WorldWideScience

Sample records for high-power continuous-wave cw

  1. Resonance control for a cw [continuous wave] accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1987-01-01

    A resonance-control technique is described that has been successfully applied to several cw accelerating structures built by the Los Alamos National Laboratory for the National Bureau of Standards and for the University of Illinois. The technique involves sensing the rf fields in an accelerating structure as well as the rf power feeding into the cavity and, then, using the measurement to control the resonant frequency of the structure by altering the temperature of the structure. The temperature of the structure is altered by adjusting the temperature of the circulating cooling water. The technique has been applied to continuous wave (cw) side-coupled cavities only but should have applications with most high-average-power accelerator structures. Some additional effort would be required for pulsed systems

  2. Preliminary design of high-power wave-guide/transmission system for multimegawatt CW requirements of 100 MeV proton Linac

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Wanmode, Y.D.; Hannurkar, P.R.

    2002-01-01

    Development of a 100 MeV CW proton Linac has been planned at CAT. This Linac will be needing CW rf power in the frequency ranges of 350 MHz and 700 MHz for its RFQ and DTL/CCDTL/SFDTL structures respectively. The power to the accelerating structures will be produced by either 1 MW CW or 250 kW CW klystron/inductive output tubes (HOM IOTs). The power needed by respective feed points in the structure is max. 250 kW which will be powered by splitting the power from 1 MW klystron/klystrode into four channels by using a wave-guide system. In case of using 250 kW tubes the power to the structures will be provided directly from each tube. Two types of wave-guide transmission system have been considered, viz WR 2300 for 350 MHz rf needs and WR 1500 for 700 MHz rf needs. The typical wave-guide system has been designed using the 1 MW CW klystron followed by wave-guide filter, dual directional coupler, high-power circulator, three 3 dB magic TEE power dividers to split the main channel into four equal channels of 250 kW each. Each individual channel has dual directional couplers, flexible wave-guide sections and high power ceramic vacuum window. The circulator and each power divider is terminated into the isolated ports by high power CW loads. Out of the four channels three channels have phase shifters. Present paper describes the technological aspects and design specifications-considerations for these stringent requirements. (author)

  3. High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal

    International Nuclear Information System (INIS)

    Qin, L J; Tang, D Y; Xie, G Q; Dong, C M; Jia, Z T; Tao, X T

    2008-01-01

    We report on the continuous wave (CW) and passive Q-switching performance of a high-power diode-pumped Nd:GGG laser. A CW output power of 7.20 W was obtained under an absorbed pump power of 14.97 W, which gives a slop efficiency of 52.7%. With a Cr 4+ doped yttrium aluminum garnet crystal as the saturable absorber, the shortest passively Q-switched pulse width, largest pulse energy, and highest peak power achieved were 7.7 ns, 126.25 μJ, and 15.5 kW, respectively

  4. High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.

    Science.gov (United States)

    Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2012-12-15

    We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775-807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125-3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8  W over 77% of the tuning range together with >3  W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.

  5. High power CW linac in PNC

    International Nuclear Information System (INIS)

    Toyama, S.; Wang, Y.L.; Emoto, T.

    1994-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is developing a high power electron linac for various applications. The electron beam is accelerated in CW operation to get maximum beam current of 100 mA and energy of 10 MeV. Crucial components such as a high power L-band klystron and a high power traveling wave resonant ring (TWRR) accelerator guides were designed and manufactured and their performance were examined. These design and results from the recent high power RF tests were described in this paper. (author)

  6. Eighth CW and High Average Power RF Workshop

    CERN Document Server

    2014-01-01

    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. (www.elettra.eu). CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  7. Continuous wave power scaling in high power broad area quantum cascade lasers

    Science.gov (United States)

    Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.

    2018-02-01

    Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  8. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  9. CW operation of high-power blue laser diodes with polished facets on semi-polar ( 20 2 ¯ 1 ¯ ) GaN substrates

    KAUST Repository

    Pourhashemi, A.

    2016-10-11

    Continuous wave (CW) operation of high-power blue laser diodes (LDs) with polished facets on semi-polar (202̅1̅) gallium nitride (GaN) substrates is demonstrated. Ridge waveguide LDs were fabricated using indium GaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 452 nm, the peak two-facet CW output power from an LD with uncoated facets was 1.71 W at a current of 3 A, corresponding to an optical power density of 32.04 MW/cm2 on each facet. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high-power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high-power CW semi-polar LDs.

  10. CW operation of high-power blue laser diodes with polished facets on semi-polar ( 20 2 ¯ 1 ¯ ) GaN substrates

    KAUST Repository

    Pourhashemi, A.; Farrell, R.M.; Cohen, D.A.; Becerra, D.L.; DenBaars, S.P.; Nakamura, S.

    2016-01-01

    Continuous wave (CW) operation of high-power blue laser diodes (LDs) with polished facets on semi-polar (202̅1̅) gallium nitride (GaN) substrates is demonstrated. Ridge waveguide LDs were fabricated using indium GaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 452 nm, the peak two-facet CW output power from an LD with uncoated facets was 1.71 W at a current of 3 A, corresponding to an optical power density of 32.04 MW/cm2 on each facet. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high-power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high-power CW semi-polar LDs.

  11. High-Temperature Monitoring of Refractory Wall Recession Using Frequency-Modulated Continuous-wave (FM-CW) Radar Techniques

    International Nuclear Information System (INIS)

    Varghese, B.; DeConick, C.; Cartee, G.; Zoughi, R.; Velez, M.; Moore, R.

    2005-01-01

    Furnaces are among the most crucial components in the glass and metallurgical industry. Nowadays, furnaces are being operated at higher temperatures and for longer periods of time thus increasing the rate of wear on the furnace refractory lining. Consequently, there is a great need for a nondestructive tool that can accurately measure refractory wall thickness at high temperatures. In this paper the utility of a frequency-modulated continuous-wave (FM-CW) radar is investigated for this purpose

  12. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  13. High power diode-pumped continuous wave and Q-switch operation of Tm,Ho:YVO4 laser

    International Nuclear Information System (INIS)

    Yao, B Q; Li, G; Meng, P B; Zhu, G L; Ju, Y L; Wang, Y Z

    2010-01-01

    High power diode-pumped continuous wave (CW) and Q-switch operation of Tm,Ho:YVO 4 laser is reported. Using two Tm,Ho:YVO 4 rods in a single cavity, up to 20.2 W of CW output lasing at 2054.7 nm was obtained under cryogenic temperature of 77 K with an optical to optical conversion efficiency of 32.9%. For Q-switch operation, up to 19.4 W of output was obtained under 15 kHz pulse repetition frequency (PRF) with a minimum pulse width of 24.2 ns. In addition, different pulse repetition frequencies of Q-switch operation with 10.0 kHz, 12.5 kHz and 15.0 kHz were investigated comparatively

  14. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.

    Science.gov (United States)

    Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K

    2015-01-01

    We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5  μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3  MHz and power >100  mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15  nm·cm, respectively.

  15. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  16. Continuous-wave terahertz light from optical parametric oscillators

    International Nuclear Information System (INIS)

    Sowade, Rosita

    2010-12-01

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  17. Mathematical characterization of continuous wave infrared stimulated luminescence signals (CW-IRSL) from feldspars

    International Nuclear Information System (INIS)

    Pagonis, V.; Phan, Huy; Goodnow, Rebecca; Rosenfeld, Sara; Morthekai, P.

    2014-01-01

    Continuous-wave infrared stimulated luminescence signals (CW-IRSL) from feldspars have been the subject of many experimental studies, due to their importance in luminescence dating and dosimetry. Accurate mathematical characterization of the shape of these CW-IRSL signals in feldspars is of practical and theoretical importance, especially in connection with “anomalous fading” of luminescence signals in dating studies. These signals are known to decay in a non-exponential manner and their exact mathematical shape as a function of stimulation time is an open research question. At long stimulation times the IRSL decay has been shown experimentally to follow a power law of decay, and previous researchers have attempted to fit the overall shape of these signals empirically using the well known Becquerel function (or compressed hyperbola decay law). This paper investigates the possibility of fitting CW-IRSL curves using either the Becquerel decay law, or a recently developed analytical equation based on localized electronic recombination of donor–acceptor pairs in luminescent materials. It is shown that both mathematical approaches can give excellent fits to experimental CW-IRSL curves, and the precision of the fitting process is studied by analyzing a series of curves measured using a single aliquot of a feldspar sample. Both fitting equations are solutions of differential equations involving numerically similar time dependent recombination probabilities k(t). It is concluded that both fitting equations provide approximately equivalent mathematical descriptions of the CW-IRSL curves in feldspars, and can be used as mathematical representations of the shape of CW-IRSL signals. - Highlights: • Feldspar CW-IRSL curves fitted using Becquerel decay law and new analytical equation. • Both mathematical approaches give excellent fits to experimental CW-IRSL curves. • Series of experimental CW-IRSL curves analyzed using both fitting expressions. • The time

  18. High-power diode-pumped Nd:Lu2O3 crystal continuous-wave thin-disk laser at 1359 nm

    International Nuclear Information System (INIS)

    Li, J H; Liu, X H; Wu, J B; Zhang, X; Li, Y L

    2012-01-01

    We present for the first time, to the best of our knowledge, a 1359 nm continuous-wave (CW) Nd:Lu 2 O 3 laser based on the 4 F 5/2 – 4 F 13/2 transition. The use of a pump module with 16 passes through the crystal allowed the realization of a Nd:Lu 2 O 3 thin-disk laser with 3.52 W of CW output power. The slope efficiency with respect to the incident pump power was 21.4%, and the fluctuation of the output power was better than 3.55% in the given 2 hour. The beam quality factor M 2 is 1.14 and 1.18 for tangential direction and sagittal direction, respectively

  19. Preliminary design of high-power wave-guide/transmission system

    Indian Academy of Sciences (India)

    ... CW klystron followed by wave-guide filter, dual directional coupler, high-power circulator, three 3 dB magic TEE power dividers to split the main channel into four equal channels of 250 kW each. Each individual channel has dual directional couplers, flexible wave-guide sections and high power ceramic vacuum window.

  20. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  1. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... In this article, a review of Yb-doped CW and pulsed fibre lasers along with our study on self-pulsing dynamics in CW fibre lasers to find its role in high-power fibre laser development and the physical ... Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India ...

  2. Novel packaging for CW and QCW diode laser modules for operation with high power and duty cycles

    Science.gov (United States)

    Fassbender, Wilhelm; Lotz, Jens; Kissel, Heiko; Biesenbach, Jens

    2018-02-01

    Continuous wave (CW) and quasi-continuous wave (QCW) operated diode laser bars and arrays have found a wide range of industrial, medical, scientific, military and space applications with a broad variety in wavelength, pulse energy, pulse duration and beam quality. Recent applications require even higher power, duty cycles and power density. The heat loss will be dissipated by conductive cooling or liquid cooling close to the bars. We present the latest performance and reliability data of two novel high-brightness CW and QCW arrays of customized and mass-production modules, in compact and robust industry design for operation with high power and high duty cycles. All designs are based on single diode packages consisting of 10mm laser bars, soft or hard soldered between expansion matched submounts. The modular components cover a wide span of designs which differ basically in water/conduction (active/passive) cooled, single, linear (horizontal and vertical) arranged designs, as well as housed and unhoused modules. The different assembling technologies of active and passive cooled base plates affect the heat dissipation and therefore the reachable power at different QCW operating conditions, as well as the lifetime. As an example, a package consisting of 8 laser diodes, connected to a 28.8*13.5*7.0mm3 DCB (direct copper bonded) submount, passively or actively cooled is considered. This design is of particular interest for mobile applications seamless module to module building system, with an infinite number of laser bars at 1.7mm pitch. Using 940nm bars we can reach an optical output power per bar of 450W at 25°C base plate temperature with 10Hz, 1.2% duty cycle and 1.2ms pulse duration. As an additional example, micro channel coolers can be vertically stacked up to 50 diodes with a 1,15mm pitch. This design is suitable for all applications, demanding also compactness and light weight and high power density. Using near infrared bars and others, we can reach an optical

  3. Design of a New Water Load for S-band 750 kW Continuous Wave High Power Klystron Used in EAST Tokamak

    Science.gov (United States)

    Liu, Liang; Liu, Fukun; Shan, Jiafang; Kuang, Guangli

    2007-04-01

    In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 oC at the highest power level.

  4. Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, L.

    2016-01-01

    We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain is charac......We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain...... bandwidth. However, an inverse scaling of the TOD with the dispersion fluctuations, leads to different CW-optimized fibers, which depend only on the even dispersion-orders....

  5. Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet

    Science.gov (United States)

    Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian

    The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.

  6. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    International Nuclear Information System (INIS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.

    2015-01-01

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications

  7. A computer control system for the PNC high power cw electron linac. Concept and hardware

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, T.; Hirano, K.; Takei, Hayanori; Nomura, Masahiro; Tani, S. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kato, Y.; Ishikawa, Y.

    1998-06-01

    Design and construction of a high power cw (Continuous Wave) electron linac for studying feasibility of nuclear waste transmutation was started in 1989 at PNC. The PNC accelerator (10 MeV, 20 mA average current, 4 ms pulse width, 50 Hz repetition) is dedicated machine for development of the high current acceleration technology in future need. The computer control system is responsible for accelerator control and supporting the experiment for high power operation. The feature of the system is the measurements of accelerator status simultaneously and modularity of software and hardware for easily implemented for modification or expansion. The high speed network (SCRAM Net {approx} 15 MB/s), Ethernet, and front end processors (Digital Signal Processor) were employed for the high speed data taking and control. The system was designed to be standard modules and software implemented man machine interface. Due to graphical-user-interface and object-oriented-programming, the software development environment is effortless programming and maintenance. (author)

  8. Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation

    Science.gov (United States)

    Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy

    2018-01-01

    Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  9. Slot-coupled CW standing wave accelerating cavity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng

    2017-05-16

    A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.

  10. High-power and highly reliable 638-nm band BA-LD for CW operation

    Science.gov (United States)

    Nishida, Takehiro; Kuramoto, Kyosuke; Abe, Shinji; Kusunoki, Masatsugu; Miyashita, Motoharu; Yagi, Tetsuya

    2018-02-01

    High-power laser diodes (LDs) are strongly demanded as light sources of display applications. In multiple spatial light modulator-type projectors or liquid crystal displays, the light source LDs are operated under CW condition. The high-power 638-nm band broad-area LD for CW operation was newly developed. The LD consisted of two stripes with each width of 75 μm to reduce both an optical power density at a front facet and a threshold current. The newly improved epitaxial technology was also applied to the LD to suppress an electron overflow from an active layer. The LD showed superior output characteristics, such as output of 1.77 W at case temperature of 55 °C with wall plug efficiency (WPE) of 23%, which was improved by 40% compared with the current product. The peak WPE at 25 °C reached 40.6% under the output power of 2.37 W, CW, world highest.

  11. A diode-end-pumped Nd:GYSGG continuous wave laser at 1104 nm

    International Nuclear Information System (INIS)

    Shen, B J; Kang, H X; Zhang, C G; Chen, P; Gao, R L; Liang, J; Gao, H J; Zhang, Q L; Sun, D L; Yin, S T; Luo, J Q

    2013-01-01

    The continuous wave (CW) laser performance of Nd:GYSGG at 1104 nm is investigated for the first time, to our knowledge. A CW laser output power of 4.7 W is obtained when the pump power of the 808 nm fiber coupled laser diode is 19.1 W, corresponding to a conversion efficiency of 24.6% and slope efficiency of 37%. (paper)

  12. Characterization of High-power Quasi-cw Laser Diode Arrays

    Science.gov (United States)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  13. Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation

    DEFF Research Database (Denmark)

    Larsen, Casper; Sørensen, Simon Toft; Noordegraaf, Danny

    2013-01-01

    Continuous wave (CW) pumped supercontinuum generation depends strongly on the zero-dispersion wavelength (ZDW) of the fiber due to the low peak power. Here we study several photonic crystal fibers by use of a gain-switched CW pump laser and investigate for what power level the supercontinuum...

  14. High-power CW LINAC for food irradiation

    International Nuclear Information System (INIS)

    Alimov, A.S.; Knapp, E.A.; Shvedunov, V.I.; Trower, W.P.

    2000-01-01

    The continuing high profile food poisoning incidents are beginning to attract food processors using electron and γ-ray sterilization technologies. The present method of choice uses radioactive isotopes but high-power electron particle accelerators are proving an increasingly attractive alternative. We are developing a family of compact industrial continuous wave linear accelerators which produce electrons with energies from 600 keV in increments of ∼600 keV and with beam power of 30 kW increasing in increments of 30 kW. Here, we describe the performance of our 1st section that accelerates 15 keV gun electrons to relativistic energies and then we sketch the design of the less demanding subsequent sections that we are now constructing

  15. Cw hyper-Raman laser and four-wave mixing in atomic sodium

    Science.gov (United States)

    Klug, M.; Kablukov, S. I.; Wellegehausen, B.

    2005-01-01

    Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.

  16. Frequency-Modulated Continuous-Wave Fm-Cw Radar for Evaluation of Refractory Structures Used in Glass Manufacturing Furnaces

    Science.gov (United States)

    Carroll, B.; Kharkovsky, S.; Zoughi, R.; Limmer, R.

    2009-03-01

    A frequency-modulated continuous-wave (FM-CW) handheld radar operating in the frequency range of 8-18 GHz, resulting in a relatively fine range resolution was designed and constructed for on-site inspection of refractory structure thickness. This paper presents the design of the radar and the results of measurements conducted on typical refractory furnace structures assembled in the laboratory.

  17. Continuous-wave ceramic Nd:YAG laser at 1123 nm

    International Nuclear Information System (INIS)

    Zhang, S S; Wang, Q P; Zhang, X Y; Cong, Z H; Fan, S Z; Liu, Z J; Sun, W J

    2009-01-01

    Ceramic Nd:YAG (cNd:YAG) materials are employed to generate 1123-nm laser. A fiber-coupled continuous-wave (CW) 808-nm diode laser is used as the pumping source. With an incident diode power of 26.1 W, a CW output power of up to 10.8 W is obtained with a 10-mm-long ceramic Nd:YAG rod (1.0 at.%-Nd-doped). The conversion efficiency from diode power to 1123-nm laser power is 41.4%. The laser performance of another 10-mm-long cNd:YAG rod with a Nd-doping concentration of 0.6 at.% is studied as a comparison

  18. Free-electron masers vs. gyrotrons prospects for high-power sources at millimeter and submillimeter wavelengths

    CERN Document Server

    Thumm, M K

    2002-01-01

    The possible applications of high-power millimeter (mm) and sub-mm waves from free-electron masers (FEMs) and gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power mm waves generated by long pulse or continuous wave (CW) gyrotron oscillators and short pulse very high-power FEMs in the areas of RF-plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as electron cyclotron resonance heating (28-170 GHz), electron cyclotron current drive , collective Thomson scattering , microwave transmission and heat-wave propagation experiments. Continuously frequency tunable FEMs could widen these fields of applications. Another important application of CW gyrotrons is industrial materials processing, e.g. sintering of high-performance functional and structural nanostructured ceramics. Sub-mm wave sources are employed in...

  19. Advances in High Power Calorimetric Matched Loads for Short Pulses and CW Gyrotrons

    International Nuclear Information System (INIS)

    Bin, W.M.; Bruschi, A.; Cirant, S.; Gandini, F.; Granucci, G.; Mellera, V.; Muzzini, V.; Nardone, A.; Sozzi, C.; Spinicchia, N.

    2006-01-01

    The development of high power gyrotrons for plasma physics research needs proper matched and calorimetric loads able to absorb and measure the power, which nowadays is foreseen to be as high as 2 MW during CW operations. To this end IFP/CNR has developed a family of matched loads useful in the mm-wave frequency band for applications ranging from a few ms to CW in pulse length. The different loads in the family, made of an integrating sphere with a partially reflecting coating on the inner wall, are characterized by having the same absorbing geometry for the incoming beam and a different heat removal system for the specific application. Some important advances have been recently achieved from the point of view of the uniformity of power distribution on the absorbing wall and of the load construction. With high precision achieved in the coating thickness a better control of the heating power distribution is possible by proper shaping of the local reflectivity, in addition to the shaping of the mirror dispersing the input beam. A more sophisticated model describing the power distribution has been developed, taking into account a variable thickness of the absorbing coating, the proper shape of the spreading mirror, the frequency of the incoming radiation and the shape of the input beam. Lower coating thickness is shown to be preferable, at equal local reflectivity, from the point of view of a lower peak temperature and thermal stress. The paper describes a load with variable coating thickness along the meridian of the sphere, showing a uniform power deposition on the inner walls. The cooling pipe is completely electroformed on the spherical copper shell, ensuring the maintenance of the correct curvature of the inner surface and a fast heat conduction from the absorbing coating to the water through the thin copper body. For CW use all heated parts of the load must be cooled and this is achieved by 16 electroformed spiral channels. Both short pulse loads (0.1-1 s) and

  20. A reliable cw Lyman-{alpha} laser source for future cooling of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Daniel, E-mail: kolbed@uni-mainz.de; Beczkowiak, Anna; Diehl, Thomas; Koglbauer, Andreas; Sattler, Matthias; Stappel, Matthias; Steinborn, Ruth; Walz, Jochen [Johannes Gutenberg-Universitaet, Institut fuer Physik (Germany)

    2012-12-15

    We demonstrate a reliable continuous-wave (cw) laser source at the 1 S-2 P transition in (anti)hydrogen at 121.56 nm (Lyman-{alpha}) based on four-wave sum-frequency mixing in mercury. A two-photon resonance in the four-wave mixing scheme is essential for a powerful cw Lyman-{alpha} source and is well investigated.

  1. A reliable cw Lyman-α laser source for future cooling of antihydrogen

    International Nuclear Information System (INIS)

    Kolbe, Daniel; Beczkowiak, Anna; Diehl, Thomas; Koglbauer, Andreas; Sattler, Matthias; Stappel, Matthias; Steinborn, Ruth; Walz, Jochen

    2012-01-01

    We demonstrate a reliable continuous-wave (cw) laser source at the 1 S–2 P transition in (anti)hydrogen at 121.56 nm (Lyman-α) based on four-wave sum-frequency mixing in mercury. A two-photon resonance in the four-wave mixing scheme is essential for a powerful cw Lyman-α source and is well investigated.

  2. Efficient continuous-wave eye-safe region signal output from intra-cavity singly resonant optical parametric oscillator

    International Nuclear Information System (INIS)

    Li Bin; Ding Xin; Sheng Quan; Yin Su-Jia; Shi Chun-Peng; Li Xue; Wen Wu-Qi; Yao Jian-Quan; Yu Xuan-Yi

    2012-01-01

    We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO 4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401–1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy

    Science.gov (United States)

    Kiessling, J.; Breunig, I.; Schunemann, P. G.; Buse, K.; Vodopyanov, K. L.

    2013-10-01

    We report a diffraction-limited photonic terahertz (THz) source with linewidth OP) gallium arsenide (GaAs) via intracavity frequency mixing between the two closely spaced resonating signal and idler waves of an optical parametric oscillator (OPO) operating near λ = 2 μm. The doubly resonant type II OPO is based on a periodically poled lithium niobate (PPLN) pumped by a single-frequency Yb:YAG disc laser at 1030 nm. We take advantage of the enhancement of both optical fields inside a high-finesse OPO cavity: with 10 W of 1030 nm pump, 100 W of intracavity power near 2 μm was attained with GaAs inside cavity. This allows dramatic improvement in terms of generated THz power, as compared to the state-of-the art CW methods. We achieved >25 μW of single-frequency tunable CW THz output power scalable to >1 mW with proper choice of pump laser wavelength.

  4. Resonance control for a CW accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1987-01-01

    This paper describes a resonance-control technique that has been successfully applied to several cw accelerating structures built by the Los Alamos National Laboratory for the National Bureau of Standards and for the University of Illinois. The technique involves sensing the rf fields in an accelerating structure as well as the rf power feeding into the cavity and, then, using the measurement to control the resonant frequency of the structure by altering the temperature of the structure. The temperature of the structure is altered by adjusting the temperature of the circulating cooling water. The technique has been applied to continuous wave (cw) side-coupled cavities only but should have applications with most high-average-power accelerator structures. Some additional effort would be required for pulsed systems

  5. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity

  6. High power millimeter-wave free electron laser based on recirculating electrostatic accelerator

    International Nuclear Information System (INIS)

    Lee, Byung-Cheol; Kim, Sun-Kook; Jeong, Young-Uk; Cho, Sung-Oh; Lee, Jongmin

    1995-01-01

    Progress in the development of a high power, millimeter-wave free electron laser driven by a recirculating electrostatic accelerator is reported. The energy and the current of electron beam are 430 keV and 2 A, respectively. The expected average output power is above 10 kW at the wavelength of 3-10 mm. Minimizing of the beam loss is a key issue for CW operation of the FEL with high efficiency. (author)

  7. The propagation of high power CW scanning electron beam in air

    International Nuclear Information System (INIS)

    Korenev, Sergey; Korenev, Ivan

    2002-01-01

    The question of propagation of high power electron beam in air presents the scientific and applied interests. The high power (80 kW) CW electron accelerator 'Rhodotron' with kinetic energy of electrons 5 and 10 MeV was used in the experiments. The experimental results for propagation of scanning electron beams in air are presented and discussed

  8. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  9. Quasi-continuous wave and continuous wave laser operation of Eu:KGd(WO4)2 crystal on a 5D0 → 7F4 transition

    International Nuclear Information System (INIS)

    Dashkevich, V I; Orlovich, V A; Bui, A A; Bagayev, S N; Vatnik, S M; Loiko, P A; Yumashev, K V; Kuleshov, N V; Pavlyuk, A A

    2015-01-01

    We report on the first demonstration of quasi-continuous wave (quasi-CW) and real CW room-temperature lasing on the 5 D 0  →  7 F 4 transition of Eu 3+ -doped material using a 25 at.%Eu 3+  : KGd(WO 4 ) 2 crystal pumped into the 7 F 1  →  5 D 1 transition by a diode-end-pumped Nd 3+  : KGd(WO 4 ) 2 /KTP green laser at 533.6 nm. The maximum CW output power of this laser at 702.3 nm is 5.3 mW with 1.4% green-to-red conversion efficiency. In quasi-CW operation mode with a 10% duty cycle, the peak power of ms long pulses reaches ∼54 mW, which corresponds to the optical conversion efficiency of 3.5%. (letter)

  10. Terraced-heterostructure large-optical-cavity AlGaAs diode laser - A new type of high-power CW single-mode device

    Science.gov (United States)

    Botez, D.; Connolly, J. C.

    1982-01-01

    A new terraced lateral wave confining structure is obtained by liquid phase epitaxy over channeled substrates misoriented perpendicular to the channels' direction. Single spatial and longitudinal mode CW operation is achieved to 50 mW from one facet, in large spot sizes (2 x 7.5 micron, 1/e squared points in intensity) and narrow beams (6 deg x 23 deg), full width half-power). At 70 C ambient temperature CW lasing is obtained to 15 mW from one facet. Weak mode confinement in an asymmetric lateral waveguides provides discrimination against high-order mode oscillation.

  11. High-power diode-side-pumped intracavity-frequency-doubled continuous wave 532 nm laser

    International Nuclear Information System (INIS)

    Zhang Yuping; Zhang Huiyun; Zhong Kai; Li Xifu; Wang Peng; Yao Jianquan

    2007-01-01

    An efficient and high-power diode-side-pumped cw 532 nm green laser based on a V-shaped cavity geometry, and capable of generating 22.7 W green radiation with optical conversion efficiency of 8.31%, has been demonstrated. The laser is operated with rms noise amplitude of less than 1% and with M 2 -parameter of about 6.45 at the top of the output power. This laser has the potential for scaling to much higher output power. (authors)

  12. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm

    Science.gov (United States)

    Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo

    2018-03-01

    Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).

  13. Compact, efficient diode-end-pumped Nd:GdVO4 slab continuous-wave 912-nm laser

    International Nuclear Information System (INIS)

    Liu Huan; Gong Ma-Li

    2012-01-01

    A fiber-coupled laser-diode (LD) end-pumped Nd:GdVO 4 slab continuous-wave (CW) 912-nm laser and an LD bar end-pumped Nd:GdVO 4 slab CW 912-nm laser are both demonstrated in this paper. Using the fiber-coupled LD of end-pumped type, a highest CW 912-nm laser output power of 10.17 W is obtained with a high optical-to-optical conversion efficiency of 24.6% and a slope efficiency of 34.5%. The measured M 2 factors of beam quality in x and y directions are 5.3 and 5.1, respectively. Besides, an LD bar of end-pumped type is used to realize CW 912-nm laser output, which has the advantages of compactness and low cost. When the pump power is 38.8 W, the output power is 8.87 W and the measured M 2 factors of beam quality in x and y directions are 16 and 1.31, respectively. In order to improve the beam quality of the 912-nm laser at x direction, a new quasi-concentric laser resonator will be designed, and an LD bar end-pumped Nd:GdVO 4 slab high-power CW 912-nm TEM 00 laser will be realized in the future. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Surface detection performance evaluation of pseudo-random noise continuous wave laser radar

    Science.gov (United States)

    Mitev, Valentin; Matthey, Renaud; Pereira do Carmo, Joao

    2017-11-01

    A number of space missions (including in the ESA Exploration Programme) foreseen a use of laser radar sensor (or lidar) for determination of range between spacecrafts or between spacecraft and ground surface (altimetry). Such sensors need to be compact, robust and power efficient, at the same time with high detection performance. These requirements can be achieved with a Pseudo-Random Noise continuous wave lidar (PRN cw lidar). Previous studies have pointed to the advantages of this lidar with respect to space missions, but they also identified its limitations in high optical background. The progress of the lasers and the detectors in the near IR spectral range requires a re-evaluation of the PRN cw lidar potential. Here we address the performances of this lidar for surface detection (altimetry) in planetary missions. The evaluation is based on the following system configuration: (i) A cw fiber amplifier as lidar transmitter. The seeding laser exhibits a single-frequency spectral line, with subsequent amplitude modulation. The fiber amplifier allows high output power level, keeping the spectral characteristics and the modulation of the seeding light input. (ii) An avalanche photodiode in photon counting detection; (iii) Measurement scenarios representative for Earth, Mercury and Mars.

  15. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

    Science.gov (United States)

    Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J

    2010-06-21

    We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

  16. High speed video shooting with continuous-wave laser illumination in laboratory modeling of wind - wave interaction

    Science.gov (United States)

    Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim

    2014-05-01

    Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from

  17. New high power CW klystrons at TED

    CERN Document Server

    Beunas, A; Marchesin, R

    2003-01-01

    Thales Electron Devices (TED) has been awarded a contract by CERN to develop and produce 20 units of the klystrons needed to feed the Large Hadrons Collider (LHC). Each of these delivers 300 kW of CW RF power at 400 MHz. Three klystrons have been delivered to CERN up to now.

  18. 532 nm continuous wave mode-locked Nd:GdVO4 laser with SESAM

    International Nuclear Information System (INIS)

    Li, L; Liu, J; Liu, M; Liu, S; Chen, F; Wang, W; Wang, Y

    2009-01-01

    We obtain continuous wave mode-locked Nd:GdVO 4 -KTP laser with a SESAM. This is the first report of CW mode-locked Nd:GdVO 4 -KTP laser with a SESAM to our knowledge. 396 mw CW mode-locked pulse is achieved at the incident power of 7.653 W, with the repetition about 95 MHz. The pulse duration is assumed to be 5.5 ps, this is the shortest green pulse of 532 nm with SESAM

  19. Diode-laser-pumped high efficiency continuous-wave operation at 912 nm laser in Nd:GdVO4 crystal

    International Nuclear Information System (INIS)

    Yu, X; Chen, F; Gao, J; Li, X D; Yan, R P; Zhang, K; Yu, J H; Zhang, Z H

    2009-01-01

    High efficiency operation on continuous-wave (cw) 912 nm laser at room temperature in Nd:GdVO 4 crystal pumped by 808 nm diode-laser is reported in this letter. The maximum output power of 8.0 W was obtained at the incident un-polarized pump power of 47.0 W, giving the corresponding optical-to-optical conversion efficiency of 17.0% and the average slope efficiency of 22.9%. Further tests show that the lasing threshold is reduced and the efficiency is increased evidently when using the π-polarized 808 nm pump source. 4.8 W 912 nm laser was achieved at the polarized pump power of 21.8 W, optical-to-optical conversion efficiency is increased to 22.0% and average slope efficiency is up to 33.6%

  20. The Continuous Wave Deuterium Demonstrator (CWDD) design and status

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. (Grumman Space and Electronics Corp., Princeton, NJ (United States)); Nightingale, M.P.S. (AEA Industrial Technology, Culham (United Kingdom)); Yule, T.J. (Argonne National Lab., IL (United States))

    1992-01-01

    The design of the Continuous Wave Deuterium Demonstrator (CWDD) and the status of the fabricated hardware is presented. The CWDD is a high brightness, 352 MHz, CW linear accelerator designed to deliver a 7.54 MeV, 80 mA D[sup [minus

  1. High-resolution multiphoton microscopy with a low-power continuous wave laser pump.

    Science.gov (United States)

    Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen

    2018-02-15

    Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.

  2. Gain-switched CW fiber laser for improved supercontinuum generation in a PCF

    DEFF Research Database (Denmark)

    Larsen, Casper; Noordegraaf, Danny; Skovgaard, P.M.W.

    2011-01-01

    We demonstrate supercontinuum generation in a PCF pumped by a gain-switched high-power continuous wave (CW) fiber laser. The pulses generated by gain-switching have a peak power of more than 700 W, a duration around 200 ns, and a repetition rate of 200 kHz giving a high average power of almost 30 W....... By coupling such a pulse train into a commercial nonlinear photonic crystal fiber, a supercontinuum is generated with a spectrum spanning from 500 to 2250 nm, a total output power of 12 W, and an infrared flatness of 6 dB over a bandwidth of more than 1000 nm with a power density above 5 dBm/nm (3 m......W/nm). This is considerably broader than when operating the same system under CW conditions. The presented approach is attractive due to the high power, power scalability, and reduced system complexity compared to picosecond-pumped supercontinuum sources. © 2011 Optical Society of America....

  3. High power CW output from low confinement asymmetric structure diode laser

    NARCIS (Netherlands)

    Iordache, G.; Buda, M.; Acket, G.A.; Roer, van de T.G.; Kaufmann, L.M.F.; Karouta, F.; Jagadish, C.; Tan, H.H.

    1999-01-01

    High power continuous wave output from diode lasers using low loss, low confinement, asymmetric structures is demonstrated. An asymmetric structure with an optical trap layer was grown by metal organic vapour phase epitaxy. Gain guided 50 µm wide stripe 1-3 mm long diode lasers were studied. 1.8 W

  4. Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System

    Science.gov (United States)

    Campbell, Joel F. (Inventor); Lin, Bing (Inventor); Nehrir, Amin R. (Inventor)

    2015-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  5. Dark current studies on a normal-conducting high-brightness very-high-frequency electron gun operating in continuous wave mode

    Directory of Open Access Journals (Sweden)

    R. Huang

    2015-01-01

    Full Text Available We report on measurements and analysis of a field-emitted electron current in the very-high-frequency (VHF gun, a room temperature rf gun operating at high field and continuous wave (CW mode at the Lawrence Berkeley National Laboratory (LBNL. The VHF gun is the core of the Advanced Photo-injector Experiment (APEX at LBNL, geared toward the development of an injector for driving the next generation of high average power x-ray free electron lasers. High accelerating fields at the cathode are necessary for the high-brightness performance of an electron gun. When coupled with CW operation, such fields can generate a significant amount of field-emitted electrons that can be transported downstream the accelerator forming the so-called “dark current.” Elevated levels of a dark current can cause radiation damage, increase the heat load in the downstream cryogenic systems, and ultimately limit the overall performance and reliability of the facility. We performed systematic measurements that allowed us to characterize the field emission from the VHF gun, determine the location of the main emitters, and define an effective strategy to reduce and control the level of dark current at APEX. Furthermore, the energy spectra of isolated sources have been measured. A simple model for energy data analysis was developed that allows one to extract information on the emitter from a single energy distribution measurement.

  6. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser.

    Science.gov (United States)

    Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Jing, Chen; Weidong, Chen; Zhenqiang, Chen

    2007-01-20

    A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.

  7. High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT.

    Science.gov (United States)

    Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2011-07-01

    We report a stable, high-power, cw, mid-IR optical parametric oscillator using MgO-doped stoichiometric periodically poled LiTaO₃ (MgO:sPPLT) pumped by a Yb fiber laser at 1064 nm. The singly resonant oscillator (SRO), based on a 30 mm long crystal, is tunable over 430 nm from 3032 to 3462 nm and can generate as much as 5.5 W of mid-IR output power, with >4 W of over 60% of the tuning range and under reduced thermal effects, enabling room temperature operation. Idler power scaling measurements at ~3.3 μm are compared with an MgO-doped periodically poled LiNbO₃ cw SRO, confirming that MgO:sPPLT is an attractive material for multiwatt mid-IR generation. The idler output at 3299 nm exhibits a peak-to-peak power stability better than 12.8% over 5 h and frequency stability of ~1 GHz, while operating close to room temperature, and has a linewidth of ~0.2 nm, limited by the resolution of the wavemeter. The corresponding signal linewidth at 1570 nm is ~21 MHz.

  8. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Science.gov (United States)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  9. Diode-pumped CW Nd:SGG laser at 1070 nm

    International Nuclear Information System (INIS)

    Liang, W; Sun, G C; Yu, X; Li, B Z; Jin, G Y

    2011-01-01

    We report for the first time (to our knowledge) a diode-pumped Nd:SGG laser emitting at 1070 nm. A power of 1.23 W at 1070 nm has been achieved in continuous-wave (CW) operation with a fiber-coupled laser diode emitting 18.2 W at 806 nm. Intracavity second-harmonic generation (SHG) in CW mode has also been demonstrated with a power of 328 mW at 535 nm by using a LiB 3 O 5 (LBO) nonlinear crystal. The green beam quality factor M 2 was less than 1.22. The green power stability was less 2.5% in 4 hour

  10. Generation of 14  W at 589  nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal.

    Science.gov (United States)

    Surin, A A; Borisenko, T E; Larin, S V

    2016-06-01

    We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.

  11. Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm

    Science.gov (United States)

    Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang

    2017-12-01

    We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.

  12. High-power circulator test results at 350 and 700 MHz

    International Nuclear Information System (INIS)

    Roybal, W.; Bradley, J.T.; Rees, D.E.

    2000-01-01

    The high-power RF systems for the Accelerator Production of Tritium (APT) program require high-power circulators at 350 MHz and 700 MHz to protect 1 MW Continuous Wave (CW) klystrons from reflected power. The 350 MHz circulator is based on the CERN, EXF, and APS designs and has performed very well. The 700 MHz circulator is a new design. Prototype 700 MHz circulators have been high-power tested at Los Alamos National Laboratory (LANL). The first of these circulators has satisfied performance requirements. The circulator requirements, results from the testing, and lessons learned from this development are presented and discussed

  13. All-solid-state cw frequency-doubling Nd:YLiF4/LBO blue laser with 4.33 W output power at 454 nm under in-band diode pumping at 880 nm.

    Science.gov (United States)

    Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing

    2010-07-20

    We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.

  14. High-power LED light sources for optical measurement systems operated in continuous and overdriven pulsed modes

    Science.gov (United States)

    Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof

    2017-06-01

    The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.

  15. NBS-LASL cw microtron

    International Nuclear Information System (INIS)

    Penner, S.; Cutler, R.I.; Debenham, D.H.

    1980-01-01

    The NBS-LASL racetrack microtron (RIM) is a joint research project of the National Bureau of Standards and the Los Alamos Scientific Laboratory. The project goals are to determine the feasibility of, and develop the necessary technology for building high-energy, high-current, continuous-beam (cw) electron accelerators using beam recirculation and room-temperature rf accelerating structures. To achieve these goals, a demonstration accelerator will be designed, constructed, and tested. Parameters of the demonstration RIM are: injection energy - 5 MEV; energy gain per pass -12 MeV; number of passes - 15; final beam energy - 185 MeV; maximum current 550 μA. One 450 kW cw klystron operating at 2380 MHz will supply rf power to both the injector linac and the main accelerating section of the RTM. The disk and washer standing wave rf structure being developed at LASL will be used. SUPERFISH calculations indicate that an effective shunt impedance (ZT) of about 100 MΩ/m can be obtained. Thus, rf power dissipation of 25 kW/m results in an energy gain of more than 1.5 MeV/m. Accelerators of this type should be attractive for many applications. At beam energies above about 50 MeV, an RTM should be considerably cheaper to build and operate than a conventional pulsed rf linac of the same maximum energy and time-average beam power. In addition, the RTM provides superior beam quality and a continuous beam which is essential for nuclear physics experiments requiring time-coincidence measurements between emitted particles

  16. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    Science.gov (United States)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  17. Cw RFQ development

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1985-01-01

    A review of research and development related to fabricating and operating radio-frequency quadrupole (RFQ) structures at 100% duty cycle [continuous wave (cw)] is presented, with emphasis on work at the Los Alamos National Laboratory, the Chalk River Nuclear Laboratories, and the University of Frankfurt. Activities in other areas that have an impact on operating cw RFQ systems will be highlighted. 27 refs

  18. Blue 450nm high power semiconductor continuous wave laser bars exceeding rollover output power of 80W

    Science.gov (United States)

    König, H.; Lell, A.; Stojetz, B.; Ali, M.; Eichler, C.; Peter, M.; Löffler, A.; Strauss, U.; Baumann, M.; Balck, A.; Malchus, J.; Krause, V.

