Sample records for high-power electric propulsion

  1. Electric propulsion device for high power applications (United States)

    Roy, Subrata (Inventor)


    An electric propulsion device is disclosed having an anode and a cathode. The propulsion device includes a discharge annulus having the anode adjacent an end region thereof. At least one inlet aperture is adjacent the anode, the aperture(s) having propellant gas flow therethrough into the discharge annulus. The propellant gas has an ionization potential. Opposed, dielectric walls define the annulus, with at least one of the opposed dielectric walls having pores therein, the pores having cooling gas flow therethrough into the discharge annulus and substantially adjacent the opposed dielectric wall(s). The cooling gas has an ionization potential higher than the ionization energy of the propellant gas. The cooling gas is adapted to substantially prevent at least one of secondary electron emission and sputtering of the dielectric walls.

  2. High-Power Solar Electric Propulsion for Future NASA Missions (United States)

    Manzella, David; Hack, Kurt


    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  3. Thrust stand for high-power electric propulsion devices (United States)

    Haag, T. W.


    This paper describes a new high-power thrust stand developed for use with high-power (up to 250 kW) magnetoplasmadynamic (MPD) thrusters, which is installed in a high-vacuum MPD facility at Lewis Research Center. The design of the stand is based on inverted pendulum configuration, with the result of large displacements and high resolution. Calibration results showed that thrust measurements were linear and repeatable to within a fraction of 1 percent. The thrust stand was used for testing water-cooled MPD thrusters at power levels up to 125 kW. The thruster, however, is quite well suited for testing other types of electric propulsion devices.

  4. Test Facilities in Support of High Power Electric Propulsion Systems (United States)

    van Dyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert


    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.

  5. Scandate Cathode for High Power Long Life Electric Propulsion Project (United States)

    National Aeronautics and Space Administration — Scandate cathodes are proposed as a way to boost performance and life for electric space propulsion systems. This company has recently demonstrated breakthrough...

  6. Democritos: preparing demonstrators for high power nuclear electric space propulsion


    Masson, Frederic; Ruault, Jean-Marc; Worms, Jean-Claude; Detsis, Emmanouil; Beaurain, André; Lassoudiere, Francois; Gaia, Enrico; Tosi, Maria -Christina; Jansen, Frank; Bauer, Waldemar; Semenkin, Alexander; Tinsley, Tim; Hodgson, Zara


    The Democritos project aims at preparing demonstrators for a megawatt class nuclearelectric space propulsion. It is funded by Horizon 2020, the R&T program of the European Community. It is a new European and Russian project, including as partners: Nuclear National Laboratory (U.K.), DLR (Germany), The Keldysh Research Center (Russia), Thales Alenia Space Italia (Italy), Snecma (France), ESF (France) and CNES (France). IEAV (Brazil) will join as an observer. Democritos is the follo...

  7. Concept Design of High Power Solar Electric Propulsion Vehicles for Human Exploration (United States)

    Hoffman, David J.; Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Manzella, David H.; Falck, Robert D.; Cikanek, Harry A., III; Klem, Mark D.; Free, James M.


    Human exploration beyond low Earth orbit will require enabling capabilities that are efficient, affordable and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as one option to achieve human exploration missions beyond Earth orbit because of its favorable mass efficiency compared to traditional chemical propulsion systems. This paper describes the unique challenges associated with developing a large-scale high-power (300-kWe class) SEP vehicle and design concepts that have potential to meet those challenges. An assessment of factors at the subsystem level that must be considered in developing an SEP vehicle for future exploration missions is presented. Overall concepts, design tradeoffs and pathways to achieve development readiness are discussed.

  8. Design of a thrust stand for high power electric propulsion devices (United States)

    Haag, Thomas W.


    A thrust stand for use with high power electric propulsion devices has been designed and tested. The thrust stand was specifically tailored to the needs of a 0.1 to 0.25 MW magnetoplasmadynamic (MPD) thruster program currently in progress at the NASA Lewis Research Center. The thrust stand structure was built as an inverted pendulum arrangement, supported at the base by water-cooled electrical power flexures. Thrust stand tares due to thruster discharge current were demonstrated to be negligible. Tares due to an applied field magnet current, after considerable effort, were reduced to less than 3.0 percent of measured thrust. These tares, however, could be determined independently and subtracted from the indicated thrust measurement. The paper gives a detailed description of the thrust stand design and operation with a 0.1 MW class MPD device. Other thrust stand tares due to vibration and thermal effects are discussed, along with issues of accuracy and repeatability.

  9. LEO to GEO (and Beyond) Transfers Using High Power Solar Electric Propulsion (HP-SEP) (United States)

    Loghry, Christopher S.; Oleson, Steven R.; Woytach, Jeffrey M.; Martini, Michael C.; Smith, David A.; Fittje, James E.; Gyekenyesi, John Z.; Colozza, Anthony J.; Fincannon, James; Bogner, Aimee; hide


    Rideshare, or Multi-Payload launch configurations, are becoming more and more commonplace but access to space is only one part of the overall mission needs. The ability for payloads to achieve their target orbits or destinations can still be difficult and potentially not feasible with on-board propulsion limitations. The High Power Solar Electric Propulsion (HP-SEP) Orbital Maneuvering Vehicle (OMV) provides transfer capabilities for both large and small payload in excess of what is possible with chemical propulsion. Leveraging existing secondary payload adapter technology like the ESPA provides a platform to support Multi-Payload launch and missions. When coupled with HP-SEP, meaning greater than 30 kW system power, very large delta-V maneuvers can be accomplished. The HP-SEP OMV concept is designed to perform a Low Earth Orbit to Geosynchronous Orbit (LEO-GEO) transfer of up to six payloads each with 300kg mass. The OMV has enough capability to perform this 6 kms maneuver and have residual capacity to extend an additional transfer from GEO to Lunar orbit. This high deltaV capability is achieved using state of the art 12.5kW Hall Effect Thrusters (HET) coupled with high power roll up solar arrays. The HP-SEP OMV also provides a demonstration platform for other SEP technologies such as advanced Power Processing Units (PPU), Xenon Feed Systems (XFS), and other HET technologies. The HP-SEP OMV platform can be leveraged for other missions as well such as interplanetary science missions and applications for resilient space architectures.

  10. Feasibility of Large High-Powered Solar Electric Propulsion Vehicles: Issues and Solutions (United States)

    Capadona, Lynn A.; Woytach, Jeffrey M.; Kerslake, Thomas W.; Manzella, David H.; Christie, Robert J.; Hickman, Tyler A.; Schneidegger, Robert J.; Hoffman, David J.; Klem, Mark D.


    Human exploration beyond low Earth orbit will require the use of enabling technologies that are efficient, affordable, and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as an option to achieve human exploration missions to near Earth objects (NEOs) because of its favorable mass efficiency as compared to traditional chemical systems. This paper describes the unique challenges and technology hurdles associated with developing a large high-power SEP vehicle. A subsystem level breakdown of factors contributing to the feasibility of SEP as a platform for future exploration missions to NEOs is presented including overall mission feasibility, trip time variables, propellant management issues, solar array power generation, array structure issues, and other areas that warrant investment in additional technology or engineering development.

  11. Stability, Transient Response, Control, and Safety of a High-Power Electric Grid for Turboelectric Propulsion of Aircraft (United States)

    Armstrong, Michael; Ross, Christine; Phillips, Danny; Blackwelder, Mark


    This document contains the deliverables for the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) regarding the stability, transient response, control, and safety study for a high power cryogenic turboelectric distributed propulsion (TeDP) system. The objective of this research effort is to enumerate, characterize, and evaluate the critical issues facing the development of the N3-X concept aircraft. This includes the proposal of electrical grid architecture concepts and an evaluation of any needs for energy storage.

  12. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions (United States)

    Mason, Lee S.


    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  13. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars (United States)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.


    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  14. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions (United States)

    Herman, Daniel A.; Unfried, Kenneth G.


    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  15. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a flight version of a high power Hall Effect thruster. While numerous high power Hall Effect thrusters have been demonstrated in the...

  16. A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion (United States)

    Choi, Benjamin; Siebert, Mark


    The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.

  17. Clustering of Hall effect thrusters for high-power electric propulsion applications (United States)

    Beal, Brian Eric

    This thesis presents research aimed at understanding the technical issues related to operating multiple Hall effect thrusters in close proximity to each other. This will facilitate development of electric propulsion systems capable of operating at power levels beyond the current state of the art. An extensive array of plume data was obtained using a variety of plasma diagnostics. Measurements were taken downstream of a cluster of four thrusters, each of which was coupled to its own hollow cathode and operated from its own set of power supplies. Comparing data obtained in this configuration to measurements taken in the plume of a single thruster showed that three of the most basic properties in the cluster plume: plasma density, electron temperature, and plasma potential, could be predicted based solely on knowledge of a single thruster. Predictions made using the methods presented in this dissertation appear to be accurate to within the margin of error of typical plasma diagnostics. Secondary properties such as the ion current density and ion energy spectrum were also studied in the cluster plume. It was found that the beam profile of a cluster is slightly narrower than predicted by linear superposition of the contributions from each individual engine. A particle tracking algorithm revealed this behavior to be the result of low-energy ions being preferentially deflected downstream by the unique plasma potential profiles in the cluster plume. Measurements of the ion energy spectrum showed a significant increase in ions occurring at energy to charge ratios below the main peak in the distribution when multiple thrusters were operated. This appears to indicate an increase in elastic scattering due to clustering. Finally, several alternative cluster configurations have been studied to examine parallel and shared cathode operation. It was found that parallel operation generally caused one cathode to dominate the discharge. When multiple thrusters were coupled to a single

  18. High Power Helicon Plasma Propulsion Project (United States)

    National Aeronautics and Space Administration — The proposed work seeks to develop and optimize an electrode-less plasma propulsion system that is based on a high power helicon (HPH) that is being developed...

  19. High Power Helicon Plasma Propulsion Project (United States)

    National Aeronautics and Space Administration — A new thruster has been conceived and tested that is based on a high power helicon (HPH) plasma wave. In this new method of propulsion, an antenna generates and...

  20. Electric vehicle propulsion alternatives (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.


    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  1. The Challenges of High-Power Plasma Propulsion (United States)

    Chang-Diaz, Franklin


    Our future space explorers face many challenges but three loom high above the rest: physiological debilitation, radiation and psychological stress. Counter-measures are presently being considered to ameliorate these difficulties; however, two new developments are required: abundant space power and advanced propulsion. Also, electric propulsion, long relegated to low-power thrusters, has been reinvigorated by interest in multi-megawatt plasma propulsion. One rapidly evolving concept, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR,) borrows heavily from magnetic fusion research, particularly on RF plasma generation and heating in mirror-like geometries. Axial momentum is obtained by expansion of the plasma in a magnetic nozzle. The configuration could enable thrust and specific impulse variation, at constant power, allowing in-flight mission performance optimization. VASIMR technology, and similar others, could be validated, in the near term, on the International Space Station, where they can benefit from a container-less environment and virtually infinite vacuum. The experiments could also help re-boost the orbital facility. This paper describes the advantages and operational motivation for high-power plasma rockets, illustrated through the VASIMR research effort.

  2. Electric Vehicle Propulsion System


    Keshri, Ritesh Kumar


    Electric vehicles are being considered as one of the pillar of eco-friendly solutions to overcome the problem of global pollution and radiations due to greenhouse gases. Present thesis work reports the improvement in overall performance of the propulsion system of an electric vehicle by improving autonomy and torque-speed characteristic. Electric vehicle propulsion system consists of supply and traction system, and are coordinated by the monitoring & control system. Case of light electric veh...

  3. Electric propulsion cost estimation (United States)

    Palaszewski, B. A.


    A parametric cost model for mercury ion propulsion modules is presented. A detailed work breakdown structure is included. Cost estimating relationships were developed for the individual subsystems and the nonhardware items (systems engineering, software, etc.). Solar array and power processor unit (PPU) costs are the significant cost drivers. Simplification of both of these subsystems through applications of advanced technology (lightweight solar arrays and high-efficiency, self-radiating PPUs) can reduce costs. Comparison of the performance and cost of several chemical propulsion systems with the Hg ion module are also presented. For outer-planet missions, advanced solar electric propulsion (ASEP) trip times and O2/H2 propulsion trip times are comparable. A three-year trip time savings over the baselined NTO/MMH propulsion system is possible with ASEP.

  4. "Fan-Tip-Drive" High-Power-Density, Permanent Magnet Electric Motor and Test Rig Designed for a Nonpolluting Aircraft Propulsion Program (United States)

    Brown, Gerald V.; Kascak, Albert F.


    A scaled blade-tip-drive test rig was designed at the NASA Glenn Research Center. The rig is a scaled version of a direct-current brushless motor that would be located in the shroud of a thrust fan. This geometry is very attractive since the allowable speed of the armature is approximately the speed of the blade tips (Mach 1 or 1100 ft/s). The magnetic pressure generated in the motor acts over a large area and, thus, produces a large force or torque. This large force multiplied by the large velocity results in a high-power-density motor.

  5. Earthquake Triggering by High Power Electric Pulses (United States)

    Novikov, Victor; Konev, Yuri; Zeigarnik, Vladimir


    The study carried out by the Joint Institute for High Temperatures in cooperation with the Institute of Physics of the Earth and the Research Station in Bishkek of Russian Academy of Sciences in 1999-2008 showed a response of weak seismicity at field experiments with electric pulsed power systems, as well as acoustic emission of rock specimens under laboratory conditions on high-power electric current pulses applied to the rocks. It was suggested that the phenomenon discovered may be used in practice for partial release of tectonic stresses in the Earth crust for earthquake hazard mitigation. Nevertheless, the mechanism of the influence of man-made electromagnetic field on the regional seismicity is not clear yet. One of possible cause of the phenomenon may be pore fluid pressure increase in the rocks under stressed conditions due to Joule heat generation by electric current injected into the Earth crust. It is known that increase of pore fluid pressure in the fault zone over a critical pressure of about 0.05 MPa is sufficient to trigger an earthquake if the fault is near the critical state due to accumulated tectonic deformations. Detailed 3D-calculaton of electric current density in the Earth crust of the Northern Tien Shan provided by pulsed electric high-power system connected to grounded electric dipole showed that at the depth of earthquake epicenters (over 5 km) the electric current density is lower than 10-7 A/m2 that is not sufficient for increase of pressure in the fluid-saturated porous geological medium due to Joule heat generation, which may provide formation of cracks resulting in the fault propagation and release of tectonic stresses in the Earth crust. Nevertheless, under certain conditions, when electric current will be injected into the fault through the casing pipes of two deep wells with preliminary injection of conductive fluid into the fault, the current density may be high enough for significant increase of mechanic pressure in the porous two

  6. NASA program planning on nuclear electric propulsion (United States)

    Bennett, Gary L.; Miller, Thomas J.


    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors.

  7. MW-Class Electric Propulsion System Designs (United States)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador


    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  8. Electric Propulsion Research Building (EPRB) (United States)

    Federal Laboratory Consortium — The Electric Propulsion Research Building (EPRB) capability centers on its suite of vacuum chambers, which are configured to meet the unique requirements related to...

  9. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.


    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  10. Electric propulsion for small satellites (United States)

    Keidar, Michael; Zhuang, Taisen; Shashurin, Alexey; Teel, George; Chiu, Dereck; Lukas, Joseph; Haque, Samudra; Brieda, Lubos


    Propulsion is required for satellite motion in outer space. The displacement of a satellite in space, orbit transfer and its attitude control are the task of space propulsion, which is carried out by rocket engines. Electric propulsion uses electric energy to energize or accelerate the propellant. The electric propulsion, which uses electrical energy to accelerate propellant in the form of plasma, is known as plasma propulsion. Plasma propulsion utilizes the electric energy to first, ionize the propellant and then, deliver energy to the resulting plasma leading to plasma acceleration. Many types of plasma thrusters have been developed over last 50 years. The variety of these devices can be divided into three main categories dependent on the mechanism of acceleration: (i) electrothermal, (ii) electrostatic and (iii) electromagnetic. Recent trends in space exploration associate with the paradigm shift towards small and efficient satellites, or micro- and nano-satellites. A particular example of microthruster considered in this paper is the micro-cathode arc thruster (µCAT). The µCAT is based on vacuum arc discharge. Thrust is produced when the arc discharge erodes some of the cathode at high velocity and is accelerated out the nozzle by a Lorentz force. The thrust amount is controlled by varying the frequency of pulses with demonstrated range to date of 1-50 Hz producing thrust ranging from 1 µN to 0.05 mN.

  11. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan


    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  12. Nuclear-electric propulsion - Manned Mars propulsion options (United States)

    Palaszewski, Bryan; Brophy, John; King, David


    Nuclear-electric propulsion can significantly reduce the launch mass for manned Mars missions. By using high-specific-impulse (lsp) electric propulsion systems with advanced nuclear reactors, the total mass-to-orbit for a series of manned Mars flight is reduced. Propulsion technologies required for the manned Mars mission are described. Multi-megawatt Ion and Magneto-Plasma-Dynamic (MPD) propulsion thrusters, Power-Processing Units and nuclear power source are needed. Xenon (Xe)-Ion and MPD thruster performance are detailed. Mission analyses for several Mars mission options are addressed. Both MPD and Ion propulsion were investigated. A four-megawatt propulsion system power level was assumed. Mass comparisons for all-chemical oxygen/hydrogen propulsion missions and combined chemical and nuclear-electric propulsion Mars fleets are included. With fleets of small nuclear-electric vehicles, short trip times to Mars are also enabled.

  13. ac propulsion system for an electric vehicle (United States)

    Geppert, S.


    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  14. Electric Propulsion Study (United States)


    literature) the implications to nuclear shielding should be reviewed. The presence of high rotational speeds on space vehicles may become important to...levitation by rapidly rotating magnets. There have been claims of antigravity , high electric fields, perpetual motion, inertial loss, gas ionization. All...check of coupling, it may be possible to search existing data for relevant information. Since beta batteries are being used on some spac-.- vehicles , it

  15. Water Vapour Propulsion Powered by a High-Power Laser-Diode (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  16. Nuclear Electric Propulsion mission operations. (United States)

    Prickett, W. Z.; Spera, R. J.


    Mission operations are presented for comet rendezvous and outer planet exploration missions conducted by unmanned Nuclear Electric Propulsion (NEP) system employing in-core thermionic reactors for electric power generation. The selected reference mission are Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. Mission operations and options are defined from spacecraft assembly through mission completion. Pre-launch operations and related GSE requirements are identified. Shuttle launch and subsequent injection to earth escape by the Centaur d-1T are discussed, as well as power plant startup and heliocentric mission phases.

  17. Electric Propulsion Platforms at DFRC (United States)

    Baraaclough, Jonathan


    NASA Dryden Flight Research Center is a world-class flight research facility located at Edwards AFB, CA. With access to a 44 sq. mile dry lakebed and 350 testable days per year, it is the ideal location for flight research. DFRC has been undertaking aircraft research for approximately six decades including the famous X-aircraft (X-1 through X-48) and many science and exploration platforms. As part of this impressive heritage, DFRC has garnered more hours of full-sized electric aircraft testing than any other facility in the US, and possibly the world. Throughout the 80 s and 90 s Dryden was the home of the Pathfinder, Pathfinder Plus, and Helios prototype solar-electric aircraft. As part of the ERAST program, these electric aircraft achieved a world record 97,000 feet altitude for propeller-driven aircraft. As a result of these programs, Dryden s staff has collected thousands of man-hours of electric aircraft research and testing. In order to better answer the needs of the US in providing aircraft technologies with lower fuel consumption, lower toxic emissions (NOx, CO, VOCs, etc.), lower greenhouse gas (GHG) emissions, and lower noise emissions, NASA has engaged in cross-discipline research under the Aeronautics Research Mission Directorate (ARMD). As a part of this overall effort, Mark Moore of LaRC has initiated a cross-NASA-center electric propulsion working group (EPWG) to focus on electric propulsion technologies as applied to aircraft. Electric propulsion technologies are ideally suited to overcome all of the obstacles mentioned above, and are at a sufficiently advanced state of development component-wise to warrant serious R&D and testing (TRL 3+). The EPWG includes participation from NASA Langley Research Center (LaRC), Glenn Research Center (GRC), Ames Research Center (ARC), and Dryden Flight Research Center (DFRC). Each of the center participants provides their own unique expertise to support the overall goal of advancing the state-of-the-art in aircraft

  18. Guide to Flow Measurement for Electric Propulsion Systems (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve


    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  19. Propulsion Wheel Motor for an Electric Vehicle (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide


    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  20. Reservoir Scandate Cathode for Electric Propulsion Project (United States)

    National Aeronautics and Space Administration — We propose to combine two revolutionary cathode technologies into a single device for use in electric space propulsion. This will overcome problems that both...

  1. Electric Propulsion System Characterization through Experiments


    Hattenberger, Gautier; Drouin, Antoine; Bronz, Murat


    International audience; Electrical propulsion system characteristics are very important in UAV design, operation and control. This article presents the characterization of electric propulsion sets through experiments. A motor test bench have been build based on previous experience in order to improve the quality of the measurements. Moreover, the bench fits in a wind tunnel, allowing to perform a complete characterization over the full airspeed range of the considered mini and micro-UAVs. Aft...

  2. Nuclear electric propulsion reactor control systems status (United States)

    Ferg, D. A.


    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  3. Combining Solar Electric Propulsion and Chemical Propulsion for Crewed Missions to Mars (United States)

    Percy, Tom; McGuire, Melissa; Polsgrove, Tara


    This paper documents the results of an investigation of human Mars mission architectures that leverage near-term technology investments and infrastructures resulting from the planned Asteroid Redirect Robotic Mission (ARRM), including high-power Solar Electric Propulsion (SEP) and a human presence in Lunar Distant Retrograde Orbit (LDRO). The architectures investigated use a combination of SEP and chemical propulsion elements. Through this combination of propulsion technologies, these architectures take advantage of the high efficiency SEP propulsion system to deliver cargo, while maintaining the faster trip times afforded by chemical propulsion for crew transport. Evolved configurations of the Asteroid Redirect Vehicle (ARV) are considered for cargo delivery. Sensitivities to SEP system design parameters, including power level and propellant quantity, are presented. For the crew delivery, liquid oxygen and methane stages were designed using engines common to future human Mars landers. Impacts of various Earth departure orbits, Mars loiter orbits, and Earth return strategies are presented. The use of the Space Launch System for delivery of the various architecture elements was also investigated and launch vehicle manifesting, launch scheduling and mission timelines are also discussed. The study results show that viable Mars architecture can be constructed using LDRO and SEP in order to take advantage of investments made in the ARRM mission.

  4. MEGAHIT Roadmap: Applications for Nuclear Electric Propulsion


    Jansen, Frank; Semenkin, Alexander; Bauer, Waldemar; Worms, Jean-Claude; Detsis, Emmanouil; CLIQUET-MORENO, Elisa; Masson, Frederic; RUAULT, Jean-Marc; Gaia, Enrico; Cristina, T.M.; Tinsley, Tim; Hodgson, Zara


    The paper introduces the three EC funded nuclear electric propulsion funded projects DiPoP, MEGAHIT and DEMOCRITOS. It describes in detail the European-Russian MEGAHIT project - the study outputs, the proposal for a key technology plan, a plan for a political and public supportable reference space mission. Moreover the content of the MEGAHIT global roadmap for international realization of the INPPS (International Nuclear Power and Propulsion System) is sketched.

  5. Solar electric propulsion for Mars transport vehicles (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.


    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  6. Solar electric propulsion for Mars transport vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, J.M.; Curtis, H.B.; Alexander, S.W.; Gilland, J.H.; Hack, K.J.; Lawrence, C.; Swartz, C.K.


    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  7. Hybrid Electric Propulsion Technologies for Commercial Transports (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy


    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  8. Visions of the Future: Hybrid Electric Aircraft Propulsion (United States)

    Bowman, Cheryl L.


    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  9. New propulsion components for electric vehicles (United States)

    Secunde, R. R.


    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982

  10. Operationally Responsive Spacecraft Using Electric Propulsion (United States)


    OH, 1996 (ADA). Vallado, D. Fundamentals of Astrodynamics and Applications (2nd Edition). El Segundo CA: Microcosm Press, 2001. Vaughan, C. E...detailing the possible applications of the proposed responsive electric propulsion (EP) space system; however, none address the responsiveness achieved...5-37 5.8 Application ................................................................................................ 5-39 5.9 Conclusion

  11. 150 kW Class Solar Electric Propulsion Spacecraft Power Architecture Model (United States)

    Csank, Jeffrey T.; Aulisio, Michael V.; Loop, Benjamin


    The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission in conjunction with PC Krause and Associates has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power system capability from 50 kW to 150 kW better aligns with the anticipated power requirements for Mars and other deep space explorations. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents multiple 150 kW architectures, simulation results, and a discussion of their merits.

  12. MW-Class Electric Propulsion System Designs for Mars Cargo Transport (United States)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee


    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  13. Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS) (United States)

    Herman, Daniel A.; Tofil, Todd A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John S.; Hofer, Richard R.; Picha, Frank Q.; Jackson, Jerry; Allen, May


    NASA remains committed to the development and demonstration of a high-power solar electric propulsion capability for the Agency. NASA is continuing to develop the 14 kW Advanced Electric Propulsion System (AEPS), which has recently completed an Early Integrated System Test and System Preliminary Design Review. NASA continues to pursue Solar Electric Propulsion (SEP) Technology Demonstration Mission partners and mature high-power SEP mission concepts. The recent announcement of the development of a Power and Propulsion Element (PPE) as the first element of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission (ARRM) as the most probable first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned exploration architecture. This paper presents the status of the combined NASA and Aerojet Rocketdyne AEPS development activities and updated mission concept for implementation of the AEPS hardware as part of the ion propulsion system for a PPE.

  14. Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS) (United States)

    Herman, Daniel A.; Tofil, Todd; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Picha, Frank; Jackson, Jerry; Allen, May


    NASA remains committed to the development and demonstration of a high-power solar electric propulsion capability for the Agency. NASA is continuing to develop the 14 kilowatt Advanced Electric Propulsion System (AEPS), which has recently completed an Early Integrated System Test and System Preliminary Design Review. NASA continues to pursue Solar Electric Propulsion (SEP) Technology Demonstration Mission partners and mature high-power SEP mission concepts. The recent announcement of the development of a Power and Propulsion Element (PPE) as the first element of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission as the most probable first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. This paper presents the status of the combined NASA and Aerojet AEPS development activities and updated mission concept for implementation of the AEPS hardware as part of the ion propulsion system for a PPE.

  15. Mars Mission Concepts: SAR and Solar Electric Propulsion (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.


    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous

  16. Geocentric solar electric propulsion vehicle design. (United States)

    Harney, E. D.; Lapins, U. E.; Molitor, J. H.


    Mission applications have been studied that use solar electric propulsion (SEP) to inject payloads into geocentric orbits. Two specific applications feasible with current technology are described that approximate practical bounds for the next decade. In the lower extreme, SEP is used on a Thor-Delta launched satellite to maximize the weight injected into synchronous orbits. In the other extreme, SEP is used in a reusable interorbital tug together with an all-chemical shuttle/tug transportation system. Different trajectory profiles are required to most efficiently accomplish the overall mission objectives in the two cases.

  17. The ubiquitous solar electric propulsion stage (United States)

    Austin, R. E.; Dod, R. E.; Terwilliger, C. H.


    Mission analyses indicate there are several near-term interplanetary missions that cannot be performed with any degree of sophistication without electric propulsion. Cost and performance benefits are suggested when this same technology is included in the Shuttle-based earth-orbital transportation system. Specific earth-orbital payload programs gain from increased weight allowances, decreased costs through simplification, and reduced numbers of spacecraft due to on-orbit servicing. More ambitious mission planners looking toward space industrialization will find uses ranging from GSO debris clearance to a versatile support element for a multipurpose manned space station.

  18. Coherent Structures in Plasmas Relevant to Electric Propulsion (United States)


    University Grant/Contract Title The full title of the funded effort. Coherent Structures in Plasma Relevant to Electric Propulsion Grant/Contract...AFRL-AFOSR-VA-TR-2016-0229 Coherent Structures in Plasmas Relevant to Electric Propulsion Mark Cappelli LELAND STANFORD JUNIOR UNIV CA Final Report...TITLE AND SUBTITLE Coherent Structures in Plasmas Relevant to Electric Propulsion 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER FA9550-14-1-0017 5c

  19. The potential for matrix conversion in marine electric propulsion systems.


    Ciaramella, K. M.


    The growing interest in marine electric propulsion is driven by the need to improve ship performance. This thesis presents a review of existing marine electric propulsion technology and potential future variable speed drives. The matrix converter was found to be a promising alternative to existing technology and this thesis describes an investigation into its potential for marine electric propulsion. The matrix converter performs direct AC-AC conversion using a high switching frequency to pro...

  20. Algorithms for computing efficient, electric-propulsion, spiralling trajectories Project (United States)

    National Aeronautics and Space Administration — Develop techniques for rapidly designing many-revolution, electric-propulsion, spiralling trajectories, including the effects of shadowing, gravity harmonics, and...

  1. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.


    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  2. Sputter-Resistant Materials for Electric Propulsion Project (United States)

    National Aeronautics and Space Administration — This SBIR Phase 2 project shall develop sputter-resistant materials for use in electric propulsion test facilities and for plume shields on spacecraft using electric...

  3. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective (United States)

    DelRosario, Ruben


    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  4. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon


    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  5. Configurations of hybrid-electric cars propulsion systems


    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce


    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  6. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets (United States)

    Moore, Mark D.; Fredericks, Bill


    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  7. Electric Propulsion Plume Simulations Using Parallel Computer

    Directory of Open Access Journals (Sweden)

    Joseph Wang


    Full Text Available A parallel, three-dimensional electrostatic PIC code is developed for large-scale electric propulsion simulations using parallel supercomputers. This code uses a newly developed immersed-finite-element particle-in-cell (IFE-PIC algorithm designed to handle complex boundary conditions accurately while maintaining the computational speed of the standard PIC code. Domain decomposition is used in both field solve and particle push to divide the computation among processors. Two simulations studies are presented to demonstrate the capability of the code. The first is a full particle simulation of near-thruster plume using real ion to electron mass ratio. The second is a high-resolution simulation of multiple ion thruster plume interactions for a realistic spacecraft using a domain enclosing the entire solar array panel. Performance benchmarks show that the IFE-PIC achieves a high parallel efficiency of ≥ 90%

  8. Nuclear modules for space electric propulsion (United States)

    Difilippo, F. C.


    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  9. Nuclear Electric Propulsion for Outer Space Missions (United States)

    Barret, Chris


    Today we know of 66 moons in our very own Solar System, and many of these have atmospheres and oceans. In addition, the Hubble (optical) Space Telescope has helped us to discover a total of 100 extra-solar planets, i.e., planets going around other suns, including several solar systems. The Chandra (X-ray) Space Telescope has helped us to discover 33 Black Holes. There are some extremely fascinating things out there in our Universe to explore. In order to travel greater distances into our Universe, and to reach planetary bodies in our Solar System in much less time, new and innovative space propulsion systems must be developed. To this end NASA has created the Prometheus Program. When one considers space missions to the outer edges of our Solar System and far beyond, our Sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at Earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Therefore, beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer Solar System, power is knowledge. It is important that the public be made aware of the tremendous space benefits offered by Nuclear Electric Propulsion (NEP) and the minimal risk it poses to our environment. This paper presents an overview of the reasons for NEP systems, along with their basic components including the reactor, power conversion units (both static and dynamic), electric thrusters, and the launch safety of the NEP system.

  10. Solar Electric Propulsion (SEP) Tug Power System Considerations (United States)

    Kerslake, Thomas W.; Bury, Kristen M.; Hojinicki, Jeffrey S.; Sajdak, Adam M.; Scheiddegger, Robert J.


    Solar electric propulsion (SEP) technology is truly at the "intersection of commercial and military space" as well as the intersection of NASA robotic and human space missions. Building on the use of SEP for geosynchronous spacecraft station keeping, there are numerous potential commercial and military mission applications for SEP stages operating in Earth orbit. At NASA, there is a resurgence of interest in robotic SEP missions for Earth orbit raising applications, 1-AU class heliocentric missions to near Earth objects (NEOs) and SEP spacecraft technology demonstrations. Beyond these nearer term robotic missions, potential future human space flight missions to NEOs with high-power SEP stages are being considered. To enhance or enable this broad class of commercial, military and NASA missions, advancements in the power level and performance of SEP technologies are needed. This presentation will focus on design considerations for the solar photovoltaic array (PVA) and electric power system (EPS) vital to the design and operation of an SEP stage. The engineering and programmatic pros and cons of various PVA and EPS technologies and architectures will be discussed in the context of operating voltage and power levels. The impacts of PVA and EPS design options on the remaining SEP stage subsystem designs, as well as spacecraft operations, will also be discussed.

