WorldWideScience

Sample records for high-performance network element

  1. High-Performance Networking

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  2. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  3. Implementation of a high performance parallel finite element micromagnetics package

    International Nuclear Information System (INIS)

    Scholz, W.; Suess, D.; Dittrich, R.; Schrefl, T.; Tsiantos, V.; Forster, H.; Fidler, J.

    2004-01-01

    A new high performance scalable parallel finite element micromagnetics package has been implemented. It includes solvers for static energy minimization, time integration of the Landau-Lifshitz-Gilbert equation, and the nudged elastic band method

  4. Design of JMTR high-performance fuel element

    International Nuclear Information System (INIS)

    Sakurai, Fumio; Shimakawa, Satoshi; Komori, Yoshihiro; Tsuchihashi, Keiichiro; Kaminaga, Fumito

    1999-01-01

    For test and research reactors, the core conversion to low-enriched uranium fuel is required from the viewpoint of non-proliferation of nuclear weapon material. Improvements of core performance are also required in order to respond to recent advanced utilization needs. In order to meet both requirements, a high-performance fuel element of high uranium density with Cd wires as burnable absorbers was adopted for JMTR core conversion to low-enriched uranium fuel. From the result of examination of an adaptability of a few group constants generated by a conventional transport-theory calculation with an isotropic scattering approximation to a few group diffusion-theory core calculation for design of the JMTR high-performance fuel element, it was clear that the depletion of Cd wires was not able to be predicted accurately using group constants generated by the conventional method. Therefore, a new generation method of a few group constants in consideration of an incident neutron spectrum at Cd wire was developed. As the result, the most suitable high-performance fuel element for JMTR was designed successfully, and that allowed extension of operation duration without refueling to almost twice as long and offer of irradiation field with constant neutron flux. (author)

  5. Building and measuring a high performance network architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  6. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  7. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  8. Effect of residual elements on high performance nickel base ...

    Indian Academy of Sciences (India)

    Unknown

    superalloys for gas turbines and strategies for manufacture. O P SINHA*, M ... Superalloys; tramp elements; creep and stress rupture properties; vacuum induction melting. 1. Introduction ... The physical metallurgy of superalloys demands the.

  9. Evaluation of High-Performance Network Technologies for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, K.; Kolaric, P.; Sabjan, R.; Zagar, A. [Cosylab d.d., Ljubljana (Slovenia); Hunt, S. [Alceli Hunt Beratung, Meisterschwanden (Switzerland)

    2009-07-01

    To facilitate fast feedback control of plasma, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, four types of high-performance communication have been identified. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024*1024) and frame rate (30 Hz). In this article, we present some combinations of common off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time LINUS operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming. This document is composed of an abstract followed by the presentation transparencies. (authors)

  10. Evaluation of high-performance network technologies for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, K., E-mail: klemen.zagar@cosylab.co [Cosylab d.d., 1000 Ljubljana (Slovenia); Hunt, S. [Alceli Hunt Beratung, 5616 Meisterschwanden (Switzerland); Kolaric, P.; Sabjan, R.; Zagar, A.; Dedic, J. [Cosylab d.d., 1000 Ljubljana (Slovenia)

    2010-07-15

    For the fast feedback plasma controllers, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, the ITER CODAC team identified four types of high-performance communication applications. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio-Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024 x 1024) and frame rate (30 Hz). In this article, we present some combinations of common-off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time Linux operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming.

  11. Evaluation of high-performance network technologies for ITER

    International Nuclear Information System (INIS)

    Zagar, K.; Hunt, S.; Kolaric, P.; Sabjan, R.; Zagar, A.; Dedic, J.

    2010-01-01

    For the fast feedback plasma controllers, ITER's Control, Data Access and Communication system (CODAC) will need to provide a mechanism for hard real-time communication between its distributed nodes. In particular, the ITER CODAC team identified four types of high-performance communication applications. Synchronous Databus Network (SDN) is to provide an ability to distribute parameters of plasma (estimated to about 5000 double-valued signals) across the system to allow for 1 ms control cycles. Event Distribution Network (EDN) and Time Communication Network (TCN) are to allow synchronization of node I/O operations to 10 ns. Finally, the Audio-Video Network (AVN) is to provide sufficient bandwidth for streaming of surveillance and diagnostics video at a high resolution (1024 x 1024) and frame rate (30 Hz). In this article, we present some combinations of common-off-the-shelf (COTS) technologies that allow the above requirements to be met. Also, we present the performances achieved in a practical (though small scale) technology demonstrator, which involved a real-time Linux operating running on National Instruments' PXI platform, UDP communication implemented directly atop the Ethernet network adapter, CISCO switches, Micro Research Finland's timing and event solution, and GigE audio-video streaming.

  12. High Performance Data mining by Genetic Neural Network

    Directory of Open Access Journals (Sweden)

    Dadmehr Rahbari

    2013-10-01

    Full Text Available Data mining in computer science is the process of discovering interesting and useful patterns and relationships in large volumes of data. Most methods for mining problems is based on artificial intelligence algorithms. Neural network optimization based on three basic parameters topology, weights and the learning rate is a powerful method. We introduce optimal method for solving this problem. In this paper genetic algorithm with mutation and crossover operators change the network structure and optimized that. Dataset used for our work is stroke disease with twenty features that optimized number of that achieved by new hybrid algorithm. Result of this work is very well incomparison with other similar method. Low present of error show that our method is our new approach to efficient, high-performance data mining problems is introduced.