    2018-02-01

    Industrial material processing like cutting or welding of metals is rather energy efficient using direct diode or diode pumped solid state lasers. However, many applications cannot be addressed by established infrared laser technology due to fundamental material properties of the workpiece: For example materials like copper or gold have too low absorption in the near infrared wavelength range to be processed efficiently by use of existing high power laser systems. The huge interest to enable high power kW systems with more suitable wavelengths in the blue spectral range triggered the German funded research project 'BLAULAS': Therein the feasibility and capability of CW operating high power laser bars based on the GaN material system was investigated by Osram and Laserline. High performance bars were enabled by defeating fundamental challenges like material quality as well as the chip processes, both of which differ significantly from well-known IR laser bars. The research samples were assembled on actively cooled heat sinks with hard solder technology. For the first time an output power of 98W per bar at 60A drive current was achieved. Conversion efficiency as high as 46% at 50W output power was demonstrated.

  19. Production of High Intracavity UV Power From a CW Laser Source

    Science.gov (United States)

    David, R. T.; Chyba, T. H.; Keppel, C. E.; Gaskell, D.; Ent, R.

    1998-01-01

    The goal of this research project is to create a prototype high power CW source of ultraviolet (UV) photons for photon-electron scattering at the Thomas Jefferson National Accelerator Facility (TJNAF), Hall B. The facility will use optical resonant cavities to produce a high photon flux. The technical approach will be to frequency-double the 514.5 mn light from an Argon-Ion Laser to create 0.1 to 1.0 watt in the UV. The produced UV power will be stored in a resonant cavity to generate an high intracavity UV power of 102 to 103 watts. The specific aim of this project is to first design and construct the low-Q doubling cavity and lock it to the Argon-Ion wavelength. Secondly, the existing 514.5 nm high-Q build-up cavity and its locking electronics will be modified to create high intracavity UV power. The entire system will then be characterized and evaluated for possible beam line use.

  20. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    Science.gov (United States)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  1. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  2. Diode-side-pumped continuous wave Nd³⁺ : YVO₄ self-Raman laser at 1176 nm.

    Science.gov (United States)

    Kores, Cristine Calil; Jakutis-Neto, Jonas; Geskus, Dimitri; Pask, Helen M; Wetter, Niklaus U

    2015-08-01

    Here we report, to the best of our knowledge, the first diode-side-pumped continuous wave (cw) Nd3+:YVO4 self-Raman laser operating at 1176 nm. The compact cavity design is based on the total internal reflection of the laser beam at the pumped side of the Nd3+:YVO4 crystal. Configurations with a single bounce and a double bounce of the laser beam at the pumped faced have been characterized, providing a quasi-cw peak output power of more than 8 W (multimode) with an optical conversion efficiency of 11.5% and 3.7 W (TEM00) having an optical conversion efficiency of 5.4%, respectively. Cw output power of 1.8 W has been demonstrated.

  3. Reliable high-power diode lasers: thermo-mechanical fatigue aspects

    Science.gov (United States)

    Klumel, Genady; Gridish, Yaakov; Szafranek, Igor; Karni, Yoram

    2006-02-01

    High power water-cooled diode lasers are finding increasing demand in biomedical, cosmetic and industrial applications, where repetitive cw (continuous wave) and pulsed cw operation modes are required. When operating in such modes, the lasers experience numerous complete thermal cycles between "cold" heat sink temperature and the "hot" temperature typical of thermally equilibrated cw operation. It is clearly demonstrated that the main failure mechanism directly linked to repetitive cw operation is thermo-mechanical fatigue of the solder joints adjacent to the laser bars, especially when "soft" solders are used. Analyses of the bonding interfaces were carried out using scanning electron microscopy. It was observed that intermetallic compounds, formed already during the bonding process, lead to the solders fatigue both on the p- and n-side of the laser bar. Fatigue failure of solder joints in repetitive cw operation reduces useful lifetime of the stacks to hundreds hours, in comparison with more than 10,000 hours lifetime typically demonstrated in commonly adopted non-stop cw reliability testing programs. It is shown, that proper selection of package materials and solders, careful design of fatigue sensitive parts and burn-in screening in the hard pulse operation mode allow considerable increase of lifetime and reliability, without compromising the device efficiency, optical power density and compactness.

  4. Fiber fuse behavior in kW-level continuous-wave double-clad field laser

    International Nuclear Information System (INIS)

    Sun Jun-Yi; Xiao Qi-Rong; Li Dan; Wang Xue-Jiao; Zhang Hai-Tao; Gong Ma-Li; Yan Ping

    2016-01-01

    In this study, original experimental data for fiber fuse in kW-level continuous-wave (CW) high power double-clad fiber (DCF) laser are reported. The propagating velocity of the fuse is 9.68 m/s in a 3.1-kW Yb-doped DCF laser. Three other cases in Yb-doped DCF are also observed. We think that the ignition of fiber fuse is caused by thermal mechanism, and the formation of bullet-shaped tracks is attributed to the optical discharge and temperature gradient. The inducements of initial fuse and formation of bullet-shaped voids are analyzed. This investigation of fiber fuse helps better understand the fiber fuse behavior, in order to avoid the catastrophic destruction caused by fiber fuse in high power fiber laser. (paper)

  5. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation

    International Nuclear Information System (INIS)

    Peng, S. X.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Zhang, A. L.; Chen, J. E.

    2016-01-01

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment

  6. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation

    Science.gov (United States)

    Peng, S. X.; Zhang, A. L.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Chen, J. E.

    2016-02-01

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment.

  7. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Zhang, A. L.; Chen, J. E. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment.

  8. The generation of a continuous-wave Nd:YVO4/LBO laser at 543 nm by direct in-band diode pumping at 888 nm

    International Nuclear Information System (INIS)

    Fu, S C; Wang, X; Chu, H

    2013-01-01

    We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO 4 laser under 888 nm diode pumping into the emitting level 4 F 3/2 . An LiB 3 O 5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period. (paper)

  9. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    Science.gov (United States)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  10. Design of 250-MW CW RF system for APT

    International Nuclear Information System (INIS)

    Rees, D.

    1997-01-01

    The design for the RF systems for the APT (Accelerator Production of Tritium) proton linac will be presented. The linac produces a continuous beam power of 130 MW at 1300 MeV with the installed capability to produce up to a 170 MW beam at 1700 MeV. The linac is comprised of a 350 MHz RFQ to 7 MeV followed in sequence by a 700 MHz coupled-cavity drift tube linac, coupled-cavity linac, and superconducting (SC) linac to 1700 MeV. At the 1700 MeV, 100 mA level the linac requires 213 MW of continuous-wave (CW) RF power. This power will be supplied by klystrons with a nominal output power of 1.0 MW. 237 kystrons are required with all but three of these klystrons operating at 700 MHz. The klystron count includes redundancy provisions that will be described which allow the RF systems to meet an operational availability in excess of 95 percent. The approach to achieve this redundancy will be presented for both the normal conducting (NC) and SC accelerators. Because of the large amount of CW RF power required for the APT linac, efficiency is very important to minimize operating cost. Operation and the RF system design, including in-progress advanced technology developments which improve efficiency, will be discussed. RF system performance will also be predicted. Because of the simultaneous pressures to increase RF system reliability, reduce tunnel envelope, and minimize RF system cost, the design of the RF vacuum windows has become an important issue. The power from a klystron will be divided into four equal parts to minimize the stress on the RF vacuum windows. Even with this reduction, the RF power level at the window is at the upper boundary of the power levels employed at other CW accelerator facilities. The design of a 350 MHz, coaxial vacuum window will be presented as well as test results and high power conditioning profiles. The transmission of 950 kW, CW, power through this window has been demonstrated with only minimal high power conditioning

  11. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    Science.gov (United States)

    Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  12. High Power Continuous-Wave Diode-End-Pumped 1.34-μm Nd:GdVO4 Laser

    International Nuclear Information System (INIS)

    Rui, Zhou; Shuang-Chen, Ruan; Chen-Lin, Du; Jian-Quan, Yao

    2008-01-01

    A high power cw all-solid-state 1.34-μm Nd:GdVO 4 laser is experimentally demonstrated. With a diode-double-end-pumped configuration and a simple plane-parallel cavity, a maximum output power of 27.9W is obtained at incident pump power of 96 W, introducing a slope efficiency of 35.4%. To the best of our knowledge, this is the highest output power of diode-end-pumped 1.3-μm laser. With the experimental data, the thermal-stress-resistance figure of merit of Nd:GdVO 4 crystal with 0.3 at% Nd 3+ doped level is calculated to be larger than 9.94 W/cm

  13. Detection of undistorted continuous wave (CW) electron paramagnetic resonance (EPR) spectra with non-adiabatic rapid sweep (NARS) of the magnetic field

    Science.gov (United States)

    Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.

    2011-01-01

    A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868

  14. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.; Rosales, R.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Kettler, T. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Skoczowsky, D. [PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Pohl, J.; Weyers, M. [Ferdinand-Braun-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{sup −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.

  15. Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser.

    Science.gov (United States)

    Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young

    2010-03-20

    We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.

  16. High-power, continuous-wave, solid-state, single-frequency, tunable source for the ultraviolet.

    Science.gov (United States)

    Aadhi, A; Apurv Chaitanya, N; Singh, R P; Samanta, G K

    2014-06-15

    We report the development of a compact, high-power, continuous-wave, single-frequency, ultraviolet (UV) source with extended wavelength tunability. The device is based on single-pass, intracavity, second-harmonic-generation (SHG) of the signal radiation of a singly resonant optical parametric oscillator (SRO) working in the visible and near-IR wavelength range. The SRO is pumped in the green with a 25-mm-long, multigrating, MgO doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) as nonlinear crystal. Using three grating periods, 8.5, 9.0, and 9.5 μm of the MgO:sPPLT crystal and a single set of cavity mirrors, the SRO can be tuned continuously across 710.7-836.3 nm in the signal and corresponding idler across 2115.8-1462.1 nm with maximum idler power of 1.9 W and maximum out-coupled signal power of 254 mW. By frequency-doubling the intracavity signal with a 5-mm-long bismuth borate (BIBO) crystal, we can further tune the SRO continuously over 62.8 nm across 355.4-418.2 nm in the UV with maximum single-frequency UV power, as much as 770 mW at 398.28 nm in a Gaussian beam profile. The UV radiation has an instantaneous line-width of ∼14.5  MHz and peak-peak frequency stability of 151 MHz over 100 s. More than 95% of the tuning range provides UV power >260  mW. Access to lower UV wavelengths can in principle be realized by operating the SRO in the visible using shorter grating periods.

  17. Innovation on high-power long-pulse gyrotrons

    International Nuclear Information System (INIS)

    Litvak, Alexander; Sakamoto, Keishi; Thumm, Manfred

    2011-01-01

    Progress in the worldwide development of high-power gyrotrons for magnetic confinement fusion plasma applications is described. After technology breakthroughs in research on gyrotron components in the 1990s, significant progress has been achieved in the last decade, in particular, in the field of long-pulse and continuous wave (CW) gyrotrons for a wide range of frequencies. At present, the development of 1 MW-class CW gyrotrons has been very successful; these are applicable for self-ignition experiments on fusion plasmas and their confinement in the tokamak ITER, for long-pulse confinement experiments in the stellarator Wendelstein 7-X (W7-X) and for EC H and CD in the future tokamak JT-60SA. For this progress in the field of high-power long-pulse gyrotrons, innovations such as the realization of high-efficiency stable oscillation in very high order cavity modes, the use of single-stage depressed collectors for energy recovery, highly efficient internal quasi-optical mode converters and synthetic diamond windows have essentially contributed. The total tube efficiencies are around 50% and the purity of the fundamental Gaussian output mode is 97% and higher. In addition, activities for advanced gyrotrons, e.g. a 2 MW gyrotron using a coaxial cavity, multi-frequency 1 MW gyrotrons and power modulation technology, have made progress.

  18. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    Science.gov (United States)

    Kim, Chihoon; Ahn, Jae Sung; Ji, Taeksoo; Eom, Joo Beom

    2017-04-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz-800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis.

  19. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    International Nuclear Information System (INIS)

    Kim, Chihoon; Ahn, Jae Sung; Eom, Joo Beom; Ji, Taeksoo

    2017-01-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz–800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis. (paper)

  20. Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion.

    Science.gov (United States)

    Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou

    2010-06-07

    We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.

  1. Cutting performances with new industrial continuous wave ND:YAG high power lasers

    International Nuclear Information System (INIS)

    Chagnot, C.; Dinechin, G. de; Canneau, G.

    2010-01-01

    Dismantling is a great challenge for nuclear companies which are facing with the cleaning of former nuclear sites. Among the available cutting processes is the multi-kilowatts laser whose power is transmitted through optical fibers. Unlike other cutting processes such as the plasma arc cutting process or the oxy-cutting process, the laser process can be easily implemented by robotic equipments. The mechanised robotic arm carries a laser cutting head to perform, with remote-controlled equipments, the cutting operation. The present study deals with the performances which can be reached with high power continuous wave ND:YAG lasers. The cutting tests were carried out up to 8 kW. The laser power was delivered through a specific power supply chain: a 0.4 mm fiber was transporting the power from the laser to a first interface (coupler) then a second 0.6 mm fiber was bringing the laser power to the cutting head. This solution allowed a power delivery chain whose length could be as high as 100 + 20/50 m. Another advantage of this kind of power supply is that the first fiber can be set in a non-contaminated environment whereas the second fiber lies in the contaminated area. The cutting head used for these tests was a specific tool developed for this laser dismantling work: it is a laser cutting head cooled by pressurized air. This tool was developed with the requirement to be able to sustain a laser power of 14 kW. The pressurized air used to cool the head is also used as cutting gas. The cutting capability was about 10 mm by kW. At the power of 8 kW, austenitic steel plates of thickness 100 mm were cut. These performances were reached with the cut started on the plate's edge. If the cut started in the middle of the plate, the cutting performances were not so high: 8 kW became the power to drill and to cut plates of thickness 40 mm.

  2. Development of a 200 W CW high efficiency traveling wave tube at 12 GHz. [for use in communication technology satellites

    Science.gov (United States)

    Christensen, J. A.; Tammaru, I.

    1974-01-01

    The design, development, and test results are reported for an experimental PPM focused, traveling-wave tube that produces 235 watts of CW RF power over 85 MHz centered at 12.080 GHz. The tube uses a coupled cavity RF circuit with a velocity taper for greater than 30 percent basic efficiency. Overall efficiency of 51 percent is achieved by means of a nine stage depressed collector designed at NASA Lewis Research Center. This collector is cooled by direct radiation to deep space.

  3. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  4. Comparison of continuous wave, spin echo, and rapid scan EPR of irradiated fused quartz

    International Nuclear Information System (INIS)

    Mitchell, Deborah G.; Quine, Richard W.; Tseitlin, Mark; Meyer, Virginia; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    The E' defect in irradiated fused quartz has spin lattice relaxation times (T 1 ) about 100-300 μs and spin-spin relaxation times (T 2 ) up to about 200 μs, depending on the concentration of defects and other species in the sample. These long relaxation times make it difficult to record an unsaturated continuous wave (CW) electron paramagnetic resonance (EPR) signal that is free of passage effects. Signals measured at X-band (∼9.5 GHz) by three EPR methods: conventional slow-scan field-modulated EPR, rapid scan EPR, and pulsed EPR, were compared. To acquire spectra with comparable signal-to-noise, both pulsed and rapid scan EPR require less time than conventional CW EPR. Rapid scan spectroscopy does not require the high power amplifiers that are needed for pulsed EPR. The pulsed spectra, and rapid scan spectra obtained by deconvolution of the experimental data, are free of passage effects.

  5. The continuous-wave passive mode-locking operation of a diode-pumped mixed Nd:Lu0.5Y0.5VO4 laser

    International Nuclear Information System (INIS)

    Huang, H-T; Xu, J-L; He, J-L; Zhang, S-Y; Xu, J-Q; Zhao, B

    2011-01-01

    We reported a continuous-wave (CW) passively mode-locked Nd:Lu 0.5 Y 0.5 VO 4 laser at 1064 nm. A partially reflective semiconductor saturable absorber mirror was exploited in the Z-typed resonator. The Nd:Lu 0.5 Y 0.5 VO 4 laser generated CW mode-locked pulses with an average output power of 860 mW, a repetition rate of 53.7 MHz, and a pulse duration of 8.7 ps

  6. Preliminary design of high-power wave-guide/transmission system ...

    Indian Academy of Sciences (India)

    . This LINAC will be needing CW rf power in the frequency ranges of 350 MHz and 700 MHz for its RFQ and. DTL/CCDTL/SFDTL structures respectively. The power to the accelerating structures will be pro- duced by either 1 MW CW or 250 kW ...

  7. Theoretical evaluation of a continues-wave Ho3+:BaY2F8 laser with mid-infrared emission

    Science.gov (United States)

    Rong, Kepeng; Cai, He; An, Guofei; Han, Juhong; Yu, Hang; Wang, Shunyan; Yu, Qiang; Wu, Peng; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-01-01

    In this paper, we build a theoretical model to study a continues-wave (CW) Ho3+:BaY2F8 laser by considering both energy transfer up-conversion (ETU) and cross relaxation (CR) processes. The influences of the pump power, reflectance of an output coupler (OC), and crystal length on the output features are systematically analyzed for an end-pumped configuration, respectively. We also investigate how the processes of ETU and CR in the energy-level system affect the output of a Ho3+:BaY2F8 laser by use of the kinetic evaluation. The simulation results show that the optical-to-optical efficiency can be promoted by adjusting the parameters such as the reflectance of an output coupler, crystal length, and pump power. It has been theoretically demonstrated that the threshold of a Ho3+:BaY2F8 laser is very high for the lasing operation in a CW mode.

  8. LCLS-II high power RF system overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    Yeremian, Anahid Dian

    2015-10-07

    A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS-II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more SSAs identical to the linac SSAs but run at 2 kW. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper.

  9. Experiment for buried pipes by stepped FM-CW radar; Step shiki FM-CW radar ni yoru maisetsukan tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Ito, M. [Kawasaki Geological Engineering, Co. Ltd., Tokyo (Japan); Tanabe, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-27

    The underground radar exploration is adopted to surveys of cavity under the road and buried pipes since the result of high resolution is obtained. However, the explorative depth of the radar is shallow, 2-3m in soil basement, and its applicable field has been limited. The continuous wave radar (FM-CW radar) was devised to get deeper explorative depth, but has been used for the geological structure survey such as the fault survey since it is lower in resolution as compared with the pulse radar. Therefore, to make use of characteristics of the continuous wave radar and enhance resolution in the shallow part, an experiment on buried pipes was conducted for the purpose of assessing and improving the FM-CW radar. In this processing, the wave form treatment used in the reflection method seismic survey was adopted for the radar survey. There are some problems, but it is effective to adopt the same algorithm to that used in the seismic survey to the radar exploration. The explorative depth was discussed from the damping rate of electromagnetic waves and dynamic range of facilities of the experimental site, and 7m was obtained. 5 figs., 1 tab.

  10. Thermo-mechanical design of a CW sweep plate emittance scanner

    International Nuclear Information System (INIS)

    Rathke, J.; Peacock, M.; Sredniawski, J.

    1996-01-01

    A sweep plate emittance scanner for use with high power, continuous wave (CW) beams has been designed, fabricated and commissioned at Northrop Grumman. The design is capable of scanning beams of up to 20 kW beam power with a spot diameter as small as 2 cm. The scanner pod is mounted on a ball screw driven linear bearing table that is driven through the beam by a stepper motor at velocities up to 30 cm/sec. This paper presents the thermo-mechanical analysis of the pod moving through a gaussian beam and the details of the mechanical design of the pod and motion system. Analyses to determine scanner cooling schemes and structural materials are presented. (author)

  11. A high-power diode-laser-pumped CW Nd:YAG laser using a stable-unstable resonator

    International Nuclear Information System (INIS)

    Mudge, M.; Ostermeyer, P.; Veitch, J.; Munch, J.; Hamilton, M.W.

    2000-01-01

    Full text: The design and operation of a power-scalable diode-laser-pumped CW Nd:YAG zigzag slab laser that uses a stable-unstable resonator with a graded reflectivity mirror as an output coupler is described. We demonstrate control of the thermal lens strength in the unstable plane and weak thermal lensing in the stable plane that is independent of pump power, vital for efficient scalability. This enabled CW operation of the stable-unstable resonator with excellent near- and far-field beam quality

  12. CW SRF systems with ingot niobium and their applications

    International Nuclear Information System (INIS)

    Myneni, Ganapati

    2011-01-01

    Continuous wave (CW) superconducting radio frequency (SRF) accelerator systems are needed not only for discovery science initiatives through out the world but they are also expected to find applications in a wide variety of programs including advanced reactor cycles using thorium as nuclear fuel, commercial and university compact linacs and FEL's. However these state of the art particle accelerator systems are very expensive to build and consume significant power in their operations. In the present world economic, energy sustainability and global warming concerns, we must improve the efficiency of the CW SRF accelerator systems considerably and in a cost effective manner. In this presentation I will review the current status of the CW SRF systems including the recent advances in improving the quality factor of the SRF cavities at very much reduced costs with simplified process procedures. (author)

  13. Development of an electron gun for high power CW electron linac

    International Nuclear Information System (INIS)

    Yamazaki, Yoshio; Nomura, Masahiro

    1994-01-01

    An electron gun launching high average current beam has been designed for the high power CW electron linac at PNC. A peak electron beam current of 400mA with beam energy 200keV is required from the buncher design. However its average current is very high(duty factor 20%), a mesh grid is not able to be used for current control because of heating up or melting of grid. Furthermore, the beam current have to be variable up to 400mA to match with downstream modules, especially the accelerating guides including recirculating system. We employed the electron gun with two aperture grids to control beam current. The dimension of the electrodes, electron trajectory, the size of beam radius, and gun emittance was simulated by EGUN. (author)

  14. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  15. Analysis of RF section of 250 kW CW C-Band high power klystron

    International Nuclear Information System (INIS)

    Badola, Richa; Kaushik, Meenu; Baloda, Suman; Kirti; Vrati; Lamba, O.S.; Joshi, L.M.

    2012-01-01

    Klystron is a microwave tube which is used as a power amplifier in various applications like radar, particle accelerators and thermonuclear reactors. The paper deals with the analysis of RF section of 250 kW CW C band high power klystron for 50 to 60 kV beam voltage The simulation is done using Poisson's superfish and AJ disk software's Design of cavity is done using superfish. The result of superfish is used to decide the dimensions of the geometry of the cavity and AJ disk is used to determined the centre to centre distances between the cavities in order to obtain the desired powers. (author)

  16. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Science.gov (United States)

    Castellano, A.; Cerutti, L.; Rodriguez, J. B.; Narcy, G.; Garreau, A.; Lelarge, F.; Tournié, E.

    2017-06-01

    We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw) in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001) substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm-2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  17. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Directory of Open Access Journals (Sweden)

    A. Castellano

    2017-06-01

    Full Text Available We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001 substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm−2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  18. Operation of a CW high power RFQ test cavity: The CRNL 'sparkers'

    International Nuclear Information System (INIS)

    Hutcheon, R.M.; Schriber, S.O.; Brown, J.C.; Clements, D.W.; Campbell, H.F.; McMichael, G.E.; De Jong, M.S.

    1984-01-01

    A 270 MHz RFQ structure with 365 mm long unmodulated vanes and a 2.5 mm minimum vane-to-vane gap was used to study cw operation at surface fields in excess of 30 MV/m. The brazed OFHC solid copper structure is flood cooled and couples rf power by a drive 100p at the centre of one quadrant. Surface electric fields equivalent to twice the Kilpatrick limit were obtained at 39 kW power. The structure was rapidly conditioned with alternating periods of pulsed and cw operation to levels above 45 kW. Bremsstrahlung end point energies were used as a measure of peak vane-to-vane voltage. Several interesting observations have been made. Glowing pinpoints of light were seen near the vane tips, some extinguishing with time, others appearing - but their number and intensity increasing with rf power. Microdischarges were seen, consisting of very small localized flashes of light between the vane tips, usually accompanied by a complete collapse and re-establishment of the structure rf field over a 20 μs interval. The frequency of field collapses varied with power but was independent of gas pressure and species up to 4x10 -3 Pa. As structure power was increased above the conditioned level, a rapid succession of microdischarges would occur, increasing the reflected power beyond the fast trip level. (orig.)

  19. High power gyrotrons: a close perspective

    International Nuclear Information System (INIS)

    Kartikeyan, M.V.

    2012-01-01

    Gyrotrons and their variants, popularly known as gyrodevices are millimetric wave sources provide very high powers ranging from long pulse to continuous wave (CW) for various technological, scientific and industrial applications. From their conception (monotron-version) in the late fifties until their successful development for various applications, these devices have come a long way technologically and made an irreversible impact on both users and developers. The possible applications of high power millimeter and sub-millimeter waves from gyrotrons and their variants (gyro-devices) span a wide range of technologies. The plasma physics community has already taken advantage of the recent advances of gyrotrons in the areas of RF plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as lower hybrid current drive (LHCD) (8 GHz), electron cyclotron resonance heating (ECRH) (28-170-220 GHz), electron cyclotron current drive (ECCD), collective Thomson scattering (CTS), heat-wave propagation experiments, and space-power grid (SPG) applications. Other important applications of gyrotrons are electron cyclotron resonance (ECR) discharges for the generation of multi- charged ions and soft X-rays, as well as industrial materials processing and plasma chemistry. Submillimeter wave gyrotrons are employed in high frequency, broadband electron paramagnetic resonance (EPR) spectroscopy. Additional future applications await the development of novel high power gyro-amplifiers and devices for high resolution radar ranging and imaging in atmospheric and planetary science as well as deep space and specialized satellite communications, RF drivers for next generation high gradient linear accelerators (supercolliders), high resolution Doppler radar, radar ranging and imaging in atmospheric and planetary science, drivers for next-generation high-gradient linear accelerators

  20. Theoretical and experimental investigations of the limits to the maximum output power of laser diodes

    International Nuclear Information System (INIS)

    Wenzel, H; Crump, P; Pietrzak, A; Wang, X; Erbert, G; Traenkle, G

    2010-01-01

    The factors that limit both the continuous wave (CW) and the pulsed output power of broad-area laser diodes driven at very high currents are investigated theoretically and experimentally. The decrease in the gain due to self-heating under CW operation and spectral holeburning under pulsed operation, as well as heterobarrier carrier leakage and longitudinal spatial holeburning, are the dominant mechanisms limiting the maximum achievable output power.

  1. Continuous-wave and passively Q-switched Nd:YVO4 laser at 1085 nm

    Science.gov (United States)

    Lin, Hongyi; Liu, Hong; Huang, Xiaohua; Zhang, Jiyan

    2017-11-01

    An admirable and efficient Nd:YVO4 laser at 1085 nm is demonstrated with a compact 35 mm plano-plano cavity. A chosen narrow bandpass filter with high-transmittance (HT) coating at 1064 nm (T=96%) and optimized part-reflection (PR) coating at 1085 nm (T=15%) is used as the output coupler. In the continuous-wave (CW) regime, the maximum output power reaches 3110 mW at the pump power of 11.41 W. Based on a Cr:YAG crystal with initial-transmittance of 91%, the first passively Q-switched Nd:YVO4 laser at 1085 nm is achieved. When the pump power is changed from the threshold of 4.50 to 6.08 W, the dual-wavelength lines at 1064 and 1085 nm are generated simultaneously. However, at the pump power of above 6.08 W, the single-wavelength line at 1085 nm is achieved. The largest output power, the highest peak power, and the narrowest pulse width are 1615 mW, 878 W and 26.2 ns, respectively.

  2. Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.

    Science.gov (United States)

    Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan

    2013-03-25

    We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.

  3. 270 nm Pseudomorphic Ultraviolet Light-Emitting Diodes with Over 60 mW Continuous Wave Output Power

    Science.gov (United States)

    Grandusky, James R.; Chen, Jianfeng; Gibb, Shawn R.; Mendrick, Mark C.; Moe, Craig G.; Rodak, Lee; Garrett, Gregory A.; Wraback, Michael; Schowalter, Leo J.

    2013-03-01

    In this letter, the achievement of over 60 mW output power from pseudomorphic ultraviolet light-emitting diodes in continuous wave operation is reported. Die thinning and encapsulation improved the photon extraction efficiency to over 15%. Improved thermal management and a high characteristic temperature resulted in a low thermal rolloff up to 300 mA injection current with an output power of 67 mW, an external quantum efficiency (EQE) of 4.9%, and a wall plug efficiency (WPE) of 2.5% for a single-chip device emitting at 271 nm in continuous wave operation.

  4. High Power 1443.5 nm Laser with Nd:YAG Single Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Han Rao

    2017-07-01

    Full Text Available A high-power eye-safe 1443.5 nm laser was demonstrated with an Nd:YAG single crystal fiber (SCF as the gain medium. For continuous wave (CW operation, a maximum output power of 13.3 W was obtained under an absorbed pump power of 95.0 W, corresponding to an optical-to-optical conversion efficiency of 14.0%. For acousto-optically (AO Q-switched regime, an output power of 1.95 W was obtained at a pulse repetition frequency (PRF of 10 kHz. The pulse duration was 69.5 ns. The pulse energy and peak power were calculated to be 195 µJ and 2.81 kW, respectively.

  5. High power laser diodes of 2 μm AlGaAsSb/InGaSb type I quantum-wells

    International Nuclear Information System (INIS)

    Liao Yongping; Zhang Yu; Xing Junliang; Wei Sihang; Hao Hongyue; Wang Guowei; Xu Yingqiang; Niu Zhichuan

    2015-01-01

    2 μm AlGaAsSb/InGaSb type-I quantum-well high-power laser diodes (LDs) are grown using molecular beam epitaxy. Stripe-type waveguide single LD (single emitter) and array LD (four emitters) devices without facet coatings are fabricated. For the single LDs (single emitter) device, the maximum output power under continuous wave (CW) operation is 0.5 W at 10 °C with a threshold current density of 150 A/cm 2 and a slope efficiency of 0.17 W/A, the output powers under the pulse mode in the 5% duty cycles are much higher, up to 0.98 W. For the array LD devices, the maximum output powers are 1.02 W under the CW mode and 3.03 W under the pulse mode at room temperature. (paper)

  6. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    Science.gov (United States)

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  7. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    Science.gov (United States)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  8. Maximizing power output from continuous-wave single-frequency fiber amplifiers.

    Science.gov (United States)

    Ward, Benjamin G

    2015-02-15

    This Letter reports on a method of maximizing the power output from highly saturated cladding-pumped continuous-wave single-frequency fiber amplifiers simultaneously, taking into account the stimulated Brillouin scattering and transverse modal instability thresholds. This results in a design figure of merit depending on the fundamental mode overlap with the doping profile, the peak Brillouin gain coefficient, and the peak mode coupling gain coefficient. This figure of merit is then numerically analyzed for three candidate fiber designs including standard, segmented acoustically tailored, and micro-segmented acoustically tailored photonic-crystal fibers. It is found that each of the latter two fibers should enable a 50% higher output power than standard photonic crystal fiber.

  9. Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB₃O₆.

    Science.gov (United States)

    Devi, Kavita; Kumar, S Chaitanya; Ebrahim-Zadeh, M

    2013-10-21

    We report a continuous-wave (cw) source of tunable radiation across 333-345 nm in the ultraviolet (UV) using bismuth triborate, BiB₃O₆ (BIBO) as the nonlinear gain material. The source is based on internal sum-frequency-generation (SFG) in a cw singly-resonant optical parametric oscillator (OPO) pumped at 532 nm. The compact tunable source employs a 30-mm-long MgO:sPPLT crystal as the OPO gain medium and a 5-mm-long BIBO crystal for intracavity SFG of the signal and pump, providing up to 21.6 mW of UV power at 339.7 nm, with >15 mW over 64% of the SFG tuning range. The cw OPO is also tunable across 1158-1312 nm in the idler, delivering as much as 1.7 W at 1247 nm, with >1W over 65% of the tuning range. The UV output at maximum power exhibits passive power stability better than 3.4% rms and frequency stability of 193 GHz over more than one minute.

  10. An efficient continuous-wave 591 nm light source based on sum-frequency mixing of a diode pumped Nd:GdVO4–Nd:CNGG laser

    International Nuclear Information System (INIS)

    Zhao, Y D; Liu, J H

    2013-01-01

    We report a laser architecture to obtain continuous-wave (CW) yellow-orange light sources at the 591 nm wavelength. An 808 nm diode pumped a Nd:GdVO 4 crystal emitting at 1063 nm. A part of the pump power was then absorbed by the Nd:CNGG crystal. The remaining pump power was used to pump a Nd:CNGG crystal emitting at 1329 nm. Intracavity sum-frequency mixing at 1063 and 1329 nm was then realized in a LiB 3 O 5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 494 mW at 591 nm with a pump laser diode emitting 17.8 W at 808 nm. (paper)

  11. Continuous-wave green thin-disk laser at 524 nm based on frequency-doubled diode-pumped Yb:GSO crystal

    International Nuclear Information System (INIS)

    Shao, Y; Zhang, D; Liu, H P; Jin, H J; Li, Y L; Tao, Z H; Ruan, Q R; Zhang, T Y

    2011-01-01

    We report what is believed to be the first demonstration of diode-pumped continuous-wave (CW) thin-disk Yb 3+ -doped Gd 2 SiO 5 (Yb:GSO) laser at 1048 nm. With a 3.8% output coupler, the maximum output power is 1.38 W under a pump power of 17.8 W. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a power of 337 mW at 524 nm by using a LiB 3 O 5 (LBO) nonlinear crystal. At the output power level of 337 mW, the green power stability is better than 5% and the ellipticity of spot is 0.97

  12. Continuous wave and AO Q-switch operation Tm,Ho:YAP laser pumped by a laser diode of 798 nm

    International Nuclear Information System (INIS)

    Li, L J; Yao, B Q; Song, C W; Wang, Y Z; Wang, Z G

    2009-01-01

    Continuous wave (CW) and acousto-optical (AO) Q-switch operation of Tm (5 at.%), Ho (0.3 at.%):YAP laser at 2.13 μm wavelength were reported in this paper. The Tm,Ho:YAP crystal was cooled by liquid nitrogen and double-end-pumped by a 14.2 W fiber-coupled laser diode at 798 nm. Different resonator lengths and output couplers for the pump power were tried. A maximum conversion efficiency of 31.3% and a maximum slope efficiency of 35.2% were acquired with CW output power of 4.45 W. Average power of 4.21 W was obtained at pulse repetition frequency (PRF) of 15 kHz, corresponding to an optical-to-optical conversion efficiency of 29.6% and a slope efficiency of 32.4%. The energy per pulse of 2.3 mJ in 64 ns was achieved at 1.5 kHz with the peak power of 35.8 kW

  13. Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers

    International Nuclear Information System (INIS)

    Crump, P; Böldicke, S; Schultz, C M; Ekhteraei, H; Wenzel, H; Erbert, G

    2012-01-01

    For maximum fibre-coupled power, high power broad area diode lasers must operate with small lateral far field angles at high continuous wave (CW) powers. However, these structures are laterally multi-moded, with low beam quality and wide emission angles. In order to experimentally determine the origin of the low beam quality, spectrally resolved near and far field measurements were performed for a diode laser with 50 µm stripe width. Within the range measured (CW optical output powers to 1.5 W) the laser is shown to operate in just six stable lateral modes, with spatially periodic profiles. Comparisons of the measured profiles with the results of two-dimensional modal simulation demonstrate that current-induced thermal lensing dominates the lateral waveguiding, in spite of the presence of both strong built-in index guiding and gain guiding. No evidence is seen for filamentation. Building on the diagnosis, proposals are presented for improvements to beam quality. (paper)

  14. POWER SCALING IN CONTINUOUS-WAVE YB:YAG MICROCHIP LASER FOR MEASURING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. M. Ivashko

    2017-01-01

    Full Text Available Characteristics optimization of lasers used in different measuring systems is of great interest up to now. Diode-pumped microchip lasers is one of the most perspective ways for development of solid-state light sources with minimal size and weight together with low energy power consumption. Increasing of output power with good beam quality is rather difficult task for such type of lasers due to thermal effects in the gain crystal under high pump power.The investigation results of continuous-wave longitudinally diode-pumped Yb:YAG microchip laser are presented. In the presented laser radiation from multiple pump laser diodes were focused into the separate zone in one gain crystal that provides simultaneous generation of multiple laser beams. The energy and spatial laser beam characteristics were investigated.Influence of neighboring pumped regions on energy and spatial laser beams parameters both for separate and for sum laser output was observed. The dependences of laser output power from distance between neighboring pumped regions and their number were determined. Decreasing of laser output power was demonstrated with corresponding distance shortening between pumped regions and increasing their quantity with simultaneous improvement of laser beam quality.Demonstrated mutual influence of neighboring pumped regions in the longitudinally diode pumped Yb:YAG microchip laser allow as to generate diffraction limited Gaussian beam with 2W of continuous-wave output power that 30 % higher than in case of one pumped zone. 

  15. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    Science.gov (United States)

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  16. Nitinol laser cutting: microstructure and functional properties of femtosecond and continuous wave laser processing

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2017-03-01

    Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.

  17. CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler

    Science.gov (United States)

    Motamed-Jahromi, Leila; Hatami, Mohsen

    2018-04-01

    In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.

  18. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  19. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    Science.gov (United States)

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  20. Reduction of field emission in superconducting cavities with high power pulsed RF

    International Nuclear Information System (INIS)

    Graber, J.; Crawford, C.; Kirchgessner, J.; Padamsee, H.; Rubin, D.; Schmueser, P.

    1994-01-01

    A systematic study is presented of the effects of pulsed high power RF processing (HPP) as a method of reducing field emission (FE) in superconducting radio frequency (SRF) cavities to reach higher accelerating gradients for future particle accelerators. The processing apparatus was built to provide up to 150 kW peak RF power to 3 GHz cavities, for pulse lengths from 200 μs to 1 ms. Single-cell and nine-cell cavities were tested extensively. The thermal conductivity of the niobium for these cavities was made as high as possible to ensure stability against thermal breakdown of superconductivity. HPP proves to be a highly successful method of reducing FE loading in nine-cell SRF cavities. Attainable continuous wave (CW) fields increase by as much as 80% from their pre-HPP limits. The CW accelerating field achieved with nine-cell cavities improved from 8-15 MV/m with HPP to 14-20 MV/m. The benefits are stable with subsequent exposure to dust-free air. More importantly, HPP also proves effective against new field emission subsequently introduced by cold and warm vacuum ''accidents'' which admitted ''dirty'' air into the cavities. Clear correlations are obtained linking FE reduction with the maximum surface electric field attained during processing. In single cells the maximums reached were E peak =72 MV/m and H peak =1660 Oe. Thermal breakdown, initiated by accompanying high surface magnetic fields is the dominant limitation on the attainable fields for pulsed processing, as well as for final CW and long pulse operation. To prove that the surface magnetic field rather than the surface electric fields is the limitation to HPP effectiveness, a special two-cell cavity with a reduced magnetic to electric field ratio is successfully tested. During HPP, pulsed fields reach E peak =113 MV/m (H peak =1600 Oe) and subsequent CW low power measurement reached E peak =100 MV/m, the highest CW field ever measured in a superconducting accelerator cavity. ((orig.))

  1. CW and pulsed operation of a diode-end-pumped Tm:GdVO4 laser at room temperature

    International Nuclear Information System (INIS)

    Wang, Z G; Song, C W; Li, Y F; Ju, Y L; Wang, Y Z

    2009-01-01

    A room-temperature diode-end-pumped acousto-optical (AO) Q-switched Tm:GdVO 4 laser was firstly reported. The minimum AO Q-switch pulse width was measured to be about 48 ns with output power of 2 W and repetition rate of 5 kHz. Continuous-wave output power of 2.8 W at 1912 nm was obtained under the absorbed pump power of 15 W. In addition, laser pulse widths and the ratio of QCW power/CW power at different repetition rates were discussed

  2. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    Science.gov (United States)

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-06-08

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.

  3. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    Science.gov (United States)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  4. A Stepped Frequency CW SAR for Lightweight UAV Operation

    National Research Council Canada - National Science Library

    Morrison, Keith

    2005-01-01

    A stepped-frequency continuous wave (SF-CW) synthetic aperture radar (SAR), with frequency-agile waveforms and real-time intelligent signal processing algorithms, is proposed for operation from a lightweight UAV platform...