  11. Electric Field Simulations and Analysis for High Voltage High Power Medium Frequency Transformer

    Directory of Open Access Journals (Sweden)

    Pei Huang


    Full Text Available The electronic power transformer (EPT raises concerns for its notable size and volume reduction compared with traditional line frequency transformers. Medium frequency transformers (MFTs are important components in high voltage and high power energy conversion systems such as EPTs. High voltage and high power make the reliable insulation design of MFT more difficult. In this paper, the influence of wire type and interleaved winding structure on the electric field distribution of MFT is discussed in detail. The electric field distributions for six kinds of typical non-interleaved windings with different wire types are researched using a 2-D finite element method (FEM. The electric field distributions for one non-interleaved winding and two interleaved windings are also studied using 2-D FEM. Furthermore, the maximum electric field intensities are obtained and compared. The results show that, in this case study, compared with foil conductor, smaller maximum electric field intensity can be achieved using litz wire in secondary winding. Besides, interleaving can increase the maximum electric field intensity when insulation distance is constant. The proposed method of studying the electric field distribution and analysis results are expected to make a contribution to the improvement of electric field distribution in transformers.

  12. Critical technologies for reactors used in nuclear electric propulsion (United States)

    Bhattacharyya, S. K.

    Nuclear electric propulsion (NEP) systems are expected to play a significant role in the exploration and exploitation of space. Unlike nuclear thermal propulsion (NTP) systems, NEP systems include electric power generation and conditioning units that in turn are used to drive electric thrusters. These thrusters accelerate subatomic particles to produce thrust. This document provides a quick overview of the technological development needs of NEP systems.

  13. Aircraft Electric Propulsion Systems Applied Research at NASA (United States)

    Clarke, Sean


    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  14. Cooling of Electric Motors Used for Propulsion on SCEPTOR (United States)

    Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.


    NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.

  15. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide


    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  16. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Haag, Tom; Mackey, Jonathan; McVetta, Mike; Sorrelle, Luke; Tomsik, Tom; Gilligan, Ryan; hide


    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kilowatt Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate and is intended to be used as the electric propulsion system on the Power and Propulsion Element of the recently announced Deep Space Gateway. The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU) 1 and TDU-3 Hall thrusters are also included.

  17. Prognostics Applied to Electric Propulsion UAV (United States)

    Goebel, Kai; Saha, Bhaskar


    Health management plays an important role in operations of UAV. If there is equipment malfunction on critical components, safe operation of the UAV might possibly be compromised. A technology with particular promise in this arena is equipment prognostics. This technology provides a state assessment of the health of components of interest and, if a degraded state has been found, it estimates how long it will take before the equipment will reach a failure threshold, conditional on assumptions about future operating conditions and future environmental conditions. This chapter explores the technical underpinnings of how to perform prognostics and shows an implementation on the propulsion of an electric UAV. A particle filter is shown as the method of choice in performing state assessment and predicting future degradation. The method is then applied to the batteries that provide power to the propeller motors. An accurate run-time battery life prediction algorithm is of critical importance to ensure the safe operation of the vehicle if one wants to maximize in-air time. Current reliability based techniques turn out to be insufficient to manage the use of such batteries where loads vary frequently in uncertain environments.

  18. Development of Advanced Thermal ana Electric Propulsion (TEP) System

    National Research Council Canada - National Science Library

    Tabibi, Bagher


    On September 30, 1993, the Department of Physics at Hampton University was awarded a research instrumentation grant by the AFOSR for the development of an advanced Thermal and Electric Propulsion (TEP) system...

  19. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion Project (United States)

    National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....

  20. Outer Planet Missions with Electric Propulsion Systems—Part I

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano


    Full Text Available For interplanetary missions, efficient electric propulsion systems can be used to increase the mass delivered to the destination. Outer planet exploration has experienced new interest with the launch of the Cassini and New Horizons Missions. At the present, new technologies are studied for better use of electric propulsion systems in missions to the outer planets. This paper presents low-thrust trajectories using the method of the transporting trajectory to Uranus, Neptune, and Pluto. They use nuclear and radio isotopic electric propulsion. These direct transfers have continuous electric propulsion of low power along the entire trajectory. The main goal of the paper is to optimize the transfers, that is, to provide maximum mass to be delivered to the outer planets.

  1. Magnesium Diboride Superconducting Stator Coils for Electric Propulsion Systems Project (United States)

    National Aeronautics and Space Administration — Many are pursuing the development of electric propulsion systems for large aircraft due to the potential of being cleaner, quieter, lighter, and more versatile than...

  2. Wide Output Range Power Processing Unit for Electric Propulsion Project (United States)

    National Aeronautics and Space Administration — Hall thrusters can be operated over a wide range of specific impulse while maintaining high efficiency. However S/C power system constraints on electric propulsion...

  3. Radioisotope electric propulsion (REP): A near-term approach to nuclear propulsion (United States)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.


    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  4. Nuclear electric propulsion mission engineering study. Volume 2: Final report (United States)


    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  5. Parametric studies of electric propulsion systems for orbit transfer vehicles (United States)

    Manvi, R.; Fujita, T.


    The present parametric tradeoff study for OTV electric propulsion systems encompasses ammonia and hydrogen arcjets as well as Xe-ion propulsion systems with performance characteristics currently being projected for 1993 operation. In all cases, the power source is a nuclear-electric system with 30 kg/kW(e) specific mass, and the mission involves the movement of payloads from lower orbits to GEO. Attention is given to payload capabilities and associated propellant requirements. Mission trip time is identified as the key parameter for selection; while arcjets are preferable for shorter trip times, ion propulsion is more advantageous for longer trip times due to reduced propellant mass fraction.

  6. Permeabilization of yeast Saccharomyces cerevisiae cell walls using nanosecond high power electrical pulses (United States)

    Stirke, A.; Zimkus, A.; Balevicius, S.; Stankevic, V.; Ramanaviciene, A.; Ramanavicius, A.; Zurauskiene, N.


    The electrical field-induced changes of the yeast Saccharomyces cerevisiae cells permeabilization to tetraphenylphosphonium (TPP+) ions were studied using square-shaped, nanosecond duration high power electrical pulses. It was obtained that pulses having durations ranging from 10 ns to 60 ns, and generating electric field strengths up to 190 kV/cm significantly (up to 65 times) increase the absorption rate of TPP+ ions without any detectible influence on the yeast cell viability. The modelling of the TPP+ absorption process using a second order rate equation demonstrates that depending on the duration of the pulses, yeast cell clusters of different sizes are homogeniously permeabilized. It was concluded, that nanosecond pulse-induced permeabilization can be applied to increase the operational speed of whole cell biosensors.

  7. Lunar transfer vehicle design issues with electric propulsion systems (United States)

    Palaszewski, Bryan


    This paper describes parametric design studies of electric propulsion lunar transfer vehicles. In designing a lunar transfer vehicle, selecting the 'best' operating points for the design parameters allows significant reductions in the mass in low earth orbit (LEO) for the mission. These parameters include the specific impulse, the power level, and the propulsion technology. Many of the decisions regarding the operating points are controlled by the propulsion and power system technologies that are available for the spacecraft. The relationship between these technologies is discussed and analyzed here. It is found that both ion and MPD propulsion offer significant LEO mass reductions over O2/H2 for lunar transfer vehicle missions. The recommended operating points for the lunar transfer vehicle are an I(sp) of 5000 lb(f)-s/lb(m) and a 1 MW power level. For large lunar missions, krypton may be the best choice for ion propulsion.

  8. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology (United States)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko


    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  9. System engineering of a nuclear electric propulsion testbed spacecraft (United States)

    Cameron, G. E.; Herbert, G. A.


    A mission concept aimed at evaluating performance of a Russian Space Nuclear Power System (SNPS) and electric thrusters to be consistent with U.S. safety standards is discussed. Solutions of unique nuclear electric propulsion (NEP) problems optimized for the Nuclear Electric Propulsion Test Program (NEPSTP) are considered. The problems include radiation, thermal management, safety, ground processing concerns of a nuclear payload, the launch of an NEP payload, orbital operations, electromagnetic compatibility, contamination, guidance and control, and a power system. Attention is also given to preliminary spacecraft and mission design developed taking into account all aforementioned problems.

  10. STG-ET: DLR electric propulsion test facility

    Directory of Open Access Journals (Sweden)

    Andreas Neumann


    Full Text Available DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET. This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.

  11. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems (United States)


    Lithium-Ion Batteries for Hybrid Electric Vehicles," Mitsubishi Motor Corporation, Japan, Technical Review 15, 2003. [40] Hiroaki et al Yoshida...SIZING ANALYSIS FOR AIRCRAFT UTILIZING HYBRID- ELECTRIC PROPULSION SYSTEMS THESIS Matthew D...of the U.S. Government and is not subject to copyright protection in the United States. AFIT/GAE/ENY/11-M26 SIZING ANALYSIS FOR AIRCRAFT

  12. Combining Solar Electric and Chemical Propulsion for Crewed Missions to Mars (United States)

    Percy, Tom; McGuire, Melissa; Polsgrove, Tara


    This paper documents the results of an investigation of human Mars mission architectures that leverage near-term technology investments and infrastructures resulting from the planned Asteroid Redirect Mission, including high-power Solar Electric Propulsion (SEP) and a human presence in Lunar Distant Retrograde Orbit (LDRO). The architectures investigated use a combination of SEP and chemical propulsion elements. Through this combination of propulsion technologies, these architectures take advantage of the high efficiency SEP propulsion system to deliver cargo, while maintaining the faster trip times afforded by chemical propulsion for crew transport. Evolved configurations of the Asteroid Redirect Vehicle (ARV) are considered for cargo delivery. Sensitivities to SEP system design parameters, including power level and propellant quantity, are presented. For the crew delivery, liquid oxygen and methane stages were designed using engines common to future human Mars landers. Impacts of various Earth departure orbits, Mars loiter orbits, and Earth return strategies are presented. The use of the Space Launch System for delivery of the various architecture elements was also investigated and launch vehicle manifesting, launch scheduling and mission timelines are also discussed. The study results show that viable Mars architecture can be constructed using LDRO and SEP in order to take advantage of investments made in the ARM mission.

  13. The Effects of Radiation and Thermal Stability of Sm-Co High Temperature Magnets For High Power Ion Propulsion Project (United States)

    National Aeronautics and Space Administration — Since high temperature Sm-Co based magnets were developed, a number of new applications have been introduced. NASA?s Xe+ ion propulsion engine used in Deep Space I...

  14. Advanced electric propulsion system concept for electric vehicles (United States)

    Raynard, A. E.; Forbes, F. E.


    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  15. Electric-field mediated propulsion in binary colloidal suspensions (United States)

    Colon-Melendez, Laura; Spellings, Matthew; Glotzer, Sharon C.; Solomon, Michael J.

    We observe propulsion of pairs of unequally sized dielectric colloidal spheres in a plane perpendicular to the applied AC electric field. The fully reversible and reconfigurable effect is observed at different applied voltages and frequencies. Using confocal microscopy and particle tracking methods, we study the degree of active motion as a function of the number of particles in the dynamic clusters. The observed phenomenon is consistent with previous observations of asymmetric dumbbell propulsion in electric fields attributed to asymmetric electrohydrodynamic flow (Ma et al., PNAS 2015 112 (20) 6307-6312).

  16. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary (United States)


    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  17. Versatile Electric Propulsion Aircraft Testbed Project (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  18. Modular Electric Propulsion Test Bed Aircraft Project (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  19. Neptune Orbiters Utilizing Solar and Radioisotope Electric Propulsion (United States)

    Fiehler, Douglas I.; Oleson, Steven R.


    In certain cases, Radioisotope Electric Propulsion (REP), used in conjunction with other propulsion systems, could be used to reduce the trip times for outer planetary orbiter spacecraft. It also has the potential to improve the maneuverability and power capabilities of the spacecraft when the target body is reached as compared with non-electric propulsion spacecraft. Current missions under study baseline aerocapture systems to capture into a science orbit after a Solar Electric Propulsion (SEP) stage is jettisoned. Other options under study would use all REP transfers with small payloads. Compared to the SEP stage/Aerocapture scenario, adding REP to the science spacecraft as well as a chemical capture system can replace the aerocapture system but with a trip time penalty. Eliminating both the SEP stage and the aerocapture system and utilizing a slightly larger launch vehicle, Star 48 upper stage, and a combined REP/Chemical capture system, the trip time can nearly be matched while providing over a kilowatt of science power reused from the REP maneuver. A Neptune Orbiter mission is examined utilizing single propulsion systems and combinations of SEP, REP, and chemical systems to compare concepts.

  20. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle (United States)

    Schwartz, H. J.


    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  1. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.


    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  2. Recent Electric Propulsion Development Activities for NASA Science Missions (United States)

    Pencil, Eric J.


    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated

  3. Hybrid energy sources for electric and fuel cell vehicle propulsion


    Schofield, N; Yap, H T; Bingham, Chris


    Given the energy (and hence range) and performance limitations of electro-chemical batteries, hybrid systems combining energy and power dense storage technologies have been proposed for electric vehicle propulsion. The paper will discuss the application of electro-chemical batteries, supercapacitors and fuel cells in single and hybrid source configurations for electric vehicle drive-train applications. Simulation models of energy sources are presented and used to investigate the design optimi...

  4. Modular Electric Propulsion Test Bed Aircraft Project (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of hybrid...

  5. Mission Applications of 6 kWe and 40 kWe Nuclear Power Systems with Electric Propulsion (United States)

    Kennedy, Fred G.; Brasher, Michael R.; Mykityshyn, Mark


    This paper examines the role of the TOPAZ II and the 40 kWe thermionic reactors in powering electric propulsion systems for orbital transfer and on-orbit repositioning applications. Specifically, the feasibility of substituting a TOPAZ II power system and the Russian Stationary Plasma Thruster (SPT) for the conventional power and propulsion systems that might be used on typical Air Force navigation, surveillance, and communications satellites were examined. Additionally, two advanced high-power missions were analyzed. Four major conclusions were drawn from this top-level investigation: (1) Stepdown to smaller launch vehicles is possible for both TOPAZ II and 40 kWe systems even though the TOPAZ II at 6 kWe and 1100 kg, is not an extremely effective system for orbital transfer applications; (2) On-orbit repositioning is an area that profits by the utilization of electric propulsion systems; (3) Advanced high-power missions are arguably the greatest benefactor of nuclear electric propulsion; and (4) Placing minimum operational altitude requirements on reactor-propelled systems will significantly diminish their payload capability to the destination orbit.

  6. Power Systems Evaluated for Solar Electric Propulsion Vehicles (United States)

    Kerslake, Thomas W.; Gefert, Leon P.


    photovoltaic array design concepts were considered for the SEP vehicle power system for the human mission to Mars. These include a space station derivative, a SCARLET (Solar Concentrator Arrays with Refractive Linear Element Technology) derivative, and a hybrid inflatable-deployable thin polymer membrane array with thin-film solar cells (as shown in the concept illustration). This concept is based on a design developed for the Next Generation Space Telescope Sun shield. The array is divided into 16 independent electrical sections with 500-V, negative-grounded solar cell strings. The power system employs a channelized, 500-Vdc power management and distribution (PMAD) architecture with lithium ion batteries for energy storage for vehicle and payload secondary loads (the high-power Hall thrusters do not operate in eclipse periods). The 500-V PMAD voltage permits "direct-drive" thruster operation, greatly reducing the power processing unit size, complexity, and power loss. Similar power system architecture, designs, and technology are assumed for the Europa Mapper Mission SEP vehicle. The primary exceptions are that the photovoltaic array is assumed to consist of two rectangular wings and that the power system rating is 15 kW in Earth orbit and 200 W at Europa. To size the SEP vehicle power system, a dedicated Fortran code was developed to predict detailed power system performance, mass, and thermal control requirements. This code also modeled all the relevant Earth orbit environments; that is, the particulate radiation, plasma, meteoroids and debris, ultraviolet radiation, contamination, and thermal conditions. Analysis results for the Human Mars Mission SEP vehicle show a power system mass of 9-MT and photovoltaic array area of 5800-square meters for the thin-membrane design concept with CuInS2 thin-film cells. Power processing unit input power for a thin-membrane array design with three-junction, amorphous SiGe solar cells is shown in the graph. Power falls off rapidly inhe

  7. Simplest AB-Thermonuclear Space Propulsion and Electric Generator


    Bolonkin, Alexander


    The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful elect...

  8. A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization (United States)

    Aziz, Jonathan; Scheeres, Daniel; Parker, Jeffrey; Englander, Jacob


    Solar electric propulsion (SEP) is the dominant design option for employing low-thrust propulsion on a space mission. Spacecraft solar arrays power the SEP system but are subject to blackout periods during solar eclipse conditions. Discontinuity in power available to the spacecraft must be accounted for in trajectory optimization, but gradient-based methods require a differentiable power model. This work presents a power model that smooths the eclipse transition from total eclipse to total sunlight with a logistic function. Example trajectories are computed with differential dynamic programming, a second-order gradient-based method.

  9. Electric propulsion has been adopted for Mistral and Tonnerre BPC/LHDs and new LNG carriers. What are the benefits for these vessels and for the owners; Propulsion electrique sur les batiments de projection et de commandement Mistral et Tonnerre et les nouveaux methaniers: pricipaux avantages pour ces navires et pour les armateurs

    Energy Technology Data Exchange (ETDEWEB)

    Chaignot, J.Ph.; Sekula, V. [APC Power Conversion SAS (United States)


    During the past 20 years, significant steps have been made in power electronics.The technological improvement of high power variable frequency drives led to a marine market move in terms of propulsion systems. Both merchant marine and navy have seen a coming into force of diesel electric propulsion as a new propulsion standard. Presently, electric propulsion is incessantly securing these markets. The cruise business was the first major sector where large electric propulsion systems were used and has been for 15 years. Some years ago, Navies adopted electric propulsion for the type 45 destroyers for the Royal Navy and for Mistral and Tonnerre 'Batiment de Projection et de Commandement (BPC)' for the French Navy, the first Landing Helicopter Dock (LHD) fitted with podded electric propulsion. More recently, Liquefied Natural Gas (LNG) carriers have been equipped with Diesel Electric Propulsion (DEP), which represents an efficient alternative to the steam turbine solution.This technical orientation towards electric propulsion system is a major step in propulsion. Using the overview of two different ship profiles, our paper will emphasize the main benefits for the ship and for the owner of large electric propulsion systems. (authors)

  10. Technological requirements of nuclear electric propulsion systems for fast Earth-Mars transfers (United States)

    Bérend, N.; Epenoy, R.; Cliquet, E.; Laurent-Varin, J.; Avril, S.


    Recent advances in electric propulsion technologies such as magnetoplasma rockets gave a new momentum to the study of nuclear electric propulsion concepts for Mars missions. Some recent works have been focused on very short Earth-to-Mars transfers of about 40 days with high-power, variable specific impulse propulsion systems [1]. While the interest of nuclear electric propulsion appears clearly with regard to the payload mass ratio (due to a high level of specific impulse), its interest with regard to the transfer time is more complex to define, as it depends on many design parameters. In this paper, a general analysis of the capability of nuclear electric propulsion systems considering both criteria (the payload mass ratio and the transfer time) is performed, and the technological requirements for fast Earth-Mars transfers are studied. This analysis has been performed in two steps. First, complete trajectory optimizations have been performed by CNES-DCT in order to obtain the propulsion requirements of the mission for different technological hypotheses regarding the engine technology (specific impulse levels and the throttling capability) and different mission requirements. The methodology used for designing fuel-optimal heliocentric trajectories, based on the Pontryagin's Maximum Principle will be presented. Trajectories have been computed for various power levels combined with either variable or fixed Isp. The second step consisted in evaluating a simpler method that could easily link the main mission requirements (the transfer time and the payload fraction) to the main technological requirements (the specific mass of the power generation system and the structure mass ratio of the whole vehicle, excluding the power generation system). Indeed, for power-limited systems, propulsion requirements can be characterized through the "trajectory characteristic" parameter, defined as the integral over time of the squared thrust acceleration. Technological requirements for

  11. The Design and Construction of a Battery Electric Vehicle Propulsion System - High Performance Electric Kart Application (United States)

    Burridge, Mark; Alahakoon, Sanath


    This paper presents an electric propulsion system designed specifically to meet the performance specification for a competition racing kart application. The paper presents the procedure for the engineering design, construction and testing of the electric powertrain of the vehicle. High performance electric Go-Kart is not an established technology within Australia. It is expected that this work will provide design guidelines for a high performance electric propulsion system with the capability of forming the basis of a competitive electric kart racing formula for Australian conditions.

  12. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion (United States)

    Sommerer, Timothy J.


    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  13. Combining Electric and Sail Propulsion for Interplanetary Sample Return

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert


    Fast sample return from the outer Solar System would open an entirely new avenue for space science, but the vast distances make this a daunting task. The achievable transit velocity and the need for extra propellant on the return trip limit the feasibility of returning extraterrestrial samples to Earth. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher velocities. High specific impulse, electric propulsion reduces the propellant required for the outbound and return trips, but decelerating the spacecraft at the inner Solar System from high velocity still involves a long, inward spiral trajectory. The use of solar sails to rapidly decelerate incoming sample capsules and eliminate propellant is explored in this paper. The sail is essentially a ''solar parachute'' used for braking at the end of the interplanetary return flight, permitting a higher transit speed and truncating the deceleration spiral. In this application the sail is relatively small and manageable since only the sample capsule and its sail are decelerated. A comparison is made between using all-electric propulsion versus combining electric propulsive acceleration with sail deceleration for sample return from the distances of Saturn, Uranus, and Pluto. Solar-sail braking dramatically reduces the return flight time by one-third or more compared to using electric rocket deceleration. To elucidate the technology requirements, wide ranges for both the loaded sail density and electric propulsion specific mass are considered in this initial parametric study.

  14. Radioactive waste disposal via electric propulsion (United States)

    Burns, R. E.


    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  15. Analysis of Electric Propulsion System for Exploration of Saturn

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano


    Full Text Available Exploration of the outer planets has experienced new interest with the launch of the Cassini and the New Horizons Missions. At the present time, new technologies are under study for the better use of electric propulsion system in deep space missions. In the present paper, the method of the transporting trajectory is used to study this problem. This approximated method for the flight optimization with power-limited low thrust is based on the linearization of the motion of a spacecraft near a keplerian orbit that is close to the transfer trajectory. With the goal of maximizing the mass to be delivered in Saturn, several transfers were studied using nuclear, radioisotopic and solar electric propulsion systems.

  16. Robotic planetary mission benefits from nuclear electric propulsion (United States)

    Kelley, James H.; Yen, Chen-Wan

    Several interesting planetary missions are either enabled or significantly enhanced by nuclear electric propulsion (NEP) in the 50 to 100 kW power range. These missions include a Pluto Orbiter/Probe with an 11-year flight time and several years of operational life in orbit versus a ballistic very fast (13 km/s) flyby which would take longer to get to Pluto and would have a very short time to observe the planet. (A ballistic orbiter would take about 40 years to get to Pluto). Other missions include a Neptune Orbiter/Probe, a Jupiter Grand Tour orbiting each of the major moons in order, an Uranus Orbiter/Probe, a Multiple Mainbelt Asteroid Rendezvous orbiting six selected asteroids, and a Comet Nucleus Sample Return. This paper discusses potential missions and compares the nuclear electric propulsion option to the conventional ballistic approach on a parametric basis.

  17. Catalog of components for electric and hybrid vehicle propulsion systems (United States)

    Eissler, H. C.


    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  18. Example Solar Electric Propulsion System asteroid tours using variational calculus (United States)

    Burrows, R. R.


    Exploration of the asteroid belt with a vehicle utilizing a Solar Electric Propulsion System has been proposed in past studies. Some of those studies illustrated multiple asteroid rendezvous with trajectories obtained using approximate methods. Most of the inadequacies of those approximations are overcome in this paper, which uses the calculus of variations to calculate the trajectories and associated payloads of four asteroid tours. The modeling, equations, and solution techniques are discussed, followed by a presentation of the results.

  19. EVA Metro Sedan electric-propulsion system: test and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reimers, E.


    The procedure and results of the performance evaluation of the EVA Metro Sedan (car No. 1) variable speed dc chopper motor drive and its three speed automatic transmission are presented. The propulsion system for a battery powered vehicle manufactured by Electric Vehicle Associates, Valley View, Ohio, was removed from the vehicle, mounted on the programmable electric dynamometer test facility and evaluated with the aid of a hp 3052A Data Acquisition System. Performance data for the automatic transmission, the solid state dc motor speed controller, and the dc motor in the continuous and pulsating dc power mode, as derived on the dynamometer test facility, as well as the entire propulsion system are given. This concept and the system's components were evaluated in terms of commercial applicability, maintainability, and energy utility to establish a design base for the further development of this system or similar propulsion drives. The propulsion system of the EVA Metro Sedan is powered by sixteen 6-volt traction batteries, Type EV 106 (Exide Battery Mfg. Co.). A thyristor controlled cable form Pulsomatic Mark 10 controller, actuated by a foot throttle, controls the voltage applied to a dc series field motor, rated at 10 hp at 3800 rpm (Baldor Electric Co.). Gear speed reduction to the wheel is accomplished by the original equipment three speed automatic transmission with torque converter (Renault 12 Sedan). The brake consists of a power-assisted, hydraulic braking system with front wheel disk and rear drum. An ability to recuperate electric energy with subsequent storage in the battery power supply is not provided.

  20. Nuclear electric propulsion for planetary science missions: NASA technology program planning (United States)

    Doherty, Michael P.


    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  1. A propulsion system to start-up again the electric-powered car; Une propulsion pour relancer la voiture electrique

    Energy Technology Data Exchange (ETDEWEB)

    Menard, C.


    The French car manufacturer Renault wants to put the finishing touches to the development of a less expensive, more compact and more performing electric propulsion system with a maximum integration of its components. This new propulsion system will equip the Kangoo model in November 2000. Short paper. (J.S.)

  2. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project (United States)

    National Aeronautics and Space Administration — In Phase I Busek matured the design of an existing 15-kW laboratory thruster. Magnetic modeling was performed to generate a circuit incorporating magnetic shielding....

  3. Long Life 600W Hall Thruster System for Radioisotope Electric Propulsion Project (United States)

    National Aeronautics and Space Administration — Radioisotope Electric Propulsion (REP) offers the prospect for a variety of new science missions by enabling use of Hall Effect propulsion in the outer solar system,...

  4. Energetic Ion Mitigation Methodology for High Power Plasma Thruster Cathodes Project (United States)

    National Aeronautics and Space Administration — The presence of energetic ions, that appear under high cathode current operation, stand as a showstopper to the realization of high power electric propulsion....

  5. Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles


    Cheng-Shan Wang; Wei Li; Zhun Meng; Yi-Feng Wang; Jie-Gui Zhou


    In this paper, an interleaved high-power zero-current-switching (ZCS) onboard charger (OBC) based on the three-phase single-switch buck rectifier is proposed for application to plug-in electric vehicles (EVs). The multi-resonant structure is used to achieve high efficiency and high power density, which are necessary to reduce the volume and weight of the OBC. This study focuses on the border conditions of ZCS converting with a battery load, which means the variation ranges of the output volta...

  6. Design of an Electric Propulsion System for SCEPTOR (United States)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.


    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  7. Experimental research on electrical propulsion. Note 2: Experimental research on a plasma jet with vortex type stabilization for propulsion (United States)

    Robotti, A. C.; Oggero, M.


    Results of experimental electric propulsion research are presented. A plasma generator, with an arc stabilized by an air vortex is examined. The heat transfer efficiency between arc and fluid environment at a varying current and flow rate is discussed.

  8. Nuclear electric propulsion for future NASA space science missions

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Chen-wan L.


    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  9. Active Removal of Large Debris: Electrical Propulsion Capabilities (United States)

    Billot Soccodato, Carole; Lorand, Anthony; Perrin, Veronique; Couzin, Patrice; FontdecabaBaig, Jordi


    The risk for current operational spacecraft or future market induced by large space debris, dead satellites or rocket bodies, in Low Earth Orbit has been identified several years ago. Many potential solutions and architectures are traded with a main objective of reducing cost per debris. Based on cost consideration, specially driven by launch cost, solutions constructed on multi debris capture capacities seem to be much affordable The recent technologic evolutions in electric propulsion and solar power generation can be used to combine high potential vehicles for debris removal. The present paper reports the first results of a study funded by CNES that addresses full electric solutions for large debris removal. Some analysis are currently in progress as the study will end in August. It compares the efficiency of in-orbit Active Removal of typical debris using electric propulsion The electric engine performances used in this analysis are demonstrated through a 2012/2013 PPS 5000 on-ground tests campaign. The traded missions are based on a launch in LEO, the possible vehicle architectures with capture means or contact less, the selection of deorbiting or reorbiting strategy. For contact less strategy, the ion-beam shepherd effect towards the debris problematic will be addressed. Vehicle architecture and performance of the overall system will be stated, showing the adequacy and the limits of each solution.

  10. Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft (United States)

    Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.


    NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance

  11. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard


    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  12. Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC (United States)

    Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr


    Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.

  13. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; hide


    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  14. Joint Radioisotope Electric Propulsion Studies - Neptune System Explorer (United States)

    Khan, M. Omair; Amini, Rashied; Ervin, Joan; Lang, Jared; Landau, Damon; Oleson, Steven; Spilker, Thomas; Strange, Nathan


    The Neptune System Explorer (NSE) mission concept study assessed opportunities to conduct Cassini-like science at Neptune with a radioisotope electric propulsion (REP) based spacecraft. REP is based on powering an electric propulsion (EP) engine with a radioisotope power source (RPS). The NSE study was commissioned under the Joint Radioisotope Electric Propulsion Studies (JREPS) project, which sought to determine the technical feasibility of flagship class REP applications. Within JREPS, special emphasis was given toward identifying tall technology tent poles, as well as recommending any new RPS technology developments that would be required for complicated REP missions. Based on the goals of JREPS, multiple RPS (e.g. thermoelectric and Stirling based RPS) and EP (e.g. Hall and ion engines) technology combinations were traded during the NSE study to determine the most favorable REP design architecture. Among the findings from the study was the need for >400We RPS systems, which was driven by EP operating powers and the requirement for a long-lived mission in the deep solar system. Additionally multiple development and implementation risks were identified for the NSE concept, as well as REP missions in general. Among the strengths of the NSE mission would be the benefits associated with RPS and EP use, such as long-term power (approx. 2-3kW) at Neptune and flexible trajectory options for achieving orbit or tours of the Neptune system. Although there are still multiple issues to mitigate, the NSE concept demonstrated distinct advantages associated with using REP for deep space flagship-class missions.

  15. Systems analysis of Mars solar electric propulsion vehicles (United States)

    Hickman, J. M.; Curtis, H. B.; Kenny, B. H.; Sefcik, R. J.


    Mission performance, mass, initial power, and cost are determined for solar electric propulsion vehicles across a range of payload masses, reference powers, and mission trajectories. Thick radiation shielding is added to arrays using indium phosphide or III-V multijunction solar cells to reduce the damage incurred through the radiation belts. Special assessments of power management and distribution systems, atmospheric drag, and energy storage are made. It is determined that atmospheric drag is of no great concern and that the energy storage used in countering drag is unnecessary. A scheme to package the arrays, masts, and ion thrusters into a single fairing is presented.

  16. The ac propulsion system for an electric vehicle, phase 1 (United States)

    Geppert, S.


    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  17. Aeroelastic Analysis of a Distributed Electric Propulsion Wing (United States)

    Massey, Steven J.; Stanford, Bret K.; Wieseman, Carol D.; Heeg, Jennifer


    An aeroelastic analysis of a prototype distributed electric propulsion wing is presented. Results using MSC Nastran (Registered Trademark) doublet lattice aerodynamics are compared to those based on FUN3D Reynolds Averaged Navier- Stokes aerodynamics. Four levels of grid refinement were examined for the FUN3D solutions and solutions were seen to be well converged. It was found that no oscillatory instability existed, only that of divergence, which occurred in the first bending mode at a dynamic pressure of over three times the flutter clearance condition.

  18. Systems analysis of Mars solar electric propulsion vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, J.M.; Curtis, H.B.; Kenny, B.H.; Sefcik, R.J.


    Mission performance, mass, initial power, and cost are determined for solar electric propulsion vehicles across a range of payload masses, reference powers, and mission trajectories. Thick radiation shielding is added to arrays using indium phosphide or III-V multijunction solar cells to reduce the damage incurred through the radiation belts. Special assessments of power management and distribution systems, atmospheric drag, and energy storage are made. It is determined that atmospheric drag is of no great concern and that the energy storage used in countering drag is unnecessary. A scheme to package the arrays, masts, and ion thrusters into a single fairing is presented. 19 refs.

  19. Cooling of Electric Motors Used for Propulsion on SCEPTOR (United States)

    Christie, Robert; Dubois, Authur; Derlaga, Joseph


    Benefits of Electric Power: Reduced energy consumption, Lower emissions, Less noise. Traction motors: Permanent magnet, Synchronous, High torque at low rotational speeds, High power density, (High concentration of heat). Annular inlet: Very compatible with PM motors, (Provides cooling where needed, No need for complicated ducting, Leads to a larger motor diameter which is beneficial for motor torque) Effect of prop wash on heat transfer coefficients: Assumed propeller induced turbulence would increase heat transfer coefficients, Holmes, Obara Yip reported 'propeller slipstream showed little if any apparent effect of the slip stream', Derlaga @ LaRC also found little change in heat transfer in the wake of the propeller.

