optics scheme displacing the losses to a region with bett...

  16. Proton G_E/G_M from beam-target asymmetry

    CERN Document Server

    Jones, M K; Ahmidouch, A; Asaturyan, R; Bloch, Felix; Böglin, W; Bosted, P; Carasco, C C; Carlini, R; Cha, J; Chen, J P; Christy, M E; Cole, L; Coman, L; Crabb, D; Danagulyan, S; Day, D; Dunne, J; Elaasar, M; Ent, R; Fenker, H; Frlez, E; Gaskell, D; Gan, L; Gómez, J; Hu, B; Jourdan, J; Keith, C; Keppel, C E; Khandaker, M; Klein, A; Kramer, L; Liang, Y; Lichtenstadt, J; Lindgren, R; Mack, D; McKee, P; McNulty, D; Meekins, D; Mkrtchyan, H; Nasseripour, R; Niculescu, I; Normand, K; Norum, B; Pocanic, D; Prok, Y; Raue, B; Reinhold, J; Roche, J; Rohe, D; Rondon, Oscar A; Savvinov, N; Sawatzky, B; Seely, M; Sick, I; Slifer, K J; Smith, C; Smith, G; Stepanyan, S; Tang, L; Tajima, S; Testa, G; Vulcan, W; Wang, K; Warren, G; Wesselmann, F R; Wood, S; Yan, C; Yuan, L; Yun, J; Zeier, M; Zhu, H

    2006-01-01

    The ratio of the proton's electric to magnetic form factor, G_E/G_M, can be extracted in elastic electron-proton scattering by measuring either cross sections, beam-target asymmetry or recoil polarization. Separate determinations of G_E/G_M by cross sections and recoil polarization observables disagree for Q^2 > 1 (GeV/c)^2. Measurement by a third technique might uncover an unknown systematic error in either of the previous measurements. The beam-target asymmetry has been measured for elastic electron-proton scattering at Q^2 = 1.51 (GeV/c)^2 for target spin orientation aligned perpendicular to the beam momentum direction. This is the largest Q^2 at which G_E/G_M has been determined by a beam-target asymmetry experiment. The result, \\muG_E/G_M = 0.884 +/- 0.027 +/- 0.029, is compared to previous world data.

  17. Monitoring the extracted proton beam at the SPS

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Fluorescent screens in front of the target positions allow a precise adjustement in front of them. A similar photo was recorded at the beam dump at the beam injection into the SPS, see Weekly Bulletin of April 1976.

  18. Dose-response of EBT3 radiochromic films to proton and carbon ion clinical beams.

    Science.gov (United States)

    Castriconi, Roberta; Ciocca, Mario; Mirandola, Alfredo; Sini, Carla; Broggi, Sara; Schwarz, Marco; Fracchiolla, Francesco; Martišíková, Mária; Aricò, Giulia; Mettivier, Giovanni; Russo, Paolo

    2017-01-21

    We investigated the dose-response of the external beam therapy 3 (EBT3) films for proton and carbon ion clinical beams, in comparison with conventional radiotherapy beams; we also measured the film response along the energy deposition-curve in water. We performed measurements at three hadrontherapy centres by delivering monoenergetic pencil beams (protons: 63-230 MeV; carbon ions: 115-400 MeV/u), at 0.4-20 Gy dose to water, in the plateau of the depth-dose curve. We also irradiated the films to clinical MV-photon and electron beams. We placed the EBT3 films in water along the whole depth-dose curve for 148.8 MeV protons and 398.9 MeV/u carbon ions, in comparison with measurements provided by a plane-parallel ionization chamber. For protons, the response of EBT3 in the plateau of the depth-dose curve is not different from that of photons, within experimental uncertainties. For carbon ions, we observed an energy dependent under-response of EBT3 film, from 16% to 29% with respect to photon beams. Moreover, we observed an under-response in the Bragg peak region of about 10% for 148.8 MeV protons and of about 42% for 398.9 MeV/u carbon ions. For proton and carbon ion clinical beams, an under-response occurs at the Bragg peak. For carbon ions, we also observed an under-response of the EBT3 in the plateau of the depth-dose curve. This effect is the highest at the lowest initial energy of the clinical beams, a phenomenon related to the corresponding higher LET in the film sensitive layer. This behavior should be properly modeled when using EBT3 films for accurate 3D dosimetry.

  19. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-01-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. Inmost cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  20. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  1. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  2. Correction of stopping power and LET quenching for radiophotoluminescent glass dosimetry in a therapeutic proton beam

    Science.gov (United States)

    Chang, Weishan; Koba, Yusuke; Katayose, Tetsurou; Yasui, Keisuke; Omachi, Chihiro; Hariu, Masatsugu; Saitoh, Hidetoshi

    2017-12-01

    To measure the absorbed dose to water D w in proton beams using a radiophotoluminescent glass dosimeter (RGD), a method with the correction for the change of the mass stopping power ratio (SPR) and the linear energy transfer (LET) dependence of radiophotoluminescent efficiency \\varepsilon LETRGD is proposed. The calibration coefficient in terms of D w for RGDs (GD-302M, Asahi Techno Glass) was obtained using a 60Co γ-ray. The SPR of water to the RGD was calculated by Monte Carlo simulation, and \\varepsilon LETRGD was investigated experimentally using a 70 MeV proton beam. For clinical usage, the residual range R res was used as a quality index to determine the correction factor for the beam quality kQ,{{Q0}}RGD and the LET quenching effect of the RGD kLETRGD . The proposed method was evaluated by measuring D w at different depths in a 200 MeV proton beam. For both non-modulated and modulated proton beams, kQ,{{Q0}}RGD decreases rapidly where R res is less than 4 cm. The difference in kQ,{{Q0}}RGD between a non-modulated and a modulated proton beam is less than 0.5% for the R res range from 0 cm to 22 cm. \\varepsilon LETRGD decreases rapidly at a LET range from 1 to 2 keV µm‑1. In the evaluation experiments, D w using RGDs, Dw,QRGD showed good agreement with that obtained using an ionization chamber and the relative difference was within 3% where R res was larger than 1 cm. The uncertainty budget for Dw,QRGD in a proton beam was estimated to investigate the potential of RGD postal dosimetry in proton therapy. These results demonstrate the feasibility of RGD dosimetry in a therapeutic proton beam and the general versatility of the proposed method. In conclusion, the proposed methodology for RGDs in proton dosimetry is applicable where R res  >  1 cm and the RGD is feasible as a postal audit dosimeter for proton therapy.

  3. Changes in optical properties of polystyrene thin films by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Hyun; Jung, Jin Mook; Choi, Jae Hak [Dept. of of Polymer Science and Engineering, Chungnam National University, Daejeon (Korea, Republic of); Jung, Chan Hee; Hwang, In Tae; Shin, Jun Hwa [Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2017-06-15

    In this study, changes in optical properties of polystyrene (PS) thin films by proton irradiation were investigated. PS thin films were irradiated with 150 keV proton ions at fluences ranging from 1 × 10{sup 15} to 1 × 10{sup 16} ions cm{sup -2}. The chemical structures and optical properties of proton beam-irradiated PS thin films were investigated by using a FT-IR spectrometer, an UVvis spectrophotometer, a photoluminescence (PL) and a fluorescence microscope. The results of the chemical structure analysis revealed that chemical functional groups, such as OH, C=O, and C=C, were formed in the PS films due to the oxidation and formation of carbon clusters by proton beam irradiation. The PL emission was generated and gradually red-shifted with an increasing fluence due to the higher formation of sp2 carbon clusters by proton beam irradiation. The highest PL intensity was obtained at a fluence of 5×10{sup 15} ions cm{sup -2}. The optical band gap of PS calculated by using a Tauc’s plot decreased with increasing the fluence due to the formation of sp2 carbon clusters by proton beam irradiation.

  4. Comparison of dose distribution for proton beams and electrons: advantages and disadvantages; Comparacao de distribuicao de dose para feixes de protons e eletrons: vantagens e desvantagens

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Joao T.M.; Ferreira, Maira B.; Braga, Victor B. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2016-07-01

    This study consists of a simulation of cancer therapy using a beam of protons and electrons. By comparing dose distribution curves for both beams we have showed the advantages and disadvantages of both therapies. The study was performed with Monte Carlo simulations using Geant4 code for a brain tumor, and it was found that the presence of the Bragg peak in proton beam allows a higher dose deposition in tumor and protection of adjacent tissues, while the electron beam has an entry dose in the tissue higher than the proton, yielding to the tissue neighbors of the tumor, unnecessary radiation. Moreover, it was also found significant production of neutrons from the proton beam, showing its main disadvantage. The continuation of this work will add the comparison with clinical beams of photons. (author)

  5. Atomic Beam Merging and Suppression of Alkali Contaminants in Multi Body High Power Targets: Design and Test of Target and Ion Source Prototypes at ISOLDE

    CERN Document Server

    Bouquerel, Elian J A; Lettry, J; Stora, T

    2009-01-01

    The next generation of high power ISOL-facilities will deliver intense and pure radioactive ion beams. Two key issues of developments mandatory for the forthcoming generation of ISOL target-ion source units are assessed and demonstrated in this thesis. The design and production of target and ion-source prototypes is described and dedicated measurements at ISOLDE-CERN of their radioisotope yields are analyzed. The purity of short lived or rare radioisotopes suffer from isobaric contaminants, notably alkalis which are highly volatile and easily ionized elements. Therefore, relying on their chemical nature, temperature controlled transfer lines were equipped with a tube of quartz that aimed at trapping these unwanted elements before they reached the ion source. The successful application yields high alkali-suppression factors for several elements (ie: 80, 82mRb, 126, 142Cs, 8Li, 46K, 25Na, 114In, 77Ga, 95, 96Sr) for quartz temperatures between 300ºC and 1100ºC. The enthalpies of adsorption on quartz were measu...

  6. Scintillation imaging of air during proton and carbon-ion beam irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan); Akagi, Takashi; Yamashita, Tomohiro [Hyogo Ion Beam Medical Center (Japan); Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan)

    2016-10-11

    We previously reported that the luminescence imaging of water during proton or carbon-ion irradiation is possible using a charge-coupled device (CCD) camera, and these luminescence images can be used for the range estimations for these therapies. In the images during these irradiations to water phantoms, we observed scintillation images in the air parts. We conducted analysis of these images during proton and carbon-ion irradiations to use them for beam width estimations. We set profiles on the air part of the luminescence images of water during 100.2 MeV proton and 241.5 MeV/n carbon-ion irradiations. We estimated the widths of the beams from the scintillation images and compared them with those by simulation results. We also estimated the intensity and light spectrum of the scintillation of air and compared with those of the luminescence of water. The estimated widths of the proton and carbon-ion beams from the scintillation images of air were almost the same as those measured with simulations. The intensities of the scintillation of air were 3% and 5% of those of the luminescence of water for the proton and carbon-ion beams, respectively. The light spectrum of the scintillation of air peaked around 350–450 nm while those of luminescence of water showed wide distribution which peaked 450–550 nm. We confirmed that scintillation imaging of air during proton and carbon-ion beam irradiations were possible. The scintillation imaging of air could be used for the width estimations of proton and carbon-ion beams.

  7. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  8. Study of the Clinical Proton Beam Relative Biological Effectiveness at the JINR Phasotron, Dubna

    CERN Document Server

    Vitanova, A; Gaevskii, V N; Molokonov, A G; Spurny, F; Fadeeva, T A; Shmakova, N L

    2002-01-01

    Proton clinical beams contain particles with high linear energy transfer (LET). Secondary heavy charged particles produced from nuclear interactions and degraded protons at the Bragg peak region are particles with high LET. These particles could enhance the Relative Biological Effectiveness (RBE) of the proton beam. We have carried out two radiobiological experiments to investigate the RBE of 150 MeV clinical proton beam. The irradiation of the Chinese Hamster V79 cells were performed at two points of the depth-dose distribution - at the beam entrance and at the Bragg peak. The contribution of the high LET particles to dosimetric and microdosimetric characteristics in the various depth of proton beam was also experimentally studied using the CR-39 track etched detectors. The LET spectra between 10 and 700 keV/{\\mu}m were measured by means of track detectors and the automatic optical image analyzer LUCIA-II. The relative contribution of the high LET particles to ab! sorbed dose increases from several per cent ...

  9. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo [Dongguk University, Gyeongju (Korea, Republic of); Shon, Yun-Hee [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2012-07-15

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  10. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Science.gov (United States)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo; Shon, Yun-Hee

    2012-07-01

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor- β (TGF- β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF- β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused th MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF- β and VEGF transcription.

  11. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    OpenAIRE

    ATLAS Collaboration

    2016-01-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge a...

  12. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    Science.gov (United States)

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  13. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Manzi, Nicholas J [ORNL; Chitnis, Parag V [ORNL; Holt, Ray G [ORNL; Roy, Ronald A [ORNL; Cleveland, Robin O [ORNL; Riemer, Bernie [ORNL; Wendel, Mark W [ORNL

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  14. Beam-on imaging of short-lived positron emitters during proton therapy

    Science.gov (United States)

    Buitenhuis, H. J. T.; Diblen, F.; Brzezinski, K. W.; Brandenburg, S.; Dendooven, P.

    2017-06-01

    In vivo dose delivery verification in proton therapy can be performed by positron emission tomography (PET) of the positron-emitting nuclei produced by the proton beam in the patient. A PET scanner installed in the treatment position of a proton therapy facility that takes data with the beam on will see very short-lived nuclides as well as longer-lived nuclides. The most important short-lived nuclide for proton therapy is 12N (Dendooven et al 2015 Phys. Med. Biol. 60 8923-47), which has a half-life of 11 ms. The results of a proof-of-principle experiment of beam-on PET imaging of short-lived 12N nuclei are presented. The Philips Digital Photon Counting Module TEK PET system was used, which is based on LYSO scintillators mounted on digital SiPM photosensors. A 90 MeV proton beam from the cyclotron at KVI-CART was used to investigate the energy and time spectra of PET coincidences during beam-on. Events coinciding with proton bunches, such as prompt gamma rays, were removed from the data via an anti-coincidence filter with the cyclotron RF. The resulting energy spectrum allowed good identification of the 511 keV PET counts during beam-on. A method was developed to subtract the long-lived background from the 12N image by introducing a beam-off period into the cyclotron beam time structure. We measured 2D images and 1D profiles of the 12N distribution. A range shift of 5 mm was measured as 6  ±  3 mm using the 12N profile. A larger, more efficient, PET system with a higher data throughput capability will allow beam-on 12N PET imaging of single spots in the distal layer of an irradiation with an increased signal-to-background ratio and thus better accuracy. A simulation shows that a large dual panel scanner, which images a single spot directly after it is delivered, can measure a 5 mm range shift with millimeter accuracy: 5.5  ±  1.1 mm for 1  ×  108 protons and 5.2  ±  0.5 mm for 5  ×  108 protons. This makes

  15. Proton beam radiation therapy for prostate cancer-is the hype (and the cost) justified?

    Science.gov (United States)

    Gray, Phillip J; Efstathiou, Jason A

    2013-06-01

    Although in use for over 40 years, proton beam therapy for prostate cancer has only recently come under public scrutiny, due to its increased cost compared to other forms of treatment. While the last decade has seen a rapid accumulation of evidence to suggest that proton beam therapy is both safe and effective in this disease site, a rigorous comparison to other radiotherapy techniques has not yet been completed. In this review, we provide an in-depth look at the evidence both supporting and questioning proton beam therapy's future role in the treatment of prostate cancer, with emphasis on its history, physical properties, comparative clinical and cost effectiveness, advances in its delivery and future promise.

  16. High-energy monoenergetic proton beams from two stage acceleration with a slow laser pulse

    Directory of Open Access Journals (Sweden)

    H. Y. Wang

    2015-02-01

    Full Text Available We present a new regime to generate high-energy quasimonoenergetic proton beams in a “slow-pulse” regime, where the laser group velocity v_{g}proton beams can be generated. It is shown by multidimensional particle-in-cell simulation that quasimonoenergetic proton beams with energy up to hundreds of MeV can be generated at laser intensities of 10^{21}  W/cm^{2}.

  17. High-Efficiency, High-Power Ka-Band Elliptic-Beam Traveling-Wave-Tube Amplifier for Long-Range Space RF Telecommunications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space telecommunications require amplifiers that are efficient, high-power, wideband, small, lightweight, and highly reliable. Currently, helix traveling wave tube...

  18. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Rim [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung Hun; Park, Jong Hoon [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of); Jung, Won Gyun [Heavy-ion Clinical Research Division, Korean Institute of Radiological & Medical Sciences, Seoul 01812 (Korea, Republic of); Lim, Hansang [Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01897 (Korea, Republic of); Kim, Chan Hyeong, E-mail: chkim@hanyang.ac.kr [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2017-06-11

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a {sup 90}Sr beta source, a {sup 60}Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  19. The external proton beam lines and the splitter systems of the CERN SPS

    CERN Document Server

    Evans, Lyndon R; Ijspeert, Albert; de Raad, Bastiaan; Siegel, N; Weisse, E

    1977-01-01

    The exploitation of the CERN Super Proton Synchrotron (SPS) is based on two experimental areas, the West Area and the North Area. The West Area consists of the West Experimental Hall, fed by a slow ejected proton beam of 200 GeV/c maximum momentum and a Neutrino Facility which is fed by protons of 400 GeV/c. Several important detectors are installed in the West Area, the Omega spectrometer, the Big European Bubble Chamber and the heavy liquid bubble chamber Gargamelle. The North Area has been built for physics at 400 GeV/c. At present it consists of two experimental halls, a large multipurpose hall and a smaller hall dedicated to muon physics. The protons are extracted from the SPS in two of the six long straight sections (LSS) and are transported from the underground machine through a system of tunnels to the external targets. Both the beam lines to the West and North Area contain beam splitting stations which divide the slow extracted proton beam into three branches. (0 refs).

  20. The Beam Profile Monitoring System for the IRRAD Proton Facility at the CERN PS East Area

    CERN Document Server

    Gkotse, Blerina; Matli, Emanuele; Ravotti, Federico; Gan, Kock Kiam; Kagan, Harris; Smith, Shane; Warner, Joseph

    2016-01-01

    In High Energy Physics (HEP) experiments, devices are frequently required to withstand a certain radiation level. As a result, detectors and electronics must be irradiated to determine their level of radiation tolerance. To perform these irradiations, CERN built a new irradiation facility in the East Area at the Proton Synchrotron (PS) accelerator. At this facility, named IRRAD, a high-intensity 24 GeV/c proton beam is used. During irradiation, it is necessary to monitor the intensity and the transverse profile of the proton beam. The Beam Profile Monitor (BPM) for IRRAD uses 39-channel pixel detectors to monitor the beam position. These pixel detectors are constructed using thin foil copper pads positioned on a flex circuit. When protons pass through the copper pads, they induce a measurable current. To measure this current and determine the total flux of protons passing through the thin foil copper detectors, a new data acquisition system was designed as well as a new database and on-line display system. In...

  1. Geant4 simulations of proton beam transport through a carbon or beryllium degrader and following a beam line.

    Science.gov (United States)

    van Goethem, M J; van der Meer, R; Reist, H W; Schippers, J M

    2009-10-07

    Monte Carlo simulations based on the Geant4 simulation toolkit were performed for the carbon wedge degrader used in the beam line at the Center of Proton Therapy of the Paul Scherrer Institute (PSI). The simulations are part of the beam line studies for the development and understanding of the GANTRY2 and OPTIS2 treatment facilities at PSI, but can also be applied to other beam lines. The simulated stopping power, momentum distributions at the degrader exit and beam line transmission have been compared to accurate benchmark measurements. Because the beam transport through magnetic elements is not easily modeled using Geant4a connection to the TURTLE beam line simulation program was made. After adjusting the mean ionization potential of the carbon degrader material from 78 eV to 95 eV, we found an accurate match between simulations and benchmark measurements, so that the simulation model could be validated. We found that the degrader does not completely erase the initial beam phase space even at low degraded beam energies. Using the validation results, we present a study of the usability of beryllium as a degrader material (mean ionization potential 63.7 eV). We found an improvement in the transmission of 30-45%, depending on the degraded beam energy, the higher value for the lower energies.

  2. Dosimetric characterization of CVD diamonds irradiated with 62 MeV proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P. [Laboratori Nazionali del Sud, INFN, Catania (Italy)]. E-mail: cirrone@lns.infn.it; Cuttone, G. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Lo Nigro, S. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita di Catania (Italy); CSFNSM Centro Siciliano di Fisica Nucleare e Struttura della MAteria, Catania (Italy); Mongelli, V. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Scuola di Specializzazione in Fisica Sanitaria, Universita di Catania (Italy); CSFNSM Centro Siciliano di Fisica Nucleare e Struttura della MAteria, Catania (Italy); Raffaele, L. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Sabini, M.G. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Azienda Ospedaliera Cannizzaro, Catania (Italy); Valastro, L. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Scuola di Specializzazione in Fisica Sanitaria, Universita di Catania (Italy); Bucciolini, M. [Dipartimento di Fisiopatologia Clinica, Universita di Florence (Italy); Onori, S. [Istituto Superiore di Sanita, Rome (Italy)

    2005-10-21

    Diamond is potentially a very suitable material for use as on-line radiation dosimeter. Recent advances in the synthesis of polycrystalline diamond by chemical vapor deposition (CVD) techniques have produced material with electronic properties suitable for dosimetry applications. In this work the possibility to use a segmented commercial CVD detector in the dosimetry of proton beams has been investigated. The response as function of dose, dose rate, the priming and the rise time have been investigated thoroughly. This study shows the suitability of CVD diamond for dosimetry of clinical 62 MeV proton beams.