  5. High-power CW and long-pulse lasers in the green wavelength regime for copper welding

    Science.gov (United States)

    Pricking, Sebastian; Huber, Rudolf; Klausmann, Konrad; Kaiser, Elke; Stolzenburg, Christian; Killi, Alexander

    2016-03-01

    We report on industrial high-power lasers in the green wavelength regime. By means of a thin disk oscillator and a resonator-internal nonlinear crystal for second harmonic generation we are able to extract up to 8 kW pulse power in the few-millisecond range at a wavelength of 515 nm with a duty cycle of 10%. Careful shaping and stabilization of the polarization and spectral properties leads to a high optical-to-optical efficiency larger than 55%. The beam parameter product is designed and measured to be below 5 mm·mrad which allows the transport by a fiber with a 100 μm core diameter. The fiber and beam guidance optics are adapted to the green wavelength, enabling low transmission losses and stable operation. Application tests show that this laser is perfectly suited for copper welding due to the superior absorption of the green wavelength compared to IR, which allows us to produce weld spots with an unprecedented reproducibility in diameter and welding depth. With an optimized set of parameters we could achieve a splatter-free welding process of copper, which is crucial for welding electronic components. Furthermore, the surface condition does not influence the welding process when the green wavelength is used, which allows to skip any expensive preprocessing steps like tin-coating. With minor changes we could operate the laser in cw mode and achieved up to 1.7 kW of cw power at 515 nm with a beam parameter product of 2.5 mm·mrad. These parameters make the laser perfectly suitable for additional applications such as selective laser melting of copper.

  6. Pulsed discharges produced by high-power surface waves

    Science.gov (United States)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  7. High power CO2 lasers and their applications in nuclear industry

    International Nuclear Information System (INIS)

    Nath, A.K.

    2002-01-01

    Carbon dioxide laser is one of the most popular lasers in industry for material processing applications. It has very high power capability and high efficiency, can be operated in continuous wave (CW), modulated and pulsed modes, and has relatively low cost. Due to these characteristics high power CO 2 lasers are being used worldwide in different industries for a wide variety of materials processing operations. In nuclear industry, CO 2 laser has made its way in many applications. Some of the tasks performed by multikilowatt CO 2 laser are cutting operations necessary to remove unprocessible hardware from reactor fuel assemblies, sealing/fixing/removing radioactive contaminations onto/from concrete surfaces and surface modification of engineering components for improved surface mechanical and metallurgical characteristics. We have developed various models of CW CO 2 lasers of power up to 12 kW and a high repetitive rate TEA (Transversely Excited Atmospheric pressure) CO 2 laser of 500 W average power operating at 500 Hz repetition rates. We have carried many materials processing applications of direct relevance to DAE. Recent work includes laser welding of end plug PFBR fuel tubes, martensitic stainless steel and titanium alloy, surface cladding of turbine blades made of Ni-super alloy with stellite 694, fabrication on graded material of stainless steel and stellite, and laser scabbling, drilling and cutting of concrete which have potential application in decontamination and decommissioning of nuclear facilities. A brief overview of these indigenous developments will be presented. (author)

  8. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Science.gov (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  9. Line-robust statistics for continuous gravitational waves: safety in the case of unequal detector sensitivities

    International Nuclear Information System (INIS)

    Keitel, David; Prix, Reinhard

    2015-01-01

    The multi-detector F-statistic is close to optimal for detecting continuous gravitational waves (CWs) in Gaussian noise. However, it is susceptible to false alarms from instrumental artefacts, for example quasi-monochromatic disturbances (‘lines’), which resemble a CW signal more than Gaussian noise. In a recent paper (Keitel et al 2014 Phys. Rev. D 89 064023), a Bayesian model selection approach was used to derive line-robust detection statistics for CW signals, generalizing both the F-statistic and the F-statistic consistency veto technique and yielding improved performance in line-affected data. Here we investigate a generalization of the assumptions made in that paper: if a CW analysis uses data from two or more detectors with very different sensitivities, the line-robust statistics could be less effective. We investigate the boundaries within which they are still safe to use, in comparison with the F-statistic. Tests using synthetic draws show that the optimally-tuned version of the original line-robust statistic remains safe in most cases of practical interest. We also explore a simple idea on further improving the detection power and safety of these statistics, which we, however, find to be of limited practical use. (paper)

  10. CW lasing of Ho in KLu(WO4)2 in-band pumped by a diode-pumped Tm:KLu(WO4)2 laser.

    Science.gov (United States)

    Mateos, Xavier; Jambunathan, Venkatesan; Pujol, Maria Cinta; Carvajal, Joan Josep; Díaz, Francesc; Aguiló, Magdalena; Griebner, Uwe; Petrov, Valentin

    2010-09-27

    We demonstrate continuous wave (CW) room temperature laser operation of the monoclinic Ho(3+)-doped KLu(WO(4))(2) crystal using a diode-pumped Tm(3+):KLu(WO(4))(2) laser for in-band pumping. The slope efficiency achieved amounts to ~55% with respect to the absorbed power and the maximum output power of 648 mW is generated at 2078 nm.

  11. Advances in high power linearly polarized fiber laser and its application

    Science.gov (United States)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  12. Beam characterization of a new continuous wave radio frequency quadrupole accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Perry, A., E-mail: aperry4@hawk.iit.edu [Argonne National Laboratory, Argonne, IL 60439 (United States); Illinois Institute of Technology, Chicago, IL 60616 (United States); Dickerson, C.; Ostroumov, P.N.; Zinkann, G. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2014-01-21

    A new Continuous Wave (CW) Radio Frequency Quadrupole (RFQ) for the ATLAS (Argonne Tandem Linac Accelerator System) Intensity Upgrade was developed, built and tested at Argonne National Laboratory. We present here a characterization of the RFQ output beam in the longitudinal phase space, as well as a measurement of the transverse beam halo. Measurement results are compared to simulations performed using the beam dynamics code TRACK. -- Highlights: • Beam commissioning of a new CW RFQ has been performed at Argonne National Laboratory. • Energy spread and bunch shape measurements were conducted. • The formation of a beam halo in the transverse phase space was studied.

  13. Comb-Resolved Dual-Comb Spectroscopy Stabilized by Free-Running Continuous-Wave Lasers

    Science.gov (United States)

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2012-11-01

    We demonstrate dual-comb spectroscopy with relatively phase-locked two frequency combs, instead of frequency combs firmly fixed to the absolute frequency references. By stabilizing two beat frequencies between two mode-locked lasers at different wavelengths observed via free-running continuous-wave (CW) lasers, two combs are tightly phase locked to each other. The frequency noise of the CW lasers barely affects the performance of dual-comb spectroscopy because of the extremely fast common-mode noise rejection. Transform-limited comb-resolved dual-comb spectroscopy with a 6 Hz radio frequency linewidth is demonstrated by the use of Yb-fiber oscillators.

  14. Circuits and systems for CW and pulsed high-field electron spin resonance

    OpenAIRE

    David Robert, Bolton

    2006-01-01

    This thesis is concerned with the design and realisation of components for a new state of the art 94GHz Electron Spin Resonance (ESR) spectrometer capable of operating in both pulsed and CW modes. The complete spectrometer is designed to provide phase coherent 1kW peak power sub-nanosecond π/2 pulses having variable duration and repetition rate. The mm-wave response of a paramagnetic sample to these pulses is detected with a superheterodyne detector. Such a system would offer a step change in...

  15. An 8–18 GHz broadband high power amplifier

    International Nuclear Information System (INIS)

    Wang Lifa; Yang Ruixia; Li Yanlei; Wu Jingfeng

    2011-01-01

    An 8–18 GHz broadband high power amplifier (HPA) with a hybrid integrated circuit (HIC) is designed and fabricated. This HPA is achieved with the use of a 4-fingered micro-strip Lange coupler in a GaAs MMIC process. In order to decrease electromagnetic interference, a multilayer AlN material with good heat dissipation is adopted as the carrier of the power amplifier. When the input power is 25 dBm, the saturated power of the continuous wave (CW) outputted by the power amplifier is more than 39 dBm within the frequency range of 8–13 GHz, while it is more than 38.6 dBm within other frequency ranges. We obtain the peak power output, 39.4 dBm, at the frequency of 11.9 GHz. In the whole frequency band, the power-added efficiency is more than 18%. When the input power is 18 dBm, the small signal gain is 15.7 ± 0.7 dB. The dimensions of the HPA are 25 × 15 × 1.5 mm 3 . (semiconductor integrated circuits)

  16. Interband cascade lasers with >40% continuous-wave wallplug efficiency at cryogenic temperatures

    International Nuclear Information System (INIS)

    Canedy, C. L.; Kim, C. S.; Merritt, C. D.; Bewley, W. W.; Vurgaftman, I.; Meyer, J. R.; Kim, M.

    2015-01-01

    Broad-area 10-stage interband cascade lasers (ICLs) emitting at λ = 3.0–3.2 μm are shown to maintain continuous-wave (cw) wallplug efficiencies exceeding 40% at temperatures up to 125 K, despite having a design optimized for operation at ambient and above. The cw threshold current density at 80 K is only 11 A/cm 2 for a 2 mm cavity with anti-reflection/high-reflection coatings on the two facets. The external differential quantum efficiency for a 1-mm-long cavity with the same coatings is 70% per stage at 80 K, and still above 65% at 150 K. The results demonstrate that at cryogenic temperatures, where free carrier absorption losses are minimized, ICLs can convert electrical to optical energy nearly as efficiently as the best specially designed intersubband-based quantum cascade lasers

  17. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  18. Status of the development of the EU 170 GHz/1 MW/CW gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Pagonakis, Ioannis Gr., E-mail: ioannis.pagonakis@kit.edu [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Albajar, Ferran [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Alberti, Stefano [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Avramidis, Konstantinos [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Bonicelli, Tullio [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Braunmueller, Falk [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Bruschi, Alex [Plasma Physics Institute, National Research Council of Italy, Milano (Italy); Chelis, Ioannis [School of Electrical and Computer Engineering, National Technical University of Athens (Greece); Cismondi, Fabio [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Gantenbein, Gerd [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Hermann, Virgile [Thales Electron Devices (TED), Vélizy-Villacoublay (France); Hesch, Klaus [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Hogge, Jean-Philippe [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Jelonnek, John; Jin, Jianbo; Illy, Stefan [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Ioannidis, Zisis C. [Faculty of Physics, National and Kapodistrian University of Athens (Greece); Kobarg, Thorsten [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); and others

    2015-10-15

    The progress in the development of the European 170 GHz, 1 MW/CW gyrotron for electron cyclotron heating & current drive (ECH&CD) on ITER is reported. A continuous wave (CW) prototype is being manufactured by Thales Electron Devices (TED), France, while a short-pulse (SP) prototype gyrotron is in parallel under manufacture at Karlsruhe Institute of Technology (KIT), with the purpose of validating the design of the CW industrial prototype components. The fabrication of most of the sub-assemblies of the SP prototype has been completed. In a first step, an existing magnetron injection gun (MIG) available at KIT was used. Despite this non-ideal configuration, the experiments provided a validation of the design, substantiated by an excellent agreement with numerical simulations. The tube, operated without a depressed collector, is able to produce more than 1 MW of output power with efficiency in excess of 30%, as expected, and compatible with the ITER requirements.

  19. Wavelength tunable CW red laser generated based on an intracavity-SFG composite cavity

    Science.gov (United States)

    Zhang, Z. N.; Bai, Y.; Lei, G. Z.; Bai, B.; Sun, Y. X.; Hu, M. X.; Wang, C.; Bai, J. T.

    2016-12-01

    We report a wavelength-tunable watt-level continuous wave (CW) red laser that uses a composite cavity based on an intracavity sum-frequency generation (SFG). The composite cavity is composed of a LD side-pumped Nd: GdVO4 p-polarized 1062.9 nm resonant cavity and a resonant optical parametric oscillator (SRO) of s-polarized signal light using a periodically poled crystal MgO: PPLN. Based on the temperature tuning from 30 °C to 200 °C, the CW red laser beams are obtained in a tunable waveband from 634.4 nm to 649.1 nm, corresponding to a tunable output waveband from 3278.0 nm to 2940.2 nm of the mid-infrared idler lights. The maximum CW output power of the red laser at 634.4 nm and the idler light at 3278.0 nm reach 3.03 W and 4.13 W under 30 °C, respectively.

  20. Maximum Available Accuracy of FM-CW Radars

    Directory of Open Access Journals (Sweden)

    V. Ricny

    2009-12-01

    Full Text Available This article deals with the principles and above all with the maximum available measuring accuracy analyse of FM-CW (Frequency Modulated Continuous Wave radars, which are usually employed for distance and velocity measurements of moving objects in road traffic, as well as air traffic and in other applications. These radars often form an important part of the active safety equipment of high-end cars – the so-called anticollision systems. They usually work in the frequency bands of mm waves (24, 35, 77 GHz. Function principles and analyses of factors, that dominantly influence the distance measurement accuracy of these equipments especially in the modulation and demodulation part, are shown in the paper.

  1. CW light sources at the 589 nm sodium D2 line by sum-frequency mixing of diode pumped neodymium lasers

    International Nuclear Information System (INIS)

    Lü, Y F; Lu, J; Xu, L J; Sun, G C; Zhao, Z M; Gao, X; Lin, J Q

    2010-01-01

    We present a laser architecture to obtain continuous-wave (CW) light sources at the 589 nm sodium D2 line. A 808 nm diode-pumped a Nd:YLiF 4 (Nd:YLF) crystal emitting at 1053 nm. A part of the pump power was then absorbed by the Nd:YLF crystal. The remaining was used to pump a Nd:YAG crystal emitting at 1338 nm. Intracavity sum-frequency mixing at 1053 and 1338 nm was then realized in a LiB 3 O 5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 235 mW at 589 nm with a pump laser diode emitting 17.8 W at 808 nm

  2. High-power, format-flexible, 885-nm vertical-cavity surface-emitting laser arrays

    Science.gov (United States)

    Wang, Chad; Talantov, Fedor; Garrett, Henry; Berdin, Glen; Cardellino, Terri; Millenheft, David; Geske, Jonathan

    2013-03-01

    High-power, format flexible, 885 nm vertical-cavity surface-emitting laser (VCSEL) arrays have been developed for solid-state pumping and illumination applications. In this approach, a common VCSEL size format was designed to enable tiling into flexible formats and operating configurations. The fabrication of a common chip size on ceramic submount enables low-cost volume manufacturing of high-power VCSEL arrays. This base VCSEL chip was designed to be 5x3.33 mm2, and produced up to 50 Watts of peak continuous wave (CW) power. To scale to higher powers, multiple chips can be tiled into a combination of series or parallel configurations tailored to the application driver conditions. In actively cooled CW operation, the VCSEL array chips were packaged onto a single water channel cooler, and we have demonstrated 0.5x1, 1x1, and 1x3 cm2 formats, producing 150, 250, and 500 Watts of peak power, respectively, in under 130 A operating current. In QCW operation, the 1x3 cm2 VCSEL module, which contains 18 VCSEL array chips packaged on a single water cooler, produced over 1.3 kW of peak power. In passively cooled packages, multiple chip configurations have been developed for illumination applications, producing over 300 Watts of peak power in QCW operating conditions. These VCSEL chips use a substrate-removed structure to allow for efficient thermal heatsinking to enable high-power operation. This scalable, format flexible VCSEL architecture can be applied to wavelengths ranging from 800 to 1100 nm, and can be used to tailor emission spectral widths and build high-power hyperspectral sources.

  3. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    International Nuclear Information System (INIS)

    Tsai, C.C.; Stirling, W.L.; Akerman, M.A.; Becraft, W.R.; Dagenhart, W.K.; Haselton, H.H.; Ryan, P.M.; Schechter, D.E.; Whealton, J.H.

    1988-03-01

    A dc negative hydrogen and/or deuterium ion source is needed to prouce high-power, high-energy neutral beams for alpha diagnostics and current drive applicatiosn in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radio-frequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions effeciently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summariezed. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs

  4. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    International Nuclear Information System (INIS)

    Tsai, C.C.; Stirling, W.L.; Akerman, M.A.; Becraft, W.R.; Dagenhart, W.K.; Haselton, H.H.; Ryan, P.M.; Schechter, D.E.; Whealton, J.H.

    1987-01-01

    A dc negative hydrogen and/or deuterium ion source is needed to produce high-power, high-energy neutral beams for alpha diagnostics and current drive applications in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radiofrequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions efficiently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summarized. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs

  5. First 200 kW CW operation of a 60 GHz gyrotron

    International Nuclear Information System (INIS)

    Jory, H.; Bier, R.; Evans, S.; Felch, K.; Fox, L.; Huey, H.; Shively, J.; Spang, S.

    1983-01-01

    The gyrotron is a microwave tube which employs the electron cyclotron maser interaction to produce high power output at millimeter wavelengths. It has important and growing applications for heating of plasmas in controlled thermonuclear fusion experiments. The Varian 60 GHz gyrotron has recently generated microwave power in excess of 200 kW during CW operation, wth excellent dynamic range and operating stability. This is the highest average power ever produced by a microwave tube in the millimeter wave region. A description of the gyrotron design and test results are presented

  6. High-efficiency frequency doubling of continuous-wave laser light.

    Science.gov (United States)

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  7. Palladium nanoparticles produced by CW and pulsed laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Boutinguiza, M., E-mail: mohamed@uvigo.es [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310 (Spain); Lusquiños, F. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Riveiro, A. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de España 2, 36920 Marín (Spain); Val, J. del; Pou, J. [Applied Physics Department, University of Vigo EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2014-05-01

    Palladium nanoparticles are receiving important interest due to its application as catalyst. In this work Pd nanoparticles have been obtained by ablating a Pd target submerged in de-ionized using both, pulsed as well as continuous wave (CW) laser. The influence of laser parameters involved in the formation in nanoparticles has been studied. Crystalline phases, morphology and optical properties of the obtained colloidal nanoparticles were characterized by means of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV/vis absorption spectroscopy. The obtained colloidal suspensions consisted of pure Pd nanoparticles showing spherical shape with diameters ranging from few nanometers to 5–60 nm. The moderate irradiance delivered by the CW laser favours high production of uniform nanoparticles.

  8. Reliability aspects and facet damage in high-power emission from (AlGa)As cw laser diodes at room temperature

    International Nuclear Information System (INIS)

    Kressel, H.; Ladany, I.

    1975-01-01

    Factors are described that limit the optical power output from (AlGa)As laser diodes (lambda = 8100 to 8300 A) operating cw at room temperature with uncoated facets. Rapid laser ''catastrophic'' degradation due to facet damage (in contrast to ''bulk'' phenomena previously considered) has been found to occur as a result of excessive optical flux density at the facets. The diodes studied are capable of initial cw power emission values of 25 to 100 mW from one facet depending on their dimensions. Data are presented showing long-term constant-current operation at power levels below these maximum values. Preliminary data are also presented on devices utilizing dielectric facet coatings to minimize facet damage. (U.S.)

  9. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance.

    Science.gov (United States)

    Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin; Tittel, Frank K

    2018-01-04

    A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10 -5 cm -1 W/√Hz were obtained for the reported CO-QEPAS sensor.

  10. SimLabel: a graphical user interface to simulate continuous wave EPR spectra from site-directed spin labeling experiments.

    Science.gov (United States)

    Etienne, E; Le Breton, N; Martinho, M; Mileo, E; Belle, V

    2017-08-01

    Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL-EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non-expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL-EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL-EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. 50W CW output power and 12mJ pulses from a quasi-2-level Yb:YAG ceramic rod laser end-pumped at the 969nm zero-phonon line

    Science.gov (United States)

    Fries, Christian; Weitz, Marco; Theobald, Christian; v. Löwis of Menar, Patric; Bartschke, Jürgen; L'huillier, Johannes A.

    2015-02-01

    With the advent of high power and narrow bandwidth 969 nm pump diodes, direct pumping into the upper laser level of Yb:YAG and hence quasi-2-level lasers became possible. Pumping directly into the emitting level leads to higher quantum efficiency and reduction of non-radiative decay. Consequently, thermal load, thermal lensing and risk of fracture are reduced significantly. Moreover pump saturation and thermal population of uninvolved energy-levels in ground and excited states are benefical for a homogenous distribution of the pump beam as well as the reduction of reabsorption loss compared to 3-level systems, which allows for high-power DPSS lasers. Beside continuous-wave (cw) operation, nanosecond pulses with a repetition rate between 1 and 5 kHz are an attractive alternative to flashlamp-pumped systems (10-100 Hz) in various measurement applications that require higher data acquisition rates because of new faster detectors. Based on measurements of the absorption and a detailed numerical model for pump beam distribution, including beam propagation and saturation factors, power-scaling of a ceramic rod Yb:YAG oscillator was possible. Finally a cw output power of 50 W with 33 % pump efficiency at 1030 nm has been demonstrated (M2 dumping of this system. The cavity-dumped setup allowed for 3-10 ns pulses with a pulse energy of 12.5 mJ at 1 kHz (M2 < 1.1). In order to achieve these results a systematic experimental and numerical investigation on gain dynamics and the identification of different stable operating regimes has been carried out.

  12. Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal

    Directory of Open Access Journals (Sweden)

    Masato Takiguchi

    2017-04-01

    Full Text Available We demonstrated sub-wavelength (∼111 nm diameter single nanowire (NW continuous wave (CW lasers on silicon photonic crystal in the telecom-band with direct modulation at 10 Gb/s by optical pumping at cryogenic temperatures. To estimate the small signal response and pseudo-random bit sequence (PRBS modulation of our CW lasers, we employed a new signal detection technique that employs a superconducting single photon detector and a time-correlated single photon counting module. The results showed that our NW laser was unambiguously modulated at above 10 Gb/s and an open eye pattern was obtained. This is the first demonstration of a telecom-band CW NW laser with high-speed PRBS modulation.

  13. Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 μm

    International Nuclear Information System (INIS)

    Wu, Z H; Sun, D L; Wang, S Z; Luo, J Q; Li, X L; Huang, L; Hu, A L; Tang, Y Q; Guo, Q

    2013-01-01

    We demonstrated a 967 nm diode end-pumped Er:GSGG laser operated at 2.794 μm with spectral width 3.6 nm in the continuous wave (CW) mode. A maximum output power of 440 mW is obtained at an incident pumping power of 3.4 W, which corresponds to an optical-to-optical efficiency of 13% and slope efficiency of 13.2%. The results suggest that a short cavity and efficient cooling setup for the crystal help to improve laser performance. (paper)

  14. All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation

    International Nuclear Information System (INIS)

    Kananovich, A; Grabtchikov, A; Orlovich, V; Demidovich, A; Danailov, M

    2010-01-01

    Quasi continuous-wave (qCW) yellow emission (pulse duration 5 ms, repetition rate 20 Hz) at 559 nm is demonstrated through intracavity sum frequency generation (SFG) of Stokes and fundamental fields in Nd:YVO 4 diode pumped self-Raman laser for the first time. Average in pulse output power at 559 nm was 0.47 W for 22 W of pump power, which corresponds to 2.1% of diode-to-yellow efficiency. The pulsed mode of operation was due to diode pump modulation and was used to reduce thermal stress of the crystal

  15. Continuous-wave and acousto-optically Q-switched 1066 nm laser performance of a novel Nd:GdTaO4 crystal

    Science.gov (United States)

    Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun

    2018-05-01

    A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.

  16. Parameter-space metric of semicoherent searches for continuous gravitational waves

    International Nuclear Information System (INIS)

    Pletsch, Holger J.

    2010-01-01

    Continuous gravitational-wave (CW) signals such as emitted by spinning neutron stars are an important target class for current detectors. However, the enormous computational demand prohibits fully coherent broadband all-sky searches for prior unknown CW sources over wide ranges of parameter space and for yearlong observation times. More efficient hierarchical ''semicoherent'' search strategies divide the data into segments much shorter than one year, which are analyzed coherently; then detection statistics from different segments are combined incoherently. To optimally perform the incoherent combination, understanding of the underlying parameter-space structure is requisite. This problem is addressed here by using new coordinates on the parameter space, which yield the first analytical parameter-space metric for the incoherent combination step. This semicoherent metric applies to broadband all-sky surveys (also embedding directed searches at fixed sky position) for isolated CW sources. Furthermore, the additional metric resolution attained through the combination of segments is studied. From the search parameters (sky position, frequency, and frequency derivatives), solely the metric resolution in the frequency derivatives is found to significantly increase with the number of segments.

  17. Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser

    International Nuclear Information System (INIS)

    Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi

    2006-01-01

    We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response

  18. Development of a 100 W, single frequency, CW Nd:YAG Laser

    International Nuclear Information System (INIS)

    Veitch, P.J.; Mudge, D.; Munch, J.; Hamilton, M.W.; Ostermeyer, M.; Hosken, D.; Brooks, A.

    2002-01-01

    Full text: High power, diode-laser-pumped, continuous wave (cw) solid-state lasers with excellent beam quality, efficiency and reliability are required for demanding applications, including gravitational wave interferometry, where current additional requirements include single frequency, low noise and Nd:YAG. Our approach is a chain of injection locked laser oscillators, theoretically capable of achieving the lowest noise possible. We use a single-frequency (100 mW) master laser to injection lock a medium-power (10 W) laser that in turn injection locks a 100 W laser. Injection locking requires an optimized, single mode, power slave laser at each stage. We shall describe the nearly completed 10 W brass-board laser, which will also be deployed at the ACIGA Test Facility at Gingin. We shall also describe our 100 W laser using a scalable diode pumping scheme, an active control of thermal lensing and a stable-unstable resonator. Initial tests showed mode control to be limited by thermal focusing and thermally induced birefringence in the Nd:YAG medium at 70 W output. Recent efforts have identified the source of the thermal lens and significantly reduced its magnitude, leading to a modified design. We shall present our latest results from the experiments to demonstrate single mode, single frequency laser at 100 W

  19. On the shape of continuous wave infrared stimulated luminescence signals from feldspars: A case study

    DEFF Research Database (Denmark)

    Pagonis, V.; Jain, Mayank; Thomsen, Kristina Jørkov

    2014-01-01

    The continuous-wave IRSL (CW-IRSL) signals from feldspars are known to decay in a non-exponential manner, and their exact mathematical description is of great importance in dosimetric and dating studies. This paper investigates the possibility of fitting experimental CW-IRSL curves from a variety...... to guide future modeling work on luminescence processes in feldspars. Small statistical differences were found between K-rich and Na-rich fractions of the same sample. However, the experimental data shows that the parameters depend on the irradiation dose, but do not depend on the time elapsed after...

  20. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.

    Science.gov (United States)

    Wang, Ke-Yao; Foster, Amy C

    2012-04-15

    We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America

  1. CW and AO Q-switched operation of a dual-crystal Tm, Ho:GdVO4 laser pumped by two diodes

    International Nuclear Information System (INIS)

    Li, L J; Bai, Y F; Liu, Y W; He, Z L; Wang, J; Yao, B Q; Zhou, S; Xing, M N

    2013-01-01

    Continuous wave (CW) mode and acousto-optic (AO) Q-switched mode operation of a dual-crystal Tm, Ho:GdVO 4 laser is reported. The dual-crystal Tm, Ho:GdVO 4 laser with output wavelength of 2.05 μm was pumped by two laser diodes (LDs). The Tm, Ho:GdVO 4 crystals were cooled by liquid nitrogen and pumped by two fiber-coupled LDs with a center output wavelength of 801.0 nm. A 20.5 W output power was obtained at a 255 mm physical cavity length in CW mode operation, and a 19.6 W average power was obtained at a pulse repetition frequency (PRF) of 10 kHz with a 19 ns pulse duration. Also, the efficiency loss of the laser is not more than 4.4% from CW mode to Q-switch mode, and the M 2 factor, which is measured by the traveling knife-edge method, does not exceed 1.2. (paper)

  2. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2018-01-01

    Full Text Available A highly sensitive carbon monoxide (CO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS was demonstrated. A high-power distributed feedback (DFB, continuous wave (CW 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF, a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA coefficient of 1.8 × 10−5 cm−1W/√Hz were obtained for the reported CO-QEPAS sensor.

  3. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    Science.gov (United States)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  4. Ultrasound induced by CW laser cavitation bubbles

    International Nuclear Information System (INIS)

    Korneev, N; Montero, P Rodriguez; Ramos-Garcia, R; Ramirez-San-Juan, J C; Padilla-Martinez, J P

    2011-01-01

    The generation of ultrasound by a collapsing single cavitation bubble in a strongly absorbing liquid illuminated with a moderate power CW laser is described. The ultrasound shock wave is detected with hydrophone and interferometric device. To obtain a stronger pulse it is necessary to adjust a liquid absorption and a beam diameter. Their influence can be qualitatively understood with a simple model.

  5. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    Energy Technology Data Exchange (ETDEWEB)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized.

  6. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    International Nuclear Information System (INIS)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized

  7. Diode-pumped CW frequency-doubled Nd:CNGG-BiBO blue laser at 468 nm

    International Nuclear Information System (INIS)

    Lü, Y F; Xia, J; Lin, J Q; Gao, X; Dong, Y; Xu, L J; Sun, G C; Zhao, Z M; Tan, Y; Chen, J F; Liu, Z X; Li, C L; Cai, H X; Liu, Z T; Ma, Z Y; Ning, G B

    2011-01-01

    Efficient and compact blue laser output at 468 nm is generated by intracavity frequency doubling of a continuous-wave (CW) diode-pumped Nd:CNGG laser at 935 nm. With 17.8 W of diode pump power and the frequency-doubling crystal BiB 3 O 6 (BiBO), a maximum output power of 490 mW in the blue spectral range at 468 nm has been achieved, corresponding to an optical-to-optical conversion efficiency of 2.8%; the output power stability over 4 h is better than 2.6%. To the best of our knowledge, this is first work on intracavity frequency doubling of a diode pumped Nd:CNGG laser at 935 nm

  8. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST

    Energy Technology Data Exchange (ETDEWEB)

    Hillairet, Julien, E-mail: julien.hillairet@cea.fr; Mollard, Patrick; Bernard, Jean-Michel; Argouarch, Arnaud; Berger-By, Gilles; Charabot, Nicolas; Colas, Laurent; Delaplanche, Jean-Marc; Ekedahl, Annika; Fedorczak, Nicolas; Ferlay, Fabien; Goniche, Marc; Hatchressian, Jean-Claude; Helou, Walid; Jacquot, Jonathan; Joffrin, Emmanuel; Litaudon, Xavier; Lombard, Gilles; Magne, Roland; Patterlini, Jean-Claude [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); and others

    2015-12-10

    The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the V{sub r}/V{sub f} and SHAD systems.

  9. A diode-pumped continuous-wave Nd:YAG laser with an average output power of 1 kW

    International Nuclear Information System (INIS)

    Lee, Sung Man; Cha, Byung Heon; Kim, Cheol Jung

    2004-01-01

    A diode-pumped Nd:YAG laser with an average output power of 1 kW is developed for industrial applications, such as metal cutting, precision welding, etc. To develop such a diode-pumped high power solid-state laser, a series of laser modules have been used in general with and without thermal birefringence compensation. For example, Akiyama et al. used three laser modules to obtain a output power of 5.4 kW CW.1 In the side-pumped Nd:YAG laser, which is a commonly used pump scheme to obtain high output power, the crystal rod has a short thermal focal length at a high input pump power, and the short thermal focal length in turn leads to beam distortion within a laser resonator. Therefore, to achieve a high output power with good stability, isotropic beam profile, and high optical efficiency, the detailed analysis of the resonator stability condition depending on both mirror distances and a crystal separation is essential

  10. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  11. Time-resolved dynamics of two-channel molecular systems in cw laser fields: Wave-packet construction in the Floquet formalism

    International Nuclear Information System (INIS)

    Nguyen-Dang, T.T.; Chateauneuf, F.; Atabek, O.; He, X.

    1995-01-01

    The description of the wave-packet time-resolved dynamics in a two-channel molecular system driven by a cw laser field is considered within the time-independent Floquet representation. It is shown that, at high field intensity, the wave-packet motions are governed solely by the pair of adiabatic dressed potential-energy surfaces (PES's) associated with a single Brillouin zone. The same expressions of the wave-packet motions in terms of the adiabatic PES's are obtained within a short-time approximation, thereby furnishing a new numerical algorithm for the wave-packet propagation in a laser-driven two-channel system at any intensity. Numerical tests of this algorithm are presented. The numerical results establish unambiguously the adiabaticity of nuclear motions at high field intensities

  12. Diode-pumped continuous-wave and passively Q-switched 1066 nm Nd:GYNbO4 laser

    Science.gov (United States)

    Ma, Yufei; Peng, Zhenfang; He, Ying; Li, Xudong; Yan, Renpeng; Yu, Xin; Zhang, Qingli; Ding, Shoujun; Sun, Dunlu

    2017-08-01

    A diode-pumped passively Q-switched 1066 nm laser with a novel Nd:Gd0.69Y0.3NbO4 mixed crystal was demonstrated for the first time to the best of our knowledge. In the continuous-wave (CW) operation, optimization selection of output couplers was carried out, and a maximum output power of 2.13 W was obtained when the plane mirror with transmission of 25% was chosen and the absorbed pump power was 10.5 W. The Cr4+:YAG passively Q-switched Nd:Gd0.69Y0.3NbO4 laser performance was investigated. At an absorbed pump power of 10.5 W, using Cr4+:YAG with initial transmission of 80%, the obtained minimum pulse width was 7.2 ns with the pulse repetition rate of 19 kHz. The single pulse energy and peak power were estimated to be 26.7 µJ and 3.7 kW, respectively.

  13. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    Science.gov (United States)

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  14. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    Science.gov (United States)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  15. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Fallnich, C; Frede, M; Heurs, M; King, P; Kracht, D; Kwee, P; Savage, R; Seifert, F; Wilhelm, R

    2006-01-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requirements and new results (RIN ≤ 4x10 -9 /√Hz) will be presented

  16. Evaluation of cellular effects of pulsed and continuous wave radiofrequency radiation

    International Nuclear Information System (INIS)

    Pavicic, Ivan; Trosic, Ivancica

    2008-01-01

    Full text: In less than twenty years, the mobile telephone has gone from being rare, expensive equipment of the business elite to a pervasive, low-cost personal item. Since the introduction of mobile phones, concerns have been raised about the potential detrimental impacts on living beings from regular use. The first 'modern' network technology on second generation cellular technology was launched in 1991 in Finland on the Global System for Mobile Communications (GSM) standard. This study evaluates cellular effects of, both, continuous (CW) and pulsed GSM modulated waves (PW). Continuous cell culture of Chinese hamster lung cells, line V79, was used in this study. Cell growth and colony forming ability (CFA) was analyzed after 1, 2 and 3 hours of exposure to the both frequency fields, 935 MHz CW and 915 MHz PW. Selected frequency fields were generated inside gigahertz transversal electromagnetic mode cell (GTEM) equipped with the signal generators. Hewlett Packard HP8657A signal generator was used to generate CW 935 MHz frequency field. Anritzu MS2711B spectrum analyzer with tracking generator and Micro devices RF 3146 power amplifier module generated PW radiofrequency field of 915 MHz. Averaged specific absorption rate (SAR) belonging to the CW 935 MHz frequency field was calculated to be 0.12 W/kg, and for GSM modulated 915 MHz field was 0.23 W/kg. Cell samples were irradiated in triplicate. The sham exposed control cell samples were included in the study. The temperature inside the exposure set-up was recorded in ten-minute intervals through the irradiation treatment. Both, sham-exposed and exposed cell samples were kept in the same condition, except in the time of irradiation for experimental samples when signal generator was switched on. To determine cell growth, V79 samples were plated in concentration of 1x10 4 cells/mL. Cells were maintained in the standard laboratory conditions, which are humidified atmosphere, 37 C degrees, and 5% CO 2 . Cell

  17. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    Science.gov (United States)

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  18. A compact, CW mid-infrared intra-cavity Nd:Lu0.5Y0.5VO4∖KTA-OPO at 3.5 μm

    International Nuclear Information System (INIS)

    Duan, Y M; Zhu, H Y; Feng, Z R; Xu, C W; Tang, D Y; Zhang, J; Wang, H Y

    2013-01-01

    We report a continuous-wave (CW) KTA (KTiOAsO 4 )-OPO (optical parametric oscillator) with a compact linear cavity utilizing an LD pumped mixed crystal Nd:Lu 0.5 Y 0.5 VO 4 laser as the pump source for the first time. A singly resonant oscillator with low signal light loss was designed to reduce the OPO’s threshold. Maximum output powers of 630 mW at 3475 nm and 190 mW at 1536 nm were obtained at a pump power of 13.2 W. A total conversion efficiency of 6.2% was achieved with respect to the incident diode pump power. The performance of this work demonstrates that a CW KTA-OPO derived by an LD pumped Nd 3+ doped solid laser can also produce efficient mid-infrared light. (letter)

  19. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue.

    Science.gov (United States)

    Schomacker, K T; Walsh, J T; Flotte, T J; Deutsch, T F

    1990-01-01

    Thermal damage produced by continuous wave (cw) CO2 laser ablation of tissue in vitro was measured for irradiances ranging from 360 W/cm2 to 740 kW/cm2 in order to investigate the extent to which ablative cooling can limit tissue damage. Damage zones thinner than 100 microns were readily produced using single pulses to cut guinea pig skin as well as bovine cornea, aorta, and myocardium. Multiple pulses can lead to increased damage. However, a systematic decrease in damage with irradiance, predicted theoretically by an evaporation model of ablation, was not observed. The damage-zone thickness was approximately constant around the periphery of the cut, consistent with the existence of a liquid layer which stores heat and leads to tissue damage, and with a model of damage and ablation recently proposed by Zweig et al.

  20. Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer

    Science.gov (United States)

    Band, Alan; Donohue, Matthew P.; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A.

    2018-03-01

    We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems.

  1. Development of high power CW and pulsed RF test facility based on 1 MW, 352.2 MHz klystron amplifier

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Rao, J.N.; Tiwari, Ashish; Jain, Akhilesh; Lad, M.R.; Hannurkar, P.R.

    2013-01-01

    A high power 1 MW, 352.2 MHz RF Test facility having CW and Pulse capability is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for performance evaluation of various RF components, accelerating structures and related subsystems. Thales make 1 MW, 352.2 MHz klystron amplifier (TH 2089) will be employed in this high power test facility, which is thoroughly tested for its performance parameters at rated operating conditions. Auxiliary power supplies like filament, electromagnet, ion pump and mod anode power supply as well as 200 W solid state driver amplifier necessary for this high power test facility have been developed. A high voltage floating platform is created for floating filament and mod anode power supplies. Interconnection of various power supplies and other subsystems of this test facility are being carried out. A high voltage 100 kV, 25 Amp DC crowbar less power supply and low conductivity water (LCW) plant required for this klystron amplifier are in advanced stage of development. NI make cRIO 9081 real time (RT) controller based control and interlock system has been developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test facility. This RF test facility will provide confidence for development of RF System of future accelerators like SNS and ADSS. (author)

  2. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs

    Science.gov (United States)

    Kaul, T.; Erbert, G.; Maaßdorf, A.; Knigge, S.; Crump, P.

    2018-03-01

    Broad area lasers with novel extreme double asymmetric structure (EDAS) vertical designs featuring increased optical confinement in the quantum well, Γ, are shown to have improved temperature stability without compromising series resistance, internal efficiency or losses. Specifically, we present here vertical design considerations for the improved continuous wave (CW) performance of devices operating at 940 nm, based on systematically increasing Γ from 0.26% to 1.1%, and discuss the impact on power saturation mechanisms. The results indicate that key power saturation mechanisms at high temperatures originate in high threshold carrier densities, which arise in the quantum well at low Γ. The characteristic temperatures, T 0 and T 1, are determined under short pulse conditions and are used to clarify the thermal contribution to power limiting mechanisms. Although increased Γ reduces thermal power saturation, it is accompanied by increased optical absorption losses in the active region, which has a significant impact on the differential external quantum efficiency, {η }{{diff}}. To quantify the impact of internal optical losses contributed by the quantum well, a resonator length-dependent simulation of {η }{{diff}} is performed and compared to the experiment, which also allows the estimation of experimental values for the light absorption cross sections of electrons and holes inside the quantum well. Overall, the analysis enables vertical designs to be developed, for devices with maximized power conversion efficiency at high CW optical power and high temperatures, in a trade-off between absorption in the well and power saturation. The best balance to date is achieved in devices using EDAS designs with {{Γ }}=0.54 % , which deliver efficiencies of 50% at 14 W optical output power at an elevated junction temperature of 105 °C.

  3. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    Science.gov (United States)

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  4. Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm

    International Nuclear Information System (INIS)

    Bachmann, Alexander; Arafin, Shamsul; Kashani-Shirazi, Kaveh

    2009-01-01

    Vertical-cavity surface-emitting lasers (VCSELs) are perfect light sources for spectroscopic applications, where properties such as continuous-wave (cw) operation, single-mode emission, high lifetime and often low power consumption are crucial. For applications such as tunable diode laser absorption spectroscopy (TDLAS), there is a growing interest in laser devices emitting in the near- to mid-infrared wavelength range, where many environmentally and technologically important gases show strong absorption lines. The (AlGaIn)(AsSb) material system based on GaSb is the material of choice for covering the 2.0-3.3 μm range. In this paper, we report on electrically pumped single-mode VCSELs with emission wavelengths of 2.4 and 2.6 μm, operating cw at room temperature and beyond. By (electro-) thermal tuning, the emission wavelength can be tuned mode-hop free over a range of several nanometers. In addition, low threshold currents of several milliamperes promise mobile application. In the devices, a structured buried tunnel junction with subsequent overgrowth has been used in order to achieve efficient current confinement, reduced optical losses and increased electrical conductivity. Furthermore, strong optical confinement is introduced in the lasers due to laterally differing cavity lengths.

  5. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...