  20. Hybrid Electric Propulsion System for a 4 Passenger VTOL Aircraft Project (United States)

    National Aeronautics and Space Administration — The advancement of hybrid-electric propulsion systems for rotorcraft enables vertical takeoff and landing (VTOL) vehicles to take advantage of aerodynamic...

  1. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project (United States)

    National Aeronautics and Space Administration — Field emission electric propulsion (FEEP) thrusters have gained considerable attention for spacecrafts disturbance compensation because of excellent characteristics....

  2. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  3. Study of advanced electric propulsion system concept using a flywheel for electric vehicles (United States)

    Younger, F. C.; Lackner, H.


    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  4. Diagnostics development for the Electric Propulsion Orbital Platform (United States)

    Ruyten, Wilhelmus M.; Friedly, V. J.; Litchford, R. J.


    We describe the development of the diagnostics systems for the first flight of the Electric Propulsion Orbital Platform (EPOP), which will center around the in-flight characterization of a 1.8 kW hydrogen arcjet system. In particular, we discuss a spacecraft communications experiment involving ground-to-spacecraft communications of the EPOP carrier; electrical probe measurements in the arcjet plume; and spectrally resolved plume imaging measurements of the same plume. The communications experiment is designed to measure small noise on the communications link which results from arcjet operation. The other two measurements primarily serve the purpose of characterization of the plume plasma. These measurements will be compared to similar measurements performed in a ground chamber to establish whether systematic differences exist between ground-based and in-flight performance of the arcjet system.

  5. Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement (United States)

    Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.


    The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.

  6. Radioisotope Electric Propulsion Centaur Orbiter Spacecraft Design Overview (United States)

    Oleson, Steve; McGuire, Melissa; Sarver-Verhey, Tim; Juergens, Jeff; Parkey, Tom; Dankanich, John; Fiehler, Doug; Gyekenyesi, John; Hemminger, Joseph; Gilland, Jim; hide


    Radioisotope electric propulsion (REP) has been shown in past studies to enable missions to outerplanetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass radioisotope power systems (RPS) and light spacecraft (S/C) components. In order to determine what are the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers cost cap. The design shows that an orbiter using several long lived (approximately 200 kg Xenon throughput), low power (approximately 700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the New Frontiers cost cap. Optimal specific impulses for the Hall thrusters were found to be around 2000 sec with thruster efficiencies over 40%. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be reused to enhance science and simplify communications.

  7. Electric propulsion reliability: Statistical analysis of on-orbit anomalies and comparative analysis of electric versus chemical propulsion failure rates (United States)

    Saleh, Joseph Homer; Geng, Fan; Ku, Michelle; Walker, Mitchell L. R.


    With a few hundred spacecraft launched to date with electric propulsion (EP), it is possible to conduct an epidemiological study of EP's on orbit reliability. The first objective of the present work was to undertake such a study and analyze EP's track record of on orbit anomalies and failures by different covariates. The second objective was to provide a comparative analysis of EP's failure rates with those of chemical propulsion. Satellite operators, manufacturers, and insurers will make reliability- and risk-informed decisions regarding the adoption and promotion of EP on board spacecraft. This work provides evidence-based support for such decisions. After a thorough data collection, 162 EP-equipped satellites launched between January 1997 and December 2015 were included in our dataset for analysis. Several statistical analyses were conducted, at the aggregate level and then with the data stratified by severity of the anomaly, by orbit type, and by EP technology. Mean Time To Anomaly (MTTA) and the distribution of the time to (minor/major) anomaly were investigated, as well as anomaly rates. The important findings in this work include the following: (1) Post-2005, EP's reliability has outperformed that of chemical propulsion; (2) Hall thrusters have robustly outperformed chemical propulsion, and they maintain a small but shrinking reliability advantage over gridded ion engines. Other results were also provided, for example the differentials in MTTA of minor and major anomalies for gridded ion engines and Hall thrusters. It was shown that: (3) Hall thrusters exhibit minor anomalies very early on orbit, which might be indicative of infant anomalies, and thus would benefit from better ground testing and acceptance procedures; (4) Strong evidence exists that EP anomalies (onset and likelihood) and orbit type are dependent, a dependence likely mediated by either the space environment or differences in thrusters duty cycles; (5) Gridded ion thrusters exhibit both

  8. Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications (United States)

    Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.


    There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.

  9. Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital missions (United States)

    Regetz, J. D., Jr.; Terwilliger, C. H., Jr.


    This paper presents the results of a study to determine the directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions of the next three decades in the most cost-effective manner. Discussed are the mission set requirements, state-of-the-art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost-optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system-level electric propulsion parameters. It is found that the efficiency-specific impulse characteristic generally has a more significant impact on overall costs than specific masses or costs of propulsion and power systems.

  10. Modular Pulsed Plasma Electric Propulsion System for Cubesats (United States)

    Perez, Andres Dono; Gazulla, Oriol Tintore; Teel, George Lewis; Mai, Nghia; Lukas, Joseph; Haque, Sumadra; Uribe, Eddie; Keidar, Michael; Agasid, Elwood


    Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development.

  11. COMPASS Final Report: Enceladus Solar Electric Propulsion Stage (United States)

    Oleson, Steven R.; McGuire, Melissa L.


    The results of the NASA Glenn Research Center (GRC) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) internal Solar Electric Propulsion (SEP) stage design are documented in this report (Figure 1.1). The SEP Stage was designed to deliver a science probe to Saturn (the probe design was performed separately by the NASA Goddard Space Flight Center s (GSFC) Integrated Mission Design Center (IMDC)). The SEP Stage delivers the 2444 kg probe on a Saturn trajectory with a hyperbolic arrival velocity of 5.4 km/s. The design carried 30 percent mass, 10 percent power, and 6 percent propellant margins. The SEP Stage relies on the probe for substantial guidance, navigation and control (GN&C), command and data handling (C&DH), and Communications functions. The stage is configured to carry the probe and to minimize the packaging interference between the probe and the stage. The propulsion system consisted of a 1+1 (one active, one spare) configuration of gimbaled 7 kW NASA Evolutionary Xenon Thruster (NEXT) ion propulsion thrusters with a throughput of 309 kg Xe propellant. Two 9350 W GaAs triple junction (at 1 Astronomical Unit (AU), includes 10 percent margin) ultra-flex solar arrays provided power to the stage, with Li-ion batteries for launch and contingency operations power. The base structure was an Al-Li hexagonal skin-stringer frame built to withstand launch loads. A passive thermal control system consisted of heat pipes to north and south radiator panels, multilayer insulation (MLI) and heaters for the Xe tank. All systems except tanks and solar arrays were designed to be single fault tolerant.

  12. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft Project (United States)

    National Aeronautics and Space Administration — For electric propulsion systems for large aircraft it is desirable to have very light weight electric motors. Cryogenic motors offer much lighter weight than...

  13. Fast piloted missions to Mars using nuclear electric propulsion (United States)

    George, Jeffery A.; Hack, Kurt J.; Dudzinski, Leonard A.


    Nuclear electric propulsion is investigated for suitability to ``fast'' piloted Mars mission of approximateley 400 days or less duration using Split opposition mission scenarios with 30 day stay and Earth Crew Capture Vehicle return. Mission performance was assessed for a range of NEP technologies. Modular NEP systems utilizing SP-100 reactor, potassium Rankine power conversion, and argon ion thruster technologies were found to enable 400 day class missions with total power levels of only 10 to 15 MWe. More advanced NEP technologies, such as higher temperature lithium-cooled reactors with 1500 K potassium Rankine power conversion, were found to allow missions of one year duration at a 15 MWe power level. Highly advanced NEP systems, characterized by specific masses of 3 kg/kWe, could some day allow 300 day missions for power levels of 40 MWe. Mars cargo mission analysis is performed to assess total mass requirements for a Split mission. Various mission options are compared, including Split versus All-Up mission scenarios, propulsive versus aerocapture Earth crew return, and reusable versus expendable strategies.

  14. Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus (United States)

    McGuire, Melissa L.; Borowski, Stanley K.; Packard, Thomas W.


    The following paper documents the mission and systems analysis portion of a study in which Nuclear Electric Propulsion (NEP) is used as the in-space transportation system to send a series of robotic rovers and atmospheric science airplanes to Venus in the 2020 to 2030 timeframe. As part of the NASA RASC (Revolutionary Aerospace Systems Concepts) program, this mission analysis is meant to identify future technologies and their application to far reaching NASA missions. The NEP systems and mission analysis is based largely on current technology state of the art assumptions. This study looks specifically at the performance of the NEP transfer stage when sending a series of different payload package point design options to Venus orbit.

  15. Multimegawatt nuclear power systems for nuclear electric propulsion (United States)

    George, Jeffrey A.


    Results from systems analysis studies of multimegawatt nuclear power systems are presented for application to nuclear electric propulsion. Specific mass estimates are presented for nearer term SP-100 reactor-based potassium Rankine and Brayton power systems for piloted and cargo missions. Growth SP-100/Rankine systems were found to range from roughly 7 to 10 kg/kWe specific mass depending on full power life requirements. The SP-100/Rankine systems were also found to result in a 4-kg/kWe savings in specific mass over SP-100/Brayton systems. The potential of advanced, higher temperature reactor and power conversion technologies for achieving reduced mass Rankine and Brayton systems was also investigated. A target goal of 5 kg/kWe specific mass was deemed reasonable given either 1400 K potassium Rankine with 1500 K lithium-cooled reactors or 2000 K gas cooled reactors with Brayton conversion.

  16. High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls (United States)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu


    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.

  17. Electric Propulsion Electronics And Thrusters As A Satellite Subsystem (United States)

    Gollor, Matthais


    The integration of electrical thrusters with an electronic into a subsystem and with this establishing an integrated design providing full function and performance is critical task. It starts with the proper specification of the electrical interfaces between thrusters and electronics, including a proper definition of the thrusters as an electric load. Furthermore the use of high voltage needs specific knowledge in design and is increasing the subsystem complexity due to obsolesce of suitable disconnect-able harness and of redundancy switching means. EMC is rising to a couple of questions, i.e. about possible interference of magnetic field emission with the satellites attitude control system or about the thruster plasma affecting RF transmission of communication links. End-to-end testing of the propulsion subsystem is limited as it is not possible to run the thruster together with the spacecraft in a vacuum facility. Therefore testing of the subsystem has to be "sliced": typically, the thruster is first characterized with the aid of lab power supplies and is later tested coupled with the "space" electronics. Finally system checkout on satellite level is performed with the using simulators.

  18. Low Cost Electric Propulsion Thruster for Deep Space Robotic Science Missions (United States)

    Manzella, David


    Electric Propulsion (EP) has found widespread acceptance by commercial satellite providers for on-orbit station keeping due to the total life cycle cost advantages these systems offer. NASA has also sought to benefit from the use of EP for primary propulsion onboard the Deep Space-1 and DAWN spacecraft. These applications utilized EP systems based on gridded ion thrusters, which offer performance unequaled by other electric propulsion thrusters. Through the In-Space Propulsion Project, a lower cost thruster technology is currently under development designed to make electric propulsion intended for primary propulsion applications cost competitive with chemical propulsion systems. The basis for this new technology is a very reliable electric propulsion thruster called the Hall thruster. Hall thrusters, which have been flown by the Russians dating back to the 1970s, have been used by the Europeans on the SMART-1 lunar orbiter and currently employed by 15 other geostationary spacecraft. Since the inception of the Hall thruster, over 100 of these devices have been used with no known failures. This paper describes the latest accomplishments of a development task that seeks to improve Hall thruster technology by increasing its specific impulse, throttle-ability, and lifetime to make this type of electric propulsion thruster applicable to NASA deep space science missions. In addition to discussing recent progress on this task, this paper describes the performance and cost benefits projected to result from the use of advanced Hall thrusters for deep space science missions.

  19. Electrical Parasitics and Thermal Modeling for Optimized Layout Design of High Power SiC Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Blaabjerg, Frede; Dutta, Atanu


    The reliability of power modules is closely depended on their electrical and thermal behavior in operation. As power modules are built to operate more integrated and faster, the electrical parasitic and thermal stress issues become more critical. This paper investigates simplified thermal...... and parasitic inductance models of SiC power modules. These models can replace the models by Finite Element Methods (FEM) to predict temperatures and electrical parasitics of power modules with much faster speed and acceptable errors and will be used for study of real operation of power modules. As a case study......, the presented models are verified by a conventional and an optimized power module layout. The optimized layout is designed based on the reduction of stray inductance and temperature in a P-cell and N-cell half-bridge module. The presented models are verified by FEM simulations and also experiment....

  20. High Power Orbit Transfer Vehicle

    National Research Council Canada - National Science Library

    Gulczinski, Frank


    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...


    Directory of Open Access Journals (Sweden)

    Ch. I. Zhdanovich


    Full Text Available Nowadays the work is in progress to develop wheeled and caterpillar tractors with electromechanical transmission. Range of changes in transmission gear ratio while using propulsion electric motor depends on mechanical characteristics of a tractor propulsion electric motor which is equipped with electromechanical transmission. In case when the range is rather high then it is possible to minimize number of gearings in the tractor gearing box or exclude its usage at all. Type of the applied propulsion electric motor and regulation method specify type of mechanical characteristics (characteristics family of the propulsion electric motor.The paper considers a propulsion asynchronous electric motor with frequency control. While using frequency control it is possible to regulate electric motor revolutions by mutual changes in voltage and voltage frequency. There are various laws of mutual changes in voltage and frequency (regulation laws. Selection of a regulation law influences on type of mechanical characteristics of a propulsion electric motor. Application of any law can be admissible only for some specific range of voltage frequency otherwise it is possible to exceed some parameters (for example, admissible voltage in the winding of electric motor stator. It is necessary to ensure the required moment within wide range for a tractor propulsion electric motor. In this case losses in the electric motor must be minimal. Losses in the rotor of the propulsion asynchronous electric motor are directly proportional to its sliding and its best propulsion and mechanical properties of a mobile machine will be ensured in the case when sliding is preserved at a constant value. According to these reasons selection of regulation laws has been carried out for operation of the propulsion asynchronous electric motor with nominal sliding and mechanical characteristics at nominal sliding is conventionally called a nominal characteristics.The paper analyzes the possible

  2. Development of a DC propulsion system for an electric vehicle (United States)

    Kelledes, W. L.


    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  3. Extra-Zodiacal-Cloud Astronomy via Solar Electric Propulsion (United States)

    Benson, Scott W.; Falck, Robert D.; Oleson, Steven R.; Greenhouse, Matthew A.; Kruk, Jeffrey W.; Gardner, Jonathan P.; Thronson, Harley A.; Vaughn, Frank J.; Fixsen, Dale J.


    Solar electric propulsion (SEP) is often considered as primary propulsion for robotic planetary missions, providing the opportunity to deliver more payload mass to difficult, high-delta-velocity destinations. However, SEP application to astrophysics has not been well studied. This research identifies and assesses a new application of SEP as primary propulsion for low-cost high-performance robotic astrophysics missions. The performance of an optical/infrared space observatory in Earth orbit or at the Sun-Earth L2 point (SEL2) is limited by background emission from the Zodiacal dust cloud that has a disk morphology along the ecliptic plane. By delivering an observatory to a inclined heliocentric orbit, most of this background emission can be avoided, resulting in a very substantial increase in science performance. This advantage enabled by SEP allows a small-aperture telescope to rival the performance of much larger telescopes located at SEL2. In this paper, we describe a novel mission architecture in which SEP technology is used to enable unprecedented telescope sensitivity performance per unit collecting area. This extra-zodiacal mission architecture will enable a new class of high-performance, short-development time, Explorer missions whose sensitivity and survey speed can rival flagship-class SEL2 facilities, thus providing new programmatic flexibility for NASA's astronomy mission portfolio. A mission concept study was conducted to evaluate this application of SEP. Trajectory analyses determined that a 700 kg-class science payload could be delivered in just over 2 years to a 2 AU mission orbit inclined 15 to the ecliptic using a 13 kW-class NASA's Evolutionary Xenon Thruster (NEXT) SEP system. A mission architecture trade resulted in a SEP stage architecture, in which the science spacecraft separates from the stage after delivery to the mission orbit. The SEP stage and science spacecraft concepts were defined in collaborative engineering environment studies. The

  4. Electrical Prototype Power Processor for the 30-cm Mercury electric propulsion engine (United States)

    Biess, J. J.; Frye, R. J.


    An Electrical Prototpye Power Processor has been designed to the latest electrical and performance requirements for a flight-type 30-cm ion engine and includes all the necessary power, command, telemetry and control interfaces for a typical electric propulsion subsystem. The power processor was configured into seven separate mechanical modules that would allow subassembly fabrication, test and integration into a complete power processor unit assembly. The conceptual mechanical packaging of the electrical prototype power processor unit demonstrated the relative location of power, high voltage and control electronic components to minimize electrical interactions and to provide adequate thermal control in a vacuum environment. Thermal control was accomplished with a heat pipe simulator attached to the base of the modules.

  5. Electric Propulsion Pointing Mechanism for BepiColombo (United States)

    Janu, Paul; Neugebauer, Christian; Schermann, Rudolf; Supper, Ludwig


    Since 17 years the development of Electric Propulsion Pointing Mechanisms for commercial and scientific satellite applications is a key-product activity for RUAG Space in Vienna.As one of the most innovative EP mechanisms presently under development in Vienna this paper presents the Electric Propulsion Mechanism for the ESA Bepi Colombo Mission.RUAG Space delivers the mechanism assembly, consisting of the mechanisms and the control electronics.The design-driving requirements are:- the pointing capability around the stowed configuration under resitive torque coming from the thruster supply harness, the thruster supply piping, and the mechanism harness. The pointing capability around the stowed configuration is realized via a central release nut together with a spring loaded knuckle-lever system which in essence forms a "frangible pipe" that is stiff during launch and collapses upon release. The resistive torques are minimized by a helical arrangement of the supply pipes and of the mechanism harness, and a guided low stiffness routing of the thruster supply harness. A high detent torque actuator is used to maintain pointing direction in un-powered condition. Also the direct measurement of the torque on the actuator shaft during random vibration is presented in the paper.- the specified maximum input loads to the thruster. The mechanism has not only to point the thruster, but also to protect it against high launch loads. A very low Eigen- frequency of the mechanism/thruster sub-assembly of around 65 Hz was selected to minimize coupling with the thruster's modes and so to minimize load input to the thruster. An elastomer damping system is implemented which minimizes amplification in this frequency area so that the sine input can be sustained by the mechanism and the thruster. The measured amplification of 3.1 turned out to successfully protect the thruster from the launch vibrations.- the thermal load on the mechanism from the dissipation of the thruster and from the

  6. Unique mission options available with a megawatt-class nuclear electric propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Coomes, E.P.; McCauley, L.A.; Christian, J.L.; Gomez, M.A.; Wong, W.A.


    The advantages of using electric propulsion systems are well-known in the aerospace community with the most common being its high specific impulse, lower propellant requirements, and lower system mass. But these advantages may not be as important as the overall unique mission options electric propulsion makes possible, especially if the system is powered by a megawatt-class nuclear electric power source. Although the lack of suitable electric power systems has been a major drawback to electric propulsion, recent efforts have shown megawatt-class nuclear electric power systems are feasible and could be available by the turn of the century. Coupling this with the resurgence in interest in free-space electromagnetic transmission of energy and technology developments in this area provide a whole new aspect to the view of electric propulsion. The propulsion system now has a second mission function that may be of more value than the well understood benefits of electric propulsion; that is providing large quantities of prime power in support of a broad spectrum of mission tasks. 30 refs., 9 figs.

  7. Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng-Shan Wang


    Full Text Available In this paper, an interleaved high-power zero-current-switching (ZCS onboard charger (OBC based on the three-phase single-switch buck rectifier is proposed for application to plug-in electric vehicles (EVs. The multi-resonant structure is used to achieve high efficiency and high power density, which are necessary to reduce the volume and weight of the OBC. This study focuses on the border conditions of ZCS converting with a battery load, which means the variation ranges of the output voltage and current are very large. Furthermore, a novel hybrid control method combining pulse frequency modulation (PFM and pulse width modulation (PWM together is presented to ensure a driving frequency higher than 10 kHz, and this will reduce the unexpected inner resonant power flow and decrease the total harmonic distortion (THD of the input current under a light load at the end of the charging process. Finally, a prototype is established, and experiments are carried out. According to the experimental results, the conversion efficiency is higher than 93.5%, the THD about 4.3% and power factor (PF 0.98 under the maximum power output condition. Besides, a three-stage charging process is also carried out the experimental platform.

  8. High-power CMOS current driver with accurate transconductance for electrical impedance tomography. (United States)

    Constantinou, Loucas; Triantis, Iasonas F; Bayford, Richard; Demosthenous, Andreas


    Current drivers are fundamental circuits in bioimpedance measurements including electrical impedance tomography (EIT). In the case of EIT, the current driver is required to have a large output impedance to guarantee high current accuracy over a wide range of load impedance values. This paper presents an integrated current driver which meets these requirements and is capable of delivering large sinusoidal currents to the load. The current driver employs a differential architecture and negative feedback, the latter allowing the output current to be accurately set by the ratio of the input voltage to a resistor value. The circuit was fabricated in a 0.6- μm high-voltage CMOS process technology and its core occupies a silicon area of 0.64 mm (2) . It operates from a ± 9 V power supply and can deliver output currents up to 5 mA p-p. The accuracy of the maximum output current is within 0.41% up to 500 kHz, reducing to 0.47% at 1 MHz with a total harmonic distortion of 0.69%. The output impedance is 665 k Ω at 100 kHz and 372 k Ω at 500 kHz.

  9. AC propulsion system for an electric vehicle, phase 2 (United States)

    Slicker, J. M.


    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  10. Power Conditioning System Modelling for Nuclear Electric Propulsion (United States)

    Metcalf, Kenneth J.


    NASA LeRC is currently developing a Fortran based model of a complete nuclear electric propulsion (NEP) vehicle that would be used for piloted and cargo missions to the Moon or Mars. The proposed vehicle design will use either a Brayton or K-Rankine power conversion cycle to drive a turbine coupled with a rotary alternator. Two thruster types are also being studied, ion and magnetoplasmadynamic (MPD). In support of this NEP model, Rocketdyne developed a power management and distribution (PMAD) subroutine that provides parametric outputs for selected alternator operating voltages and frequencies, thruster types, system power levels, and electronics coldplate temperatures. The end-to-end PMAD model described is based on the direct use of the alternator voltage and frequency for transmitting power to either ion or MPD thrusters. This low frequency transmission approach was compared with dc and high frequency ac designs, and determined to have the lowest mass, highest efficiency, highest reliability and lowest development costs. While its power quality is not as good as that provided by a high frequency system, it was considered adequate for both ion and MPD engine applications. The low frequency architecture will be used as the reference in future NEP PMAD studies.

  11. Propulsion system research and development for electric and hybrid vehicles (United States)

    Schwartz, H. J.


    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  12. Self-Healing Field-Emission Neutralizers for Electric Propulsion Project (United States)

    National Aeronautics and Space Administration — Electric propulsion (EP) thrusters have the potential to enhance or enable Discovery-class missions. However, a significant challenge in scaling micro (< 100 W)...

  13. Investigative Research, FMECA and PHM Modeling of Hybrid-Electric Distributed Propulsion System Architectures Project (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development with validation and demonstrations...

  14. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 2: Encke rendezvous mission and space vehicle functional description (United States)

    Gardner, J. A.


    A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.

  15. Battery System Modeling for a Military Electric Propulsion Vehicle with a Fault Simulation


    Ham, Hyeongjin; Han, Kyuhong; Lee, Hyeongcheol


    This paper describes the development process and results of a battery system model with a fault simulation for electric propulsion vehicles. The developed battery system model can be used to verify control and fault diagnosis strategies of the supervisory controller in an electric propulsion vehicle. To develop this battery system model, three sub-models, including a battery model, a relay assembly model, and a battery management system (BMS) model, are connected together like in the target r...

  16. Impact of propulsion system R and D on electric vehicle performance and cost (United States)

    Schwartz, H. J.; Gordan, A. L.


    The efficiency, weight, and manufacturing cost of the propulsion subsystem (motor, motor controller, transmission, and differential, but excluding the battery) are major factors in the purchase price and cost of ownership of a traffic-compatible electric vehicle. The relative impact of each was studied, and the conclusions reached are that propulsion system technology advances can result in a major reduction of the sticker price of an electric vehicle and a smaller, but significant, reduction in overall cost of ownership.

  17. Analysis of Roll Steering for Solar Electric Propulsion Missions (United States)

    Pederson, Dylan, M.; Hojnicki, Jeffrey, S.


    Nothing is more vital to a spacecraft than power. Solar Electric Propulsion (SEP) uses that power to provide a safe, reliable, and, most importantly, fuel efficient means to propel a spacecraft to its destination. The power performance of an SEP vehicle s solar arrays and electrical power system (EPS) is largely influenced by the environment in which the spacecraft is operating. One of the most important factors that determines solar array power performance is how directly the arrays are pointed to the sun. To get the most power from the solar arrays, the obvious solution is to point them directly at the sun at all times. Doing so is not a problem in deep space, as the environment and pointing conditions that a spacecraft faces are fairly constant and are easy to accommodate, if necessary. However, large and sometimes rapid variations in environmental and pointing conditions are experienced by Earth orbiting spacecraft. SEP spacecraft also have the additional constraint of needing to keep the thrust vector aligned with the velocity vector. Thus, it is important to analyze solar array power performance for any vehicle that spends an extended amount of time orbiting the Earth, and to determine how much off-pointing can be tolerated to produce the required power for a given spacecraft. This paper documents the benefits and drawbacks of perfectly pointing the solar arrays of an SEP spacecraft spiraling from Earth orbit, and how this might be accomplished. Benefits and drawbacks are defined in terms of vehicle mass, power, volume, complexity, and cost. This paper will also look at the application of various solar array pointing methods to future missions. One such pointing method of interest is called roll steering . Roll steering involves rolling the entire vehicle twice each orbit. Roll steering, combined with solar array gimbal tracking, is used to point the solar arrays perfectly towards the sun at all points in the orbit, while keeping the vehicle thrusters aligned

  18. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective (United States)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.


    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  19. Factors Influencing Solar Electric Propulsion Vehicle Payload Delivery for Outer Planet Missions (United States)

    Cupples, Michael; Green, Shaun; Coverstone, Victoria


    Systems analyses were performed for missions utilizing solar electric propulsion systems to deliver payloads to outer-planet destinations. A range of mission and systems factors and their affect on the delivery capability of the solar electric propulsion system was examined. The effect of varying the destination, the trip time, the launch vehicle, and gravity-assist boundary conditions was investigated. In addition, the affects of selecting propulsion system and power systems characteristics (including primary array power variation, number of thrusters, thruster throttling mode, and thruster Isp) on delivered payload was examined.

  20. Electric propulsion. [pulsed plasma thruster and electron bombardment ion engine for MSAT attitude control and stationkeeping (United States)


    An alternative propulsion subsystem for MSAT is presented which has a potential of reducing the satellite weight by more than 15%. The characteristics of pulsed plasma and ion engines are described and used to estimate of the mass of the propellant and thrusters for attitude control and stationkeeping functions for MSAT. Preliminary estimates indicate that the electric propulsion systems could also replace the large momentum wheels necessary to counteract the solar pressure; however, the fine pointing wheels would be retained. Estimates also show that either electric propulsion system can save approximately 18% to 20% of the initial 4,000 kg mass. The issues that require further experimentation are mentioned.

  1. High Power Silicon Carbide (SiC) Power Processing Unit Development (United States)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.


    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  2. Pellet bed reactor concept for nuclear electric propulsion (United States)

    El-Genk, Mohamed S.; Morley, Nicholas J.; Juhasz, Albert


    For Nuclear Electric Propulsion (NEP) applications, gas cooled nuclear reactors with dynamic energy conversion systems offer high specific power and low total mass. This paper describes the Pellet Bed Reactor (PeBR) concept for potential NEP missions to Mars. The helium cooled, 75-80 MWt PeBR, consists of a single annular fuel region filled with a randomly packed bed of spherical fuel pellets, is designed for multiple starts, and offers unique safety and operation features. Each fuel pellet, about 8-10 mm in diameter, is composed of hundreds of TRISO type fuel microspheres embedded in a graphite matrix for a full retention of fission products. To eliminate the likelihood of a single-point failure, the annular core of the PeBR is divided into three 120° sectors. Each sector is self contained and separate and capable of operating and being cooled on its own and in cooperation with either one or two other sectors. Each sector is coupled to a separate, 5 MWe Closed Brayton Cycle (CBC) energy conversion unit and is subcritical for safe handling and launching. In the event of a failure of the cooling system of a core sector, the reactor power level may be reduced, allowing adjacent sectors to convect the heat away using their own cooling system, thus maintaining reactor operation. Also, due to the absence of an internal core structure in the PeBR core, fueling of the reactor can easily be performed either at the launch facility or in orbit, and refueling can be accomplished in orbit as needed to extend the power system lifetime

  3. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)


    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  4. Is there a future for fission nuclear electric propulsion


    Blott, Richard; Koppel, Christophe; Valentian, Dominique; Jansen, Frank; Ferrari, Claudio; Bruno, Claudio; Herdrich, Georg; Gabrielli, Roland


    Technical issues and roadmaps of the HiPER and DIPOP nuclear studies for nuclear energy supply and propulsion systems were explained. The results were reviewed by an Advisory Board of European, Russian and US experts.

  5. High Temperature Radiators for Electric Propulsion Systems Project (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  6. High Power Electric Double-Layer Capacitors based on Room-Temperature Ionic Liquids and Nanostructured Carbons (United States)

    Perez, Carlos R.

    The efficient storage of electrical energy constitutes both a fundamental challenge for 21st century science and an urgent requirement for the sustainability of our technological civilization. The push for cleaner renewable forms of energy production, such as solar and wind power, strongly depends on a concomitant development of suitable storage methods to pair with these intermittent sources, as well as for mobile applications, such as vehicles and personal electronics. In this regard, Electrochemical Double-Layer Capacitors (supercapacitors) represent a vibrant area of research due to their environmental friendliness, long lifetimes, high power capability, and relative underdevelopment when compared to electrochemical batteries. Currently supercapacitors have gravimetric energies one order of magnitude lower than similarly advanced batteries, while conversly enjoying a similar advantage over them in terms of power. The challenge is to increase the gravimentric energies and conserve the high power. On the material side, research focuses on highly porous supports and electrolytes, the critical components of supercapacitors. Through the use of electrolyte systems with a wider electrochemical stability window, as well as properly tailored carbon nanomaterials as electrodes, significant improvements in performance are possible. Room Temperature Ionic Liquids and Carbide-Derived Carbons are promising electrolytes and electrodes, respectively. RTILs have been shown to be stable at up to twice the voltage of organic solvent-salt systems currently employed in supercapacitors, and CDCs are tunable in pore structure, show good electrical conductivity, and superior demonstrated capability as electrode material. This work aims to better understand the interplay of electrode and electrolyte parameters, such as pore structure and ion size, in the ultimate performance of RTIL-based supercapacitors in terms of power, energy, and temperature of operation. For this purpose, carbon

  7. Low Thrust Cis-Lunar Transfers Using a 40 kW-Class Solar Electric Propulsion Spacecraft (United States)

    Mcguire, Melissa L.; Burke, Laura M.; Mccarty, Steven L.; Hack, Kurt J.; Whitley, Ryan J.; Davis, Diane C.; Ocampo, Cesar


    This paper captures trajectory analysis of a representative low thrust, high power Solar Electric Propulsion (SEP) vehicle to move a mass around cis-lunar space in the range of 20 to 40 kW power to the Electric Propulsion (EP) system. These cis-lunar transfers depart from a selected Near Rectilinear Halo Orbit (NRHO) and target other cis-lunar orbits. The NRHO cannot be characterized in the classical two-body dynamics more familiar in the human spaceflight community, and the use of low thrust orbit transfers provides unique analysis challenges. Among the target orbit destinations documented in this paper are transfers between a Southern and Northern NRHO, transfers between the NRHO and a Distant Retrograde Orbit (DRO) and a transfer between the NRHO and two different Earth Moon Lagrange Point 2 (EML2) Halo orbits. Because many different NRHOs and EML2 halo orbits exist, simplifying assumptions rely on previous analysis of orbits that meet current abort and communication requirements for human mission planning. Investigation is done into the sensitivities of these low thrust transfers to EP system power. Additionally, the impact of the Thrust to Weight ratio of these low thrust SEP systems and the ability to transit between these unique orbits are investigated.

  8. Propulsion Powertrain Real-Time Simulation Using Hardware-in-the-Loop (HIL) for Aircraft Electric Propulsion System (United States)

    Choi, Benjamin B.; Brown, Gerald V.


    It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).

  9. Round-Trip Solar Electric Propulsion Missions for Mars Sample Return (United States)

    Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.


    Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.

  10. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.


    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  11. Enabling Junction Temperature Estimation via Collector-Side Thermo-Sensitive Electrical Parameters through Emitter Stray Inductance in High-Power IGBT Modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Li, Wuhua; Iannuzzo, Francesco


    This paper proposes the adoption of the inherent emitter stray inductance LeE in high-power insulated gate bipolar transistor (IGBT) modules as a new dynamic thermo-sensitive electrical parameter (d-TSEP). Furthermore, a family of 14 derived dynamic TSEP candidates has been extracted and classified...