  3. The potential of proton beam radiation therapy in lung cancer (including mesothelioma)

    Energy Technology Data Exchange (ETDEWEB)

    Bjelkengren, Goeran [Univ. Hospital, Malmoe (Sweden). Dept. of Oncology; Glimelius, Bengt [Karolinska Inst., Stockholm (Sweden). Dept. of Oncology and Pathology; Akademiska sjukhuset, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology

    2005-12-01

    A Swedish group of oncologists and hospital physicists have estimated the number of patients in Sweden suitable for proton beam therapy. The estimations have been based on current statistics of tumour incidence, number of patients potentially eligible for radiation treatment, scientific support from clinical trials and model dose planning studies and knowledge of the dose-response relations of different tumours and normal tissues. It is estimated that about 350 patients with lung cancer and about 20 patients with mesothelioma annually may benefit from proton beam therapy.

  4. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takahisa [Department of Radiation Oncology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo (Japan); Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Saito, Soichiro; Fujimori, Hiroaki [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Matsushita, Keiichiro; Nishio, Teiji [Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima-shi, Hiroshima (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, Chiba-shi, Chiba (Japan); Masutani, Mitsuko, E-mail: mmasutan@nagasaki-u.ac.jp [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2016-09-09

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.

  5. Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams

    Science.gov (United States)

    Emslie, A. G.; Brown, J. C.

    1985-01-01

    The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.

  6. Performance of a fast acquisition system for in-beam PET monitoring tested with clinical proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Piliero, M.A., E-mail: piliero@pi.infn.it [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Bisogni, M.G. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Cerello, P. [INFN, sezione di Torino (Italy); Department of Physics, University of Torino (Italy); Del Guerra, A. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Fiorina, E. [INFN, sezione di Torino (Italy); Department of Physics, University of Torino (Italy); Liu, B.; Morrocchi, M. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Pennazio, F. [INFN, sezione di Torino (Italy); Department of Physics, University of Torino (Italy); Pirrone, G. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Wheadon, R. [INFN, sezione di Torino (Italy)

    2015-12-21

    In this work we present the performance of a fast acquisition system for in-beam PET monitoring during the irradiation of a PMMA phantom with a clinical proton beam. The experimental set-up was based on 4 independent detection modules. Two detection modules were placed at one side of a PMMA phantom and the other two modules were placed at the opposite side of the phantom. One detection module was composed of a Silicon Photon Multiplier produced by AdvanSiD coupled to a single scintillating LYSO crystal. The read-out system was based on the TOFPET ASIC managed by a Xilinx ML605 FPGA Evaluation Board (Virtex 6). The irradiation of the PMMA phantom was performed at the CNAO hadrontherapy facility (Pavia, Italy) with a 95 MeV pulsed proton beam. The pulsed time structure of the proton beam was reconstructed by each detection module. The β{sup +} annihilation peak was successfully measured and the production of β{sup +} isotopes emitters was observed as increasing number of 511 keV events detected during irradiation. Finally, after the irradiation, the half lives of the {sup 11}C and {sup 15}O radioactive isotopes were estimated.

  7. Performance of a fast acquisition system for in-beam PET monitoring tested with clinical proton beams

    Science.gov (United States)

    Piliero, M. A.; Bisogni, M. G.; Cerello, P.; Del Guerra, A.; Fiorina, E.; Liu, B.; Morrocchi, M.; Pennazio, F.; Pirrone, G.; Wheadon, R.

    2015-12-01

    In this work we present the performance of a fast acquisition system for in-beam PET monitoring during the irradiation of a PMMA phantom with a clinical proton beam. The experimental set-up was based on 4 independent detection modules. Two detection modules were placed at one side of a PMMA phantom and the other two modules were placed at the opposite side of the phantom. One detection module was composed of a Silicon Photon Multiplier produced by AdvanSiD coupled to a single scintillating LYSO crystal. The read-out system was based on the TOFPET ASIC managed by a Xilinx ML605 FPGA Evaluation Board (Virtex 6). The irradiation of the PMMA phantom was performed at the CNAO hadrontherapy facility (Pavia, Italy) with a 95 MeV pulsed proton beam. The pulsed time structure of the proton beam was reconstructed by each detection module. The β+ annihilation peak was successfully measured and the production of β+ isotopes emitters was observed as increasing number of 511 keV events detected during irradiation. Finally, after the irradiation, the half lives of the 11C and 15O radioactive isotopes were estimated.

  8. Magnet Design for the ISIS Second Target Station Proton Beam Line

    CERN Document Server

    Thomas, Chris; Jago, Stephen

    2005-01-01

    The ISIS facility, based at the Rutherford Appleton Laboratory in the UK, is an intense source of neutrons and muons for condensed matter research. The accelerator facility delivers an 800 MeV proton beam of 2.5x1013 protons per pulse at 50 Hz to the present target station. As part of a facility upgrade, it is planned to share the source with a second, 10 Hz, target station. The beam line supplying this target will extract from the existing target station beam line. Electromagnetic Finite Element Modelling techniques have been used to design the magnets required to meet the specified beam line optics. Kicker, septum, dipole, quadrupole, and steering magnets are covered. The magnet design process, involving 2D and 3D modelling, the calculation of ideal shims and chamfers, choice of steel, design of conducting coils, handling of heating issues and eddy current effects, is discussed.

  9. Polarimeters for the AGS polarized-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed.

  10. 1000 MeV Proton beam therapy facility at Petersburg Nuclear Physics Institute Synchrocyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Abrosimov, N K [Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Gavrikov, Yu A [Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Ivanov, E M [Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Karlin, D L [Central Research Institute of Roentgenology and Radiology, 197758, St.Petersburg (Russian Federation); Khanzadeev, A V [Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Yalynych, N N [Central Research Institute of Roentgenology and Radiology, 197758, St. Petersburg (Russian Federation); Riabov, G A [Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Seliverstov, D M [Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Vinogradov, V M [Central Research Institute of Roentgenology and Radiology, 197758, St.Petersburg (Russian Federation)

    2006-05-15

    Since 1975 proton beam of PNPI synchrocyclotron with fixed energy of 1000 MeV is used for the stereotaxic proton therapy of different head brain diseases. 1300 patients have been treated during this time. The advantage of high energy beam (1000 MeV) is low scattering of protons in the irradiated tissue. This factor allows to form the dose field with high edge gradients (20%/mm) that is especially important for the irradiation of the intra-cranium targets placed in immediate proximity to the life critical parts of the brain. Fixation of the 6 0mm diameter proton beam at the isodose centre with accuracy of {+-}1.0 mm, two-dimensional rotation technique of the irradiation provide a very high ratio of the dose in the irradiation zone to the dose at the object's surface equal to 200:1. The absorbed doses are: 120-150 Gy for normal hypophysis, 100-120 Gy for pituitary adenomas and 40-70 Gy for arterio-venous malformation at the rate of absorbed dose up to 50 Gy/min. In the paper the dynamics and the efficiency of 1000 MeV proton therapy treatment of the brain deceases are given. At present time the feasibility study is in progress with the goal to create a proton therapy on Bragg peak by means of the moderation of 1000 MeV proton beam in the absorber down to 200 MeV, energy required for radiotherapy of deep seated tumors.

  11. SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, W; Siderits, R; McKenna, M; Khan, A; Yue, N [Rutgers University, New Brunswick, NJ (United States); McDonough, J; Yin, L; Teo, B [University of Pennsylvania, Philadelphia, PA (United States); Fisher, T [Memorial Medical Center, Modesto, CA (United States)

    2014-06-01

    Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scanned on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy.

  12. Clinical results of proton-beam therapy for locoregionally advanced esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Masashi; Sugahara, Shinji; Nakayama, Hidetsugu; Okumura, Toshiyuki; Tsuboi, Koji; Sakurai, Hideyuki [Proton Medical Research Center, Univ. of Tsukuba, Ibaraki (Japan); Dept. of Radiation Oncology, Univ. of Tsukuba, Ibaraki (Japan); Hashii, Haruko [Dept. of Radiation Oncology, Univ. of Tsukuba, Ibaraki (Japan); Nakahara, Akira [Dept. of Gastroenterological Medicine, Univ. of Tsukuba, Ibaraki (Japan); Terashima, Hideo [Dept. of Surgery, Univ. of Tsukuba, Ibaraki (Japan); Tokuuye, Koichi [Proton Medical Research Center, Univ. of Tsukuba, Ibaraki (Japan); Dept. of Radiology, Tokyo Medical Univ., Shinkuku, Tokyo (Japan)

    2010-09-15

    Purpose: To evaluate the efficacy and safety of proton-beam therapy for locoregionally advanced esophageal cancer. Patients and Methods: The subjects were 51 patients with esophageal cancer who were treated between 1985 and 2005 using proton beams with or without X-rays. All but one had squamous cell carcinoma. Of the 51 patients, 33 received combinations of X-rays (median 46 Gy) and protons (median 36 GyE) as a boost. The median total dose of combined X-rays and proton radiation for these 33 patients was 80 GyE (range 70-90 GyE). The other 18 patients received proton-beam therapy alone (median 79 GyE, range 62-98 GyE). Results: Treatment interruption due to radiation-induced esophagitis or hematologic toxicity was not required for any patient. The overall 5-year actuarial survival rate for the 51 patients was 21.1% and the median survival time was 20.5 months (95% confidence interval 10.9-30.2). Of the 51 patients, 40 (78%) showed a complete response within 4 months after completing treatment and seven (14%) showed a partial response, giving a response rate of 92% (47/51). The 5-year local control rate for all 51 patients was 38.0% and the median local control time was 25.5 months (95% confidence interval 14.6-36.3). Conclusion: The results suggest that proton-beam therapy is an effective treatment for patients with locally advanced esophageal cancer. Further studies are required to determine the optimal total dose, fractionation schedules, and best combination of proton therapy with chemotherapy. (orig.)

  13. Observation of impurity free monoenergetic proton beams from the interaction of a CO2 laser with a gaseous target a)

    Science.gov (United States)

    Najmudin, Z.; Palmer, C. A. J.; Dover, N. P.; Pogorelsky, I.; Babzien, M.; Dangor, A. E.; Dudnikova, G. I.; Foster, P. S.; Green, J. S.; Ispiriyan, M.; Neely, D.; Polyanskiy, M. N.; Schreiber, J.; Shkolnikov, P.; Yakimenko, V.

    2011-05-01

    A monoenergetic proton beam is observed from the interaction of a short-pulse infrared (λ = 10.6 μm) laser at intensity I = 6 × 1015 W cm-2 with a gas jet target. The proton beam is found to have narrow energy spread (˜ 4% ), high spectral brightness (˜ 1012 protons/MeV/sr), low normalized emittance (ɛn ≈ 8 nm rad), and high contrast (> 200 × over noise). The narrow energy spread and low levels of impurity makes this method an interesting route for high-repetition rate high quality proton beam production.

  14. Optimization, Characterization and Commissioning of a Novel Uniform Scanning Proton Beam Delivery System

    Science.gov (United States)

    Mascia, Anthony Edward

    Purpose: To develop and characterize the required detectors for uniform scanning optimization and characterization, and to develop the methodology and assess their efficacy for optimizing, characterizing and commissioning a novel proton beam uniform scanning system. Methods and Materials: The Multi Layer Ion Chamber (MLIC), a 1D array of vented parallel plate ion chambers, was developed in-house for measurement of longitudinal profiles. The Matrixx detector (IBA Dosimetry, Germany) and XOmat V film (Kodak, USA) were characterized for measurement of transverse profiles. The architecture of the uniform scanning system was developed and then optimized and characterized for clinical proton radiotherapy. Results: The MLIC detector significantly increased data collection efficiency without sacrificing data quality. The MLIC was capable of integrating an entire scanned and layer stacked proton field with one measurement, producing results with the equivalent spatial sampling of 1.0mm. The Matrixx detector and modified 1D water phantom jig improved data acquisition efficiency and complemented the film measurements. The proximal, central and distal proton field planes were measured using these methods, yielding better than 3% uniformity. The binary range modulator was programmed, optimized and characterized such that the proton field ranges were separated by approximately 5.0mm modulation width and delivered with an accuracy of 1.0mm in water. Several wobbling magnet scan patterns were evaluated and the raster pattern, spot spacing, scan amplitude and overscan margin were optimized for clinical use. Conclusion: Novel detectors and methods are required for clinically efficient optimization and characterization of proton beam scanning systems. Uniform scanning produces proton beam fields that are suited for clinical proton radiotherapy.

  15. Operational Performance of the LHC Proton Beams with the SPS Low Transition Energy Optics

    CERN Document Server

    Papaphilippou, Y; Argyropoulos, T; Bartmann, W; Bartosik, H; Bohl, T; Bracco, C; Cettour-Cave, S; Cornelis, K; Drosdal, L; Esteban Muller, J; Goddard, B; Guerrero, A; H¨ofle, W; Kain, V; Rumolo, G; Salvant, B; Shaposhnikova, E; Timko, H; Valuch, D; Vanbavinckhove, G; Wenninger, J; Gianfelice-Wendt, E

    2013-01-01

    An optics in the SPS with lower integer tunes (20 versus 26) was proposed and introduced in machine studies since 2010, as a measure for increasing transverse and longitudinal instability thresholds, especially at low energy, for the LHC proton beams. After two years of machine studies and careful optimisation, the new Q20 optics became operational in September 2012 and steadily delivered beam to the LHC until the end of the run. This paper reviews the operational performance of the Q20 optics with respect to transverse and longitudinal beam characteristics in the SPS, enabling high brightness beams injected into the LHC. Aspects of longitudinal beam stability, transmission, high-energy orbit control and beam transfer are discussed.

  16. Experimental results of beryllium exposed to intense high energy proton beam pulses

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Butcher, M; Guinchard, M; Calviani, M; Losito, R; Roberts, S; Kuksenko, V; Atherton, A; Caretta, O; Davenne, T; Densham, C; Fitton, M; Loveridge, J; O'Dell, J

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and co...

  17. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K.; Hurh, P.; Zwaska, R.; Atherton, A.; Caretta, O.; Davenne,T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Roberts, S.; Kuksenko, V.; Butcher, M.; Calviani, M.; Guinchard, M.; Losito, R.

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  18. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  19. Quadrupole lens alignment with improved STIM and secondary electron imaging for Proton Beam Writing

    Science.gov (United States)

    Qureshi, Sarfraz; Raman, P. Santhana; Stegmaier, Alrik; van Kan, Jeroen A.

    2017-08-01

    Minimal proximity effect coupled with uniform energy deposition in thin polymer layers make Proton Beam Writing (PBW) an intuitive direct-write lithographic technique. Feature sizes matching the focused beam spot size have been fabricated in photoresists down to 19 nm. Reproducible sub-10 nm beam focusing will make PBW a promising contender for sub-10 nm lithography. In this paper, we present beam size characterization by imaging a PBW resolution standard using transmitted/scattered ions and secondary electrons. Using Scanning Transmission Ion Microscopy (STIM) spectra for 1 and 2 MeV H2+ beams, we experimentally measure the thickness of the resolution standard to be 0.9 ± 0.1 μm, applying two independent calibration methods, which match the original intended thickness during fabrication. Through bias optimization of a Micro-Channel Plate (MCP), we show a tuneable secondary electron detection per proton for imaging with a maximum of 75% e/p for a beam of 1 MeV H2+. Based on STIM mode beam size measurement, we discuss considerations for quadrupole system alignment in order to remove higher order translational and rotational misalignments critical to achieve sub-40 nm spot sizes. A spot size of 13 × 32 nm2 (STIM) was achieved using a newly developed interface, capable of autofocusing ion beams and performing PBW.

  20. First biological experiments at a vertical proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Distel, L.; Distel, B.; Roessner, B.; Schwotzer, G.; Sauer, R. [Erlangen-Nuernberg Univ., Erlangen (Germany). Klinik fuer Strahlentherapie; Eyrich, W.; Fritsch, M.; Teufel, A. [Erlangen-Nuernberg Univ., Erlangen (Germany). Physikalisches Inst.; Besserer, J.; Boer, J. de; Moosburger, M.; Quicken, P. [Muenchen Univ. (Germany). Sektion Physik

    1997-09-01

    At the tandem accelerator laboratories in Munich and Erlangen vertical beamlines were installed last year. The advantage of a vertical beamline is that cells can be irradiated in a medium at 37 C and with simultaneous gassing, therefore also in physiological conditions. First experiments were carried out at the accelerator in Munich with a proton energy of 25 MeV. Chinese Hamster cells B14 were irradiated in Petri dishes where the base was of 1 mm polystyrol or 2 {mu}m hostaphan foils. The cell survival was measured by the cell survival assay and the repopulation of the colonies by the total colony volume. A solution of DNA with protein was irradiated to study DNA double strand breaks by constant field gel electrophoresis and DNA protein crosslinks by the nitrocellulose filter assay. For cell survival, total colony volume and DNA double-strand breaks X-rays and protons gave corresponding results, while with protons, higher yields of DNA-protein crosslinks were observed than with X-rays. (orig.)

  1. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams

    Science.gov (United States)

    Granville, Dal A.; Sahoo, Narayan; Sawakuchi, Gabriel O.

    2016-02-01

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements.

  2. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    Directory of Open Access Journals (Sweden)

    N. Simos

    2016-11-01

    Full Text Available A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences ≥5×10^{20}  p/cm^{2}. The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels (∼5×10^{18}

  3. High-power test and thermal characteristics of a new radio-frequency quadrupole cavity for the Japan Proton Accelerator Research Complex linac

    Directory of Open Access Journals (Sweden)

    Yasuhiro Kondo

    2013-04-01

    Full Text Available We performed a high-power test of a new radio-frequency quadrupole (RFQ II for the J-PARC linac. RFQ II was developed as a spare RFQ because the operating J-PARC RFQ has suffered from a sparking problem. First, the conditioning of RFQ II was carried out; after 50 h of conditioning, RFQ II became very stable with a nominal power and duty of 330 kW and 3%, respectively. Next the thermal properties were measured because the resonant frequency of RFQ II is tuned by changing the temperature of the cooling water. The frequency response was measured and compared to finite-element method simulation results, confirming that the simple two-dimensional model reproduces the experimental data well. The differences in the field distribution with changes in the rf loading and the cooling-water temperature were also measured, and no serious field distortion was observed. Therefore, we conclude that RFQ II can perform well as a high-power rf cavity.

  4. Delayed and In-beam Spectroscopy on Francium and Astatine Nuclei at the Proton Drip Line

    Energy Technology Data Exchange (ETDEWEB)

    Uusitalo, J.; Jakobsson, U. [Department of Physics, University of Jyvaeskylae (Finland); Collaboration: RITU-Gamma Gollaboration

    2011-11-30

    Delayed and in-beam spectroscopy on francium and astatine nuclei at and beyond the proton drip line has been performed. In neutron deficient astatine nuclei a shift to deformed shapes as a function of decreasing neutron has been obtained. In neutron deficient francium isotope the same shift is evident.

  5. Delayed and In-beam Spectroscopy on Francium and Astatine Nuclei at the Proton Drip Line

    Science.gov (United States)

    Uusitalo, J.; Jakobsson, U.

    2011-11-01

    Delayed and in-beam spectroscopy on francium and astatine nuclei at and beyond the proton drip line has been performed. In neutron deficient astatine nuclei a shift to deformed shapes as a function of decreasing neutron has been obtained. In neutron deficient francium isotope the same shift is evident.

  6. A polarimeter for GeV protons of recirculating synchrotron beams

    CERN Document Server

    Bauer, F

    1999-01-01

    A polarimeter for use in recirculating beams of proton synchrotrons with energies from 300 MeV up to several GeV has been developed. The polarimetry is based on the asymmetry measurement of elastic p->p scattering on an internal CH sub 2 fiber target. The forward going protons are detected with two scintillator systems on either side of the beam pipe close to the angle THETA sub f of maximum analyzing power A sub N. Each one operates in coincidence with a broad (DELTA THETA sub b =21.4 deg. ), segmented detector system for the recoil proton of kinematically varying direction THETA sub b; this position resolution is also used for a concurrent measurement of the p->C and nonelastic p->p background. The CH sub 2 fiber can be replaced by a carbon fiber for detailed background studies; 'false' asymmetries are accounted for with a rotation of the polarimeter around the beam axis. Polarimetry has been performed in the internal beam of the Cooler Synchrotron COSY at fixed energies as well as during proton acceleratio...

  7. Dosimetric characterization of CVD diamonds in photon, electron and proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Lo Nigro, S. [Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania, Italia (Italy); Mongelli, V. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Raffaele, L. [Istituto di Radiologia, Universita degli Studi di Catania (Italy); Sabini, M.G. [Rem Radioterapia S.r.l., Catania (Italy)

    2006-01-15

    The purpose of this work is the characterization, in an on line configuration, of the dosimetric response of a commercial CVD diamond. The study shows the possibility of using CVD diamond for dosimetric purposes with clinical, high-energy electron (4-15 MeV), photon (6-15 MV) and proton (62 MeV) beams.

  8. Microdosimetric Characteristics of the Clinical Proton Beams at the JINR Phasotron, Dubna

    CERN Document Server

    Vlcek, B; Spurny, F

    2002-01-01

    The contribution of the high LET particles to dosimetric and microdosimetric characteristics of 150 and 205 MeV clinical proton beams was experimentally studied using track etched detectors. Secondary heavy charged particles produced from nuclear interactions and degraded protons at the Bragg peak region are particles with high LET. The method of the LET spectra measurement with track etched detectors allows one to determine the contribution of high LET particles to dosimetric characteristics of clinical proton beams: absorbed dose, equivalent dose and the value of the Relative Biological Effectiveness (RBE). Track detectors were irradiated in the various depth of clinical proton beams with the primary energies of 150 and 205 MeV. The LET spectra between 10 and 700 keV/m were measured by means of CR-39 track etched detectors and the automatic optical image analyzer LUCIA-II. The relative contribution of the high LET particles to absorbed dose increases from several per cent at the beam entrance to several ten...