  6. Histologic evaluation of laser lipolysis comparing continuous wave vs pulsed lasers in an in vivo pig model.

    Science.gov (United States)

    Levi, Jessica R; Veerappan, Anna; Chen, Bo; Mirkov, Mirko; Sierra, Ray; Spiegel, Jeffrey H

    2011-01-01

    To evaluate acute and delayed laser effects of subdermal lipolysis and collagen deposition using an in vivo pig model and to compare histologic findings in fatty tissue after continuous wave diode (CW) vs pulsed laser treatment. Three CW lasers (980, 1370, and 1470 nm) and 3 pulsed lasers (1064, 1320, and 1440 nm) were used to treat 4 Göttingen minipigs. Following administration of Klein tumescent solution, a laser cannula was inserted at the top of a 10 × 2.5-cm rectangle and was passed subdermally to create separate laser "tunnels." Temperatures at the surface and at intervals of 4-mm to 20-mm depths were recorded immediately after exposure and were correlated with skin injury. Full-thickness cutaneous biopsy specimens were obtained at 1 day, 1 week, and 1 month after exposure and were stained with hematoxylin-eosin and trichrome stain. Qualitative and semiquantitative histopathologic evaluations were performed with attention to vascular damage, lipolysis, and collagen deposition. Skin surface damage occurred at temperatures exceeding 46°C. Histologic examination at 1 day after exposure showed hemorrhage, fibrous collagen fiber coagulation, and adipocyte damage. Adipocytes surrounded by histiocytes, a marker of lipolysis, were present at 1 week and 1 month after exposure. Collagen deposition in subdermal fatty tissue and in reticular dermis of some specimens was noted at 1 week and had increased at 1 month. Tissue treated with CW laser at 1470 nm demonstrated greater hemorrhage and more histiocytes at damage sites than tissue treated with pulsed laser at 1440 nm. There was a trend toward more collagen deposition with pulsed lasers than with CW lasers, but this was not statistically significant. Histopathologic comparison between results of CW laser at 980 nm vs pulsed laser at 1064 nm showed the same trend. Hemorrhage differences may result from pulse duration variations. A theoretical calculation estimating temperature rise in vessels supported this

  7. Astigmatism-free high-brightness 1060 nm edge-emitting lasers with narrow circular beam profile.

    Science.gov (United States)

    Miah, Md Jarez; Kalosha, Vladimir P; Bimberg, Dieter; Pohl, Johannes; Weyers, Markus

    2016-12-26

    1060 nm high-brightness vertical broad-area edge-emitting lasers providing anastigmatic high optical power into a narrow circular beam profile are demonstrated. Ridge-waveguide (RW) lasers yield record 2.2 W single-transverse mode power in the 1060-nm wavelength range under continuous-wave (cw) operation at room temperature with excellent beam quality factor M2 ≤ 2. Independent of operating current the astigmatism is only 2.5 µm. 3 mm long broad-area (BA) lasers produce a θvert as narrow as 9° full width at half maximum, which agrees well with our simulation results, being insensitive to drive current. 5 mm long BA lasers deliver highest ever reported cw 12 W multimode output power among lasers showing θvert <10° in the 1060-nm wavelength range. The emitted laser beams from both RW and BA lasers show a perfect circular shape with ≤10° divergence angle at record 2.1 W and 4.2 W cw-mode output power, respectively.

  8. Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo applications

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Barth, Eugene D.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging. Methods: Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies. Results: A study of phantoms with different oxygen concentrations revealed a threefold advantage of the ESE methodology in terms of reduced imaging time and more precise oxygen resolution for samples with less than 70 torr oxygen partial pressure. Above∼100 torr, CW performed better. The images produced by both methodologies showed pO2 distributions with similar mean values. However, ESE images demonstrated superior performance in low pO2 regions while missing voxels in high pO2 regions. Conclusions: ESE and CW have different areas of applicability. ESE is superior for hypoxia studies in tumors. PMID:21626937

  9. Management of high current transients in the CWDD Injector 200 kV power system

    International Nuclear Information System (INIS)

    Carwardine, J.A.; Pile, G.; Zinneman, T.E.

    1993-01-01

    The injector for the Continuous Wave Deuterium Demonstrator is designed to deliver a high current CW negative deuterium ion beam at an energy of 200 keV to a Radio Frequency Quadrupole. The injector comprises a volume ion source, triode accelerator, high-power electron traps and low-energy beam transport with a single focusing solenoid. Some 75 Joules of energy are stored in stray capacitance around the high voltage system and discharged in a few microseconds following an injector breakdown. In order to limit damage to the accelerator grids, a magnetic snubber is incorporated to absorb most of the energy. Nevertheless, large current transients flow around the system as a result of an injector breakdown; these have frequently damaged power components and caused spurious behavior in many of the supporting systems. The analytical and practical approaches taken to minimize the effects of these transients are described. Injector breakdowns were simulated using an air spark gap and measurements made using standard EMC test techniques. The power circuit was modeled using an electrical simulation code; good agreement was reached between the model and measured results

  10. CW laser properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG mixed crystals

    Science.gov (United States)

    Di, J. Q.; Xu, X. D.; Li, D. Z.; Zhou, D. H.; Wu, F.; Zhao, Z. W.; Xu, J.; Tang, D. Y.

    2011-10-01

    Three mixed crystals, Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG, were grown by Czochralski method. We report the continuous-wave (CW) Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG laser operation under laser diode pumping. The maximum output powers are 4.11, 5.31, and 7.47 W, with slope efficiency of 73.0, 55.3, and 57.1%, respectively. With replacing Lu3+ or Y3+ ions with large Gd3+ ions, the pump efficiency increases.

  11. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.

    Science.gov (United States)

    Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E

    2013-08-15

    We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.

  12. Outgassing studies of lower hybrid antenna module during CW high RF power injection

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.; Maebara, S.; Ikeda, Y.; Imai, T.; Nagashima, T.

    1994-01-01

    Outgassing, induced by very long RF waves injection (up to 6000s) at high power density, is studied with a module, able to be used for a lower hybrid frequency antenna. A large outgassing data base is provided by 75 shots cumulating 27 hours of RF injection. Outgassing rate is documented after different thermal pre-treatments, and in various conditions of cooling, RF power level. Relevant parameters are identified and values of outgassing rates are given in order to design pumping system for a large antenna. (author) 4 refs.; 7 figs.; 1 tab

  13. Development of high power klystron. 3. Development of klystron No.2

    International Nuclear Information System (INIS)

    Hirano, K.; Wang, Y.L.; Sato, I.

    2000-08-01

    A high power klystron has been developed as the RF source of the high power CW electron linac (10 MeV, 100 mA, 1.249135 GHz). CW power of 1.2 MW and efficiencies over 65% at a beam voltage 85 kV were the design goal. We developed a long pill-box type beryllia window (long pill-box window) withstood the RF power of 1.7 MW (CW) and replaced the standard pill-box window of the prototype klystron with long pill-box window. The high power RF test was carried out with the converted klystron. This klystron has achieved CW RF power of 885 kW and efficiency of 47% at beam voltage of 85 kV. This paper describes key points of the designs to achieve the RF power over 1.2 MW and results of the high power RF test of the second klystron, which has been optimized by simulation codes to improve better efficiency. The second klystron has achieved the maximum efficiency of 56.5% with CW output power of 782 kW at a beam voltage of 80 kV and a cathode current of 20.4 A in present. The third klystron will be manufactured to reflect results of this test. (author)

  14. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Schurink, F

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.). 11 refs.; 10 figs.

  15. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    International Nuclear Information System (INIS)

    Hulshof, H.J.M.; Schurink, F.

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.)

  16. Application of M-type cathodes to high-power cw klystrons

    Science.gov (United States)

    Isagawa, S.; Higuchi, T.; Kobayashi, K.; Miyake, S.; Ohya, K.; Yoshida, M.

    1999-05-01

    Two types of high-power cw klystrons have been widely used at KEK in both TRISTAN and KEKB e +e - collider projects: one is a 0.8 MW/1.0 MW tube, called YK1302/YK1303 (Philips); the other is a 1.2 MW tube, called E3786/E3732 (Toshiba). Normally, the dispenser cathodes of the `B-type' and the `S-type' have been used, respectively, but for improved versions they have been replaced by low-temperature cathodes, called the `M-type'. An Os/Ru coating was applied to the former, whereas an Ir one was applied to the latter. Until now, all upgraded tubes installing M-type cathodes, 9 and 8 in number, respectively, have worked successfully without any dropout. A positive experience concerning the lifetime under real operation conditions has been obtained. M-type cathodes are, however, more easily poisoned. One tube installing an Os/Ru-coated cathode showed a gradual, and then sudden decrease in emission during an underheating test, although the emission could fortunately be recovered by aging at the KEK test field. Once sufficiently aged, the emission of an Ir-coated cathode proved to be very high and stable, and its lifetime is expected to be very long. One disadvantage of this cathode is, however, susceptibility to gas poisoning and the necessity of long-term initial aging. New techniques, like ion milling and fine-grained tungsten top layers, were not as successful as expected from their smaller scale applications to shorten the initial aging period. A burn-in process at higher cathode loading was efficient to make the poisoned cathode active and to decrease unwanted Wehnelt emission. On top of that, the emission cooling, and thus thermal conductivity near the emitting layer could play an important role in such large-current cathodes as ours.

  17. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency.

    Science.gov (United States)

    Zhang, Jun; Fromzel, Viktor; Dubinskii, Mark

    2011-03-14

    We report the results of our power scaling experiments with resonantly cladding-pumped Er-doped eye-safe large mode area (LMA) fiber laser. While using commercial off-the-shelf LMA fiber we achieved over 88 W of continuous-wave (CW) single transverse mode power at ~1590 nm while pumping at 1532.5 nm. Maximum observed optical-to-optical efficiency was 69%. This result presents, to the best of our knowledge, the highest power reported from resonantly-pumped Yb-free Er-doped LMA fiber laser, as well as the highest efficiency ever reported for any cladding-pumped Er-doped laser, either Yb-co-doped or Yb-free.

  18. Quantum Communication with a High-Rate Entangled Photon Source

    Science.gov (United States)

    Wilson, Nathaniel C.; Chaffee, Dalton W.; Lekki, John D.; Wilson, Jeffrey D.

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  19. Diode-pumped continuous-wave blue laser operation of Nd:GGG at 467.0, 467.7, and 468.5 nm

    International Nuclear Information System (INIS)

    Xu, B; Camy, P; Doualan, J L; Braud, A; Moncorgé, R; Cai, Z P; Brenier, A

    2012-01-01

    Intra-cavity frequency doubling of continuous-wave (CW) laser emission on the quasi-three level ( 4 F 3/2 → 4 I 9/2 ) laser transition of Nd 3+ in Nd:GGG is reported by using a three-mirror folded resonator. The thermal lens experienced by the optically-pumped Nd:GGG laser crystal is measured as a function of the absorbed pump power and compared to that found, in the same conditions, in the case of Nd:YAG. Results are interpreted by using a simple model accounting for the absorbed pump power and the thermo-mechanical properties of each laser crystal. Diode-pumped blue laser operation is achieved, for the first time, at 467.0 and 468.5 nm with output powers of 230 and 450 mW, respectively. Simultaneous laser operation resulting both from frequency-doubling and frequency summing at the three 467.1, 467.7, and 468.1 nm laser wavelengths is also obtained with a total output power of 60 mW

  20. The Continuous Wave Deuterium Demonstrator (CWDD) design and status

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. [Grumman Space and Electronics Corp., Princeton, NJ (United States); Nightingale, M.P.S. [AEA Industrial Technology, Culham (United Kingdom); Yule, T.J. [Argonne National Lab., IL (United States)

    1992-12-31

    The design of the Continuous Wave Deuterium Demonstrator (CWDD) and the status of the fabricated hardware is presented. The CWDD is a high brightness, 352 MHz, CW linear accelerator designed to deliver a 7.54 MeV, 80 mA D{sup {minus}} beam at a transverse normalized rms emittance of 0.11 {pi} mm-mrad and a longitudinal rms emittance of 0.20 {pi} mm-mrad. End-to-end beam dynamics analysis for nominal and off-design conditions is described. The tuning and predicted operational performance os the as-built device are also discussed. These results all indicate that the present design can meet the output performance specifications in the presence of combined errors at the limits of the specified engineering tolerances. Preliminary injector operations have been conducted at AEA Technologies, Culham Laboratory and at Argonne National Laboratory, where the CWDD is sited. Initial RGQ beam experiments at Argonne are projected for October 1993. DTL installation and commissioning will be completed in 1994.

  1. 1 CW green self-frequency-doubled Yb:YAl3(BO3)4 laser

    International Nuclear Information System (INIS)

    Dekker, P.; Dawes, J.; Wang, P.; Piper, J.

    2000-01-01

    Full text: We report 1.1 W continuous wave (CW) green output from a 977nm diode-end-pumped self-frequency-doubled Yb:YAB laser, with a diode-to-green optical conversion efficiency of 10%. Wavelength tunability from 513-546nm has been demonstrated

  2. State-of-the-art of high power gyro-devices and free electron masers

    International Nuclear Information System (INIS)

    Thumm, M.

    1993-10-01

    At present, gyrotron oscillators are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH) and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. 140 GHz gyrotrons with output power P out = 0.58 MW, pulse length τ = 2.0 s and efficiency η = 34% are commercially available. Diagnostic gyrotrons deliver P out = 40 kW with τ = 40 μs at frequencies up to 650 GHz (η ≥ 4%). Recently, gyrotron oscillators have also been successfully used in material processing and plasma chemistry. Such technological applications require gyrotrons with the following parameters: f ≥ 28 GHz, P out = 10-30 kW, CW, η ≥ 30%. This paper reports on achievements and problems related to the development of very high power mm-wave gyrotrons for long pulse or CW operation and describes the microwave technological pecularities of the different development steps. In addition, this work gives a short overview of the present development of gyrotrons for technological applications, quasi-optical gyrotrons, cyclotron autoresonance masers (CARMs), gyro-klystrons, gyro-TWT amplifiers, gyro-BWO's and free electron masers (FEMs). The most impressive FEM output parameters are: P out = 2 GW, τ = 20 ns, η = 13% at 140 GHz (LLNL) and P out = 15 kW, τ = 20 μs, η = 5% in the range from 120 to 900 GHz (UCSB). (orig.) [de

  3. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least...... substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...

  4. Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer.

    Science.gov (United States)

    Band, Alan; Donohue, Matthew P; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A

    2018-03-01

    We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems. Published by Elsevier Inc.

  5. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique

    Science.gov (United States)

    Rakvin, B.; Carić, D.; Kveder, M.

    2018-02-01

    The microwave magnetic field strength, B1, in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ωrf, which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B1, decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed.

  6. Enhanced accuracy of the microwave field strength measurement in a CW-EPR by pulsed modulation technique.

    Science.gov (United States)

    Rakvin, B; Carić, D; Kveder, M

    2018-02-01

    The microwave magnetic field strength, B 1 , in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ω rf , which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B 1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B 1 , decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Reactive power generation in high speed induction machines by continuously occurring space-transients

    Science.gov (United States)

    Laithwaite, E. R.; Kuznetsov, S. B.

    1980-09-01

    A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.

  8. High output power of differently cut Nd:MgO:LiTaO3 CW lasers

    Science.gov (United States)

    Sun, D. H.; Liu, S. D.; Wang, D. Z.; Sang, Y. H.; Kang, X. L.; Liu, H.; Bi, Y.; Yan, B. X.; He, J. L.; Wang, J. Y.

    2013-04-01

    A high-quality Nd3+ and Mg2+ co-doped LiTaO3 (Nd:MgO:LT) crystal was grown by the Czochralski method. The polarized absorption spectra and fluorescence spectra were studied, and the absorption cross section was calculated by Judd-Ofelt (J-O) theory. The laser performance with different sample cuts of the crystal was investigated for the first time, and it was found that Nd:MgO:LT crystal with different cutting directions (a and c) exhibits different laser properties. By optimizing a partial reflectivity mirror in the laser experimental setting, a high continuous wave output power of 3.58 W was obtained at 1092 and 1076 nm with an optical-to-optical conversion efficiency of 22.78% and slope efficiency of 26.06%. The results indicate that Nd:MgO:LT crystal is a promising candidate for the manufacture of Nd3+ doped periodically poled MgO:LiTaO3 crystal (Nd:PPMgOLT), which should have considerable applications in self-frequency doubling and optical parametric oscillation laser devices.

  9. High output power of differently cut Nd:MgO:LiTaO3 CW lasers

    International Nuclear Information System (INIS)

    Sun, D H; Liu, S D; Wang, D Z; Sang, Y H; Kang, X L; Liu, H; He, J L; Wang, J Y; Bi, Y; Yan, B X

    2013-01-01

    A high-quality Nd 3+ and Mg 2+ co-doped LiTaO 3 (Nd:MgO:LT) crystal was grown by the Czochralski method. The polarized absorption spectra and fluorescence spectra were studied, and the absorption cross section was calculated by Judd–Ofelt (J–O) theory. The laser performance with different sample cuts of the crystal was investigated for the first time, and it was found that Nd:MgO:LT crystal with different cutting directions (a and c) exhibits different laser properties. By optimizing a partial reflectivity mirror in the laser experimental setting, a high continuous wave output power of 3.58 W was obtained at 1092 and 1076 nm with an optical-to-optical conversion efficiency of 22.78% and slope efficiency of 26.06%. The results indicate that Nd:MgO:LT crystal is a promising candidate for the manufacture of Nd 3+ doped periodically poled MgO:LiTaO 3 crystal (Nd:PPMgOLT), which should have considerable applications in self-frequency doubling and optical parametric oscillation laser devices. (paper)

  10. Characteristics of the evolution of a plasma generated by radiation from CW and repetitively pulsed CO2 lasers in different gases

    Science.gov (United States)

    Kanevskii, M. F.; Stepanova, M. A.

    1990-06-01

    The interaction between high-power CW and repetitively pulsed CO2 laser radiation and a low-threshold optical-breakdown plasma near a metal surface is investigated. The characteristics of the breakdown plasma are examined as functions of the experimental conditions. A qualitative analysis of the results obtained was performed using a simple one-dimensional model for laser combustion waves.

  11. Doppler limited rotational transitions of OH and SH radicals measured by continuous-wave terahertz photomixing

    Science.gov (United States)

    Eliet, Sophie; Martin-Drumel, Marie-Aline; Guinet, Mickaël; Hindle, Francis; Mouret, Gaël; Bocquet, Robin; Cuisset, Arnaud

    2011-12-01

    A continuous-wave terahertz (CW-THz) source generated by photomixing has been employed to detect and quantify radicals produced in a cold plasma probing their spin-rotation transitions. Due to their dual interest for both atmospherists and astrophysicists, the hydroxyl OH and the mercapto SH radicals have been chosen. The photomixing technique which can access the largest range of THz frequencies of any known coherent source, allowed to resolve the Doppler-limited hyperfine transitions of OH in the 2.5 THz frequency region. Line profile analysis of the hyperfine components demonstrated that OH radicals have been detected in this region at a ppm level at a temperature close to 490 K. The hyperfine structure of SH has been resolved for the first time above 1 THz. Ten new frequency transitions have been measured in the 1.3-2.6 THz frequency range using the CW-THz synthesizer based on a frequency comb. With relative uncertainties better than 10 -7, the CW-THz frequencies measured in this study are now competitive with those measured by other instruments such as frequency multiplication chains or FT-FIR spectrometers and are now capable to improve the predictions of the complete high-resolution spectra of these radicals collected in the atmospheric and astrophysical spectroscopic databases. versioncorrigeeAC 2011-07-18 17:32 2011 Arnaud Cuisset.

  12. Laser amplification of optical images using a CW Nd:YAG amplifier

    International Nuclear Information System (INIS)

    Aman, H

    2013-01-01

    In this paper a scheme for the amplification of optical images is described, using a continuous wave (CW) diode-pumped Nd:YAG (yttrium aluminum garnet) laser module. A passively q-switched end-pumped Nd:YAG laser is used as a pump source, which carries the optical image distribution as an input which is transmitted towards the amplifier at a distance of about ten feet. For amplification, a three-side-pumped CW Nd:YAG laser module is utilized without the cavity mirrors. In this way, optical images are amplified by a factor of 3.2 and imaged at a distance of ten feet with a spatial resolution of 500 μm. (paper)

  13. Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes.

    Science.gov (United States)

    Han, Jung Woo; Choi, Juhye; Kim, Young Shin; Kim, Jina; Brinkmann, Ralf; Lyu, Jungmook; Park, Tae Kwann

    2018-02-01

    This study investigated microglia and inflammatory cell responses after selective retina therapy (SRT) with microsecond-pulsed laser in comparison to continuous-wave laser photocoagulation (cwPC). Healthy C57BL/6 J mice were treated with either a train of short pulses (SRT; 527-nm, Q-switched, 1.7-μs pulse) or a conventional thermal continuous-wave (532-nm, 100-ms pulse duration) laser. The mice were sacrificed and their eyes were enucleated 1, 3, 7, and 14 days after both laser treatments. Pattern of cell death on retinal section was evaluated by TUNEL assay, and the distribution of activated inflammatory cells and glial cells were observed under immunohistochemistry. Consecutive changes for the expression of cytokines such as IL-1β, TNF-α, and TGF-β were also examined using immunohistochemistry, and compared among each period after quantification by Western blotting. The numbers of TUNEL-positive cells in the retinal pigment epithelium (RPE) layer did not differ in SRT and cwPC lesions, but TUNEL-positive cells in neural retinas were significantly less on SRT. Vague glial cell activation was observed in SRT-treated lesions. The population of inflammatory cells was also significantly decreased after SRT, and the cells were located in the RPE layer and subretinal space. Proinflammatory cytokines, including IL-1β and TNF-α, showed significantly lower levels after SRT; conversely, the level of TGF-β was similar to the cwPC-treated lesion. SRT resulted in selective RPE damage without collateral thermal injury to the neural retina, and apparently produced negligible glial activation. In addition, SRT showed a markedly less inflammatory response than cwPC, which may have important therapeutic implications for several macular diseases.

  14. Continuous wave ultraviolet radiation induced frustration of etching in lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mailis, S.; Riziotis, C.; Smith, P.G.R.; Scott, J.G.; Eason, R.W

    2003-02-15

    Illumination of the -z face of congruent lithium niobate single crystals with continuous wave (c.w.) ultraviolet (UV) laser radiation modifies the response of the surface to subsequent acid etching. A frequency doubled Ar{sup +} laser ({lambda}=244 nm) was used to illuminate the -z crystal face making it resistive to HF etching and thus transforming the illuminated tracks into ridge structures. This process enables the fabrication of relief patterns in a photolithographic manner. Spatially resolved Raman spectroscopy indicates preservation of the good crystal quality after irradiation.

  15. Bandwidth broadening effect in a traveling-wave-tube amplifier by using impulse electron beam

    International Nuclear Information System (INIS)

    Jung, Sang Wook; Choi, Jin Joo; Kim, Seon Joo

    2012-01-01

    This paper reports on a wideband amplification mechanism involving an impulse electron beam. To prove broadband amplification with the impulse beam, we perform 3-dimensional particle-in-cell (3D PIC) code simulation. An impulse electron beam with a pulse width of 1 ns with electric potential 17.2 kV is injected into an interaction circuit of a coupled-cavity traveling-wave-tube (CCTWT) driven by a continuous-wave (CW) signal of 29.1 GHz. The resulting output bandwidth was 2.96%, and the peak output power of 713 W was the same as that obtained with CW operation at a single frequency. The simulation yielded very similar results with ultra short impulse signal from the simulation.

  16. Multimode quantum model of a cw atom laser

    International Nuclear Information System (INIS)

    Hope, J.J.; Haine, S.A.; Savage, C.M.

    2002-01-01

    Full text: Laser cooling allows dilute atomic gases to be cooled to within K of absolute zero. Ultracold gases were first achieved twenty years ago and have since found applications in areas such as spectroscopy, time standards, frequency standards, quantum information processing and atom optics. The atomic analogue of the lasing mode in optical lasers is Bose-Einstein Condensation (BEC), in which a cooled sample of atoms condense into the lowest energy quantum state. This new state of matter was recently achieved in dilute Bose gases in 1995. Atoms coupled out of a BEC exhibit long-range spatial coherence, and provide the coldest atomic source currently available. These atomic sources are called 'atom lasers' because the BEC is analogous to the lasing mode of an optical laser. The high spectral flux from optical lasers is caused by a process called gain-narrowing, which requires continuous wave (cw) operation. Coupling a BEC quickly into an untrapped state forms a coherent atomic beam but it has a spread in momentum as large as the trapped BEC. Coupling the atoms out more slowly reduces the output linewidth at the expense of reducing the overall flux. These atom lasers are equivalent to Q-switched optical lasers. A cw atom laser with gain-narrowing would produce an increasingly monoenergetic output as the flux increased, dramatically improving the spectral flux. A cw atom laser is therefore a major goal of the atom optics community, but there are several theoretical and practical obstacles to understanding the complexities of such a system. The main obstacle to the production of a cw atom laser is the technical difficulties involved in continuously pumping the lasing mode. No complete theory exists which describes a cw atom laser. Complete cw atom laser models require a quantum field description due to their non-Markovian dynamics, significant spatial effects and the dependence of the output on the quantum statistics of the lasing mode. The extreme dimensionality

  17. Room temperature continuous wave mid-infrared VCSEL operating at 3.35 μm

    Science.gov (United States)

    Jayaraman, V.; Segal, S.; Lascola, K.; Burgner, C.; Towner, F.; Cazabat, A.; Cole, G. D.; Follman, D.; Heu, P.; Deutsch, C.

    2018-02-01

    Tunable vertical cavity surface emitting lasers (VCSELs) offer a potentially low cost tunable optical source in the 3-5 μm range that will enable commercial spectroscopic sensing of numerous environmentally and industrially important gases including methane, ethane, nitrous oxide, and carbon monoxide. Thus far, achieving room temperature continuous wave (RTCW) VCSEL operation at wavelengths beyond 3 μm has remained an elusive goal. In this paper, we introduce a new device structure that has enabled RTCW VCSEL operation near the methane absorption lines at 3.35 μm. This device structure employs two GaAs/AlGaAs mirrors wafer-bonded to an optically pumped active region comprising compressively strained type-I InGaAsSb quantum wells grown on a GaSb substrate. This substrate is removed in processing, as is one of the GaAs mirror substrates. The VCSEL structure is optically pumped at room temperature with a CW 1550 nm laser through the GaAs substrate, while the emitted 3.3 μm light is captured out of the top of the device. Power and spectrum shape measured as a function of pump power exhibit clear threshold behavior and robust singlemode spectra.

  18. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    International Nuclear Information System (INIS)

    Kaushik, Meenu; Joshi, L. M.

    2016-01-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  19. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Meenu, E-mail: mkceeri@gmail.com; Joshi, L. M., E-mail: lmj1953@gmail.com [Microwave Tubes Division, CSIR-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-03-09

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  20. Millimeter-wave power amplifiers

    CERN Document Server

    du Preez, Jaco

    2017-01-01

    This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.

  1. Effects of pressure rise on cw laser ablation of tissue

    Science.gov (United States)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  2. Diode laser in-band pumped, efficient 1645 nm continuous-wave and Q-switched Er:YLuAG lasers with near-diffraction-limited beam quality

    International Nuclear Information System (INIS)

    Li, Jing; Yang, SuHui; He, Tao

    2014-01-01

    Fiber-like Er:YLuAG laser rods were tested for continuous-wave (CW) and Q-switched operation. Two narrow-band laser diodes emitting at 1532 nm were used as pump sources. The pump power was confined in the laser rods via total internal reflection. In CW mode, a maximum output power of 7.2 W was measured from a 30 mm long Er:YLuAG laser rod, corresponding to an optical–optical efficiency of 26% and a slope efficiency of 78%. Er:YLuAG and Er:YAG lasers were compared experimentally and exhibited comparable performance, while the measured central wavelength of the Er:YLuAG laser was 1644.75 nm, slightly longer than the central wavelength of the Er:YAG laser in the same experimental circumstances. In Q-switched mode, an output energy of 3.5 mJ was obtained from a 25 mm Er:YLuAG laser rod with a pulse duration of 100 ns and a pulse repetition frequency of 100 Hz. The pulsed output had near-diffraction-limited beam quality with M 2 values of 1.13 and 1.11 in the x and y directions, respectively. (letter)

  3. Room-temperature continuous-wave operation of the In(Ga)As/GaAs quantum-dot VCSELs for the 1.3 µm optical-fibre communication

    International Nuclear Information System (INIS)

    Xu Dawei; Tong Cunzhu; Yoon, Soon Fatt; Fan Weijun; Zhang, Dao Hua; Wasiak, Michał; Piskorski, Łukasz; Gutowski, Krzysztof; Sarzała, Robert P; Nakwaski, Włodzimierz

    2009-01-01

    Efficient room-temperature (RT) continuous-wave (CW) lasing operation of the 1.3 µm MBE (molecular-beam epitaxy) In(Ga)As/GaAs quantum-dot (QD) top-emitting oxide-confined vertical-cavity surface-emitting diode lasers (VCSELs) for the second-generation optical-fibre communication has been achieved. In their design, a concept of a QD inside a quantum well (QW) has been utilized. The proposed In(Ga)As/GaAs QD active region is composed of five groups of three 8 nm In 0.15 Ga 0.85 As QWs, each containing one InAs QD sheet layer. In each group located close to successive anti-node positions of the optical standing wave within the 3λ cavity, QWs are separated by 32 nm GaAs barriers. Besides, at both active-region edges, additional single InGaAs QWs are located containing single QD layers. For the 10 µm diameter QD VCSELs, the RT CW threshold current of only 6.2 mA (7.9 kA cm −2 ), differential efficiency of 0.11 W A −1 and the maximal output power of 0.85 mW have been recorded. The experimental characteristics are in excellent agreement with theoretical ones obtained using the optical-electrical-thermal-recombination self-consistent computer model. According to this, for the 10 µm devices, the fundamental linearly polarized LP 01 mode remains the dominating one up to the current of 9.1 mA. The lowest RT CW lasing threshold below 5 mA is expected for 6 µm devices

  4. Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Mikkelsen, Torben; Courtney, Michael

    averaging is done in two steps: 1) the weighted averaging of the wind speed in the probe volume of the laser beam; 2) the averaging of the wind speeds occurring on the circular path described by the conically scanning lidar. Therefore the standard deviation measured by a lidar resolves only the turbulence...... of a continuous wave, conically scanning Zephir lidar. First, the wind speed standard deviation measured by such a lidar gives on average 80% of the standard deviation measured by a cup anemometer. This difference is due to the spatial averaging inherently made by a cw conically scanning lidar. The spatial...

  5. Effects of high power ion Bernstein waves on a tokamak plasma

    International Nuclear Information System (INIS)

    Ono, M.; Beiersdorfer, P.; Bell, R.

    1987-04-01

    Ion Bernstein wave heating (IBWH) has been investigated on PLT with up to 650 kW of rf power coupled to the plasma, exceeding the ohmic power of 550 kW. Plasma antenna loading of 2 Ω has been observed, resulting in 80 to 90% of the rf power being coupled to the plasma. An ion heating efficiency of ΔT/sub i/(0)n/sub e//P/sub rf/ = 6 x 10 13 eV cm -3 /kW, without high energy tail ions, has been observed up to the maximum rf power. The deuterium particle confinement during high power IBWH increases significantly (as much as 300%). Associated with it, a longer injected impurity confinement time, reduced drift wave turbulence activity, frequency shifts of drfit wave turbulence, and development of a large negative edge potential were observed. The energy confinement time, however, shows some degradation from the ohmic value, which can be attributed to the enhanced radiation loss observed during IBWH. The ion heating and energy confinement time are relatively independent of plasma current

  6. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...

  7. High-power TM01 millimeter wave pulse sensor in circular waveguide

    International Nuclear Information System (INIS)

    Wang Guang-Qiang; Zhu Xiang-Qin; Chen Zai-Gao; Wang Xue-Feng; Zhang Li-Jun

    2015-01-01

    By investigating the interaction of an n-type silicon sample with the TM 01 mode millimeter wave in a circular waveguide, a viable high-power TM 01 millimeter wave sensor is proposed. Based on the hot electron effect, the silicon sample serving as a sensing element (SE) and appropriately mounted on the inner wall of the circular waveguide is devoted to the on-line measurement of a high-power millimeter wave pulse. A three-dimensional parallel finite-difference time-domain method is applied to simulate the wave propagation within the measuring structure. The transverse electric field distribution, the dependences of the frequency response of the voltage standing-wave ratio (VSWR) in the circular waveguide, and the average electric field amplitude within the SE on the electrophysical parameters of the SE are calculated and analyzed in the frequency range of 300–400 GHz. As a result, the optimal dimensions and specific resistance of the SE are obtained, which provide a VSWR of no more than 2.0, a relative sensitivity around 0.0046 kW −1 fluctuating within ± 17.3%, and a maximum enduring power of about 4.3 MW. (paper)

  8. Experimental test of a supercritical helium heat exchanger dedicated to EUROTRANS 150 kW CW power coupler

    Science.gov (United States)

    Souli, M.; Fouaidy, M.; Hammoudi, N.

    2010-05-01

    The coaxial power coupler needed for beta = 0.65 superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the proton beam. The estimated RF losses on the power coupler outer conductor in standing wave mode operation are 46 W. To remove these heat loads, a full scale copper coil heat exchanger brazed around the outer conductor was designed and tested using supercritical helium at T = 6 K as a coolant. Our main objective was to minimise the heat loads to cold extremity of SRF cavity maintained at 2 K or 4.2 K. A dedicated test facility named SUPERCRYLOOP was developed and successfully operated in order to measure the performance of the cold heat exchanger. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryomodule. After a short introduction, a brief discussion about the problem of power coupler cooling systems in different machines is made. After that, we describe the experimental set-up and test apparatus. Then, a heat exchanger thermal model will be developed with FEM code COSMOS/M to estimate the different heat transfer coefficients by comparison between numerical simulation results and experimental data in order to validate the design. Finally, thermo-hydraulic behavior of supercritical helium has been investigated as function of different parameters (inlet pressure, flow rate, heat loads).

  9. High-resolution smile measurement and control of wavelength-locked QCW and CW laser diode bars

    Science.gov (United States)

    Rosenkrantz, Etai; Yanson, Dan; Klumel, Genady; Blonder, Moshe; Rappaport, Noam; Peleg, Ophir

    2018-02-01

    High-power linewidth-narrowed applications of laser diode arrays demand high beam quality in the fast, or vertical, axis. This requires very high fast-axis collimation (FAC) quality with sub-mrad angular errors, especially where laser diode bars are wavelength-locked by a volume Bragg grating (VBG) to achieve high pumping efficiency in solid-state and fiber lasers. The micron-scale height deviation of emitters in a bar against the FAC lens causes the so-called smile effect with variable beam pointing errors and wavelength locking degradation. We report a bar smile imaging setup allowing FAC-free smile measurement in both QCW and CW modes. By Gaussian beam simulation, we establish optimum smile imaging conditions to obtain high resolution and accuracy with well-resolved emitter images. We then investigate the changes in the smile shape and magnitude under thermal stresses such as variable duty cycles in QCW mode and, ultimately, CW operation. Our smile measurement setup provides useful insights into the smile behavior and correlation between the bar collimation in QCW mode and operating conditions under CW pumping. With relaxed alignment tolerances afforded by our measurement setup, we can screen bars for smile compliance and potential VBG lockability prior to assembly, with benefits in both lower manufacturing costs and higher yield.

  10. Broadband generation by multiple four-wave mixing process due to ASE Q-switching in high-power double-clad ytterbium-doped fiber amplifier

    Science.gov (United States)

    Chowdhury, Sourav D.; Shekhar, Nishant; Saha, Maitreyee; Sen, Ranjan; Pal, Mrinmay

    2014-11-01

    Broadband output from 1060nm to 1700nm and cascaded four-wave mixing generated red light pulsing is observed in a fiber amplifier set up consisting of a 5.5m double clad, double D shaped Ytterbium doped fiber, a single clad passive fiber for excess pump absorption and a splitter, both with and without a CW seed. Self-pulsing occurs from ASE due to passive Q-switching by saturable absorption effect of the active fiber and also depends on splice loss. The pulses generate broadband output by multiple four-wave mixing process with maximum broadening efficiency near 1300nm which is the zero dispersion wavelength for silica fiber. Pulses traveling both in forward and backward direction have enough peak power and energy to damage splice points and fiber components. When seeded the self-pulsing and broadband generation is often suppressed but again generate at increased pump powers.

  11. Wireless power transmission using ultrasonic guided waves

    International Nuclear Information System (INIS)

    Kural, A; Pullin, R; Featherston, C; Holford, K; Paget, C

    2011-01-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  12. Wireless power transmission using ultrasonic guided waves

    Energy Technology Data Exchange (ETDEWEB)

    Kural, A; Pullin, R; Featherston, C; Holford, K [School of Engineering, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 2AA (United Kingdom); Paget, C, E-mail: kurala@cardiff.ac.uk [Airbus Operations Ltd, New Filton Road, BS99 7AR Bristol (United Kingdom)

    2011-07-19

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  13. Characterization of a klystrode as a RF source for high-average-power accelerators

    International Nuclear Information System (INIS)

    Rees, D.; Keffeler, D.; Roybal, W.; Tallerico, P.J.

    1995-01-01

    The klystrode is a relatively new type of RF source that has demonstrated dc-to-RF conversion efficiencies in excess of 70% and a control characteristic uniquely different from those for klystron amplifiers. The different control characteristic allows the klystrode to achieve this high conversion efficiency while still providing a control margin for regulation of the accelerator cavity fields. The authors present test data from a 267-MHz, 250-kW, continuous-wave (CW) klystrode amplifier and contrast this data with conventional klystron performance, emphasizing the strengths and weaknesses of the klystrode technology for accelerator applications. They present test results describing that limitation for the 250-kW, CW klystrode and extrapolate the data to other frequencies. A summary of the operating regime explains the clear advantages of the klystrode technology over the klystron technology

  14. State-of-the-art of high power gyro-devices and free electron masers 1994

    International Nuclear Information System (INIS)

    Thumm, M.

    1995-04-01

    At present, gyrotron oscillators are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH) and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. 140 GHz gyrotrons with output power P out =0.54 MW, pulse length τ=3.0 s and efficiency η=42% are commercially available. Total efficiencies around 50% have been achieved using single-stage depressed collectors. Diagnostic gyrotrons deliver P out =40 kW with τ=40 μs at frequencies up to 650 GHz (η≥4%). Recently, gyrotron oscillators have also been successfully used in material processing and plasma chemistry. Such technological applications require gyrotrons with the following parameters: f≥24 GHz, P out =10-50 kW, CW, η≥30%. This paper reports on achievements and problems related to the development of very high power mm-wave gyrotrons for long pulse or CW operation and describes the microwave technological pecularities of the different development steps. In addition, this work gives a short overview of the present development of gyrotrons for technological applications, relativistic gyrotrons, quasi-optical gyrotrons, cyclotron autoresonance masers (CARMs), gyro klystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWO's, peniotrons and free electron masers (FEMs). The most impressive FEM output parameters are: P out =2 GW, τ=20 ns, η=13% at 140 GHz (LLNL) and P out =15 kW, τ=20 μs, η=5% in the range from 120 to 900 GHz (UCSB). (orig.) [de

  15. Crystal growth, spectroscopic and CW laser properties of Nd0.03Lu2.871Gd0.099Al5O12 crystal

    Science.gov (United States)

    Di, J. Q.; Xu, X. D.; Cheng, S. S.; Li, D. Z.; Zhou, D. H.; Wu, F.; Zhao, Z. W.; Xu, J.

    2011-11-01

    Nd0.03Lu2.871Gd0.099Al5O12 (Nd:LuGdAG) crystal was grown by the Czochralski method. The absorption, fluorescence spectra and fluorescence lifetime of Nd:LuGdAG crystal at room temperature were investigated for the first time. We reported the continuous-wave (CW) Nd:LuGdAG laser operation under diode pumping. Output power of 1.43 W at 1064 nm was achieved with a slope efficiency of 34.1%. All the results show that Nd:LuGdAG crystal is a promising laser material.

  16. A 2 MW, CW, 170 GHz gyrotron for ITER

    International Nuclear Information System (INIS)

    Piosczyk, B.; Arnold, A.; Alberti, S.

    2003-01-01

    A 140 GHz gyrotron for CW operation is under development for the stellarator W7-X. With a prototype tube a microwave output power of about 0.9 MW has been obtained in pulses up to 180 s, limited by the capability of the high voltage power supply. The development work on coaxial cavity gyrotrons has demonstrated the feasibility of manufacturing of a 2 MW, CW 170 GHz tube that could be used for ITER. The problems specific to the coaxial arrangement have been investigated and all relevant information needed for an industrial realization of a coaxial gyrotron have been obtained in short pulse experiments (up to 17 ms). The suitability of critical components for a 2 MW, CW coaxial gyrotron has been studied and a first integrated design has been done. (author)

  17. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    International Nuclear Information System (INIS)

    Bohn, C.L.

    1997-01-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 μm wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design

  18. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, C.L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    1997-06-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design.