  12. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed (United States)

    Papathakis, Kurt V.


    There a few NASA funded electric and hybrid electric projects from different NASA Centers, including the NASA Armstrong Flight Research Center (AFRC) (Edwards, California). Each project identifies a specific technology gap that is currently inhibiting the growth and proliferation of relevant technologies in commercial aviation. This paper describes the design and development of a turbo-electric distributed propulsion (TeDP) hardware-in-the-loop (HIL) simulation bench, which is a test bed for discovering turbo-electric control, distributed electric control, power management control, and integration competencies while providing risk mitigation for future turbo-electric flying demonstrators.

  13. Dual shear plate power processor packaging design. [for Solar Electric Propulsion spacecraft (United States)

    Franzon, A. O.; Fredrickson, C. D.; Ross, R. G.


    The use of solar electric propulsion (SEP) for spacecraft primary propulsion imposes an extreme range of operational and environmental design requirements associated with the diversity of missions for which solar electric primary propulsion is advantageous. One SEP element which is particularly sensitive to these environmental extremes is the power processor unit (PPU) which powers and controls the electric ion thruster. An improved power processor thermal-mechanical packaging approach, referred to as dual shear plate packaging, has been designed to accommodate these different requirements with minimum change to the power processor design. Details of this packaging design are presented together with test results obtained from thermal-vacuum and structural-vibration tests conducted with prototype hardware.

  14. Battery System Modeling for a Military Electric Propulsion Vehicle with a Fault Simulation

    Directory of Open Access Journals (Sweden)

    Hyeongcheol Lee


    Full Text Available This paper describes the development process and results of a battery system model with a fault simulation for electric propulsion vehicles. The developed battery system model can be used to verify control and fault diagnosis strategies of the supervisory controller in an electric propulsion vehicle. To develop this battery system model, three sub-models, including a battery model, a relay assembly model, and a battery management system (BMS model, are connected together like in the target real battery system. Comparison results between the real battery system hardware and the battery system model show a similar tendency and values. Furthermore, the fault injection test of the model shows that the proposed battery system model can simulate a failure situation consistent with a real system. It is possible for the model to emulate the battery characteristics and fault situation if it is used in the development process of a BMS or for supervisory control strategies for electric propulsion systems.

  15. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid (AVC-TeDP) (United States)

    Gemin, Paul; Kupiszewski, Tom; Radun, Arthur; Pan, Yan; Lai, Rixin; Zhang, Di; Wang, Ruxi; Wu, Xinhui; Jiang, Yan; Galioto, Steve; hide


    The purpose of this effort was to advance the selection, characterization, and modeling of a propulsion electric grid for a Turboelectric Distributed Propulsion (TeDP) system for transport aircraft. The TeDP aircraft would constitute a miniature electric grid with 50 MW or more of total power, two or more generators, redundant transmission lines, and multiple electric motors driving propulsion fans. The study proposed power system architectures, investigated electromechanical and solid state circuit breakers, estimated the impact of the system voltage on system mass, and recommended DC bus voltage range. The study assumed an all cryogenic power system. Detailed assumptions within the study include hybrid circuit breakers, a two cryogen system, and supercritical cyrogens. A dynamic model was developed to investigate control and parameter selection.

  16. A Concept Plane using electric distributed propulsion Evaluation of advanced power architecture


    Ridel, M.; B. Paluch; Doll, C; Donjat, D.; Hermetz, J.; Guigon, A.; Schmollgruber, P.; Atinault, O.; Choy, P.; Le Tallec, P.; Dessornes, O.; Lefebvre, T


    International audience; Starting from electrical distributed propulsion system concept, the ONERA’s engineers demonstrated the viability of an all electrical aircraft for a small business aircraft. This paper describes the advanced power architecture considering energy conversion and power distribution. The design of this advanced power architecture requires the multi-physic integration of different domains as flight performances, safety and environmental requirements (thermal, electric, elec...

  17. Power feature required for PEFC powered electric propulsion ship

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Isao [NKK Corp., Yokohama (Japan); Oka, Masaru [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan)


    This report covers part of a joint study on a PEFC system for ship propulsion, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns an analysis of the load-following performance required and estimated of a PEFC system to power the envisaged ship. The analysis proved that difficulty should be expected of the fuel supply circuit in following with adequate rapidity the sharp changes of load on fuel cell under certain conditions. Further integrated experiments and simulation exercises are currently in progress to further analyze the response characteristics of the fuel supply circuit-particularly of the methanol reformer and gas reservoir-to determine the best measure to be adopted for overcoming the expected difficulty.

  18. A segmented ion engine design for solar electric propulsion systems (United States)

    Brophy, John R.


    A new ion engine design, called a segmented ion engine, is described which is capable of reducing the required ion source life time for small body rendezvous missions from 18,000 h to about 8,000 h. The use of SAND ion optics for the engine accelerator system makes it possible to substantially reduce the cost of demonstrating the required engine endurance. It is concluded that a flight test of a 5-kW xenon ion propulsion system on the ELITE spacecraft would enormously reduce the cost and risk of using ion propulsion on a planetary vehicle by addressing systems level issues associated with flying a spacecraft radically different from conventional planetary vehicles.

  19. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed (United States)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr


    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  20. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee (United States)

    Hange, Craig E.


    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  1. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission (United States)

    Cupples, Michael


    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  2. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel


    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  3. Human exploration of near earth asteroids: Mission analysis for chemical and electric propulsion (United States)

    Herman, Jonathan F. C.; Zimmer, Aline K.; Reijneveld, Johannes P. J.; Dunlop, Kathryn L.; Takahashi, Yu; Tardivel, Simon; Scheeres, Daniel J.


    This paper presents a mission analysis comparison of human missions to asteroids using two distinct architectures. The objective is to determine if either architecture can reduce launch mass with respect to the other, while not sacrificing other performance metrics such as mission duration. One architecture relies on chemical propulsion, the traditional workhorse of space exploration. The second combines chemical and electric propulsion into a hybrid architecture that attempts to utilize the strengths of each, namely the short flight times of chemical propulsion and the propellant efficiency of electric propulsion. The architectures are thoroughly detailed, and accessibility of the known asteroid population is determined for both. The most accessible asteroids are discussed in detail. Aspects such as mission abort scenarios and vehicle reusability are also discussed. Ultimately, it is determined that launch mass can be greatly reduced with the hybrid architecture, without a notable increase in mission duration. This demonstrates that significant performance improvements can be introduced to the next step of human space exploration with realistic electric propulsion system capabilities. This leads to immediate cost savings for human exploration and simultaneously opens a path of technology development that leads to technologies enabling access to even further destinations in the future.

  4. high power facto high power factor high power factor hybrid rectifier

    African Journals Online (AJOL)


    compact and efficient new devices, it noted increase in the number of electrical loads that some kind of electronic ... in electric machines and capacitors,. HIGH POWER FACTOR. HIGH POWER FACTOR HYBRID ...... Auxiliary DC-DC Converter for Hybrid Vehicles ”,. IEEE Transactions on Power Electronics vol. 23, no. 6, pp.

  5. Optimized design of a high-power-density PM-assisted synchronous reluctance machine with ferrite magnets for electric vehicles

    Directory of Open Access Journals (Sweden)

    Liu Xiping


    Full Text Available This paper proposes a permanent magnet (PM-assisted synchronous reluctance machine (PMASynRM using ferrite magnets with the same power density as rareearth PM synchronous motors employed in Toyota Prius 2010. A suitable rotor structure for high torque density and high power density is discussed with respect to the demagnetization of ferrite magnets, mechanical strength and torque ripple. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2-D finite element analysis (FEA. The analysis results show that a high power density and high efficiency of PMASynRM are obtained by using ferrite magnets.

  6. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.


    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  7. A methodology for fostering commercialization of electric and hybrid vehicle propulsion systems (United States)

    Thollot, P. A.; Musial, N. T.


    The rationale behind, and a proposed approach for, application of government assistance to accelerate the process of moving a new electric vehicle propulsion system product from technological readiness to profitable marketplace acceptance and utilization are described. Emphasis is on strategy, applicable incentives, and an implementation process.

  8. Control Strategy for Power Distribution in Dual Motor Propulsion System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Pedro Daniel Urbina Coronado


    Full Text Available Electric Vehicles with more than one electric motor can offer advantages in saving energy from the batteries. In order to do that, the control strategy plays an important role in distributing the required torque between the electric motors. A dual motor propulsion system with a differential transmission is simulated in this work. A rule based control strategy for this propulsion system is proposed and analyzed. Two parameters related to the output speed of the transmission and the required torque are used to switch the two modes of operation in which the propulsion system can work under acceleration. The effect of these parameters is presented over the driving cycles of NEDC, UDDS, and NYCC, which are followed using a PID controller. The produced energy losses are calculated as well as an indicator of drivability, which is related to the difference between the desired speed and the actual speed obtained. The results show that less energy losses are present when the vehicle is maintained with one electric motor most of the time, switching only when the extended speed granted by the second motor is required. The propulsion system with the proposed control strategy represents a feasible alternative in the spectrum of sustainable transportation architectures with extending range capabilities.

  9. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)


    Activities in a program to develop a Ni/Zn battery for electric vehicle propulsion are reported. Aspects discussed include battery design and development, nickel cathode study, and basic electrochemistry. A number of engineering drawings are supplied. 61 figures, 11 tables. (RWR)

  10. Hall-Effect Thruster Modifications for Dual-Mode Electric Propulsion Project (United States)

    National Aeronautics and Space Administration — The integrated NASA/DoD electric propulsion objectives are for a specific mass less than 3 kg/kW while demonstrating a throttlable thrust-to-power ratio of 100:1 at...

  11. Advanced Space Robotics and Solar Electric Propulsion: Enabling Technologies for Future Planetary Exploration (United States)

    Kaplan, M.; Tadros, A.


    Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.

  12. Hydrogen , Hybrid and Electric Propulsion in a Strategy for Sustainable Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj


    Analysis of the scope for application of hydrogen and electric propulsion for improvement of the fuel cycle efficiency and introduction of renewable energy in the transport sector. The paper compares these fuels with each other as well as with other fuels (especially bio fuels) and outlines their...

  13. Feasibility study of a superconducting motor for electrical helicopter propulsion

    NARCIS (Netherlands)

    Simons, C.A.B.A.E.; Sanabria-Walter, C.; Polinder, H.


    During the past decades, superconducting electrical machines have become more suitable to replace conventional iron based designs, because of their lower weight and higher torque density. These properties make them good candidates for use in More Electric Aircraft (MEA). Especially helicopter

  14. A laboratory facility for electric vehicle propulsion system testing (United States)

    Sargent, N. B.


    The road load simulator facility located at the NASA Lewis Research Center enables a propulsion system or any of its components to be evaluated under a realistic vehicle inertia and road loads. The load is applied to the system under test according to the road load equation: F(net)=K1F1+K2F2V+K3 sq V+K4(dv/dt)+K5 sin theta. The coefficient of each term in the equation can be varied over a wide range with vehicle inertial representative of vehicles up to 7500 pounds simulated by means of flywheels. The required torque is applied by the flywheels, a hydroviscous absorber and clutch, and a drive motor integrated by a closed loop control system to produce a smooth, continuous load up to 150 horsepower.

  15. Results of electric-vehicle propulsion system performance on three lead-acid battery systems (United States)

    Ewashinka, J. G.


    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries) were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  16. COMPASS Final Report: Saturn Moons Orbiter Using Radioisotope Electric Propulsion (REP): Flagship Class Mission (United States)

    Oleson, Steven R.; McGuire, Melissa L.


    The COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) team was approached by the NASA Glenn Research Center (GRC) In-Space Project to perform a design session to develop Radioisotope Electric Propulsion (REP) Spacecraft Conceptual Designs (with cost, risk, and reliability) for missions of three different classes: New Frontier s Class Centaur Orbiter (with Trojan flyby), Flagship, and Discovery. The designs will allow trading of current and future propulsion systems. The results will directly support technology development decisions. The results of the Flagship mission design are reported in this document

  17. The outlook for application of powerful nuclear thermionic reactor - powered space electric jet propulsion engines

    Energy Technology Data Exchange (ETDEWEB)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D. [Rocket-Space Corp. `Energia`, Moscow (Russian Federation)


    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  18. Advanced electric propulsion system concept for electric vehicles. Addendum 1: Voltage considerations (United States)

    Raynard, A. E.; Forbes, F. E.


    The two electric vehicle propulsion systems that best met cost and performance goals were examined to assess the effect of battery pack voltage on system performance and cost. A voltage range of 54 to 540 V was considered for a typical battery pack capacity of 24 k W-hr. The highest battery specific energy (W-hr/kg) and the lowest cost ($/kW-hr) were obtained at the minimum voltage level. The flywheel system traction motor is a dc, mechanically commutated with shunt field control, and due to the flywheel the traction motor and the battery are not subject to extreme peaks of power demand. The basic system uses a permanent-magnet motor with electronic commutation supplied by an ac power control unit. In both systems battery cost were the major factor in system voltage selection, and a battery pack with the minimum voltage of 54 V produced the lowest life-cycle cost. The minimum life-cycle cost for the basic system with lead-acid batteries was $0.057/km and for the flywheel system was $0.037/km.

  19. An electric vehicle propulsion system's impact on battery performance: An overview (United States)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.


    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  20. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System (United States)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.


    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  1. Exploring Propulsion System Requirements for More and All-Electric Helicopters (United States)

    Snyder, Christopher A.


    Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.

  2. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration (United States)

    Wilcox, Brian H.


    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  3. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions (United States)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John


    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  4. Application of Solar-Electric Propulsion to Robotic Missions in Near-Earth Space (United States)

    Woodcock, Gordon R.; Dankanich, John


    Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science and robotic exploration, and planetary science. These missions span SEP power range from 10 kWe to about 100 kWe. A SEP design compatible with small inexpensive launch vehicles, and capable of lunar science missions, is presented. Modes of use and benefits are described, and potential SEP evolution is discussed.

  5. A Robust Fuzzy Sliding Mode Controller Synthesis Applied on Boost DC-DC Converter Power Supply for Electric Vehicle Propulsion System

    Directory of Open Access Journals (Sweden)

    Boumediène Allaoua


    Full Text Available The development of electric vehicles power electronics system control comprising of DC-AC inverters and DC-DC converters takes a great interest of researchers in the modern industry. A DC-AC inverter supplies the high power electric vehicle motors torques of the propulsion system and utility loads, whereas a DC-DC converter supplies conventional low-power, low-voltage loads. However, the need for high power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. Nonlinear control of power converters is an active area of research in the fields of power electronics. This paper focuses on a fuzzy sliding mode strategy (FSMS as a control strategy for boost DC-DC converter power supply for electric vehicle. The proposed fuzzy controller specifies changes in the control signal based on the surface and the surface change knowledge to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.

  6. Comparison of road load simulator test results with track tests on electric vehicle propulsion system (United States)

    Dustin, M. O.


    A special-purpose dynamometer, the road load simulator (RLS), is being used at NASA's Lewis Research Center to test and evaluate electric vehicle propulsion systems developed under DOE's Electric and Hybrid Vehicle Program. To improve correlation between system tests on the RLS and track tests, similar tests were conducted on the same propulsion system on the RLS and on a test track. These tests are compared in this report. Battery current to maintain a constant vehicle speed with a fixed throttle was used for the comparison. Scatter in the data was greater in the track test results. This is attributable to variations in tire rolling resistance and wind effects in the track data. It also appeared that the RLS road load, determined by coastdown tests on the track, was lower than that of the vehicle on the track. These differences may be due to differences in tire temperature.

  7. Preliminary results of steady state characterization of near term electric vehicle breadboard propulsion system (United States)

    Sargent, N. B.


    The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.

  8. A Step Towards Electric Propulsion Testing Standards: Pressure Measurements and Effective Pumping Speeds (United States)

    Dankanich, John W.; Swiatek, Michael W.; Yim, John T.


    The electric propulsion community has been implored to establish and implement a set of universally applicable test standards during the research, development, and qualification of electric propulsion systems. Existing practices are fallible and result in testing variations which leads to suspicious results, large margins in application, or aversion to mission infusion. Performance measurements and life testing under appropriate conditions can be costly and lengthy. Measurement practices must be consistent, accurate, and repeatable. Additionally, the measurements must be universally transportable across facilities throughout the development, qualification, spacecraft integration and on-orbit performance. A preliminary step to progress towards universally applicable testing standards is outlined for facility pressure measurements and effective pumping speed calculations. The standard has been applied to multiple facilities at the NASA Glenn Research Center. Test results and analyses of universality of measurements are presented herein.

  9. Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing (United States)

    Yim, John T.; Burt, Jonathan M.


    The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.

  10. Integrated Safety Program for the Nuclear Electric Propulsion Space Test Program (United States)

    Marshall, Albert C.; Mehlman, William F.; Kompanietz, G.


    The Nuclear Electric Propulsion Space Test Program (NEPSTP) is sponsored by the Ballistic Missile Defense Office (BMDO) to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source for an electric propulsion system in space. From its inception, safety has been a central feature of the NEPSTP program. This paper addresses the work done to define the safety organizational relationships, responsibilities, management, engineering requirements, and documentation to assure an integrated safety program that coordinates the various safety activities in Mission Safety, Range Safety and Nuclear Safety. Because the United States has not launched a nuclear reactor since 1965, much of the focus of the safety program has been directed toward the unique safety considerations of using a nuclear reactor in space. Our preliminary findings indicate that the safe use of the TOPAZ II for the NEPSTP space mission is feasible.

  11. A study of the compatibility of science instruments with the solar electric propulsion space vehicle (United States)

    Parker, R. H.; Ajello, J. M.; Bratenahl, A.; Clay, D. R.; Tsurutani, B.


    Electromagnetic interference and field-of-view constraints are identified as the areas of most concern to science on solar electric propulsion space vehicles. Several areas are indicated which more detailed data on the space vehicle environment are needed. In addition, possible means to attain or demonstrate science/space vehicle compatibility are recommended for further iteration between space vehicle design and science payload considerations. The space vehicle design developed by the solar electric propulsion system integration technology effort is used. Two payload sets for comet Encke missions (a slow flyby and a rendezvous), as well as several instruments which are not included in the two payload sets, are analyzed to determine requirements on the space vehicle imposed by the instruments in order to meet their objectives. Environmental requirements for the sets of instruments are developed and compared to both the SEPSIT design criteria and the environment as it is presently understood.

  12. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.


    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  13. Elimination of bus voltage impact on temperature sensitive electrical parameter during turn-on transition for junction temperature estimation of high-power IGBT modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede


    Junction temperature is of great importance to safe operating area of IGBT modules. Various information of the IGBT operating state is reflected on electrical characteristics during turn-on transient. A unified extraction method for internal junction temperature via dynamic thermo-sensitive elect......Junction temperature is of great importance to safe operating area of IGBT modules. Various information of the IGBT operating state is reflected on electrical characteristics during turn-on transient. A unified extraction method for internal junction temperature via dynamic thermo......-sensitive electrical parameters (DTSEP) during turn-on transient is proposed. Two DTSEP, turn-on delay time (tdon) and the maximum increasing rate of collector current dic/dt(max), are combined to eliminate the bus voltage impact. Using the inherent emitter-auxiliary inductor LeE in high-power modules, the temperature...

  14. A Survey of Xenon Ion Sputter Yield Data and Fits Relevant to Electric Propulsion Spacecraft Integration (United States)

    Yim, John T.


    A survey of low energy xenon ion impact sputter yields was conducted to provide a more coherent baseline set of sputter yield data and accompanying fits for electric propulsion integration. Data uncertainties are discussed and different available curve fit formulas are assessed for their general suitability. A Bayesian parameter fitting approach is used with a Markov chain Monte Carlo method to provide estimates for the fitting parameters while characterizing the uncertainties for the resulting yield curves.

  15. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.


    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  16. Distributed electric propulsion for small business aircraft a concept-plane for key-technologies investigations.


    Hermetz, Jean; Ridel, Michael; Doll, Carsten


    International audience; Electric propulsion for aircraft begins to be effective in the field of leisure aviation mainly for initial training. However, some challenges appear when performance-level needs to be increased to address more demanding application such as business travel even for small passenger capacity. Based on its expertise in all disciplines of aviation design, and in the following of projects dedicated to future Air Transport System, ONERA started exploratory studies, a few yea...

  17. Nuclear electric propulsion mission engineering study development program and costs estimates, Phase 2 review (United States)


    The results are presented of the second six-month performance period of the Nuclear Electric Propulsion Mission Engineering Study. A brief overview of the program, identifying the study objectives and approach, and a discussion of the program status and schedule are presented. The program results are reviewed and key conclusions to date are summarized. Planned effort for the remainder of the program is reviewed.

  18. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S


    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  19. Solar powered electric propulsion orbit transfer vehicle design and operational effectiveness (United States)

    Makaru, M. M.; Boyarski, D. P.


    The feasibility and cost effectiveness for using solar powered electric propulsion orbit transfer vehicles (EOTV) to move Block 3 NAVSTAR Global Positioning System (GPS) satellites from LEO to a 10,900 nm orbit were determined. The electric propulsion systems considered were present and 1990's technology ion engines using mercury, xenon or argon for a propellant. A systems cost model which combines payload, power sources, trajectory, and earth-to-LEO launch parameters with algorithms characterizing the electric propulsion system was used. The least costly systems which had a triptime equal to or less than 90 days were determined. These systems were then compared with the PAM D-II, Centaur-G, and IUS in terms of total deployment costs for 28 GPS satellites launched at a rate of four per year for seven years. The study found that a reusable EOTV with 12 mercury ion engines powered by gallium arsenide concentrator arrays could perform the mission for 57 percent of the cost of the cheapest chemical system.

  20. Communications experiment for the Nuclear Electric Propulsion Space Test Program (NEPSTP) (United States)

    Bokulic, Robert S.; Gatsonis, Nikolaos A.; Bythrow, Peter F.; Mauk, Barry H.


    A planned experiment for characterizing RF/plume interaction effects on the Nuclear Electric Propulsion Space Test Program (NEPSTP) is described. The NEPSTP spacecraft will use a Russian Topaz II nuclear reactor to power a suite of electric thrusters on-orbit. Transmission of signals through the thruster plumes at S-band (2 GHz) will be characterized over a wide range of viewing angles by controlling the spacecraft attitude as it passes by the ground station. Planned measurements include signal strength, bit error count, scintillation, phase transient effects, and radio frequency interference. Possible future augmentations to the experiment, including a UHF transmitter and a measurement of total election content, are also described.

  1. Janus particle microshuttle: 1D directional self-propulsion modulated by AC electrical field

    Directory of Open Access Journals (Sweden)

    Jiliang Chen


    Full Text Available A catalytic Janus particle is capable of gaining energy from the surrounding fuel solution to drive itself to move continuously, which has an important impact in different fields, especially the field of micro-systems. However, the randomness of self-propulsion at the microscale restricts its use in practice. Achieving a directed self-propelled movement would greatly promote the application of the Janus particle. We proved experimentally that an AC electric field was an effective way to suppress Brownian motion and control the direction of self-propelled movement. The self-propulsion and dielectrophoretic response of a 2μm Janus particle were observed and the related basic data were collected. Interdigital electrodes, 20 μm in width, were energized in pulsed style to modulate the self-propulsion, which resulted in a shuttle-style motion in which a single Janus particle moved to and fro inside the strip electrode. The change of direction depends on its unique position: the catalyst side is always pointed outward and the orientation angle relative to the electrode is about 60°. Numerical simulation also proved that this position is reasonable. The present study could be beneficial with regard to self-propulsion and AC electrokinetics of the Janus particle.

  2. High-Lift Propeller Noise Prediction for a Distributed Electric Propulsion Flight Demonstrator (United States)

    Nark, Douglas M.; Buning, Pieter G.; Jones, William T.; Derlaga, Joseph M.


    Over the past several years, the use of electric propulsion technologies within aircraft design has received increased attention. The characteristics of electric propulsion systems open up new areas of the aircraft design space, such as the use of distributed electric propulsion (DEP). In this approach, electric motors are placed in many different locations to achieve increased efficiency through integration of the propulsion system with the airframe. Under a project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR), NASA is designing a flight demonstrator aircraft that employs many "high-lift propellers" distributed upstream of the wing leading edge and two cruise propellers (one at each wingtip). As the high-lift propellers are operational at low flight speeds (take-off/approach flight conditions), the impact of the DEP configuration on the aircraft noise signature is also an important design consideration. This paper describes efforts toward the development of a mulit-fidelity aerodynamic and acoustic methodology for DEP high-lift propeller aeroacoustic modeling. Specifically, the PAS, OVERFLOW 2, and FUN3D codes are used to predict the aerodynamic performance of a baseline high-lift propeller blade set. Blade surface pressure results from the aerodynamic predictions are then used with PSU-WOPWOP and the F1A module of the NASA second generation Aircraft NOise Prediction Program to predict the isolated high-lift propeller noise source. Comparisons of predictions indicate that general trends related to angle of attack effects at the blade passage frequency are captured well with the various codes. Results for higher harmonics of the blade passage frequency appear consistent for the CFD based methods. Conversely, evidence of the need for a study of the effects of increased azimuthal grid resolution on the PAS based results is indicated and will be pursued in future work. Overall, the results indicate that the computational

  3. Propulsion Options For Interstellar Exploration (United States)

    Johnson, Les; Leifer, Stephanie


    NASA is considering missions to explore near-interstellar space (40 - 250 Astronomical Units) early in the next decade as the first step toward a vigorous interstellar exploration program. A key enabling technology for such an ambitious science and exploration effort is a propulsion system capable of providing fast trip times, yet which has low enough mass to allow for the use of inexpensive launch vehicles. Advanced propulsion technologies that might support the First interstellar precursor mission by the end of the first decade of the new millennium include solar sails and nuclear electric propulsion. Solar sails and electric propulsion are two technology areas that may hold promise for the next generation of interstellar precursor missions as well - perhaps a thousand astronomical units traveled in a professional lifetime. Future missions to far beyond the Heliosphere will require the development of propulsion technologies that are only at the conceptual stage today. For years, the scientific community has been interested in solar sail and electric propulsion technologies to support robotic exploration of the solar system. Progress in thin-film materials fabrication and handling, and advancement in technologies that may enable the deployment of large sails in space are only now maturing to the point where ambitious interstellar precursor missions using sails can be considered. Xenon ion propulsion is now being demonstrated for planetary exploration by the Deep Space 1 mission. The primary issues for the adaptation of electric propulsion to interstellar precursor applications include the development of low specific mass nuclear power systems, engine lifetime, and high power operation. Recent studies of interstellar precursor mission scenarios that use these propulsion systems will be described, and the range of application of each technology will be explored.

  4. Utilization of recently developed codes for high power Brayton and Rankine cycle power systems (United States)

    Doherty, Michael P.


    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.

  5. Development of a diagnostic system for high power microwave (FEL) electric fields in the Microwave Tokamak Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Oda, T.; Takiyama, K. [Hiroshima Univ. (Japan). Faculty of Engineering; Odajima, K. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others


    One of the most important diagnostics for the electron-cyclotron-frequency heating (ECH) experiments is to directly measure the spatial distribution of the microwave electric field in a plasma for understanding the absorption mechanism of the microwave in the plasma. We have developed a diagnostic system using laser-aided particle-probe spectroscopy (LAPPS) to observe the high electric field (>100 kV/cm) generated by a free electron laser (FEL) beam for the ECH study in the Microwave Tokamak Experiment (MTX) at the Lawrence Livermore National Laboratory. The principle of method and an outline of the diagnostic system have been presented. The diagnostic apparatus consists of a neutral helium beam, a dye laser exciting the neutral beam, and a spectroscopic system with originally designed collecting optics. Using the Stark effect we observe fluorescences induced by the forbidden transitions from the metastable levels of the helium atoms to obtain the electric field strength in the plasma. Similar spectroscopic measurements have been made of high frequency electric fields in plasmas, although the plasmas have quite lower densities and temperatures than the MTX plasma. The whole apparatus was assembled on a mock-up of the MTX torus at Japan Atomic Energy Research Institute at Tokai, and we have observed laser-induced fluorescences from the LAPPS helium beam. Measurements of beam intensity using Faraday cups and thermocouples have been also made. (author) 5 refs., 3 figs., 1 tab.

  6. Bulk synthesis of metal-organic hybrid dimers and their propulsion under electric fields. (United States)

    Wang, Sijia; Ma, Fuduo; Zhao, Hui; Wu, Ning


    Metal-organic hybrid particles have great potential in applications such as colloidal assembly, autonomous microrobots, targeted drug delivery, and colloidal emulsifiers. Existing fabrication methods, however, typically suffer from low throughput, high operation cost, and imprecise property control. Here, we report a facile and bulk synthesis platform that makes a wide range of metal-organic colloidal dimers. Both geometric and interfacial anisotropy on the particles can be tuned independently and conveniently, which represents a key advantage of this method. We further investigate the self-propulsion of platinum-polystyrene dimers under perpendicularly applied electric fields. In 1 × 10(-4) M KCl solution, the dimers exhibit both linear and circular motion with the polystyrene lobes facing toward the moving direction, due to the induced-charge electroosmotic flow surrounding the metal-coated lobes. Surprisingly, in deionized water, the same dimers move in an opposite direction, i.e., the metallic lobes face the forward direction. This is because of the impact of another type of electrokinetic flow: the electrohydrodynamic flow arising from the induced charges on the conducting substrate. The competition between the electrohydrodynamic flow along the substrate and the induced-charge electroosmotic flow along the metallic lobe dictates the propulsion direction of hybrid dimers under electric fields. Our synthetic approach will provide potential opportunities to study the combined impacts of the geometric and interfacial anisotropy on the propulsion, assembly, and other applications of anisotropic particles.

  7. Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions (United States)

    Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.


    Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.

  8. Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth-moon L1 (United States)

    Sarver-Verhey, Timothy R.; Kerslake, Thomas W.; Rawlin, Vincent K.; Falck, Robert D.; Dudzinski, Leonard J.; Oleson, Steven R.


    A design study for a cargo transfer vehicle using solar electric propulsion was performed for NASA's Revolutionary Aerospace Systems Concepts program. Targeted for 2016, the solar electric propulsion (SEP) transfer vehicle is required to deliver a propellant supply module with a mass of approximately 36 metric tons from Low Earth Orbit to the first Earth-Moon libration point (LL1) within 270 days. Following an examination of propulsion and power technology options, a SEP transfer vehicle design was selected that incorporated large-area (approx. 2700 sq m) thin film solar arrays and a clustered engine configuration of eight 50 kW gridded ion thrusters mounted on an articulated boom. Refinement of the SEP vehicle design was performed iteratively to properly estimate the required xenon propellant load for the out-bound orbit transfer. The SEP vehicle performance, including the xenon propellant estimation, was verified via the SNAP trajectory code. Further efforts are underway to extend this system model to other orbit transfer missions.

  9. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid (United States)

    Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick


    The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.

  10. The Ion Propulsion System for the Asteroid Redirect Robotic Mission (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael


    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  11. Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion (United States)

    Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert


    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.

  12. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.


    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  13. New energy-efficient method of electrical propulsion in air by using charged microdroplets (United States)

    Lukyanchikov, Gennadii S.; Khaziev, Timur R.


    A novel type of thrust system is proposed that operates in air and consists of an emitter of charged droplets and a multigrid electrode system in which the stream of these droplets flows in a constant longitudinal electric field, thereby initiating an air flow. The reactive force caused by the air flow and the efficiency with which the electric current energy is converted into the energy of this flow are estimated. It is shown that if a battery of hydrogen fuel elements is used as a power supply, this method of electrical propulsion makes it possible to reduce energy expenditure more than fourfold as compared to existing propeller vehicles. A feasible scheme is presented for a vehicle using such an engine.

  14. Control Algorithms of Propulsion Unit with Induction Motors for Electric Vehicle

    Directory of Open Access Journals (Sweden)



    Full Text Available The article deals with the research of algorithms for controlling electronic differential and differential lock of an electrically driven vehicle. The simulation part addresses the development of algorithms suitable for the implementation into a real system of a road vehicle. The algorithms are then implemented into a vehicle, a propulsion unit of which is consists of two separate electric drives with induction motors fed by voltage inverters with own control units using advanced signal processors. Communication among control units is provided by means of SPI interface. A method of vector control is used for the control of induction motors. The developed algorithms are experimentally verified for correct function in a laboratory using a roll test stand and while driving an electrically driven vehicle on the road.

  15. Solar-electric-propulsion cargo vehicles for split/sprint Mars mission (United States)

    Callaghan, Christopher E.; Crowe, Michael D.; Swis, Matthew J.; Mickney, Marcus R.; Montgomery, C. Keith; Walters, Robert; Thoden, Scott


    In support of the proposed exploration of Mars, an unmanned cargo ferry SEMM1 (Solar Electric Mars Mission) was designed. The vehicle is based on solar electric propulsion, and required to transport a cargo of 61,000 kg. The trajectory is a combination of spirals; first, out from LEO, then around the sun, then spiral down to low Mars orbit. The spacecraft produces 3.03 MWe power using photovoltaic flexible blanket arrays. Ion thrusters using argon as a propellant were selected to drive the ship, providing about 60 Newtons of thrust in low Earth orbit. The configuration is based on two long truss beams to which the 24 individual, self-deployable, solar arrays are attached. The main body module supports the two beams and houses the computers, electrical, and control equipment. The thruster module is attached to the rear of the main body, and the cargo to the front.