  9. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ye [University of Science and Technology of China, Hefei, Anhui 230029 (China); Institute of High Energy Physics, CAS, Yuquan Road 19B, Beijing 100049 (China); Tang, Jingyu, E-mail: tangjy@ihep.ac.cn [University of Science and Technology of China, Hefei, Anhui 230029 (China); Institute of High Energy Physics, CAS, Yuquan Road 19B, Beijing 100049 (China); Yang, Zheng; Jing, Hantao [Institute of High Energy Physics, CAS, Yuquan Road 19B, Beijing 100049 (China)

    2014-02-11

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×10{sup 4} protons per cycle or 5×10{sup 5} protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  10. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.; Hanton, F.; Naughton, K.; Lewis, C. L. S.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Brauckmann, S.; Giesecke, A. L.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany)

    2016-05-15

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  11. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams

    Science.gov (United States)

    Haberberger, Dan; Tochitsky, Sergei; Fiuza, Frederico; Gong, Chao; Fonseca, Ricardo A.; Silva, Luis O.; Mori, Warren B.; Joshi, Chan

    2012-01-01

    Compact and affordable ion accelerators based on laser-produced plasmas have potential applications in many fields of science and medicine. However, the requirement of producing focusable, narrow-energy-spread, energetic beams has proved to be challenging. Here we demonstrate that laser-driven collisionless shocks can accelerate proton beams to ~20MeV with extremely narrow energy spreads of about 1% and low emittances. This is achieved using a linearly polarized train of multiterawatt CO2 laser pulses interacting with a gas-jet target. Computer simulations show that laser-heated electrons launch a collisionless shock that overtakes and reflects the protons in the slowly expanding hydrogen plasma, resulting in a narrow energy spectrum. Simulations predict the production of ~200MeV protons needed for radiotherapy by using current laser technology. These results open a way for developing a compact and versatile, high-repetition-rate ion source for medical and other applications.

  12. Induction of surface modification of polytetrafluoroethylene with proton ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Noh, I. S.; Kim, H. R.; Choi, Y. J.; Park, H. S. [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2007-04-15

    Cardiovascular disease is one of the leading causes of the death in the USA and developed countries. More than 570,000 artery bypass graft surgeries per USA are performed each year, though percutaneous devices have abounded in extreme cases. Based on the surgery follow-ups, large diameter expanded polytetrafluoroethylene (ePTFE) (>5 mm) are clinically employed with good results but its clinical applications in smaller vessels is still problematic due to thrombosis and neointima formation. Achievement of high patency grafts has been to some extent achieved by numerous methods of surface modification techniques, but its results are less than its initial hopes. As examples, endothelial cells coated on the luminal surface of ePTFE has demonstrated limited success after recirculation. Surface modifications of PTFE film with either argon ion beam or UV light from Xe-excimer lamp were reported to increase its interaction with vascular endothelial cell. Surface modification of poly(lactide-co-glycolide)[PLGA] is also very important in tissue engineering, in where induction of its initial high cellular adhesion and spreading is a critical step for development of tissue engineering medical products. We previously reported tissue engineering of the hybrid ePTFE scaffold by seeding smooth muscle cells and subsequently evaluation of its tissue regeneration behaviors and stabilities with circulation of pulsatile flow. To improve its tissue engineering more quickly, we here performed surface modification of ePTFE and porous PLGA scaffold and evaluated its subsequent chemical and biological properties after treating its surface with low energy ion beams. The porous ePTFE was prepared in a round shape (diameter = 1 cm) and dried after organic solvent extraction for ion beam treatment. Another porous PLGA layers (d = 1 cm, t = 1 cm with approximately 92% porosity) were fabricated and treated its surface by irradiating low energy either nitrogen or argon ion beams (1 keV, 1x1015 ions

  13. ACCELERATORS: Design and simulation of a beam position monitor for the high current proton linac

    Science.gov (United States)

    Ruan, Yu-Fang; Xu, Tao-Guang; Fu, Shi-Nian

    2009-03-01

    In this paper, the 2-D electrostatic field software, POISSON, is used to calculate the characteristic impedance of a BPM (beam position monitor) for a high current proton linac. Furthermore, the time-domain 3-D module of MAFIA with a beam microbunch at a varying offset from the axis is used to compute the induced voltage on the electrodes as a function of time. Finally, the effect of low β beams on the induced voltage, the sensitivity and the signal dynamic range of the BPM are discussed.

  14. A study of the energy deposition profile of proton beams in materials of hadron therapeutic interest.

    Science.gov (United States)

    Garcia-Molina, Rafael; Abril, Isabel; de Vera, Pablo; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2014-01-01

    The energy delivered by a swift proton beam in materials of interest to hadron therapy (liquid water, polymethylmethacrylate or polystyrene) is investigated. An explicit condensed-state description of the target excitation spectrum based on the dielectric formalism is used to calculate the energy-loss rate of the beam in the irradiated materials. This magnitude is the main input in the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids) used to evaluate the dose as a function of the penetration depth and radial distance from the beam axis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Using Time Separation of Signals to Obtain Independent Proton and Antiproton Beam Position Measurements Around the Tevatron

    CERN Document Server

    Webber, Robert C

    2005-01-01

    Independent position measurement of the counter-circulating proton and antiproton beams in the Tevatron presents a challenge to upgrading the Tevatron Beam Position Monitor (BPM) system. The inherent directionality of the Tevatron BPM pickup design provides 26dB isolation between signals from the two beams. At the present typical 10:1 proton-to-antiproton bunch intensity ratio, this isolation alone is insufficient to support millimeter accuracy antiproton beam position measurements due to interfering proton signals. An accurate and manageable solution to the interfering signal problem is required for antiproton measurements now and, as machine improvements lead to increased antiproton intensity, will facilitate future elimination of antiproton bias on proton beam position measurements. This paper discusses the possibilities and complications of using time separation of the two beam signals at the numerous Tevatron BPM locations and given the dynamic longitudinal conditions of Tevatron operation. Results of me...

  16. Technical Note: Dosimetric characteristics of the ocular beam line and commissioning data for an ocular proton therapy planning system at the Proton Therapy Center Houston.

    Science.gov (United States)

    Titt, Uwe; Suzuki, Kazumichi; Li, Yupeng; Sahoo, Narayan; Gillin, Michael T; Zhu, Xiaorong R

    2017-12-01

    To systematically analyze and present the properties of a small-field, double-scattering proton beam line intended to be used for the treatment of ocular cancer, and to provide configuration data for commission of the Eclipse Ocular Proton Planning System. Measurements were made using ionization chambers, diodes, and films to determine dose profiles and output factors of the proton beams of the beam line at the Proton Therapy Center Houston. In parallel, Monte Carlo simulations were performed to validate the measured data and to provide additional insight into detailed beam parameters that are hard to measure, such as field size factors and a comparison of output factors as a function of circular and rectangular fields. The presented data comprise depth dose profiles, including distal and proximal profiles used to configure the Eclipse Ocular Proton Planning system, distal fall-off widths, lateral profiles and penumbrae sizes, as well as output factors as a function of field size, SOBP width, range shifter thickness, snout position, and source-to-surface distance. We have completed a comprehensive characterization of the beam line. The data will be useful to characterize proton beams in clinical and experimental small-field applications. © 2017 American Association of Physicists in Medicine.

  17. Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron

    Science.gov (United States)

    Barranco García, Javier; Gilardoni, Simone

    2011-03-01

    The proton beams used for the fixed target physics at the Super Proton Synchrotron (SPS) are extracted from the Proton Synchrotron (PS) by a multiturn technique called continuous transfer (CT). During the CT extraction, large losses are observed in locations where the machine aperture should be large enough to accommodate the circulating beam. This limits the maximum intensity deliverable due to the induced stray radiation outside the PS tunnel. Scattered particles from the interaction with the electrostatic septum are identified as the possible source of these losses. This article presents a detailed study aiming to understand the origin of losses and propose possible cures. The simulations could reproduce accurately the beam loss pattern measured in real machine operation and determine the beam shaving, intrinsic to the extraction process, as the cause for the unexpected losses. Since these losses are unavoidable, the proposed solution implies a new optics scheme displacing the losses to a region with better shielding. New simulations demonstrate the satisfactory performance of the new extraction optics and its suitability to be implemented in the machine. Finally, beam loss measurements in these new operation conditions confirmed the previous simulation results.

  18. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  19. Improved design of proton source and low energy beam transport line for European Spallation Source.

    Science.gov (United States)

    Neri, L; Celona, L; Gammino, S; Mascali, D; Castro, G; Torrisi, G; Cheymol, B; Ponton, A; Galatà, A; Patti, G; Gozzo, A; Lega, L; Ciavola, G

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  20. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Directory of Open Access Journals (Sweden)

    Abigail T. Berman

    2015-07-01

    Full Text Available Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT, through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC, as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  1. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Abigail T., E-mail: abigail.berman@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 (United States); James, Sara St.; Rengan, Ramesh [Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA 98195 (United States)

    2015-07-02

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  2. Fabrication of micro-prominences on PTFE surface using proton beam writing

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akane, E-mail: ogawa.akane@jaea.go.jp [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan); Satoh, Takahiro; Koka, Masashi [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan); Kobayashi, Tomohiro [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 350-0198 (Japan); Kamiya, Tomihiro [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan)

    2013-07-01

    Polytetrafluoroethylene (PTFE) is a typical fluoropolymer and it has several desirable technological properties such as electrical insulation, solid lubrication etc. However, the conventional microstructuring methods have not been well applied to PTFE due to its chemical inertness. Some effective micromachining using synchrotron radiation or ion beam irradiation has been reported. In this study, we create micro-prominences by raising the original surface using proton beam writing (PBW) without chemical etching. A conical prominence was formed by spiral drawing from the center with a 3 MeV proton beam. The body was porous, and the bulk PTFE below the prominence changed to fragmented structures. With decreasing writing speed, the prominence became taller but the height peaked. The prominence gradually reduced in size after the speed reached the optimum value. We expect that these porous projections with high aspect ratio will be versatile in medical fields and microelectromechanical systems (MEMS) technology.

  3. Efficient calculation of local dose distributions for response modeling in proton and heavier ion beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Hahn, Ute; Kiderlen, Markus

    2014-01-01

    We present an algorithm for fast and accurate computation of the local dose distribution in MeV beams of protons, carbon ions or other heavy charged particles. It uses compound Poisson modeling of track interaction and successive convolutions for fast computation. It can handle arbitrary complex ...... mixed particle fields over a wide range of fluences. Since the local dose distribution is the essential part of several approaches to model detector efficiency and cellular response it has potential use in ion-beam dosimetry, radiotherapy, and radiobiology.......We present an algorithm for fast and accurate computation of the local dose distribution in MeV beams of protons, carbon ions or other heavy charged particles. It uses compound Poisson modeling of track interaction and successive convolutions for fast computation. It can handle arbitrary complex...

  4. Control of laser-accelerated proton beams by modifying the target density with ASE

    Energy Technology Data Exchange (ETDEWEB)

    Yogo, A.; Kiriyama, H.; Mori, M.; Esirkepov, T.Zh.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A.S.; Nakai, Y.; Shimomura, T.; Tanoue, M.; Akutsu, A.; Okada, H.; Motomura, T.; Kondo, S.; Kanazawa, S.; Bulanov, S.V.; Bolton, P.R.; Daido, H. [Photo-Medical Research Center and Advanced Photon Research Center, JAEA, Kyoto (Japan); Nagatomo, H. [Osaka Univ., Institute of Laser Engineering (Japan)

    2009-11-15

    We demonstrate laser-ion acceleration from a near-critical density plasma, using amplified spontaneous emission (ASE) to convert a solid foil target into a lower-density target. In order to investigate the target density dependence of the laser-ion acceleration, two cases were investigated for which the ASE intensity differed by three orders of magnitude. In the low contrast case the beam centre for higher energy protons is shifted closer to the laser-propagation direction of 45 degrees, while the centre of lower-energy beam remains near the target normal direction. We show that a near-critical density plasma can be used to control proton beam direction based on its energy. (authors)

  5. Response of synthetic diamond detectors in proton, carbon, and oxygen ion beams.

    Science.gov (United States)

    Rossomme, Séverine; Marinelli, Marco; Verona-Rinati, Gianluca; Romano, Francesco; Cirrone, Pablo Antonio Giuseppe; Kacperek, Andrzej; Vynckier, Stefaan; Palmans, Hugo

    2017-10-01

    In this work, the LET-dependence of the response of synthetic diamond detectors is investigated in different particle beams. Measurements were performed in three nonmodulated particle beams (proton, carbon, and oxygen). The response of five synthetic diamond detectors was compared to the response of a Markus or an Advanced Markus ionization chamber. The synthetic diamond detectors were used with their axis parallel to the beam axis and without any bias voltage. A high bias voltage was applied to the ionization chambers, to minimize ion recombination, for which no correction is applied (+300 V and +400 V were applied to the Markus and Advanced Markus ionization chambers respectively). The ratio between the normalized response of the synthetic diamond detectors and the normalized response of the ionization chamber shows an under-response of the synthetic diamond detectors in carbon and oxygen ion beams. No under-response of the synthetic diamond detectors is observed in protons. For each beam, combining results obtained for the five synthetic diamond detectors and considering the uncertainties, a linear fit of the ratio between the normalized response of the synthetic diamond detectors and the normalized response of the ionization chamber is determined. The response of the synthetic diamond detectors can be described as a function of LET as (-6.22E-4 ± 3.17E-3) • LET + (0.99 ± 0.01) in proton beam, (-2.51E-4 ± 1.18E-4) • LET + (1.01 ± 0.01) in carbon ion beam and (-2.77E-4 ± 0.56E-4) • LET + (1.03 ± 0.01) in oxygen ion beam. Combining results obtained in carbon and oxygen ion beams, a LET dependence of about 0.026% (±0.013%) per keV/μm is estimated. Due to the high LET value, a LET dependence of the response of the synthetic diamond detector was observed in the case of carbon and oxygen beams. The effect was found to be negligible in proton beams, due to the low LET value. The under-response of the synthetic diamond detector may result from the

  6. A Biomechanical Model for Lung Fibrosis in Proton Beam Therapy

    Science.gov (United States)

    King, David J. S.

    The physics of protons makes them well-suited to conformal radiotherapy due to the well-known Bragg peak effect. From a proton's inherent stopping power, uncertainty effects can cause a small amount of dose to overflow to an organ at risk (OAR). Previous models for calculating normal tissue complication probabilities (NTCPs) relied on the equivalent uniform dose model (EUD), in which the organ was split into 1/3, 2/3 or whole organ irradiation. However, the problem of dealing with volumes clinic (QUANTEC) data. Additional side projects are also investigated, introduced and explained at various points. A typical radiotherapy course for the patient of 30x2Gy per fraction is simulated. A range of geometry of the target volume and irradiation types is investigated. Investigations with X-rays found the majority of the data point ratios (ratio of EUD values found from calculation based and data based methods) at 20% within unity showing a relatively close agreement. The ratios have not systematically preferred one particular type of predictive method. No Vx metric was found to consistently outperform another. In certain cases there is a good agreement and not in other cases which can be found predicted in the literature. The overall results leads to conclusion that there is no reason to discount the use of the data based predictive method particularly, as a low volume replacement predictive method.

  7. Beam Size Estimation from Luminosity Scans at the LHC During 2015 Proton Physics Operation

    CERN Document Server

    Hostettler, Michael

    2016-01-01

    As a complementary method for measuring the beam size for high-intensity beams at 6.5 TeV flat-top energy, beam separation scans were done regularly at the CERN Large Hadron Collider (LHC) during 2015 proton physics operation. The luminosities measured by the CMS experiment during the scans were used to derive the convoluted beam size and orbit offset bunch-by-bunch. This contribution will elaborate on the method used to derive plane-by-plane, bunch-by-bunch emittances from the scan data, including uncertainties and corrections. The measurements are then compared to beam size estimations from absolute luminosity, synchrotron light telescopes, and wire scanners. In particular, the evolution of the emittance over the course of several hours in collisions is studied and bunch-by-bunch differences are highlighted.

  8. Projection imaging with directional electron and proton beams emitted from an ultrashort intense laser-driven thin foil target

    Science.gov (United States)

    Nishiuchi, M.; Choi, I. W.; Daido, H.; Nakamura, T.; Pirozhkov, A. S.; Yogo, A.; Ogura, K.; Sagisaka, A.; Orimo, S.; Daito, I.; Bulanov, S. V.; Sung, J. H.; Lee, S. K.; Yu, T. J.; Jeong, T. M.; Kim, I. J.; Kim, C. M.; Kang, S. W.; Pae, K. H.; Oishi, Y.; Lee, J.

    2015-02-01

    Projection images of a metal mesh produced by directional MeV electron beam together with directional proton beam, emitted simultaneously from a thin foil target irradiated by an ultrashort intense laser, are recorded on an imaging plate for the electron imaging and on a CR-39 nuclear track detector for the proton imaging. The directional electron beam means the portion of the electron beam which is emitted along the same direction (i.e., target normal direction) as the proton beam. The mesh patterns are projected to each detector by the electron beam and the proton beam originated from tiny virtual sources of ~20 µm and ~10 µm diameters, respectively. Based on the observed quality and magnification of the projection images, we estimate sizes and locations of the virtual sources for both beams and characterize their directionalities. To carry out physical interpretation of the directional electron beam qualitatively, we perform 2D particle-in-cell simulation which reproduces a directional escaping electron component, together with a non-directional dragged-back electron component, the latter mainly contributes to building a sheath electric field for proton acceleration. The experimental and simulation results reveal various possible applications of the simultaneous, synchronized electron and proton sources to radiography and pump-probe measurements with temporal resolution of ~ps and spatial resolution of a few tens of µm.

  9. Beam intensity measurement system for proton synchrotron booster

    Science.gov (United States)

    Belohrad, David; Kasprowicz, Grzegorz

    2006-10-01

    The PS Booster delivers particles for most of the CERN experiments. The PS complex will become particle source for LHC in 2007. For this reason PS complex electronics is continuously upgraded to meet new requirements in performance and remote management. A new acquisition system has been developed to allow the measurement of the individual intensity of each bunch in a 1Hz bunch train. Such a system will be used for the measurement of beams at the injection, ejection and acceleration lines . The method is based on integrating of the analogue signal supplied by a Beam Current Transformer. The signal is sampled by two 12 bits ADCs with 20x oversampling. The output of ADC is then processed in FPGA, where the rest of the signal processing is performed. The measurement system was build as a standard VME module. Apart from that, on same board there were implemented current and charge calibrators.

  10. Characterization of the proton beam from an IBA Cyclone 18/9 with radiochromic film EBT2

    Energy Technology Data Exchange (ETDEWEB)

    Sansaloni, F.; Lagares, J. I.; Arce, P.; Llop, J.; Perez, J. M. [Medical Applications Unit, Technology Department, CIEMAT, Madrid (Spain); Radiochemistry Department, Molecular Imaging unit, CIC-biomaGUNE, San Sebastian (Spain); Technology Department, CIEMAT (Spain)

    2012-12-19

    The use of radiochromic films is widespread in different areas of medical physics like radiotherapy and hadrontherapy; however, radiochromic films have been scarcely used in the characterization of proton or deuteron beams generated in biomedical cyclotrons. In this paper the radiochromic film EBT2 was used to study the beam size and the proton beam energy of an IBA Cyclone 18/9 cyclotron. The results indicate that the beam size can be easily measured at a very low expense; however, an accurate determination of the beam energy might require the implementation of certain experimental improvements.

  11. Analysis of Relative Biological Effectiveness of Proton Beams and Isoeffective Dose Profiles Using Geant4

    Directory of Open Access Journals (Sweden)

    Hosseini M. A.

    2017-06-01

    Full Text Available Background: The assessment of RBE quantity in the treatment of cancer tumors with proton beams in treatment planning systems (TPS is of high significance. Given the significance of the issue and the studies conducted in the literature, this quantity is fixed and is taken as equal to 1.1. Objective: The main objective of this study was to assess RBE quantity of proton beams and their variations in different depths of the tumor. This dependency makes RBE values used in TPS no longer be fixed as they depend on the depth of the tumor and therefore this dependency causes some changes in the physical dose profile. Materials and Methods: The energy spectrum of protons was measured at various depths of the tumor using proton beam simulations and well as the complete simulation of a cell to a pair of DNA bases through Monte Carlo GEANT4. The resulting energy spectrum was used to estimate the number of double-strand breaks generated in cells. Finally, RBE values were calculated in terms of the penetration depth in the tumor. Results and Conclusion: The simulation results show that the RBE value not fixed terms of the depth of the tumor and it differs from the clinical value of 1.1 at the end of the dose profile and this will lead to a non-uniform absorbed dose profile. Therefore, to create a uniform impact dose area, deep-finishing systems need to be designed by taking into account deep RBE values.

  12. Development of abiotic-stress resistant warm season trufgrasses by proton-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. W.; Kim, J. Y.; Jeong, S. H. [Korea Univ., Seoul (Korea, Republic of)

    2007-04-15

    The direct use of mutation is a valuable approach to generate genetic variation in crop species by altering agronomically useful major traits. The proton beam, as a mutagen, was applied to improve resistance traits of Zoysia grass under various abiotic stresses. Proton beam was irradiated to mature dry seeds of Zenith (Zoysia grass), which is well-adapted to Korean climate, using a proton- accelerator with seven different doses (50, 100, 150, 200, 250, 300, 400 Gy). Individual seedling of M1 plant was transplanted from the seed bed and allowed to reach appropriate plant mass. Clones that showed superior growth were chosen and transplanted to pots for further clone propagation and field evaluation. Growth characteristics of turfgrass, such as plant height, leaf length, leaf width, number of tiller were evaluated ninety days after sowing. Although large variation within each dose, noticeable differences were found among different irradiated doses. Most of the mutant clones derived from the irradiation treatment showed more vigorous growth than the control plants. RAPD (Random Amplified Polymorphic DNA) and AFLP (Amplified Fragment Length Polymorphism) methods were conducted to analyze genomic variations associated with proton beam irradiation. In order to establish selection criteria for selection of salt-stress resistance plants, an in vitro method that is able to select salt-stress resistant mutants in liquid media without ambient disturbances. Total 647 predominance clones that were considered as abiotic stress resistant mutants were transplanted to the field for further evaluation.