  19. Correlation analysis between surface electromyography and continuous-wave near-infrared spectroscopy parameters during isometric exercise to volitional fatigue

    OpenAIRE

    ŞAYLİ, Ömer; AKIN, Ata; ÇOTUK, Hasan Birol

    2014-01-01

    In this study, the process of muscular fatigue was examined using surface electromyography (sEMG) and continuous-wave near-infrared spectroscopy (cw-NIRS) simultaneously during an isometric hand grip exercise at 50% and 75% of the maximal voluntary contraction (MVC), sustained until volitional fatigue. The mean frequency of the sEMG decreased during the whole exercise, whereas the root mean square had a tendency to increase. Oxyhemoglobin/deoxyhemoglobin concentration changes computed ...

  20. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode.

    Science.gov (United States)

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-16

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  1. Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking.

    Science.gov (United States)

    Fecko, Christopher J; Munson, Katherine M; Saunders, Abbie; Sun, Guangxing; Begley, Tadhg P; Lis, John T; Webb, Watt W

    2007-01-01

    Crosslinking proteins to the nucleic acids they bind affords stable access to otherwise transient regulatory interactions. Photochemical crosslinking provides an attractive alternative to formaldehyde-based protocols, but irradiation with conventional UV sources typically yields inadequate product amounts. Crosslinking with pulsed UV lasers has been heralded as a revolutionary technique to increase photochemical yield, but this method had only been tested on a few protein-nucleic acid complexes. To test the generality of the yield enhancement, we have investigated the benefits of using approximately 150 fs UV pulses to crosslink TATA-binding protein, glucocorticoid receptor and heat shock factor to oligonucleotides in vitro. For these proteins, we find that the quantum yields (and saturating yields) for forming crosslinks using the high-peak intensity femtosecond laser do not improve on those obtained with low-intensity continuous wave (CW) UV sources. The photodamage to the oligonucleotides and proteins also has comparable quantum yields. Measurements of the photochemical reaction yields of several small molecules selected to model the crosslinking reactions also exhibit nearly linear dependences on UV intensity instead of the previously predicted quadratic dependence. Unfortunately, these results disprove earlier assertions that femtosecond pulsed laser sources provide significant advantages over CW radiation for protein-nucleic acid crosslinking.

  2. Design considerations in achieving 1 MW CW operation with a whispering-gallery-mode gyrotron

    International Nuclear Information System (INIS)

    Felch, K.; Feinstein, J.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Pirkle, D.; Zitelli, L.

    1989-09-01

    Varian is developing high-power, CW gyrotrons at frequencies in the range 100 GHz to 150 GHz, for use in electron cyclotron heating applications. Early test vehicles have utilized a TE 15,2,1 interaction cavity, have achieved short-pulse power levels of 820 kW and average power levels of 80 kW at 140 GHz. Present tests are aimed at reaching 400 kW under CW operating conditions and up to 1 MW for short pulse durations. Work is also underway on modifications to the present design that will enable power levels of up to 1 MW CW to be achieved. 7 refs., 2 figs

  3. Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain.

    Science.gov (United States)

    Ilic, Sanja; Leichliter, Sandra; Streeter, Jackson; Oron, Amir; DeTaboada, Luis; Oron, Uri

    2006-08-01

    The aim of the present study was to investigate the possible short- and long-term adverse neurological effects of low-level laser therapy (LLLT) given at different power densities, frequencies, and modalities on the intact rat brain. LLLT has been shown to modulate biological processes depending on power density, wavelength, and frequency. To date, few well-controlled safety studies on LLLT are available. One hundred and eighteen rats were used in the study. Diode laser (808 nm, wavelength) was used to deliver power densities of 7.5, 75, and 750 mW/cm2 transcranially to the brain cortex of mature rats, in either continuous wave (CW) or pulse (Pu) modes. Multiple doses of 7.5 mW/cm2 were also applied. Standard neurological examination of the rats was performed during the follow-up periods after laser irradiation. Histology was performed at light and electron microscopy levels. Both the scores from standard neurological tests and the histopathological examination indicated that there was no long-term difference between laser-treated and control groups up to 70 days post-treatment. The only rats showing an adverse neurological effect were those in the 750 mW/cm2 (about 100-fold optimal dose), CW mode group. In Pu mode, there was much less heating, and no tissue damage was noted. Long-term safety tests lasting 30 and 70 days at optimal 10x and 100x doses, as well as at multiple doses at the same power densities, indicate that the tested laser energy doses are safe under this treatment regime. Neurological deficits and histopathological damage to 750 mW/cm2 CW laser irradiation are attributed to thermal damage and not due to tissue-photon interactions.

  4. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    Science.gov (United States)

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  5. Comparison of GSM Modulated and CW Radiofrequency Radiation on Cells

    International Nuclear Information System (INIS)

    Pavicic, I.; Marjanovic, A.M.; Trosic, I.

    2011-01-01

    The aim of our study was to evaluate and compare effect of global system of mobile (GSM) modulation and continuous wave (CW) radiofrequency radiation (RF) on proliferation ability and viability of V79 Chinese hamster lung cells. Previously prepared samples of cells in culture were exposed for 1, 2 and 3 hours both to 915 MHz GSM modulated and to 935 MHz CW RF field in gigahertz transversal electromagnetic mode cell (GTEM-cell). Electric field strength for cells exposed to GSM modulation was set at 10 V/m and for CW exposed cells was 8.2 V/m. Average specific absorption rate (SAR) was calculated to be for GSM 0.23 W/kg and for CW 0.12 W/kg. V79 samples were plated in concentration of 1x10 4 cells/mL. Cell proliferation was determined by cell counts for each hour of exposure during five post-exposure days. Trypan blue exclusion test was used to determine cell viability. In comparison to control cell samples, proliferation of GSM irradiated cells showed significant decrease after 3 hours of exposure on the second and third post-exposure day. CW exposed cell samples showed significant decrease after 3 hours of exposure on the third post-exposure day. Viability of GSM and CW exposed cells did not significantly differ from matched control cell samples. Both applied RF fields have shown similar effect on cell culture growth, and cell viability of V79 cell line. In addition, applied GSM modulated RF radiation demonstrate bigger influence on proliferation of cells. (author)

  6. Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode

    Science.gov (United States)

    Philippe, Charles; Chea, Erick; Nishida, Yoshiki; du Burck, Frédéric; Acef, Ouali

    2016-10-01

    We report on frequency tripling of CW-Telecom laser diode using two cascaded PPLN ridge nonlinear crystals, both used in single-pass configuration. All optical components used for this development are fibered, leading to a very compact and easy to use optical setup. We have generated up to 290 mW optical power in the green range, from 800 mW only of infrared power around 1.54 µm. This result corresponds to an optical conversion efficiency P 3 ω / P ω > 36 %. To our knowledge, this is best value ever demonstrated up today for a CW-third harmonic generation in single-pass configuration. This frequency tripling experimental setup was tested over more than 2 years of continuous operation, without any interruption. The compactness and the reliability of our device make it very suitable as a transportable optical oscillator. In particular, it paves the way for embedded applications thanks to the high level of long-term stability of the optical alignments.

  7. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.

    Science.gov (United States)

    Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J

    2007-02-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.

  8. Commissioning status of the Continuous Wave Deuterium Demonstrator

    International Nuclear Information System (INIS)

    Hartog, P.D.; Dooling, J.; Lorello, M.; Rathke, J.; Carwardine, J.; Godden, D.; Pile, G.; Yule, T.; Zinneman, T.

    1993-01-01

    Grumman Aerospace Corporation, Argonne National Laboratory, and Culham Laboratory are commissioning the Continuous Wave Deuterium Demonstrator (CWDD) in a facility at Argonne National Laboratory. CWDD is a high-brightness, high-current, 7.5-MeV negative deuterium accelerator. The 352-MHz rf accelerating cavities are cryogenically cooled with supercritical neon to reduce the rf power requirements. Installation of the accelerator into the Argonne facility began in May 1991, and first beam from the injector was extracted in February 1992. The accelerator and facility and described, and current status and future plans are discussed

  9. Design of the 3.7 GHz, 500 kW CW circulator for the LHCD system of the SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Harish V., E-mail: hvdixit48@yahoo.com [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Jadhav, Aviraj R. [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Jain, Yogesh M. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Cheeran, Alice N. [Veermata Jijabai Technological Institute, Mumbai, Maharashtra 400019 (India); Gupta, Vikas [Vidyavardhini' s College of Engineering and Technology, Vasai, Maharashtra 401202 (India); Sharma, P.K. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India)

    2017-06-15

    Highlights: • Design of a 500 kW CW circulator for LHCD system at 3.7 GHz. • Mechanism for thermal management of ferrite tile. • Scheme for uniform magnetisation of the ferrite tiles. • Design of high CW power CW quadrature and 180 ° hybrid coupler. - Abstract: Circulators are used in high power microwave systems to protect the vacuum source against reflection. The Lower Hybrid Current Drive (LHCD) system of SST-1 tokamak commissioned at IPR, Gandhinagar in India comprises of four high power circulators to protect klystrons (supplying 500 kW CW each at 3.7 GHz) which power the system. This paper presents the design of a Differential Phase Shift Circulator (DPSC) capable of handling 500 kW CW power at 3.7 GHz so that four circulators can be used to protect the four available klystrons. As the DPSC is composed by three main components, viz., magic tee, ferrite phase shifter and 3 dB hybrid coupler, the designing of each of the proposed components is described. The design of these components is carried out factoring various multiphysics aspects of RF, heating due to high CW power and magnetic field requirement of the ferrite phase shifter. The primary objective of this paper is to present the complete RF, magnetic and thermal design of a high CW power circulator. All the simulations have been carried out in COMSOL Multiphysics. The designed circulator exhibits an insertion loss of 0.13 dB with a worst case VSWR of 1.08:1. The total length of the circulator is 3 m.

  10. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  11. High power RF systems for LEHIPA of ADS

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Rao, B.V.R.; Mishra, J.K.; Patel, Niranjan; Gupta, S.K.

    2011-01-01

    Worldwide accelerator driven sub-critical system (ADS) has generated a huge interest for various reasons. In India, as a part of accelerator driven sub-critical system (ADS) program, a normal conducting, low energy high intensity proton accelerator (LEHIPA) of energy 20 MeV and beam current of 30 mA is being developed in Bhabha Atomic Research Centre (BARC). LEHIPA comprises of Electron Cyclotron Resonance (ECR) ion source (50 KeV), Radio Frequency Quadrupole (RFQ) accelerator (3 MeV) and Drift tube Linac (DTL) 1 and 2 (10 MeV and 20 MeV respectively). As per the accelerator physics design, RFQ requires nearly 530 kW RF power while each of DTL need 900 kW. Each accelerating cavity will be driven by a one- megawatt (CW) klystron based high power RF (HPRF) system at 352.21 MHz. Three such RF systems will be developed. The RF system has been designed around five cavity klystron tube TH2089F (Thales make) capable of delivering 1 MW continuous wave power at 352.21 MHz. The klystron has a gain of 40 dB and efficiency around 62 %. Each of the RF system comprises of a low power solid state driver (∼ 100 W), klystron tube, harmonic filter, directional coupler, Y-junction circulator (AFT make), RF load and WR2300 wave guide based RF transmission line each of 1 MW capacity. It also includes other subsystems like bias supplies (high voltage (HV) and low voltage (LV)), HV interface system, interlock and protection circuits, dedicated low conductivity water-cooling, pulsing circuitry/mechanisms etc. WR 2300 based RF transmission line transmits and feeds the RE power from klystron source to respective accelerating cavity. This transmission line starts from second port of the circulator and consists of straight sections, full height to half height transition, magic Tee, termination load at the centre of magic tee, half height sections, directional couplers and RE windows. For X-ray shielding, klystron will be housed in a lead (3 mm) based shielded cage. This system set up has a

  12. Low power cw-laser signatures on human skin

    International Nuclear Information System (INIS)

    Lihachev, A; Lesinsh, J; Jakovels, D; Spigulis, J

    2011-01-01

    Impact of cw laser radiation on autofluorescence features of human skin is studied. Two methods of autofluorescence detection are applied: the spectral method with the use of a fibreoptic probe and spectrometer for determining the autofluorescence recovery kinetics at a fixed skin area of ∼12 mm 2 , and the multispectral visualisation method with the use of a multispectral imaging camera for visualising long-term autofluorescence changes in a skin area of ∼4 cm 2 . The autofluorescence recovery kinetics after preliminary laser irradiation is determined. Skin autofluorescence images with visible long-term changes - 'signatures' of low power laser treatment are acquired. (application of lasers and laser-optical methods in life sciences)

  13. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  14. Laser ablative nanostructuring of Au in liquid ambience in continuous wave illumination regime

    Science.gov (United States)

    Kucherik, A. O.; Kutrovskaya, S. V.; Arakelyan, S. M.; Ryabchikov, Y. V.; Al-Kattan, A.; Kabashin, A. V.; Itina, T. E.

    2016-03-01

    Gold nanoparticles (Au NPs) attract particular attention because of their unique size-dependent chemical, physicochemical and optical properties and, hence, their potential applications in catalysis, nanoelectronics, photovoltaics and medicine. In particular, laser-produced colloidal nanoparticles are not only biocompatible, but also reveal unique chemical properties. Different laser systems can be used for synthesis of these colloids, varying from continuous wave (CW) to ultra-short femtosecond lasers. The choice of an optimum laser system is still a challenge in application development. To bring more light at this issue, we investigate an influence of laser parameters on nanoparticle formation from a gold target immersed in deionized water. First, an optical diagnostics of laser-induced hydrodynamic processes taking place near the gold surface is performed. Then, gold nanoparticle colloids with average particle sizes smaller than 10 nm and a very narrow dispersion are shown to be formed by CW laser ablation. The obtained results are compared with the ones obtained by using the second harmonics and with previous results obtained by using femtosecond laser systems.

  15. Blood-brain barrier disruption by continuous-wave radio frequency radiation.

    Science.gov (United States)

    Sirav, Bahriye; Seyhan, Nesrin

    2009-01-01

    The increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of non ionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. This study was designed to investigate the effects of 900 and 1,800 MHz Continuous Wave Radio Frequency Radiation (CW RFR) on the permeability of Blood Brain Barrier (BBB) of rats. Results have shown that 20 min RFR exposure of 900 and 1,800 MHz induces an effect and increases the permeability of BBB of male rats. There was no change in female rats. The scientific evidence on RFR safety or harm remains inconclusive. More studies are needed to demonstrate the effects of RFR on the permeability of BBB and the mechanisms of that breakdown.

  16. Design and performance verification of advanced multistage depressed collectors. [traveling wave tubes for ECM

    Science.gov (United States)

    Kosmahl, H.; Ramins, P.

    1975-01-01

    Design and performance of a small size, 4-stage depressed collector are discussed. The collector and a spent beam refocusing section preceding it are intended for efficiency enhancement of octave bandwidth, high CW power traveling wave tubes for use in ECM.

  17. Development of an electron gun for high power CW electron linac (1). Beam experiment for basic performance of electron gun

    International Nuclear Information System (INIS)

    Yamazaki, Yoshio; Nomura, Masahiro; Komata, Tomoki

    1999-05-01

    Presently, the Beam Group of Oarai Engineering Center in Japan Nuclear Cycle Development Institute (JNC) completed the high power CW electron linac. Then we started full-scale beam experiments after the government permission for a radiation equipment had given last January. Measurements of basic performance for the mesh-grid type electron gun have been done to launch stable beam at 300 mA peak current downstream of the accelerator. These experiments disclosed to increase beam loss in the electron gun in some cases of voltage supplied the mesh-grid in spite of same beam current from gun. Consequently, we could find the best condition for mesh-grid voltage and heater current to supply stable beam at 300 mA peak current for accelerator study. (author)

  18. Changes in clot lysis levels of reteplase and streptokinase following continuous wave ultrasound exposure, at ultrasound intensities following attenuation from the skull bone

    Directory of Open Access Journals (Sweden)

    Roijer Anders

    2008-08-01

    Full Text Available Abstract Background Ultrasound (US has been used to enhance thrombolytic therapy in the treatment of stroke. Considerable attenuation of US intensity is however noted if US is applied over the temporal bone. The aim of this study was therefore to explore possible changes in the effect of thrombolytic drugs during low-intensity, high-frequency continuous-wave ultrasound (CW-US exposure. Methods Clots were made from fresh venous blood drawn from healthy volunteers. Each clot was made from 1.4 ml blood and left to coagulate for 1 hour in a plastic test-tube. The thrombolytic drugs used were, 3600 IU streptokinase (SK or 0.25 U reteplase (r-PA, which were mixed in 160 ml 0.9% NaCl solution. Continuous-wave US exposure was applied at a frequency of 1 MHz and intensities ranging from 0.0125 to 1.2 W/cm2. For each thrombolytic drug (n = 2, SK and r-PA and each intensity (n = 9 interventional clots (US-exposed, n = 6 were submerged in thrombolytic solution and exposed to CW-US while control clots (also submerged in thrombolytic solution, n = 6 were left unexposed to US. To evaluate the effect on clot lysis, the haemoglobin (Hb released from each clot was measured every 20 min for 1 hour (20, 40 and 60 min. The Hb content (mg released was estimated by spectrophotometry at 540 nm. The difference in effect on clot lysis was expressed as the difference in the amount of Hb released between pairs of US-exposed clots and control clots. Statistical analysis was performed using Wilcoxon's signed rank test. Results Continuous-wave ultrasound significantly decreased the effects of SK at intensities of 0.9 and 1.2 W/cm2 at all times (P 2 and at 1.2 W/cm2, following 40 min exposure at 0.3, 0.6, 0.9 and at 1.2 W/cm2, and following 60 min of exposure at 0.05 0.3, 0.6, 0.9 and at 1.2 W/cm2 (all P Conclusion Increasing intensities of CW-US exposure resulted in increased clot lysis of r-PA-treated blood clots, but decreased clot lysis of SK-treated clots.

  19. Spin states of reduced fullerenes (C60 and C120O) by CW and pulsed EPR

    International Nuclear Information System (INIS)

    Boas, J.F.; Drew, S.C.; Pilbrow, J.R.; Boyd, P.D.W.; Paul, P.; Reed, C.A.; Sun, D.

    2003-01-01

    Full text: The ESTN (Electron Spin Transient Nutation) EPR (Electron Paramagnetic Resonance) experiments reported at Wagga 2002 showed that the spin states of the reduced fullerenes C 120 O (2-), C 120 O (3-) and C 120 O (4-) were S = 1, S = 1/2 and S = 1 respectively. Further experiments using CW (Continuous Wave) EPR have confirmed the results of Paul et al. and have now shown that these states are the ground states of these anions. In the case of C 60 (3-), the recent CW and ESTN EPR experiments have shown that the electronic ground state of this anion is S = 1/2. The observation of ground states of low multiplicity for these anions is contrary to expectations based on MO calculations and the application of Hund's rules. A series of CW EPR experiments on C 60 (3-) have shown that some previous results may need to be re-interpreted. This arises from the delineation of the effects of microwave power, modulation amplitude and frequency, sample temperature and freezing rate on the EPR spectrum which is the combination of a broad line, attributed to C 60 (3-), and a 'spike' attributed to C 120 O impurities and other oxygen related species. Our results cast doubt on the existence of Jahn-Teller effects at low temperatures and of a low-lying spin quartet excited state

  20. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    Science.gov (United States)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  1. Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.

    Science.gov (United States)

    Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T

    2015-11-16

    We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.

  2. Cloud-based design of high average power traveling wave linacs

    Science.gov (United States)

    Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.

    2017-12-01

    The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.

  3. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  4. Toward continuous-wave operation of organic semiconductor lasers

    Science.gov (United States)

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  5. Electron Acceleration by High Power Radio Waves in the Ionosphere

    Science.gov (United States)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  6. High power infrared QCLs: advances and applications

    Science.gov (United States)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  7. Survey on neutron production by electron beam from high power CW electron linear accelerator

    International Nuclear Information System (INIS)

    Toyama, S.

    1999-04-01

    In Japan Nuclear Cycle Development Institute, the development of high current CW electron linear accelerator is in progress. It is possible for an accelerator to produce neutrons by means of a spallation and photo nuclear reactions. Application of neutron beam produced by bremsstrahlung is one of ways of the utilization for high current electron accelerator. It is actual that many electron linear accelerators which maximum energy is higher than a few hundreds MeV are used as neutron sources. In this report, an estimate of neutron production is evaluated for high current CW electron linear accelerator. The estimate is carried out by 10 MeV beam which is maximum energy limited from the regulation and rather low for neutron production. Therefore, the estimate is also done by 17 and 35 MeV beam which is possible to be accelerated. Beryllium is considered as a target for lower electron energy in addition to Lead target for higher energy, because Beryllium has low threshold energy for neutron production. The evaluation is carried out in account of the target thickness optimized by the radiation length and neutron cross section reducing the energy loss for both of electron and neutron, so as to get the maximum number of neutrons. The result of the calculations shows neutron numbers 1.9 x 10 10 , 6.1 x 10 13 and 4.8 x 10 13 (n/s), respectively, for 10, 17, and 35 MeV with low duty. The thermal removal from the target is one of critical points. The additional shielding and cooling system is necessary in order to endure radiation. A comparison with other facilities are also carried out. The estimate of neutron numbers suggests the possibility to be applied for neutron radiography and measurement of nuclear data by means of Lead spectrometer, for example. (author)

  8. Intense high-frequency gyrotron-based microwave beams for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  9. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped CaNb2O6 crystal

    International Nuclear Information System (INIS)

    Cheng, Y; Xu, X D; Xiao, X D; Li, D Z; Zhao, C C; Zhou, S M; Xin, Z; Yang, X B; Xu, J

    2009-01-01

    Laser crystal Nd:CaNb 2 O 6 with excellent quality has been grown by Czochralski technique. The effective segregation coefficient of Nd 3+ was studied by X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Nd:CaNb 2 O 6 were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10 -20 cm 2 with a broad FWHM of 7 nm at 808 nm for E ∥ a light polarization. The emission cross section at 1062 nm is 9.87×10 -20 cm 2 . We report what we believe to be the first demonstration of the continuous-wave Nd:CaNb 2 O 6 laser operation under diode pumping. Output power of 1.86 W at 1062 nm was obtained with a slope efficiency of 19% in the CW regime

  10. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped CaNb2O6 crystal

    Science.gov (United States)

    Cheng, Y.; Xu, X. D.; Xin, Z.; Yang, X. B.; Xiao, X. D.; Li, D. Z.; Zhao, C. C.; Xu, J.; Zhou, S. M.

    2009-10-01

    Laser crystal Nd:CaNb2O6 with excellent quality has been grown by Czochralski technique. The effective segregation coefficient of Nd3+ was studied by X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Nd:CaNb2O6 were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10-20 cm2 with a broad FWHM of 7 nm at 808 nm for E ∥ a light polarization. The emission cross section at 1062 nm is 9.87×10-20 cm2. We report what we believe to be the first demonstration of the continuous-wave Nd:CaNb2O6 laser operation under diode pumping. Output power of 1.86 W at 1062 nm was obtained with a slope efficiency of 19% in the CW regime.

  11. Stable single-mode distributed feedback quantum cascade lasers at λ ∼ 4.25 μm with low power consumption

    Science.gov (United States)

    Jia, Zhiwei; Wang, Lijun; Zhang, Jinchuan; Liu, Fengqi; Zhuo, Ning; Zhai, Shenqiang; Liu, Junqi; Wang, Zhanguo

    2016-10-01

    Short-wavelength (4.25 μm) distributed-feedback quantum cascade laser operating in continuous wave (cw) mode at room temperature with low power consumption was presented. Stable single-mode operation with a side-mode-suppression-ratio above 25 dB was maintained for the whole measured current and temperature range by enlarging gain difference and strong grating coupling. Because of the strong coupling, very low threshold current and power consumption were achieved. For a device of 9-μm-wide and 2-mm-long, the cw threshold current and power consumption at 293 K were as low as 126 mA and 1.45 W, respectively. All results above were from the device without using buried heterostructure geometry.

  12. Study of a CW, two-dimensional Thomson scattering diagnostic system

    International Nuclear Information System (INIS)

    Hsieh, C.L.; Bray, B.D.; Liu, C.

    2004-01-01

    We describe an approach to Thomson scattering diagnostic that relies upon a high power CW laser cavity and a rf signal detection technique, instead of the more usual pulsed high energy laser. The system has three major elements: an ultra long (∼150 m) laser resonance cavity that includes the plasma region; an array of CW diode lasers of high power and high modulation frequency that pumps and maintains the average cavity energy (∼10 mJ); and a lock-in detection system of narrow frequency bandwidth (∼2 kHz). The resonance cavity consists of a pumping chamber for power input from diode lasers, and many relay chambers (∼30) distributed across the plasma cross section for Thomson measurement. The cavity has a low energy loss (∼2% round trip) and zero output power. It is estimated that signal-to-noise of the system is ∼100 times better than the present pulsed system on DIII-D Tokamak due to the increase in usable laser energy and the improved background signal rejection

  13. Visibility and aerosol measurement by diode-laser random-modulation CW lidar

    Science.gov (United States)

    Takeuchi, N.; Baba, H.; Sakurai, K.; Ueno, T.; Ishikawa, N.

    1986-01-01

    Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.

  14. Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+ : SrF2 and Er3+ : CaF2 crystals

    International Nuclear Information System (INIS)

    Basiev, Tasoltan T; Orlovskii, Yu V; Polyachenkova, M V; Fedorov, Pavel P; Kuznetsov, S V; Konyushkin, V A; Osiko, Vyacheslav V; Alimov, Olimkhon K; Dergachev, Alexey Yu

    2006-01-01

    CW lasing is obtained in Er 3+ (5%) : CaF 2 and Er 3+ (5%) : SrF 2 crystals near 2.75 μm with 0.4 and 2 W of output powers, respectively, upon transverse diode laser pumping into the upper 4 I 11/2 laser level of erbium ions at 980 nm. Continuous tuning of the laser wavelength between 2720 and 2760 nm is realised in the Er 3+ : SrF 2 crystal. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  15. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Characteristics of the evolution of a plasma formed by cw and pulse-periodic CO2 laser radiation in various gases

    Science.gov (United States)

    Kanevskiĭ, M. F.; Stepanova, M. A.

    1990-06-01

    An investigation was made of the interaction between high-power cw and pulse-periodic CO2 laser radiation and a low-threshold optical breakdown plasma near a metal surface. Characteristics of the breakdown plasma were studied as a function of the experimental conditions. A qualitative analysis was made of the results using a simple one-dimensional model for laser combustion waves.

  16. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    International Nuclear Information System (INIS)

    Srivastava, Vishnu

    2012-01-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  17. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    Science.gov (United States)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  18. High-speed photonically assisted analog-to-digital conversion using a continuous wave multiwavelength source and phase modulation.

    Science.gov (United States)

    Bortnik, Bartosz J; Fetterman, Harold R

    2008-10-01

    A more simple photonically assisted analog-to-digital conversion system utilizing a cw multiwavelength source and phase modulation instead of a mode-locked laser is presented. The output of the cw multiwavelength source is launched into a dispersive device (such as a single-mode fiber). This fiber creates a pulse train, where the central wavelength of each pulse corresponds to a spectral line of the optical source. The pulses can then be either dispersed again to perform discrete wavelength time stretching or demultiplexed for continuous time analog-to-digital conversion. We experimentally demonstrate the operation of both time stretched and interleaved systems at 38 GHz. The potential of integrating this type of system on a monolithic chip is discussed.

  19. 3 μm CW lasers for myringotomy and microsurgery.

    Science.gov (United States)

    Linden, Kurt J; Pfeffer, Christian P; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S

    2013-03-08

    This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899.

  20. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  1. A high-power millimeter wave driven steam gun for pellet injectors

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki

    1997-01-01

    A concept of steam gun is proposed for using in two-stage pneumatic hydrogen isotope pellet injectors. The steam gun is driven by megawatt-level high-power millimeter waves (∼100 GHz) supplied by gyrotrons. A small amount of water is injected into its pump tube. The water is instantaneously heated by the millimeter waves and vaporized. Generated high-pressure steam accelerates a piston for compressing light gas to drive a frozen pellet. Discussions in this paper concentrate on the piston acceleration. Results show that 1 MW millimeter waves accelerate the 25 g piston to velocities of ∼200 m/s in a 1 m-long pump tube. The piston acceleration characteristics are not improved in comparison to light gas guns with first valves. The steam gun concept, however, avoids the use of a large amount of high-pressure gas for piston accelerations. In future fusion reactors, gyrotrons used during preionization and start-up phase would be available for producing required millimeter waves. (author)

  2. Single-mode molecular beam epitaxy grown PbEuSeTe/PbTe buried-heterostructure diode lasers for CO2 high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Feit, Z.; Kostyk, D.; Woods, R.J.; Mak, P.

    1991-01-01

    Buried-heterostructure tunable PbEuSeTe/PbTe lasers were fabricated using a two-stage molecular beam epitaxy growth procedure. Improvements in the processing technique yielded lasers that show performance characteristics significantly better than those reported previously. A continuous wave (cw) operating temperature of 203 K was realized, which is the highest cw operating temperature ever reported for lead-chalcogenides diode lasers. This laser exhibited exceptionally low-threshold currents of 1.4 mA at 90 K and 43 mA at 160 K with single-mode operation for injection currents up to 30I th and 0.18 mW power at 100 K. The usefulness of the laser, when operating cw at 200 K, was demonstrated by the ability to perform high-resolution spectroscopy of a low-pressure CO 2 gas sample

  3. Large power microwave nonlinear effects on multifunction amplifier chip for Ka-band T/R module of phased array radar

    Science.gov (United States)

    Guo, Guo; Gu, Ling; Wu, Ruowu; Xu, Xiong; Zhou, Taifu; Niu, Xinjian; Liu, Yinghui; Wang, Hui; Wei, Yanyu; Guo, Changyong

    2017-12-01

    Nonlinear effects of large power millimeter wave on critical chips for the T/R module of phased array radar is experimental studied and analyzed in this paper. A multifunction amplifier chip is selected for our experiments. A solid continuous wave (CW) source and a large power pulsed magnetron are both employed to generate the Ka-band microwave. The input-output characteristics, the degradation and destroy threshold of the chips are obtained through a series of experimental tests. At last, the results are given by figures and analyzed theoretically.

  4. Optical Rogue Waves: Theory and Experiments

    Science.gov (United States)

    Taki, M.; Mussot, A.; Kudlinski, A.; Louvergneaux, E.; Kolobov, M.

    2010-05-01

    In the ocean, giant waves (also called killer waves, freak or rogue waves) are extremely rare and strong events. They are not well understood yet and the conditions which favour their emergence are unclear. Very recently, it was shown that the governing equations [1] as well as the statistical properties of an optical pulse propagating inside an optical fibre [2] mimic very well these gigantic surface waves in the ocean. Here we generate both experimentally and numerically optical rogue waves in a photonic crystal fiber (microstructured fiber) with continuous wave (CW) pumps. This is relevant for establishing an analogy with rogue waves in an open ocean. After recalling fundamental rogue waves [3] known as Akhmediev breathers that are solutions of pure nonlinear Schrödinger (NLS) equation, we analytically demonstrate that a generalized NLS equation, which governs the propagation of light in the fiber, exhibits convective modulationnal instability [4]. The latter provides one of the main explanations of the optical rogue wave extreme sensitivity to noisy initial conditions at the linear stage of their formation [5]. In the highly nonlinear regime, we provide the evidence that optical rogue waves result from soliton collisions leading to the rapid appearance/disappearance of a powerful optical pulse [6]. REFERENCES [1] C. Kharif, E. Pelinovsky, and A. Slunyaev, "Rogue Waves in the ocean", Springer Berlin Heidelberg, 2009 [2] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves" Nature 450, 1054-1058, (2008). [3] N. Akhmediev, A. Ankiewicz, and M. Taki, "Waves that appear from nowhere and disappear without a trace", Phys. Lett. A 373, 675 (2009). [4] A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, Delage, and M. Taki, "Optical fiber systems are convectively unstable", Phys. Rev. Lett. 101, 113904 (2008). [5] M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, "Third-order dispersion for generating optical rogue solitons

  5. A continuous-wave optical parametric oscillator around 5-μm wavelength for high-resolution spectroscopy.

    Science.gov (United States)

    Krieg, J; Klemann, A; Gottbehüt, I; Thorwirth, S; Giesen, T F; Schlemmer, S

    2011-06-01

    We present a continuous-wave optical parametric oscillator (OPO) capable of high resolution spectroscopy at wavelengths between 4.8 μm and 5.4 μm. It is based on periodically poled lithium niobate (PPLN) and is singly resonant for the signal radiation around 1.35 μm. Because of the strong absorption of PPLN at wavelengths longer than 4.5 μm, the OPO threshold rises to the scale of several watts, while it produces idler powers of more than 1 mW and offers continuous tuning over 15 GHz. A supersonic jet spectrometer is used in combination with the OPO to perform measurements of the transient linear molecule Si(2)C(3) at 1968.2 cm(-1). Fifty rovibrational transition frequencies of the ν(3) antisymmetric stretching mode have been determined with an accuracy on the order of 10(-4) cm(-1), and molecular parameters for the ground and the v(3) = 1 state have been determined most precisely. © 2011 American Institute of Physics

  6. Continuous wave room temperature external ring cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W. [Physics and Astronomy Department, The University of Sheffield, S3 7RH Sheffield (United Kingdom); Hempler, N.; Maker, G. T.; Malcolm, G. P. A. [M Squared Lasers Ltd., G20 0SP Glasgow (United Kingdom)

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  7. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W.; Hempler, N.; Maker, G. T.; Malcolm, G. P. A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm −1 is realized by the incorporation of a diffraction grating into the cavity

  8. Comparison of Square and Radial Geometries for High Intensity Laser Power Beaming Receivers

    Science.gov (United States)

    Raible, Daniel E.; Fast, Brian R.; Dinca, Dragos; Nayfeh, Taysir H.; Jalics, Andrew K.

    2012-01-01

    In an effort to further advance a realizable form of wireless power transmission (WPT), high intensity laser power beaming (HILPB) has been developed for both space and terrestrial applications. Unique optical-to-electrical receivers are employed with near infrared (IR-A) continuous-wave (CW) semiconductor lasers to experimentally investigate the HILPB system. In this paper, parasitic feedback, uneven illumination and the implications of receiver array geometries are considered and experimental hardware results for HILPB are presented. The TEM00 Gaussian energy profile of the laser beam presents a challenge to the effectiveness of the receiver to perform efficient photoelectric conversion, due to the resulting non-uniform illumination of the photovoltaic cell arrays. In this investigation, the geometry of the receiver is considered as a technique to tailor the receiver design to accommodate the Gaussian beam profile, and in doing so it is demonstrated that such a methodology is successful in generating bulk receiver output power levels reaching 25 W from 7.2 sq cm of photovoltaic cells. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers to achieve a 1.0 sq m receiver capable of generating over 30 kW of electrical power. This type of system would enable long range optical "refueling" of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion. In addition, a smaller HILPB receiver aperture size could be utilized to establish a robust optical communications link within environments containing high levels of background radiance, to achieve high signal to noise ratios.

  9. Simulation of D and E region high-power microwave heating with HF ionospheric modification experiments

    International Nuclear Information System (INIS)

    Meltz, G.; Rush, C.M.; Violette, E.J.

    1981-01-01

    The microwave power beam from a Solar Power Satellite (SPS) is sufficiently intense to cause large changes in the properties of the lower ionosphere by ohmic heating of the plasma. Power is absorbed from the beam at a rate that is proportional to the ratio of the flux s and the square of an effective frequency f/sub e/. Throughout most of the lower ionosphere f/sub e/ = f -+ f/sub L/, where f is the wave frequency and f/sub L is a reduced electron gyrofrequency. It follows that SPS equivalent heating can be simulated at much lower power fluxes with HF radio waves. A detailed examination of the frequency scaling, based on fluid and kinetic theory estimates of the change in electron temperature and density, shows that the high-power HF facility at Platteville, CO, can simulate or exceed the ohmic effects of the SPS beam up to 90 km. This paper describes the results of a series of 5.2 and 9.9 MHz underdense heating experiments undertaken to study the effect of high-power microwaves on the lower ionosphere. A pulsed ionosonde probe, located nearly below the most intense portion of the high-power beam, was used to observe the changes in the D and lower E region. Both phase and amplitude measurements were recorded during CW and intermittent heating

  10. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    Science.gov (United States)

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    Science.gov (United States)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  12. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  13. Generation of ultrasound in materials using continuous-wave lasers.

    Science.gov (United States)

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  14. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm.

    Science.gov (United States)

    Laroche, M; Cadier, B; Gilles, H; Girard, S; Lablonde, L; Robin, T

    2013-08-15

    We demonstrate a double-clad fiber laser operating at 910 nm with a record power of 20 W. Laser emission on the three-level scheme is enabled by the combination of a small inner cladding-to-core diameter ratio and a high brightness pump source at 808 nm. A laser conversion efficiency as high as 44% was achieved in CW operating regime by using resonant fiber Bragg reflectors at 910 nm that prevent the lasing at the 1060 nm competing wavelength. Furthermore, in a master oscillator power-amplifier scheme, an amplified power of 14.8 W was achieved at 914 nm in the same fiber.

  15. Wave propagation downstream of a high power helicon in a dipolelike magnetic field

    International Nuclear Information System (INIS)

    Prager, James; Winglee, Robert; Roberson, B. Race; Ziemba, Timothy

    2010-01-01

    The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.

  16. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D. R.; Ragan, H. A.; Rogers, L. E.; Guy, A. W.; Hjeresen, D. L.; Hinds, W. T.

    1978-05-01

    Potential biological and ecological problems are the focus of a review of the world's scientific literature on biological effects of microwave radiation. The emphasis is on recently reported data and on the 2450-MHz continuous-wave (CW) radiation that is envisioned for a Satellite Power System (SPS).

  17. Emission parameters and thermal management of single high-power 980-nm laser diodes

    International Nuclear Information System (INIS)

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A; Pevtsov, V F; Popov, Yu M; Cheshev, E A

    2014-01-01

    We report emission parameters of high-power cw 980-nm laser diodes (LDs) with a stripe contact width of 100 μm. On copper heat sinks of the C-mount type, a reliable output power of 10 W is obtained at a pump current of 10 A. Using a heat flow model derived from analysis of calculated and measured overall efficiencies at pump currents up to 20 A, we examine the possibility of raising the reliable power limit of a modified high-power LD mounted on heat sinks of the F-mount type using submounts with optimised geometric parameters and high thermal conductivity. The possibility of increasing the maximum reliable cw output power to 20 W with the use of similar laser crystals is discussed. (lasers)

  18. The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams

    Science.gov (United States)

    Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.

    2017-08-01

    Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.

  19. 100 GHz, 1 MW, CW gyrotron study program. Final report

    International Nuclear Information System (INIS)

    Felch, K.; Bier, R.; Caplan, M.; Jory, H.

    1983-09-01

    The results of a study program to investigate the feasibility of various approaches in designing a 100 GHz, 1 MW CW gyrotron are presented. A summary is given of the possible configurations for a high average power, high frequency gyrotron, including an historical survey of experimental results which are relevant to the various approaches. A set of basic scaling considerations which enable qualitative comparisons between particular gyrotron interaction circuits is presented. These calculations are important in understanding the role of various electron beam and circuit parameters in achieving a viable gyrotron design. Following these scaling exercises, a series of design calculations is presented for a possible approach in achieving 100 GHz, 1 MW CW. These calculations include analyses of the electron gun and interaction circuit parts of the gyrotron, and a general analysis of other aspects of a high average power, high frequency gyrotron. Scalability of important aspects of the design to other frequencies is also discussed, as well as key technology issues

  20. Room temperature quarter wave resonator re-buncher development for a high power heavy-ion linear accelerator

    Science.gov (United States)

    Kim, Hye-Jin; Choi, B. H.; Han, Jaeeun; Hyun, Myung Ook; Park, Bum-Sik; Choi, Ohryoung; Lee, Doyoon; Son, Kitaek

    2018-03-01

    In the medium energy beam transport (MEBT) line system of the RAON which consists of several quadrupole magnets, three normal-conducting re-bunchers, and several diagnostic devices, a quarter wave resonator type re-buncher was chosen for minimizing longitudinal emittance growth and manipulating a longitudinal phase ellipse into the longitudinal acceptance of the low energy linac. The re-buncher has a resonant frequency of 81.25 MHz, geometrical beta (βg) of 0.049, and physical length of 24 cm. Based on the result of numerical calculations of electromagnetic field using CST-MWS and mechanical analysis of the heat distribution and deformation, an internal structure of the re-buncher was optimized to increase the effective voltage and to reduce power losses in the wall. The criteria of the multipacting effect was estimated and it was confirmed by the experiment. The position and specification of cooling channels are designed to recover a heat load up to 15 kW with reasonable margin of 25%. The coaxial and loop type RF power coupler are positioned on the high magnetic field region and two slug tuners are installed perpendicularly to the beam axis. The frequency sensitivity as a function of the tuner depth and cooling water temperature is measured and the frequency shift is in all cases within the provided tuner range. The test with a high power of 10 kW and the continuous wave is performed and the reflection power is observed less than 450 W.