  16. Study and review of permanent magnets for electric vehicle propulsion motors (United States)

    Strnat, K. J.


    A study of permanent magnets (PM) was performed in support of the DOE/NASA electric and hybrid vehicle program. PM requirements for electric propulsion motors are analyzed, design principles and relevant properties of magnets are discussed. Available PM types are reviewed. For the needed high-grade magnets, design data, commercial varieties and sources are tabulated, based on a survey of vendors. Economic factors such as raw material availability, production capability and cost are analyzed, especially for cobalt and the rare earths. Extruded Mn-Al-C magnets from Japan were experimentally characterized. Dynamic magnetic data for the range -50 deg to +150 deg C and some mechanical properties are reported. The state of development of the important PM material families is reviewed. Feasible improvements or new developments of magnets for electric vehicle motors are identified.

  17. Computational Analysis of a Wing Designed for the X-57 Distributed Electric Propulsion Aircraft (United States)

    Deere, Karen A.; Viken, Jeffrey K.; Viken, Sally A.; Carter, Melissa B.; Wiese, Michael R.; Farr, Norma L.


    A computational study of the wing for the distributed electric propulsion X-57 Maxwell airplane configuration at cruise and takeoff/landing conditions was completed. Two unstructured-mesh, Navier-Stokes computational fluid dynamics methods, FUN3D and USM3D, were used to predict the wing performance. The goal of the X-57 wing and distributed electric propulsion system design was to meet or exceed the required lift coefficient 3.95 for a stall speed of 58 knots, with a cruise speed of 150 knots at an altitude of 8,000 ft. The X-57 Maxwell airplane was designed with a small, high aspect ratio cruise wing that was designed for a high cruise lift coefficient (0.75) at angle of attack of 0deg. The cruise propulsors at the wingtip rotate counter to the wingtip vortex and reduce induced drag by 7.5 percent at an angle of attack of 0.6deg. The unblown maximum lift coefficient of the high-lift wing (with the 30deg flap setting) is 2.439. The stall speed goal performance metric was confirmed with a blown wing computed effective lift coefficient of 4.202. The lift augmentation from the high-lift, distributed electric propulsion system is 1.7. The predicted cruise wing drag coefficient of 0.02191 is 0.00076 above the drag allotted for the wing in the original estimate. However, the predicted drag overage for the wing would only use 10.1 percent of the original estimated drag margin, which is 0.00749.

  18. Halley comet rendezvous with a SEPS vehicle. [Solar Electric Propulsion System (United States)

    Burrows, R. R.


    An analysis of the performance of a Solar Electric Propulsion System (SEPS) vehicle rendezvousing with Halley's comet just prior to its Frebruary 1986 perihelion is described. A calculus of variations mathematical formulation is used to maximize Halley arrival mass while giving effect to the influence of solar array size, launch date, arrival date, and insertion hyperbolic excess velocity. Numerical sensitivity relief, thrust system modeling, trajectory characteristics and ion engine operating conditions are discussed and illustrated. Results indicate a rendezvous is feasible with a minimal advance in solar cell and ion engine technology.

  19. Solar Electric Propulsion (SEP) Systems for SMD Mission Needs. Technology Infusion Study. (United States)

    Anderson, David


    Two presentations for SBAG and OPAG meetings: 1) Solar Electric Propulsion Systems for SMD Missions, and 2) Technology Infusion Study - Draft Findings Recommendation Small Bodies Assessment Group (SBAG) meeting is January 9th in Washington D.C., and the Outer Planets Assessment Group (OPAG) meeting is January 23-14 in Tucson, AZ. NASA sponsors these assessment groups, through the NRC, for the science community to assess and provide advice. These talks are to provide a status of 2 NASA activities, and to seek feedback from the respective science communities.

  20. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight (United States)

    Bussard, Robert W.; Jameson, Lorin W.


    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  1. Electric Propulsion System for Constellation Deployment and Orbit Control of Minisats (United States)

    Bianco, P.; de Rocco, L.; Lovera, M.


    The late technology developments and the demand for low-cost space missions have raised the interest in small satellites and in their potential use as parts of satellite formations as well as building units of satellite constellations. Formation flying of small satellites can be used to bring in-orbit spares for failed payloads on larger satellites as well as to replace large satellites at all by flying the mission on more small satellites, each carrying a single payload. Small satellites can be used in constellations for scientific missions (e.g. remote sensing) as well as for commercial purposes (e.g. data relay). Yet, "small satellite" doesn't necessarily mean "cheap satellite": cost reduction must be enforced into the space mission design since the very beginning of it, at system level. This usually implies seeking for trade-offs on most expensive system items for a small sat. Among these, we surely have the launch and the onboard propulsion system for orbital manoeuvres and station keeping: the stricter the requirements, the higher the costs. And, when dealing with satellite constellations or formations, orbital requirements can be quite challenging. The system designer is faced with the dilemma on whether to buy a relatively expensive dedicated launch or to have a highly cost-impactive autonomous onboard propulsion system that should perform orbit transfers as well. The present paper, which is an up-to-date version of the one presented at IAF-99, introduces a system based on FEEP (Field Emission Electric Propulsion) technology, featuring low thrust plug-on propulsion units. Thanks to the self-contained concept of FEEP thrusters and to the plug-on feature of the whole system, a very low cost-impactive onboard propulsion system can be implemented in order to serve for both orbital manoeuvres (constellation / formation deployment, orbit rising) and orbit maintenance (drag compensation, station keeping relative to other satellites). Most convenient strategies to

  2. High-Power Helicon Double Gun Thruster (United States)

    Murakami, Nao

    While chemical propulsion is necessary to launch a spacecraft from a planetary surface into space, electric propulsion has the potential to provide significant cost savings for the orbital transfer of payloads between planets. Due to extended wave particle interactions, a plasma thruster that can operate in the 100 kW to several MW power regime can only be attained by increasing the size of the thruster, or by using an array of plasma thrusters. The High-Power Helicon (HPH) Double Gun thruster experiment examines whether firing two helicon thrusters in parallel produces an exhaust velocity higher than the exhaust velocity of a single thruster. The scaling law that relates the downstream plasma velocity with the number of helicon antennae is derived, and compared with the experimental result. In conjunction with data analysis, two digital filtering algorithms are developed to filter out the noise from helicon antennae. The scaling law states that the downstream plasma velocity is proportional to square root of the number of helicon antennae, which is in agreement with the experimental result.

  3. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle (United States)

    Harmon, Frederick G.


    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid-electric

  4. DEMOCRITOS Demonstrators for Realization of Nuclear Electric Propulsion of the European Roadmaps MEGAHIT & DiPoP


    Jansen, Frank; Bauer, Waldemar; Masson, Frederic; RUAULT, Jean-Marc; Worms, Jean-Claude; Detsis, Emmanouil; Lassoudiere, Francois; Granjon, Richard; Gaia, Enrico; Tosi, Martia Cristina; Semenkin, Alexander; Tinsley, Tim; Hodson, Zara; Koppel, Christophe


    The European Commission Horizon 2020 funded DEMOCRITOS project (2015-2017) will be primary focused to prepare preliminary design of the ground, core and space demonstrators and their test benches for the mega-watt class nuclear electric space propulsion INPPS flagship (International Nuclear Power and Propulsion System). In addition programmatic, organizational and funding aspects for international cooperation related to INPPS realization are sketched. The new project includes partners from Eu...

  5. Analysis of Electric Propulsion Performance on Submersible with Motor DC, Supply Power 10260AH at Voltage 115VDC

    Directory of Open Access Journals (Sweden)

    Indra Ranu Kusuma


    Full Text Available Electric propulsion is the ship system using propulsion motor to replace performance of main engine. The application of diesel engine as propulsion system have some problems and weaknesses such as diesel engine unability to operate when submersible vessel is operating under sea. To overcome that problems in submersible vessel, alternative solution of ship propulsion is required. DC Motor can be used as this alternative solution. Submersible vessel use electric propulsion system with DC Motor because DC Motor has advantages of easy rotation setting and does not cause noise when submersible vessel is diving. This bachelor thesis will study the application of DC Motor as an electric propulsion system on submersible vessel with length 59,57 m in series and parallel circuit by simulation using MATLAB software. The simulation data obtained are rotation and torque of DC Motor. From these simulation, it can be concluded that parallel circuit rotation is greater than series circuit rotation. It caused the greater speed and lower power in parallel circuit. 

  6. NASA's Electric Sail Propulsion System Investigations over the Past Three Years (United States)

    Wiegmann, Bruce M.


    Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail for future scientific missions of exploration. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two year follow-on Phase II NIAC award. This paper documents the findings from this three year investigation. An Electric sail propulsion system is a propellant-less and extremely fast propulsion system that takes advantage of the ions that are present in the solar wind to provide very rapid transit speeds whether to deep space or to the inner solar system. Scientific spacecraft could arrive to Pluto in 5 years, to the boundary of the solar system in ten to twelve years vs. thirty five plus years it took the Voyager spacecraft. The team's recent focused activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers/tethers to enable successful deployment of multiple, multi km length bare tethers, 3) Determining the different missions that can be captured from this revolutionary propulsion system 4) Conceptual designs of spacecraft to reach various destinations whether to the edge of the solar system, or as Heliophysics sentinels around the sun, or to trips to examine a multitude of asteroids These above activities, once demonstrated analytically, will require a technology demonstration mission (2021 to 2023) to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) could be given the go-ahead. The proposed demonstration mission will require that a small spacecraft must first travel to cis-lunar space as the Electric Sail must be

  7. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle (United States)

    Kohout, Lisa L.; Schmitz, Paul C.


    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  8. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.


    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  9. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion (United States)

    Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.


    The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

  10. Testing of a sodium/nickel chloride (ZEBRA) battery for electric propulsion of ships and vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kluiters, E.C.; Schmal, D.; Veen, W.R. ter [TNO Inst. of Environmental Sciences, Energy Research and Process Innovation, Apeldoorn (Netherlands); Posthumus, K.J.C.M. [Royal Netherlands Navy, The Haag (Netherlands). Dept. of Naval Architecture and Marine Engineering


    One of the promising future batteries for electric propulsion of vehicles and ships is the sodium/nickel chloride or ZEBRA (Zero Emission Battery Research Activities) battery. Despite some disadvantages with respect to the high temperature, the advantages with respect to specific energy and energy density are such that, especially in applications where the battery is used on a more or less continuous basis (e.g., in delivery vans and taxies) it is an interesting candidate battery. Another interesting application is on board of ships, like submarines or future electrical surface ships with electric propulsion. In 1995 a 2 year feasibility study, including experimental testing of a 10 kW h battery, was completed. This investigated the naval applicability of the sodium/sulphur battery, which is also a high temperature battery. Here the limited, experimentally proven, life-time of the batteries was of about 1.5 years and this made naval application almost impossible. A paper about this study was presented at the 19th International Power Sources Symposium held at Brighton, England, in April 1995. Because of the more or less comparable specifications on specific energy and the more promising results of the life-time and field tests with sodium/nickel chloride batteries, a ZEBRA battery from AEG Anglo Batteries has been tested for naval applications. This was done by simulating the charge and discharge as it occurs in practice for the applications investigated. With respect to the electrical ship application (investigated for the Royal Netherlands Navy) the power versus time taken from the battery was simulated as well as the charge procedures. The same can be done for the vehicle application: in this case typical drive cycles for a van or taxi are translated to power versus time taken from the battery. The results of the tests for application of the battery in naval ships are very promising. (orig.)

  11. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator (United States)

    Dustin, M. O.


    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  12. A Cost-effective and Emission-aware Power Management System for Ships with Integrated Full Electric Propulsion


    Kanellos, Fotis D.; Anvari-Moghaddam, Amjad; Josep M. Guerrero


    The extensive exploitation of electric power in ships enables the development of more efficient and environmentally friendlier ships, as it allows for a more flexible ship power system operation and configuration. In this paper, an optimal power management method for ship electric power systems comprising integrated full electric propulsion, energy storage and shore power supply facility is proposed. The proposed optimization method is exploiting an interactive approach based on particle swar...

  13. Benefits of Hybrid-Electric Propulsion to Achieve 4x Increase in Cruise Efficiency for a VTOL Aircraft (United States)

    Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.


    Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and

  14. Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing (United States)

    Polzin, Kurt A.; Hill, Carrie S.


    Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are useful for performing measurements in electric space thrusters and various plasma accelerator applications where a time-varying magnetic field is present. Magnetic field probes have proven to be a mainstay in diagnosing plasma thrusters where changes occur rapidly with respect to time, providing the means to measure the magnetic fields produced by time-varying currents and even an indirect measure of the plasma current density through the application of Ampère's law. Examples of applications where this measurement technique has been employed include pulsed plasma thrusters and quasi-steady magnetoplasmadynamic thrusters. The Electric Propulsion Technical Committee (EPTC) of the American Institute of Aeronautics and Astronautics (AIAA) was asked to assemble a Committee on Standards (CoS) for Electric Propulsion Testing. The assembled CoS was tasked with developing Standards and Recommended Practices for various diagnostic techniques used in the evaluation of plasma thrusters. These include measurements that can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. This paper presents a summary of the standard, describing the preferred methods for fabrication, calibration, and usage of inductive magnetic field probes for use in diagnosing plasma thrusters. Inductive magnetic field probes (also called B-dot probes throughout this document) are commonly used in electric propulsion (EP) research and testing to measure unsteady magnetic fields produced by time-varying currents. The B-dot probe is relatively simple in construction, and requires minimal cost, making it a low-cost technique that is readily accessible to most researchers. While relatively simple, the design of a B-dot probe is not trivial and there are many opportunities for errors in

  15. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft (United States)

    Choi, Benjamin B.


    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  16. Electric Propulsion Interactions Code (EPIC): Recent Enhancements and Goals for Future Capabilities (United States)

    Gardner, Barbara M.; Kuharski, Robert A.; Davis, Victoria A.; Ferguson, Dale C.


    The Electric Propulsion Interactions Code (EPIC) is the leading interactive computer tool for assessing the effects of electric thruster plumes on spacecraft subsystems. EPIC, developed by SAIC under the sponsorship of the Space Environments and Effects (SEE) Program at the NASA Marshall Space Flight Center, has three primary modules. One is PlumeTool, which calculates plumes of electrostatic thrusters and Hall-effect thrusters by modeling the primary ion beam as well as elastic scattering and charge-exchange of beam ions with thruster-generated neutrals. ObjectToolkit is a 3-D object definition and spacecraft surface modeling tool developed for use with several SEE Program codes. The main EPIC interface integrates the thruster plume into the 3-D geometry of the spacecraft and calculates interactions and effects of the plume with the spacecraft. Effects modeled include erosion of surfaces due to sputtering, re-deposition of sputtered materials, surface heating, torque on the spacecraft, and changes in surface properties due to erosion and deposition. In support of Prometheus I (JIMO), a number of new capabilities and enhancements were made to existing EPIC models. Enhancements to EPIC include adding the ability to scale and view individual plume components, to import a neutral plume associated with a thruster (to model a grid erosion plume, for example), and to calculate the plume from new initial beam conditions. Unfortunately, changes in program direction have left a number of desired enhancements undone. Variable gridding over a surface and resputtering of deposited materials, including multiple bounces and sticking coefficients, would significantly enhance the erosion/deposition model. Other modifications such as improving the heating model and the PlumeTool neutral plume model, enabling time dependent surface interactions, and including EM1 and optical effects would enable EPIC to better serve the aerospace engineer and electric propulsion systems integrator

  17. Development of High-Power Hall Thruster Power Processing Units at NASA GRC (United States)

    Pinero, Luis R.; Bozak, Karin E.; Santiago, Walter; Scheidegger, Robert J.; Birchenough, Arthur G.


    NASA GRC successfully designed, built and tested four different power processor concepts for high power Hall thrusters. Each design satisfies unique goals including the evaluation of a novel silicon carbide semiconductor technology, validation of innovative circuits to overcome the problems with high input voltage converter design, development of a direct-drive unit to demonstrate potential benefits, or simply identification of lessonslearned from the development of a PPU using a conventional design approach. Any of these designs could be developed further to satisfy NASA's needs for high power electric propulsion in the near future.

  18. Science Plan for the Nuclear Electric Propulsion Space Test Program (NEPSTP) (United States)

    Mauk, B. H.; Bythrow, P. F.; Gatsonis, N. A.; McNutt, R. L., Jr.


    NEPSTP is an unclassified, international space mission sponsored by the Ballistic Missile Defense Organization (BMDO) as a testbed for the development of Nuclear Electric Propulsion (NEP) technologies. The mission will utilize the Russian manufactured Topaz II thermionic nuclear reactor and a variety of advanced experimental electric thrusters from international sources. The NEPSTP Spacecraft will be inserted into a nuclear safe circular orbit, and the electric thrusters will be utilized to drive the spacecraft in a spiral pattern to high earth orbit. This paper gives an overview of the Science Plan for the NEPSTP mission. The science activities discussed incude: (1) Evaluation of the performance of the Topaz II reactor in orbit; (2) Evaluation of the performances and degradations of the electric thrusters; (3) Evaluation of the so-called 'induced environment' around the NEPSTP Spacecraft; and, (4) Science of opportunity consistent with (1), (2), and (3). With regard to the third goal, the environment induced in the vicinity of an NEP driven spacecraft is unique, and its severity may degrade the performances of advanced sensors and some spacecraft subsystems. Thus, NEPSTP has an aggressive program to diagnose induced environment effects and develop predictive understanding of that environment for future systems. The Science Plan includes: (A) The utilization on the spacecraft of suite of science instruments, a science boom, and other spacecraft liens; (B) A data analysis and evaluation plan; (C) Various operational experiments; and, (D) The development of theoretical and empirical models.

  19. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions (United States)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin


    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  20. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator (United States)

    Stenger, F. J.


    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  1. An End-To-End Test of A Simulated Nuclear Electric Propulsion System (United States)

    VanDyke, Melissa; Hrbud, Ivana; Goddfellow, Keith; Rodgers, Stephen L. (Technical Monitor)


    The Safe Affordable Fission Engine (SAFE) test series addresses Phase I Space Fission Systems issues in it particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  2. Modeling, Simulation, and Control of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation (United States)

    Witzberger, Kevin (Inventor); Hojnicki, Jeffery (Inventor); Manzella, David (Inventor)


    Modeling and control software that integrates the complexities of solar array models, a space environment, and an electric propulsion system into a rigid body vehicle simulation and control model is provided. A rigid body vehicle simulation of a solar electric propulsion (SEP) vehicle may be created using at least one solar array model, at least one model of a space environment, and at least one model of a SEP propulsion system. Power availability and thrust profiles may be determined based on the rigid body vehicle simulation as the SEP vehicle transitions from a low Earth orbit (LEO) to a higher orbit or trajectory. The power availability and thrust profiles may be displayed such that a user can use the displayed power availability and thrust profiles to determine design parameters for an SEP vehicle mission.

  3. Mission and system optimization of nuclear electric propulsion vehicles for lunar and Mars missions (United States)

    Gilland, James H.


    The detailed mission and system optimization of low thrust electric propulsion missions is a complex, iterative process involving interaction between orbital mechanics and system performance. Through the use of appropriate approximations, initial system optimization and analysis can be performed for a range of missions. The intent of these calculations is to provide system and mission designers with simple methods to assess system design without requiring access or detailed knowledge of numerical calculus of variations optimizations codes and methods. Approximations for the mission/system optimization of Earth orbital transfer and Mars mission have been derived. Analyses include the variation of thruster efficiency with specific impulse. Optimum specific impulse, payload fraction, and power/payload ratios are calculated. The accuracy of these methods is tested and found to be reasonable for initial scoping studies. Results of optimization for Space Exploration Initiative lunar cargo and Mars missions are presented for a range of power system and thruster options.

  4. Annoyance to Noise Produced by a Distributed Electric Propulsion High-Lift System (United States)

    Rizzi, Stephen A.; Palumbo, Daniel L.; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem


    A psychoacoustic test was performed using simulated sounds from a distributed electric propulsion aircraft concept to help understand factors associated with human annoyance. A design space spanning the number of high-lift leading edge propellers and their relative operating speeds, inclusive of time varying effects associated with motor controller error and atmospheric turbulence, was considered. It was found that the mean annoyance response varies in a statistically significant manner with the number of propellers and with the inclusion of time varying effects, but does not differ significantly with the relative RPM between propellers. An annoyance model was developed, inclusive of confidence intervals, using the noise metrics of loudness, roughness, and tonality as predictors.

  5. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion (United States)

    George, Jeffrey A.


    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  6. Electrical propulsion units based on TOPAZ-type thermionic nuclear power systems for information satellite systems (United States)

    Andreev, Pavel V.; Galkin, Anatoly Ya.; Zhabotinsky, Evgeny E.; Serbin, Victor I.; Zaritzky, Gennady A.


    In the report the principles of nuclear power and propulsion complex (NPPC) construction are presented. NPPC considered can ensure the time of spacecraft transfer to geostationary orbit (GSO) within 1 year under electric power level no less than 40 kW at prolonged nominal mode on GSO for spacecraft loads feeding. The main power and mass and dimension performances of such NPPC are summarized. Analysis of relationship between spacedraft mass, its mission payload and transfer time also and a number of main NPPC parameters is performed. The conclusion is made about considerable promises of the NPPC for creating future satellite multi-purpose systems by using PROTON- and TITAN-class launch vehicles.

  7. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms (United States)

    Irwin, Ryan W.; Tinker, Michael L.


    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  8. Optimization of Brayton Cycle Power Generation for In-Space Electric Propulsion Application (United States)

    Woodcock, Gordon


    A Brayton cycle was analyzed and optimized over the power range 60 - 140 kWe, for application to electric propulsion systems. A gas-cooled reactor heat source with exit temperature 1150 K was assumed. Power generation system specific masses (alpha) from 36 kg/kWe at 60 kWe to 22 kg/kWe at 140 kWe were obtained. These masses do not include the thrust production system, which is predicted to add 6 to 8 kg/kWe. Cycle efficiencies varied from 32% at 60 kWe to 36% at 140 kWe. Cycle minimum temperature, cycle pressure ratio, and heat exchanger design parameters were varied for the optimization. Optimization parameters and methods are described.

  9. Human Exploration of Near-Earth Asteroids via Solar Electric Propulsion (United States)

    Landau, Damon; Strange, N.; Adler, M.; Sherwood, B.; Polk, J.; Brophy, J.


    This poster will present an architecture for human missions to near-Earth asteroids in the mid 2020s using Solar Electric Propulsion (SEP). This concept relies on taking existing, flight-proven technologies from unmanned spaceflight and scaling them up to higher power levels for human spaceflight. When applied to human spaceflight, the robustness of SEP trajectories and the lack of time critical events significantly enhances mission safety for astronauts. This is accomplished by using SEP boost stages to pre-position a Deep Space Vehicle (DSV), supplies, and chemical boost stages in High Earth Orbit (HEO). Pre-placing these elements in HEO for later crew rendezvous avoids having the crew onboard the DSV during the 1-2 year long, low-thrust parts of the trajectory, while still taking advantage of the high fuel efficiency of solar electric propulsion systems. Once these assets are pre-placed in HEO, a lunar flyby is used to drop the perigee of the DSV to the altitude of International Space Station (ISS) orbit. Astronauts are then launched from the ISS to rendezvous with the DSV in an Orion Crew Module (CM) using a chemical boost stage. Once the crew establishes that the DSV is ready for departure from HEO the DSV performs an Earth escape burn with a chemical boost stage. After Earth departure, the crew uses the SEP stage as part of the DSV to rendezvous with a NEO and orbit it for 1-2 months. Following rendezvous, the DSV returns to Earth using the SEP stage and the astronauts depart in the Orion CM for a direct entry. After the crew returns, the unmanned DSV uses the SEP stage to return to HEO over the course of a year where it is refurbished for reuse on a subsequent mission.

  10. COMPASS Final Report: Radioisotope Electric Propulsion (REP) Centaur Orbiter New Frontiers Mission (United States)

    Oleson, Steven R.; McGuire, Melissa L.


    Radioisotope Electric Propulsion (REP) has been shown in past studies to enable missions to outer planetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass Radioisotope Power System (RPS) and light spacecraft (S/C) components. In order to determine the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers (NF) cost cap. The design shows that an orbiter using several long lived (approx.200 kg xenon (Xe) throughput), low power (approx.700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the NF cost cap. Optimal specific impulses (Isp) for the Hall thrusters were found to be around 2000 s with thruster efficiencies over 40 percent. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be used to enhance science and simplify communications. The mission design detailed in this report is a Radioisotope Power System (RPS) powered EP science orbiter to the Centaur Thereus with arrival 10 yr after launch, ending in a 1 yr science mapping mission. Along the trajectory, approximately 1.5 yr into the mission, the REP S/C does a flyby of the Trojan asteroid Tlepolemus. The total (Delta)V of the trajectory is 8.9 km/s. The REP S/C is delivered to orbit on an Atlas 551 class launch vehicle with a Star 48 B solid rocket stage

  11. Comparison between internal combustion engines and simulated electrical propulsion of taxis; Vergleich zwischen verbrennungsmotorischem und simuliertem elektrischen Antrieb von Taxis

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Stefan [Stefan Wallner Energietechnik, Unterhaching (Germany); Thym, Jochen


    The term 'triumphal procession of electromobility' produces an enormous expectation at the end users side, but intensive development work has still to be done. The transition from today's vehicles towards electric propulsion is not to be expected to take place overnight but will start with slot applications. Energietechnik Wallner has analysed the potential of taxis. (orig.)

  12. Testing of a sodium/nickel chloride (ZEBRA) battery for electric propulsion of ships and vehicles (United States)

    Kluiters, Edwin C.; Schmal, Dick; ter Veen, Willem R.; Posthumus, Kees J. C. M.

    One of the promising future batteries for electric propulsion of vehicles and ships is the sodium/nickel chloride or ZEBRA (Zero Emission Battery Research Activities) battery. Despite some disadvantages with respect to the high temperature, the advantages with respect to specific energy and energy density are such that, especially in applications where the battery is used on a more or less continuous basis (e.g., in delivery vans and taxies) it is an interesting candidate battery. Another interesting application is on board of ships, like submarines or future electrical surface ships with electric propulsion. In 1995 a 2 year feasibility study, including experimental testing of a 10 kW h battery, was completed. This investigated the naval applicability of the sodium/sulphur battery, which is also a high temperature battery. Here the limited, experimentally proven, life-time of the batteries of about 1.5 years and this made naval application almost impossible. A paper about this study was presented at the 19th International Power Sources Symposium held at Brighton, England, in April 1995 [R.A.A. Schillemans, C.E. Kluiters, Sodium/sulphur batteries for naval applications, in: A. Attewell, T. Keily (Eds.), Power Sources 15, International Power Sources Symposium Committee, Crowborough UK, 1995. p. 421.]. Because of the more or less comparable specifications on specific energy and the more promising results of the life-time and field tests with sodium/nickel chloride batteries, a ZEBRA battery from AEG Anglo Batteries has been tested for naval applications. This was done by simulating the charge and discharge as it occurs in practice for the applications investigated. With respect to the electrical ship application (investigated for the Royal Netherlands Navy) the power versus time taken from the battery was simulated as well as the charge procedures. The same can be done for the vehicle application: in this case typical drive cycles for a van or taxi are translated to

  13. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment (United States)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.


    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each

  14. Human Missions to Mars Orbit, Phobos, and Mars Surface Using 100-kWe-Class Solar Electric Propulsion (United States)

    Price, Humphrey W.; Woolley, Ryan C.; Strange, Nathan J.; Baker, John D.


    Solar electric propulsion (SEP) tugs in the 100-kWe range, may be utilized to preposition cargo in the Mars system to enable more affordable human missions to Phobos and to the surface of Mars. The SEP tug, a high heritage follow-on to the 50-kWe SEP spacecraft proposed for the Asteroid Redirect Robotic Mission (ARRM), would have the same structure, tankage, electric propulsion components, and avionics as the ARRM version, But with double the number of solar arrays, Hall thrusters, and power processor units (PPUs) and would be accommodated within the same launch envelope defined for ARRM. As a feasibility study, a 950-day human mission to Phobos using a conjunction class trajectory, such as the 2033 opportunity, was developed using two 100-kWe SEP vehicles to preposition a habitat at Phobos and propulsion stages in high Mars orbit (HMO). An architecture concept for a crewed Mars surface lander mission was also developed as a reference to build on the Phobos mission architecture, adding a lander element that could be delivered using chemical propulsion and aerocapture.

  15. A Modular Electric Propulsion System with On-Demand Power Scaling Project (United States)

    National Aeronautics and Space Administration — The Electromagnetic Plasmoid Thruster (EMPT) program demonstrated a next generation propulsion system based on the purely electromagnetic generation and Lorentz...

  16. Experimental investigation into the fault response of superconducting hybrid electric propulsion electrical power system to a DC rail to rail fault (United States)

    Nolan, S.; Jones, C. E.; Munro, R.; Norman, P.; Galloway, S.; Venturumilli, S.; Sheng, J.; Yuan, W.


    Hybrid electric propulsion aircraft are proposed to improve overall aircraft efficiency, enabling future rising demands for air travel to be met. The development of appropriate electrical power systems to provide thrust for the aircraft is a significant challenge due to the much higher required power generation capacity levels and complexity of the aero-electrical power systems (AEPS). The efficiency and weight of the AEPS is critical to ensure that the benefits of hybrid propulsion are not mitigated by the electrical power train. Hence it is proposed that for larger aircraft (~200 passengers) superconducting power systems are used to meet target power densities. Central to the design of the hybrid propulsion AEPS is a robust and reliable electrical protection and fault management system. It is known from previous studies that the choice of protection system may have a significant impact on the overall efficiency of the AEPS. Hence an informed design process which considers the key trades between choice of cable and protection requirements is needed. To date the fault response of a voltage source converter interfaced DC link rail to rail fault in a superconducting power system has only been investigated using simulation models validated by theoretical values from the literature. This paper will present the experimentally obtained fault response for a variety of different types of superconducting tape for a rail to rail DC fault. The paper will then use these as a platform to identify key trades between protection requirements and cable design, providing guidelines to enable future informed decisions to optimise hybrid propulsion electrical power system and protection design.

  17. On parallel hybrid-electric propulsion system for unmanned aerial vehicles (United States)

    Hung, J. Y.; Gonzalez, L. F.


    This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.

  18. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite (United States)

    Voss, Susan S.; Reynolds, Edward L.

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz 11 system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal Year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended.

  19. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions (United States)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide


    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  20. Inductively coupled TI-MPD spacecraft electric propulsion. [thermionic magnetoplasma dynamic thruster design (United States)

    Britt, E. J.; Clark, K. E.; Pawlik, E. V.


    A nuclear electric propulsion concept using a thermionic reactor inductively coupled to a magnetoplasma-dynamic (MPD) accelerator is described and the results of preliminary analyses are presented. In this system, the thermionic generating unit operates continuously at a power level of approximately 0.4 MW, while the MPD thruster operates intermittently at higher voltages and power levels. Energy storage is provided by building up a large current in an inductor. Periodically, the charging current is interrupted and the energy stored in the magnetic field of the inductor is utilized for a short duration thrust pulse. A typical thrust pulse is characterized by a power level of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of approximately 20%. Results of the preliminary analysis show that approximately 85 to 90% of the power available from the thermionic converter array can be delivered to the MPD thruster for a nominal 400 kWe system with an inductive unit suitable for a flight vehicle. Optimized values of the total specific mass of the system including the thermionic reactor, the inductor, and the MPD thruster are estimated in the range of 23 to 24 kg/kWe.

  1. Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System (United States)

    Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan


    The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.

  2. Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion (United States)

    Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.


    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.

  3. Perceived Annoyance to Noise Produced by a Distributed Electric Propulsion High Lift System (United States)

    Palumbo, Dan; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem


    Results of a psychoacoustic test performed to understand the relative annoyance to noise produced by several configurations of a distributed electric propulsion high lift system are given. It is found that the number of propellers in the system is a major factor in annoyance perception. This is an intuitive result as annoyance increases, in general, with frequency, and, the blade passage frequency of the propellers increases with the number of propellers. Additionally, the data indicate that having some variation in the blade passage frequency from propeller-to-propeller is beneficial as it reduces the high tonality generated when all the propellers are spinning in synchrony at the same speed. The propellers can be set to spin at different speeds, but it was found that allowing the motor controllers to drift within 1% of nominal settings produced the best results (lowest overall annoyance). The methodology employed has been demonstrated to be effective in providing timely feedback to designers in the early stages of design development.

  4. Electric-field-induced assembly and propulsion of chiral colloidal clusters. (United States)

    Ma, Fuduo; Wang, Sijia; Wu, David T; Wu, Ning


    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport.