  13. Design and implementation of a high performance network security processor

    Science.gov (United States)

    Wang, Haixin; Bai, Guoqiang; Chen, Hongyi

    2010-03-01

    The last few years have seen many significant progresses in the field of application-specific processors. One example is network security processors (NSPs) that perform various cryptographic operations specified by network security protocols and help to offload the computation intensive burdens from network processors (NPs). This article presents a high performance NSP system architecture implementation intended for both internet protocol security (IPSec) and secure socket layer (SSL) protocol acceleration, which are widely employed in virtual private network (VPN) and e-commerce applications. The efficient dual one-way pipelined data transfer skeleton and optimised integration scheme of the heterogenous parallel crypto engine arrays lead to a Gbps rate NSP, which is programmable with domain specific descriptor-based instructions. The descriptor-based control flow fragments large data packets and distributes them to the crypto engine arrays, which fully utilises the parallel computation resources and improves the overall system data throughput. A prototyping platform for this NSP design is implemented with a Xilinx XC3S5000 based FPGA chip set. Results show that the design gives a peak throughput for the IPSec ESP tunnel mode of 2.85 Gbps with over 2100 full SSL handshakes per second at a clock rate of 95 MHz.

  14. Argonne National Laboratory high performance network support of APS experiments

    International Nuclear Information System (INIS)

    Knot, M.J.; McMahon, R.J.

    1996-01-01

    Argonne National Laboratory is currently positioned to provide access to high performance regional and national networks. Much of the impetus for this effort is the anticipated needs of the upcoming experimental program at the APS. Some APS collaborative access teams (CATs) are already pressing for network speed improvements and security enhancements. Requirements range from the need for high data rate, secure transmission of experimental data, to the desire to establish a open-quote open-quote virtual experimental environment close-quote close-quote at their home institution. In the near future, 155 megabit/sec (Mb/s) national and regional asynchronous transfer mode (ATM) networks will be operational and available to APS users. Full-video teleconferencing, virtual presence operation of experiments, and high speed, secure transmission of data are being tested and, in some cases, will be operational. We expect these efforts to enable a substantial improvement in the speed of processing experimental results as well as an increase in convenience to the APS experimentalist. copyright 1996 American Institute of Physics

  15. High-performance geometric phase elements in silica glass

    Directory of Open Access Journals (Sweden)

    Rokas Drevinskas

    2017-06-01

    Full Text Available High-precision three-dimensional ultrafast laser direct nanostructuring of silica glass resulting in multi-layered space-variant dielectric metasurfaces embedded in volume is demonstrated. Continuous phase profiles of nearly any optical component are achieved solely by the means of geometric phase. Complex designs of half-wave retarders with 90% transmission at 532 nm and >95% transmission at >1 μm, including polarization gratings with efficiency nearing 90% and computer generated holograms with a phase gradient of ∼0.8π rad/μm, were fabricated. A vortex half-wave retarder generating a single beam optical vortex with a tunable orbital angular momentum of up to ±100ℏ is shown. The high damage threshold of silica elements enables the simultaneous optical manipulation of a large number of micro-objects using high-power laser beams. Thus, the continuous control of torque without altering the intensity distribution was implemented in optical trapping demonstration with a total of 5 W average power, which is otherwise impossible with alternate beam shaping devices. In principle, the direct-write technique can be extended to any transparent material that supports laser assisted nanostructuring and can be effectively exploited for the integration of printed optics into multi-functional optoelectronic systems.

  16. High-performance, scalable optical network-on-chip architectures

    Science.gov (United States)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of

  17. Dynamic Social Networks in High Performance Football Coaching

    Science.gov (United States)

    Occhino, Joseph; Mallett, Cliff; Rynne, Steven

    2013-01-01

    Background: Sports coaching is largely a social activity where engagement with athletes and support staff can enhance the experiences for all involved. This paper examines how high performance football coaches develop knowledge through their interactions with others within a social learning theory framework. Purpose: The key purpose of this study…

  18. Energy efficient mechanisms for high-performance Wireless Sensor Networks

    Science.gov (United States)

    Alsaify, Baha'adnan

    2009-12-01

    Due to recent advances in microelectronics, the development of low cost, small, and energy efficient devices became possible. Those advances led to the birth of the Wireless Sensor Networks (WSNs). WSNs consist of a large set of sensor nodes equipped with communication capabilities, scattered in the area to monitor. Researchers focus on several aspects of WSNs. Such aspects include the quality of service the WSNs provide (data delivery delay, accuracy of data, etc...), the scalability of the network to contain thousands of sensor nodes (the terms node and sensor node are being used interchangeably), the robustness of the network (allowing the network to work even if a certain percentage of nodes fails), and making the energy consumption in the network as low as possible to prolong the network's lifetime. In this thesis, we present an approach that can be applied to the sensing devices that are scattered in an area for Sensor Networks. This work will use the well-known approach of using a awaking scheduling to extend the network's lifespan. We designed a scheduling algorithm that will reduce the delay's upper bound the reported data will experience, while at the same time keeps the advantages that are offered by the use of the awaking scheduling -- the energy consumption reduction which will lead to the increase in the network's lifetime. The wakeup scheduling is based on the location of the node relative to its neighbors and its distance from the Base Station (the terms Base Station and sink are being used interchangeably). We apply the proposed method to a set of simulated nodes using the "ONE Simulator". We test the performance of this approach with three other approaches -- Direct Routing technique, the well known LEACH algorithm, and a multi-parent scheduling algorithm. We demonstrate a good improvement on the network's quality of service and a reduction of the consumed energy.

  19. Passive and Active Monitoring on a High Performance Research Network

    International Nuclear Information System (INIS)

    Matthews, Warren

    2001-01-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10 12 ). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data

  20. Passive and Active Monitoring on a High Performance Research Network.

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.