  1. A Family of L-band SRF Cavities for High Power Proton Driver Applications

    International Nuclear Information System (INIS)

    Rimmer, Robert; Marhauser, Frank

    2009-01-01

    Recent global interest in high duty factor or CW superconducting linacs with high average beam power highlights the need for robust and reliable SRF structures capable of delivering high average RF power to the beam with moderate HOM damping, low interception of halo and good efficiency. Potential applications include proton or H- drivers for spallation neutron sources, neutrino physics, waste transmutation, subcritical reactors, and high-intensity high-energy physics experiments. We describe a family of SRF cavities with a range of Betas capable of transporting beam currents in excess of 10 mA CW with large irises for minimal interception of halo and HOM and power couplers capable of supporting high average power operation. Goals include an efficient cell shape, high packing factor for efficient real-estate gradient and strong HOM damping to ensure stable beam operation,

  2. New method for measuring time-resolved spectra of lanthanide emission using square-wave excitation

    International Nuclear Information System (INIS)

    Qin, Feng; Zhao, Hua; Cai, Wei; Duan, Qianqian; Zhang, Zhiguo; Cao, Wenwu

    2013-01-01

    A method using modulated continuous wave (CW) visible laser to measure time-resolved fluorescence spectra of trivalent rare-earth ions has been developed. Electro-optic modulator was used to modulate the CW pumping laser with a rise time of 2 μs. CW Nd 3+ lasers were used as examples to present the method. Upconversion dynamic process of Ho 3+ was studied utilizing a 532 nm CW laser. Quantum cutting dynamic process from Tb 3+ to Yb 3+ was analyzed by a 473 nm CW laser. This method can be applied to any CW laser such as He-Ne laser, Ar + laser, Kr + laser, Ti:sapphire laser, etc

  3. Assessment methodology of counter-personnel high power electromagnetic millimeter wave effects

    NARCIS (Netherlands)

    Valente, F.; Horst, M.J. van der; Paulissen, J.J.M.; Zwamborn, A.P.M.; Toet, A.

    2013-01-01

    The group of NLW that arguably offers the largest amount of useful applications are based on high power electromagnetic millimetre wave technology. This group is often referred to as ‘Active Denial Systems’ (ADS), since they are primarily aimed at deterring and dispersing people out of an area. The

  4. Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon

    Directory of Open Access Journals (Sweden)

    Mohamed Sabry Mohamed

    2017-03-01

    Full Text Available We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG and third harmonic generation (THG in suspended gallium nitride slab photonic crystal (PhC cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4 × 104, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving a normalized conversion efficiency of 2.4 × 10−3 W−1, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  5. Diode-pumped cw Nd:YAG three-level laser at 869 nm.

    Science.gov (United States)

    Lü, Yanfei; Xia, Jing; Cheng, Weibo; Chen, Jifeng; Ning, Guobin; Liang, Zuoliang

    2010-11-01

    We report for the first time (to our knowledge) a diode-pumped Nd:YAG laser emitting at 869 nm based on the (4)F(3/2)-(4)I(9/2) transition, generally used for a 946 nm emission. Power of 453 mW at 869 nm has been achieved in cw operation with a fiber-coupled laser diode emitting 35.4 W at 809 nm. Intracavity second-harmonic generation in the cw mode has also been demonstrated with power of 118 mW at 435 nm by using a BiB(3)O(6) nonlinear crystal. In our experiment, we used a LiNbO(3) crystal lens to complement the thermal lens of the laser rod, and we obtained good beam quality and high output power stability.

  6. Experimental high power plasma-filled backward wave oscillator results

    International Nuclear Information System (INIS)

    Minami, K.; Lou, W.R.; Destler, W.W.; Kehs, R.A.; Granatstein, V.L.; Carmel, Y.

    1988-01-01

    Previous results have indicated that a background gas can be used to increase the output microwave power of relativistic backward wave oscillators (BWOs) two or three times the vacuum case. In their experiments, two methods of plasma production are investigated in detail: the use of the electron beam to ionize a background gas, and the use of a plasma gun to inject a background plasma into the slow-wave structure of a BWO. It is found in the first case that there was a resonant increase in microwave power at a particular pressure of the background gas by a factor of ten. In the second case, power also increased compared with power production in vacuum. Detailed results are presented and the relative merits of the two approaches is discussed and compared with theoretical expectations

  7. Correlation of Pc5 wave power inside and outside themagnetosphere during high speed streams

    Directory of Open Access Journals (Sweden)

    R. L. Kessel

    2004-01-01

    Full Text Available We show a clear correlation between the ULF wave power (Pc5 range inside and outside the Earth's magnetosphere during high speed streams in 1995. We trace fluctuations beginning 200RE upstream using Wind data, to fluctuations just upstream from Earth's bow shock and in the magnetosheath using Geotail data and compare to pulsations on the ground at the Kilpisjarvi ground station. With our 5-month data set we draw the following conclusions. ULF fluctuations in the Pc5 range are found in high speed streams; they are non-Alfvénic at the leading edge and Alfvénic in the central region. Compressional and Alfvénic fluctuations are modulated at the bow shock, some features of the waveforms are preserved in the magnetosheath, but overall turbulence and wave power is enhanced by about a factor of 10. Parallel (compressional and perpendicular (transverse power are at comparable levels in the solar wind and magnetosheath, both in the compression region and in the central region of high speed streams. Both the total parallel and perpendicular Pc5 power in the solar wind (and to a lesser extent in the magnetosheath correlate well with the total Pc5 power of the ground-based H-component magnetic field. ULF fluctuations in the magnetosheath during high speed streams are common at frequencies from 1–4mHz and can coincide with the cavity eigenfrequencies of 1.3, 1.9, 2.6, and 3.4mHz, though other discrete frequencies are also often seen.

    Key words. Interplanetary physics (MHD waves and turbulence – Magnetospheric physics (solar wind-magnetosphere interactions; MHD waves and instabilities

  8. Regime dependence of photo-darkening-induced modal degradation in high power fiber amplifier (Conference Presentation)

    Science.gov (United States)

    Boullet, Johan; Vincont, Cyril; Jolly, Alain; Pierre, Christophe

    2017-03-01

    Thermally induced transverse modal instabilities (TMI) have attracted these five years an intense research efforts of the entire fiber laser development community, as it represents the current most limiting effect of further power scaling of high power fiber laser. Anyway, since 2014, a few publications point out a new limiting thermal effect: fiber modal degradation (FMD). It is characterized by a power rollover and simultaneous increase of the cladding light at an average power far from the TMI threshold together with a degraded beam which does not exhibit temporal fluctuations, which is one of the main characteristic of TMI. We report here on the first systemic experimental study of FMD in a high power photonic crystal fiber. We put a particular emphasis on the dependence of its average power threshold on the regime of operation. We experimentally demonstrate that this dependence is intrinsically linked to regime-dependent PD-saturated losses, which are nearly three times higher in CW regime than in short pulse picosecond regime. We make the hypothesis that the existence of these different PD equilibrium states between CW regime and picosecond QCW pulsed regime is due to a partial photo-bleaching of color centers in picosecond regime thanks to a higher probability of multi-photon process induced photobleaching (PB) at high peak power. This hypothesis is corroborated by the demonstration of the reversibility of the FMD induced in CW regime by simply switching the seed CW 1064 nm light by a short pulse, picosecond oscillator.

  9. CW substrate-free metal-cavity surface microemitters at 300 K

    International Nuclear Information System (INIS)

    Lu, Chien-Yao; Chang, Shu-Wei; Chuang, Shun Lien; Germann, Tim D; Pohl, Udo W; Bimberg, Dieter

    2011-01-01

    In this paper substrate-free metal-cavity surface microemitters are demonstrated. The optical cavity is formed by a metal reflector, metal-surrounded sidewall and n-doped distributed-Bragg reflector, which provides optical feedback and carrier injection. We describe a simple design principle with the modal properties modified by geometry and metal-insulator cladding. Both resonant cavity light-emitting diodes (1.85 µm diameter and 0.6 µm height) and lasers (2.0 µm diameter and 2.5 µm height) are successfully fabricated and characterized. These two types of devices operate at room temperature under continuous-wave (CW) operation. Since the devices are substrate-free, they can be bonded to any substrates. From the threshold currents of the lasers, we obtain a high characteristic temperature of 425 K in the range of 10–27 °C. We also discuss a general approach to improve the diffraction from small-aperture devices

  10. Plasma and controlled thermonuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kapitsa, P L [AN SSSR, Moscow. Inst. Fizicheskikh Problem

    1980-06-01

    Two contemporary trends of research are characterized aiming at the thermonuclear reactor, viz., tokamak type equipment and pulsed heating of a deuterium-tritium mixture using focused laser light. There is a third trend based on the use of high-power continuous wave (CW) microwave generators which allow producing a rope discharge. The design is described of an anticipated CW thermonuclear reactor. Using current experimental facilities, a continuous high-frequency discharge can be obtained at a pressure of 25 atm and electron temperature of 50 million K. The major problem involved in the design of a CW reactor is the heating of ions to the same temperature as the electron temperature and the reduction in ion gas thermal conductivity.

  11. Impedance matching network systems using stub-lines of 20 kW CW RF amplifier for SKKUCY-9 compact cyclotron

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Song, Ho Seung; Kim, Jeong Hwan; Cong, Truong Van; Kim, Hui Su; Yeon, Yeong Heum; Lee, Yong seok; Chai, Jong Seo

    2015-01-01

    The SKKUCY-9 is a compact cyclotron for radioactive isotopes (RI) production of positron emission tomography (PET). Charged particles such as H-ions are accelerated azimuthally within a high intensity electric field (E-field) generated from a radio frequency (RF) system in cyclotron. A high power RF signal is transmitted from an RF amplifier to an RF resonating cavity. The RF system of the SKKUCY-9 operates in continuous wave (CW) mode. If an ion beam were accelerated in the cyclotron, the vacuum level and permittivity would be changed because of beam loading. It causes an impedance shift of the RF resonating cavity. This impedance mismatch generates reflected power that decreases the RF transmitting power. To prevent this situation, an impedance matching system is necessary. This paper describes the impedance matching system of a 20 kW RF amplifier in an SKKUCY-9 compact cyclotron. The impedance matching circuit was designed using both an input stage and output stage, which are divided between the cathode and anode in a vacuum tube that is used as an amplifying device. The equivalent circuit of the matching system is made of passive elements. The characteristic results of designed circuit were calculated using a Smith chart. In assembling, the inductors were replaced by movable stub-line structures. The dimensions of the stub-line structures were optimized with equations and the measurement results. The experiment was performed to find the result values of matching circuit impedance and RF power amplitude

  12. Solid state pump lasers with high power and high repetition rate

    International Nuclear Information System (INIS)

    Oba, Masaki; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    We built a laser diode pumped solid state green laser (LDPSSGL) rated at high repetition rate. Two laser heads are placed in one cavity with a rotator in between to design to avoid thermal lensing and thermal birefringence effect. Although average green laser power higher than 10 W was obtained at 1 kHz repetition rate with pulse width of 20-30 nsec, the beam quality was so much deteriorated that energy efficiency was as low as 2 %. Learning from this experience that high power oscillator causes a lot of thermal distortion not only in the laser rod but also in the Q-switch device, we proceeded to built a oscillator/amplifier system. A low power oscillator has a slab type crystal in the cavity. As a result spatial distribution of laser power was extremely improved. As we expect that the high repetition rate solid state laser should be CW operated Q-switch type laser from the view point of lifetime of diode lasers, a conventional arc lamp pumped CW Q-switch green YAG laser of which the repetition rate is changeable from 1 kHz to 5 kHz and the pulse width is 250-570 nsec was also tested to obtain pumping characteristics of a dye laser as a function of power, pulse width etc., and dye laser pulse width of 100-130 nsec were obtained. (author)

  13. Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip

    Science.gov (United States)

    Huang, Shu-Wei; Yang, Jinghui; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T.; Jarrahi, Mona; Wong, Chee Wei

    2017-10-01

    In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3 ×10-14 . We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6 ×10-10 at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.

  14. High Power Room Temperature Terahertz Local Oscillator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  15. Recent progress of 638-nm high-power broad area laser diodes in Mitsubishi Electric

    Science.gov (United States)

    Kuramoto, Kyosuke; Abe, Shinji; Miyashita, Motoharu; Nishida, Takehiro; Yagi, Tetsuya

    2018-02-01

    Laser based displays have gathered much attention because only the displays can express full color gamut of Ultra-HDTV, ITU-R BT.2020. One of the displays uses the lasers under pulse such as a single spatial light modulator (SLM) projector, and the other does ones under CW such as a multiple SLM projector and a liquid crystal display. Both types require high-power lasers because brightness is the most important factor in the market. We developed two types of 638-nm multi-emitter high-power BA-LDs assembled on Φ9.0-TO, that is, triple emitter for pulse and dual emitter for CW. The triple emitter LD emitted exceeding 6.0 W peak power under 25°C, frequency of 120 Hz, and duty of 30%. At high temperature, 55°C, the peak power was approximately 2.9W. The dual emitter emitted exceeding 3.0W under 25°C, CW. It emitted up to 1.7 W at 55°C. WPE of the dual emitter reached 40.5% at Tc of 25°C, which is the world highest in 638-nm LD under CW to the best of our knowledge, although that of the triple emitter was 38.1%. Both LDs may be suitable for laser based display applications.

  16. Microwave and Millimeter-Wave Signal Power Generation

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan

    Among the major limitations in high-speed communications and highresolution radars is the lack of efficient and powerful signal sources with low distortion. Microwave and millimeter-wave (mm-wave) signal power is needed for signal transmission. Progress in signal generation stems largely from...... distortion and high PAE were observed. The estimated output power of 42.5 dBm and PAE of 31.3% are comparable to the state-of-the-art results reported for GaN HEMT amplifiers. Wireless communication systems planned in the near future will operate at E-band, around 71-86 GHz, and require mm-wave-PAs to boost...... the application of novel materials like galliumnitride (GaN) and silicon-carbide (SiC) and fabrication of indiumphosphide (InP) based transistors. One goal of this thesis is to assess GaN HEMT technology with respect to linear efficient signal power generation. While most reports on GaN HEMT high-power devices...

  17. Eye safe high power laser diode in the 1410-1550nm range

    Science.gov (United States)

    Boucart, Julien; de Largy, Brian; Kearley, Mark; Lichtenstein, Norbert

    2010-02-01

    The demand for high power lasers emitting in the 14xx-15xxnm range is growing for applications in fields such as medical or homeland security. We demonstrate high power laser diodes with emission at 1430, 1470 and 1560 nm. Single multimode emitters at 1470nm emit about 3.5W in CW operation. Power conversion efficiency can reach values as high as 38.5%. With this base material, single and multi-emitter fiber coupled modules are built. Additionally, bars on passive and microchannel coolers are fabricated that deliver 25W and 38W respectively in CW mode, while obtaining more than 80 W in pulsed mode. All reliability tests show an outstanding stability of the material with no signs of wearout after 3750 hrs under strong acceleration conditions.

  18. CW EPR parameters reveal cytochrome P450 ligand binding modes.

    Science.gov (United States)

    Lockart, Molly M; Rodriguez, Carlo A; Atkins, William M; Bowman, Michael K

    2018-06-01

    Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H 2 O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Kostin, Yu O [Superlum Diodes Ltd., Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2014-10-29

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  20. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    International Nuclear Information System (INIS)

    Andreeva, E V; Il'chenko, S N; Kostin, Yu O; Yakubovich, S D

    2014-01-01

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  1. Performance of a high efficiency high power UHF klystron

    International Nuclear Information System (INIS)

    Konrad, G.T.

    1977-03-01

    A 500 kW c-w klystron was designed for the PEP storage ring at SLAC. The tube operates at 353.2 MHz, 62 kV, a microperveance of 0.75, and a gain of approximately 50 dB. Stable operation is required for a VSWR as high as 2 : 1 at any phase angle. The design efficiency is 70%. To obtain this value of efficiency, a second harmonic cavity is used in order to produce a very tightly bunched beam in the output gap. At the present time it is planned to install 12 such klystrons in PEP. A tube with a reduced size collector was operated at 4% duty at 500 kW. An efficiency of 63% was observed. The same tube was operated up to 200 kW c-w for PEP accelerator cavity tests. A full-scale c-w tube reached 500 kW at 65 kV with an efficiency of 55%. In addition to power and phase measurements into a matched load, some data at various load mismatches are presented

  2. A high-power two stage traveling-wave tube amplifier

    International Nuclear Information System (INIS)

    Shiffler, D.; Nation, J.A.; Schachter, L.; Ivers, J.D.; Kerslick, G.S.

    1991-01-01

    Results are presented on the development of a two stage high-efficiency, high-power 8.76-GHz traveling-wave tube amplifier. The work presented augments previously reported data on a single stage amplifier and presents new data on the operational characteristics of two identical amplifiers operated in series and separated from each other by a sever. Peak powers of 410 MW have been obtained over the complete pulse duration of the device, with a conversion efficiency from the electron beam to microwave energy of 45%. In all operating conditions the severed amplifier showed a ''sideband''-like structure in the frequency spectrum of the microwave radiation. A similar structure was apparent at output powers in excess of 70 MW in the single stage device. The frequencies of the ''sidebands'' are not symmetric with respect to the center frequency. The maximum, single frequency, average output power was 210 MW corresponding to an amplifier efficiency of 24%. Simulation data is also presented that indicates that the short amplifiers used in this work exhibit significant differences in behavior from conventional low-power amplifiers. These include finite length effects on the gain characteristics, which may account for the observed narrow bandwidth of the amplifiers and for the appearance of the sidebands. It is also found that the bunching length for the beam may be a significant fraction of the total amplifier length

  3. Three-Rod Resonator for Krypton Lamp Pumped 1.8 kW Continuous-Wave Nd:YAG Laser

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; FANG Ming-Xing; WANG Zhi-Yong; YU Zhen-Sheng; LEI Hong; GUO Jiang; LI Gang; ZUO Tie-Chuan

    2004-01-01

    @@ A three-rod series resonator cw Nd:YAG laser suitable for the industrial applications is presented. The symmetrical resonator laser has been developed and is rated at 1820-W output power with beam parameter product 24 mm.mrad. By utilizing the symmetrical resonator design, the characteristic of beam with multi-rod is not obviously decreased compared with that of a single one. The system total electro-optics efficiency of lamp pumped YAG crystal is as high as 4.0%. The main factors, which affect output power and beam quality of high power solid-state laser module, are theoretically analysed.

  4. High average power CW FELs [Free Electron Laser] for application to plasma heating: Designs and experiments

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X.

    1989-01-01

    A short period wiggler (period ∼ 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam (''body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation

  5. A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser

    Science.gov (United States)

    Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang

    2015-04-01

    A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.

  6. Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Seok; Kwon, Il Bub; Yoon, Dong Jin; Seo, Dae Cheol [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2010-08-15

    This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave

  7. Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System

    International Nuclear Information System (INIS)

    Jang, Jin Seok; Kwon, Il Bub; Yoon, Dong Jin; Seo, Dae Cheol

    2010-01-01

    This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave

  8. Prediction and measurement of the electromagnetic environment of high-power medium-wave and short-wave broadcast antennas in far field.

    Science.gov (United States)

    Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo

    2014-12-01

    With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Investigation of radical locations in various sesame seeds by CW EPR and 9-GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, K; Hara, H

    2015-01-01

    We investigated the location of radical in various sesame seeds using continuous-wave (CW) electron paramagnetic resonance (EPR) and 9-GHz EPR imaging. CW EPR detected persistent radicals (single line) for various sesame seeds. The EPR linewidth of black sesame seeds was narrower than that of the irradiated white sesame seeds. A very small signal was detected for the white sesame seeds. Two-dimensional (2D) imaging using a 9-GHz EPR imager showed that radical locations vary for various sesame seeds. The paramagnetic species in black sesame seeds were located on the seed coat (skin) and in the hilum region. The signal with the highest intensity was obtained from the hilum part. A very low-intensity image was observed for the white sesame seeds. In addition, the 2D imaging of the irradiated white sesame seeds showed that free radicals were located throughout the entire seed. For the first time, CW EPR and 9-GHz EPR imaging showed the exact location of radical species in various sesame seeds.

  10. Thermal properties and continuous-wave laser performance of Yb:LuVO4 crystal

    Science.gov (United States)

    Cheng, Y.; Zhang, H. J.; Yu, Y. G.; Wang, J. Y.; Tao, X. T.; Liu, J. H.; Petrov, V.; Ling, Z. C.; Xia, H. R.; Jiang, M. H.

    2007-03-01

    A laser crystal of Yb:LuVO4 with high optical quality was grown by the Czochralski technique. Its thermal properties including specific heat, thermal expansion coefficients, and thermal conductivities along the a- and c-axis have been measured for the first time. Continuous-wave laser output up to 3.5 W at 1031 nm was obtained at room temperature through end-pumping by a high-power diode laser. The corresponding optical conversion efficiency was 43% and the slope efficiency was 72%.

  11. High-power cw laser bars of the 750 – 790-nm wavelength range

    International Nuclear Information System (INIS)

    Degtyareva, N S; Kondakov, S A; Mikayelyan, G T; Gorlachuk, P V; Ladugin, M A; Marmalyuk, Aleksandr A; Ryaboshtan, Yu L; Yarotskaya, I V

    2013-01-01

    We have developed the effective design of semiconductor heterostructures, which allow one to fabricate cw laser diodes emitting in the 750 – 790-nm spectral range. The optimal conditions for fabrication of GaAsP/AlGaInP/GaAs heterostructures by MOCVD have been determined. It is shown that the use of quantum wells with a precisely defined quantity mismatch reduces the threshold current density and increases the external differential efficiency. The results of studies of characteristics of diode laser bars fabricated from these heterostructures are presented. (lasers)

  12. Quasi-CW Laser Diode Bar Life Tests

    Science.gov (United States)

    Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.

    1997-01-01

    NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.

  13. Continuous-wave laser at 440 nm based on frequency-doubled diode-pumped Nd:GdVO(4) crystal.

    Science.gov (United States)

    Castaing, Marc; Balembois, François; Georges, Patrick

    2008-09-01

    We present for the first time, to the best of our knowledge, a frequency-doubled Nd:GdVO(4) laser operating in a cw on the pure three-level laser line at 880 nm. We obtained 300 mW at 440 nm for 23 W of incident pump power at 808 nm. Moreover, with a 25% output coupler we obtained a cw power of 1.9 W at the fundamental wavelength at 880 nm.

  14. Fiber Laser Pumped Continuous-wave Singly-resonant Optical Parametric Oscillator

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Walde, T.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.; Fejer, Martin M.

    2002-01-01

    We report on the first fiber-pumped CW LiNbO/sub 3/ optical parametric oscillator (OPO). The OPO is singly resonant (SRO) and generates idler wavelengths in the range of 3.0 /spl mu/m to 3.7 /spl mu/m with a maximum output power of 1.9 watt.

  15. Continuous terahertz-wave generation using a monolithically integrated horn antenna

    Science.gov (United States)

    Peytavit, E.; Beck, A.; Akalin, T.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2008-09-01

    A transverse electromagnetic horn antenna is monolithically integrated with a standard ultrafast interdigitated electrode photodetector on low-temperature-grown GaAs. Continuous-wave terahertz radiation is generated at frequencies up to 2 THz with a maximum power of approximately 1 μW at 780 GHz. Experimental variations in the terahertz power as function of the frequency are explained by means of electromagnetic simulations of the antenna and the photomixer vicinity.

  16. InP Devices For Millimeter-Wave Monolithic Circuits

    Science.gov (United States)

    Binari, S. C.; Neidert, R. E.; Dietrich, H. B.

    1989-11-01

    High efficiency, mm-wave operation has been obtained from lateral transferred-electron devices (TEDs) designed with a high resistivity region located near the cathode contact. At 29.9 GHz, a CW power output of 29.1 mW with a conversion efficiency of 6.7% has been achieved with cavity-tuned discrete devices. This result represents the highest power output and efficiency of a lateral TED in this frequency range. The lateral devices also had a CW power output of 0.4 mW at 98.5 GHz and 0.9 mW at 75.2 GHz. In addition, a monolithic oscillator incorporating the lateral TED has been demonstrated at 79.9 GHz. InP Schottky-barrier diodes have been fabricated using selective MeV ion implantation into semi-insulating InP substrates. Using Si implantation with energies of up to 6.0 MeV, n+ layers as deep as 3 μm with peak carrier concentrations of 2 x 1018 cm-3 have been obtained. These devices have been evaluated as mixers and detectors at 94 GHz and have demonstrated a conversion loss of 7.6 dB and a zero-bias detector sensitivity as high as 400 mV/mW.

  17. 650-nm-band high-power and highly reliable laser diodes with a window-mirror structure

    Science.gov (United States)

    Shima, Akihiro; Hironaka, Misao; Ono, Ken-ichi; Takemi, Masayoshi; Sakamoto, Yoshifumi; Kunitsugu, Yasuhiro; Yamashita, Koji

    1998-05-01

    An active layer structure with 658 nm-emission at 25 degrees Celsius has been optimized in order to reduce the operating current of the laser diodes (LD) under high temperature condition. For improvement of the maximum output power and the reliability limited by mirror degradation, we have applied a zinc-diffused-type window-mirror structure which prevents the optical absorption at the mirror facet. As a result, the CW output power of 50 mW is obtained even at 80 degrees Celsius for a 650 micrometer-long window-mirror LD. In addition, the maximum light output power over 150 mW at 25 degrees Celsius has been realized without any optical mirror damage. In the aging tests, the LDs have been operating for over 2,500 - 5,000 hours under the CW condition of 30 - 50 mW at 60 degrees Celsius. The window-mirror structure also enables reliable 60 degree Celsius, 30 mW, CW operation of the LDs with 651 nm- emission at 25 degrees Celsius. Moreover, the maximum output power of around 100 mW even at 80 degrees Celsius and reliable 2,000-hour operation at 60 degrees Celsius, 70 mW have been realized for the first time by 659 nm LDs with a long cavity length of 900 micrometers.

  18. Enhancement of thermal blooming effect on free space propagation of high power CW laser beam

    Science.gov (United States)

    Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.

    2018-02-01

    In this paper, we present an enhanced model to predict the effect of thermal blooming and atmospheric turbulence, on high energy laser beams free space propagation. We introduce an implementation technique for the proposed mathematical models describing the effect of thermal blooming and atmospheric turbulence including wind blowing, and how it effect high power laser beam power, far field pattern, phase change effect and beam quality . An investigated model of adaptive optics was introduced to study how to improve the wave front and phase distortion caused by thermal blooming and atmospheric turbulence, the adaptive optics model with Actuator influence spacing 3 cm the that shows observed improvement in the Strehl ratio and in wave front and phase of the beam. These models was implemented using cooperative agents relying on GLAD software package. Without taking in consideration the effect of thermal blooming It was deduced that the beam at the source takes the Gaussian shape with uniform intensity distribution, we found that the beam converge on the required distance 4 km using converging optics, comparing to the laser beam under the effect of thermal blooming the far field pattern shows characteristic secondary blip and "sugar scoop" effect which is characteristic of thermal blooming. It was found that the thermal blooming causes the beam to steer many centimeters and to diverge beyond about 1.8 km than come to a focus at 4 km where the beam assumed to be focused on the required target. We assume that this target is moving at v = (4,-4) m/sec at distance 4 km and the wind is moving at v = (-10,-10) m/sec, it was found that the effect will be strongest when wind and target movement are at the same velocity. GLAD software is used to calculate the attenuation effects of the atmosphere as well as the phase perturbations due to temperature change in the air and effects caused as the beam crosses through the air due to wind and beam steering.

  19. Experimental results in superconducting niobium resonators for high-brightness ion beam acceleration

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Roche, C.T.

    1991-01-01

    Two niobium resonant cavities for high-brightness ion beam acceleration have been constructed and tested. The first was based on a coaxial quarter-wave geometry and was optimized for phase velocity β O = O.15. This cavity, which resonates at 400 MHz in the fundamental mode, operated at an average (wall-to-wall) accelerating gradient of 12.9 MV/m under continuous-wave (cw) fields. At this gradient, a cavity Q of 1.4x10 8 was measured. The second was based on a coaxial half-wave geometry and was optimized for β O = 0.12. This cavity, which resonates at 355 MHz in the fundamental mode, operated at an average accelerating gradient of 18.0 MV/m under cw fields. This is the highest average accelerating gradient achieved to date in low-velocity structures designed for cw operation. At this gradient, a cavity Q of 1.2 x 10 8 was measured

  20. Design and fabrication of a continuous wave electron accelerating structure

    International Nuclear Information System (INIS)

    Takahashi, Jiro

    1997-01-01

    The Physics Institute of Sao Paulo University, SP, Brazil is fabricating a 31 MeV cw racetrack microtron (RTM) designed for nuclear physics research. This is a two-stage microtron that includes a 1.93 MeV injector linac feeding a five-turn microtron booster. After 28 turns, the main microtron delivers a 31 MeV continuous electron beam. The objective of this work is the development and fabrication of an advanced, beta=l, cw accelerating structure for the main microtron. The accelerating structure will be a side-coupled structure (SCS). We have chosen this kind of cavity, because it presents good vacuum properties, allows operation at higher accelerating electric fields and has a shunt impedance better than 81 MQ/m, with a high coupling factor ( 3 - 5%). The engineering design is the Los Alamos one. There will be two tuning plungers placed at both ends of the accelerating structure. They automatically and quickly compensate for the variation in the resonance frequency caused by changes in the structure temperature. Our design represents an advanced accelerating structure with the optimum SCS properties coexisting with the plunger's good tuning properties. (author)

  1. Prospects for CW and LP operation of the European XFEL in hard X-ray regime

    International Nuclear Information System (INIS)

    Brinkmann, R.; Schneidmiller, E.A.; Sekutowicz, J.; Yurkov, M.V.

    2014-03-01

    The European XFEL will operate nominally at 17.5 GeV in SP (short pulse) mode with 0.65 ms long bunch train and 10 Hz repetition rate. A possible upgrade of the linac to CW (continuous wave) or LP (long pulse) modes with a corresponding reduction of electron beam energy is under discussion since many years. Recent successes in the dedicated R and D program allow to forecast a technical feasibility of such an upgrade in the foreseeable future. One of the challenges is to provide sub-Aangstrom FEL operation in CW and LP modes. In this paper we perform a preliminary analysis of a possible operation of the European XFEL in the hard X-ray regime in CW and LP modes with the energies of 7 GeV and 10 GeV, respectively. We consider lasing in the baseline XFEL undulator as well as in a new undulator with a reduced period. We show that, with reasonable requirements on electron beam quality, lasing on the fundamental will be possible in sub-Aangstrom regime. As an option for generation of brilliant photon beams at short wavelengths we also consider harmonic lasing that has recently attracted a significant attention.

  2. Prospects for CW and LP operation of the European XFEL in hard X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, R.; Schneidmiller, E.A.; Sekutowicz, J.; Yurkov, M.V.

    2014-03-15

    The European XFEL will operate nominally at 17.5 GeV in SP (short pulse) mode with 0.65 ms long bunch train and 10 Hz repetition rate. A possible upgrade of the linac to CW (continuous wave) or LP (long pulse) modes with a corresponding reduction of electron beam energy is under discussion since many years. Recent successes in the dedicated R and D program allow to forecast a technical feasibility of such an upgrade in the foreseeable future. One of the challenges is to provide sub-Aangstrom FEL operation in CW and LP modes. In this paper we perform a preliminary analysis of a possible operation of the European XFEL in the hard X-ray regime in CW and LP modes with the energies of 7 GeV and 10 GeV, respectively. We consider lasing in the baseline XFEL undulator as well as in a new undulator with a reduced period. We show that, with reasonable requirements on electron beam quality, lasing on the fundamental will be possible in sub-Aangstrom regime. As an option for generation of brilliant photon beams at short wavelengths we also consider harmonic lasing that has recently attracted a significant attention.

  3. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating

    Science.gov (United States)

    Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2018-03-01

    We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (current and temperature ranges.

  4. Design and RF test result of High Power Hybrid Combiner for Helicon Wave Current Drive in KSTAR Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Kim, H. J.; Wi, H. H.; Wang, S. J.; Kwak, J. G. [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    200 kW RF power will be injected to plasmas through the traveling wave antenna after combining four klystrons output powers using three hybrid combiners. Each klystron produces 60 kW output at the frequency of 500 MHz. RF power combiners commonly used to divide or combine output powers for various rf and microwave applications. It is divided into several types according to the design type such as Wilkinson combiner, radial and quadrature hybrid combiner. We designed high power hybrid combiners using 6-1/8 inch coaxial line. The power combiner has many advantages such as high isolation, low insertion loss and high power handling capability. In this paper design and rf test results of high power combiners will be described. High power combiners using three coaxial hybrid couplers will be utilized for effectively combining of 500 MHz, 200 kW output powers generated by four klystrons. We have designed, fabricated, and tested a 6-1/8 inch coaxial hybrid combiners at 500 MHz for efficiently off-axis Helicon wave current drive in KSTAR. Simulation and test results of high power coaxial hybrid combiners are good agreement.

  5. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    Science.gov (United States)

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  6. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    Science.gov (United States)

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  7. A high frequency, high power CARM proposal for the DEMO ECRH system

    International Nuclear Information System (INIS)

    Mirizzi, Francesco; Spassovsky, Ivan; Ceccuzzi, Silvio; Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero; Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca; Sabia, Elio; Tuccillo, Angelo Antonio; Zito, Pietro

    2015-01-01

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  8. A high frequency, high power CARM proposal for the DEMO ECRH system

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Francesco, E-mail: francesco.mirizzi@enea.it [Consorzio CREATE, Via Claudio 21, I-80125 Napoli (Italy); Spassovsky, Ivan [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Ceccuzzi, Silvio [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Sabia, Elio [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Tuccillo, Angelo Antonio; Zito, Pietro [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2015-10-15

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  9. The cause of high-intensity long-duration continuous AE activity (HILDCAAS): interplanetary Alfven wave trains

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Gonzalez, W.D.

    1987-01-01

    It is shown that high intensity (AE > 1,000 nT), long duration (T > 2 d) continuous auroral activity (HILDCAA) events are caused by outward (from the sun) propagating interplanetary Alfven wave trains. The Alfven waves are often (but not always) detected several days after major interplanetary events, such as shocks and solar wind density enhancements. Presumably magnetic reconnection between the southward components of the Alfven wave magnetic fields and magnetospheric fields is the mechanism for transfer of solar wind energy to the magnetosphere. If the stringent requirements for HILDCAA events are relaxed, there are many more AE events of this type. A brief inspection indicates that these are also related to interplanetary Alfvenic fluctuations. We therefore suggest that most auroral activity may be caused by reconnection associated with Alfven waves in the interplanetary medium. (author)

  10. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Arun [Univ. of Delhi, New Delhi (India)

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  11. Electromagnetic and thermal analysis of distributed cooled high power millimeter wave windows

    International Nuclear Information System (INIS)

    Nelson, S.D.; Reitter, T.; Caplan, M.; Moeller, C.

    1996-01-01

    The sectional high-frequency internally-cooled window, as proposed by General Atomics(1), has unique potential for allowing microwave sources to reach multi-megawatt CW levels with application to ECRH. Designs are being investigated using computational electromagnetic (EM), thermal, and mechanical codes at 110 GHz and 170 GHz to examine the design tradeoffs between RF performance and thermal mechanical safety margins. The EM analyses are for the window, under vacuum at one MW and includes variations in the shapes of the cooling fins, the surface treatment of the window elements themselves, the cooling fin tip treatment, the window pitch angle, and the waveguide effects. One advantage of the distributed cooled window is it close-quote s extensibility to higher power levels. Results in the modeling efforts are presented showing the EM field concentrations (which then will feed into the thermal analysis), the energy scattering/reflection, the transmitted launch angle variation as a function of physical geometry, and the spatial energy distribution and loss as a function of time and position. copyright 1996 American Institute of Physics

  12. Power-scalable, polarization-stable, dual-colour DFB fibre laser system for CW terahertz imaging

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Pedersen, Jens Engholm; Jepsen, Peter Uhd

    Imaging with electromagnetic radiation in the terahertz (THz) range has received a large amount of attention during recent years. THz imaging systems have diverse potential application areas such as security screening, medical diagnostics and non-destructive testing. We will discuss a power......-scalable, dual-colour, polarization-maintaining distributed feedback (DFB) fibre laser system with an inherent narrow linewidth from the DFB fibre laser oscillators. The laser system can be used as source in CW THz systems employing photomixing (optical heterodyning) for generation and detection...

  13. Dirty tricks: how the nuclear lobby stopped the development of wave power in Britain

    International Nuclear Information System (INIS)

    Jeffery, J.

    1990-01-01

    It is claimed that by misrepresentation of the economic analysis of wave power generation of electricity the nuclear lobby in Britain has prevented development work to continue on wave power, in favour of nuclear power generation. The United Kingdom Department of Energy and the Central Electricity Generating Board, in favour of nuclear power, have not allowed the cost estimation of electricity from wave power generators, especially Salter's Ducks (a wave power generator generated by Professor Salter at Ednburgh University) to be known. Instead the cost (estimated at 4-12p/kWh) has been deliberately exaggerated. This has resulted in wind power becoming the favoured alternative renewable energy source of the future. (UK)

  14. Optimization of CW-OSL parameters for improved dose detection threshold in Al2O3:C

    International Nuclear Information System (INIS)

    Rawat, N.S.; Dhabekar, B.; Kulkarni, M.S.; Muthe, K.P.; Mishra, D.R.; Soni, A.; Gupta, S.K.; Babu, D.A.R.

    2014-01-01

    Continuous wave optically stimulated luminescence (CW-OSL) is relatively a simple technique that offers good signal to noise ratio (SNR) and involves simple instrumentation. This study reports the influence and optimization of CW-OSL parameters on minimum detectable dose (MDD) using α-Al 2 O 3 :C phosphor. It is found that at a given stimulation intensity MDD in CW-OSL mode depends on signal integration time. At lower integration times MDD is inferior. It exhibits an improvement for intermediate values, shows a plateau region and deteriorates as integration time increases further. MDD is found to be ∼127 μGy at 4 mW/cm 2 stimulation intensity for integration time of 0.1 s, which improves to ∼10.5 μGy for 60 s. At stimulation intensity of 72 mW/cm 2 , MDD is 37 μGy for integration time of 60 s and improves significantly to 7 μGy for 1 s. - Highlights: • CW-OSL parameters are optimized to obtain best SNR and MDD in Al 2 O 3 :C. • MDD is found to depend on signal integration time and stimulation intensity. • With time, MDD initially improves, stabilizes then deteriorates. • At a given intensity, MDD is optimum for a certain range of integration time

  15. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    Science.gov (United States)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  16. Pulsed and cw laser oscillations in LiF:F-2 color center crystal under laser diode pumping.

    Science.gov (United States)

    Basiev, Tasoltan T; Vassiliev, Sergey V; Konjushkin, Vasily A; Gapontsev, Valentin P

    2006-07-15

    Continuous-wave laser oscillations in LiF:F-2 crystal optically pumped by a laser diode at 970 nm were demonstrated for what is believed to be the first time. The slope efficiency of 14% and conversion efficiency of 5.5% were achieved for 80 micros pump pulse duration and 5 Hz pulse repetition rate. An efficiency twice as low was measured at a 6.25 kHz pulse repetition rate (50% off-duty factor) and in cw mode of laser operation.

  17. Photonic crystal fibers for supercontinuum generation pumped by a gain-switched CW fiber laser

    DEFF Research Database (Denmark)

    Larsen, Casper; Noordegraaf, Danny; Hansen, Kim P.

    2012-01-01

    Supercontinuum generation in photonics crystal fibers (PCFs) pumped by CW lasers yields high spectral power density and average power. However, such systems require very high pump power and long nonlinear fibers. By on/off modulating the pump diodes of the fiber laser, the relaxation oscillations...... of the laser can be exploited to enhance the broadening process. The physics behind the supercontinuum generation is investigated by sweeping the fiber length, the zero dispersion wavelength, and the fiber nonlinearity. We show that by applying gain-switching a high average output power of up to 30 W can...

  18. Power from Ocean Waves.

    Science.gov (United States)

    Newman, J. N.

    1979-01-01

    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  19. Resonant High Power Combiners

    CERN Document Server

    Langlois, Michel; Peillex-Delphe, Guy

    2005-01-01

    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  20. High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode.

    Science.gov (United States)

    Ji, Encai; Liu, Qiang; Nie, Mingming; Cao, Xuezhe; Fu, Xing; Gong, Mali

    2016-03-15

    We first demonstrate the laser performance of a compact 2.06 μm Ho: YLF laser resonantly pumped by a broadband fiber-coupled diode. In continuous-wave (CW) operation, maximum output power of 1.63 W, corresponding to a slope efficiency of 89.2%, was obtained with a near diffraction-limited beam quality. In actively Q-switched operation, maximum pulse energy of 1.1 mJ was achieved at the repetition frequency of 100 Hz. The minimum pulse duration was 43 ns. The performance in both the CW and Q-switched regimes indicates that the current fiber-coupled diode in-band pumped Ho: YLF laser has great potential in certain conditions that require several watts of output power or several millijoules of short pulse energy.

  1. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... life of maintenance-free operation, no cooling requirement, and no risk of misalignment ... generated using oscillator only or master oscillator power amplifiers ..... [7] J W Kim, D Y Shen, J K Sahu and W A Clarkson, IEEE J. Sel.