  13. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries.

    Science.gov (United States)

    Westerly, David C; Mo, Xiaohu; Tomé, Wolfgang A; Mackie, Thomas R; DeLuca, Paul M

    2013-06-01

    Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke ["Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media," Phys. Med. Biol. 47, 3313-3330 (2002)] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Molière scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as much as 1.4 mm (21%) at the depth of the Bragg peak for a 220

  14. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment

    Science.gov (United States)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-01

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also

  15. Analysis of the proton beam in the DESY transport lines by video readout

    CERN Document Server

    Solodovnik, F; Wittenburg, K

    2000-01-01

    Injection efficiency, beam optic matching and emittance preservation are very important parameters in achieving a high luminosity in large proton accelerators. We improved the analysing system of the phosphor screen readout of the proton transport lines in the accelerator chain of HERA with respect to the parameters above. The screens are read out by simple CCD video cameras. The signals are stored in local frame grabbers. An analogue output of the stored image is multiplexed and read-out by a fast PCI frame grabber card in a PC. The beam orbit and the beam emittance can be measured from each screen. A Visual Basic program is used to displays the trajectory and the envelope of the beam from a single transfer. The same program helps to drive bumps to achieve a proper steering through the line. The beam width can be measured from selected screens to calculate the emittance and other beam parameters including their errors. The read out and analysing system will be described and measurements will be shown.

  16. Target irradiation facility and targetry development at 160 MeV proton beam of Moscow linac

    CERN Document Server

    Zhuikov, B L; Konyakhin, N A; Vincent, J

    1999-01-01

    A facility has been built and successfully operated with the 160 MeV proton beam of Moscow Meson factory LINAC, Institute for Nuclear Research (INR) of Russian Academy of Science, Troitsk. The facility was created for various isotope production goals as well as for fundamental nuclear investigations at high intensity beam (100 mu A and more). An important part of the facility targetry system is a high-intensity beam monitoring collimator device. Measurements of the temperature distribution between collimator sectors, cooling water flow and temperature, and the beam current, provide an opportunity to compute beam losses and beam position. The target holder design allows easy insertion by manipulator and simultaneous bombardment of several different targets of various types and forms, and variation of proton energy on each target over a wide range below 160 MeV. The main target utilized for commercial sup 8 sup 2 Sr isotope production is metallic rubidium in a stainless-steel container. A regular wet chemistry ...

  17. Lifetime increased cancer risk in mice following exposure to clinical proton beam generated neutrons

    Science.gov (United States)

    Gerweck, Leo E.; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong

    2014-01-01

    Purpose To evaluate the lifespan and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical SOBP proton beam. Methods and Materials Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid SOBP of a 165 MeV, clinical proton beam. The average distance from the edge of the mid SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death, i.e., cancer and type vs. non-cancer causes, were assessed over the lifespan of the mice. Results Exposure of mice to a dose of 600 Gy of proton beam generated neutrons, reduced the median lifespan of the mice by 4.2% (Kaplan-Meier cumulative survival, P = 0.053). The relative risk of death from cancer in neutron exposed vs. control mice was 1.40 for cancer of all types (P = 0.0006) and 1.22 for solid cancers (P = 0.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions Exposure of mice to neutrons generated by a proton dose which exceeds a typical course of radiotherapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field 2nd solid cancers from SOBP proton generated neutrons and typical treatment schedules, is 6 - 10 times less than is suggested by current neutron risk estimates. PMID:24725699

  18. Lifetime increased cancer risk in mice following exposure to clinical proton beam-generated neutrons.

    Science.gov (United States)

    Gerweck, Leo E; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong

    2014-05-01

    To evaluate the life span and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical spread-out Bragg peak (SOBP) proton beam. Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid-SOBP of a 165-MeV, clinical proton beam. The average distance from the edge of the mid-SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once-daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death (ie, cancer and type vs noncancer causes) were assessed over the life span of the mice. Exposure of mice to a dose of 600 Gy of proton beam-generated neutrons, reduced the median life span of the mice by 4.2% (Kaplan-Meier cumulative survival, P=.053). The relative risk of death from cancer in neutron exposed versus control mice was 1.40 for cancer of all types (P=.0006) and 1.22 for solid cancers (P=.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Exposure of mice to neutrons generated by a proton dose that exceeds a typical course of radiation therapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field second solid cancers from SOBP proton-generated neutrons and typical treatment schedules, is 6 to 10 times less than is suggested by current neutron risk estimates. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Time Structure of Particle Production in the Merit High-Power Target Experiment

    CERN Document Server

    Efthymiopoulos, I; Palm, M; Lettry, J; Haug, F; Pereira, H; Pernegger, H; Steerenberg, R; Grudiev, A; Kirk, H G; Park, H; Tsang, T; Mokhov, N; Striganov, S; Carroll, A J; Graves, V B; Spampinato, P T; McDonald, K T; Bennett, J R J; Caretta, O; Loveridge, P

    2010-01-01

    The MERIT experiment is a proof-of-principle test of a target system for high power proton beam to be used as front-end for a neutrino factory complex or amuon collider. The experiment took data in autumn 2007 with the fast extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of about 30 × 1012 protons per pulse. We report results from the portion of the MERIT experiment in which separated beam pulses were delivered to a free mercury jet target with time intervals between pulses varying from 2 to 700 μs. The analysis is based on the responses of particle detectors placed along side and downstream of the target.

  20. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    OpenAIRE

    Simos, N; Z. Zhong; Ghose, S.; H. G. Kirk; L-P Trung; K. T. McDonald; Z. Kotsina; Nocera, P.; Assmann, R; Redaelli, S.; Bertarelli, A.; Quaranta, E.; Rossi, A.; Zwaska, R.; Ammigan, K.

    2017-01-01

    A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace ...

  1. Optimum and Controllable Multi-stage Proton Acceleration Manipulated by Double Beam Image Technique

    Science.gov (United States)

    Wang, Wenpeng

    2017-10-01

    With the development of ultra-intense laser technology, laser intensity can increase up to the order of 1022 W/cm2 in the laboratory. Ion beams in the MeV range and even the GeV range, driven by terawatt or petawatt lasers, exhibit ultra-short pulse duration, excellent emission, and ultra-high peak current. Thus, they can potentially be applied in fast ignition of inertial confinement fusion, medical therapy, proton imaging, and pre-accelerators for conventional acceleration devices. However, the generation of quasi-monoenergetic proton beams for realistic applications is still an experimental challenge. Here, the optimum and controllable two-stage proton acceleration is realized for the first time by a novel double beam image (DBI) technique in experiment. Two laser pulses are successfully tuned on two separated foils with both spatial collineation and time synchronizing, resulting in spectrum tailoring and an energy increase at the same time. Such a novel DBI technique can help us to realize the optimum two-stage acceleration in a feasible way, which opens the door for the exact manipulation of multi-stage acceleration to further improve the energy and spectra of particle beams.

  2. Dark Matter Search in a Proton Beam Dump with MiniBooNE

    Science.gov (United States)

    Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.; Batell, B.; Brown, B. C.; Carr, R.; Chatterjee, A.; Cooper, R. L.; deNiverville, P.; Dharmapalan, R.; Djurcic, Z.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, J. A.; Huelsnitz, W.; de Icaza Astiz, I. L.; Karagiorgi, G.; Katori, T.; Ketchum, W.; Kobilarcik, T.; Liu, Q.; Louis, W. C.; Marsh, W.; Moore, C. D.; Mills, G. B.; Mirabal, J.; Nienaber, P.; Pavlovic, Z.; Perevalov, D.; Ray, H.; Roe, B. P.; Shaevitz, M. H.; Shahsavarani, S.; Stancu, I.; Tayloe, R.; Taylor, C.; Thornton, R. T.; Van de Water, R.; Wester, W.; White, D. H.; Yu, J.; MiniBooNE-DM Collaboration

    2017-06-01

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 ×1 020 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y =ɛ2αD(mχ/mV)4≲10-8 , for αD=0.5 and for dark matter masses of 0.01 proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.

  3. Proton G_E/G_M from beam-target asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Mark Jones; Aram Aghalaryan; Abdellah Ahmidouch; Razmik Asaturyan; Frederic Bloch; Werner Boeglin; Peter Bosted; Cedric Carasco; Roger Carlini; Jinseok Cha; Jian-Ping Chen; Michael Christy; Leon Cole; Luminita Coman; Donald Crabb; Samuel Danagoulian; Donal Day; James Dunne; Mostafa Elaasar; Rolf Ent; Howard Fenker; Emil Frlez; David Gaskell; Liping Gan; Javier Gomez; Bitao Hu; Juerg Jourdan; Christopher Keith; Cynthia Keppel; Mahbubul Khandaker; Andreas Klein; Laird Kramer; Yongguang Liang; Jechiel Lichtenstadt; Richard Lindgren; David Mack; Paul McKee; Dustin McNulty; David Meekins; Hamlet Mkrtchyan; Rakhsha Nasseripour; Maria-Ioana Niculescu; Kristoff Normand; Blaine Norum; Dinko Pocanic; Yelena Prok; Brian Raue; Joerg Reinhold; Julie Roche; Daniela Rohe; Oscar Rondon-Aramayo; Nikolai Savvinov; Bradley Sawatzky; Mikell Seely; Ingo Sick; Karl Slifer; C. Smith; Gregory Smith; S. Stepanyan; Liguang Tang; Shigeyuki Tajima; Giuseppe Testa; William Vulcan; Kebin Wang; Glen Warren; Frank Wesselmann; Stephen Wood; Chen Yan; Lulin Yuan; Junho Yun; Markus Zeier; Hong Guo Zhu

    2006-07-06

    The ratio of the proton's electric to magnetic form factor, G{sub E}/G{sub M}, can be extracted in elastic electron-proton scattering by measuring either cross sections, beam-target asymmetry or recoil polarization. Separate determinations of G{sub E}/G{sub M} by cross sections and recoil polarization observables disagree for Q{sup 2} > 1 (GeV/c){sup 2}. Measurement by a third technique might uncover an unknown systematic error in either of the previous measurements. The beam-target asymmetry has been measured for elastic electron-proton scattering at Q{sup 2} = 1.51 (GeV/c){sup 2} for target spin orientation aligned perpendicular to the beam momentum direction. This is the largest Q{sup 2} at which G{sub E}/G{sub M} has been determined by a beam-target asymmetry experiment. The result, {mu}G{sub E}/G{sub M} = 0.884 +/- 0.027 +/- 0.029, is compared to previous world data.

  4. Proton Lateral Broadening Distribution Comparisons Between GRNTRN, MCNPX, and Laboratory Beam Measurements

    Science.gov (United States)

    Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John

    2010-01-01

    Recent developments in NASA s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.

  5. Dark Matter Search in a Proton Beam Dump with MiniBooNE.

    Science.gov (United States)

    Aguilar-Arevalo, A A; Backfish, M; Bashyal, A; Batell, B; Brown, B C; Carr, R; Chatterjee, A; Cooper, R L; deNiverville, P; Dharmapalan, R; Djurcic, Z; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, J A; Huelsnitz, W; de Icaza Astiz, I L; Karagiorgi, G; Katori, T; Ketchum, W; Kobilarcik, T; Liu, Q; Louis, W C; Marsh, W; Moore, C D; Mills, G B; Mirabal, J; Nienaber, P; Pavlovic, Z; Perevalov, D; Ray, H; Roe, B P; Shaevitz, M H; Shahsavarani, S; Stancu, I; Tayloe, R; Taylor, C; Thornton, R T; Van de Water, R; Wester, W; White, D H; Yu, J

    2017-06-02

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}≲10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.

  6. Proton therapy treatment monitoring with in-beam PET: Investigating space and time activity distributions

    Science.gov (United States)

    Brombal, L.; Barbosa, D.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cristoforetti, L.; Guerra, A. Del; Fracchiolla, F.; Morrocchi, M.; Sportelli, G.; Righetto, R.; Schwarz, M.; Topi, A.; Rosso, V.

    2017-07-01

    In this study the possibility of retrieving composition information in proton therapy with a planar in-beam PET scanner is investigated. The analysis focuses both on spatial activity distributions and time dependence of the recorded signal. The experimental data taking was performed at the Trento Proton Therapy Center (IT) by irradiating three different phantoms. We show that different phantom compositions reflect into different activity profile shapes. We demonstrate that the analysis of the event rate can provide significant information on the phantom elemental composition, suggesting that elemental analysis could be used along with activity profile analysis to achieve a more accurate treatment monitoring.

  7. Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes for Proton and Deuteron Beam

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.

  8. Visual Outcomes of Parapapillary Uveal Melanomas Following Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thariat, Juliette, E-mail: jthariat@gmail.com [Department of Radiation Therapy, Cancer Center Antoine Lacassagne-Nice Sophia Antipolis University Hospital, Nice (France); Grange, Jean-Daniel [Department of Ophthalmology, Eye University Clinic la Croix Rousse, Lyon (France); Mosci, Carlo [Department of Ophthalmology, National Institute for Cancer Research, Mura Delle Cappucine, Genova (Italy); Rosier, Laurence [Eye Clinic, Centre d' Exploration et de Traitement de la Retine et de la Macula, Bordeaux (France); Maschi, Celia [Department of Ophthalmology, Eye University Clinic Pasteur 2, Nice (France); Lanza, Francesco [Department of Ophthalmology, National Institute for Cancer Research, Mura Delle Cappucine, Genova (Italy); Nguyen, Anh Minh [Department of Ophthalmology, Eye University Clinic la Croix Rousse, Lyon (France); Jaspart, Franck; Bacin, Franck; Bonnin, Nicolas [Department of Ophthalmology, Eye University Clinic Gabriel Montpied, Clermont Ferrand (France); Gaucher, David [Department of Ophthalmology, Eye University Clinic, Hopital Civil, Strasbourg (France); Sauerwein, Wolfgang [Department of Radiation Therapy, NCTeam, Strahlenklinik, Universitätsklinikum Essen, Essen (Germany); Angellier, Gaelle; Hérault, Joel [Department of Radiation Therapy, Cancer Center Antoine Lacassagne-Nice Sophia Antipolis University Hospital, Nice (France); Caujolle, Jean-Pierre [Department of Ophthalmology, Eye University Clinic Pasteur 2, Nice (France)

    2016-05-01

    Purpose: In parapapillary melanoma patients, radiation-induced optic complications are frequent and visual acuity is often compromised. We investigated dose-effect relationships for the optic nerve with respect to visual acuity after proton therapy. Methods and Materials: Of 5205 patients treated between 1991 and 2014, those treated using computed tomography (CT)-based planning to 52 Gy (prescribed dose, not accounting for relative biologic effectiveness correction of 1.1) in 4 fractions, with minimal 6-month follow-up and documented initial and last visual acuity, were included. Deterioration of ≥0.3 logMAR between initial and last visual acuity results was reported. Results: A total of 865 consecutive patients were included. Median follow-up was 69 months, mean age was 61.7 years, tumor abutted the papilla in 35.1% of patients, and tumor-to-fovea distance was ≤3 mm in 74.2% of patients. Five-year relapse-free survival rate was 92.7%. Visual acuity was ≥20/200 in 72.6% of patients initially and 47.2% at last follow-up. A wedge filter was used in 47.8% of the patients, with a positive impact on vision and no impact on relapse. Glaucoma, radiation-induced optic neuropathy, maculopathy were reported in 17.9%, 47.5%, and 33.6% of patients, respectively. On multivariate analysis, age, diabetes, thickness, initial visual acuity and percentage of macula receiving 26 Gy were predictive of visual acuity. Furthermore, patients irradiated to ≥80% of their papilla had better visual acuity when limiting the 50% (30-Gy) and 20% (12-Gy) isodoses to ≤2 mm and 6 mm of optic nerve length, respectively. Conclusions: A personalized proton therapy plan with optic nerve and macular sparing can be used efficiently with good oncological and functional results in parapapillary melanoma patients.

  9. Simulations of stable compact proton beam acceleration from a two-ion-species ultrathin foil

    CERN Document Server

    Yu, T P; Shvets, G; Chen, M; Ratliff, T H; Yi, S A; Khudik, V

    2011-01-01

    We report stable laser-driven proton beam acceleration from ultrathin foils consisting of two ion species: heavier carbon ions and lighter protons. Multi-dimensional particle-in-cell (PIC) simulations show that the radiation pressure leads to very fast and complete spatial separation of the species. The laser pulse does not penetrate the carbon ion layer, avoiding the proton Rayleigh-Taylor-like (RT) instability. Ultimately, the carbon ions are heated and spread extensively in space. In contrast, protons always ride on the front of the carbon ion cloud, forming a compact high quality bunch. We introduce a simple three-interface model to interpret the instability suppression in the proton layer. The model is backed by simulations of various compound foils such as carbon-deuterium (C-D) and carbon-tritium (C-T) foils. The effects of the carbon ions' charge state on proton acceleration are also investigated. It is shown that with the decrease of the carbon ion charge state, both the RT-like instability and the C...

  10. Proton-induced knockout reactions with polarized and unpolarized beams

    Science.gov (United States)

    Wakasa, T.; Ogata, K.; Noro, T.

    2017-09-01

    Proton-induced knockout reactions provide a direct means of studying the single particle or cluster structures of target nuclei. In addition, these knockout reactions are expected to play a unique role in investigations of the effects of the nuclear medium on nucleon-nucleon interactions as well as the properties of nucleons and mesons. However, due to the nature of hadron probes, these reactions can suffer significant disturbances from the nuclear surroundings and the quantitative theoretical treatment of such processes can also be challenging. In this article, we review the experimental and theoretical progress in this field, particularly focusing on the use of these reactions as a spectroscopic tool and as a way to examine the medium modification of nucleon-nucleon interactions. With regard to the former aspect, the review presents a semi-quantitative evaluation of these reactions based on existing experimental data. In terms of the latter point, we introduce a significant body of evidence that suggests, although does not conclusively prove, the existence of medium effects. In addition, this paper also provides information and comments on other related subjects.

  11. SU-C-207A-02: Proton Radiography Using Pencil Beam Scanning and a Novel, Low-Cost Range Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Dolney, D; Mayers, G; Newcomer, M; Bollinger, D; Desai, N; Maughan, R; Solberg, T; Hollebeek, R [University of Pennsylvania, Philadelphia, PA (United States); Weiss, D [Tufts University, Medford, MA (United States); Meekins, E [James Madison University, Harrisonburg, VA (United States)

    2016-06-15

    Purpose: While the energy of therapeutic proton beams can be adjusted to penetrate to any given depth in water, range uncertainties arise in patients due in part to imprecise knowledge of the stopping power of protons in human tissues [1]. Proton radiography is one approach to reduce the beam range uncertainty [2], thereby allowing for a reduction in treatment margins and dose escalation. Methods: The authors have adapted a novel detector technology based on Micromesh Gaseous Structure (“Micromegas”) for proton therapy beams and have demonstrated fine spatial and time resolution of magnetically scanned proton pencil beams, as well as wide dynamic range for dosimetry [3]. The authors have constructed a prototype imaging system comprised of 5 Micromegas layers. Proton radiographs were obtained downstream of solid water assemblies. The position-sensitive monitor chambers in the IBA proton delivery nozzle provide the beam entrance position. Results: Our technique achieves spatial resolution as low as 300 µm and water-equivalent thickness (WET) resolution as good as 0.02% (60 µm out of 31 cm total thickness). The dose delivered to the patient is kept below 2 cGy. The spatial resolution as a function of sample rate and number of delivered protons is found to be near the theoretical Cramer-Rao lower bound. By extrapolating the CR bound, we argue that the imaging dose could be further lowered to 1 mGy, while still achieving submillimeter spatial resolution, by achievable instrumentation and beam delivery modifications. Conclusion: For proton radiography, high spatial and WET resolution can be achieved, with minimal additional dose to patient, by using magnetically scanned proton pencil beams and Micromegas detectors.

  12. Proton and Pb ion beam extraction experiments with bent crystals at the CERN-SPS

    CERN Document Server

    Elsener, K; Klem, J T; CERN. Geneva. SPS and LEP Division

    1997-01-01

    Extraction of particle beams from the CERN-SPS using bent silicon crystals is described. A summary of the early results is given. Emphasis is on the recent experiments, in particular on the energy dependence of proton extraction at 14, 120 and 270 GeV. 'U-shaped' crystals of different thickness and with a different miscut angle have been compared at 120 GeV. Non-linear excitation of the beam was used in one experiment, with the aim to achieve larger impact parameters - the results show a particular behaviour in the tails of the beam. Finally, the first experimental result on extraction of a 22 TeV fully stripped Pb ion beam with a bent crystal is also described.

  13. Development of a raster electronics system for expanding the APT proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Chapelle, S.; Hubbard, E.L.; Smith, T.L. [General Atomics, San Diego, CA (United States); Schulze, M.E.; Shafer, R.E. [General Atomics, Los Alamos, NM (United States)

    1998-12-31

    A 1700 MeV, 100 mA proton linear accelerator is being designed for Accelerator Production of Tritium (APT). A beam expansion system is required to uniformly irradiate a 19 x 190 cm tritium production target. This paper describes a beam expansion system consisting of eight ferrite dipole magnets to raster the beam in the x- and y-planes and also describes the salient features of the design of the electronics that are unique to the expander. Eight Insulated Gate Bipolar Transistor (IGBT)-based modulators drive the raster magnets with triangular current waveforms that are synchronized using phase-locked loops (PLLs) and voltage controlled crystal oscillators (VCXOs). Fault detection circuitry shuts down the beam before the target can be damaged by a failure of the raster system. Test data are presented for the prototype system.