  1. An evaluation of current high-performance networks

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christian; Bonachea, Dan; Cote, Yannick; Duell, Jason; Hargrove, Paul; Husbands, Parry; Iancu, Costin; Welcome, Michael; Yelick, Katherine

    2003-01-25

    High-end supercomputers are increasingly built out of commodity components, and lack tight integration between the processor and network. This often results in inefficiencies in the communication subsystem, such as high software overheads and/or message latencies. In this paper we use a set of microbenchmarks to quantify the cost of this commoditization, measuring software overhead, latency, and bandwidth on five contemporary supercomputing networks. We compare the performance of the ubiquitous MPI layer to that of lower-level communication layers, and quantify the advantages of the latter for small message performance. We also provide data on the potential for various communication-related optimizations, such as overlapping communication with computation or other communication. Finally, we determine the minimum size needed for a message to be considered 'large' (i.e., bandwidth-bound) on these platforms, and provide historical data on the software overheads of a number of supercomputers over the past decade.

  2. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors.

    Science.gov (United States)

    Jiang, Hao; Zhao, Ting; Ma, Jan; Yan, Chaoyi; Li, Chunzhong

    2011-01-28

    Ultrafine MnO(2) nanowires with sub-10 nm diameters have been synthesized by a simple process of hydrothermal treatment with subsequent calcinations to form networks that exhibit an enhanced specific capacitance (279 F g(-1) at 1 A g(-1)), high rate capability (54.5% retention at 20 A g(-1)) and good cycling stability (1.7% loss after 1000 cycles).

  3. High-Performance Neural Networks for Visual Object Classification

    OpenAIRE

    Cireşan, Dan C.; Meier, Ueli; Masci, Jonathan; Gambardella, Luca M.; Schmidhuber, Jürgen

    2011-01-01

    We present a fast, fully parameterizable GPU implementation of Convolutional Neural Network variants. Our feature extractors are neither carefully designed nor pre-wired, but rather learned in a supervised way. Our deep hierarchical architectures achieve the best published results on benchmarks for object classification (NORB, CIFAR10) and handwritten digit recognition (MNIST), with error rates of 2.53%, 19.51%, 0.35%, respectively. Deep nets trained by simple back-propagation perform better ...

  4. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    KAUST Repository

    Sevilla, Galo T.; Almuslem, A. S.; Gumus, Abdurrahman; Hussain, Aftab M.; Hussain, Aftab M.; Cruz, Melvin; Hussain, Muhammad Mustafa

    2016-01-01

    shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using

  5. Spiking neural networks on high performance computer clusters

    Science.gov (United States)

    Chen, Chong; Taha, Tarek M.

    2011-09-01

    In this paper we examine the acceleration of two spiking neural network models on three clusters of multicore processors representing three categories of processors: x86, STI Cell, and NVIDIA GPGPUs. The x86 cluster utilized consists of 352 dualcore AMD Opterons, the Cell cluster consists of 320 Sony Playstation 3s, while the GPGPU cluster contains 32 NVIDIA Tesla S1070 systems. The results indicate that the GPGPU platform can dominate in performance compared to the Cell and x86 platforms examined. From a cost perspective, the GPGPU is more expensive in terms of neuron/s throughput. If the cost of GPGPUs go down in the future, this platform will become very cost effective for these models.

  6. EXTRACTION AND QUANTITATIVE ANALYSIS OF ELEMENTAL SULFUR FROM SULFIDE MINERAL SURFACES BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. (R826189)

    Science.gov (United States)

    A simple method for the quantitative determination of elemental sulfur on oxidized sulfide minerals is described. Extraction of elemental sulfur in perchloroethylene and subsequent analysis with high-performance liquid chromatography were used to ascertain the total elemental ...

  7. A Truncated Waveguide Fed by a Microstrip as a Radiating Element for High-Performance Automotive Anticollision Radars

    Directory of Open Access Journals (Sweden)

    Giovanni Andrea Casula

    2012-01-01

    Full Text Available A small truncated waveguide fed by a microstrip line through a transverse coupling slot is proposed and assessed as a high-performance antenna and array element in the K band and above. This antenna allows to obtain a high radiated power, with a very low cross-polar component in the radiated field. It is therefore particularly suitable for application in automotive anticollision radars. The proposed radiating element has been analyzed by a numerical code based on an in-house method of moments, and the microstrip feeding line has been modeled by its equivalent magnetic-wall waveguide. A linear array of such elements has been designed and matched with a BPF-inspired matching network allowing an in-band behavior suitable for anti-collision radar use, with an out-of-band rejection large enough to avoid the first receiving BPF.

  8. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    Science.gov (United States)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  9. Copercolating Networks: An Approach for Realizing High-Performance Transparent Conductors using Multicomponent Nanostructured Networks

    Directory of Open Access Journals (Sweden)

    Das Suprem R.

    2016-06-01

    Full Text Available Although transparent conductive oxides such as indium tin oxide (ITO are widely employed as transparent conducting electrodes (TCEs for applications such as touch screens and displays, new nanostructured TCEs are of interest for future applications, including emerging transparent and flexible electronics. A number of twodimensional networks of nanostructured elements have been reported, including metallic nanowire networks consisting of silver nanowires, metallic carbon nanotubes (m-CNTs, copper nanowires or gold nanowires, and metallic mesh structures. In these single-component systems, it has generally been difficult to achieve sheet resistances that are comparable to ITO at a given broadband optical transparency. A relatively new third category of TCEs consisting of networks of 1D-1D and 1D-2D nanocomposites (such as silver nanowires and CNTs, silver nanowires and polycrystalline graphene, silver nanowires and reduced graphene oxide have demonstrated TCE performance comparable to, or better than, ITO. In such hybrid networks, copercolation between the two components can lead to relatively low sheet resistances at nanowire densities corresponding to high optical transmittance. This review provides an overview of reported hybrid networks, including a comparison of the performance regimes achievable with those of ITO and single-component nanostructured networks. The performance is compared to that expected from bulk thin films and analyzed in terms of the copercolation model. In addition, performance characteristics relevant for flexible and transparent applications are discussed. The new TCEs are promising, but significant work must be done to ensure earth abundance, stability, and reliability so that they can eventually replace traditional ITO-based transparent conductors.