  2. Power absorption of high-frequency electromagnetic waves in a partially ionized magnetized plasma

    International Nuclear Information System (INIS)

    Guo Bin; Wang Xiaogang

    2005-01-01

    Power absorption of high-frequency electromagnetic waves in a uniformly magnetized plasma layer covering a highly conducting surface is studied under atmosphere conditions. It is assumed that the system consists of not only electrons and positive ions but negative ions as well. By a general formula derived in our previous work [B. Guo and X. G. Wang, Plasma Sci. Tech. 7, 2645 (2005)], the total power absorption in the plasma layer with multiple reflections between an air-plasma interface and the conducting surface is computed. The results show that although the existence of negative ions greatly reduces the total power absorption, the magnetization of the plasma can, however, partially enhance it. Parameter dependence of the effects is calculated and discussed

  3. Laser-diode pumped 40-W Yb:YAG ceramic laser.

    Science.gov (United States)

    Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2009-09-28

    We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.

  4. CWDD accelerator at Argonne: Status and future opportunities

    International Nuclear Information System (INIS)

    McMichael, G.; Carwardine, J.; Den Hartog, P.; Sagalovsky, L.; Yule, T.; Clarkson, I.; Papsco, R.; Pile, G.

    1994-01-01

    The Continuous Wave Deuterium Demonstrator (CWDD) accelerator, a cryogenically-cooled (26K) linac, was designed to accelerate 80 mA cw of D to 7.5 MeV. CWDD was being built to demonstrate the launching of a beam with characteristics suitable for a space-based neutral particle beam (NPB). A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding ended in October 1993. Existing assets have been turned over to Argonne for continuation under other sponsors. These include a fully functional 200 kV cw D injector and high power (1 MW) cw rf amplifier, a cw RFQ that has been tuned, leak checked and aligned, and a partially completed ramped-gradient DTL. Project status and achievements are reviewed and proposals for future use of the equipment are discussed

  5. First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity

    Directory of Open Access Journals (Sweden)

    A. C. Dexter

    2011-03-01

    Full Text Available The applications of magnetrons to high power proton and cw electron linacs are discussed. An experiment is described where a 2.45 GHz magnetron has been used to drive a single cell superconducting cavity. With the magnetron injection locked, a modest phase control accuracy of 0.95° rms has been demonstrated. Factors limiting performance have been identified.

  6. First lasing of the KAERI millimeter-wave free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.C.; Jeong, Y.U.; Cho, S.O. [Korea Atomic Energy Research Institute, Taejon (Korea, Democratic People`s Republic of)] [and others

    1995-12-31

    The millimeter-wave FEL program at KAERI aims at the generation of high-power CW laser beam with high efficiency at the wavelength of 3{approximately}10 mm for the application in plasma heating and in power beaming. In the first oscillation experiment, the FEL has lased at the wavelength of 10 mm with the pulsewidth of 10{approximately}30 {mu}s. The peak power is about 1 kW The FEL is driven by a recirculating electrostatic accelerator having tandem geometry. The energy and the current of the electron beam are 400 keV and 2 A, respectively. The FEL resonator is located in the high-voltage terminal and is composed of a helical undulator, two mesh mirrors, and a cylindrical waveguide. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. At present, with no axial guiding magnetic field only 15 % of the injected beam pass through the undulator. Transport ratio of the electron beam through the undulator is very sensitive to the injection parameters such as the diameter and the divergence of the electron beam Simulations show that, with unproved injection condition, the FEL can generate more than 50 kW of average power in CW operation. Details of the experiments, including the spectrum measurement and the recirculation of electron beam, are presented.

  7. Application of continuous-wave terahertz computed tomography for the analysis of chicken bone structure

    Science.gov (United States)

    Li, Bin; Wang, Dayong; Rong, Lu; Zhai, Changchao; Wang, Yunxin; Zhao, Jie

    2018-02-01

    Terahertz (THz) radiation is able to penetrate many different types of nonpolar and nonmetallic materials without the damaging effects of x-rays. THz technology can be combined with computed tomography (CT) to form THz CT, which is an effective imaging method that is used to visualize the internal structure of a three-dimensional sample as cross-sectional images. Here, we reported an application of THz as the radiation source in CT imaging by replacing the x-rays. In this method, the sample cross section is scanned in all translation and rotation directions. Then, the projection data are reconstructed using a tomographic reconstruction algorithm. Two-dimensional (2-D) cross-sectional images of the chicken ulna were obtained through the continuous-wave (CW) THz CT system. Given by the difference of the THz absorption of different substances, the compact bone and spongy bone inside the chicken ulna are structurally distinguishable in the 2-D cross-sectional images. Using the filtered back projection algorithm, we reconstructed the projection data of the chicken ulna at different projection angle intervals and found that the artifacts and noise in the images are strikingly increased when the projection angle intervals become larger, reflected by the blurred boundary of the compact bone. The quality and fidelity of the 2-D cross-sectional images could be substantially improved by reducing the projection angle intervals. Our experimental data demonstrated a feasible application of the CW THz CT system in biological imaging.

  8. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    International Nuclear Information System (INIS)

    French, David M.; Shiffler, Don

    2016-01-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  9. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    Energy Technology Data Exchange (ETDEWEB)

    French, David M.; Shiffler, Don [Air Force Research Laboratory, Directed Energy Directorate, Albuquerque, New Mexico 871117 (United States)

    2016-05-15

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  10. High-power UV-LED degradation: Continuous and cycled working condition influence

    Science.gov (United States)

    Arques-Orobon, F. J.; Nuñez, N.; Vazquez, M.; Segura-Antunez, C.; González-Posadas, V.

    2015-09-01

    High-power (HP) UV-LEDs can replace UV lamps for real-time fluoro-sensing applications by allowing portable and autonomous systems. However, HP UV-LEDs are not a mature technology, and there are still open issues regarding their performance evolution over time. This paper presents a reliability study of 3 W UV-LEDs, with special focus on LED degradation for two working conditions: continuous and cycled (30 s ON and 30 s OFF). Accelerated life tests are developed to evaluate the influence of temperature and electrical working conditions in high-power LEDs degradation, being the predominant failure mechanism the degradation of the package. An analysis that includes dynamic thermal and optical HP UV-LED measurements has been performed. Static thermal and stress simulation analysis with the finite element method (FEM) identifies the causes of package degradation. Accelerated life test results prove that HP UV-LEDs working in cycled condition have a better performance than those working in continuous condition.

  11. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power.

    Science.gov (United States)

    Gaponenko, Maxim; Kuleshov, Nikolay; Südmeyer, Thomas

    2014-05-19

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM(00) mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  12. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power

    OpenAIRE

    Gaponenko, M. S.; Kuleshov, N. V.; Südmeyer, T.

    2014-01-01

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM00 mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  13. Wave Power Demonstration Project at Reedsport, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Downie, Bruce [Project Manager

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  14. Pulsed versus continuous wave low-level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome): a case report

    Science.gov (United States)

    Barolet, Daniel

    2014-11-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: calcinosis, Raynaud's phenomenon, esophageal dysfunction, sclerodactyly, and telangiectasias. The transforming growth factor beta has been identified as a major player in the pathogenic process, where low-level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940 nm using millisecond pulsing and continuous wave (CW) modes on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks using a sequential pulsing mode on one elbow and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Considerable functional and morphologic improvements were observed after LLLT, with the best results seen with the pulsing mode. No adverse effects were noted. Pulsed LLLT represents a treatment alternative for osteoarticular signs and symptoms in limited scleroderma (CREST syndrome).

  15. Experimental observations of the spatial structure of wave-like disturbances generated in midlatitude ionosphere by high power radio waves

    Science.gov (United States)

    Kunitsyn, V.; Andreeva, E.; Padokhin, A. M.; Nazarenko, M.; Frolov, V.; Komrakov, G.; Bolotin, I.

    2012-12-01

    We present the results of the experiments carried out in 2009-2012 on the Sura heating facility (Radio Physical Research Institute, N. Novgorod, Russia) on modification of the midlatitude ionosphere by powerful HF radiowaves. The experiments were conducted using O-mode radiowaves at frequencies lower than critical frequency of the ionospheric F2 layer both in daytime and nighttime ionosphere. Various schemes of the radiation of the heating wave were used including square wave modulation of the effective radiated power (ERP) at various frequencies and power stepping. Radio transmissions of the low- (Parus/Tsikada) and high-orbital (GPS/GLONASS) navigational satellites received at the mobile network of receiving sites were used for the remote sensing of the heated area of the ionosphere. The variations in the slant total electron content (TEC), which are proportional to the reduced phase of navigational signals, were studied for the satellite passes for which ionospheric penetration points crossed the disturbed area during HF heating. The variations in TEC caused by HF heating are identified in a number of examples. It is shown that the GNSS TEC spectra contain frequency components corresponding to the modulation periods of the ERP of the heating wave. The manifestations of the heating-induced variations in TEC are most prominent in the area of magnetic zenith of the pumping wave. Different behavior of TEC variations was observed during nighttime and daytime heating experiments. In daytime conditions the pump wave switched ON causes the increase of TEC while in the nighttime it causes a decrease in TEC. This can be explained by the different contribution of the processes responsible for the increase and decrease of TEC in daytime in nighttime conditions. In this work we also present the first time radiotomographic reconstructions of the spatial structure of the wave-like disturbances, generated in the ionosphere by high-power radio waves radiated by the Sura heater

  16. Efficient room temperature cw Yb:glass laser pumped by a 946nm Nd:YAG laser

    OpenAIRE

    Koch, R.; Clarkson, W.A.; Hanna, D.C.; Jiang, S.; Myers, M.J.; Rhonehouse, D.; Hamlin, S.J.; Griebner, U.; Schönnagel, H.

    1997-01-01

    By pumping with a cw diode-pumped Nd:YAG laser operating at 946nm laser operation of a new Yb-doped phosphate glass with 440mW cw output power and a slope efficiency of 48% with respect to the absorbed pump power was achieved at room temperature

  17. Up to 30 mW of broadly tunable CW green-to-orange light, based on sum-frequency mixing of Cr4+:forsterite and Nd:YVO4 lasers

    DEFF Research Database (Denmark)

    Mortensen, Jesper Liltorp; McWilliam, Allan; G. Leburn, Christopher

    2006-01-01

    Efficient generation of continuous-wave (CW) tunable light in the yellow region is reported. The method is based on sum-frequency mixing of a tunable Cr4+:forsterite laser with a Nd:YVO4 laser. A periodically poled lithium niobate crystal was placed intra-cavity in a Nd:YVO4 laser, and the Cr4...

  18. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    Science.gov (United States)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  19. A CW 4-rod RFQ for deuterons; Ein Hochleistungs-RFQ-Beschleuniger fuer Deuteronen

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P.

    2007-06-15

    A four-rod RFQ accelerator has been built which operates in CW mode with a power consumption of 250 kW. The assembly of a high power RFQ structure requires a precise mechanical alignment and field tuning of the electrode field. The field distribution must be very flat to enable a proper operation with few losses. Adjusting of the field distribution is critical in long structures. (orig.)

  20. TAPCHAN Wave Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    The Tapered Channel Wave Power Plant (TAPCHAN) is based on a new method for wave energy conversion. The principle of operation can be explained by dividing the system into the following four sub-systems: Firstly, a collector which is designed to concentrate the water energy and optimize collection efficiency for a range of frequencies and directions. Secondly, the energy converter, in which the energy of the collected waves is transformed into potential energy in an on-shore water reservoir. This is the unique part of the power plant. It consists of a gradually narrowing channel with wall heights equal to the filling level of the reservoir (typical heights 3-7 m). The waves enter the wide end of the channel and as they propagate down the narrowing channel, the wave height is amplified until the wavecrests spill over the walls. Thirdly, a reservoir which provides a stable water supply for the turbines. Finally, the hydroelectric power plant, where well established techniques are used for the generation of electric power. The water turbine driving the electric generator is of a low head type, such as a Kaplan or a tubular turbine. It must be designed for salt water operation and should have good regulation capabilities. Power plants based on the principle described, are now offered on a commercial basis.

  1. Studies of calorimeter absorbers for CW and pulsed CO2 lasers

    International Nuclear Information System (INIS)

    Gunn, S.R.

    1975-01-01

    Solid and liquid absorbers, used in calorimeters to measure the power and energy of cw and pulsed CO 2 lasers, have been studied from 9.24 to 10.76 μm (cw) and near 10.588 μm (pulsed). The principal materials used were magnesium oxide, lithium fluoride, polystyrene, polytetrafluorethylene, carbon tetrachloride and kerosene. (U.S.)

  2. High power pulsed sources based on fiber amplifiers

    Science.gov (United States)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  3. Broadband Enhancement of Optical Frequency Comb Using Cascaded Four-Wave Mixing in Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Tawfig Eltaif

    2017-01-01

    Full Text Available A cascaded intensity modulator (IM and phase modulator (PM are used to modulate a continuous-wave (CW laser and generate an optical frequency comb (OFC. Thus, the generated comb is utilized as an initial seed and combined with another CW-laser to generate four-wave mixing (FWM in photonic crystal fiber (PCF. Results show that an initial flat 30 GHz OFC of 29, 55 lines within power fluctuation of 0.8 dB and 2 dB, respectively, can be achieved by setting the ratio of the DC bias to amplitude of sinusoidal signal at 0.1 and setting the modulation indices of both IM and PM at 10. Moreover, the 1st order of FWM created through 14 m of PCF has over 68 and 94 lines with fluctuation of 0.8 dB and 2 dB, respectively. Hence, the generated wavelengths of 1st left and right order of FWM can be tuned in a range from ~1500 nm to ~1525 nm and ~1590 nm to ~1604 nm, respectively.

  4. Gain measurement in a CW medium-power diode pumped Nd:YAG laser amplifier by ASE analysis

    International Nuclear Information System (INIS)

    Razzaghi, D; Hajiesmaeilbaigi, F; Ruzbehani, M

    2014-01-01

    Using the relation between amplified spontaneous emission intensity and gain, a set of formulas is derived for gain evaluation by comparing fluorescence yield in two different lengths of the active medium. Experimental measurements are carried out and gain is calculated by solving the derived formula. For comparison, measurements are also carried out using the probe beam method, which shows good agreement between the two methods in a typical CW medium-power diode pumped Nd:YAG amplifier. (paper)

  5. Stable high brightness radio frequency driven micro-discharge lamps at 193 (ArF*) and 157 nm ( F2*)

    International Nuclear Information System (INIS)

    Salvermoser, M; Murnick, D E

    2004-01-01

    A stable discharge between two pin electrodes separated by several hundred micrometres in a high pressure rare gas (∼900 mbar) halogen (∼1 mbar) mixture is shown to yield continuous wave (CW) ultra violet (UV) and vacuum UV light sources. Lamps operating at 193 (ArF*) and 157 nm F 2 *) have been demonstrated. Total CW output power in the UV was measured to be 30 for ArF* and 20 mW for F 2 *. The brightness of the light sources is estimated to be of the order of several W cm -2 sr -1 . With direct current excitation, electrode lifetimes are limited to a few minutes due to fluorine salt deposits. However, using a radio frequency (RF) field to drive the discharge, the lifetime of the lamps increased to hundreds of hours. A one-dimensional model of the RF micro-discharge explaining the increase in electrode lifetime is presented. The technology described can be adapted to many other wavelengths and promises even higher powers in future

  6. Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager

    Science.gov (United States)

    Lin, Yuanqing; Lech, Gwen; Nioka, Shoko; Intes, Xavier; Chance, Britton

    2002-08-01

    This article focuses on optimizing the signal to noise ratio (SNR) of a three-wavelength light-emitting diode (LED) near-infrared continuous-wave (cw) imager and its application to in vivo muscle metabolism measurement. The shot-noise limited SNR is derived and calculated to be 2 x104 for the physiological blood concentrations of muscle. Aiming at shot-noise limited SNR performance and fast imaging, we utilize sample and hold circuits to reduce high-frequency noise. These circuits have also been designed to be parallel integrating, through which SNR of 2 x103 and 2 Hz imaging acquisition rate have been achieved when the probe is placed on a muscle model. The noise corresponds to 2 x10-4 optical density error, which suggests an in vitro resolution of 15. 4 nM blood volume and 46.8 nM deoxygenation changes. A 48 dB digital gain control circuit with 256 steps is employed to enlarge the dynamic range of the imager. We utilize cuff ischemia as a living model demonstration and its results are reported. The instrument is applied during exercise to measure the changes of blood volume and deoxygenation, which provides important information about muscle metabolism. We find that the primary source of noise encountered during exercise experiment is from the random motion of muscle. The results demonstrate that the LED cw imager is ideal for the noninvasive study of muscle metabolism.

  7. Bistable direction switching in an off-axis pumped continuous wave ruby laser

    Science.gov (United States)

    Afzal, R. Sohrab; Lawandy, N. M.

    1988-01-01

    A report is presented of the observation of hysteretic bistable direction switching in a single-mode CW ruby laser system. This effect is only observed when the pump beam which is focused into the ruby rod is misaligned with respect to the rod end faces. At low pump powers, the ruby lases in a mode nearly collinear with the pump axis. At a higher pump power the ruby switches to a mode that is collinear with the rod end faces and preserves the original polarization. The effect is large enough to switch the beam by an angle equal to twice the diffraction angle. The observations show that under steady-state pumping, a CW ruby laser can exhibit bistable operation in its output direction and power. A calculation using the heat equation with two concentric cylinders with one as a heat source (pump laser) and the outer wall of the other held at 77 K, gives an increase in core temperature of about 0.01 K. Therefore, the increase in temperature is not large enough to change the index of refraction to account for such large macroscopic effects.

  8. Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 202¯1¯ GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers.

    Science.gov (United States)

    Mehari, Shlomo; Cohen, Daniel A; Becerra, Daniel L; Nakamura, Shuji; DenBaars, Steven P

    2018-01-22

    The benefits of utilizing transparent conductive oxide on top of a thin p-GaN layer for continuous-wave (CW) operation of blue laser diodes (LDs) were investigated. A very low operating voltage of 5.35 V at 10 kA/cm 2 was obtained for LDs with 250 nm thick p-GaN compared to 7.3 V for LDs with conventional 650 nm thick p-GaN. An improved thermal performance was also observed for the thin p-GaN samples resulting in a 40% increase in peak light output power and a 32% decrease in surface temperature. Finally, a tradeoff was demonstrated between low operating voltage and increased optical modal loss in the indium tin oxide (ITO) with thinner p-GaN. LDs lasing at 445 nm with 150 nm thick p-GaN had an excess modal loss while LDs with an optimal 250 nm thick p-GaN resulted in optical output power of 1.1 W per facet without facet coatings and a wall-plug efficiency of 15%.

  9. Buoy-Rope-Drum Wave Power System

    Directory of Open Access Journals (Sweden)

    Linsen Zhu

    2013-01-01

    Full Text Available A buoy-rope-drum wave power system is a new type of floating oscillating buoy wave power device, which absorbs energy from waves by buoy-rope-drum device. Based on the linear deep water wave theory and pure resistive load, with cylinder buoy as an example, the research sets up the theoretical model of direct-drive buoy-rope-drum wave power efficiency and analyzes the influence of the mass and load of the system on its generating efficiency. It points out the two main categories of the efficient buoy-rope-drum wave power system: light thin type and resonance type, and optimal designs of their major parameters are carried out on the basis of the above theoretical model of generating efficiency.

  10. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy

    International Nuclear Information System (INIS)

    Fantini, S.; Franceschini, M.A.; Gratton, E.; Hueber, D.; Rosenfeld, W.; Maulik, D.; Stubblefield, P.G.; Stankovic, M.R.

    1999-01-01

    We have used continuous-wave (CW) and frequency-domain spectroscopy to investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and 3D adjustment of the optical probe. By measuring the absolute values of the brain absorption and reduced scattering coefficients at two wavelengths (758 and 830 nm), frequency-domain spectroscopy provided absolute readings (in contrast to the relative readings of CW spectroscopy) of cerebral haemoglobin concentration and saturation during experimentally induced perturbations in cerebral haemodynamics and oxygenation. Such perturbations included a modulation of the inspired oxygen concentration, transient brain asphyxia, carotid artery occlusion and terminal brain asphyxia. The baseline cerebral haemoglobin saturation and concentration, measured with frequency-domain spectroscopy, were about 60% and 42 μM respectively. The cerebral saturation values ranged from a minimum of 17% (during transient brain asphyxia) to a maximum of 80% (during recovery from transient brain asphyxia). To analyse the CW optical data, we have (a) derived a mathematical relationship between the cerebral optical properties and the differential pathlength factor and (b) introduced a method based on the spatial dependence of the detected intensity (dc slope method). The analysis of the cerebral optical signals associated with the arterial pulse and with respiration demonstrates that motion artefacts can significantly affect the intensity recorded from a single optode pair. Motion artefacts can be strongly reduced by combining data from multiple optodes to provide relative readings in the dc slope method. We also report significant biphasic changes (initial decrease and successive increase) in the reduced scattering coefficient measured

  11. Reliability and current-adaptability studies of a 352 MHz, 17 MeV, continuous-wave injector for an accelerator-driven system

    Directory of Open Access Journals (Sweden)

    Chuan Zhang

    2010-08-01

    Full Text Available EUROTRANS is a European research program for the transmutation of high level nuclear waste in an accelerator-driven system (ADS. As proposed, the driver linac needs to deliver a 2.5–4 mA, 600 MeV continuous-wave (CW proton beam and later a 20 mA, 800 MeV one to the spallation target in the prototype-scale and industrial-scale demonstration phases, respectively. This paper is focusing on the conceptual studies performed with respect to the 17 MeV injector. First, the special beam dynamics strategies and methods, which have been developed and applied to design a current-variable injector up to 30 mA for allowing an easy upgrade without additional R&D costs, will be introduced. Then the error study made for evaluating the tolerance limits of the designed injector will be presented as well.

  12. Status of the Novosibirsk high-power terahertz FEL

    International Nuclear Information System (INIS)

    Gavrilov, N.G.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Scheglov, M.A.; Serednyakov, S.S.; Shevchenko, O.A.; Skrinsky, A.N.; Tcheskidov, V.G.; Vinokurov, N.A.

    2007-01-01

    The first stage of Novosibirsk high-power free electron laser (FEL) was commissioned in 2003. It is based on the normal conducting CW energy recovery linac (ERL). Now the FEL provides electromagnetic radiation in the wavelength range 120-230 μm. The maximum average power is 400 W. The minimum measured linewidth is 0.3%, which is close to the Fourier-transform limit. Four user stations are in operation now. Manufacturing of the second stage of the FEL (based on the four-turn ERL) is in progress

  13. Design of a Millimeter-Wave Concentrator for Beam Reception in High-Power Wireless Power Transfer

    Science.gov (United States)

    Fukunari, Masafumi; Wongsuryrat, Nat; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Koizumi, Hiroyuki

    2017-02-01

    This study examined the performance of a developed taper-tube concentrator for 94-GHz millimeter-wave beam reception during wireless power transfer. The received energy is converted into kinetic energy of a working gas in the tube to drive an engine or thruster. The concentrator, which is assumed to have mirror reflection of millimeter waves in it, is designed to be shorter than conventional tapered waveguides of millimeter waves. A dimensionless design law of a concentrator is proposed based on geometric optics theory. Because the applicability of geometric optics theory is unclear, the ratio of its bore diameter to its wavelength was set as small compared to those in other possible applications. Then, the discrepancy between the designed and measured power reception was examined. Results show that the maximum discrepancy was as low as 7 % for the bore-to-wavelength ratio of 20 at the narrow end of the concentrator.

  14. State-of-the-art of high power gyro-devices and free electron masers. Update 2015

    Energy Technology Data Exchange (ETDEWEB)

    Thumm, Manfred [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Hochleistungsimpuls- und Mikrowellentechnik, Programm Fusion

    2016-07-01

    Gyrotron oscillators (gyromonotrons) are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 140 GHz, megawatt- class gyrotrons employing synthetic diamond output windows is 30 minutes (CPI and European KIT-CRPP-TED collaboration). The world record parameters of the European megawatt-class 140 GHz gyrotron are: 0.92 MW output power at 30 min. pulse duration, 97.5% Gaussian mode purity and 44% efficiency, employing a single-stage depressed collector (SDC) for energy recovery. A maximum output power of 1.5 MW in 4.0 s pulses at 45% efficiency was generated with the JAEA-TOSHIBA 110 GHz gyrotron. The Japan 170 GHz ITER gyrotron achieved 1 MW, 800 s at 55% efficiency and holds the energy world record of 2.88 GJ (0.8 MW, 60 min.) and the efficiency record of 57% for tubes with an output power of more than 0.5 MW. The Russian 170 GHz ITER gyrotron achieved 0.99 (1.2) MW with a pulse duration of 1000 (100) s and 53 (53) % efficiency. The prototype tube of the European 2 MW, 170 GHz coaxial-cavity gyrotron achieved in short pulses the record power of 2.1 MW at 46% efficiency and 96% Gaussian mode purity. Gyrotrons with pulsed magnet for various short-pulse applications deliver P{sub out}=210 kW with τ=20 μs at frequencies up to 670 GHz (η≅20%), P{sub out}=5.3 kW at 1 THz (η=6.1%), and P{sub out}=0.5 kW at 1.3 THz (η=0.6%). Gyrotron oscillators have also been successfully used in materials processing. Such technological applications require gyrotrons with the following parameters: f ≥ 24 GHz, P{sub out}=4-50 kW, CW, η≥30%. This paper gives an update of the experimental achievements related to the development of high power gyrotron oscillators for long-pulse or CW operation and pulsed gyrotrons for

  15. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments

    Science.gov (United States)

    Enomoto, Ayano; Hirata, Hiroshi

    2014-02-01

    This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.

  16. High-power, high-efficiency FELs

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  17. High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Erik Nicolai; Christensen, Jesper Bjerge

    2017-01-01

    We demonstrate a very high coincidence-to-accidental ratio of 673 using continuous-wave photon-pair generation in a silicon strip waveguide through spontaneous four-wave mixing. This result is obtained by employing on-chip photonic-crystal-based grating couplers for both low-loss fiber......-to-chip coupling and on-chip suppression of generated spontaneous Raman scattering noise. We measure a minimum heralded second-order correlation of g(H)((2)) (0) = 0.12, demonstrating that our source operates in the single- photon regime with low noise. (C) 2017 The Japan Society of Applied Physics...

  18. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    Science.gov (United States)

    Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.

    2017-02-01

    Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.

  19. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P.N., E-mail: ostroumov@frib.msu.edu [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States); Kazakov, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Morris, D.; Larter, T.; Plastun, A.S.; Popielarski, J.; Wei, J.; Xu, T. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  20. A 700 MHZ, 1 MW CW RF System for a FEL 100mA RF Photoinjector

    CERN Document Server

    Roybal, William; Reass, William; Rees, Daniel; Tallerico, Paul J; Torrez, Phillip A

    2005-01-01

    This paper describes a 700 MHz, 1 Megawatt CW, high efficiency klystron RF system utilized for a Free Electron Laser (FEL) high-brightness electron photoinjector (PI). The E2V klystron is mod-anode tube that operates with a beam voltage of 95 kV. This tube, operating with a 65% efficiency, requires ~96 watts of input power to produce in excess of 1 MW of output power. This output drives the 3rd cell of a 2½-cell, p-mode PI cavity through a pair of planar waveguide windows. Coupling is via a ridge-loaded tapered waveguide section and "dog-bone" iris. This paper will present the design of the RF, RF transport, coupling, and monitoring/protection systems that are required to support CW operations of the 100 mA cesiated, semi-porous SiC photoinjector.

  1. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  2. Laser sources for polarized electron beams in cw and pulsed accelerators

    CERN Document Server

    Hatziefremidis, A; Fraser, D; Avramopoulos, H

    1999-01-01

    We report the characterization of a high power, high repetition rate, mode-locked laser system to be used in continuous wave and pulsed electron accelerators for the generation of polarized electron beams. The system comprises of an external cavity diode laser and a harmonically mode-locked Ti:Sapphire oscillator and it can provide up to 3.4 W average power, with a corresponding pulse energy exceeding 1 nJ at 2856 MHz repetition rate. The system is tunable between 770-785 and 815-835 nm with two sets of diodes for the external cavity diode laser. (author)

  3. A Tunable CW Orange Laser Based on a Cascaded MgO:PPLN Single-Pass Sum-Frequency Generation Module

    OpenAIRE

    Dismas K. Choge; Huai-Xi Chen; Bao-Lu Tian; Yi-Bin Xu; Guang-Wei Li; Wan-Guo Liang

    2018-01-01

    We report an all-solid-state continuous wave (CW) tunable orange laser based on cascaded single-pass sum-frequency generation with fundamental wavelengths at 1545.7 and 975.2 nm using two quasi-phase-matched (QPM) MgO-doped periodically poled lithium niobate (MgO:PPLN) crystals. Up to 10 mW of orange laser is generated in the cascaded module corresponding to a 10.4%/W nonlinear conversion efficiency. The orange output showed a temperature tuning rate of ~0.05 nm/°C, and the beam quality (M2) ...

  4. Properties of a novel radiophotoluminescent readout system using a cw modulated UV laser diode and phase-sensitive technique

    International Nuclear Information System (INIS)

    Zhao, C.; Kurobori, T.; Miyamoto, Y.; Yamamoto, T.

    2011-01-01

    We have proposed and constructed a novel readout system for measuring a dose-dependent radiophotoluminescence (RPL) signal of a silver-activated phosphate glass dosimeter. The present reader consists of a modulated continuous-wave (cw) ultraviolet (UV) laser diode at 375 nm as an excitation and a phase-sensitive technique using a lock-in amplifier. Preliminary results using a home-made reader are compared with those of the conventional technique based on a combination of a pulsed UV N 2 laser excitation at 337 nm and a photon counting system.

  5. High-voltage power supplies for traveling wave tube WV-273A; Vysokovol`tnye istochniki pitaniya dlya LBV UV-273A

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, N I; Fateev, A A

    1996-12-31

    Paper presents a description of two modifications of high-volt power sources described for preamplifier on UV-273A type travelling wave tube (TWT). Power source where anode power circuit contains semiconducting high-volt switch on thyristors was designed to average pulse mode of TWT operation. Time of switching-in this power circuit constitutes 20 mcs. 2 refs.

  6. Impact of 120-W 2-μm continuous wave laser vapoenucleation of the prostate on sexual function.

    Science.gov (United States)

    Wang, Yubin; Shao, Jinkai; Lu, Yongning; Lü, Yongan; Li, Xiaodong

    2014-03-01

    The objective of this work is to evaluate the impact of 120-W 2-μm continuous wave (cw) laser vapoenucleation of the prostate in patients with benign prostatic hyperplasia (BPH) on sexual function. One hundred twenty-two consecutive patients with BPH were retrospectively collected in this study and were classified into two groups for surgical treatment with 2-μm cw laser vapoenucleation or transurethral resection of the prostate (TURP). International Index of Erectile Function (IIEF) and general assessment questions were completed before and 12 months after treatment to determine the impact on sexual function. A total of 33 patients (52.4%) in group 1 and 31 (52.5%) in group 2 reported various degrees of erectile dysfunction before surgery. Interestingly, an increase in IIEF-EF score by 2 points was reported by 16 (25.4%) and 14 (23.7%) patients, respectively, and mean EF score did show a marginal but not significant increase postoperatively in both group. Differences about orgasmic intercourse satisfaction, sexual desire domain, and overall satisfaction scores in each group were not significant between preoperative and postoperative, but there was a significant decrease in the orgasmic function domain score at 12 months postoperation in both groups (p function. No significant erectile function improvement was observed after surgery, but these two techniques significantly lowered the IIEF orgasmic function domain and this was mainly caused by retrograde ejaculation.

  7. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser...

  8. A High-Power Continuous-Wave Mid-Infrared Optical Parametric Oscillator Module

    Directory of Open Access Journals (Sweden)

    Yichen Liu

    2017-12-01

    Full Text Available We demonstrate here a compact optical parametric oscillator module for mid-infrared generation via nonlinear frequency conversion. This module weighs only 2.5 kg and fits within a small volume of 220 × 60 × 55 mm3. The module can be easily aligned to various pump laser sources, and here we use a 50 W ytterbium (Yb-doped fiber laser as an example. With a two-channel MgO-doped periodically poled lithium niobate crystal (MgO:PPLN, our module covers a tuning range of 2416.17–2932.25 nm and 3142.18–3452.15 nm. The highest output power exceeds 10.4 W at 2.7 μm, corresponding to a conversion efficiency of 24%. The measured power stability is 2.13% Root Meat Square (RMS for a 10 h duration under outdoor conditions.

  9. Coherent scattering of CO2 light from ion-acoustic waves

    International Nuclear Information System (INIS)

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  10. Development of a high power millimeter wave free-electron laser amplifier

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Zhang, Z.X.; Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Rodgers, J.; Freund, H.P.

    1992-01-01

    Progress on the development of a high-average-power millimeter wave free-electron laser amplifier is reported. Successful sheet electron beam propagation has been observed through a 54 cm long wiggler magnet. One hundred percent transport efficiency is reported with a 15 A, 0.1 cm x 2.0 cm, sheet electron beam through B w = 5.1 kG, λ w = 0.96 cm, planar electromagnet wiggler. Preliminary success with a novel, yet simple, method of side focusing using offset poles is reported. Status of development on a 94 GHz, 180 kW, pulsed amplifier is discussed with results from numerical simulation

  11. Modelling of high-power diode-pumped erbium 3-µm fibre lasers

    NARCIS (Netherlands)

    Jackson, S.D.; King, T.A.; Pollnau, Markus

    2000-01-01

    We present theoretical calculations that relate to the cw operation of a high-power Er3+,Pr3+:ZBLAN double-clad fibre laser. Using the measured energy-transfer, energy-transfer-upconversion and cross-relaxation parameters relevant to Er3+-doped and Er3+,Pr3+-codoped ZBLAN, we compare the theoretical

  12. Interband cascade lasers

    International Nuclear Information System (INIS)

    Vurgaftman, I; Meyer, J R; Canedy, C L; Kim, C S; Bewley, W W; Merritt, C D; Abell, J; Weih, R; Kamp, M; Kim, M; Höfling, S

    2015-01-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron–hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3–6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm −2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT. (topical review)

  13. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  14. Diode-pumped quasi-three-level CW Nd:CLNGG and Nd:CNGG lasers.

    Science.gov (United States)

    He, Kunna; Wei, Zhiyi; Li, Dehua; Zhang, Zhiguo; Zhang, Huaijin; Wang, Jiyang; Gao, Chunqing

    2009-10-12

    We have demonstrated what is to our knowledge the first quasi-three-level CW Nd:CLNGG laser with simple linear resonator. When the pump power was 18.2 W, a maximum output power of 1.63 W was obtained at the dual-wavelength of 935 nm and 928 nm. The optical-to-optical conversion efficiency was 9.0% and the slope efficiency was 11.5%. Lasing characteristics of a quasi-three-level CW Nd:CNGG laser were also investigated. A maximum output power of 1.87 W was obtained at the single-wavelength of 935 nm with 15.2 W pump power, corresponding to an optical-to-optical conversion efficiency of 12.3% and a slope efficiency of 15.6%.

  15. Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications

    Science.gov (United States)

    Garnache, A.; Laurain, A.; Myara, M.; Sellahi, M.; Cerutti, L.; Perez, J. P.; Michon, A.; Beaudoin, G.; Sagnes, I.; Cermak, P.; Romanini, D.

    2017-11-01

    We demonstrate high power (multiwatt) low noise single frequency operation of tunable compact verical-external- cavity surface-emitting-lasers exhibiting a low divergence high beam quality, of great interest for photonics applications. The quantum-well based lasers are operating in CW at RT at 1μm and 2.3μm exploiting GaAs and Sb technologies. For heat management purpose the VECSEL membranes were bonded on a SiC substrate. Both high power diode pumping (using GaAs commercial diode) at large incidence angle and electrical pumping are developed. The design and physical properties of the coherent wave are presented. We took advantage of thermal lens-based stability to develop a short (0.5-5mm) external cavity without any intracavity filter. We measured a low divergence circular TEM00 beam (M2 = 1.2) close to diffraction limit, with a linear light polarization (> 30 dB). The side mode suppression ratio is > 45 dB. The free running laser linewidth is 37 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting low intensity noise (laser power and coherence will be discussed. These design/properties can be extended to other wavelengths.

  16. High-average-power diode-pumped Yb: YAG lasers

    International Nuclear Information System (INIS)

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-01-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M(sup 2)= 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M(sup 2) value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M(sup 2) and lt; 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods

  17. Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images

    Science.gov (United States)

    Rong, Pingping; Yue, Jia; Russell, James M., III; Siskind, David E.; Randall, Cora E.

    2018-01-01

    We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs). Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of ˜ 20-60 km are the focus of the study. It shows that the albedo (wave) power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent = -3.2) and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.

  18. Caries like lesion initiation in sound enamel following CW CO2 laser irradiation: an in vitro study

    International Nuclear Information System (INIS)

    Nafie, A.; Issam, A.; Ali, M. S. R.

    2005-01-01

    This Study aimed to asses the caries - preventive potential of various CW CO 2 laser parameters, and to explore the effect of the laser power density, and the exposure time on the varies inhibition activity. Materials and Methods: Extracted human premolar teeth were irradiated with three different power densities (7.95, 15.9 and 31.8) W/Cm 2 for three different exposure times (0.2, 0.4 and 0.8) sec of 10.6 μm CW CO 2 laser. All teeth were subjected to caries like lesion formation by 3.5 pH lactic acid for 21 days. The teeth after that were sectioned into ground cross section and the lesion depths were measured using a graticule polarizing microscope. CW CO 2 laser preventive treatments inhibit caries like lesion progression up to 44%. This effect was improved with: (1) Increased power density for each of the three exposure times. (2) Decreased exposure time for each of the three power densities within the limits of the previously listed laser parameters. Conclusion: (1) short exposure time of CW CO 2 laser results in a significant inhibition of the enamel caries like lesion formation. (2) The inhibitory effect depends upon the power density and the exposure time of the laser beam. (3) The optimal CW CO 2 laser parameters used for caries inhibition purpose is achieved with approximately 30 W/Cm 2 power density and 0.2 sec exposure time. (author)

  19. Component resolved bleaching study in natural calcium fluoride using CW-OSL, LM-OSL and residual TL glow curves after bleaching

    International Nuclear Information System (INIS)

    Angeli, Vasiliki; Polymeris, George S.; Sfampa, Ioanna K.; Tsirliganis, Nestor C.; Kitis, George

    2017-01-01

    Natural calcium fluoride has been commonly used as thermoluminescence (TL) dosimeter due to its high luminescence intensity. The aim of this work includes attempting a correlation between specific TL glow curves after bleaching and components of linearly modulated optically stimulated luminescence (LM-OSL) as well as continuous wave OSL (CW-OSL). A component resolved analysis was applied to both integrated intensity of the RTL glow curves and all OSL decay curves, by using a Computerized Glow-Curve De-convolution (CGCD) procedure. All CW-OSL and LM-OSL components are correlated to the decay components of the integrated RTL signal, apart from two RTL components which cannot be directly correlated with either LM-OSL or CW-OSL component. The unique, stringent criterion for this correlation deals with the value of the decay constant λ of each bleaching component. There is only one, unique bleaching component present in all three luminescence entities which were the subject of the present study, indicating that each TL trap yields at least three different bleaching components; different TL traps can indicate bleaching components with similar values. According to the data of the present work each RTL bleaching component receives electrons from at least two peaks. The results of the present study strongly suggest that the traps that contribute to TL and OSL are the same. - Highlights: • A component resolved bleaching study was attempted to CaF_2:N in terms of CW-OSL, LM-OSL and RTL. • Bleaching decay constants originating from different TL peaks yield overlapping values. • Three to five individual components were used in order to describe the bleaching behavior in all luminescence entities. • There is only one, unique bleaching component present in all three luminescence entities.

  20. High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli

    International Nuclear Information System (INIS)

    Huang, C.-J.; Chen, C.-Y.

    2005-01-01

    Many chitinase genes have been cloned and sequenced from prokaryotes and eukaryotes but overexpression of chitinases in Escherichia coli cells was less reported. ChiCH and ChiCW of Bacillus cereus 28-9 belong to two distinct groups based on their amino acid sequences of catalytic domains, and in addition, domain structures of two enzymes are different. In this study, we established an ideal method for high-level expression of chitinases in E. coli as glutathione-S-transferase fusion proteins using pGEX-6P-1 vector. Both ChiCH and ChiCW were successfully highly expressed in E. coli cells as soluble GST-chitinase fusion proteins, and recombinant native ChiCH and ChiCW could be purified after cleavage with PreScission protease to remove GST tag. Purified chitinases were used for biochemical characterization of kinetics, hydrolysis products, and binding activities. The results indicate that ChiCW is an endo-chitinase and effectively hydrolyzes chitin and chito-multimers to chito-oligomers and the end product chitobiose, and ChiCH is an exo-chitinase and degrades chito-oligomers to produce chitobiose. Furthermore, due to higher affinity of ChiCW toward colloidal chitin than Avicel, C-terminal domain of ChiCW should be classified as a chitin-binding domain not a cellulose-binding domain although that was revealed as a cellulose-binding domain by conserved domain analysis. Therefore, the method of high-level expression of chitinases is helpful to studies and applications of chitinases

  1. Partnership for Wave Power - Roadmaps

    DEFF Research Database (Denmark)

    Nielsen, Kim; Krogh, Jan; Brodersen, Hans Jørgen

    This Wave Energy Technology Roadmap is developed by the Partnership for Wave Power including nine Danish wave energy developers. It builds on to the strategy [1] published by the Partnership in 2012, a document that describes the long term vision of the Danish Wave Energy sector: “By 2030...