  5. A Cost-effective and Emission-aware Power Management System for Ships with Integrated Full Electric Propulsion

    DEFF Research Database (Denmark)

    Kanellos, Fotis D.; Anvari-Moghaddam, Amjad; Guerrero, Josep M.


    comprising integrated full electric propulsion, energy storage and shore power supply facility is proposed. The proposed optimization method is exploiting an interactive approach based on particle swarm optimization (PSO) method and a fuzzy mechanism to improve the computational efficiency of the algorithm....... The proposed fuzzy-based particle swarm optimization (FPSO) algorithm aims at minimizing the operation cost, limiting the greenhouse gas (GHG) emissions and satisfying the technical and operational constraints of the ship....

  6. Hybrid-Electric Aircraft TOGW Development Tool with Empirically-Based Airframe and Physics-Based Hybrid Propulsion System Component Analysis Project (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development. This Phase I SBIR proposal creates a...

  7. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program, Program Summary and References

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, G.; Rothstein, A.J.


    This is one of twenty-one volumes sumarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume discusses the background to the General Electric program, and summarizes the various direct-air-cycle nuclear test assemblies and power plants that were developed. Because of the requirements of high performance, low weight, and small size, vast improvements in existing technology were required to meet the flight objectives. The technological progress achieved during the program is also summarized. The last appendix contains a compilation of the abstracts, tables of contents, and reference lists of the other twenty volumes.

  8. High Power Electronics (United States)

    Pendharker, Sameer

    High Power Electronics Future Trends: New process, circuit and packaging technologies over the last 5 years have led to significant innovation and technological developments in high power electronics. In this topic, the trends and performance improvements achieved in the industry will be discussed with focus on gallium-nitride (GaN) and silicon carbide (SiC). Both GaN and SiC technologies have been around for many years but have seen limited adoption and proliferation in high power systems. With the improved transistor performance, power conversion efficiencies and densities previously unrealizable are now available leading to new applications and new system. Trends in these technologies will also be reviewed and remaining challenges to overcome before true mass market adoption can be expected.

  9. Flight times to the heliopause using a combination of solar and radioisotope electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ohndorf, Andreas [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany); Dachwald, Bernd [FH Univ. of Applied Sciences, Aachen (Germany); Seboldt, Wolfgang [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany); Loeb, Horst W.; Schartner, Karl-Heinz [Giessen Univ. (Germany)


    We investigate the interplanetary flight of a low-thrust space probe to the heliopause, located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of ballistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol, using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks' parameter set. Based on a parameter space study, in which the number of thrust units, the unit's specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km{sup 2}/s{sup 2}. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years, which is below the set transfer-time limit. However, compared to the 27.5-year transfer

  10. High Power Vanadate lasers

    CSIR Research Space (South Africa)

    Strauss, HJ


    Full Text Available This presentation aims at the following: to develop new techniques to mount laser crystals; compare the laser properties of two equally doped, high power Nd:YVO4 and Nd: GdVO4 lasers; build a 1um vanadate laser with average output power exceeding...

  11. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network. (United States)

    Harmon, Frederick G; Frank, Andrew A; Joshi, Sanjay S


    A Simulink model, a propulsion energy optimization algorithm, and a CMAC controller were developed for a small parallel hybrid-electric unmanned aerial vehicle (UAV). The hybrid-electric UAV is intended for military, homeland security, and disaster-monitoring missions involving intelligence, surveillance, and reconnaissance (ISR). The Simulink model is a forward-facing simulation program used to test different control strategies. The flexible energy optimization algorithm for the propulsion system allows relative importance to be assigned between the use of gasoline, electricity, and recharging. A cerebellar model arithmetic computer (CMAC) neural network approximates the energy optimization results and is used to control the parallel hybrid-electric propulsion system. The hybrid-electric UAV with the CMAC controller uses 67.3% less energy than a two-stroke gasoline-powered UAV during a 1-h ISR mission and 37.8% less energy during a longer 3-h ISR mission.

  12. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review (United States)

    Kurtz, D.; Roan, V.


    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  13. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni


    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  14. Additional Mission Applications for NASA's 13.3-kW Ion Propulsion System (United States)

    Snyder, John Steven; Manzella, David; Lisman, Doug; Lock, Robert E.; Nicholas, Austin; Woolley, Ryan


    NASA's Space Technology Mission Directorate has been recently developing critical technologies for high-power solar electric propulsion (SEP), including large deployable solar array structures and high-power electric propulsion components. An ion propulsion system based on these developments has been considered for many SEP technology demonstration missions, including the Asteroid Redirect Robotic Mission (ARRM) concept. These studies and the highpower SEP technology developments have generated excitement within NASA about the use of the ARRM ion propulsion system design for other types of potential missions. One application of interest is for Mars missions, especially with the types of orbiters now under consideration for flights in the early 2020's to replace the aging Mars Reconnaissance Orbiter. High-power SEP can deliver large payloads to Mars with many additional capabilities, including large orbital plane changes and roundtrip missions, compared to chemically-propelled spacecraft. Another application for high-power SEP is for exo-planet observation missions, where a large starshade spacecraft would need to be repositioned with respect to its companion telescope relatively frequently and rapidly. SEP is an enabling technology for the ambitious science goals of these types of missions. This paper will discuss the benefits of high-power SEP for these concepts based on the STMD technologies now under development.

  15. Plasma-Surface Interactions in Hollow Cathode Discharges for Electric Propulsion (United States)

    Capece, Angela Maria

    Electric thrusters generate high exhaust velocities and can achieve specific impulses in excess of 1000 s. The low thrust generation and high specific impulse make electric propulsion ideal for interplanetary missions, spacecraft station keeping, and orbit raising maneuvers. Consequently, these devices have been used on a variety of space missions including Deep Space 1, Dawn, and hundreds of commercial spacecraft in Earth orbit. In order to provide the required total impulses, thruster burn time can often exceed 10,000 hours, making thruster lifetime essential. One of the main life-limiting components on ion engines is the hollow cathode, which serves as the electron source for ionization of the xenon propellant gas. Reactive contaminants such as oxygen can modify the cathode surface morphology and degrade the electron emission properties. Hollow cathodes that operate with reactive impurities in the propellant will experience higher operating temperatures, which increase evaporation of the emission materials and reduce cathode life. A deeper understanding of the mechanisms initiating cathode failure will improve thruster operation, increase lifetime, and ultimately reduce cost. A significant amount of work has been done previously to understand the effects of oxygen poisoning on vacuum cathodes; however, the xenon plasma adds complexity, and its role during cathode poisoning is not completely understood. The work presented here represents the first attempt at understanding how oxygen impurities in the xenon discharge plasma alter the emitter surface and affect operation of a 4:1:1 BaO-CaO-Al2O3 hollow cathode. A combination of experimentation and modeling was used to investigate how oxygen impurities in the discharge plasma alter the emitter surface and reduce the electron emission capability. The experimental effort involved operating a 4:1:1 hollow cathode at various conditions with oxygen impurities in the xenon flow. Since direct measurements of the emitter

  16. Characterization of the near-term electric vehicle (ETV-1) breadboard propulsion system over the SAE J227a driving schedule D (United States)

    Sargent, N. B.; Dustin, M. O.


    The electric test vehicle one (ETV-1) was built from the ground up with present state of the art technology. Two vehicles were built and are presently being evaluated by NASA's Jet Propulsion Laboratory (JPL). A duplicate set of propulsion system components was built, mounted on a breadboard, and delivered to NASA's Lewis Research Center for testing on the road load simulator (RLS). Driving cycle tests completed on the system are described.

  17. High-power electronics

    CERN Document Server

    Kapitsa, Petr Leonidovich


    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  18. In-Space Propulsion (346620) Technology Project (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  19. High power coaxial ubitron (United States)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  20. Reliability Estimating Procedures for Electric and Thermochemical Propulsion Systems. Volume 2 (United States)


    0981107 996118 994560 0.,5691PRESS. TINE.? ? 0 A-18 COMPONENT CODE? (ZZ= Edo ) I HLTV (ED 743800 .9,2625 0999085 259.907* .46*PTI wa? t 0 CBNPINENt CODE...Society of Mechanical Engineers (ASME) "Earth Orbital Mission Requirements for Secondary Pro- pulsion Systems and Their Impact on Colloid Systems...Conference, Cleveland, Ohio, June 1968. "Pulsed Plasma Microthruster Propulsion System for Synchronous Orbit Satellite, " W. J. Guman and D. M. Nathanson

  1. Resonant High Power Combiners

    CERN Document Server

    Langlois, Michel; Peillex-Delphe, Guy


    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  2. Additive Manufacturing of Aerospace Propulsion Components (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert


    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  3. Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion (United States)

    Witzberger, Kevin E.; Manzella, David


    Power limited, low-thrust trajectories were assessed for missions to Jupiter, Saturn, and Neptune utilizing a single Venus Gravity Assist (VGA) and a primary propulsion system based on either a 3-kW high voltage Hall thruster, of the type being developed by the NASA In-Space Propulsion Technology Program, or an 8-kW variant of this thruster. These Hall thrusters operate with specific impulses below 3,000 seconds. A trade study was conducted to examine mission parameters that include: net delivered mass (NDM), beginning-of-life (BOL) solar array power, heliocentric transfer time, required launch vehicle, number of operating thrusters, and throttle profile. The top performing spacecraft configuration was defined to be the one that delivered the highest mass for a range of transfer times. In order to evaluate the potential future benefit of using next generation Hall thrusters as the primary propulsion system, comparisons were made with the advanced state-of-the-art (ASOA), 7-kW, 4,100 second NASA's Evolutionary Xenon Thruster (NEXT) for the same mission scenarios. For the BOL array powers considered in this study (less than 30 kW), the results show that the performance of the Hall thrusters, relative to NEXT, is largely dependant on the performance capability of the launch vehicle, and that at least a 10 percent performance gain, equating to at least an additional 200 kg dry mass at each target planet, is achieved over the higher specific impulse NEXT when launched on an Atlas 551.

  4. Fast sol-gel synthesis of LiFePO{sub 4}/C for high power lithium-ion batteries for hybrid electric vehicle application

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina [University of Bologna, Department of Metal Science, Electrochemistry and Chemical Techniques, Via San Donato 15, 40127 Bologna (Italy)


    LiFePO{sub 4}/C of high purity grade was successfully synthesized by microwave accelerated sol-gel synthesis and showed excellent electrochemical performance in terms of specific capacity and stability. This cathode material was characterized in battery configuration with a graphite counter electrode by USABC-DOE tests for power-assist hybrid electric vehicle. It yielded a non-conventional Ragone plot that represents complexity of battery functioning in power-assist HEV and shows that the pulse power capability and available energy of such a battery surpasses the DOE goal for such an application. (author)

  5. Initial Validation of Robotic Operations for In-Space Assembly of a Large Solar Electric Propulsion Transport Vehicle (United States)

    Komendera, Erik E.; Dorsey, John T.


    Developing a capability for the assembly of large space structures has the potential to increase the capabilities and performance of future space missions and spacecraft while reducing their cost. One such application is a megawatt-class solar electric propulsion (SEP) tug, representing a critical transportation ability for the NASA lunar, Mars, and solar system exploration missions. A series of robotic assembly experiments were recently completed at Langley Research Center (LaRC) that demonstrate most of the assembly steps for the SEP tug concept. The assembly experiments used a core set of robotic capabilities: long-reach manipulation and dexterous manipulation. This paper describes cross-cutting capabilities and technologies for in-space assembly (ISA), applies the ISA approach to a SEP tug, describes the design and development of two assembly demonstration concepts, and summarizes results of two sets of assembly experiments that validate the SEP tug assembly steps.

  6. High power evaluation of X-band high power loads

    CERN Document Server

    Matsumoto, Shuji; Syratchev, Igor; Riddone, Germana; Wuensch, Walter


    Several types of X-band high power loads developed for several tens of MW range were designed, fabricated and used for high power tests at X-band facility of KEK. Some of them have been used for many years and few units showed possible deterioration of RF performance. Recently revised-design loads were made by CERN and the high power evaluation was performed at KEK. In this paper, the main requirements are recalled, together with the design features. The high power test results are analysed and presented

  7. Physical and electrical properties of induced high-k ZrHfO crystallization with ZrN cap by high power impulse magnetron sputtering for metal-gate metal-insulator-semiconductor structures (United States)

    Tsai, Jung-Ruey; Juan, Pi-Chun; Lin, Cheng-Li; Lin, Guo-Cheng


    Metal-gate TiN/ZrN/ZrHfO/p-Si metal-insulator-semiconductor (MIS) structures have been fabricated in this work. The physical and electrical properties were characterized. The crystallization of high-k ZrHfO thin-film is induced by high power impulse magnetron sputtering (HIPIMS) during the deposition of ZrN capping layer. The binding energies and depth profiles were investigated by X-ray photoelectron spectroscopy (XPS). It is found that Zr and Hf out-diffusion from high-k dielectric in samples with HIPIMS is lesser than those in samples with the conventional DC magnetron sputtering (DCMS). The dielectric constant which strongly relates to the tetragonal phase becomes higher and the flatband voltage shift shows smaller by using the HIPIMS method than by the conventional DCMS. The cation and anion vacancies have been investigated by the defect reaction model.

  8. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study (United States)

    van Wynsberghe, Erinn; Turak, Ayse


    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  9. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers (United States)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.


    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i


    Directory of Open Access Journals (Sweden)



    Full Text Available For the next generation, conventional weapon will touch the best performance limits and will became more and more what in what more an important part plans of improvement systems of weapon to the future. Physical laws that govern electromagnetic propulsion of guns, enabling them higher speeds than those of conventional arms projectiles. This is substantially benefit electromagnetic weapons - using electricity as energy for an lectromagnetic weapons.



    Jansen, Frank


    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  12. The Future of Spacecraft Nuclear Propulsion (United States)

    Jansen, F.


    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  13. The effect of technology advancements on the comparative advantages of electric versus chemical propulsion for a large cargo orbit transfer vehicle (United States)

    Rehder, J. J.; Wurster, K. E.


    Techniques for sizing electrically or chemically propelled orbit transfer vehicles and analyzing fleet requirements are used in a comparative analysis of the two concepts for various levels of traffic to geosynchronous orbit. The vehicle masses, fuel requirements, and fleet sizes are determined and translated into launch vehicle payload requirements. Technology projections beyond normal growth are made and their effect on the comparative advantages of the concepts is determined. A preliminary cost analysis indicates that although electric propulsion greatly reduces launch vehicle requirements substantial improvements in the cost and reusability of power systems must occur to make an electrically propelled vehicle competitive.

  14. Self-propulsion of a planar electric or magnetic microbot immersed in a polar viscous fluid. (United States)

    Felderhof, B U


    A planar sheet immersed in an electrically polar liquid like water can propel itself by means of a plane wave charge density propagating in the sheet. The corresponding running electric wave polarizes the fluid and causes an electrical torque density to act on the fluid. The sheet is convected by the fluid motion resulting from the conversion of rotational particle motion, generated by the torque density, into translational fluid motion by the mechanism of friction and spin diffusion. Similarly, a planar sheet immersed in a magnetic ferrofluid can propel itself by means of a plane wave current density in the sheet and the torque density acting on the fluid corresponding to the running wave magnetic field and magnetization. The effect is studied on the basis of the micropolar fluid equations of motion and Maxwell's equations of electrostatics or magnetostatics, respectively. An analytic expression is derived for the velocity of the sheet by perturbation theory to second order in powers of the amplitude of the driving charge or current density. Under the assumption that the equilibrium magnetic equation of state may be used in linearized form and that higher harmonics than the first may be neglected, a set of self-consistent integral equations is derived which can be solved numerically by iteration. In typical situations the second-order perturbation theory turns out to be quite accurate. © 2011 American Physical Society

  15. An Analysis of Transient Overvoltages during the Energization of Electric Ship Propulsion Systems. (United States)

    Brenna, Morris; Foiadelli, Federica; Zaninelli, Dario


    This paper addresses the resonance phenomena that can occur in an isolated distribution system during transient events such as repeated energizations or power converter switching. In particular, the aim of this study is to analyze the energization of an onboard radial distribution system installed on an electric ship and to determine how the various leakage parameters that can cause resonance problems such as high peak overvoltages when the circuit breaker is closed are relevant. The paper presents a detailed model of whole distribution system, which is validated using infield measurements that refer to a real case in which these events damaged the ships transformers, causing it to be removed from duty.

  16. The QED engine - Fusion-electric propulsion for Cis-Oort/Quasi-Interstellar (QIS) flight (United States)

    Bussard, Robert W.; Jameson, Lorin W.; Froning, H. D., Jr.


    A summary is presented of QED fusion-direct-electric engine systems, their features, and performance ranges. The principles and characteristics of inertial-electrostatic-fusion (IEF) power source systems are then reviewed, and their application to the diluted-fusion-product (DFP) engine concept for QIS missions is discussed. Particular attention is given to vehicle performance over a range of very high specific impulses and to specifications of a typical candidate DFP/IEF engine and a single-stage vehicle for rapid flight to 550 AU.

  17. Design and performance of an arcjet nuclear electric propulsion system for a mid-1990's reference mission (United States)

    Deininger, William D.; Vondra, Robert J.


    The design and performance of an arcjet nuclear-electric-propulsion spacecraft, suitable for use in the Space Nuclear Power System (SNPS) reference mission, are outlined. The vehicle design was based on a 30-kW ammonia arcjet system operating at an Isp of 1050 s and an efficiency of 45 percent. The arcjet/gimbal system, power-processing unit, and propellant-feed system are described. A 100-kWe SNPS was assumed, and the spacecraft mass was baselined at 5250 kg (excluding the propellant-feed system). A radiation/arcjet efflux diagnostics package was included in the performance analysis. This spacecraft, assuming a Shuttle launch from KSC, can perform a 50-deg inclination change and reach a final orbit of 35,860 km with a 120-d trip time providing a 4-mo active load for the SNPS. Alternatively, a Titan IV launch would provide a mass margin of 120 kg to a 10,000-km, 58-deg final orbit in 74 d. This spacecraft meets the reference-mission constraint of low developmental risk, and is scalable to power levels projected for future space platforms.

  18. Propulsion Laboratory (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  19. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    Energy Technology Data Exchange (ETDEWEB)


    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  20. High-performance batteries for stationary energy storage and electric-vehicle propulsion. Progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)



    Research, development, and management activities of the program on lithium--aluminum/metal sulfide batteries during April--June 1977 are described. These batteries are being developed for electric-vehicle propulsion and stationary energy storage. The present cells, which operate at 400--450/sup 0/C, are of a vertically oriented, prismatic design with a central positive electrode of FeS or FeS/sub 2/, two facing negative electrodes of lithium--aluminum alloy, and an electrolyte of molten LiCl--KCl. Testing and evaluation of industrially fabricated cells is continuing. Li--Al/FeS and Li--Al/FeS/sub 2/ cells from Eagle--Picher Industries and from Gould Inc. were tested. These tests provided information on the effects of design modifications and alternative materials for cells. Improved electrode and cell designs are being developed and tested, and the more promising designs are incorporated into the industrially fabricated cells. Among the concepts receiving major attention are carbon-bonded positive electrodes, scaled-up designs of stationary energy storage cells, additives to extend electrode lifetime, alternative electrode separators, and pellet-grid electrodes. Materials development efforts included the development of a lightweight electrical feedthrough; studies of various current-collector designs; investigation of powder separators; wettability and corrosion tests of materials for cell components; and postoperative examinations of cells. Cell chemistry studies were concerned with discharge mechanisms of FeS electrodes and with other transition-metal sulfides as positive electrode materials. Voltammetric studies were conducted to investigate the reversibility of the FeS/sub 2/ electrode. The use of calcium and magnesium alloys for the negative electrode in advanced battery systems were investigated. 8 figures, 12 tables.

  1. Advanced Capacitors for High-Power Applications Project (United States)

    National Aeronautics and Space Administration — As the consumer and industrial requirements for compact, high-power-density, electrical power systems grow substantially over the next decade; there will be a...

  2. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)


    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  3. An Analysis of Transient Overvoltages during the Energization of Electric Ship Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Morris Brenna


    Full Text Available This paper addresses the resonance phenomena that can occur in an isolated distribution system during transient events such as repeated energizations or power converter switching. In particular, the aim of this study is to analyze the energization of an onboard radial distribution system installed on an electric ship and to determine how the various leakage parameters that can cause resonance problems such as high peak overvoltages when the circuit breaker is closed are relevant. The paper presents a detailed model of whole distribution system, which is validated using infield measurements that refer to a real case in which these events damaged the ships transformers, causing it to be removed from duty.

  4. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)


    This is the first annual report of progress achieved under ANL Contract 31-109-38-4248. It covers the report period from 15 March 1978 to 15 August 1978. The nickel electrode development program is directed at the optimization of the electrical performance, specifically, in terms of increased cycle life. The work concentrated upon both the development of pilot plant facilities to produce nickel hydroxide and upon optimizing the manufacturing processes to produce nickel hydroxide which has high electrochemical utilization. The primary goal of the zinc electrode studies is to increase the cycle life of this electrode. This effort is primarily concentrating on the effect of additives upon shape change and cycle performance and on the mechanistic processes involved in the shape change. The separator effort has as its major goal the development of a low-cost separator which exhibits stability in the electrolyte, has uniform pores which are of a sufficiently small size to impede the growth of zinc dendrites, and exhibits low electrical resistance and good flexibility. The process itself is now optimized for pilot plant manufacture; hundreds of formulations have been produced and subsequently screened in both the laboratory and in actual cells. Promising formulations are presently being subjected to additional characterization tests and life cycles. The goal of the sealed cell studies is to determine the feasibility of sealed-cell operation. Large numbers of 20-Ah cells have been subjected to accelerated testing. These cells incorporated separator variations, active material additives, and internal design variations. Cycle lives up to 150 deep cycles were achieved. Cell failure modes are analyzed. 51 figures, 20 tables.

  5. Alternative propulsion for automobiles

    CERN Document Server

    Stan, Cornel


    The book presents – based on the most recent research and development results worldwide - the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure. The book presents summarized data about vehicles with electric and hybrid propulsion. The propulsion of future cars will be marked by diversity – from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUV´s, Pick up´s and luxury class automobiles.

  6. A refuelable zinc/air battery for fleet electric vehicle propulsion (United States)

    Cooper, John F.; Fleming, Dennis; Hargrove, Douglas; Koopman, Ronald; Peterman, Keith


    We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet's home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery to form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed.

  7. Single Stator Dual PM Rotor Synchronous Machine with two-frequency single-inverter control, for the propulsion of hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Topor Marcel


    Full Text Available This paper introduces a novel brushless, single winding and single stator, dual PM rotor axial-air-gap machine capable to deliver independently torque at the two rotors by adequate dual vector control. The proposed topologies, the circuit model, controlled dynamics simulation and preliminary 3D FEM torque production on a case study constitute the core of the paper. The proposed dual mechanical port system should be instrumental in parallel (with planetary gears or series hybrid electric vehicles (HEV aiming at a more compact and efficient electric propulsion system solution.

  8. Space Propulsion by Intermittent Combustion (United States)


    principles. The AFOSR program enbraces a variety of propulsion concepts - chemical rockets, electrical ion beam or plasma propulsion, laser beam... electric ion accelerator. Of course there may be other practical types of moderate-to-high thrust propulsion engines, but the chemical rocket looks...1 pulsejet. His theoretical analysis indicated that for the best specific fuel comsumption the flight Mach number should be either <ə or >1. .he

  9. Superconducting Aero Propulsion Motor Project (United States)

    National Aeronautics and Space Administration — Superconducting electric propulsion systems will yield improvements in total ownership costs due to the simplicity of electric drive when compared with gas turbine...

  10. High-power downhole motor

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.H.; Maurer, W.C.; Evans, C.R. [Maurer Engineering Inc., Houston, TX (United States); Westcott, P.A. [Gas Research Inst., Chicago, IL (United States)


    New high power motors are being developed by the Gas Research Institute (GRI) in an attempt to reduce drilling costs in deep gas wells. Conventional 2 3/8-in. (60-mm) and 3 3/8-in. (86-mm) motors operated in overpowered conditions (i.e., high flow rates and high differential pressures) drill 2 to 3 times faster than conventional motors. A new high-power 3 3/8-in. (86-mm) motor is being developed that utilizes additional stages and tighter interference between the rotor and stator to increase motor pressure drop, torque, and power output. This new high-power motor delivers up to 238 hp (177 kW) compared to 50 hp (37 kW) for a conventional 3 3/8-in. (86-mm) motor operating at rated operating conditions. Temperature probes showed that temperatures in different stages of motors vary considerably, showing that some sections do more work than others. A better understanding of temperatures within the stators is needed because thermal degradation and ``chunking`` of the rubber is a leading cause of failures in motors operating at high power levels. These tests were very encouraging, demonstrating the feasibility of developing reliable, high-power motors.

  11. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices (United States)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.


    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  12. The Heliopause Electrostatic Rapid Transit System (HERTS) - Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems (United States)

    Wiegmann, Bruce M.; Scheider, Todd; Heaton, Andrew; Vaughn, Jason; Stone, Nobie; Wright, Ken


    Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail (E-Sail) for future scientific exploration missions. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two-year follow-on Phase II NIAC award in October 2015. This paper documents the findings from this three-year investigation. An Electric sail, a propellant-less propulsion system, uses solar wind ions to rapidly travel either to deep space or the inner solar system. Scientific spacecraft could reach Pluto in 5 years, or the boundary of the solar system in ten to twelve years compared to the thirty-five plus years the Voyager spacecraft took. The team's recent focuses have been: 1) Developing a Particle in Cell (PIC) numeric engineering model from MSFC's experimental data on the interaction between simulated solar wind and a charged bare wire that can be applied to a variety of missions, 2) Determining what missions could benefit from this revolutionary propulsion system, 3) Conceptualizing spacecraft designs for various tasks: to reach the solar system's edge, to orbit the sun as Heliophysics sentinels, or to examine a multitude of asteroids.

  13. High power neutron production targets

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S. [Los Alamos National Lab., NM (United States)


    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  14. The Study on the Reliability of High Power LED Streetlights (United States)

    Dong-Ge, Yao; Jian-Xin, Chen


    This paper was about a reliable research on high-power LED lighting. Based on the samples of the self-developed high-power LED streetlights, an electrical stress ageing test was carried out and thermocouple method was used in the temperature test. The ageing test showed that the initial flux reduction was mainly due to the absorption of the light lamp or the block by some parts of the lighting. And the late light decling was mainly caused by the decay of the high-power LED light source itself. Some suggestions on improving the design of streetlights will be given according to my research.

  15. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle (United States)


    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  16. High power gas laser amplifier (United States)

    Leland, Wallace T.; Stratton, Thomas F.


    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  17. An examination of emerging in-space propulsion concepts for one-year crewed mars missions (United States)

    Pelaccio, Dennis G.; Rauwolf, Gerald A.; Maggio, Gaspare; Patel, Saroj; Sorensen, Kirk


    A study was completed that provides a meaningful, even-handed, comparison assessment of promising candidate, in-space, exploration propulsion concepts to support emerging ``near-term'' crewed Mars mission applications. In particular, the study examined the mission performance feasibility and risk of a number of near-, mid-, and far-term in-space propulsion concepts to support crewed Mars missions starting in 2018 that can have the crewed portion of the mission performed in one year or less. This study used exploration propulsion system team technology specialist advocates to identify seven meaningful, representative mission architecture scenarios to ``best'' demonstrate the capability of such in-space propulsion technology options to support the near-term crewed Mars mission requirement. Additionally, a common set of top-level mission/system requirements was established for the study, which was incorporated in the assessment of all the mission options considered. Mission performance for abundant chemical (Ab-Chem), bimodal nuclear thermal rocket (BNTR), high power nuclear electric propulsion (HP-NEP), momentum tether/chemical, solar electric propulsion (SEP), solar electric propulsion/chemical (SEP-Chem) and Variable Specific Impulse Magnetoplasma Rocket (VASIMR) based missions were estimated for this quick trip, 2018 crewed Mars flight opportunity. Each of these mission options are characterized in terms of their overall mission performance capability, crewed mission duration, Initial Mass to Low Earth Orbit (IMLEO), which including dry and propellant weight required, overall mission time, number of flight elements (propulsion units/tank sets), and number of Earth-to-Orbit (ETO) vehicle launches. Potential top-level development, implementation, and operational issues/risks for each mission scenario considered are also identified. .

  18. Distributed Propulsion Vehicles (United States)

    Kim, Hyun Dae


    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  19. High power switching and other high power devices (United States)

    Gundersen, Martin


    High power thyratrons and devices such as high power microwave sources have cathode-related performance limits. Research is described of a simple, robust 'super-emissive' cathode that produces greater than 10,000 A/sq cm from a macroscopic area (approx. 1 sq cm), and operates with a low pressure (approx. 0.1 torr), spatially uniform glow plasma (density greater than 1015 cu cm). The cathode also can operate as a hollow cathode, and is at the heart of the operation of the pseudospark and back-lighted thyratron. The physics of this hollow and super-emissive cathode is very rich. The hollow cathode geometry traps electrons in the hollow cathode backspace. The lifetime of these electrons enables them to ionize a spatially homogeneous high density glow, and this hollow cathode mode of operation is responsible for certain types of electron and ion beam behavior. A plasma cathode sheath that is formed during this phase leads to super-emissive behavior, which is responsible for high current emission. Super-emissive cathode thyratron-type switches (with higher peak current, voltage, di/dt) being developed for pulsed power switching of lasers, accelerators, high current and high coulomb transfer, Marx bank operation, transfer of technology to commercial applications, high current electron beams, and millimeter wave generation (1 to 100 GHz) are described.

  20. The MAUS nuclear space reactor with ion propulsion system (United States)

    Mainardi, Enrico


    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome "La Sapienza" starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  1. Revolutionary Aeropropulsion Concept for Sustainable Aviation: Turboelectric Distributed Propulsion (United States)

    Kim, Hyun Dae; Felder, James L.; Tong, Michael. T.; Armstrong, Michael


    In response to growing aviation demands and concerns about the environment and energy usage, a team at NASA proposed and examined a revolutionary aeropropulsion concept, a turboelectric distributed propulsion system, which employs multiple electric motor-driven propulsors that are distributed on a large transport vehicle. The power to drive these electric propulsors is generated by separately located gas-turbine-driven electric generators on the airframe. This arrangement enables the use of many small-distributed propulsors, allowing a very high effective bypass ratio, while retaining the superior efficiency of large core engines, which are physically separated but connected to the propulsors through electric power lines. Because of the physical separation of propulsors from power generating devices, a new class of vehicles with unprecedented performance employing such revolutionary propulsion system is possible in vehicle design. One such vehicle currently being investigated by NASA is called the "N3-X" that uses a hybrid-wing-body for an airframe and superconducting generators, motors, and transmission lines for its propulsion system. On the N3-X these new degrees of design freedom are used (1) to place two large turboshaft engines driving generators in freestream conditions to minimize total pressure losses and (2) to embed a broad continuous array of 14 motor-driven fans on the upper surface of the aircraft near the trailing edge of the hybrid-wing-body airframe to maximize propulsive efficiency by ingesting thick airframe boundary layer flow. Through a system analysis in engine cycle and weight estimation, it was determined that the N3-X would be able to achieve a reduction of 70% or 72% (depending on the cooling system) in energy usage relative to the reference aircraft, a Boeing 777-200LR. Since the high-power electric system is used in its propulsion system, a study of the electric power distribution system was performed to identify critical dynamic and

  2. Optimized VCSELs for high-power arrays (United States)

    Moench, Holger; Kolb, Johanna S.; Engelhardt, Andreas P.; Gerlach, Philipp; Jaeger, Roland; Pollmann-Retsch, Jens; Weichmann, Ulrich; Witzigmann, Bernd


    High-power VCSEL systems with multi kilowatt output power require a good electro-optical efficiency at the point of operation i.e. at elevated temperature. The large number of optimization parameters can be structured in a way that separates system and assembly considerations from the minimization of electrical and optical losses in the epitaxially grown structure. Temperature dependent functions for gain parameters, internal losses and injection efficiency are derived from a fit to experimental data. The empirical description takes into account diameter dependent effects like current spreading or temperature dependent ones like voltage drops over hetero-interfaces in the DBR mirrors. By evaluating experimental measurements of the light output and voltage characteristics over a large range of temperature and diameter, wafer-characteristic parameters are extracted allowing to predict the performance of VCSELs made from this material in any array and assembly configuration. This approach has several beneficial outcomes: Firstly, it gives a general description of a VCSEL independent of its geometry, mounting and detuning, secondly, insights into the structure and the underlying physics can be gained that lead to the improvement potential of the structure and thirdly the performance of the structure in arrays and modules can be predicted. Experimental results validate the approach and demonstrate the significantly improved VCSEL efficiency and the benefit in high power systems.

  3. Fusion for Space Propulsion (United States)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)


    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  4. Laser propulsion: a review

    CSIR Research Space (South Africa)

    Michaelis, MM


    Full Text Available is that the Crookes radiometer rotates due to photon rather than gas pressure. In fact, the very first pure photon pendulum experiment was carried out by American laser propulsion enthusiasts Myrabo, Knowles, Bagford, Siebert and Harris.31 The photon pressure... is minute: the photon force on a 10-cm2 target illuminated by a 9-kW CO2 laser is found from: hence the need for an ultra-delicate pendulum equipment, as well as for a high-power laser source! In marked contrast to the Myrabo experiment...