  10. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-02-29

    Thinned silicon based complementary metal oxide semiconductor(CMOS)electronics can be physically flexible. To overcome challenges of limited thinning and damaging of devices originated from back grinding process, we show sequential reactive ion etching of silicon with the assistance from soft polymeric materials to efficiently achieve thinned (40 μm) and flexible (1.5 cm bending radius) silicon based functional CMOSinverters with high-κ/metal gate transistors. Notable advances through this study shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using excimer laser. The impact of various mechanical bending and bending cycles show undeterred high performance of flexible siliconCMOSinverters. Future work will include transfer of diced silicon chips to destination site, interconnects, and packaging to obtain fully flexible electronic systems in CMOS compatible way.

  11. Networked Instrumentation Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers have developed a networked instrumentation system that connects modern experimental payloads to existing analog and digital communications...

  12. HPNAIDM: The High-Performance Network Anomaly/Intrusion Detection and Mitigation System

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan [Northwesten University

    2013-12-05

    Identifying traffic anomalies and attacks rapidly and accurately is critical for large network operators. With the rapid growth of network bandwidth, such as the next generation DOE UltraScience Network, and fast emergence of new attacks/virus/worms, existing network intrusion detection systems (IDS) are insufficient because they: • Are mostly host-based and not scalable to high-performance networks; • Are mostly signature-based and unable to adaptively recognize flow-level unknown attacks; • Cannot differentiate malicious events from the unintentional anomalies. To address these challenges, we proposed and developed a new paradigm called high-performance network anomaly/intrustion detection and mitigation (HPNAIDM) system. The new paradigm is significantly different from existing IDSes with the following features (research thrusts). • Online traffic recording and analysis on high-speed networks; • Online adaptive flow-level anomaly/intrusion detection and mitigation; • Integrated approach for false positive reduction. Our research prototype and evaluation demonstrate that the HPNAIDM system is highly effective and economically feasible. Beyond satisfying the pre-set goals, we even exceed that significantly (see more details in the next section). Overall, our project harvested 23 publications (2 book chapters, 6 journal papers and 15 peer-reviewed conference/workshop papers). Besides, we built a website for technique dissemination, which hosts two system prototype release to the research community. We also filed a patent application and developed strong international and domestic collaborations which span both academia and industry.

  13. Near-fault earthquake ground motion prediction by a high-performance spectral element numerical code

    International Nuclear Information System (INIS)

    Paolucci, Roberto; Stupazzini, Marco

    2008-01-01

    Near-fault effects have been widely recognised to produce specific features of earthquake ground motion, that cannot be reliably predicted by 1D seismic wave propagation modelling, used as a standard in engineering applications. These features may have a relevant impact on the structural response, especially in the nonlinear range, that is hard to predict and to be put in a design format, due to the scarcity of significant earthquake records and of reliable numerical simulations. In this contribution a pilot study is presented for the evaluation of seismic ground-motions in the near-fault region, based on a high-performance numerical code for 3D seismic wave propagation analyses, including the seismic fault, the wave propagation path and the near-surface geological or topographical irregularity. For this purpose, the software package GeoELSE is adopted, based on the spectral element method. The set-up of the numerical benchmark of 3D ground motion simulation in the valley of Grenoble (French Alps) is chosen to study the effect of the complex interaction between basin geometry and radiation mechanism on the variability of earthquake ground motion

  14. Interconnected V2O5 nanoporous network for high-performance supercapacitors.

    Science.gov (United States)

    Saravanakumar, B; Purushothaman, Kamatchi K; Muralidharan, G

    2012-09-26

    Vanadium pentoxide (V(2)O(5)) has attracted attention for supercapcitor applications because of its extensive multifunctional properties. In the present study, V(2)O(5) nanoporous network was synthesized via simple capping-agent-assisted precipitation technique and it is further annealed at different temperatures. The effect of annealing temperature on the morphology, electrochemical and structural properties, and stability upon oxidation-reduction cycling has been analyzed for supercapacitor application. We achieved highest specific capacitance of 316 F g(-1) for interconnected V(2)O(5) nanoporous network. This interconnected nanoporous network creates facile nanochannels for ion diffusion and facilitates the easy accessibility of ions. Moreover, after six hundred consecutive cycling processes the specific capacitance has changed only by 24%. A simple cost-effective preparation technique of V(2)O(5) nanoporous network with excellent capacitive behavior, energy density, and stability encourages its possible commercial exploitation for the development of high-performance supercapacitors.

  15. A high performance finite element model for wind farm modeling in forested areas

    Science.gov (United States)

    Owen, Herbert; Avila, Matias; Folch, Arnau; Cosculluela, Luis; Prieto, Luis

    2015-04-01

    Wind energy has grown significantly during the past decade and is expected to continue growing in the fight against climate change. In the search for new land where the impact of the wind turbines is small several wind farms are currently being installed in forested areas. In order to optimize the distribution of the wind turbines within the wind farm the Reynolds Averaged Navier Stokes equations are solved over the domain of interest using either commercial or in house codes. The existence of a canopy alters the Atmospheric Boundary Layer wind profile close to the ground. Therefore in order to obtain a more accurate representation of the flow in forested areas modification to both the Navier Stokes and turbulence variables equations need to be introduced. Several existing canopy models have been tested in an academic problem showing that the one proposed by Sogachev et. al gives the best results. This model has been implemented in an in house CFD solver named Alya. It is a high performance unstructured finite element code that has been designed from scratch to be able to run in the world's biggest supercomputers. Its scalabililty has recently been tested up to 100000 processors in both American and European supercomputers. During the past three years the code has been tuned and tested for wind energy problems. Recent efforts have focused on the canopy model following industry needs. In this work we shall benchmark our results in a wind farm that is currently being designed by Scottish Power and Iberdrola in Scotland. This is a very interesting real case with extensive experimental data from five different masts with anemometers at several heights. It is used to benchmark both the wind profiles and the speed up obtained between different masts. Sixteen different wind directions are simulated. The numerical model provides very satisfactory results for both the masts that are affected by the canopy and those that are not influenced by it.