  14. On Start to End Simulation and Modeling Issues of the Megawatt Proton Beam Facility at PSI

    CERN Document Server

    Adelmann, Andreas; Fitze, Hansruedi; Geus, Roman; Humbel, Martin; Stingelin, Lukas

    2005-01-01

    At the Paul Scherrer Institut (PSI) we routinely extract a one megawatt (CW) proton beam out of our 590 MeV Ring Cyclotron. In the frame of the ongoing upgrade program, large scale simulations have been undertaken in order to provide a sound basis to assess the behaviour of very intense beams in cyclotrons. The challenges and attempts towards massive parallel three dimensional start-to- end simulations will be discussed. The used state of the art numerical tools (mapping techniques, time integration, parallel FFT and finite element based multigrid Poisson solver) and their parallel implementation will be discussed. Results will be presented in the area of: space charge dominated beam transport including neighbouring turns, eigenmode analysis to obtain accurate electromagnetic fields in large the rf cavities and higher order mode interaction between the electromagnetic fields and the particle beam. For the problems investigated so far a good agreement between theory i.e. calculations and measurements is obtain...

  15. Effect of pulsed hollow electron-lens operation on the proton beam core in LHC

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, Miriam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-11-08

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the HL-LHC. In order to further increase the diffusion rates for a fast halo removal as e.g. desired before the squeeze, the electron lens (e-lens) can be operated in pulsed mode. In case of profile imperfections in the electron beam the pulsing of the e-lens induces noise on the proton beam which can, depending on the frequency content and strength, lead to emittance growth. In order to study the sensitivity to the pulsing pattern and the amplitude, a beam study (machine development MD) at the LHC has been proposed for August 2016 and we present in this note the preparatory simulations and estimates.

  16. Effect of pulsed hollow electron-lens operation on the proton beam core in LHC

    CERN Document Server

    Fitterer, Miriam; Valishev, Alexander

    2016-01-01

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the HL-LHC. In order to further increase the diffusion rates for a fast halo removal as e.g. desired before the squeeze, the electron lens (e-lens) can be operated in pulsed mode. In case of profile imperfections in the electron beam the pulsing of the e-lens induces noise on the proton beam which can, depending on the frequency content and strength, lead to emittance growth. In order to study the sensitivity to the pulsing pattern and the amplitude, a beam study (machine development MD) at the LHC has been proposed for August 2016 and we present in this note the preparatory simulations and estimates.

  17. Modeling and simulation of beam induced backgrounds measured by ATLAS Forward Proton (AFP) detector

    CERN Document Server

    Huang, Yicong

    The ATLAS Forward Proton (AFP) detector is a forward detector of the ATLAS experiment at CERN. Its main goal is to trigger diffractive protons in collisions at the Large Hadron Collider (LHC). To achieve this, the detector has to be placed very close to the beam. Inevitable consequence is that its measurements can be easily affected by the beam induced background. This thesis presents a study of the beam induced background in the AFP detector and discuss methods for its removal. The Geant4 simulations and data, including non-colliding bunches are used to identify characteristic features of beam induced backgrounds. A method using combination of signals detected by the AFP detector and the Minimum Bias Trigger Scintillators (MBTS) is used to selected single diffractive event namely on low pile-up data taken during the first AFP physics run in 2016. Finally, an estimate of the beam induced backgrounds level in data together with a study of the radiation environment at the AFP stations was made, comparing result...

  18. Space charge and beam stability issues of the Fermilab proton driver in Phase I

    Energy Technology Data Exchange (ETDEWEB)

    K. Y. Ng

    2001-08-24

    Issues concerning beam stability of the proposed Fermilab Proton Driver are studied in its Phase I. Although the betatron tune shifts are dominated by space charge, these shifts are less than 0.25 and will therefore not drive the symmetric and antisymmetric modes of the beam envelope into instability. The longitudinal space charge force is large and inductive inserts may be needed to compensate for the distortion of the rf potential. Although the longitudinal impedance is space charge dominated, it will not drive any microwave instability, unless the real part of the impedance coming from the inductive inserts and wall resistivity of the beam tube are large enough. The design of the beam tube is therefore very important in order to limit the flow of eddy current and keep wall resistivity low. The transverse impedance is also space charge dominated. With the Proton Driver operated at an imaginary transition gamma, however, Landau damping will never be canceled and beam stability can be maintained with negative chromaticities.

  19. Contour scanning for penumbra improvement in pencil beam scanned proton therapy

    Science.gov (United States)

    Meier, G.; Leiser, D.; Besson, R.; Mayor, A.; Safai, S.; Weber, D. C.; Lomax, A. J.

    2017-03-01

    Proton therapy, especially in the form of pencil beam scanning (PBS), allows for the delivery of highly conformal dose distributions for complex tumor geometries. However, due to scattering of protons inside the patient, lateral dose gradients cannot be arbitrarily steep, which is of importance in cases with organs at risk (OARs) in close proximity to, or overlapping with, planning target volumes (PTVs). In the PBS approach, physical pencil beams are planned using a regular grid orthogonal to the beam direction. In this work, we propose an alternative to this commonly used approach where pencil beams are placed on an irregular grid along concentric paths based on the target contour. Contour driven pencil beam placement is expected to improve dose confirmation by allowing the optimizer to best enhance the penumbra of irregularly shaped targets using edge enhancement. Its effectiveness has been shown to improve dose confirmation to the target volume and reduce doses to OARs in head-and-neck planning studies. Furthermore, the deliverability of such plans, as well as the dosimetric improvements over conventional grid-based plans, have been confirmed in first phantom based verifications.

  20. Nuclear halo of a 177\\,MeV proton beam in water

    CERN Document Server

    Gottschalk, Bernard; Daartz, Juliane; Wagner, Miles S

    2014-01-01

    The dose distribution of a pencil beam in a water tank consists of a core, a halo and an aura. The core consists of primary protons which suffer multiple Coulomb scattering (MCS) and slow down by multiple collisions with atomic electrons (Bethe-Bloch theory). The halo consists of charged secondaries, many of them protons, from elastic interactions with H, elastic and inelastic interactions with O, and nonelastic interactions with O. We show that the halo radius is roughly one third of the beam range. The aura consists of neutral secondaries (neutrons and gamma rays) and the charged particles they set in motion. We have measured the core/halo at 177 MeV using a test beam offset in a water tank. The beam monitor was a plane parallel ionization chamber (IC) and the field IC a dose calibrated Exradin T1. Our dose measurements are absolute. We took depth-dose scans at ten displacements from the beam axis ranging from 0 to 10 cm. The dose spans five orders of magnitude, and the transition from halo to aura is obvio...

  1. A Compton imager for in-vivo dosimetry of proton beams-A design study

    Energy Technology Data Exchange (ETDEWEB)

    Kormoll, T., E-mail: thomas.kormoll@physik.tu-dresden.d [Technische Universitaet Dresden, OncoRay-Center for Radiation Research in Oncology, Fetscherstr. 74, 01307 Dresden (Germany); Fiedler, F.; Schoene, S. [Forschungszentrum Dresden-Rossendorf, Institute for Radiation Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Wuestemann, J. [Technische Universitaet Dresden, OncoRay-Center for Radiation Research in Oncology, Fetscherstr. 74, 01307 Dresden (Germany); Zuber, K. [Technische Universitaet Dresden, Institute for Nuclear and Particle Physics, Zellescher Weg 19, 01069 Dresden (Germany); Enghardt, W. [Technische Universitaet Dresden, OncoRay-Center for Radiation Research in Oncology, Fetscherstr. 74, 01307 Dresden (Germany); Forschungszentrum Dresden-Rossendorf, Institute for Radiation Research, Bautzner Landstr. 400, 01328 Dresden (Germany)

    2011-01-21

    In-beam SPECT during therapeutic proton beam irradiation is a novel method for three dimensional in-vivo dose verification. For this purpose a Compton camera design is evaluated with respect to the special requirements and conditions that arise from this application. Different concepts are studied by means of simulation concerning the angular resolution and efficiency. It was found that a cadmium zinc telluride system can perform sufficiently well. For further evaluation the construction of a semiconductor scintillator hybrid system is under way.

  2. Study of a 3D diamond detector with photon and proton micro-beams

    OpenAIRE

    Forcolin, Giulio; Grilj, V.; Hamilton, Bruce; Li, Lin; Mcgowan, Malachy; Murphy, S. A.; Oh, Alexander; Skukan, N.; Whitehead, David; Zadoroshnyj, Andrij

    2016-01-01

    To form a 3D diamond detector electrodes were produced in diamond by a femtosecond laser-induced phase transition of diamond to graphite. The process parameters were varied to study the influence on electrode resistivity and induced stress. A technique for a relative measurement of stress induced in 3D diamond detectors is described. The detector was characterised with a 15 keV photon micro-beam (Diamond Light Source, Oxford) and a 4 MeV proton micro-beam (Ruder Bošković Institute, Zagreb). T...

  3. The potential of proton beam radiation therapy in intracranial and ocular tumours

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, Erik [Univ. Hospital, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology; Bjelkengren, Goeran [Univ. Hospital, Malmoe (Sweden). Dept. of Oncology; Glimelius, Bengt [Karolinska Inst., Stockholm (Sweden). Dept. of Oncology and Pathology; Akademiska sjukhuset, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology

    2005-12-01

    A group of oncologists and hospital physicists have estimated the number of patients in Sweden suitable for proton beam therapy. The estimations have been based on current statistics of tumour incidence, number of patients potentially eligible for radiation treatment, scientific support from clinical trials and model dose planning studies and knowledge of the dose-response relations of different tumours and normal tissues. In intracranial benign and malignant tumours, it is estimated that between 130 and 180 patients each year are candidates for proton beam therapy. Of these, between 50 and 75 patients have malignant glioma, 30-40 meningeoma, 20-25 arteriovenous malformations, 20-25 skull base tumours and 10-15 pituitary adenoma. In addition, 15 patients with ocular melanoma are candidates.

  4. Proton beam therapy in a patient with cutaneous T cell lymphoma of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, Shigeruko; Fujisawa, Yuji; Horiuchi, Sanae; Takahashi, Hideharu; Ueno, Kenichi; Kitagawa, Toshio; Mori, Naoyoshi

    1987-06-01

    A 68-year-old man had multiple tumors as the relapse sign of cutaneous T cell lymphoma. The patient received proton beam therapy with a total dose of 21 Gy for local recurrent lymphoma on the ventral side of the penis. The tumor began to decrease, with concomitant erosion, by delivering 8 Gy. It completely disappeared at 4 days after the completion of irradiation schedule. The erosion was the severest at one month after that. Hematuria and difficulty in urination were not observed. Postmortem histology showed no evidence of viable cancer cells. The use of conventional radiation may induce radiation injuries to the surrounding critical organ, although lymphoma has been recognized as radiosensitive. In view of no evidence of urethral damage, as observed in this patient, proton beams are considered suitable in radiation treatment for the penis. (Namekawa, K.).

  5. Positive correlation between occlusion rate and nidus size of proton beam treated brain arteriovenous malformations (AVMs)

    DEFF Research Database (Denmark)

    Blomquist, Erik; Ronne Engström, Elisabeth; Borota, Ljubisa

    2016-01-01

    those with and without total occlusion regarding mean age, gender distribution or symptoms at diagnosis. Forty-one patients developed a mild radiation-induced brain edema and this was more common in those that had total occlusion of the AVM. Two patients had brain hemorrhages after treatment. One......Background. Proton beam radiotherapy of arteriovenous malformations (AVM) in the brain has been performed in Uppsala since 1991. An earlier study based on the first 26 patients concluded that proton beam can be used for treating large and medium sized AVMs that were considered difficult to treat...... with photons due to the risk of side effects. In the present study we analyzed the result from treating the subsequent 65 patients.Material and methods. A retrospective review of the patients medical records, treatment protocols and radiological results was done. Information about gender, age, presenting...

  6. The SPS beam parameters, the operational cycle, and proton sharing with the SHiP facility

    CERN Document Server

    Arduini, Gianluigi; Gatignon, Lau; Cornelis, Karel

    2015-01-01

    The SHiP experiment aims at acquiring a total of 4×1019 protons on target per year. Based on demonstrated SPS performance for CNGS, the expected proton sharing between the TCC2 targets and SHiP is estimated taking into account the constraints in the super-cycle composition. We review the SPS beam parameters, the operational cycles taking into account the concurrent operation of the SPS as LHC injector and for the TCC2 experiments and the limitations on the maximum possible power dissipation and the expected sharing of the protons on target of the SHiP facility with the TCC2 targets. As a typical example this aim could be achieved while maintaining a duty cycle for the other fixed target experiments of about 18%.

  7. Energy deposition in selected-mammalian cell for several-MeV single-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K. [Beijing Jiaotong Univ., Institute of Biological Science and Technology, P.R. (China); Yu, Z. [Chinese Academy of Science, The Key Lab. of Ion-Beam Bioengineering, P.R. (China)

    2007-05-15

    The phenomena resulting from interaction between ion beam and mammalian cell pose important problems for biological applications. Classic Bethe-Bloch theory utilizing attached V79 mammalian cell has been conducted in order to establish the stopping powers of the mammalian cell for several-MeV single-proton microbeam. Based on the biological structure of the mammalian cell, a physical model is proposed which presumes that the attached cell is a simple MWM model. According to this model and Monte Carlo simulation, we studied the energy deposition and its ratio on the selected attached mammalian cell for MeV proton implantation. We found that the Bragg peak region of several-MeV energetic proton is beyond the thickness of the selected attached mammalian cell.

  8. In-beam PET at clinical proton beams with pile-up rejection

    Energy Technology Data Exchange (ETDEWEB)

    Helmbrecht, Stephan; Fiedler, Fine; Iltzsche, Marc [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiation Physics; Enghardt, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiation Physics; OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiooncology; German Cancer Research Center (DKFZ), Heidelberg (Germany); German Cancer Consortium (DKTK), Dresden (Germany); Pausch, Guntram [OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Tintori, Carlo [CAEN S.p.A., Viareggio (Italy); Kormoll, Thomas [OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Technische Univ. Dresden (Germany). AG Radiation Physics

    2017-10-01

    Positron emission tomography (PET) is a means of imaging the β{sup +}-activity produced by the radiation field in ion beam therapy and therefore for treatment verification. Prompt γ-rays that are emitted during beam application challenge the detectors and electronics of PET systems, since those are designed for low and medium count rates. Typical PET detectors operated according to a modified Anger principle suffer from multiple events at high rates. Therefore, in-beam PET systems using such detectors rely on a synchronization of beam status and measurement to reject deteriorated data. In this work, a method for pile-up rejection is applied to conventional Anger logic block detectors. It allows for an in-beam data acquisition without further synchronization. Though cyclotrons produce a continuous wave beam, the radiation field shaping technique introduces breaks in the application. Time regimes mimicking synchrotrons as well as cyclotron based ones using double-scattering or pencil beam scanning field shaping at dose rates of 0.5, 1.0 and 2.0 Gy/min were investigated. Two types of inhomogeneous phantoms were imaged. The first one simulates cavity structures, the other one mimics a static lung irradiation. It could be shown that, depending on the dose rate and the beam time structure, in-beam measurement including a few seconds decay time only, yield images which revealed all inhomogeneities in the phantoms. This technique can be the basis for the development of an in-beam PET system with traditional detectors and off-the-shelf electronics.

  9. Dose to water versus dose to medium in proton beam therapy

    Science.gov (United States)

    Paganetti, Harald

    2009-07-01

    Dose in radiation therapy is traditionally reported as the water-equivalent dose, or dose to water. Monte Carlo dose calculations report dose to medium and thus a methodology is needed to convert dose to medium into dose to water (or vice versa) for comparison of Monte Carlo results with results from planning systems. This paper describes the development of a formalism to convert dose to medium into dose to water for proton fields when simulating the dose with Monte Carlo techniques. The conversion is based on relative stopping power but also considers energy transferred via nuclear interactions. The influence of different interaction mechanisms of proton beams (electromagnetic versus nuclear) is demonstrated. Further, an approximate method for converting doses retroactively is presented. Based on the outlined formalism, five proton therapy patients with a total of 33 fields were analyzed. Dose distributions, dose volume histograms and absolute doses to assess the clinical significance of differences between dose to medium and dose to water are presented. We found that the difference between the two dose reporting definitions can be up to 10% for high CT numbers if analyzing the mean dose to the target. The difference is clinically insignificant for soft tissues. For the structures analyzed, the mean dose to water could be converted to dose to medium by applying a correction factor increasing linearly with increasing average CT number in the volume. We determined that an approximate conversion method, done retroactively with an energy-independent stopping power ratio and without considering nuclear interaction events separately (as compared to on-the-fly conversion during simulation), is sufficiently accurate to compute mean doses. It is insufficient, however, when analyzing the beam range. For proton beams stopping in bony anatomy, the predicted beam range can differ by 2-3 mm when comparing dose to tissue and dose to water.

  10. Calculating variations in biological effectiveness for a 62 MeV proton beam

    Directory of Open Access Journals (Sweden)

    Mario Pietro Carante

    2016-04-01

    Full Text Available A biophysical model of radiation-induced cell death and chromosome aberrations (called BIANCA, BIophysical ANalysis of Cell death and chromosome Aberrations was further developed and applied to therapeutic protons. The model assumes a pivotal role of DNA cluster damage, which can lead to clonogenic cell death following three main steps: i a DNA Cluster Lesion (CL produces two independent chromosome fragments; ii fragment mis-rejoining within a threshold distance d gives rise to chromosome aberrations; iii certain aberration types (dicentrics, rings and large deletions lead to clonogenic inactivation. The yield of CLs and the probability, f, that a chromosome fragment remains un-rejoined even if other fragment(s are present within d, were adjustable parameters. The model, implemented as a MC code providing simulated dose-responses directly comparable with experimental data, was applied to pristine and modulated Bragg peaks of the proton beam used to treat eye melanoma at INFN-LNS in Catania, Italy. Experimental survival curves for AG01522 cells exposed to the Catania beam were reproduced, supporting the model assumptions. Furthermore, cell death and chromosome aberrations at different depths along a SOBP (Spread-Out Bragg Peak dose profile were predicted. Both endpoints showed an increase along the plateau, and high levels of damage were found also beyond the distal dose fall-off, due to low-energy protons. Cell death and chromosome aberrations were also predicted for V79 cells, in the same irradiation scenario as that used for AG01522 cells. In line with other studies, this work indicated that assuming a constant RBE along a proton SOBP may be sub-optimal. Furthermore, it provided qualitative and quantitative evaluations of the dependence of the beam effectiveness on the considered endpoint and dose. More generally, this work represents an example of therapeutic beam characterization avoiding the use of experimental RBE values, which can be

  11. Range verification of passively scattered proton beams using prompt gamma-ray detection.

    Science.gov (United States)

    Verburg, Joost M; Testa, Mauro; Seco, Joao

    2015-02-07

    We performed an experimental study to verify the range of passively scattered proton beams by detecting prompt gamma-rays emitted from proton-nuclear interactions. A method is proposed using a single scintillation detector positioned near the distal end of the irradiated target. Lead shielding was used to attenuate gamma-rays emitted along most of the entrance path of the beam. By synchronizing the prompt gamma-ray detector to the rotation of the range modulation wheel, the relation between the gamma emission from the distal part of the target and the range of the incident proton beam was determined. In experiments with a water phantom and an anthropomorphic head phantom, this relation was found to be sensitive to range shifts that were introduced. The wide opening angle of the detector enabled a sufficient signal-to-background ratio to be achieved in the presence of neutron-induced background from the scattering and collimating devices. Uniform range shifts were detected with a standard deviation of 0.1 mm to 0.2 mm at a dose level of 30 cGy to 50 cGy (RBE). The detectable magnitude of a range shift limited to a part of the treatment field area was approximately proportional to the ratio between the field area and the area affected by the range shift. We conclude that it is feasible to detect changes in the range of passively scattered proton beams using a relatively simple prompt gamma-ray detection system. The method can be employed for in vivo verification of the consistency of the delivered range in fractionated treatments.

  12. Study of the effects of high-energy proton beams on escherichia coli

    Science.gov (United States)

    Park, Jeong Chan; Jung, Myung-Hwan

    2015-10-01

    Antibiotic-resistant bacterial infection is one of the most serious risks to public health care today. However, discouragingly, the development of new antibiotics has progressed little over the last decade. There is an urgent need for alternative approaches to treat antibiotic-resistant bacteria. Novel methods, which include photothermal therapy based on gold nano-materials and ionizing radiation such as X-rays and gamma rays, have been reported. Studies of the effects of high-energy proton radiation on bacteria have mainly focused on Bacillus species and its spores. The effect of proton beams on Escherichia coli (E. coli) has been limitedly reported. Escherichia coli is an important biological tool to obtain metabolic and genetic information and is a common model microorganism for studying toxicity and antimicrobial activity. In addition, E. coli is a common bacterium in the intestinal tract of mammals. In this research, the morphological and the physiological changes of E. coli after proton irradiation were investigated. Diluted solutions of cells were used for proton beam radiation. LB agar plates were used to count the number of colonies formed. The growth profile of the cells was monitored by using the optical density at 600 nm. The morphology of the irradiated cells was observed with an optical microscope. A microarray analysis was performed to examine the gene expression changes between irradiated samples and control samples without irradiation. E coli cells have observed to be elongated after proton irradiation with doses ranging from 13 to 93 Gy. Twenty-two were up-regulated more than twofold in proton-irradiated samples (93 Gy) compared with unexposed one.