  5. To study propulsion drives


    Rassylkin, Anton; Vodovozov, Valery


    This paper describes a test bench developed to study and monitor the propulsion drives of electric vehicles at Tallinn University of Technology. The composition and performance of the setup are explained. The charging process of the supercapacitor bank is described as an example of the test bench application. The developed simulation model of the supercapacitor bank is presented and discussed.

  6. In-Space Propulsion Technologies for Robotic Exploration of the Solar System (United States)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle


    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  7. Propulsion for CubeSats (United States)

    Lemmer, Kristina


    At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.

  8. Laser space propulsion overview (United States)

    Phipps, Claude; Luke, James; Helgeson, Wesley


    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster. We also discuss the most recent advances in LSP. For the first time, it is possible to consider space propulsion engines which exhibit thrust of one to several newtons while simultaneously delivering 3,000 seconds, or greater, specific impulse. No other engine concept can do both in a compact format. These willl use onboard, rather than remote, lasers. We will review the concept of chemically augmented electric propulsion, which can provide overall thrust efficiency greater than unity while maintaining very low mass to power ratio, high mean time to failure and broad operating range. The main advantage of LSP is exhaust velocity which can be instantaneously varied from 2km/s to 30km/s, simply by varying laser pulsewidth and focal spot size on target. The laser element will probably be a diode-pumped, fiber master-oscillator-power-amplifier (MOPA) system. Liquid fuels are necessary for volumetric efficiency and reliable performance at the multi-kW optical power levels required for multi-N thrust.

  9. The Heliopause Electrostatic Rapid Transit System (HERTS) Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems (United States)

    Wiegmann, Bruce M.


    The Heliopause Electrostatic Rapid Transit System (HERTS) was one of the seven total Phase II NASA Innovative Advanced Concepts (NIAC) that was down-selected in 2015 for continued funding and research. In Phase I our team learned that a spacecraft propelled by an Electric Sail (E-Sail) can travel great astronomical distances, such as to the Heliopause region of the solar system (approx. 100 to 120 AU) in approximately one quarter of the time (10 years) versus the time it took the Voyager spacecraft launched in 1977 (36 years). The completed work within the Phase II NIAC funded effort builds upon the work that was done in the Phase I NIAC and is focused on: 1) Testing of plasma interaction with a charged wire in a MSFC simulated solar environment vacuum test chamber. 2) Development of a Particle-in-Cell (PIC) models that are validated in the plasma testing and used to extrapolate to the E-Sail propulsion system design. 3) Conceptual design of a Technology Demonstration Mission (TDM) spacecraft developed to showcase E-Sail propulsion systems. 4) Down selection of both: a) Materials for a multi km length conductor and, b) Best configuration of the proposed conductor deployment subsystem. This paper will document the findings to date (June, 2017) of the above focused areas.

  10. Optics assembly for high power laser tools (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.


    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  11. Fibrous zinc anodes for high power batteries (United States)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  12. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)


    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  13. Neural Network Control of a Parallel Hybrid-Electric Propulsion System for a Small Unmanned Aerial Vehicle

    National Research Council Canada - National Science Library

    Harmon, Frederick


    ... results, and simulation results are provided. The two-point conceptual design includes an internal combustion engine sized for cruise and an electric motor and lithium-ion battery pack sized for endurance speed...

  14. High power ultrashort pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Perry, M.D.


    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  15. Hybrid propulsion with highest electric power density for the ML 450 BlueHYBRID; Hybridantrieb mit hoechster elektrischen Leistungsdichte fuer den ML 450 BlueHYBRID

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Michael; Armstrong, Neil; Schenk, Juergen; Nietfeld, Franz; Inderka, Robert [Daimler AG, Stuttgart (Germany)


    The ML 450 BlueHYBRID is an elementary milestone in the strategy to the sustainable mobility at Daimler AG (Stuttgart, Federal Republic of Germany). This hybrid system based on the current M-class and is equipped with the innovative Two-Mode-Hybrid-System AHS-C with two high speed electrical engines. The entire propulsion system, the battery and power electronics and the strategy of operation particularly developed for this vehicle integrally provide for a significant reduction of consumption and emission. At the same time, the comfort of the total vehicle increases. In the ML 450 BlueHYBRID, a high volt battery on basis of nickel metal hydride is used. This battery consists of an extremely compact building method and enables an optimal packaging in the vehicle. For the first time, the cooling is performed with a liquid. This enables a stable operation in all situations. For the first time, the cooling takes place with a liquid and enables a stable enterprise in all situations. In connection with the AHS-C Two-Mode-Hybrid system, the battery system enables all hybrid-specific operation conditions such as a purely electrical tour, engine start stop, recupation, boosting. The ML 450 BlueHYBRID serially is produced in Tuscaloose (Alabama, USA). The manufacturing of the hybrid vehicle completely is integrated in the operation of work and is based on the existing serial production plants with hybrid-specific supplements and adjustments in assembly stations.

  16. A compactly integrated cooling system of a combination dual 1.5-MW HTS motors for electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Hyeon, C. J.; Kim, H. M.; Kim, D. K. [Jeju National University, Jeju (Korea, Republic of); Kim, Y. S. [Shin Ansan University, Ansan (Korea, Republic of); Lee, J.; Park, Y. G.; Jeon, H. [Yonsei University, Seoul (Korea, Republic of); Quach, H. L. [Electronic and Telecommunication Engineering, Can Tho University of Technology, Can Tho (Viet Nam)


    The high temperature superconducting (HTS) contra-rotating propulsion (CRP) systems comprise two coaxial propellers sited on behind the other and rotate in opposite directions. They have the hydrodynamic advantage of recovering the slipstream rotational energy which would otherwise be lost to a conventional single-screw system. However, the cooling systems used for HTS CRP system need a high cooling power enough to maintain a low temperature of 2G HTS material operating at liquid neon (LNe) temperature (24.5 - 27 K). In this paper, a single thermo-syphon cooling approach using a Gifford-McMahon (G-M) cryo-cooler is presented. First, an optimal thermal design of a 1.5 MW HTS motor was conducted varying to different types of commercial 2G HTS tapes. Then, a mono-cryogenic cooling system for an integration of two 1.5 MW HTS motors will be designed and analyzed. Finally, the 3D finite element analysis (FEA) simulation of thermal characteristics was also performed.

  17. Performance testing of the Ford/GE Second Generation Single-Shaft Electric Propulsion (ETX-II) System

    Energy Technology Data Exchange (ETDEWEB)

    MacDowall, R.D.; Burke, A.F.


    System-level-operational testing of the ETX-II test-bed electric vehicle is described and the results discussed. Because the traction battery is a major factor in the performance of an electric vehicle, previously reported work on the sodium-sulfur battery designed for use with the ETX-II is reviewed in detail. Chassis dynamometer performance of the test-bed vehicle met or exceeded design goals and compared reasonably well with SIMPLEV computer modeling results. Areas are identified wherein further work is needed to establish a firmer basis for comparison of the simulation and the observed results.

  18. Extended performance solar electric propulsion thrust system study. Volume 3: Tradeoff studies of alternate thrust system configurations (United States)

    Hawthorne, E. I.


    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. A program development plan was formulated that outlines the work structure considered necessary for developing, qualifying, and fabricating the flight hardware for the baseline thrust system within the time frame of a project to rendezvous with Halley's comet. An assessment was made of the costs and risks associated with a baseline thrust system as provided to the mission project under this plan. Critical procurements and interfaces were identified and defined.

  19. Resonance tracking and vibration stablilization for high power ultrasonic transducers. (United States)

    Kuang, Y; Jin, Y; Cochran, S; Huang, Z


    Resonant frequency shift and electrical impedance variation are common phenomena in the application of high power ultrasonic transducers, e.g. in focused ultrasound surgery and in cutting. They result in low power efficiency and unstable vibration amplitude. To solve this problem, a driving and measurement system has been developed to track the resonance of high power transducers and to stabilise their vibration velocity. This has the ability to monitor the operating and performance parameters of the ultrasonic transducers in real time. The configuration of the system, with its control algorithm implemented in LabVIEW (National Instruments, Newbury, UK), ensures flexibility to suit different transducers and load conditions. In addition, with different programs, it can be utilised as a high power impedance analyser or an instantaneous electrical power measurement system for frequencies in the MHz range. The effectiveness of this system has been demonstrated in detailed studies. With it, high transducer performance at high power can be achieved and monitored in real time. Copyright © 2013. Published by Elsevier B.V.

  20. NASA's Nuclear Thermal Propulsion Project (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide


    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  1. New developments in the Electric Fuel Ltd. zinc/air system (United States)

    Goldstein, Jonathan; Brown, Ian; Koretz, Binyamin

    Electric Fuel Ltd. is engaged in the design, development and commercialization of its proprietary zinc/air battery technology for electric vehicles, consumer electronic products and defence applications. To meet the challenging requirements for propelling an all-electric bus, the Vehicle Division sought a unique solution: an all electric battery-battery hybrid propulsion system. The high energy zinc/air battery is coupled with a high-power auxiliary battery. The combined system offers zero emission, high power and long range in an economically viable package. The consumer battery group has developed a high power primary zinc/air cell aimed at cellular phone users, offering extended use, convenience and low cost.

  2. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.


    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  3. High power laser perforating tools and systems (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F


    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  4. Packaging of high power semiconductor lasers

    CERN Document Server

    Liu, Xingsheng; Xiong, Lingling; Liu, Hui


    This book introduces high power semiconductor laser packaging design. The characteristics and challenges of the design and various packaging, processing, and testing techniques are detailed by the authors. New technologies, in particular thermal technologies, current applications, and trends in high power semiconductor laser packaging are described at length and assessed.

  5. A Lemon Cell Battery for High-Power Applications (United States)

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.


    This article discusses the development of a lemon cell battery for high-power applications. The target application is the power source of a dc electric motor for a model car constructed by first-year engineering students as part of their introductory course design project and competition. The battery is composed of a series of lemon juice cells made from UV vis cuvets that use a magnesium anode and copper cathode. Dilution of the lemon juice to reduce the rate of corrosion of the magnesium anode and the addition of table salt to reduce the internal resistance of the cell are examined. Although our specific interest is the use of this lemon cell battery to run an electric dc motor, high-power applications such as radios, portable cassette or CD players, and other battery-powered toys are equally appropriate for demonstration and laboratory purposes using this battery.

  6. Electric Propulsion System for the Shell Eco-marathon PureChoice Vehicle: Controlling the lights and alternative storage devices such as batteries and supercapacitors


    Grudic, Elvedin


    This report is divided into six main chapters. It starts off with an introductory chapter explaining the different propulsion strategies that have been considered during the last semester, and the final propulsion system that has been decided upon. The final propulsion strategy has several demands when it comes to components that have to be implemented and what type of components they should be. The main purpose for me in this project was therefore to meet these demands. Main demands for me ...

  7. Nano-Magnets and Additive Manufacturing for Electric Motors (United States)

    Misra, Ajay K.


    High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.

  8. Development of an Android OS Based Controller of a Double Motor Propulsion System for Connected Electric Vehicles and Communication Delays Analysis

    Directory of Open Access Journals (Sweden)

    Pedro Daniel Urbina Coronado


    Full Text Available Developments of technologies that facilitate vehicle connectivity represent a market demand. In particular, mobile device (MD technology provides advanced user interface, customization, and upgradability characteristics that can facilitate connectivity and possibly aid in the goal of autonomous driving. This work explores the use of a MD in the control system of a conceptual electric vehicle (EV. While the use of MD for real-time control and monitoring has been reported, proper consideration has not been given to delays in data flow and their effects on system performance. The motor of a novel propulsion system for an EV was conditioned to be controlled in a wireless local area network by an ecosystem that includes a MD and an electronic board. An intended accelerator signal is predefined and sent to the motor and rotational speed values produced in the motor are sent back to the MD. Sample periods in which the communication really occurs are registered. Delays in the sample periods and produced errors in the accelerator and rotational speed signals are presented and analyzed. Maximum delays found in communications were of 0.2 s, while the maximum error produced in the accelerator signal was of 3.54%. Delays are also simulated, with a response that is similar to the behavior observed in the experiments.

  9. Measurement of ion temperature and flow velocity by using LIF and electric probe methods in K2H and DiPS propulsion simulators (United States)

    Choi, Geun-Sig; Chung, Kyu-Sun; Woo, Hyun-Jong; Seo, Young Jun; Lee, Myoung-Jae; Lho, Taihyeop; Jung, Yong Ho; Lee, Bong Ju


    Ion temperature, plasma flow velocity and plasma density are measured in DiPS (Diversified Plasma Simulator) and K2H (KBSI-KAIST-Hanyang University) propulsion simulators by a laser induced fluorescence (LIF) method and a fast scanning electric probe system, which consists of an rf-compensated single probe and a Mach probe. In both devices helicon plasmas were stably generated with m=+1 right-helical antenna at 13.56 MHz with powers of 1 - 3kW (DiPS) and 0.5 - 1kW (K2H), and open ended magnetic configurations are utilized. The measured plasma parameters are as follows: plasma densities of 10^11 -- 10^13 cm-3 (K2H) and 10^12 -- 10^13 cm-3 (DiPS), electron temperatures of 3 -- 9 eV (K2H) and 2 -- 4 eV (DiPS), ion temperatures of 0.14 -- 0. 17 eV (K2H) and 0.05 -- 0.2 eV (DiPS) and drift velocities of 0.8 -- 1.6 km/s (k2H) and 0.2 -- 0.5 km/s (DiPS).

  10. Hypersonic propulsion (United States)

    Cheng, SIN-I.


    The paper reviews the whys and hows of the concept of supersonic combustion for hypersonic propulsion. Attention is given to the problem areas, the current research and development efforts, and their implications. The operating boundary of the SCRAMJET is reasonably well defined. The paper also explores some air-breathing alternatives that may go beyond SCRAMJETS.

  11. Heatsink Design of High Power Converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Ki [Chungang University (Korea)


    Various ways of designing heat sink are available for commercial high power converters and among them, the method of air cooling is the most popular and practical method than any other ones. In this paper, a practical method of cooling high power converter, which includes a method of reducing noise and vibration caused by the fan and a method of estimating the gap and contact resistances existing between the thyristor and heat sink, is presented. Finally, the heat transfer analysis and implementation methods of heat sink for high power converter is presented. (author). 14 refs., 11 figs., 3 tabs.

  12. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles (United States)

    Abdelnour, Z.; Mildrun, H.; Strant, K.


    The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. Tests determined magnetic design data and mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 to 150 C. Hysteresis loops were also measured for three orthogonal directions (the one easy and two hard axes of magnetization). Extruded rods of three different diameters were tested. The nonuniformity of properties over the cross section of the 31 mm diameter rod was studied. Mechanical compressive and bending strength at room temperature was determined on individual samples from the 31 mm rod.

  13. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)


    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were used in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.

  14. Piezoelectric Transformers for a High Power Module

    National Research Council Canada - National Science Library

    Ezaki, T


    .... Here, in order to obtain compact and high-power AC-DC adaptors, we explored suitable designs for a multi-layered piezoelectric transformer, by taking into account the effect of the mechanical quality...

  15. High Power Fiber Laser Test Bed (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  16. High Power Performance of Rod Fiber Amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Michieletto, Mattia; Kristensen, Torben


    An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W.......An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W....

  17. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O


    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  18. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies (United States)

    Bose, Bimal K.; Kim, Min-Huei


    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  19. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)


    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  20. Switching speed limitations of high power IGBT modules

    DEFF Research Database (Denmark)

    Incau, Bogdan Ioan; Trintis, Ionut; Munk-Nielsen, Stig


    In this paper the switching speed limits of high power IGBT modules are investigated. The limitation of turn-on and turn-off switching speeds of the IGBTs are experimentally detected in a pulse tester. Different dc-bus stray inductances are considered, as well as the worst case scenario for the b......In this paper the switching speed limits of high power IGBT modules are investigated. The limitation of turn-on and turn-off switching speeds of the IGBTs are experimentally detected in a pulse tester. Different dc-bus stray inductances are considered, as well as the worst case scenario...... for the blocking dc-link voltage. Switching losses are analyzed upon a considerable variation of resistor value from turn-on gate driver side. Short circuit operations are investigated along with safe operating area for entire module to validate electrical capabilities under extreme conditions....

  1. Iron loss in high-power arc steelmaking furnaces

    Directory of Open Access Journals (Sweden)

    V. P. Karasyov


    Full Text Available There is considered the power operating mode of a high-power arc steelmaking furnaces (ASMF in the period of the flat bath. It is revealed that electric energy is mainly spent for heating and overheating the foamed slag. Heat transferring from slag to metal is carried out by the convective agitation of the bath. For agitation there is used intensive purging of the bath with oxygen that causes increased iron losses with the running foamed slag. There are noted the negative points of working with the foamed slag. It is recommended to expand R&D in the field of optimizing the power operating mode of high-power ASMF.

  2. Transient Plasma Photonic Crystals for High-Power Lasers. (United States)

    Lehmann, G; Spatschek, K H


    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  3. Overcoming the Adoption Barrier to Electric Flight (United States)

    Borer, Nicholas K.; Nickol, Craig L.; Jones, Frank P.; Yasky, Richard J.; Woodham, Kurt; Fell, Jared S.; Litherland, Brandon L.; Loyselle, Patricia L.; Provenza, Andrew J.; Kohlman, Lee W.; hide


    Electrically-powered aircraft can enable dramatic increases in efficiency and reliability, reduced emissions, and reduced noise as compared to today's combustion-powered aircraft. This paper describes a novel flight demonstration concept that will enable the benefits of electric propulsion, while keeping the extraordinary convenience and utility of common fuels available at today's airports. A critical gap in airborne electric propulsion research is addressed by accommodating adoption at the integrated aircraft-airport systems level, using a confluence of innovative but proven concepts and technologies in power generation and electricity storage that need to reside only on the airframe. Technical discriminators of this demonstrator concept include (1) a novel, high-efficiency power system that utilizes advanced solid oxide fuel cells originally developed for ultra-long-endurance aircraft, coupled with (2) a high-efficiency, high-power electric propulsion system selected from mature products to reduce technical risk, assembled into (3) a modern, high-performance demonstration platform to provide useful and compelling data, both for the targeted early adopters and the eventual commercial market.

  4. High Power Diode Lasers Technology and Applications

    CERN Document Server

    Bachmann, Friedrich; Poprawe, Reinhart


    In a very comprehensive way this book covers all aspects of high power diode laser technology for materials processing. Basics as well as new application oriented results obtained in a government funded national German research project are described in detail. Along the technological chain after a short introduction in the second chapter diode laser bar technology is discussed regarding structure, manufacturing technology and metrology. The third chapter illuminates all aspects of mounting and cooling, whereas chapter four gives wide spanning details on beam forming, beam guiding and beam combination, which are essential topics for incoherently coupled multi-emitter based high power diode lasers. Metrology, standards and safety aspects are the theme of chapter five. As an outcome of all the knowledge from chapter two to four various system configurations of high power diode lasers are described in chapter six; not only systems focussed on best available beam quality but especially also so called "modular" set...

  5. High-power optics lasers and applications

    CERN Document Server

    Apollonov, Victor V


    This book covers the basics, realization and materials for high power laser systems and high power radiation interaction with  matter. The physical and technical fundamentals of high intensity laser optics and adaptive optics and the related physical processes in high intensity laser systems are explained. A main question discussed is: What is power optics? In what way is it different from ordinary optics widely used in cameras, motion-picture projectors, i.e., for everyday use? An undesirable consequence of the thermal deformation of optical elements and surfaces was discovered during studies of the interaction with powerful incident laser radiation. The requirements to the fabrication, performance and quality of optical elements employed within systems for most practical applications are also covered. The high-power laser performance is generally governed by the following: (i) the absorption of incident optical radiation (governed primarily by various absorption mechanisms), (ii) followed by a temperature ...

  6. Germanate Glass Fiber Lasers for High Power (United States)


    AFRL-AFOSR-JP-TR-2016-0020 Germanate glass fiber lasers for high power David Lancaster THE UNIVERSITY OF ADELAIDE Final Report 01/04/2016...COVERED (From - To) 01-07-2014 to 30-06-2015 4. TITLE AND SUBTITLE Germanate glass fiber lasers for high power 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...germanate based glasses with a specific focus on glass stability during thermal-cycling which is representative of the steps required to fabricate a doped

  7. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion (United States)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew


    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  8. Novel design for a high power superconducting delay line

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.J.; Caporaso, G.J.


    Potential designs for a high power superconducting delay line of approximately 10ms duration are described. The transmitted signal should have low dispersion and little attenuation to recapture the original signal. Such demands cannot be met using conventional metal conductors. This paper outlines a proposal for a new transmission line design using low temperature superconducting material which meets system specifications. The 25W line is designed to carry pulsed signals with an approximate rise time of 8 nsec and a maximum voltage of 25kV. Predicted electrical design and performance of the line is presented.

  9. Designs for a high power superconducting delay line

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.J.; Caporaso, G.


    Potential designs for a high power superconducting delay line of approximately 10 microsecs duration are described. The transmitted signal should have low dispersion and little attenuation to recapture the original signal. Such demands cannot be met using conventional metal conductors. This paper outlines a proposal for a new transmission line design using low temperature superconducting material which meets system specifications. The 25 omega line is designed to carry pulsed signals with an approximate rise time of 8 nsec and a maximum voltage magnitude of 25 kV. Predicted electrical design and performance of the line will be presented.

  10. Charging-discharging system with high power factor, high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Soo; Joe, Kee Yeon; Byun, Young Bok; Koo, Heun Hoi [Korea Electrotechnology Research Institute (Korea, Republic of)


    This paper presents equipment for charging and discharging with high power factor and high efficiency. This equipment is consisted of 3{Phi} SPWM AC/DC converter for improving input current waveform and input power factor, and bidirectional DC/DC converter for electric isolation in the DC link Part. Therefore, Input power factor and the total efficiency in the proposed system can be increased more than in the conventional phase-controlled thyristor charging-discharging System. (author). 7 refs., 14 figs., 1 tab.

  11. Development of a high power femtosecond laser

    CSIR Research Space (South Africa)

    Neethling, PH


    Full Text Available The Laser Research Institute and the CSIR National Laser Centre are developing a high power femtosecond laser system in a joint project with a phased approach. The laser system consists of an fs oscillator and a regenerative amplifier. An OPCPA...

  12. Automated System Tests High-Power MOSFET's (United States)

    Huston, Steven W.; Wendt, Isabel O.


    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  13. Driver Circuit For High-Power MOSFET's (United States)

    Letzer, Kevin A.


    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  14. Advanced Electrodes for High Power Li-ion Batteries

    Directory of Open Access Journals (Sweden)

    Christian M. Julien


    Full Text Available While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future.

  15. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P. [Maison de la Chimie, 75 - Paris (France); Davenas, A. [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M. [Air Force Office of Scientific Research, Arlington, VA (United States)] [and others


    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  16. Protection Related to High-power Targets

    CERN Document Server

    Plum, M.A.


    Target protection is an important part of machine protection. The beam power in high-intensity accelerators is high enough that a single wayward pulse can cause serious damage. Today's high-power targets operate at the limit of available technology, and are designed for a very narrow range of beam parameters. If the beam pulse is too far off centre, or if the beam size is not correct, or if the beam density is too high, the target can be seriously damaged. We will start with a brief introduction to high-power targets and then move to a discussion of what can go wrong, and what are the risks. Next we will discuss how to control the beam-related risk, followed by examples from a few different accelerator facilities. We will finish with a detailed example of the Oak Ridge Spallation Neutron Source target tune up and target protection.

  17. Methods for High Power EM Pulse Measurement

    Directory of Open Access Journals (Sweden)

    P. Fiala


    Full Text Available There are some suitable methods for the measurement of ultra-short solitary electromagnetic pulses that can be generated by high power pulsed generators. The measurement methods properties have to correspond to the fact whether we want to measure pulses of voltage, current or free-space electromagnetic wave. The need for specific measurement methods occurred by the development of high power microwave pulse generator. Applicable methods are presented in this paper. The method utilizing Faraday's induction law allows the measurement of generated current. For the same purpose the magneto-optic method can be utilized, with its advantages. For measurement of output microwave pulse of the generator the calorimetric method was designed and realized.

  18. High temperature, high power piezoelectric composite transducers. (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart


    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  19. An introduction to high power microwaves (United States)

    Benford, James; Swegle, John


    The area of high power microwaves has emerged in recent years as a new technology allowing new applications and offering innovative approaches to existing applications. The great leap in microwave power levels has been driven by a mix of sources that either push conventional microwave device physics in new directions or employ altogether new interaction mechanisms. Running counter to the trend in conventional microwave electronics toward miniaturization with solid-state devices intrinsically limited in their peak power capability, high power microwave generation taps the immense power and energy reservoirs of modern intense relativistic electron beam technology. The term high power microwaves (HPM) is used to denote devices that exceed 100 MW in peak power and span the cm- and mm-wave range of frequencies between 1 and 300 GHz. This definition is arbitrary, but does cleanly divide the conventional microwave devices, which do not exceed 100 MW, from a collection of microwave-generating devices that have now reached powers as high as 15 GW.

  20. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert


    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  1. Innovative Technology for an Inertial Electrostatic Confinement (IEC) Fusion Propulsion Unit (United States)

    Satsangi, Ann J.; Miley, George H.; Javedani, Jalal B.; Nakashima, Hideki; Yamamoto, Yasushi


    An Inertial Electrostatic Confinement (IEC) fusion power source has the potential to support a very efficient nuclear propulsion system. High power-to-weight ratios, necessary for manned travel beyond our moon, are obtainable with an IEC power source because of the grid structure is relatively light weight. A preliminary design study of a system using an IEC power source has been done by integrating an IEC device, designed to burn d-3He, with a Direct Energy Converter (DEC), an electrical system, and an electrical thruster unit. (Miley 1993a) Further investigation of this design will be presented. These subsequent studies were aimed at addressing several key issues which arose during the course of the original design work. The most important result is the discovery that a pulsed power version of the IEC offers a high fusion energy gain, giving an improved specific power for the design.

  2. Advantages of electrical propulsion applied to the urban transportation with express lines; Vantagens da propulsao eletrica aplicada ao transporte urbano em linhas expressas

    Energy Technology Data Exchange (ETDEWEB)

    Schwob, Marcelo Rousseau Valenca; Rodrigues, Joaquim Augusto Pinto; Henriques Junior, Mauricio F.; Dresch, Patricia Miranda; Dantas, Fabricio dos Santos [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Energia], E-mail:; Bernardes, Fernanda Manhaes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)


    This paper intends to compare the various possible solutions for urban bus propulsion under the environmental aspects (gaseous emissions, vibrations and noises), energy efficiency and energetic operational costs, facing the evident signals of energy inefficiency and environmental limitations presented at urban highway transports of large cities.

  3. Electrolysis Propulsion Provides High-Performance, Inexpensive, Clean Spacecraft Propulsion (United States)

    deGroot, Wim A.


    An electrolysis propulsion system consumes electrical energy to decompose water into hydrogen and oxygen. These gases are stored in separate tanks and used when needed in gaseous bipropellant thrusters for spacecraft propulsion. The propellant and combustion products are clean and nontoxic. As a result, costs associated with testing, handling, and launching can be an order of magnitude lower than for conventional propulsion systems, making electrolysis a cost-effective alternative to state-of-the-art systems. The electrical conversion efficiency is high (>85 percent), and maximum thrust-to-power ratios of 0.2 newtons per kilowatt (N/kW), a 370-sec specific impulse, can be obtained. A further advantage of the water rocket is its dual-mode potential. For relatively high thrust applications, the system can be used as a bipropellant engine. For low thrust levels and/or small impulse bit requirements, cold gas oxygen can be used alone. An added innovation is that the same hardware, with modest modifications, can be converted into an energy-storage and power-generation fuel cell, reducing the spacecraft power and propulsion system weight by an order of magnitude.

  4. Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program (United States)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John


    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  5. High power diode laser Master Oscillator-Power Amplifier (MOPA) (United States)

    Andrews, John R.; Mouroulis, P.; Wicks, G.


    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  6. High-power converters and AC drives

    CERN Document Server

    Wu, Bin


    This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods.

  7. High Power Argon, Nitrogen Plasma Torches (United States)

    Hakki, A.; Kashapov, N.; Sadikov, K.


    The paper describes a high power supply for Argon and Nitrogen plasma torches. A high frequency was used in order to drive the pulse width modulation circuit. The average output current consumption (AOCC) was modified from 20A up to 80A by increasing the pulse width from 2μsec up to 3μsec for Argon gas plasma torches. The (AOCC) was reduced from 70A down to 25A by increasing the pulse width from 6μsec up to 8μsec in the case of Nitrogen gas plasma torches.

  8. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.


    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  9. Design and characterization of a novel power over fiber system integrating a high power diode laser (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry


    High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.

  10. High power diode lasers for solid-state laser pumps (United States)

    Linden, Kurt J.; Mcdonnell, Patrick N.


    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  11. Electric motor for laser-mechanical drilling (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.


    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  12. The interaction of high-power lasers with plasmas

    CERN Document Server

    Eliezer, Shalom


    The Interaction of High-Power Lasers with Plasmas provides a thorough self-contained discussion of the physical processes occurring in laser-plasma interactions, including a detailed review of the relevant plasma and laser physics. The book analyzes laser absorption and propagation, electron transport, and the relevant plasma waves in detail. It also discusses the physics of the electric and magnetic fields in a laser-induced plasma medium, laser-induced shock waves, rarefaction waves, heat waves, and the related hydrodynamic instabilities (Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz).A pedagogical presentation, the book addresses the basic physics issues from first principles, using simple models wherever appropriate. The coverage provides a foundation on which the graduate student can build an understanding of the past and present research in this field. For the experienced researcher, the book is a comprehensive and useful presentation of laser-plasma interactions.

  13. A Study on the Development of BLDC Motor with High Power Density

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Cheol; Kong, Yeong Kyung; Choi, Tae In [Agency for Defense Development (Korea); Song, Jong Hwan [Hyosung Ltd., (Korea)


    The motor for torpedo propulsion is needed the compact and short rating high power characteristics. This paper describes the development of the motor through the theory and Finite Element Method(FEM) analysis for Brushless Direct Current Motor(BLDCM) of 7 phase 6 poles. Back EMF, inductance and eddy current loss were analyzed. The proposed methods like magnetic wedge acquired by these FEM analysis were introduced. Phase-leading angle using encoder was used. Test results on the motor of 7 phases 6 poles were showed the validity of proposed methods and phase-leading angle. (author). 9 refs., 12 figs., 5 tabs.

  14. Advanced Output Coupling for High Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)


    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  15. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao; 10.1103/PhysRevSTAB.10.091001


    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  16. Solar Powered Propulsion for Space. (Latest citations from the Aerospace Database) (United States)


    The bibliography contains citations concerning the design, development, and performance of solar propulsion systems. Solar electric propulsion and solar thermal propulsion are reviewed. Topics include solar power satellites, nuclear electric propulsion, solar-powered orbit transfer vehicles, and solar dynamic and bimodal power systems. References also discuss atmospheric pollution control, telephone services, space commercialization, interplanetary missions, and lunar and Mars exploration. (Contains 50-250 citations and includes a subject term index and title list.)

  17. Simulation Propulsion System and Trajectory Optimization (United States)

    Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.


    A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.

  18. High power solid state laser modulator (United States)

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.


    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  19. High Power Density and High Temperature Converter Design for Transportation Applications


    Wang, Ruxi


    The continual development of high-power-density power electronic converters is driven particularly by modern transportation applications like electrical vehicles and more electric aircraft where the space and carrier capability is limited. However, there are several challenges related to transportation applications such as fault tolerance for safety concern, high temperature operation in extreme environments and more strict electromagnetic compatibility requirement. These challenges will incr...

  20. Rocket propulsion elements

    CERN Document Server

    Sutton, George P


    The definitive text on rocket propulsion-now revised to reflect advancements in the field For sixty years, Sutton's Rocket Propulsion Elements has been regarded as the single most authoritative sourcebook on rocket propulsion technology. As with the previous edition, coauthored with Oscar Biblarz, the Eighth Edition of Rocket Propulsion Elements offers a thorough introduction to basic principles of rocket propulsion for guided missiles, space flight, or satellite flight. It describes the physical mechanisms and designs for various types of rockets' and provides an unders

  1. High power diode lasers converted to the visible

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Andersen, Peter E.


    High power diode lasers have in recent years become available in many wavelength regions. However, some spectral regions are not well covered. In particular, the visible spectral range is lacking high power diode lasers with good spatial quality. In this paper, we highlight some of our recent...... results in nonlinear frequency conversion of high power near infrared diode lasers to the visible spectral region....

  2. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-September 1979. [40 kWh, Li-Al and Li-Si anodes

    Energy Technology Data Exchange (ETDEWEB)

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Hornstra, F.; Miller, W. E.; Vissers, D. R.; Roche, M. F.; Shimotake, H.; Hudson, R.; Askew, B. A.; Sudar, S.