  16. Comparison of High Performance Network Options: EDR InfiniBand vs.100Gb RDMA Capable Ethernet

    Energy Technology Data Exchange (ETDEWEB)

    Kachelmeier, Luke Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Van Wig, Faith Virginia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Missouri Univ. of Science and Technology, Rolla, MO (United States); Erickson, Kari Natania [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2016-08-08

    These are the slides for a presentation at the HPC Mini Showcase. This is a comparison of two different high performance network options: EDR InfiniBand and 100Gb RDMA capable ethernet. The conclusion of this comparison is the following: there is good potential, as shown with the direct results; 100Gb technology is too new and not standardized, thus deployment effort is complex for both options; different companies are not necessarily compatible; if you want 100Gb/s, you must get it all from one place.

  17. A New Approach in Advance Network Reservation and Provisioning for High-Performance Scientific Data Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2010-01-28

    Scientific applications already generate many terabytes and even petabytes of data from supercomputer runs and large-scale experiments. The need for transferring data chunks of ever-increasing sizes through the network shows no sign of abating. Hence, we need high-bandwidth high speed networks such as ESnet (Energy Sciences Network). Network reservation systems, i.e. ESnet's OSCARS (On-demand Secure Circuits and Advance Reservation System) establish guaranteed bandwidth of secure virtual circuits at a certain time, for a certain bandwidth and length of time. OSCARS checks network availability and capacity for the specified period of time, and allocates requested bandwidth for that user if it is available. If the requested reservation cannot be granted, no further suggestion is returned back to the user. Further, there is no possibility from the users view-point to make an optimal choice. We report a new algorithm, where the user specifies the total volume that needs to be transferred, a maximum bandwidth that he/she can use, and a desired time period within which the transfer should be done. The algorithm can find alternate allocation possibilities, including earliest time for completion, or shortest transfer duration - leaving the choice to the user. We present a novel approach for path finding in time-dependent networks, and a new polynomial algorithm to find possible reservation options according to given constraints. We have implemented our algorithm for testing and incorporation into a future version of ESnet?s OSCARS. Our approach provides a basis for provisioning end-to-end high performance data transfers over storage and network resources.

  18. Copper nanofiber-networked cobalt oxide composites for high performance Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Shim Hee-Sang

    2011-01-01

    Full Text Available Abstract We prepared a composite electrode structure consisting of copper nanofiber-networked cobalt oxide (CuNFs@CoO x . The copper nanofibers (CuNFs were fabricated on a substrate with formation of a network structure, which may have potential for improving electron percolation and retarding film deformation during the discharging/charging process over the electroactive cobalt oxide. Compared to bare CoO x thin-film (CoO x TF electrodes, the CuNFs@CoO x electrodes exhibited a significant enhancement of rate performance by at least six-fold at an input current density of 3C-rate. Such enhanced Li-ion storage performance may be associated with modified electrode structure at the nanoscale, improved charge transfer, and facile stress relaxation from the embedded CuNF network. Consequently, the CuNFs@CoO x composite structure demonstrated here can be used as a promising high-performance electrode for Li-ion batteries.

  19. Study on Walking Training System using High-Performance Shoes constructed with Rubber Elements

    International Nuclear Information System (INIS)

    Hayakawa, Y; Kawanaka, S; Doi, S; Kanezaki, K

    2016-01-01

    The number of accidental falls has been increasing among the elderly as society has aged. The main factor is a deteriorating center of balance due to declining physical performance. Another major factor is that the elderly tend to have bowlegged walking and their center of gravity position of the body tend to swing from side to side during walking. To find ways to counteract falls among the elderly, we developed walking training system to treat the gap in the center of balance. We also designed High-Performance Shoes that showed the status of a person's balance while walking. We also produced walk assistance from the insole in which insole stiffness corresponded to human sole distribution could be changed to correct the person's walking status. We constructed our High- Performances Shoes to detect pressure distribution during walking. Comparing normal sole distribution patterns and corrected ones, we confirmed that our assistance system helped change the user's posture, thereby reducing falls among the elderly. (paper)

  20. Finite element simulations and experiments of ballistic impacts on high performance PE composite material

    NARCIS (Netherlands)

    Herlaar, K.; Jagt-Deutekom, M.J. van der; Jacobs, M.J.N.

    2005-01-01

    The use of lightweight composite armour concepts is essential for the protection of future combat systems, both vehicles and personal. The design of such armour systems is challenging due to the complex material behaviour. Finite element simulations can be used to help understand the important

  1. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    Science.gov (United States)

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  2. Study of thermal performance of capillary micro tubes integrated into the building sandwich element made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CM...... and cooling purposes of future low energy buildings. The investigations were conceived as a low temperature concept, where the difference between the temperature of circulating fluid and air in the room was kept in range of 1–4 °C.......The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...... HPC layer covering the CMT. This paper shows that CMT integrated into the thin plate of sandwich element made of HPC can supply the energy needed for heating (cooling) and at the same time create the comfortable and healthy environment for the occupants. This solution is very suitable for heating...

  3. High-performance cathode elements for gas-discharge light sources

    Directory of Open Access Journals (Sweden)

    Sevastyanov V. V.