  13. Optimization Studies for ISOL Type High-Powered Targets

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ronningen, Reginald Martin [Michigan State Univ., East Lansing, MI (United States)

    2013-09-24

    The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UCx material at reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 1013 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.

  14. Calibration of a Thomson parabola ion spectrometer using proton beams from a pelletron accelerator

    Science.gov (United States)

    Canfield, Michael; Lombardo, Andrew; Graeper, Gavin; Stillman, Collin; Freeman, Charles; Fiksel, Gennady; Stoeckl, Christian; Sinenian, Nareg

    2010-11-01

    The position-to-energy calibration of a Thomson parabola ion spectrometer (TPIS) was measured using proton beams from the 1.7 MV tandem pelletron accelerator at SUNY Geneseo. The TPIS was designed for use on the multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE). The TPIS implements parallel electric and magnetic fields to separate ions of a given mass-to-charge ratio onto parabolic curves on the detector plane. The position of the ions along the parabola is used to determine the ions' energy. Monoenergetic proton beams with energies between approximately 1 and 3 MeV were directed into the TPIS. Both radiochromic film (RCF) and Fujifilm imaging plates (IP) were placed at the rear of the TPIS and were used to detect the protons. The horizontal deflection due to the electrostatic plates and the vertical deflection due to the permanent magnetic field were studied as a function of the proton energy. This research was funded in part by DOE.

  15. Pet imaging of dose distribution in proton-beam cancer therapy

    Directory of Open Access Journals (Sweden)

    Beebe-Wang Joanne

    2005-01-01

    Full Text Available Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than X-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12C, 14N, and 16O. These radio isotopes, mainly 11C, 13N, and 15O, al low imaging the therapy dose distribution using positron emission tomography. The resulting positron emission tomography images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This pa per uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  16. ERK/p38 MAPK inhibition reduces radio-resistance to a pulsed proton beam in breast cancer stem cells

    Science.gov (United States)

    Jung, Myung-Hwan; Park, Jeong Chan

    2015-10-01

    Recent studies have identified highly tumorigenic cells with stem cell-like characteristics, termed cancer stem cells (CSCs) in human cancers. CSCs are resistant to conventional radiotherapy and chemotherapy owing to their high DNA repair ability and oncogene overexpression. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. We isolated CSCs from the breast cancer cell lines MCF-7 and MDA-MB-231, which expressed the characteristic breast CSC membrane protein markers CD44+/CD24-/ low , and irradiated the CSCs with pulsed proton beams. We confirmed that CSCs were resistant to pulsed proton beams and showed that treatment with p38 and ERK inhibitors reduced CSC radio-resistance. Based on these results, BCSC radio-resistance can be reduced during proton beam therapy by co-treatment with ERK1/2 or p38 inhibitors, a novel approach to breast cancer therapy.

  17. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    Science.gov (United States)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  18. Effects of proton beam irradiation on seed germination and growth of soybean ( Glycine max L. Merr.)

    Science.gov (United States)

    Im, Juhyun; Kim, Woon Ji; Kim, Sang Hun; Ha, Bo-Keun

    2017-12-01

    The present study aimed to evaluate the morphological effects of proton beam irradiation on the seed germination, seedling survival, and plant growth of soybean. Seeds of three Korean elite cultivars (Kwangankong, Daepungkong, and Pungsannamulkong) were irradiated with a 57-MeV proton beam in the range of 50 - 400 Gy. The germination rates of all the varieties increased to > 95%; however, the survival rates were significantly reduced. At doses of > 300 Gy irradiation, the Daepungkong, Kwangankong, and Pungsannamulkong cultivars exhibited 39, 75, and 71% survival rates, respectively. In addition, plant height and the fresh weight of shoots and roots were significantly decreased by doses of > 100 Gy irradiation, as were the dry weights of the shoots and roots. However, SPAD values increased with increasing doses of irradiation. Abnormal plants with atypically branched stems, modified leaves, and chlorophyll mutations were observed. Based on the survival rate, plant growth inhibition, and mutation frequency, it appears that the optimum dosage of proton beam irradiation for soybean mutation breeding is between 250 and 300 Gy.

  19. Gene Expression Profile of Proton Beam Irradiated Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Park, Jeong Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Cancer stem cells (CSCs) possess characteristics associated with normal stem cells. The mechanisms regulating CSC radio-resistance, including to proton beam, remain unclear. They showed that a subset of cells expressing CD44 with weak or no CD24 expression could establish new tumors in xenograft mice. Recently, BCSC-targeting therapies have been evaluated by numerous groups. Strategies include targeting BCSC self-renewal, indirectly targeting the microenvironment, and directly killing BCSCs by chemical agents that induce differentiation, immunotherapy, and oncolytic viruses. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. The identification of CSC-related gene expression patterns would make up offer data for better understanding CSCs properties. In this study we investigated the gene expression profile of BCSCs isolation from MCF-7 cell line. Reducing BCSC resistance to pulsed proton beams is essential to improve therapeutic efficacy and decrease the 5-year recurrence rate. In this respect, the information of the level of gene expression patterns in BCSCs is attractive for understanding molecular mechanisms of radio-resistance of BCSCs.

  20. Parametric Study of Laser Driven Proton Beams from a Critical Density Gas Jet

    Science.gov (United States)

    Haberberger, D.; Tsung, F.; Tochitsky, S.; Mori, W.; Joshi, C.

    2009-11-01

    Laser driven ion acceleration (LDIA) is studied via particle-in-cell simulations in a novel parameter space for laser-plasma interactions of a relativistic laser pulse with a gas jet target at the critical plasma density (nc). Previous LDIA studies have been based on the interaction of a 1μm laser pulse with either a solid foil (n˜100nc) or a gas jet (nhigh power CO2 laser pulse at a H2 gas jet which is tunable around the critical plasma density for 10μm radiation (10^19cm-3). A rectangular H2 gas jet operated near nc lends itself to efficient coupling of the laser light to forward directed electrons instigating the target normal sheath acceleration mechanism to produce a beam of protons. Results are presented here on a parametric study of the peak plasma density and plasma profile to find optimal conditions for total charge, divergence, and energy of the accelerated proton beam. These simulations support an ongoing LDIA experiment at the Neptune Laboratory at UCLA using a 3ps 1TW CO2 laser pulse for the production of collimated proton beams.

  1. Evolution of a beam dynamics model for the transport line in a proton therapy facility

    Directory of Open Access Journals (Sweden)

    V. Rizzoglio

    2017-12-01

    Full Text Available During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library, a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.

  2. Lateral response heterogeneity of Bragg peak ionization chambers for narrow-beam photon and proton dosimetry

    Science.gov (United States)

    Kuess, Peter; Böhlen, Till T.; Lechner, Wolfgang; Elia, Alessio; Georg, Dietmar; Palmans, Hugo

    2017-12-01

    Large area ionization chambers (LAICs) can be used to measure output factors of narrow beams. Dose area product measurements are proposed as an alternative to central-axis point dose measurements. Using such detectors requires detailed information on the uniformity of the response along the sensitive area. Eight LAICs were investigated in this study: four of type PTW-34070 (LAICThick) and four of type PTW-34080 (LAICThin). Measurements were performed in an x-ray unit using peak voltages of 100–200 kVp and a collimated beam of 3.1 mm (FWHM). The LAICs were moved with a step size of 5 mm to measure the chamber response at lateral positions. To account for beam positions where only a fraction of the beam impinged within the sensitive area of the LAICs, a corrected response was calculated which was the basis to calculate the relative response. The impact of a heterogeneous LAIC response, based on the obtained response maps was henceforth investigated for proton pencil beams and small field photon beams. A pronounced heterogeneity of the responses was observed in the investigated LAICs. The response of LAICThick generally decreased with increasing radius, resulting in a response correction of up to 5%. This correction was more pronounced and more diverse (up to 10%) for LAICThin. Considering a proton pencil beam the systematic offset for reference dosimetry was 2.4–4.1% for LAICThick and  ‑9.5 to 9.4% for LAICThin. For relative dosimetry (e.g. integral depth-dose curves) systematic response variation by 0.8–1.9% were found. For a decreasing photon field size the systematic offset for absolute dose measurements showed a 2.5–4.5% overestimation of the response for 6  ×  6 mm2 field sizes for LAICThick. For LAICThin the response varied even over a range of 20%. This study highlights the need for chamber-dependent response maps when using LAICs for absolute and relative dosimetry with proton pencil beams or small photon beams.

  3. Dosimetric comparison between proton and photon beams in the moving gap region in cranio-spinal irradiation (CSI).

    Science.gov (United States)

    Cheng, Chee-Wai; Das, Indra J; Srivastava, Shiv P; Zhao, Li; Wolanski, Mark; Simmons, Joseph; Johnstone, Peter A S; Buchsbaum, Jeffrey C

    2013-04-01

    To investigate the moving gap region dosimetry in proton beam cranio-spinal irradiation (CSI) to provide optimal dose uniformity across the treatment volume. Proton beams of ranges 11.6 cm and 16 cm are used for the spine and the brain fields, respectively. Beam profiles for a 30 cm snout are first matched at the 50% level (hot match) on the computer. Feathering is simulated by shifting the dose profiles by a known distance two successive times to simulate a 2 × feathering scheme. The process is repeated for 2 mm and 4 mm gaps. Similar procedures are used to determine the dose profiles in the moving gap for a series of gap widths, 0-10 mm, and feathering step sizes, 4-10 mm, for a Varian iX 6MV beam. The proton and photon dose profiles in the moving gap region are compared. The dose profiles in the moving gap exhibit valleys and peaks in both proton and photon beam CSI. The dose in the moving gap for protons is around 100% or higher for 0 mm gap, for both 5 and 10 mm feathering step sizes. When the field gap is comparable or larger than the penumbra, dose minima as low as 66% is obtained. The dosimetric characteristics for 6 MV photon beams can be made similar to those of the protons by appropriately combining gap width and feathering step size. The dose in the moving gap region is determined by the lateral penumbras, the width of the gap and the feathering step size. The dose decreases with increasing gap width or decreasing feathering step size. The dosimetric characteristics are similar for photon and proton beams. However, proton CSI has virtually no exit dose and is beneficial for pediatric patients, whereas with photon beams the whole lung and abdomen receive non-negligible exit dose.

  4. EBT-XD Radiochromic Film Sensitivity Calibrations Using Proton Beams from a Pelletron Accelerator

    Science.gov (United States)

    Stockler, Barak; Grun, Alexander; Brown, Gunnar; Klein, Matthew; Wood, Jacob; Cooper, Anthony; Ward, Ryan; Freeman, Charlie; Padalino, Stephen; Regan, S. P.; Sangster, T. C.

    2017-10-01

    Radiochromic film (RCF) is a transparent detector film that permanently changes color following exposure to ionizing radiation. RCF is used frequently in medical applications, but also has been used in a variety of high energy density physics diagnostics. RCF is convenient to use because it requires no chemical processing and can be scanned using commercially available document scanners. In this study, the sensitivity of Gafchromic™ EBT-XD RCF to protons and x-rays was measured. Proton beams produced by the SUNY Geneseo Pelletron accelerator were directed into an evacuated target chamber where they scattered off a thin gold foil. The scattered protons were incident on a sample of RCF which subtended a range of angles around the scattering center. A new analysis method, which relies on the variation in scattered proton fluence as a function of scattering angle in accordance with the Rutherford scattering law, is currently being developed to speed up the proton calibrations. Samples of RCF were also exposed to x-ray radiation using an X-RAD 160 x-ray irradiator, allowing the sensitivity of RCF to X-rays to be measured. This work was funded in part by a Grant from the DOE through the Laboratory for Laser Energetics as well as the NSF.

  5. Beam specific planning target volumes incorporating 4DCT for pencil beam scanning proton therapy of thoracic tumors

    CERN Document Server

    Lin, Liyong; Huang, Sheng; Mayer, Rulon; Thomas, Andrew; Solberg, Timothy D; McDonough, James E; Simone, Charles B

    2015-01-01

    The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties and patient setup variations. Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4DCT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4DCT phases, using +-3% uncertainty in stopping power, and +-3 mm uncertainty in patient setup in each direction were used to create 8X12X10=960 PBS plans for the evaluation of ten patients. Plans were normalized to provide identical coverage between DS and PBS. The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and...

  6. Proton beam writing of microstructures in Agar gel for patterned cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Larisch, Wolfgang, E-mail: wolfgang.larisch@studserv.uni-leipzig.de [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Koal, Torsten; Werner, Ronald; Hohlweg, Marcus; Reinert, Tilo; Butz, Tilman [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2011-10-15

    A rather useful prerequisite for many biological and biophysical studies, e.g., for cell-cell communication or neuronal networks, is confined cell growth on micro-structured surfaces. Solidified Agar layers have smooth surfaces which are electrically neutral and thus inhibit receptor binding and cell adhesion. For the first time, Agar microstructures have been manufactured using proton beam writing (PBW). In the irradiated Agar material the polysaccharides are split into oligosaccharides which can easily be washed off leaving Agar-free areas for cell adhesion. The beam diameter of 1 {mu}m allows the fabrication of compartments accommodating single cells which are connected by micrometer-sized channels. Using the external beam the production process is very fast. Up to 50 Petri dishes can be produced per day which makes this technique very suitable for biological investigations which require large throughputs.

  7. Beam simulations with initial bunch noise in superconducting RF proton linacs

    CERN Document Server

    Tückmantel, J

    2010-01-01

    Circular machines are plagued by coupled bunch instabilities (CBI), driven by impedance peaks, where then all cavity higher order modes (HOMs) are possible drivers. Limiting the CBI growth rate is the fundamental reason that all superconducting rf cavities in circular machines are equipped with HOM dampers. The question arises if for similar reasons HOM damping would not be imperative also in high current superconducting rf proton linacs. Therefore we have simulated the longitudinal bunched beam dynamics in such machines, also including charge and position noise on the injected bunches. Simulations were executed for a generic linac with properties close to the planned SPL at CERN, SNS, or Project X at FNAL. It was found that with strong bunch noise and monopole HOMs with high Qext large beam scatter, possibly exceeding the admittance of a receiving machine, cannot be excluded. A transverse simulation shows similar requirements. Therefore including initial bunch noise in any beam dynamic study on superconducti...

  8. Study of depolarization of deuteron and proton beams in the Nuclotron ring

    CERN Document Server

    Golubeva, N Y; Kondratenko, A M; Kondratenko, A M; Mikhajlov, V A; Strokovsky, E A

    2002-01-01

    The scheme for acceleration of polarized deuterons at the Nuclotron accelerator facility includes a cryogenic polarized deuteron source 'Polaris', a 5 MeV/nucl. linac, a superconducting heavy ion synchrotron of a 6 GeV/nucl. energy with 10 s spill slow extraction, thin internal targets and wide net of external beam lines. This scheme also allows one to generate high energy polarized proton and neutron beams with well determined characteristics. There are two principal problems of polarized particle acceleration: to keep spin orientation during beam acceleration and to produce the high ion intensity sufficient for data taking in physics experiments. The first problem is discussed in this paper. The reasons of depolarization effects in the mentioned parts of the Nuclotron have been analysed and four methods of the polarization conserving have been suggested. They are the spin resonance strength compensation increasing of the resonance strength, the betatron tune jump and the spin tune jump. Among their number, ...

  9. Transient Thermal Analysis of Intense Proton Beam Loss on a Kicker Magnet Conductor Plate

    CERN Document Server

    Knaus, P

    2000-01-01

    The Super Proton Synchrotron SPS will be used as injector for the Large Hadron Collider LHC and needs adaptation to meet LHC requirements. The SPS injection kicker magnets MKP will undergo important modifications to comply with the requirements on magnetic field rise-time and ripple. The injection kicker presently installed has a return conductor of beryllium to minimise the risk of metal evaporation from its surface due to heating caused by beam impact. In the context of refurbishing the MKP to satisfy LHC requirements these conductors need replacement, preferably with a less delicate material. This article presents the transient thermal analysis of energy deposition caused by beam loss on the conductor plate. The expected time structure of the beam is taken into account. Simulations comparing different conductor materials have been performed, leading to the result that a significantly cheaper and fully inoffensive titanium alloy can satisfy the needs.

  10. Proton beam writing of microstructures in Agar gel for patterned cell growth

    Science.gov (United States)

    Larisch, Wolfgang; Koal, Torsten; Werner, Ronald; Hohlweg, Marcus; Reinert, Tilo; Butz, Tilman

    2011-10-01

    A rather useful prerequisite for many biological and biophysical studies, e.g., for cell-cell communication or neuronal networks, is confined cell growth on micro-structured surfaces. Solidified Agar layers have smooth surfaces which are electrically neutral and thus inhibit receptor binding and cell adhesion. For the first time, Agar microstructures have been manufactured using proton beam writing (PBW). In the irradiated Agar material the polysaccharides are split into oligosaccharides which can easily be washed off leaving Agar-free areas for cell adhesion. The beam diameter of 1 μm allows the fabrication of compartments accommodating single cells which are connected by micrometer-sized channels. Using the external beam the production process is very fast. Up to 50 Petri dishes can be produced per day which makes this technique very suitable for biological investigations which require large throughputs.

  11. Controlled Transverse Blow-up of Highenergy Proton Beams for Aperture Measurements and Loss Maps

    CERN Document Server

    Hӧfle, W; Redaelli, S; Schmidt, R; Valuch, D; Wollmann, D; Zerlauth, M

    2012-01-01

    A technique was developed to blow-up transversely in a controlled way high energy proton beams in the LHC. The technique is based on band limited white noise excitation that is injected into the transverse damper feedback loop. The injected signal can be gated to selectively blow-up individual trains of bunches. The speed of transverse blow-up can be precisely controlled. This opens the possibility to perform safely and efficiently aperture measurements and loss maps with high intensity bunch trains well above stored beam energies that are considered to be safe. In particular, lengthy procedures for measurements at top energy, otherwise requiring multiple fills of individual bunches, can be avoided. In this paper, the method is presented and results from beam measurements are discussed and compared with alternative blowup methods.

  12. Factors influencing the accuracy of beam range estimation in proton therapy using prompt gamma emission

    Science.gov (United States)

    Janssen, FMFC; Landry, G.; Cambraia Lopes, P.; Dedes, G.; Smeets, J.; Schaart, D. R.; Parodi, K.; Verhaegen, F.

    2014-08-01

    In-vivo imaging is a strategy to monitor the range of protons inside the patient during radiation treatment. A possible method of in-vivo imaging is detection of secondary ‘prompt’ gamma (PG) photons outside the body, which are produced by inelastic proton-nuclear interactions inside the patient. In this paper, important parameters influencing the relationship between the PG profile and percentage depth dose (PDD) in a uniform cylindrical phantom are explored. Monte Carlo simulations are performed with the new Geant4 based code TOPAS for mono-energetic proton pencil beams (range: 100-250 MeV) and an idealized PG detector. PG depth profiles are evaluated using the inflection point on a sigmoid fit in the fall-off region of the profile. A strong correlation between the inflection point and the proton range determined from the PDD is found for all conditions. Variations between 1.5 mm and 2.7 mm in the distance between the proton range and the inflection point are found when either the mass density, phantom diameter, or detector acceptance angle is changed. A change in cut-off energy of the detector could induce a range difference of maximum 4 mm. Applying time-of-flight discrimination during detection, changing the primary energy of the beam or changing the elemental composition of the tissue affects the accuracy of the range prediction by less than 1 mm. The results indicate that the PG signal is rather robust to many parameter variations, but millimetre accurate range monitoring requires all medium and detector properties to be carefully taken into account.

  13. Three-dimensional gamma criterion for patient-specific quality assurance of spot scanning proton beams.

    Science.gov (United States)

    Chang, Chang; Poole, Kendra L; Teran, Anthony V; Luckman, Scott; Mah, Dennis

    2015-09-08

    The purpose of this study was to evaluate the effectiveness of full three-dimensional (3D) gamma algorithm for spot scanning proton fields, also referred to as pencil beam scanning (PBS) fields. The difference between the full 3D gamma algorithm and a simplified two-dimensional (2D) version was presented. Both 3D and 2D gamma algorithms are used for dose evaluations of clinical proton PBS fields. The 3D gamma algorithm was implemented in an in-house software program without resorting to 2D interpolations perpendicular to the proton beams at the depths of measurement. Comparison between calculated and measured dose points was car-ried out directly using Euclidian distance in 3D space and the dose difference as a fourth dimension. Note that this 3D algorithm faithfully implemented the original concept proposed by Low et al. (1998) who described gamma criterion using 3D Euclidian distance and dose difference. Patient-specific proton PBS plans are separated into two categories, depending on their optimization method: single-field optimization (SFO) or multifield optimized (MFO). A total of 195 measurements were performed for 58 SFO proton fields. A MFO proton plan with four fields was also calculated and measured, although not used for treatment. Typically three dif-ferent depths were selected from each field for measurements. Each measurement was analyzed by both 3D and 2D gamma algorithms. The resultant 3D and 2D gamma passing rates are then compared and analyzed. Comparison between 3D and 2D gamma passing rates of SFO fields showed that 3D algorithm does show higher passing rates than its 2D counterpart toward the distal end, while little difference is observed at depths away from the distal end. Similar phenomenon in the lateral penumbra was well documented in photon radiation therapy, and in fact brought about the concept of gamma criterion. Although 2D gamma algorithm has been shown to suffice in addressing dose comparisons in lateral penumbra for photon

  14. Experimental results of beryllium exposed to intense high energy proton beam pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Zwaska, R. [Fermilab; Butcher, M. [CERN; Guinchard, M. [CERN; Calviani, M. [CERN; Losito, R. [CERN; Roberts, S. [Culham Lab; Kuksenko, V. [Oxford U.; Atherton, A. [Rutherford; Caretta, O. [Rutherford; Davenne, T. [Rutherford; Densham, C. [Rutherford; Fitton, M. [Rutherford; Loveridge, J. [Rutherford; O' Dell, J. [Rutherford

    2017-02-10

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and compare surface evolution and microstructural response of the test matrix specimens.