    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at contractors' laboratories on high-temperature batteries during the period October 1978 to September 1979 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KC1 electrolyte. During this reporting period, cell and battery development work has continued at ANL and contractors' laboratories. A 40 kWh electric-vehicle battery (designated Mark IA) was fabricated and delivered to ANL for testing. During the initial heat-up, one of the two modules failed due to a short circuit. A failure analysis was conducted, and the Mark IA program completed. Development work on the next electric-vehicle battery (Mark II) was initiated at Eagle-Picher Industries, Inc. and Gould, Inc. Work on stationary energy-storage batteries during this period has consisted primarily of conceptual design studies. 107 figures, 67 tables.

  3. Laminar composite structures for high power actuators (United States)

    Hobosyan, M. A.; Martinez, P. M.; Zakhidov, A. A.; Haines, C. S.; Baughman, R. H.; Martirosyan, K. S.


    Twisted laminar composite structures for high power and large-stroke actuators based on coiled Multi Wall Carbon Nanotube (MWNT) composite yarns were crafted by integrating high-density Nanoenergetic Gas Generators (NGGs) into carbon nanotube sheets. The linear actuation force, resulting from the pneumatic force caused by expanding gases confined within the pores of laminar structures and twisted carbon nanotube yarns, can be further amplified by increasing NGG loading and yarns twist density, as well as selecting NGG compositions with high energy density and large-volume gas generation. Moreover, the actuation force and power can be tuned by the surrounding environment, such as to increase the actuation by combustion in ambient air. A single 300-μm-diameter integrated MWNT/NGG coiled yarn produced 0.7 MPa stress and a contractile specific work power of up to 4.7 kW/kg, while combustion front propagated along the yarn at a velocity up to 10 m/s. Such powerful yarn actuators can also be operated in a vacuum, enabling their potential use for deploying heavy loads in outer space, such as to unfold solar panels and solar sails.

  4. Test of a High Power Target Design

    CERN Multimedia


    %IS343 :\\\\ \\\\ A high power tantalum disc-foil target (RIST) has been developed for the proposed radioactive beam facility, SIRIUS, at the Rutherford Appleton Laboratory. The yield and release characteristics of the RIST target design have been measured at ISOLDE. The results indicate that the yields are at least as good as the best ISOLDE roll-foil targets and that the release curves are significantly faster in most cases. Both targets use 20 -25 $\\mu$m thick foils, but in a different internal geometry.\\\\ \\\\Investigations have continued at ISOLDE with targets having different foil thickness and internal geometries in an attempt to understand the release mechanisms and in particular to maximise the yield of short lived isotopes. A theoretical model has been developed which fits the release curves and gives physical values of the diffusion constants.\\\\ \\\\The latest target is constructed from 2 $\\mu$m thick tantalum foils (mass only 10 mg) and shows very short release times. The yield of $^{11}$Li (half-life of ...

  5. Temperature measurements of high power LEDs (United States)

    Badalan (Draghici), Niculina; Svasta, Paul; Drumea, Andrei


    Measurement of a LED junction temperature is very important in designing a LED lighting system. Depending on the junction temperature we will be able to determine the type of cooling system and the size of the lighting system. There are several indirect methods for junction temperature measurement. The method used in this paper is based on the thermal resistance model. The aim of this study is to identify the best device that would allow measuring the solder point temperature and the temperature on the lens of power LEDs. For this purpose four devices for measuring temperature on a high-power LED are presented and compared according to the acquired measurements: an infrared thermal camera from FLIR Systems, a multimeter with K type thermocouple (Velleman DVM4200), an infrared-spot based noncontact thermometer (Raynger ST) and a measurement system based on a digital temperature sensor (DS1821 type) connected to a PC. The measurements were conducted on an 18W COB (chip-on-board) LED. The measurement points are the supply terminals and the lens of the LED.

  6. Propulsion Options for the LISA Mission (United States)

    Cardiff, Eric H.; Marr, Gregory C.


    The LISA mission is a constellation of three spacecraft operating at 1 AU from the Sun in a position trailing the Earth. After launch, a propulsion module provides the AV necessary to reach this operational orbit, and separates from the spacecraft. A second propulsion system integrated with the spacecraft maintains the operational orbit and reduces nongravitational disturbances on the instruments. Both chemical and electrical propulsion systems were considered for the propulsion module, and this trade is presented to show the possible benefits of an EP system. Several options for the orbit maintenance and disturbance reduction system are also briefly discussed, along with several important requirements that suggest the use of a FEEP thruster system.

  7. Near-Term IEC Thrusters and Future Fusion Propulsion (United States)

    Miley, George; Gu, Yibin; Jurczyk, Brian


    For space missions beyond orbital and lunar distances, studies indicate that advanced power and propulsion systems will be required. Conceptual fusion rocket design studies using the Inertial Electrostatic Confinement (IEC) concept have predicted excellent performance for a variety of space missions.(Williams, C.H., S.K. Borowski, "Fusion Propulsion System Survey and Desired Operating Parameters," Fusion Propulsion Workshop, Huntsville, AL, 1997.)(Bussard, R.W., L.W. Jameson, "Design Considerations for Clean QED Fusion Propulsion Systems," Proc. 11th Symp. on Space Nuclear Power and Propulsion, 1994.)(Miley, G.H., et al., "Innovative Technology for and Inertial Electrostatic Confinement Fusion Propulsion Unit," Fusion Energy in Space Propulsion, vol. 167, 1995.) Research at the University of Illinois has shifted towards the development of a small-scale xenon jet plasma thruster ( 500W) for satellite adjustment and station-keeping. The scalability of the IEC physics will allow the research on this thruster to contribute to the eventual goal of a high-power fusion propulsion unit, while simultaneously generating a spin-off technology that can be utilized in the near term. A presentation of the experimental setup and preliminary results will be given for the IEC thruster.

  8. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce


    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  9. Innovations in high power fiber laser applications (United States)

    Beyer, Eckhard; Mahrle, Achim; Lütke, Matthias; Standfuss, Jens; Brückner, Frank


    Diffraction-limited high power lasers represent a new generation of lasers for materials processing, characteristic traits of which are: smaller, cost-effective and processing "on the fly". Of utmost importance is the high beam quality of fiber lasers which enables us to reduce the size of the focusing head incl. scanning mirrors. The excellent beam quality of the fiber laser offers a lot of new applications. In the field of remote cutting and welding the beam quality is the key parameter. By reducing the size of the focusing head including the scanning mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. By using these frequencies very thin and deep welding seams can be generated experienced so far with electron beam welding only. The excellent beam quality of the fiber laser offers a high potential for developing new applications from deep penetration welding to high speed cutting. Highly dynamic cutting systems with maximum speeds up to 300 m/min and accelerations up to 4 g reduce the cutting time for cutting complex 2D parts. However, due to the inertia of such systems the effective cutting speed is reduced in real applications. This is especially true if complex shapes or contours are cut. With the introduction of scanner-based remote cutting systems in the kilowatt range, the effective cutting speed on the contour can be dramatically increased. The presentation explains remote cutting of metal foils and sheets using high brightness single mode fiber lasers. The presentation will also show the effect of optical feedback during cutting and welding with the fiber laser, how those feedbacks could be reduced and how they have to be used to optimize the cutting or welding process.

  10. Facet engineering of high power single emitters (United States)

    Yanson, Dan; Levi, Moshe; Shamay, Moshe; Tesler, Renana; Rappaport, Noam; Don, Yaroslav; Karni, Yoram; Schnitzer, Itzhak; Sicron, Noam; Shusterman, Sergey


    The ever increasing demand for high-power, high-reliability operation of single emitters at 9xx nm wavelengths requires the development of laser diodes with improved facet regions immune to both catastrophic and wear-out failure modes. In our study, we have evaluated several laser facet definition technologies in application to 90 micron aperture single emitters in asymmetric design (In)GaAs/AlGaAs based material emitting at 915, 925 and 980nm. A common epitaxy and emitter design makes for a straightforward comparison of the facet technologies investigated. Our study corroborates a clear trend of increasing difficulty in obtaining reliable laser operation from 980nm down to 915nm. At 980nm, one can employ dielectric facet passivation with a pre-clean cycle delivering a device lifetime in excess of 3,000 hours at increasing current steps. At 925nm, quantum-well intermixing can be used to define non-absorbing mirrors giving good device reliability, albeit with a large efficiency penalty. Vacuum cleaved emitters have delivered excellent reliability at 915nm, and can be expected to perform just as well at 925 and 980nm. Epitaxial regrowth of laser facets is under development and has yet to demonstrate an appreciable reliability improvement. Only a weak correlation between start-of-life catastrophic optical mirror damage (COMD) levels and reliability was established. The optimized facet design has delivered maximum powers in excess of 19 MW/ (rollover limited) and product-grade 980nm single emitters with a slope efficiency of >1 W/A and a peak efficiency of >60%. The devices have accumulated over 1,500 hours of CW operation at 11W. A fiber-coupled device emits 10W ex-fiber with 47% efficiency.

  11. A Microwave Thruster for Spacecraft Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Chiravalle, Vincent P [Los Alamos National Laboratory


    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  12. High power beta electron device - Beyond betavoltaics. (United States)

    Ayers, William M; Gentile, Charles A


    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 1013Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.

  13. Progress in high-power continuous-wave quantum cascade lasers [Invited]. (United States)

    Figueiredo, Pedro; Suttinger, Matthew; Go, Rowel; Tsvid, Eugene; Patel, C Kumar N; Lyakh, Arkadiy


    Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.

  14. Accelerated Testing of High Temperature Permanent Magnets for Spacecraft Propulsion Project (United States)

    National Aeronautics and Space Administration — High temperature permanent magnet materials play an important role in NASA's space missions in electric propulsion, energy generation and storage and other...

  15. Heavy Plasma NAPALM Propulsion Simulation Code

    NARCIS (Netherlands)

    Lörincz, I.; Rugescu, R.D.; Kohlenberg, J.; Prathaban, M.


    The NAPALM project addresses a new and revolutionary space propulsion system, able to deliver a very high specific impulse through a new working fluid and accelerator principle for the electric plasma thruster. The new motor will impressively exceed, by between ten and sixty percent, the vacuum

  16. 30 GHz High Power Production for CLIC

    CERN Document Server

    Syratchev, I V


    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  17. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads (United States)

    Wong, Derek N.

    The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient

  18. Magnetohydrodynamic sea water propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.


    An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.

  19. Magnetohydrodynamic sea water propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.


    An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.

  20. High-performance batteries for off-peak energy storage and electric-vehicle propulsion. Progress report, January--June 1975. [Li--Al/KCl--LiCl/Fe sulfide, 42 kWh

    Energy Technology Data Exchange (ETDEWEB)


    This report describes the research and management efforts, for the period January--June 1975, of Argonne National Laboratory's program on high-performance lithium/metal sulfide batteries. The batteries are being developed for two applications, off-peak energy storage in electric utility networks and electric-vehicle propulsion. The battery design for the two applications differ, particularly in cell configuration and electrode design, because of the differing performance requirements. The present cells are vertically oriented, prismatic cells with two negative electrodes of a solid lithium--aluminium alloy, a central positive electrode of iron sulfide (FeS/sub 2/ or FeS), and an electrolyte of LiCl--KCl eutectic (mp, 352/sup 0/C). The operating temperature of the cells is about 400--450/sup 0/C. Recent effort in the development of engineering-scale cells was focused on designing and fabricating vertically oriented, prismatic cells and on improving the lifetime capabilities of cells. Work on electrode development was directed toward the evaluation of the factors that influence the performance of the negative electrode and the development of new designs of vertical, prismatic iron sulfide electrodes. Materials studies included work on improving feedthroughs and separators, corrosion tests of candidate materials of construction, and postoperative examinations of cells. Cell chemistry studies included continuing investigations of cell reactions and the identification of advanced cell systems. Battery development work included the design of a battery for an electric automobile and the development of battery components. The transfer of Li--Al/FeS/sub x/ battery technology to industry is being implemented through contracts with industrial firms for the manufacture of components, electrodes, and cells.

  1. Cold Gas Micro Propulsion

    NARCIS (Netherlands)

    Louwerse, M.C.


    This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in

  2. Radiation of long and high power arcs (United States)

    Cressault, Y.; Bauchire, J. M.; Hong, D.; Rabat, H.; Riquel, G.; Sanchez, F.; Gleizes, A.


    The operators working on electrical installations of low, medium and high voltages can be accidentally exposed to short-circuit arcs ranging from a few kA to several tens of kA. To protect them from radiation, according to the exposure limits, we need to characterize the radiation emitted by the powerful arc. Therefore, we have developed a general experimental and numerical study in order to estimate the spectral irradiance received at a given distance from the arc. The experimental part was based on a very long arc (up to 2 m) with high ac current (between 4 and 40 kA rms, duration 100 ms) using 3 kinds of metallic contacts (copper, steel and aluminium). We measured the irradiance received 10m from the axis of the arc, and integrated on 4 spectral intervals corresponding to the UV, visible, IRA  +  B and IRC. The theoretical part consisted of calculating the radiance of isothermal plasmas in mixtures of air and metal vapour, integrated over the same spectral intervals as defined in the experiments. The comparison between the theoretical and experimental results has allowed the defining of three isothermal radiation sources whose combination leads to a spectral irradiation equivalent to the experimental one. Then the calculation allowed the deduction of the spectral description of the irradiance over all the wavelength range, between 200 nm and 20 μm. The final results indicate that the influence of metal is important in the visible and UVA ranges whereas the IR radiation is due to the air plasma and surrounding hot gas and fumes.

  3. High Power Amplifier and Power Supply (United States)

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew


    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  4. Linear and nonlinear filters under high power microwave conditions

    Directory of Open Access Journals (Sweden)

    F. Brauer


    Full Text Available The development of protection circuits against a variety of electromagnetic disturbances is important to assure the immunity of an electronic system. In this paper the behavior of linear and nonlinear filters is measured and simulated with high power microwave (HPM signals to achieve a comprehensive protection against different high power electromagnetic (HPEM threats.

  5. Terahertz radiation source using a high-power industrial electron ...

    Indian Academy of Sciences (India)

    We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial ...

  6. In-volume heating using high-power laser diodes

    NARCIS (Netherlands)

    Denisenkov, V.S.; Kiyko, V.V.; Vdovin, G.V.


    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface

  7. Improved cutting performance in high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove


    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  8. Advanced Propulsion Physics Lab: Eagleworks Investigations (United States)

    Scogin, Tyler


    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  9. State of charge estimation of high power lithium iron phosphate cells (United States)

    Huria, T.; Ludovici, G.; Lutzemberger, G.


    This paper describes a state of charge (SOC) evaluation algorithm for high power lithium iron phosphate cells characterized by voltage hysteresis. The algorithm is based on evaluating the parameters of an equivalent electric circuit model of the cell and then using a hybrid technique with adequate treatment of errors, through an additional extended Kalman filter (EKF). The model algorithm has been validated in terms of effectiveness and robustness by several experimental tests.

  10. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, Malcolm; Friedman, Herbert W.


    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  11. Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery. (United States)

    Lee, Dong Un; Fu, Jing; Park, Moon Gyu; Liu, Hao; Ghorbani Kashkooli, Ali; Chen, Zhongwei


    Herein, a proof-of-concept of novel hybrid rechargeable battery based on electrochemical reactions of both nickel-zinc and zinc-air batteries is demonstrated using NiO/Ni(OH)2 nanoflakes self-assembled into mesoporous spheres as the active electrode material. The hybrid battery operates on two sets of fundamentally different battery reactions combined at the cell level, unlike in other hybrid systems where batteries of different reactions are simply connected through an external circuitry. As a result of combining nickel-zinc and zinc-air reactions, the hybrid battery demonstrates both remarkably high power density (volumetric, 14 000 W L(-1); gravimetric, 2700 W kg(-1)) and energy density of 980 W h kg(-1), significantly outperforming the performances of a conventional zinc-air battery. Furthermore, the hybrid battery demonstrates excellent charge rate capability up to 10 times faster than the rate of discharge without any capacity and voltage degradations, which makes it highly suited for large-scale applications such as electric vehicle propulsion and smart-grid energy storage.

  12. Design and cost study for development of lead--acid batteries suitable for electric vehicle propulsion. Final report. [Goals of 60 Wh/kg and 1000 cycles

    Energy Technology Data Exchange (ETDEWEB)

    Weinlein, C E


    A design for an improved state-of-the-art (ISOA) battery is proposed in this report. It is believed that this ISOA design is the most efficient design achievable within the constraints of the ISOA battery development program. These constraints include realistic time and financial limitations, and compatibility with existing high-speed production equipment. The ISOA battery is in fact an improved, state-of-the-art lead--acid battery suitable for use in an electric vehicle. A durable, light-weight polypropylene container and cover complete with single-point watering and venting features are incorporated in the ISOA design. A number of materials and process parameters with profound affect on battery performance will be chosen only after extensive evaluation and cell testing. Development of an advanced lead--acid electric vehicle battery will involve the evaluation and application of effective forward concepts in the design of the battery. Many weight-saving designs will be incorporated. Significant improvements in active material efficiencies and integrity are required. The goals of 60 Wh/kg and 1000 life cycles are ambitious but achievable. The cycle life goal appears to be the most formidable. Investigations of charging equipment and parameters will be undertaken. The impact of manufacturing plants on the environment and natural resources is discussed. 3 figures, 23 tables. (RWR)

  13. Advanced Propulsion Research Interest in Materials for Propulsion (United States)

    Cole, John


    This viewgraph presentation provides an overview of material science and technology in the area of propulsion energetics. The authors note that conventional propulsion systems are near peak performance and further refinements in manufacturing, engineering design and materials will only provide incremental increases in performance. Energetic propulsion technologies could potential solve the problems of energy storage density and energy-to-thrust conversion efficiency. Topics considered include: the limits of thermal propulsion systems, the need for energetic propulsion research, emerging energetic propulsion technologies, materials research needed for advanced propulsion, and potential research opportunities.

  14. High-performance batteries for stationary energy storage and electric-vehicle propulsion. Progress report, October--December 1976. [Li--Al/LiCl--KCl/FeS or FeS/sub 2/, operate at 400 to 450 C

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P.A.; Yao, N.P.; Steunenberg, R.K.; Chilenskas, A.A.; Gay, E.C.; Battles, J.E.; Hornstra, F.; Miller, W.E.; Roche, M.F.; Shimotake, H.


    These batteries are being developed for electric vehicle propulsion and for stationary energy storage applications. The present battery cells, which operate at 400 to 450/sup 0/C, are of a vertically oriented, prismatic design with a central positive electrode of FeS or FeS/sub 2/, two facing negative electrodes of lithium--aluminum alloy, and an electrolyte of molten LiCl--KCl. Testing and evaluation of industrially fabricated cells is continuing. During this period, Li--Al/FeS and Li--Al/FeS/sub 2/ cells from Eagle-Picher Industries were tested, and tests of Li--Al/FeS cells from Gould Inc. were initiated. The cells are tested individually and in parallel and series battery configurations. These tests provide information on the effects of cell design modifications and alternative materials. Improved electrode and cell designs are being developed and tested at ANL, and the more promising designs are incorporated in the industrially fabricated cells. Among the concepts receiving major attention are carbon-bonded positive electrodes, scaled-up stationary energy storage cell designs, additives to extend electrode lifetime, and alternative electrode separators. The materials development efforts include the development of a new lightweight electrical feedthrough; investigations of new separator materials (e.g.,Y/sub 2/O/sub 3/ powder, Y/sub 2/O/sub 3/ felt, and porous, rigid ceramics); corrosion tests of materials for cell components; and postoperative examinations of cells. The cell chemistry studies were directed to discharge mechanisms of FeS electrodes, emf measurements of the LiAl/FeS/sub 2/ couple at various states of discharge, and studies of other transition-metal sulfides as positive-electrode materials. The advanced battery effort mainly concerned the use of calcium alloys for negative electrode and transition metal sulfides or oxides for the positive electrode. 13 figures, 18 tables.

  15. Laboratory Facilities and Measurement Techniques for Beamed-Energy-Propulsion Experiments in Brazil (United States)

    de Oliveira, Antonio Carlos; Chanes Júnior, José Brosler; Cordeiro Marcos, Thiago Victor; Pinto, David Romanelli; Santos Vilela, Renan Guilherme; Barros Galvão, Victor Alves; Mantovani, Arthur Freire; da Costa, Felipe Jean; dos Santos Assenção, José Adeildo; dos Santos, Alberto Monteiro; de Paula Toro, Paulo Gilberto; Sala Minucci, Marco Antonio; da Silveira Rêgo, Israel; Salvador, Israel Irone; Myrabo, Leik N.


    Laser propulsion is an innovative concept of accessing the space easier and cheaper where the propulsive energy is beamed to the aerospace vehicle in flight from ground—or even satellite-based high-power laser sources. In order to be realistic about laser propulsion, the Institute for Advanced Studies of the Brazilian Air Force in cooperation with the United States Air Force and the Rensselaer Polytechnic Institute are seriously investigating its basic physics mechanisms and engineering aspects at the Henry T. Hamamatsu Laboratory of Hypersonic and Aerothermodynamics in São José dos Campos, Brazil. This paper describes in details the existing facilities and measuring systems such as high-power laser devices, pulsed-hypersonic wind tunnels and high-speed flow visualization system currently utilized in the laboratory for experimentation on laser propulsion.

  16. High-power IR laser in SMT package (United States)

    Pritsch, Benedikt; Behringer, Martin; Arzberger, Markus; Wiesner, Christoph; Fehse, Robin; Heerlein, Jörg; Maric, Josip; Giziewicz, Wojciech


    Laser dies in an optical power range of 1-3 Watts are widely assembled in popular TO- packages. TO-packages suffer from high thermal resistance and limited output power. Bad thermal contact between circuit boards and TO-devices can cause overheating of laser chips, significantly reducing the operating life time. We developed a compact high heat-load SMT package for an optical power up to 7 Watts in CW operation with good life time results. The new package for high power laser chips combines highly efficient heat dissipation with Surface-mount technology. A Direct-Bonded-Copper (DBC) substrate acts as a base plate for the laser chip and heat sink. The attached frame is used for electrical contacting and acts as beam reflector where the laser light is reflected at a 45° mirror. In the application the DBC base plate of the SMT-Laser is directly soldered to a Metal-Core-PCB by reflow soldering. The overall thermal resistance from laser chip to the bottom of a MC-PCB was measured as low as 2.5 K/W. The device placement process can be operated by modern high-speed mounting equipment. The direct link between device and MC-PCB allows CW laser operation up to 6-7 watts at wavelengths of 808nm to 940nm without facing any overheating symptom like thermal roll over. The device is suitable for CW and QCW operation. In pulsed operation short rise and fall times of <2ns have been demonstrated. New application fields like infrared illumination for sensing purposes in the automotive industry and 3D imaging systems could be opened by this new technology.

  17. Hypersonic Missile Propulsion System

    National Research Council Canada - National Science Library

    Kazmar, Richard


    .... A supersonic combustion ramjet (scramjet) database was developed using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current development of hydrocarbon scramjets...

  18. Fuel Effective Photonic Propulsion (United States)

    Rajalakshmi, N.; Srivarshini, S.


    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  19. High Power Uplink Amplifier for Deep Space Communications Project (United States)

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  20. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    . A detailed analysis of dominant loss factors in high power converters for low voltage applications is presented. The analysis concludes that: • Power transformers for low voltage high power, if properly designed, will have extremely low leakage inductance. • If optimally designed, boost converters......The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, if a converter is properly designed, primary side voltage clamp circuits will not even work in low voltage high power converters. • Very high conversion efficiency can be achieved. Peak efficiency of 98% and worst case minimum efficiency of 96.8% are demonstrated on a 1.5 kW converter. The ability...

  1. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    and maximum output power. In chapter 3, a detailed analysis of dominant loss factors in high power converters for low voltage applications is presented. The analysis concludes that: • Power transformers for low voltage high power, if properly designed, will have extremely low leakage inductance......The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based....... • If optimally designed, boost converters will be much more efficient than comparable buck type converters for high power low voltage applications. • The use of voltage clamp circuits to protect primary switches in boost converters is no longer needed for device protection. On the other hand...

  2. Overview on the high power excimer laser technology (United States)

    Liu, Jingru


    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  3. High Power Room Temperature Terahertz Local Oscillator Project (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  4. Present and Future Trends in High Power Generation

    NARCIS (Netherlands)

    Heijster, R.M.E.M. van; Schouten, J.M.


    Modern warfare requires high levels of microwave power for various applications. Semiconductors are only suitable for low and medium power levels, for high power generation microwave tubes are still the most effective solution.

  5. A new generation of naval propulsion systems; Une nouvelle generation de systemes de propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Bricknell, D. [CEng MRINA BSc Hons (United Kingdom); Rolls-Royce Ltd., Bristol (United Kingdom)


    Today, the naval propulsion technology (engines, transmission systems, shaft lines..) has made lot of progress and allows to answer all requirements of battle ships. This article describes some of the recent developments and products available and proposes some configuration systems for the different type of surface ships: MT30 and WR-21 gas turbines, combined diesel or gas turbines (Codog), combined diesel and gas turbines (Codag), combined diesel electric and gas (Codlag), all-electric systems. (J.S.)

  6. High power laser workover and completion tools and systems (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F


    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  7. Apparatus for advancing a wellbore using high power laser energy (United States)

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.


    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  8. High power laser downhole cutting tools and systems (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F


    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  9. Thermally induced nonlinear mode coupling in high power fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas T.


    Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W.......Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W....

  10. Electric-hybrid-vehicle simulation (United States)

    Pasma, D. C.

    The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.

  11. Australian Science and Technology with Relevance to Beamed Energy Propulsion (United States)

    Froning, H. David


    Although Australia has no Beamed Energy Propulsion programs at the present time, it is accomplishing significant scientific and technological activity that is of potential relevance to Beamed Energy Propulsion (BEP). These activities include: continual upgrading and enhancement of the Woomera Test Facility, Which is ideal for development and test of high power laser or microwave systems and the flight vehicles they would propel; collaborative development and test, with the US and UK of hypersonic missiles that embody many features needed by beam-propelled flight vehicles; hypersonic air breathing propulsion systems that embody inlet-engine-nozzle features needed for beam-riding agility by air breathing craft; and research on specially conditioned EM fields that could reduce beamed energy lost during atmospheric propagation.

  12. NASA's Evolutionary Xenon Thruster: The NEXT Ion Propulsion System for Solar System Exploration (United States)

    Pencil, Eric J.; Benson, Scott W.


    This viewgraph presentation reviews NASA s Evolutionary Xenon Thruster (NEXT) Ion Propulsion system. The NEXT project is developing a solar electric ion propulsion system. The NEXT project is advancing the capability of ion propulsion to meet NASA robotic science mission needs. The NEXT system is planned to significantly improve performance over the state of the art electric propulsion systems, such as NASA Solar Electric Propulsion Technology Application Readiness (NSTAR). The status of NEXT development is reviewed, including information on the NEXT Thruster, the power processing unit, the propellant management system (PMS), the digital control interface unit, and the gimbal. Block diagrams NEXT system are presented. Also a review of the lessons learned from the Dawn and NSTAR systems is provided. In summary the NEXT project activities through 2007 have brought next-generation ion propulsion technology to a sufficient maturity level.

  13. The interaction of high-power lasers with plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Eliezer, S


    This book deals with the fundamental physics of numerous plasma processes that occur during laser plasma interactions. The subject matter is related to both basic plasma physics and applied physics. The author starts with the essentials of high power lasers whose duration ranges from nanoseconds to femtoseconds, and then builds up an introduction to plasma physics by describing ionization, well known transport coefficients (electrical and thermal conductivities, diffusion, viscosity, energy transport etc), Debye length, plasma oscillations and the properties of the laser induced plasma medium. The book contains plasma dynamical equations for describing the hydrodynamic and kinetic phenomena, and treating particle dynamics by computer simulation. The ponderomotive force is discussed for small amplitude electromagnetic fields in an unmagnetized plasma. However, for intense laser beams one should obtain new expressions for the relativistic ponderomotive force, which are totally absent from this book. Furthermore, in laser plasma interactions strong magnetic fields are produced which will drastically modify the relativistic ponderomotive force expressions. The physics of collisional absorption of electromagnetic waves and their propagation in a nonuniform unmagnetized plasma has been elegantly described. The phenomena of the resonance absorption of laser light is also discussed. Simple models for the parametric processes are developed, while there are no discussions of cavitons/envelope solitons. The latter are usually regarded as possible nonlinear states of the modulational/filamentational instabilities. Rather, the author presents a description of a K-dV equation for nonlinear ion-acoustic waves without the laser field. The description of a non-envelope ion-acoustic soliton has already appeared in many plasma physics textbooks. The book contains a short chapter on the self-similar plasma expansion in vacuum, double layers, and charged particle acceleration. However

  14. NEPSTP Propulsion Module Design and Flight Test Plans (United States)

    Herbert, Gregg A.; Day, Michael


    The Nuclear Electric Propulsion Space Test Program (NEPSTP) is a Ballistic Missile Defense Organization (BMDO) sponsored technology demonstration of a Russian space nuclear reactor and an international complement of xenon electric thrusters. The mission is described along with some of the design accomplishments to date. The spacecraft description includes discussions on the spacecraft bus and the propulsion module which supports the experimental electric thrusters. A discussion on the basic structural, thermal and electronic designs of the propulsion module is included. The baseline thruster set is presented highlighting the Russian, U.S. and UK participation. Ground and flight test plans for the electric thrusters are described and several of the key thruster/spacecraft integration and operational issues are addressed. The NEPSTP reached a preliminary design level in all significant areas in 1993. The unique opportunities for scientific and engineering demonstration of EP technologies and for international collaboration on a major space program are elaborated.

  15. Reverse electrowetting -- a new approach to high-power harvesting of mechanical energy (United States)

    Krupenkin, Tom; Taylor, J. Ashley; Manakasettharn, Supone


    Over the last decade electrical batteries have emerged as a critical bottleneck in portable electronics development. High-power mechanical energy harvesting can potentially provide a valuable alternative to the use of batteries, but until now, its adoption has been hampered by the lack of an efficient mechanical-to-electrical energy conversion technology. In this talk a novel mechanical-to-electrical energy conversion method is discussed. The method is based on reverse electrowetting (REWOD) -- a novel microfluidic phenomenon. Electrical energy generation is achieved through the interaction of arrays of moving microscopic liquid droplets with novel nanometer-thick multilayer dielectric films. Advantages of this process include the production of high power densities, up to 1 KW sq. m; the ability to directly utilize a very broad range of mechanical forces and displacements; and the ability to directly output a broad range of currents and voltages, from several volts to tens of volts. We hope that the REWOD-based energy harvesting can provide a novel technology platform for a broad range of new electronic products and enable reduction of cost, pollution, and other problems associated with the wide-spread battery use.

  16. Comparison of electrically driven lasers for space power transmission (United States)

    Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.


    High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.

  17. Assessments of Hollow Cathode Wear in the Xenon Ion Propulsion System (XIPs(c)) by Numerical Analyses and Wear Tests (United States)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.


    The standard approach presently followed by NASA to qualify electric propulsion for the required mission throughput has been based largely on life tests, which can be costly and time consuming. Revised electric propulsion lifequalification approaches are being formulated that combine analytical and/or computational methods with (shorter-duration) wear tests. As a model case, a wear test is being performed at JPL to assess the lifetime of the discharge hollow cathode in the Xenon Ion Propulsion System (XIPS(c)), a 25-cm ion engine developed by L-3 Communications Electron Technologies, Inc. for commercial applications. Wear and plasma data accumulated throughout this life-assessment program are being used to validate the existing 2-D hollow cathode code OrCa2D. We find that the OrCa2D steady-state solution predicts very well the time-averaged plasma data and the keeper voltage after 5500 hrs of operation in high-power mode. When the wave motion that occurs naturally in these devices is accounted for, based on an estimate of the maximum wave amplitude, the molybdenum-keeper erosion profile observed in the XIPS(c) discharge cathode is also reproduced within a factor of two of the observation. When the same model is applied to predict the erosion of a tantalum keeper we find that erosion is reduced by more than two orders of magnitude compared to the molybdenum keeper due the significantly lower sputtering yield of tantalum. A tantalum keeper would therefore allow keeper lifetimes that greatly exceed the present requirements for deep-space robotic missions considered by NASA. Moreover, such large reduction of the erosion renders the largest uncertainties in the models, which are associated with the wave amplitude estimates and the electron transport model, negligible.

  18. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru


    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds

  19. Evaluation of high-voltage, high-power, solid-state remote power controllers for amps (United States)

    Callis, Charles P.


    The Electrical Power Branch at Marshall Space Flight Center has a Power System Development Facility where various power circuit breadboards are tested and evaluated. This project relates to the evaluation of a particular remote power controller (RPC) energizing high power loads. The Facility equipment permits the thorough testing and evaluation of high-voltage, high-power solid-state remote power controllers. The purpose is to evaluate a Type E, 30 Ampere, 200 V dc remote power controller. Three phases of the RPC evaluation are presented. The RPC is evaluated within a low-voltage, low-power circuit to check its operational capability. The RPC is then evaluated while performing switch/circuit breaker functions within a 200 V dc, 30 Ampere power circuit. The final effort of the project relates to the recommended procedures for installing these RPC's into the existing Autonomously Managed Power System (AMPS) breadboard/test facility at MSFC.

  20. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Energy Technology Data Exchange (ETDEWEB)

    Borchard, Philipp


    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.