    2009-02-01

    Full Text Available Application of cathode elements of the arc-discharge activator made on the basis of developed material — alloy of iridium and rare-earth metals (of cerium group — has been suggested. The working samples of arc lamps have been produced and tested. The location of metal-alloy cathode has been optimized. The tests demonstrated, that after 4500 hours of work the lighting-up and glowing parameters of such lamps remained stable.

  4. Dynamic neural networks based on-line identification and control of high performance motor drives

    Science.gov (United States)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  5. High-performance quantum-dot solids via elemental sulfur synthesis

    KAUST Repository

    Yuan, Mingjian

    2014-03-21

    An elemental-sulfur-based synthesis is reported, which, combined with processing to improve the size dispersion and passivation, results in a low-cost high-quality platform for small-bandgap PbS-CQD-based devices. Size-selective precipitation and cadmium chloride passivation are used to improve the power conversion efficiency of 1 eV bandgap CQD photovoltaic devices dramatically, which leads to record power conversion efficiency for a 1 eV PbS CQD solar cell of 5.4%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Selection of a high performance alloy for gas turbine blade using finite element methods

    International Nuclear Information System (INIS)

    Khawaja, H.A.; Khan, A.M.; Ali, S.T.

    2007-01-01

    With the extensive increase in the utilization of energy resources in the modern era, the need of energy extraction from various resources has pronounced in recent years. Thus comprehensive efforts have been made around the globe in the technological development of turbo machines where means of energy extraction is energized fluids. This development led the eviation industry to power boost due to better performing engines. Meanwhile, the structural conformability requirements relative to the functional requirements have also increased with the advent of newer, better performing materials. Thus there is a need to study the material behavior and its usage with the idea of selecting the best possible material for its application. In this work a gas turbine blade of a small turbofan engine, where geometry and aerodynamic data was available, was analyzed for its structural behavior in the proposed mission envelope, where the engine turbine is subjected to high thermal, inertial and aerodynamic loads. FE linear stress analysis was carried out on the turbine blade. The results revealed the upper limit of UTS for the blade. Based on the limiting factor, high performance alloys were selected from the literature. The two most recommended alloy categories for gas turbine blades are NIMONIC and INCONEL from where total of 21 types of INCONEL alloys and 12 of NIMONIC alloys, available on on commercial bases, were analyzed individually to meet the INCONEL alloys for further analysis. On the basis of stress-strain behavior of finalized alloys, the FE restriction of UFOS of 1.33 and yield strength. Final selection is made keeping in view other factors like manufacturability and workability in due consideration. (author)

  7. High performance Ti-6Al-4V + TiC alloy by blended elemental powder metallurgy

    International Nuclear Information System (INIS)

    Fujii, H.; Yamazaki, T.; Horiya, T.; Takahashi, K.

    1993-01-01

    The blended elemental powder metallurgy (BE) of titanium alloys is one of the most cost saving technologies, in which the blending of titanium powder and alloying element powders (or master alloy powders), precise compaction at room temperature, and consolidation are conducted in turn. In addition to some economical and material saving advantages, the BE has a noteworthy feature, that is, the synthesis of special alloy systems which are difficult to be produced by the ingot metallurgy. A particle or fiber reinforced metal matrix composite (MMC) is one of the examples, and the addition of TiC particles to the extensively used Ti-6Al 4V has succeeded in obtaining higher tensile strength, Young's modulus, and elevated temperature properties. However, the raising up of some properties sometimes deteriorates other ones in MMC, and it often prevents the practical use. In this research work, the improvement of tensile ductility and fatigue properties of Ti-6Al-4V+TiC alloys without lowering other mechanical properties is aimed through the microstructural control

  8. Nitrogen-Superdoped 3D Graphene Networks for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Weili; Xu, Chuan; Ma, Chaoqun; Li, Guoxian; Wang, Yuzuo; Zhang, Kaiyu; Li, Feng; Liu, Chang; Cheng, Hui-Ming; Du, Youwei; Tang, Nujiang; Ren, Wencai

    2017-09-01

    An N-superdoped 3D graphene network structure with an N-doping level up to 15.8 at% for high-performance supercapacitor is designed and synthesized, in which the graphene foam with high conductivity acts as skeleton and nested with N-superdoped reduced graphene oxide arogels. This material shows a highly conductive interconnected 3D porous structure (3.33 S cm -1 ), large surface area (583 m 2 g -1 ), low internal resistance (0.4 Ω), good wettability, and a great number of active sites. Because of the multiple synergistic effects of these features, the supercapacitors based on this material show a remarkably excellent electrochemical behavior with a high specific capacitance (of up to 380, 332, and 245 F g -1 in alkaline, acidic, and neutral electrolytes measured in three-electrode configuration, respectively, 297 F g -1 in alkaline electrolytes measured in two-electrode configuration), good rate capability, excellent cycling stability (93.5% retention after 4600 cycles), and low internal resistance (0.4 Ω), resulting in high power density with proper high energy density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Assesment risk of fracture in thin-walled fiber reinforced and regular High Performance Concretes sandwich elements

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    load. Due to structural restraints, autogenous shrinkage may lead to high self-induced stresses. Therefore autogenous shrinkage plays important role in design of HPCSE. The present paper assesses risk of fracture due to autogenous shrinkage-induced stresses in three fiber reinforced and regular High....... Finally the paper describes the modeling work with HPCSE predicting structural cracking provoked by autogenous shrinkage. It was observed that risk of cracking due to autogenous shrinkage rapidly rises after 3 days in case of regular HPC and after 7 days in case of fiber reinforced HPC.......High Performance Concrete Sandwich Elements (HPCSE) are an interesting option for future low or plus energy building construction. Recent research and development work, however, indicate that such elements are prone to structural cracking due to the combined effect of shrinkage and high temperature...