  15. Experimental determination of the complete spin structure for anti-proton + proton -> anti-\\Lambda + \\Lambda at anti-proton beam momentum of 1.637 GeV/c

    CERN Document Server

    Paschke, K.D.; Berdoz, A.; Franklin, G.B.; Khaustov, P.; Meyer, C.A.; Bradtke, C.; Gehring, R.; Goertz, S.; Harmsen, J.; Meier, A.; Meyer, W.; Radtke, E.; Reicherz, G.; Dutz, H.; Pluckthun, M.; Schoch, B.; Dennert, H.; Eyrich, W.; Hauffe, J.; Metzger, A.; Moosburger, M.; Stinzing, F.; Wirth, St.; Fischer, H.; Franz, J.; Heinsius, F.H.; Kriegler, E.; Schmitt, H.; Bunker, B.; Hertzog, D.; Jones, T.; Tayloe, R.; Broders, R.; Geyer, R.; Kilian, K.; Oelert, W.; Rohrich, K.; Sachs, K.; Sefzick, T.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Kingsberry, P.; Lowe, J.; Stotzer, R.; Johansson, T.; Pomp, S.; Wirth, St.

    2006-01-01

    The reaction anti-proton + proton -> anti-\\Lambda + \\Lambda -> anti-proton + \\pi^+ + proton + \\pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \\Lambda/anti-\\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\\Lambda + \\Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.

  16. High Power Diode Lasers Technology and Applications

    CERN Document Server

    Bachmann, Friedrich; Poprawe, Reinhart

    2007-01-01

    In a very comprehensive way this book covers all aspects of high power diode laser technology for materials processing. Basics as well as new application oriented results obtained in a government funded national German research project are described in detail. Along the technological chain after a short introduction in the second chapter diode laser bar technology is discussed regarding structure, manufacturing technology and metrology. The third chapter illuminates all aspects of mounting and cooling, whereas chapter four gives wide spanning details on beam forming, beam guiding and beam combination, which are essential topics for incoherently coupled multi-emitter based high power diode lasers. Metrology, standards and safety aspects are the theme of chapter five. As an outcome of all the knowledge from chapter two to four various system configurations of high power diode lasers are described in chapter six; not only systems focussed on best available beam quality but especially also so called "modular" set...

  17. Hydrogel rectum-prostate spacers mitigate the uncertainties in proton relative biological effectiveness associated with anterior-oblique beams.

    Science.gov (United States)

    Underwood, Tracy S A; Voog, Justin C; Moteabbed, Maryam; Tang, Shikui; Soffen, Edward; Cahlon, Oren; Lu, Hsiao-Ming; Zietman, Anthony L; Efstathiou, Jason A; Paganetti, Harald

    2017-04-01

    Anterior-oblique (AO) proton beams can form an attractive option for prostate patients receiving external beam radiotherapy (EBRT) as they avoid the femoral heads. For a cohort with hydrogel prostate-rectum spacers, we asked whether it was possible to generate AO proton plans robust to end-of-range elevations in linear energy transfer (LET) and modeled relative biological effectiveness (RBE). Additionally we considered how rectal spacers influenced planned dose distributions for AO and standard bilateral (SB) proton beams versus intensity-modulated radiotherapy (IMRT). We studied three treatment strategies for 10 patients with rectal spacers: (A) AO proton beams, (B) SB proton beams and (C) IMRT. For strategy (A) dose and LET distributions were simulated (using the TOPAS Monte Carlo platform) and the McNamara model was used to calculate proton RBE as a function of LET, dose per fraction, and photon α/β. All calculations were performed on pretreatment scans: inter- and intra-fractional changes in anatomy/set-up were not considered. For 9/10 patients, rectal spacers enabled generation of AO proton plans robust to modeled RBE elevations: rectal dose constraints were fulfilled even when the variable RBE model was applied with a conservative α/β = 2 Gy. Amongst a subset of patients the proton rectal doses for the planning target volume plans were remarkably low: for 2/10 SB plans and 4/10 AO plans, ≤10% of the rectum received ≥20 Gy. AO proton plans delivered integral doses a factor of approximately three lower than IMRT and spared the femoral heads almost entirely. Typically, rectal spacers enabled the generation of anterior beam proton plans that appeared robust to modeled variation in RBE. However, further analysis of day-to-day robustness would be required prior to a clinical implementation of AO proton beams. Such beams offer almost complete femoral head sparing, but their broader value relative to IMRT and SB protons remains unclear.

  18. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    Science.gov (United States)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  19. A Novel Approach to Postmastectomy Radiation Therapy Using Scanned Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Depauw, Nicolas, E-mail: ndepauw@partners.org [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Centre for Medical Radiation Physics, University of Wollongong, New South Wales (Australia); Batin, Estelle; Daartz, Julianne [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Rosenfeld, Anatoly [Centre for Medical Radiation Physics, University of Wollongong, New South Wales (Australia); Adams, Judith; Kooy, Hanne; MacDonald, Shannon; Lu, Hsiao-Ming [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: Postmastectomy radiation therapy (PMRT), currently offered at Massachusetts General Hospital, uses proton pencil beam scanning (PBS) with intensity modulation, achieving complete target coverage of the chest wall and all nodal regions and reduced dose to the cardiac structures. This work presents the current methodology for such treatment and the ongoing effort for its improvements. Methods and Materials: A single PBS field is optimized to ensure appropriate target coverage and heart/lung sparing, using an in–house-developed proton planning system with the capability of multicriteria optimization. The dose to the chest wall skin is controlled as a separate objective in the optimization. Surface imaging is used for setup because it is a suitable surrogate for superficial target volumes. In order to minimize the effect of beam range uncertainties, the relative proton stopping power ratio of the material in breast implants was determined through separate measurements. Phantom measurements were also made to validate the accuracy of skin dose calculation in the treatment planning system. Additionally, the treatment planning robustness was evaluated relative to setup perturbations and patient breathing motion. Results: PBS PMRT planning resulted in appropriate target coverage and organ sparing, comparable to treatments by passive scattering (PS) beams but much improved in nodal coverage and cardiac sparing compared to conventional treatments by photon/electron beams. The overall treatment time was much shorter than PS and also shorter than conventional photon/electron treatment. The accuracy of the skin dose calculation by the planning system was within ±2%. The treatment was shown to be adequately robust relative to both setup uncertainties and patient breathing motion, resulting in clinically satisfying dose distributions. Conclusions: More than 25 PMRT patients have been successfully treated at Massachusetts General Hospital by using single-PBS fields

  20. Comparison of basic features of proton and helium ion pencil beams in water using GATE.

    Science.gov (United States)

    Ströbele, Julia; Schreiner, Thomas; Fuchs, Hermann; Georg, Dietmar

    2012-09-01

    The aim of this study was to investigate the basic features of helium ions for their possible application in advanced radiotherapy and to benchmark them against protons, the current particle of choice in the low linear energy transfer (LET) range. Geant4 Application for Emission Tomography (GATE) simulations were performed with beams of 1x10(7) monodirectional particles traversing a water phantom. Initial energies ranged from 50 to 250 MeV per nucleon (MeV/A). The following parameters were evaluated: particle range at the distal 80% of maximum energy deposition (E(max)), width of the Bragg peak (BP) at 60% of E(max), and dose fall-off width between 80% and 20% of E(max) for longitudinal spectra. In addition the fragmentation tail was quantified in terms of length, percental energy deposition, and contributing particles. For each energy lateral profiles were registered along the beam axis and the FWHM at four different depths was extracted. Besides the comparison of parameters between the two particle types, results were also compared to data in the literature. As expected, the position of the BP as a function of initial kinetic energy showed similar values for protons and helium ions, with deviations smaller than 1.3%. The quantitative results of the Monte Carlo (MC) study showed less range straggling effects and smaller lateral deflections for helium ions compared to protons for the investigated energy range. On average, an about 56% reduction of the width of the BP and a 48% reduction of the dose fall-off was observed for helium ions compared to protons. Both the width of the BP and the dose fall-off width as a function of particle range or energy showed an almost linear increase with increasing energy. The tail length increased from 55.9 mm to 592.7 mm and the deposited energy increased from 0.5% to 7.3% for energies between 90 and 250 MeV/A. Lateral profiles of helium ions were about 52% narrower than those of protons. Due to their mass and charge helium

  1. Protection Related to High-power Targets

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Target protection is an important part of machine protection. The beam power in high-intensity accelerators is high enough that a single wayward pulse can cause serious damage. Today's high-power targets operate at the limit of available technology, and are designed for a very narrow range of beam parameters. If the beam pulse is too far off centre, or if the beam size is not correct, or if the beam density is too high, the target can be seriously damaged. We will start with a brief introduction to high-power targets and then move to a discussion of what can go wrong, and what are the risks. Next we will discuss how to control the beam-related risk, followed by examples from a few different accelerator facilities. We will finish with a detailed example of the Oak Ridge Spallation Neutron Source target tune up and target protection.

  2. Thermoluminescence response of sodalime glass irradiated with proton and neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, M. [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy); Longo, A., E-mail: anna.longo@unipa.it [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy); Bartolotta, A. [Dipartimento STEMBIO, Via delle Scienze, Ed. 16, 90128 Palermo (Italy); Basile, S. [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy); D' Oca, M.C. [Dipartimento STEMBIO, Via delle Scienze, Ed. 16, 90128 Palermo (Italy); Tomarchio, E. [Dipartimento dell' Energia, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo (Italy); Cirrone, G.A.P. [Laboratori Nazionali del Sud INFN, Via Santa Sofia 65, 95123 Catania (Italy); Di Rosa, F. [Azienda Sanitaria Provinciale N 2, Pres. Osped. ' M. Raimondi' , Via Forlanini 5, S. Cataldo (Italy); Romano, F. [Laboratori Nazionali del Sud INFN, Via Santa Sofia 65, 95123 Catania (Italy); Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' Compendio del Viminale, Piazza del Viminale 1, 00184 Roma (Italy); Cuttone, G. [Laboratori Nazionali del Sud INFN, Via Santa Sofia 65, 95123 Catania (Italy); Brai, M. [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy)

    2012-12-01

    In the research field of emergency dosimeters to be used in case of accidental radiation exposure of the population, watch glass has been considered as a possible fortuitous dosimetric material. This paper reports on results obtained by thermoluminescence of glass samples exposed to neutron and proton beams. Thermoluminescent glow curves have been analyzed for each irradiation studying the modifications induced by the irradiation as a function of proton dose or neutron fluence. The glow curve in a specific temperature range has been used as dosimetric parameter. The thermoluminescence response of samples exposed to protons has been found to be linear in the dose range between 2 and 20 Gy and the lowest detectable dose for this radiation beam is estimated to be smaller than than 1 Gy. In case of exposure with thermal neutrons the TL signal linearly increases with neutron fluence (up to about 3 Multiplication-Sign 10{sup 11} cm{sup -2}) and the lowest detectable fluence has been found to be of the order of magnitude of 10{sup 9} cm{sup -2}. These results could be of interest for accidental retrospective dosimetry.

  3. CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact

    Directory of Open Access Journals (Sweden)

    Claudio Torregrosa Martin

    2016-07-01

    Full Text Available Antiprotons are produced at CERN by colliding a 26  GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 °C after each pulse impact and successive dynamic pressure waves of the order of GPa’s. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii The existence of end-of-pulse tensile waves and its relevance on the overall response (iii A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.

  4. The CERN antiproton target: hydrocode analysis of its core material dynamic response under proton beam impact

    CERN Document Server

    Martin, Claudio Torregrosa; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-01-01

    Antiprotons are produced at CERN by colliding a 26 GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 {\\deg}C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of...

  5. A New Technology for Fast Two-Dimensional Detection of Proton Therapy Beams

    Directory of Open Access Journals (Sweden)

    Robert Hollebeek

    2012-01-01

    chamber and specially designed amplifiers and readout electronics adapted to the requirements of the proton therapy environment and providing both excellent time and high spatial resolution are presented here. The device was irradiated at the Roberts Proton Therapy Center at the University of Pennsylvania. The system was operated with ionization gains between 10 and 200 and in low and intermediate dose-rate beams, and the digitized signal is found to be reproducible to 0.8%. Spatial resolution is determined to be 1.1 mm (1σ with a 1 ms time resolution. We resolve the range modulator wheel rotational frequency and the thicknesses of its segments and show that this information can be quickly measured owing to the high time resolution of the system. Systems of this type will be extremely useful in future treatment methods involving beams that change rapidly in time and spatial position. The Micromegas design resolves the high dose rate within a proton Bragg peak, and measurements agree with Geant4 simulations to within 5%.

  6. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV

    Directory of Open Access Journals (Sweden)

    S. Busold

    2014-03-01

    Full Text Available We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 10^{9} particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E_{0} at FWHM. A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf field is applied via a rf cavity for energy compression at a synchronous phase of -90  deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  7. Solar power satellites and the ionosphere - The effect of high power microwave beams on the ionosphere and the chemical effects due to Heavy-Lift Launch Vehicles

    Science.gov (United States)

    The effects of solar power satellites on the ionosphere are discussed, separated into two categories: (1) passive interactions, in which the ionospheric plasma influences the propagation of the power satellite beam in some way, and in some instances possibly gives rise to co-channel interference through scattering off the beam, and (2) an active inteference, in which ionospheric plasma itself is modified. Strong electron heating from the power satellite beam may produce irregularities in the ionization capable of scattering radio waves of lower frequencies, thereby increasing the potential for broad-band interference. Ionospheric modification may also result from the emission of exhaust effluents from heavy lift launch vehicles, and associated changes in ionospheric chemistry can lead to depletions in ionization at F-region heights. Interference with radio services is briefly discussed.

  8. Proton therapy posterior beam approach with pencil beam scanning for esophageal cancer. Clinical outcome, dosimetry, and feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yue-Can [Shengjing Hospital of China Medical University, Department of Medical Oncology, Cancer Center, Shenyang (China); University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); Vyas, Shilpa; Apisarnthanarax, Smith; Zeng, Jing [University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); Dang, Quang; Schultz, Lindsay [Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA (United States); Bowen, Stephen R. [University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); University of Washington Medical Center, Department of Radiology, Seattle, WA (United States); Shankaran, Veena [University of Washington Medical Center, Department of Medical Oncology, Seattle, WA (United States); Farjah, Farhood [University of Washington Medical Center, Department of Surgery, Division of Cardiothoracic Surgery, Seattle, WA (United States); University of Washington Medical Center, Department of Surgery, Surgical Outcomes Research Center, Seattle, WA (United States); Oelschlager, Brant K. [University of Washington Medical Center, Department of Surgery, Seattle, WA (United States)

    2016-12-15

    The aim of this study is to present the dosimetry, feasibility, and preliminary clinical results of a novel pencil beam scanning (PBS) posterior beam technique of proton treatment for esophageal cancer in the setting of trimodality therapy. From February 2014 to June 2015, 13 patients with locally advanced esophageal cancer (T3-4N0-2M0; 11 adenocarcinoma, 2 squamous cell carcinoma) were treated with trimodality therapy (neoadjuvant chemoradiation followed by esophagectomy). Eight patients were treated with uniform scanning (US) and 5 patients were treated with a single posterior-anterior (PA) beam PBS technique with volumetric rescanning for motion mitigation. Comparison planning with PBS was performed using three plans: AP/PA beam arrangement; PA plus left posterior oblique (LPO) beams, and a single PA beam. Patient outcomes, including pathologic response and toxicity, were evaluated. All 13 patients completed chemoradiation to 50.4 Gy (relative biological effectiveness, RBE) and 12 patients underwent surgery. All 12 surgical patients had an R0 resection and pathologic complete response was seen in 25 %. Compared with AP/PA plans, PA plans have a lower mean heart (14.10 vs. 24.49 Gy, P < 0.01), mean stomach (22.95 vs. 31.33 Gy, P = 0.038), and mean liver dose (3.79 vs. 5.75 Gy, P = 0.004). Compared to the PA/LPO plan, the PA plan reduced the lung dose: mean lung dose (4.96 vs. 7.15 Gy, P = 0.020) and percentage volume of lung receiving 20 Gy (V{sub 20}; 10 vs. 17 %, P < 0.01). Proton therapy with a single PA beam PBS technique for preoperative treatment of esophageal cancer appears safe and feasible. (orig.) [German] Wir stellen die Vergleichsdosimetrie, Realisierbarkeit und die vorlaeufigen klinischen Ergebnisse einer neuen Pencil-Beam-Scanning(-PBS)/Posterior-Beam-Methode innerhalb der Protonentherapie fuer Speiseroehrenkrebs im Setting einer trimodalen Therapie vor. Von Februar 2014 bis Juni 2015 erhielten 13 Patienten mit lokal fortgeschrittenem

  9. First 3D measurements of proton beams in a deformable silicone-based dosimeter

    Science.gov (United States)

    Høye, E. M.; Sadel, M.; Kaplan, L.; Skyt, P. S.; Muren, L. P.; Petersen, J. B. B.; Swakoń, J.; Mierzwińska, G.; Rydygier, M.; Malinowski, L.; Balling, P.

    2017-05-01

    3D dosimetry provides high-resolution dose information of radiation therapy (RT), and is explored to enable and secure high-quality delivery of advanced RT modalities, including proton therapy. We present the first 3D measurements of spot-scanning proton plans in a silicone-based, radiochromic dosimeter with deformation properties. The dose information was read-out by optical CT-scanning. We found that the dosimeter signal was quenched close to the Bragg peak, and that this had a large impact on a measured spread-out Bragg peak. The dose response was linear both in the entrance region and in the Bragg peak, however, the dose response significantly reduced in the Bragg peak. Quenching was attributed to a linear-energy-transfer dependent dose response. Linear energy transfer distributions for each proton treatment plan will provide a means for calibrating the optical measurement to linear energy transfer, as well as dose. This might enable use of the silicone-dosimeter in quality assurance of proton beams.

  10. Quality assurance of proton beams using a multilayer ionization chamber system.

    Science.gov (United States)

    Dhanesar, Sandeep; Sahoo, Narayan; Kerr, Matthew; Taylor, M Brad; Summers, Paige; Zhu, X Ronald; Poenisch, Falk; Gillin, Michael

    2013-09-01

    The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system. The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used to measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning. The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within -0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF values agreed within 0.3 ± 0

  11. Quality assurance of proton beams using a multilayer ionization chamber system

    Energy Technology Data Exchange (ETDEWEB)

    Dhanesar, Sandeep; Sahoo, Narayan; Kerr, Matthew; Taylor, M. Brad; Summers, Paige; Zhu, X. Ronald; Poenisch, Falk; Gillin, Michael [Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 (United States); Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 and The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, S3.8344, Houston, Texas 77030 (United States); Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 (United States); Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 and The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, S3.8344, Houston, Texas 77030 (United States)

    2013-09-15

    Purpose: The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system.Methods: The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used to measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning.Results: The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within −0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF

  12. Physics with polarized beams. Report of the ANL Technical Advisory Panel. [Research with polarized proton beams

    Energy Technology Data Exchange (ETDEWEB)

    1975-11-01

    Experimental directions which will be the most useful in developing underlying theories of hadronic collisions are outlined. As a pedagogical device to accomplish this, approximate percentages of a total program which could be devoted to different areas have been quoted. Findings are presented in the form of a short basic report with several long detailed appendices. In the basic report our opinion as to the amount of polarized beam experimental effort that should be applied to the following areas is stated: nucleon-nucleon scattering, quasi-two-body processes, inclusive production, and new or unexplored areas (such as large p/sub T/ and invariance principles). Our reasoning is discussed briefly, however, the details are left for the appendices. Members of the panel present certain aspects of the above areas, which should be useful for planning and/or performing polarized beam experiments. The seven presentations are abstracted separately in ERA.

  13. Studies of a Target System for a 4-MW, 24-GeV Proton Beam

    CERN Multimedia

    2002-01-01

    We propose to perform a proof-of-principle test of a target station suitable for a Neutrino Factory or Muon Collider source using a 24-GeV proton beam incident on a target consisting of a free mercury jet that is inside a 15- T capture solenoid magnet. This test could be performed in the TT2A tunnel of the nTOF proton line (upstream of the spallation target). The tests would require only $\\approx$ 100 fast-extracted pulses of full PS intensity, delivered in a pulse-on-demand mode of operation over about 2 weeks. The main piece of apparatus is the LN2-precooled, 15- T copper magnet of total volume slightly over 1 m$^{3}$ with a 15-cm-diameter warm bore. The principle diagnostic is a high-speed optical camera. The mercury jet is part of a closed mercury loop that includes an insert into the bore of the magnet.

  14. High power switching and other high power devices

    Science.gov (United States)

    Gundersen, Martin

    1992-09-01

    High power thyratrons and devices such as high power microwave sources have cathode-related performance limits. Research is described of a simple, robust 'super-emissive' cathode that produces greater than 10,000 A/sq cm from a macroscopic area (approx. 1 sq cm), and operates with a low pressure (approx. 0.1 torr), spatially uniform glow plasma (density greater than 1015 cu cm). The cathode also can operate as a hollow cathode, and is at the heart of the operation of the pseudospark and back-lighted thyratron. The physics of this hollow and super-emissive cathode is very rich. The hollow cathode geometry traps electrons in the hollow cathode backspace. The lifetime of these electrons enables them to ionize a spatially homogeneous high density glow, and this hollow cathode mode of operation is responsible for certain types of electron and ion beam behavior. A plasma cathode sheath that is formed during this phase leads to super-emissive behavior, which is responsible for high current emission. Super-emissive cathode thyratron-type switches (with higher peak current, voltage, di/dt) being developed for pulsed power switching of lasers, accelerators, high current and high coulomb transfer, Marx bank operation, transfer of technology to commercial applications, high current electron beams, and millimeter wave generation (1 to 100 GHz) are described.