  2. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    Science.gov (United States)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  3. Efficient High Power Ho,Tm:GdVO4 Laser

    International Nuclear Information System (INIS)

    Wang Yue-Zhu; Zhu Guo-Li; Ju You-Lun; Yao Bao-Quan

    2011-01-01

    We report a 22.3 W cw diode-pumped cryogenic Ho(0.5at.%),Tm(at.5%):GdVO 4 laser at a wavelength of 2.05 μm. It is pumped by two fiber-coupled laser diodes with a fiber core diameter of 0.4 mm, both of which provide 42 W pump power near 802 nm. A cw output power of 22.3 W was obtained at the pump power of 51.0 W, corresponding to an optical-to-optical conversion efficiency of 43.7% when the ratio of the pump beam to oscillating laser beam in the crystal was ∼1.33:1. The M 2 factor was found to be 2.0 under an output power of 16.5 W. (fundamental areas of phenomenology(including applications))

  4. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  5. A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis.

    Science.gov (United States)

    Cheng, I-Fang; Froude, Victoria E; Zhu, Yingxi; Chang, Hsueh-Chia; Chang, Hsien-Chang

    2009-11-21

    We present a high throughput (maximum flow rate approximately 10 microl/min or linear velocity approximately 3 mm/s) continuous bio-particle sorter based on 3D traveling-wave dielectrophoresis (twDEP) at an optimum AC frequency of 500 kHz. The high throughput sorting is achieved with a sustained twDEP particle force normal to the continuous through-flow, which is applied over the entire chip by a single 3D electrode array. The design allows continuous fractionation of micron-sized particles into different downstream sub-channels based on differences in their twDEP mobility on both sides of the cross-over. Conventional DEP is integrated upstream to focus the particles into a single levitated queue to allow twDEP sorting by mobility difference and to minimize sedimentation and field-induced lysis. The 3D electrode array design minimizes the offsetting effect of nDEP (negative DEP with particle force towards regions with weak fields) on twDEP such that both forces increase monotonically with voltage to further increase the throughput. Effective focusing and separation of red blood cells from debris-filled heterogeneous samples are demonstrated, as well as size-based separation of poly-dispersed liposome suspensions into two distinct bands at 2.3 to 4.6 microm and 1.5 to 2.7 microm, at the highest throughput recorded in hand-held chips of 6 microl/min.

  6. A high-power millimeter-wave sheet beam free-electron laser amplifier

    International Nuclear Information System (INIS)

    Cheng, S.; Destler, W.W.; Granatstein, V.L.; Antonsen, T.M.; Levush, B.; Rodgers, J.; Zhang, Z.X.

    1996-01-01

    The results of experiments with a short period (9.6 mm) wiggler sheet electron beam (1.0 mm x 2.0 cm) millimeter-wave free electron laser (FEL) amplifier are presented. This FEL amplifier utilized a strong wiggler field for sheet beam confinement in the narrow beam dimension and an offset-pole side-focusing technique for the wide dimension beam confinement. The beam analysis herein includes finite emittance and space-charge effects. High-current beam propagation was achieved as a result of extensive analytical studies and experimental optimization. A design optimization resulted in a low sensitivity to structure errors and beam velocity spread, as well as a low required beam energy. A maximum gain of 24 dB was achieved with a 1-kW injected signal power at 86 GHz, a 450-kV beam voltage, 17-A beam current, 3.8-kG wiggler magnetic field, and a 74-period wiggler length. The maximum gain with a one-watt injected millimeter-wave power was observed to be over 30 dB. The lower gain at higher injection power level indicates that the device has approached saturation. The device was studied over a broad range of experimental parameters. The experimental results have a good agreement with expectations from a one-dimensional simulation code. The successful operation of this device has proven the feasibility of the original concept and demonstrated the advantages of the sheet beam FEL amplifier. The results of the studies will provide guidelines for the future development of sheet beam FEL's and/or other kinds of sheet beam devices. These devices have fusion application

  7. High-power electronics

    CERN Document Server

    Kapitsa, Petr Leonidovich

    1966-01-01

    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  8. Absorbing coatings for high power millimeter-wave devices and matched loads

    Energy Technology Data Exchange (ETDEWEB)

    Bin, W., E-mail: wbin@ifp.cnr.it [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Bruschi, A.; Cirant, S. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Muzzini, V. [Istituto di Biologia Agro-ambientale e Forestale, Consiglio Nazionale delle Ricerche, Area di Ricerca di Roma 1, Monterotondo, Rome (Italy); Simonetto, A.; Spinicchia, N. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Angella, G. [Istituto per l’Energetica e le Interfasi, Consiglio Nazionale delle Ricerche, Milano (Italy); Dell’Era, F. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Gantenbein, G.; Leonhardt, W. [Institut für Hochleistungsimpuls-und Mikrowellentechnik, Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Nardone, A. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Samartsev, A.; Schmid, M. [Institut für Hochleistungsimpuls-und Mikrowellentechnik, Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany)

    2013-10-15

    Highlights: ► An overview of the activity at IFP-CNR concerning the absorbing coatings is presented. ► The application of the absorbing ceramics to the IFP-CNR matched loads is described. ► B{sub 4}C is presented as a promising material for power absorption in the EC frequency range. ► The most important high power validation tests performed on coatings are described. ► Some results from simulations of the absorption capability of a double layer coating are shown. -- Abstract: In the electron cyclotron frequency range the handling of high power is critical. In some cases an unpredictable amount of stray radiation can reach some components or accumulate in localized regions, with risk of damages caused by thermal overloads, and any uncontrolled reflection represents a danger for the sources. A possibility to mitigate the problem consists in covering some regions exposed to radiation with absorbers. Enhanced absorption of stray radiation lowers requirements on active protection systems in microwave diagnostics. The released heat can be extracted by dedicated cooling systems. The chromium oxide (Cr{sub 2}O{sub 3}), largely tested at IFP-CNR, has been routinely used as internal coating for matched loads. The performances of a variable thickness coating has been tested at high power at Karlsruhe Institute of Technology (KIT), with a 140 GHz gyrotron of the W7-X ECRH system and an averaged power density absorbed at the coating surface higher than 1 MW/m{sup 2} for 3 min. Also boron carbide (B{sub 4}C) has been tested at low power and patented as a millimeter-wave absorber. In the paper, the results of some tests performed on these coatings are given, together with some simulations of the absorption capability based on low power measurements on samples. Finally, some calculations are presented for a coating obtained combining together Cr{sub 2}O{sub 3} and B{sub 4}C.

  9. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams

  10. Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.

    Science.gov (United States)

    Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei

    2012-04-01

    We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.

  11. Power blue and green laser diodes and their applications

    Science.gov (United States)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  12. Resampling to accelerate cross-correlation searches for continuous gravitational waves from binary systems

    Science.gov (United States)

    Meadors, Grant David; Krishnan, Badri; Papa, Maria Alessandra; Whelan, John T.; Zhang, Yuanhao

    2018-02-01

    Continuous-wave (CW) gravitational waves (GWs) call for computationally-intensive methods. Low signal-to-noise ratio signals need templated searches with long coherent integration times and thus fine parameter-space resolution. Longer integration increases sensitivity. Low-mass x-ray binaries (LMXBs) such as Scorpius X-1 (Sco X-1) may emit accretion-driven CWs at strains reachable by current ground-based observatories. Binary orbital parameters induce phase modulation. This paper describes how resampling corrects binary and detector motion, yielding source-frame time series used for cross-correlation. Compared to the previous, detector-frame, templated cross-correlation method, used for Sco X-1 on data from the first Advanced LIGO observing run (O1), resampling is about 20 × faster in the costliest, most-sensitive frequency bands. Speed-up factors depend on integration time and search setup. The speed could be reinvested into longer integration with a forecast sensitivity gain, 20 to 125 Hz median, of approximately 51%, or from 20 to 250 Hz, 11%, given the same per-band cost and setup. This paper's timing model enables future setup optimization. Resampling scales well with longer integration, and at 10 × unoptimized cost could reach respectively 2.83 × and 2.75 × median sensitivities, limited by spin-wandering. Then an O1 search could yield a marginalized-polarization upper limit reaching torque-balance at 100 Hz. Frequencies from 40 to 140 Hz might be probed in equal observing time with 2 × improved detectors.

  13. LDRD final report on continuous wave intersubband terahertz sources.

    Energy Technology Data Exchange (ETDEWEB)

    Samora, Sally; Mangan, Michael A.; Foltynowicz, Robert J.; Young, Erik W.; Fuller, Charles T.; Stephenson, Larry L.; Reno, John Louis; Wanke, Michael Clement; Hudgens, James J.

    2005-02-01

    There is a general lack of compact electromagnetic radiation sources between 1 and 10 terahertz (THz). This a challenging spectral region lying between optical devices at high frequencies and electronic devices at low frequencies. While technologically very underdeveloped the THz region has the promise to be of significant technological importance, yet demonstrating its relevance has proven difficult due to the immaturity of the area. While the last decade has seen much experimental work in ultra-short pulsed terahertz sources, many applications will require continuous wave (cw) sources, which are just beginning to demonstrate adequate performance for application use. In this project, we proposed examination of two potential THz sources based on intersubband semiconductor transitions, which were as yet unproven. In particular we wished to explore quantum cascade lasers based sources and electronic based harmonic generators. Shortly after the beginning of the project, we shifted our emphasis to the quantum cascade lasers due to two events; the publication of the first THz quantum cascade laser by another group thereby proving feasibility, and the temporary shut down of the UC Santa Barbara free-electron lasers which were to be used as the pump source for the harmonic generation. The development efforts focused on two separate cascade laser thrusts. The ultimate goal of the first thrust was for a quantum cascade laser to simultaneously emit two mid-infrared frequencies differing by a few THz and to use these to pump a non-linear optical material to generate THz radiation via parametric interactions in a specifically engineered intersubband transition. While the final goal was not realized by the end of the project, many of the completed steps leading to the goal will be described in the report. The second thrust was to develop direct THz QC lasers operating at terahertz frequencies. This is simpler than a mixing approach, and has now been demonstrated by a few groups

  14. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.

    Science.gov (United States)

    Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing

    2014-10-01

    A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively.

  15. Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation.

    Science.gov (United States)

    Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba

    2016-01-20

    This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.

  16. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub...

  17. Latest development of high-power fiber lasers in SPI

    Science.gov (United States)

    Norman, Stephen; Zervas, Mikhail N.; Appleyard, Andrew; Durkin, Michael K.; Horley, Ray; Varnham, Malcolm P.; Nilsson, Johan; Jeong, Yoonchan

    2004-06-01

    High Power Fiber Lasers (HPFLs) and High Power Fiber Amplifiers (HPFAs) promise a number of benefits in terms of their high optical efficiency, degree of integration, beam quality, reliability, spatial compactness and thermal management. These benefits are driving the rapid adoption of HPFLs in an increasingly wide range of applications and power levels ranging from a few Watts, in for example analytical applications, to high-power >1kW materials processing (machining and welding) applications. This paper describes SPI"s innovative technologies, HPFL products and their performance capabilities. The paper highlights key aspects of the design basis and provides an overview of the applications space in both the industrial and aerospace domains. Single-fiber CW lasers delivering 1kW output power at 1080nm have been demonstrated and are being commercialized for aerospace and industrial applications with wall-plug efficiencies in the range 20 to 25%, and with beam parameter products in the range 0.5 to 100 mm.mrad (corresponding to M2 = 1.5 to 300) tailored to application requirements. At power levels in the 1 - 200 W range, SPI"s proprietary cladding-pumping technology, GTWaveTM, has been employed to produce completely fiber-integrated systems using single-emitter broad-stripe multimode pump diodes. This modular construction enables an agile and flexible approach to the configuration of a range of fiber laser / amplifier systems for operation in the 1080nm and 1550nm wavelength ranges. Reliability modeling is applied to determine Systems martins such that performance specifications are robustly met throughout the designed product lifetime. An extensive Qualification and Reliability-proving programme is underway to qualify the technology building blocks that are utilized for the fiber laser cavity, pump modules, pump-driver systems and thermo-mechanical management. In addition to the CW products, pulsed fiber lasers with pulse energies exceeding 1mJ with peak pulse

  18. Quasi-CW diode-pumped self-starting adaptive laser with self-Q-switched output.

    Science.gov (United States)

    Smith, G; Damzen, M J

    2007-05-14

    An investigation is made into a quasi-CW (QCW) diode-pumped holographic adaptive laser utilising an ultra high gain (approximately 10(4)) Nd:YVO(4) bounce amplifier. The laser produces pulses at 1064 nm with energy approximately 0.6 mJ, duration laser configuration, the output was amplified to obtain pulses of approximately 5.6 mJ energy, approximately 7 ns duration and approximately 1 MW peak power. The output spatial quality is also M(2)diode-pumped self-adaptive holographic lasers can provide a useful source of high peak power, short duration pulses with excellent spatial quality and narrow linewidth spectrum.

  19. Processing Interband Cascade Laser for High Temperature CW Operation

    National Research Council Canada - National Science Library

    Tober, Richard

    2004-01-01

    A narrow ridge-waveguide mid-IR interband cascade laser based on Type-II InAs/GaInSh heterostructures processed with a thick gold heat spreading layer operated CW at temperatures ranging from 80 K to 214.4 K...

  20. Diode pumped cascade Er:Y2O3 laser

    International Nuclear Information System (INIS)

    Sanamyan, T

    2015-01-01

    A cascade, diode-pumped, continuous wave (CW), dual-wavelength operation in a 0.5% Er 3+ :Y 2 O 3 cryogenic ceramic laser is demonstrated for the first time. The laser operates on cascaded Er ( 4 I 11/2   →   4 I 13/2   →   4 I 15/2 ) transitions and can deliver 24 and 13 W at 1.6 and 2.7 μm, respectively. The overall efficiency with respect to the absorbed ∼980 nm power was 62%. This is, to our best knowledge, the first demonstration of an efficient, high power, cascade, erbium laser achieved in bulk solid-state lasers. The analysis of the output power, the laser’s wavelengths and slope efficiency for each individual laser transition are presented for pure CW operation mode. Also presented are the temporal behaviors of each laser line as a function of pump pulse duration in the quasi-CW regime. (letter)

  1. Development of high power lasers and their applications for nuclear engineering in IHI

    International Nuclear Information System (INIS)

    Kanazawa, H.; Uehara, M.; Mori, M.; Taniu, Y.; Yamaguchi, S.; Harashina, H.

    1995-01-01

    High power laser technologies developed in IHI are summarized. A discharge-excited CO laser of 3 kW and an arc lamp pumped cw YAG laser of 3 kW with a flexible optical fiber delivery have been developed for material processing use. An ablation processing using a high intensity pulse laser has also been investigated. (author)

  2. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    Science.gov (United States)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang

    2016-04-01

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM01. The existence of TM01 mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.

  3. Transverse mode instability in high-power ytterbium doped fiber ampliers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann

    The last couple of decades have brought an impressive growth in the output power of rare-earth doped fiber lasers and amplifiers, reaching the kW average power regime in both CW and pulsed systems. As a result, even though fiber lasers have excellent heat dissipation properties, thermal effects due...... is to provide a theoretical understanding of the thermo-optical effects in high-power ytterbium doped fiber amplifiers, with a particular emphasis on understanding the aforementioned mode instability issue. Two main approaches to the problem have been used. The first is the development of a numerical model...

  4. Locations of radical species in black pepper seeds investigated by CW EPR and 9GHz EPR imaging.

    Science.gov (United States)

    Nakagawa, Kouichi; Epel, Boris

    2014-10-15

    In this study, noninvasive 9GHz electron paramagnetic resonance (EPR)-imaging and continuous wave (CW) EPR were used to investigate the locations of paramagnetic species in black pepper seeds without further irradiation. First, lithium phthalocyanine (LiPC) phantom was used to examine 9GHz EPR imaging capabilities. The 9GHz EPR-imager easily resolved the LiPC samples at a distance of ∼2mm. Then, commercially available black pepper seeds were measured. We observed signatures from three different radical species, which were assigned to stable organic radicals, Fe(3+), and Mn(2+) complexes. In addition, no EPR spectral change in the seed was observed after it was submerged in distilled H2O for 1h. The EPR and spectral-spatial EPR imaging results suggested that the three paramagnetic species were mostly located at the seed surface. Fewer radicals were found inside the seed. We demonstrated that the CW EPR and 9GHz EPR imaging were useful for the determination of the spatial distribution of paramagnetic species in various seeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Design and construction of tetrode tube modulator for high power electron accelerator

    Directory of Open Access Journals (Sweden)

    A M Poursaleh

    2015-09-01

    Full Text Available In this paper, a high power tetrode tube (TH781-200kW, cw modulator is designed and implemented. This modulator is used for a part of RF system of the first Iranian high power electron accelerator project with similar structure to Rhodotron accelerator. Regarding to the level of sensitive and importance of TH781 tube the modulator system designed with high accuracy. So beside of power supplies design the control circuits for protection of the tube have been considered. The results of test and operation of this system that have been constructed in Iran for fist time is very satisfactory

  6. Major enhancement of extra-low-frequency radiation by increasing the high-frequency heating wave power in electrojet modulation

    International Nuclear Information System (INIS)

    Kuo, S.P.; Lee, S.H.; Kossey, Paul

    2002-01-01

    Extra-low-frequency (ELF) wave generation by modulated polar electrojet currents is studied. The amplitude-modulated high-frequency (HF) heating wave excites a stimulated thermal instability to enhance the electrojet current modulation by the passive Ohmic heating process. Inelastic collisions of electrons with neutral particles (mainly due to vibrational excitation of N 2 ) damp nonlinearly this instability, which is normally saturated at low levels. However, the electron's inelastic collision loss rate drops rapidly to a low value in the energy regime from 3.5 to 6 eV. As the power of the modulated HF heating wave exceeds a threshold level, it is shown that significant electron heating enhanced by the stimulated thermal instability can indeed cause a steep drop in the electron inelastic collision loss rate. Consequently, this instability saturates at a much higher level, resulting to a near step increase (of about 10-13 dB, depending on the modulation wave form) in the spectral intensity of ELF radiation. The dependence of the threshold power of the HF heating wave on the modulation frequency is determined

  7. High order modes in Project-X linac

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A., E-mail: ais@fnal.gov; Lunin, A.; Yakovlev, V.; Awida, M.; Champion, M.; Ginsburg, C.; Gonin, I.; Grimm, C.; Khabiboulline, T.; Nicol, T.; Orlov, Yu.; Saini, A.; Sergatskov, D.; Solyak, N.; Vostrikov, A.

    2014-01-11

    Project-X, a multi-MW proton source, is now under development at Fermilab. In this paper we present study of high order modes (HOM) excited in continues-wave (CW) superconducting linac of Project-X. We investigate effects of cryogenic losses caused by HOMs and influence of HOMs on beam dynamics. We find that these effects are small. We conclude that HOM couplers/dampers are not needed in the Project-X SC RF cavities.

  8. Cyan laser diode grown by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Turski, H.; Muziol, G.; Wolny, P.; Cywiński, G.; Grzanka, S.; Sawicka, M.; Perlin, P.; Skierbiszewski, C.

    2014-01-01

    We demonstrate AlGaN-cladding-free laser diodes (LDs), operating in continuous wave (CW) mode at 482 nm grown by plasma-assisted molecular beam epitaxy (PAMBE). The maximum CW output power was 230 mW. LDs were grown on c-plane GaN substrates obtained by hydride vapor phase epitaxy. The PAMBE process was carried out in metal-rich conditions, supplying high nitrogen flux (Φ N ) during quantum wells (QWs) growth. We found that high Φ N improves quality of high In content InGaN QWs. The role of nitrogen in the growth of InGaN on (0001) GaN surface as well as the influence of LDs design on threshold current density are discussed

  9. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    Science.gov (United States)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  10. Summary of the 3rd workshop on high power RF-systems for accelerators

    International Nuclear Information System (INIS)

    Sigg, P.K.

    2005-01-01

    The aim of this workshop was to bring together experts from the field of CW and high average power RF systems. The focus was on operational and reliability issues of high-power amplifiers using klystrons and tubes, large power supplies; as well as cavity design and low-level RF and feedback control systems. All these devices are used in synchrotron radiation facilities, high power linacs and collider rings, and cyclotrons. Furthermore, new technologies and their applications were introduced, amongst other: high power solid state amplifiers, IOT amplifiers, and high voltage power supplies employing solid state controllers/crowbars. Numerical methods for complete rf-field modeling of complex RF structures like cyclotrons were presented, as well as integrated RF-cavity designs (electro-magnetic fields and mechanical structure), using numerical methods. (author)

  11. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission.

    Science.gov (United States)

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-14

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li + F - and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  12. Generation conditions of CW Diode Laser Sustained Plasma

    Science.gov (United States)

    Nishimoto, Koji; Matsui, Makoto; Ono, Takahiro

    2016-09-01

    Laser sustained plasma was generated using 1 kW class continuous wave diode laser. The laser beam was focused on the seed plasma generated by arc discharge in 1 MPa xenon lamp. The diode laser has advantages of high energy conversion efficiency of 80%, ease of maintenance, compact size and availability of conventional quartz based optics. Therefore, it has a prospect of further development compared with conventional CO2 laser. In this study, variation of the plasma shape caused by laser power is observed and also temperature distribution in the direction of plasma radius is measured by optical emission spectroscopy.

  13. A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal

    International Nuclear Information System (INIS)

    Sun, G C; Li, Y D; Zhao, M; Chen, X Y; Wang, J B; Chen, G B

    2013-01-01

    A diode-end-pumped Yb:YAG dual-wavelength continuous-wave (cw) laser that generates simultaneous laser action at wavelengths of 1024 and 1030 nm is demonstrated for the first time. A total output power of 897 mW for the dual-wavelength was achieved at an incident pump power of 17.8 W. Furthermore, intracavity sum-frequency mixing at 1024 and 1030 nm was then realized in an LBO crystal to reach the green range. We obtained a total cw output power of 85 mW at 513.5 nm. (paper)

  14. High-power Nd:YAG lasers using stable-unstable resonators

    CERN Document Server

    Mudge, D; Ottaway, D J; Veitch, P J; Munch, J P; Hamilton, M W

    2002-01-01

    The development of a power-scalable diode-laser-pumped continuous-wave Nd:YAG laser for advanced long-baseline interferometric detectors of gravitational waves is described. The laser employs a chain of injection-locked slave lasers to yield an efficient, frequency-stable, diffraction-limited laser beam.

  15. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  16. The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

    International Nuclear Information System (INIS)

    Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.

    2008-01-01

    A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.

  17. A SUPER-CONDUCTING LINAC DRIVER FOR THE HFBR.

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.; Raparia, D.; Ruggiero, A.G.

    2000-08-21

    This paper reports on the feasibility study of a proton Super-Conducting Linac (SCL) as a driver for the High-Flux Breeder Reactor (HFBR) at Brookhaven National Laboratory (BNL). The Linac operates in Continuous Wave (CW) mode to produce an average 10 MW of beam power. The Linac beam energy is 1.0 GeV. The average proton beam intensity in exit is 10 mA.

  18. The optimized advanced demonstrator for the SC CW heavy ion linac at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Malte; Basten, Markus; Busch, Marco; Dziuba, Florian; Podlech, Holger; Ratzinger, Ulrich; Tiede, Rudolf [Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt am Main (Germany); Gettmann, Viktor; Heilmann, Manuel [GSI Helmholtzzentrum, Darmstadt (Germany); Barth, Winfried; Mickat, Sascha [GSI Helmholtzzentrum, Darmstadt (Germany); HIM, Helmholtzinstitut, Mainz (Germany); Miski-Oglu, Maksym [HIM, Helmholtzinstitut, Mainz (Germany); Aulenbacher, Kurt [KPH, Johannes Gutenberg Universitaet, Mainz (Germany)

    2016-07-01

    For future experiments with heavy ions at the coulomb barrier within the SHE research project a multi-stage R and D program of GSI, HIM and IAP is currently under progress. It aims at developing a superconducting (sc) continuous wave (cw) LINAC with multiple CH-cavities as key components. As intermediate step towards the whole LINAC, the Optimized Advanced Demonstrator is proposed. Consisting of short CH-cavities and cryostats, it could provide several advantages regarding velocity acceptance, higher tolerance with respect to frequency and field deviation, easier mounting, handling and maintenance as well as a more robust longitudinal beam dynamic. The beam dynamics concept is based on EQUUS (Equidistant Multigap Structure) constant-beta cavities. The corresponding simulations for the proposed next extension stage - the Optimized Advanced Demonstrator - will be presented.

  19. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    Science.gov (United States)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  20. Efficient laser emission from cladding waveguide inscribed in Nd:GdVO(4) crystal by direct femtosecond laser writing.

    Science.gov (United States)

    Liu, Hongliang; Tan, Yang; Vázquez de Aldana, Javier R; Chen, Feng

    2014-08-01

    We report on the fabrication of depressed cladding waveguides in Nd:GdVO(4) laser crystal by using femtosecond laser inscription. The cross section of the structure is a circular shape with a diameter of 150 μm. Under the optical pump at 808 nm, the continuous wave (cw) as well as pulsed (Q-switched by graphene saturable absorber) waveguide lasing at 1064 nm has been realized, supporting guidance of both TE and TM polarizations. The maximum output power of 0.57 W was obtained in the cw regime, while the maximum pulse energy of the pulsed laser emissions was up to 19 nJ (corresponding to a maximum average output power of 0.33 W, at a resonant frequency of 18 MHz). The slope efficiencies achieved for the cw and pulsed Nd:GdVO(4) waveguide lasers were as high as 68% and 52%, respectively.

  1. Power performance measurements on Wave Star in Nissum Bredning. Final report; Wave energy converter; Effektmaalinger paa Wave Star i Nissum Bredning. Afsluttende rapport

    Energy Technology Data Exchange (ETDEWEB)

    Frigaard, P.; Lykke Andersen, T.

    2009-04-15

    The Wave Star test machine in Nissum Bredning was put in continuous operation on 24 July 2006. Over the past 2 1/2 years the produced power was measured continuously and with only minor interruptions. The measurements cover operation for all seasons in a very changeable climate. There is thus gaining operational experience under different wave conditions. In the period the machine has been running with a simple form of control and Power Take Off system (PTO), which form the background for effect measurements with the existing control strategy. Calculations have shown that the use of more advanced forms of control can increase the efficiency of Wave Star significantly. New control systems are therefore still under development with the primary objective to increase performance from the wave energy plant. To test and develop the methods, a new mini-hydraulic station with associated second generation PTO was developed and constructed for testing in Nissum Bredning. The mini-hydraulic station is coupled to a single float, while the other machine's 39 floats are still connected to the existing PTO system. As the existing PTO system can be applied to the 39 floats simultaneously with the new PTO used on 1 float, effect can be measured on the two systems simultaneously. The first tentative experiments with the new second generation PTO seem very promising. During the first measurements made in March 2009 the new system achieved an average yield of 3.1 times the average output from a float on the existing machine. In the coming period more experiments will be performed with the mini-hydraulic station to test the new PTO in various sea conditions. Since the mini-hydraulic station can simulate various forms of control, they also will be tested under real wave conditions in Nissum Bredning. The effect optimization should continue to be subject to a greater targeted effort, as improvements in this area can increase energy production and thus reduce the kWh cost of energy

  2. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    Science.gov (United States)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  3. Holographic wavefront characterization of a frequency-tripled high-peak-power neodymium:glass laser

    International Nuclear Information System (INIS)

    Kessler, T.J.

    1984-01-01

    Near-field amplitude and phase distributions from a high-peak-power, frequency converted Nd:glass laser (lambda = 351 nm) have been holographically recorded on silver-halide emulsions. Conventionally, the absence of a suitable reference beam forces one to use some type of shearing interferometry to obtain phasefront information, while the near-field and far-field distributions are recorded as intensity profiles. In this study, a spatially filtered, locally generated reference beam was created to holographically store the complex amplitude distribution of the pulsed laser beam, while reconstruction of the original wavefront was achieved with a continuous-wave laser. Reconstructed near-field and quasi-far-field intensity distributions closely resembled those obtained from conventional techniques, and accurate phasefront reconstruction was achieved. Furthermore, several two-beam interferometric techniques, not practicable with a high-peak-power laser, have been successfully implemented on a continuous-wave reconstruction of the pulsed laser beam. 46 refs., 40 figs., 1 tab

  4. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Zhen; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-04-15

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM{sub 01}. The existence of TM{sub 01} mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.

  5. O Electromagnetic Power Waves and Power Density Components.

    Science.gov (United States)

    Petzold, Donald Wayne

    1980-12-01

    On January 10, 1884 Lord Rayleigh presented a paper entitled "On the Transfer of Energy in the Electromagnetic Field" to the Royal Society of London. This paper had been authored by the late Fellow of Trinity College, Cambridge, Professor J. H. Poynting and in it he claimed that there was a general law for the transfer of electromagnetic energy. He argued that associated with each point in space is a quantity, that has since been called the Poynting vector, that is a measure of the rate of energy flow per unit area. His analysis was concerned with the integration of this power density vector at all points over an enclosing surface of a specific volume. The interpretation of this Poynting vector as a true measure of the local power density was viewed with great skepticism unless the vector was integrated over a closed surface, as the development of the concept required. However, within the last decade or so Shadowitz indicates that a number of prominent authors have argued that the criticism of the interpretation of Poynting's vector as a local power density vector is unjustified. The present paper is not concerned with these arguments but instead is concerned with a decomposition of Poynting's power density vector into two and only two components: one vector which has the same direction as Poynting's vector and which is called the forward power density vector, and another vector, directed opposite to the Poynting vector and called the reverse power density vector. These new local forward and reverse power density vectors will be shown to be dependent upon forward and reverse power wave vectors and these vectors in turn will be related to newly defined forward and reverse components of the electric and magnetic fields. The sum of these forward and reverse power density vectors, which is simply the original Poynting vector, is associated with the total electromagnetic energy traveling past the local point. Another vector which is the difference between the forward

  6. Super high-power AlGaInN-based laser diodes with a single broad-area stripe emitter fabricated on a GaN substrate

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Shu; Ohta, Makoto; Yabuki, Yoshifumi; Hoshina, Yukio; Hashizu, Toshihiro; Ikeda, Masao [Development Center, Sony Shiroishi Semiconductor, Inc., 3-53-2 Shiratori, Shiroishi, Miyagi, 989-0734 (Japan); Naganuma, Kaori; Tamamura, Koshi [Core Technology Development Group, Micro Systems Network Company, Sony Corporation, 4-14-1 Asahi-cho, Atsugi-shi Kanagawa, 243-0041 (Japan)

    2003-11-01

    AlGaInN-based blue-violet laser diodes with a single broad-area stripe emitter were successfully fabricated on GaN substrates. Three stripe widths were examined; 10, 50, and 100 {mu}m, and the maximum light output power of 0.94 W under cw operation at 20 C was achieved for the sample with a stripe width of 10 {mu}m. A super high-power laser diode array was fabricated using 11 of these high-performance laser chips, with a resultant output power of 6.1 W under cw operation at 20 C. This result represents the highest reported output power for blue-violet laser diodes. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Gingin High Optical Power Test Facility

    International Nuclear Information System (INIS)

    Zhao, C; Blair, D G; Barrigo, P

    2006-01-01

    The Australian Consortium for Gravitational Wave Astronomy (ACIGA) in collaboration with LIGO is developing a high optical power research facility at the AIGO site, Gingin, Western Australia. Research at the facility will provide solutions to the problems that advanced gravitational wave detectors will encounter with extremely high optical power. The problems include thermal lensing and parametric instabilities. This article will present the status of the facility and the plan for the future experiments

  8. Development of a high power HCN waveguide laser for plasma diagnostic

    International Nuclear Information System (INIS)

    Deng Zhongchao; Zhou Yan; Tang Yiwu; Yi Jiang; Gao Bingyi; Tian Chongli

    2007-06-01

    Both design and development of a high power cw HCN waveguide laser is described for multichannel FIR laser interferometer on the HL-2A divertor tokamak. The geometry parameters of stracture of the HCN laser are calculated according to scaling laws for cw 337 μm HCN waveguide laser offered by P. Belland et al. The designed value of output power of the laser that is more than 400 mW with discharge length of 5.6 m and 6.3 cm inner diameter of tube have been chosen in case of external loss of the cavity of 2%. At the same time, in order to get a laser system of stable output both of configuration and operating condition is discussed. In developed laser a hot LaB 6 cathode is employed to en- sure a stable discharge, the cavity mirrors are spaced using four invar rod of φ25 mm in diameter and an structure of adjusting machine for axially movable flat mirror in cavity has been also designed, and that it can be taken down many times without badly destroying alignment of the cavity etc.. A suit of pipes sys- tem of cw HCN laser is schemed out so that some experiments of operating parameter optimization can be done. The results of primary test of operating waveguide HCN laser are briefly showed. (authors)

  9. Advanced Output Coupling for High Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-11-28

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  10. Photodynamic Therapy for Cancer Cells Using a Flash Wave Light Xenon Lamp

    Science.gov (United States)

    Kimura, Makoto; Kashikura, Kasumi; Yokoi, Satomi; Koiwa, Yumiko; Tokuoka, Yoshikazu; Kawashima, Norimichi

    We determined photodynamic therapy (PDT) efficacy using a flash wave (FW) and a continuous wave (CW) light, of which the fluence rate was 70 W/cm2, for murine thymic lymphoma cells (EL-4) cultivated in vitro. The irradiation frequency and the pulse width of the FW light were in the range of 1-32 Hz and less than one millisecond, respectively. 5-Aminolevulinic acid-induced protoporphyrin IX (ALA-PpIX) was used as a photosensitizer. When EL-4 with ALA administration was irradiated by the light for 4 h (irradiation fluence: 1.0J/cm2), the survival rate of EL-4 by the FW light was lower than that by the CW light, except for the FW light with irradiation frequency of 32 Hz, and decreased gradually with decreasing irradiation frequency. Moreover, the FW light, especially at lower irradiation frequency, was superior to the CW light for the generation of singlet oxygen in an aqueous PpIX solution. Therefore, thehigher PDT efficacy for EL-4 of the FW light would be caused by the greater generation of singlet oxygen in the cells.

  11. Wave power potential in Malaysian territorial waters

    Science.gov (United States)

    Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul

    2016-06-01

    Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.

  12. Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell

    International Nuclear Information System (INIS)

    Bae, In-Ho; Moon, Han Seb

    2011-01-01

    We present the continuous control of the light group velocity from subluminal to superluminal propagation with an on-resonant standing-wave coupling field in the 5S 1/2 -5P 1/2 transition of the Λ-type system of 87 Rb atoms. When a coupling field was changed from a traveling-wave to a standing-wave field by adjusting the power of a counterpropagating coupling field, the probe pulse propagation continuously transformed from subluminal propagation, due to electromagnetically induced transparency with the traveling-wave coupling field, to superluminal propagation, due to narrow enhanced absorption with the standing-wave coupling field. The group velocity of the probe pulse was measured to be approximately 0.004c to -0.002c as a function of the disparity between the powers of the copropagating and the counterpropagating coupling fields.

  13. Progress of high power and long pulse ECRH system in EAST

    International Nuclear Information System (INIS)

    Wang, Xiaojie; Liu, Fukun; Shan, Jiafang; Xu, Handong; DajunWu; Li, Bo; Wei, Wei; Zhang, Jian; Huang, Yiyun; Tang, Yunying; Xu, Weiye; Hu, Huaichuan; Wang, Jian; Xu, Li; Zhang, Liyuan; Feng, Jianqiang

    2015-01-01

    Highlights: • The design and the status of the 140 GHz/4 MW/1000 s ECRH system on EAST tokamak is described in detail. • Two of the four gyrotrons are tested in factory. • The transmission line and the equatorial launcher for the first 2 MW system are ready for installation. • Series tests have been carried out for the most critical elements for the real-time launcher. • The auxiliary system includes the water cooling system, the HVPS system, the vacuum system have been installed and tested. - Abstract: In accordance with the long pulse objectives of the Experimental Advanced Superconducting Tokamak (EAST), an electron cyclotron resonance heating (ECRH) system with the feature of 4 MW power for a pulse length up to 1000 s at 140 GHz, using second harmonic of the extraordinary mode (X2) is presently under construction at the institute of plasma physics, Chinese academy of sciences (ASIPP). The missions of the system are to provide central heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. The continuous wave (CW) power is transmitted from the gyrotrons to EAST via low-loss evacuated waveguide transmission lines. Considering the diverse applications of the EC system, the front steering launcher is designed to inject four individually steered beams across nearly the entire plasma cross section. The beam's launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization will be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2 MW system will be commenced in the end of 2014.

  14. Feasibility study of the EU home team on a 170 GHz 1 MW CW gyrotron for ECH on ITER

    International Nuclear Information System (INIS)

    Iatrou, C.T.; Kern, S.; Thumm, M.; Moebius, A.; Nickel, H.U.; Horajitra, P.; Wien, A.; Tran, T.M.; Bon Mardion, G.; Pain, M.; Tonon, G.

    1995-03-01

    The gyrotron system for ECH and burn control on ITER requires at least 50 MW of RF power at frequencies near 170 GHz operating in CW. To meet these requirements, high efficiency gyrotron tubes with ≥1 MW power output capability are necessary, as well as simple coupling to either a quasi-optical or waveguide transmission line. The paper reports the feasibility study on the design of an ITER-relevant gyrotron oscillator at 170 GHz, 1 MW CW employing a diode electron gun, an advanced internal quasi-optical converter, a cryogenically cooled single disk sapphire window, and a depressed potential collector. The operating mode selection and the cavity design is a compromise between many design constraints. (author) 18 figs., 6 tabs., 21 refs

  15. Toward improved software security training using a cyber warfare opposing force (CW OPFOR): the knowledge base design

    Science.gov (United States)

    Stytz, Martin R.; Banks, Sheila B.

    2005-03-01

    "Train the way you will fight" has been a guiding principle for military training and has served the warfighter well as evidenced by numerous successful operations over the last decade. This need for realistic training for all combatants has been recognized and proven by the warfighter and continues to guide military training. However, to date, this key training principle has not been applied fully in the arena of cyberwarfare due to the lack of realistic, cost effective, reasonable, and formidable cyberwarfare opponents. Recent technological advances, improvements in the capability of computer-generated forces (CGFs) to emulate human behavior, and current results in research in information assurance and software protection, coupled with increasing dependence upon information superiority, indicate that the cyberbattlespace will be a key aspect of future conflict and that it is time to address the cyberwarfare training shortfall. To address the need for a cyberwarfare training and defensive testing capability, we propose research and development to yield a prototype computerized, semi-autonomous (SAF) red team capability. We term this capability the Cyber Warfare Opposing Force (CW OPFOR). There are several technologies that are now mature enough to enable, for the first time, the development of this powerful, effective, high fidelity CW OPFOR. These include improved knowledge about cyberwarfare attack and defense, improved techniques for assembling CGFs, improved techniques for capturing and expressing knowledge, software technologies that permit effective rapid prototyping to be effectively used on large projects, and the capability for effective hybrid reasoning systems. Our development approach for the CW OPFOR lays out several phases in order to address these requirements in an orderly manner and to enable us to test the capabilities of the CW OPFOR and exploit them as they are developed. We have completed the first phase of the research project, which

  16. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    Science.gov (United States)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  17. Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal

    Science.gov (United States)

    Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi

    2018-04-01

    Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.

  18. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    International Nuclear Information System (INIS)

    Reece, Charles E.

    2016-01-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  19. High-speed high-efficiency 500-W cw CO2 laser hermetization of metal frames of microelectronics devices

    Science.gov (United States)

    Levin, Andrey V.

    1996-04-01

    High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.

  20. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice.

    Directory of Open Access Journals (Sweden)

    Takahiro Ando

    Full Text Available Transcranial low-level laser therapy (LLLT using near-infrared light can efficiently penetrate through the scalp and skull and could allow non-invasive treatment for traumatic brain injury (TBI. In the present study, we compared the therapeutic effect using 810-nm wavelength laser light in continuous and pulsed wave modes in a mouse model of TBI.TBI was induced by a controlled cortical-impact device and 4-hours post-TBI 1-group received a sham treatment and 3-groups received a single exposure to transcranial LLLT, either continuous wave or pulsed at 10-Hz or 100-Hz with a 50% duty cycle. An 810-nm Ga-Al-As diode laser delivered a spot with diameter of 1-cm onto the injured head with a power density of 50-mW/cm(2 for 12-minutes giving a fluence of 36-J/cm(2. Neurological severity score (NSS and body weight were measured up to 4 weeks. Mice were sacrificed at 2, 15 and 28 days post-TBI and the lesion size was histologically analyzed. The quantity of ATP production in the brain tissue was determined immediately after laser irradiation. We examined the role of LLLT on the psychological state of the mice at 1 day and 4 weeks after TBI using tail suspension test and forced swim test.The 810-nm laser pulsed at 10-Hz was the most effective judged by improvement in NSS and body weight although the other laser regimens were also effective. The brain lesion volume of mice treated with 10-Hz pulsed-laser irradiation was significantly lower than control group at 15-days and 4-weeks post-TBI. Moreover, we found an antidepressant effect of LLLT at 4-weeks as shown by forced swim and tail suspension tests.The therapeutic effect of LLLT for TBI with an 810-nm laser was more effective at 10-Hz pulse frequency than at CW and 100-Hz. This finding may provide a new insight into biological mechanisms of LLLT.