  10. Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors

    Science.gov (United States)

    Cui, Yi; Cheng, Qian-Yi; Wu, Haiping; Wei, Zhixiang; Han, Bao-Hang

    2013-08-01

    The synthesis of graphene oxide (GO)-based benzimidazole-crosslinked network (GOBIN) materials is presented. These materials are prepared by the covalent crosslinking of GO sheets using a condensation reaction between the carboxylic acid moieties on the GO surface and the o-aminophenyl end groups of 3,3'-diaminobenzidine (or 1,2,4,5-benzenetetraamine tetrahydrochloride). An efficient one-pot catalyst- and template-free synthesis was performed. The obtained porous GO-based materials possess a Brunauer-Emmett-Teller specific surface area ranging from 260 to 920 m2 g-1. Electrochemical testing indicates that the GOBIN materials display a specific capacitance up to 370 F g-1 at a current density of 0.1 A g-1 and about 90% of the original capacitance is retained after 5000 cycles at a current density of 3 A g-1. Therefore, GOBIN materials can be employed as promising electrode materials for high-performance supercapacitors with outstanding cycling stability. Furthermore, owing to their significantly high specific surface area, these materials also show hydrogen uptake (up to 1.24 wt%, at 77 K and 1.0 bar) and carbon dioxide capture (up to 14.2 wt%, at 273 K and 1.0 bar) properties. As a result, these GO-based porous materials improve both the supercapacitor performance and gas sorption property, which demonstrate an excellent performance in the practical application of energy storage.The synthesis of graphene oxide (GO)-based benzimidazole-crosslinked network (GOBIN) materials is presented. These materials are prepared by the covalent crosslinking of GO sheets using a condensation reaction between the carboxylic acid moieties on the GO surface and the o-aminophenyl end groups of 3,3'-diaminobenzidine (or 1,2,4,5-benzenetetraamine tetrahydrochloride). An efficient one-pot catalyst- and template-free synthesis was performed. The obtained porous GO-based materials possess a Brunauer-Emmett-Teller specific surface area ranging from 260 to 920 m2 g-1. Electrochemical testing

  11. Top scientific research center deploys Zambeel Aztera (TM) network storage system in high performance environment

    CERN Multimedia

    2002-01-01

    " The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory has implemented a Zambeel Aztera storage system and software to accelerate the productivity of scientists running high performance scientific simulations and computations" (1 page).

  12. GLIF – striving towards a high-performance on-demand network

    CERN Multimedia

    Kristina Gunne

    2010-01-01

    If you were passing through the Mezzanine in the Main Building a couple of weeks ago, you probably noticed the large tiled panel display showing an ultra-high resolution visualization model of dark matter, developed by Cosmogrid. The display was one of the highlights of the 10th Annual Global Lambda Grid Workshop demo session, together with the first ever transfer of over 35 Gbit/second from one PC to another between the SARA Computing Centre in Amsterdam and CERN.   GLIF display. The transfer of such large amounts of data at this speed has been made possible thanks to the GLIF community's vision of a new computing paradigm, in which the central architectural element is an end-to-end path built on optical network wavelengths (so called lambdas). You may think of this as an on-demand private highway for data transfer: by using it you avoid the normal internet exchange points and “traffic jams”. GLIF is a virtual international organization managed as a cooperative activity, wi...

  13. Scalable High-Performance Parallel Design for Network Intrusion Detection Systems on Many-Core Processors

    OpenAIRE

    Jiang, Hayang; Xie, Gaogang; Salamatian, Kavé; Mathy, Laurent

    2013-01-01

    Network Intrusion Detection Systems (NIDSes) face significant challenges coming from the relentless network link speed growth and increasing complexity of threats. Both hardware accelerated and parallel software-based NIDS solutions, based on commodity multi-core and GPU processors, have been proposed to overcome these challenges. Network Intrusion Detection Systems (NIDSes) face significant challenges coming from the relentless network link speed growth and increasing complexity of threats. ...

  14. Determination of rare earth elements in water ore and grass sample around monazite dressing plant by high performance liquid chromatography

    International Nuclear Information System (INIS)

    Laoharojanaphand, S.

    1993-01-01

    High performance liquid chromatography technique for the analysis of rare earth elements; yttrium, cerium and lanthanum, was developed. A comparison of two mobile phases between α-hydroxy isobutyric acid and mandelic acid was carried out using C 1 8 column for separation and the amount of the rare earth elements were detected by post column complex formation with Arsenazo III. It was found that α-hydroxy isobutyric acid had higher efficiency in separation of the rare earth elements than mandelic acid when 1-octanesulfonic acid was used as an organic modifier. The optimum conditions of the mobile phase were comprised of the p H of 3.65, a flow rate of 1 ml/min which resulted in the values of resolution to be 13.62 between yttrium and cerium and 3.49 between cerium and lanthanum. Standard curves of yttrium and lanthanum yielded linear range of 0.1-45 and 1-60 ppm whereas the cerium curve was in the range of 1-100 ppm. The analyses of water, ore and grass samples collected around the monazite dressing plants from Prachuap Khiri Khan and Phuket showed that none of the rare earth elements was detected in all samples from Prachuap Khiri Khan. But 0.5 ppm of yttrium and 1.5 ppm of lanthanum were found in the water samples from Phuket while in the grass samples contained yttrium and cerium in the amounts of 2 ppm and 14 ppm whereas none was detected in the ore samples by this technique under the previous conditions

  15. Entrepreneurial networking: A blessing or a curse?: Differential effects for low, medium and high performing franchisees

    OpenAIRE

    Croonen, Evelien; Brand, Maryse; Leenders, R.T.A.J.

    2018-01-01

    Recent studies have called for a better understanding of the link between networking and entrepreneurial performance. We provide such understanding in three ways: by focusing on a specific entrepreneurial context (franchise systems), by developing a multi-faceted theoretical framework and by highlighting a contingency that may affect the networking-performance link. We combine knowledge and learning perspectives with a networking perspective to develop and test a multi-faceted framework on th...