  15. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the

  16. LEDA - A HIGH-POWER TEST BED OF INNOVATION AND OPPORTUNITY

    Energy Technology Data Exchange (ETDEWEB)

    J. SCHNEIDER; R. SHEFFIELD

    2000-08-01

    The low-energy demonstration accelerator (LEDA) is an operational 6.7-MeV. 100-mA proton accelerator consisting of an injector, radio-frequency quadrupole (RFQ), and all associated integration equipment. In order to achieve this unprecedented level of performance (670-kW of beam power) from an RFQ, a number of design innovations were required. They will highlight a number of those more significant technical advances, including those in the proton injector, the RFQ configuration, the RF klystrons, the beam stop, and the challenges of beam measurements. In addition to identifying the importance of these innovations to LEDA performance, they will summarize the plans for further testing, and the possibilities for addition of more accelerating structures, including the planned use of very-low-beta super-conducting structures. LEDA's current and upgradable configuration is appropriate for several future high-power accelerators, including those for the transmutation of radioactive waste.

  17. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study.

    Science.gov (United States)

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-07

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ∼50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A (22)Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  18. Dosimetric comparison of intensity modulated radiation, Proton beam therapy and proton arc therapy for para-aortic lymph node tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon [Dept. of Radiation Oncology, Konyang University Hospital. Daejeon (Korea, Republic of)

    2014-12-15

    To test feasibility of proton arc therapy (PAT) in the treatment of para-aortic lymph node tumor and compare its dosimetric properties with advanced radiotherapy techniques such as intensity modulated radiation therapy (IMRT) and conventional 3D conformal proton beam therapy (PBT). The treatment plans for para-aortic lymph node tumor were planned for 9 patients treated at our institution using IMRT, PBT, and PAT. Feasibility test and dosimetric evaluation were based on comparisons of dose volume histograms (DVHs) which reveal mean dose, D{sub 30%}, D{sub 60%}, D{sub 90%}, V{sub 30%}, V{sub 60%}, V{sub 90}%, organ equivalent doses (OEDs), normal tissue complication probability (NTCP), homogeneity index (HI) and conformity index (CI). The average doses delivered by PAT to the liver, kidney, small bowel, duodenum, stomach were 7.6%, 3%, 17.3%, 26.7%, and 14.4%, of the prescription dose (PD), respectively, which is higher than the doses delivered by IMRT (0.4%, 7.2%, 14.2%, 15.9%, and 12.8%, respectively) and PBT (4.9%, 0.5%, 14.12%, 16.1% 9.9%, respectively). The average homogeneity index and conformity index of tumor using PAT were 12.1 and 1.21, respectively which were much better than IMRT (21.5 and 1.47, respectively) and comparable to PBT (13.1 and 1.23, respectively). The result shows that both NTCP and OED of PAT are generally lower than IMRT and PBT. This study demonstrates that PAT is better in target conformity and homogeneity than IMRT and PBT but worse than IMRT and PBT for most of dosimetric factor which indicate that PAT is not recommended for the treatment of para-aortic lymph node tumor.

  19. Effect of Intrafraction Prostate Motion on Proton Pencil Beam Scanning Delivery: A Quantitative Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shikui, E-mail: TangS@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Deville, Curtiland; McDonough, James; Tochner, Zelig [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Wang, Ken Kang-Hsin [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, Maryland (United States); Vapiwala, Neha; Both, Stefan [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-10-01

    Purpose: To assess the dosimetric impact caused by the interplay between intrafraction prostate motion and the intermittent delivery of proton pencil beam scanning (PBS). Methods and Materials: A cohort of 10 prostate patients was treated with PBS using a bilateral single-field uniform dose (SFUD) modality. Bilateral intensity-modulated proton therapy (IMPT) plans were generated for comparison. Because beam-on time in PBS was intermittent, the actual beam-on time was determined from treatment logs. Prostate motion was generalized according to real-time Calypso tracking data from our previously reported prospective photon trial. We investigated potential dose deviations by considering the interplay effect resulting from the worst-case scenario motion and the PBS delivery sequence. Results: For both bilateral-field SFUD and IMPT plans, clinical target volume (CTV) D{sub 99}% coverage was degraded <2% owing to prostate intrafraction motion when averaged over the course of treatment, but was >10% for the worst fraction. The standard deviation of CTV D{sub 99}% distribution was approximately 1.2%. The CTV coverage of individual fields in SFUD plans degraded as time elapsed after the initial alignment, owing to prostate drift. Intensity-modulated proton therapy and SFUD demonstrated comparable results when bilateral opposed fields were used. Single-field SFUD plans that were repainted twice, which could reduce half of the treatment time, resulted in similar CTV coverage as bilateral-field plans. Conclusions: Intrafraction prostate motion affects the actual delivered dose to CTV; however, when averaged over the course of treatment, CTV D{sub 99}% coverage degraded only approximately 2% even for the worst-case scenario. The IMPT plan results are comparable to those of the SFUD plan, and similar coverage can be achieved if treated by SFUD 1 lateral field per day when rescanning the field twice to shorten the treatment time and mitigate intrafraction motion.

  20. Status of Beam Diagnostic Systems for the PEFP

    CERN Document Server

    Park Jang Ho; Choi Byung Ho; Ha Hwang Woon; Han, Sang-Hyo; Park, Sung-Ju; Woon Parc, Yong; Yun Huang Jung

    2005-01-01

    A proton linear accelerator is currently the construction at the KAERI (Korea Atomic Research Institute) to the PEFP (Proton Engineering Frontier Project) in Korea. We are accomplished the technique development of beam diagnostic system to be currently the construction. We treat beam diagnostics for the high power proton linear accelerator. Prototype beam position & phase monitor (BPPM) electronics was made and tested successfully in one of the beam diagnostic systems. The beam position monitor pickup electrode is a capacitive type (electrostatic type) which has a button form. Button form electrode, in common use around electron synchrotrons and storage rings, are a variant of the electrode with small button form (e.g., sub mm diameter). However, we are designed button form electrode to measure beam position of proton beam. The BCM (Beam Current Monitor) is developed Tuned CT (Current Transformer) for collaborate with Bergoz Instruments. This paper describes the status of beam diagnostic systems for the P...

  1. A new small-footprint external-beam PIXE facility for cultural heritage applications using pulsed proton beams

    Science.gov (United States)

    Vadrucci, M.; Bazzano, G.; Borgognoni, F.; Chiari, M.; Mazzinghi, A.; Picardi, L.; Ronsivalle, C.; Ruberto, C.; Taccetti, F.

    2017-09-01

    In the framework of the COBRA project, elemental analyses of cultural heritage objects based on the particle induced X-ray emission (PIXE) are planned in a collaboration between the APAM laboratory of ENEA-Frascati and the LABEC laboratory of INFN in Florence. With this aim a 3-7 MeV pulsed proton beam, driven by the injector of the protontherapy accelerator under construction for the TOP-IMPLART project, will be used to demonstrate the feasibility of the technique with a small-footprint pulsed accelerator to Italian small and medium enterprises interested in the composition analysis of ancient artifacts. The experimental set-up for PIXE analysis on the TOP-IMPLART machine consists of a modified assembly of the vertical beam line usually dedicated to radiobiology experiments: the beam produced by the injector (RFQ + DTL, a PL7 ACCSYSHITACHI model) is bent to 90° by a magnet, is collimated by a 300 μm aperture inserted in the end nozzle and extracted into ambient pressure by an exit window consisting of a Upilex foil 7.5 μm thick. The beam is pulsed with a variable pulse duration of 20-100 μs and a repetition rate variable from 10 to 100 Hz. The X-ray detection system is based on a Ketek Silicon Drift Detector (SDD) with 7 mm2 active area and 450 μm thickness, with a thin Beryllium entrance window (8 μm). The results of the calibration of this new PIXE set-up using thick target standards and of the analysis of the preliminary measurements on pigments are presented.

  2. Partial Breast Radiation Therapy With Proton Beam: 5-Year Results With Cosmetic Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Bush, David A., E-mail: dbush@llu.edu [Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, California (United States); Do, Sharon [Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, California (United States); Lum, Sharon; Garberoglio, Carlos [Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, California (United States); Mirshahidi, Hamid [Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, California (United States); Patyal, Baldev; Grove, Roger; Slater, Jerry D. [Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, California (United States)

    2014-11-01

    Purpose: We updated our previous report of a phase 2 trial using proton beam radiation therapy to deliver partial breast irradiation (PBI) in patients with early stage breast cancer. Methods and Materials: Eligible subjects had invasive nonlobular carcinoma with a maximal dimension of 3 cm. Patients underwent partial mastectomy with negative margins; axillary lymph nodes were negative on sampling. Subjects received postoperative proton beam radiation therapy to the surgical bed. The dose delivered was 40 Gy in 10 fractions, once daily over 2 weeks. Multiple fields were treated daily, and skin-sparing techniques were used. Following treatment, patients were evaluated with clinical assessments and annual mammograms to monitor toxicity, tumor recurrence, and cosmesis. Results: One hundred subjects were enrolled and treated. All patients completed the assigned treatment and were available for post-treatment analysis. The median follow-up was 60 months. Patients had a mean age of 63 years; 90% had ductal histology; the average tumor size was 1.3 cm. Actuarial data at 5 years included ipsilateral breast tumor recurrence-free survival of 97% (95% confidence interval: 100%-93%); disease-free survival of 94%; and overall survival of 95%. There were no cases of grade 3 or higher acute skin reactions, and late skin reactions included 7 cases of grade 1 telangiectasia. Patient- and physician-reported cosmesis was good to excellent in 90% of responses, was not changed from baseline measurements, and was well maintained throughout the entire 5-year follow-up period. Conclusions: Proton beam radiation therapy for PBI produced excellent ipsilateral breast recurrence-free survival with minimal toxicity. The treatment proved to be adaptable to all breast sizes and lumpectomy cavity configurations. Cosmetic results appear to be excellent and unchanged from baseline out to 5 years following treatment. Cosmetic results may be improved over those reported with photon

  3. PIXE analysis of cystic fibrosis sweat samples with an external proton beam

    Science.gov (United States)

    Sommer, F.; Massonnet, B.

    1987-03-01

    PIXE analysis with an external proton beam is used to study, in four control and five cystic fibrosis children, the elemental composition of sweat samples collected from different parts of the body during entire body hyperthermia. We observe no significant difference of sweat rates and of temperature variations between the two groups during sweat test. The statistical study of results obtained by PIXE analysis allows us to pick out amongst 8 elements studied, 6 elements (Na, Cl, Ca, Mn, Cu, Br) significatively different between the two groups of subjects. Using regression analysis, Na, Cl and Br concentrations could be used in a predictive equation of the state of health.

  4. Spallation study with proton beams around 1 GeV: neutron production

    CERN Document Server

    Boudard, A; Brochard, F; Crespin, S; Drake, D; Duchazeaubeneix, J C; Durand, D; Durand, J M; Frehaut, J; Hanappe, F; Kowalski, L A; Lebrun, C; Lecolley, F R; Lecolley, J F; Ledoux, X; Lefèbvres, F; Legrain, R; Leray, S; Louvel, M; Martínez, E; Meigo, S I; Ménard, S; Milleret, G; Patin, Y; Petibon, E; Plouin, F; Pras, P; Schapira, J P; Stuttgé, L; Terrien, Y; Thun, J; Uematsu, M; Varignon, C; Volant, C; Whittal, D M; Wlazlo, W

    2000-01-01

    Experiments performed at Lab. Nat. SATURNE on neutron produced by spallation from proton beams in the range 0.8 - 1.6 GeV are presented. Experimental data compared with codes show a significant improvement of the recent intra-nuclear cascade (J. Cugnon). This is also true in the same way for the neutron production from thick targets. However the model underestimates the energetic neutrons produced in the backward direction and other quantities as residual nuclei cross sections are not accurately predicted.

  5. Randomized Clinical Trial Comparing Proton Beam Radiation Therapy with Transarterial Chemoembolization for Hepatocellular Carcinoma: Results of an Interim Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bush, David A., E-mail: dbush@llu.edu [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California (United States); Smith, Jason C. [Department of Diagnostic Radiology, Loma Linda University Medical Center, Loma Linda, California (United States); Slater, Jerry D. [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California (United States); Volk, Michael L. [Transplantation Institute and Liver Center, Loma Linda University Medical Center, Loma Linda, California (United States); Reeves, Mark E. [VA Loma Linda Health Care System, Loma Linda, California (United States); Cheng, Jason [Transplantation Institute and Liver Center, Loma Linda University Medical Center, Loma Linda, California (United States); Grove, Roger [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California (United States); Vera, Michael E. de [Transplantation Institute and Liver Center, Loma Linda University Medical Center, Loma Linda, California (United States)

    2016-05-01

    Purpose: To describe results of a planned interim analysis of a prospective, randomized clinical trial developed to compare treatment outcomes among patients with newly diagnosed hepatocellular carcinoma (HCC). Methods and Materials: Eligible subjects had either clinical or pathologic diagnosis of HCC and met either Milan or San Francisco transplant criteria. Patients were randomly assigned to transarterial chemoembolization (TACE) or to proton beam radiation therapy. Patients randomized to TACE received at least 1 TACE with additional TACE for persistent disease. Proton beam radiation therapy was delivered to all areas of gross disease to a total dose of 70.2 Gy in 15 daily fractions over 3 weeks. The primary endpoint was progression-free survival, with secondary endpoints of overall survival, local tumor control, and treatment-related toxicities as represented by posttreatment days of hospitalization. Results: At the time of this analysis 69 subjects were available for analysis. Of these, 36 were randomized to TACE and 33 to proton. Total days of hospitalization within 30 days of TACE/proton was 166 and 24 days, respectively (P<.001). Ten TACE and 12 proton patients underwent liver transplantation after treatment. Viable tumor identified in the explanted livers after TACE/proton averaged 2.4 and 0.9 cm, respectively. Pathologic complete response after TACE/proton was 10%/25% (P=.38). The 2-year overall survival for all patients was 59%, with no difference between treatment groups. Median survival time was 30 months (95% confidence interval 20.7-39.3 months). There was a trend toward improved 2-year local tumor control (88% vs 45%, P=.06) and progression-free survival (48% vs 31%, P=.06) favoring the proton beam treatment group. Conclusions: This interim analysis indicates similar overall survival rates for proton beam radiation therapy and TACE. There is a trend toward improved local tumor control and progression-free survival with proton beam. There are

  6. Monte Carlo simulations of a nozzle for the treatment of ocular tumours with high-energy proton beams.

    Science.gov (United States)

    Newhauser, Wayne; Koch, Nicholas; Hummel, Stephen; Ziegler, Matthias; Titt, Uwe

    2005-11-21

    By the end of 2002, 33 398 patients worldwide had been treated with proton radiotherapy, 10 829 for eye diseases. The dose prediction algorithms used today for ocular proton therapy treatment planning rely on parameterizations of measured proton dose distributions, i.e., broad-beam and pencil-beam techniques, whose predictive capabilities are inherently limited by severe approximations and simplifications in modelling the radiation transport physics. In contrast, the Monte Carlo radiation transport technique can, in principle, provide accurate predictions of the proton treatment beams by taking into account all the physical processes involved, including coulombic energy loss, energy straggling, multiple Coulomb scattering, elastic and nonelastic nuclear interactions, and the transport of secondary particles. It has not been shown, however, whether it is possible to commission a proton treatment planning system by using data exclusively from Monte Carlo simulations of the treatment apparatus and a phantom. In this work, we made benchmark comparisons between Monte Carlo predictions and measurements of an ocular proton treatment beamline. The maximum differences between absorbed dose profiles from simulations and measurements were 6% and 0.6 mm, while typical differences were less than 2% and 0.2 mm. The computation time for the entire virtual commissioning process is less than one day. The study revealed that, after a significant development effort, a Monte Carlo model of a proton therapy apparatus is sufficiently accurate and fast for commissioning a treatment planning system.

  7. High Power Electronics

    Science.gov (United States)

    Pendharker, Sameer

    High Power Electronics Future Trends: New process, circuit and packaging technologies over the last 5 years have led to significant innovation and technological developments in high power electronics. In this topic, the trends and performance improvements achieved in the industry will be discussed with focus on gallium-nitride (GaN) and silicon carbide (SiC). Both GaN and SiC technologies have been around for many years but have seen limited adoption and proliferation in high power systems. With the improved transistor performance, power conversion efficiencies and densities previously unrealizable are now available leading to new applications and new system. Trends in these technologies will also be reviewed and remaining challenges to overcome before true mass market adoption can be expected.

  8. Calculation of radiation fields inside iron beam dump irradiated by 24 GeV/c proton

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Noriaki [High Energy Accelerator Research Organization (KEK), Tanashi Branch, Tanashi, Tokyo (JAPAN)

    1997-06-01

    Benchmark calculations using a combination of the HETC-3STEP code and MORSE-CG-KFA code complied in the HERMES code system were performed for the number of produced radioactive nuclei in indium, sulfer, and aluminum activation detectors inserted into the 100-cm-thick iron beam dump assembly irradiated by 24 GeV/c proton beam. This calculated results were compared with the experimental data obtained at CERN PS by Fasso et al., and the accuracy of this code system in this energy region was estimated. This benchmark calculations showed that this code system gives overestimation of neutron fluxes by a factor up to 5. Especially, the secondary particle fluxes emitted in backward direction are from 10 to 30 times higher than the data. (author)

  9. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.

    Science.gov (United States)

    Waldmann, Ole; Ludewigt, Bernhard

    2011-11-01

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics

  10. Development of residual gas ionization profile monitor for high intensity proton beams

    CERN Document Server

    Sato, Y; Hirose, E; Ieiri, M; Igarashi, Y; Inaba, S; Katoh, Y; Minakawa, M; Noumi, H; Saitó, M; Suzuki, Y; Takahashi, H; Takasaki, M; Tanaka, K; Toyoda, A; Yamada, Y; Yamanoi, Y; Watanabe, H

    2006-01-01

    Nondestructive beam profile monitor utilizing ionizations of residual gas has been developed for continuous monitoring of 3?0(J-PARC). Knock-on electrons produced in the ionizations of residual gas vacuumed to 1 Pa are collected with a uniform electric field applied between electrodes. Applying a uniform electric field parallel to the electric field is essential to reduce diffusion of electrons crossing over magnetic flux. A prototype monitor has been constructed and installed in EP2-C beam line at KEK 12 GeV proton synchrotron (12 Ge V-PS). The profiles measured with the present monitor agree with the ones measured with the existing destructive profile monitor. The present monitor shows sufficient performances as a candidate of the profile monitor at J-PARC. In the present article, the working principle of the present monitor, the results of test experiments, and further developments are described in detail.

  11. Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate

    Science.gov (United States)

    Chezganov, D. S.; Vlasov, E. O.; Neradovskiy, M. M.; Gimadeeva, L. V.; Neradovskaya, E. A.; Chuvakova, M. A.; Tronche, H.; Doutre, F.; Baldi, P.; De Micheli, M. P.; Shur, V. Ya.

    2016-05-01

    Formation of domain structure by electron beam irradiation in congruent lithium niobate covered by surface dielectric layer with planar and channel waveguides produced by Soft Proton Exchange (SPE) process has been studied. Formation of domains with arbitrary shapes as a result of discrete switching has been revealed. The fact was attributed to ineffective screening of depolarization field in the crystals with a surface layer modified by SPE process. The dependences of the domain sizes on the dose and the distance between irradiated areas have been revealed. Finally, we have demonstrated that electron beam irradiation of lithium niobate crystals with surface resist layer can produce high quality periodical domain patterns after channel waveguide fabrication. Second harmonic generation with normalized nonlinear conversion efficiency up to 48%/(W cm2) has been achieved in such waveguides.

  12. Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Chezganov, D. S., E-mail: chezganov.dmitry@urfu.ru; Shur, V. Ya. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Labfer Ltd., 620014 Ekaterinburg (Russian Federation); Vlasov, E. O.; Neradovskiy, M. M.; Gimadeeva, L. V.; Neradovskaya, E. A.; Chuvakova, M. A. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Tronche, H.; Doutre, F.; Baldi, P.; De Micheli, M. P. [Laboratoire de Physique de la Matière Condensée, University of Nice-Sophia Antipolis, 06100 Nice (France)

    2016-05-09

    Formation of domain structure by electron beam irradiation in congruent lithium niobate covered by surface dielectric layer with planar and channel waveguides produced by Soft Proton Exchange (SPE) process has been studied. Formation of domains with arbitrary shapes as a result of discrete switching has been revealed. The fact was attributed to ineffective screening of depolarization field in the crystals with a surface layer modified by SPE process. The dependences of the domain sizes on the dose and the distance between irradiated areas have been revealed. Finally, we have demonstrated that electron beam irradiation of lithium niobate crystals with surface resist layer can produce high quality periodical domain patterns after channel waveguide fabrication. Second harmonic generation with normalized nonlinear conversion efficiency up to 48%/(W cm{sup 2}) has been achieved in such waveguides.

  13. Envelope model for passive magnetic focusing of an intense proton or ion beam propagating through thin foils

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2013-04-01

    Full Text Available Ion beams (including protons with low emittance and high space-charge intensity can be propagated with normal incidence through a sequence of thin metallic foils separated by vacuum gaps of order the characteristic transverse beam extent to transport/collimate the beam or to focus it to a small transverse spot. Energetic ions have sufficient range to pass through a significant number of thin foils with little energy loss or scattering. The foils reduce the (defocusing radial electric self-field of the beam while not altering the (focusing azimuthal magnetic self-field of the beam, thereby allowing passive self-beam focusing if the magnetic field is sufficiently strong relative to the residual electric field. Here we present an envelope model developed to predict the strength of this passive (beam generated focusing effect under a number of simplifying assumptions including relatively long pulse duration. The envelope model provides a simple criterion for the necessa