  16. Three-Dimensional Reduced Graphene Oxide Network on Copper Foam as High-performance Supercapacitor Electrodes

    DEFF Research Database (Denmark)

    Dey, Ramendra Sundar; Chi, Qijin

    E lectrochemically generated copper foam (Cuf) could serve as an effective template for fabrication of three - dimensional (3D) reduced graphe n e oxide (rGO) network s. Here we present a facile approach to preparation of 3D rGO network supported by Cuf a s binder - free and current collector - i...

  17. SCinet Architecture: Featured at the International Conference for High Performance Computing,Networking, Storage and Analysis 2016

    Energy Technology Data Exchange (ETDEWEB)

    Lyonnais, Marc; Smith, Matt; Mace, Kate P.

    2017-02-06

    SCinet is the purpose-built network that operates during the International Conference for High Performance Computing,Networking, Storage and Analysis (Super Computing or SC). Created each year for the conference, SCinet brings to life a high-capacity network that supports applications and experiments that are a hallmark of the SC conference. The network links the convention center to research and commercial networks around the world. This resource serves as a platform for exhibitors to demonstrate the advanced computing resources of their home institutions and elsewhere by supporting a wide variety of applications. Volunteers from academia, government and industry work together to design and deliver the SCinet infrastructure. Industry vendors and carriers donate millions of dollars in equipment and services needed to build and support the local and wide area networks. Planning begins more than a year in advance of each SC conference and culminates in a high intensity installation in the days leading up to the conference. The SCinet architecture for SC16 illustrates a dramatic increase in participation from the vendor community, particularly those that focus on network equipment. Software-Defined Networking (SDN) and Data Center Networking (DCN) are present in nearly all aspects of the design.

  18. Achievable capacity limit of high performance nodes for wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, T

    2012-08-01

    Full Text Available have the ability to simultaneously communicate with many neighbours using multiple radios over orthogonal channels thereby improving effective and "online" channel utilisation. Many such networks emerging from standards such as IEEE 802.11 a...

  19. Nanostructural Features of Radiation Cured Networks for High Performance Composites: From Incurred Heterogeneities to Tailored Nanocomposites

    International Nuclear Information System (INIS)

    Krzeminski, Mickael; Ranoux, Guillaume; Coqueret, Xavier; Molinari, Michael; Chabbert, Brigitte; Aguié, Véronique; Defoort, Brigitte

    2011-01-01

    The radiation-induced polymerization of multiacrylates is suspected to generate heterogeneous networks at various dimension scales. In order to gain an insight into the polymer microstructure, a combination of analytic methods was used to quantify polymer segment mobility in the different domains [4,5]. Model epoxy or ethoxylated bis-phenol A diacrylates, EPAC and ETAC respectively, were used as precursors of representative networks for our investigations

  20. Nanostructural Features of Radiation Cured Networks for High Performance Composites: From Incurred Heterogeneities to Tailored Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Krzeminski, Mickael [Institut de Chimie Moléculaire de Reims (France); EADS Astrium, BP 20011, 33165 Saint Médard en Jalles Cedex (France); Ranoux, Guillaume; Coqueret, Xavier [Institut de Chimie Moléculaire de Reims (France); Molinari, Michael [Laboratoire des Microscopies et d’Etude des Nanostructures (France); Chabbert, Brigitte; Aguié, Véronique [UMR INRA Fractionnement des Agro-ressources et Environnement, Université de Reims Champagne Ardenne - 51687 Reims (France); Defoort, Brigitte [EADS Astrium, BP 20011, 33165 Saint Médard en Jalles Cedex, (France)

    2011-07-01

    The radiation-induced polymerization of multiacrylates is suspected to generate heterogeneous networks at various dimension scales. In order to gain an insight into the polymer microstructure, a combination of analytic methods was used to quantify polymer segment mobility in the different domains [4,5]. Model epoxy or ethoxylated bis-phenol A diacrylates, EPAC and ETAC respectively, were used as precursors of representative networks for our investigations.

  1. High Performance Implementation of 3D Convolutional Neural Networks on a GPU

    Science.gov (United States)

    Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie

    2017-01-01

    Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version. PMID:29250109

  2. High Performance Implementation of 3D Convolutional Neural Networks on a GPU.

    Science.gov (United States)

    Lan, Qiang; Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie

    2017-01-01

    Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version.

  3. Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.; Lee, Hang Woo; Bao, Zhenan

    2009-01-01

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. © 2009 American Chemical Society.

  4. Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.

    2009-06-23

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. © 2009 American Chemical Society.

  5. Investigating the effectiveness of many-core network processors for high performance cyber protection systems. Part I, FY2011.

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Kyle Bruce; Naegle, John Hunt; Wright, Brian J.; Benner, Robert E., Jr.; Shelburg, Jeffrey Scott; Pearson, David Benjamin; Johnson, Joshua Alan; Onunkwo, Uzoma A.; Zage, David John; Patel, Jay S.

    2011-09-01

    This report documents our first year efforts to address the use of many-core processors for high performance cyber protection. As the demands grow for higher bandwidth (beyond 1 Gbits/sec) on network connections, the need to provide faster and more efficient solution to cyber security grows. Fortunately, in recent years, the development of many-core network processors have seen increased interest. Prior working experiences with many-core processors have led us to investigate its effectiveness for cyber protection tools, with particular emphasis on high performance firewalls. Although advanced algorithms for smarter cyber protection of high-speed network traffic are being developed, these advanced analysis techniques require significantly more computational capabilities than static techniques. Moreover, many locations where cyber protections are deployed have limited power, space and cooling resources. This makes the use of traditionally large computing systems impractical for the front-end systems that process large network streams; hence, the drive for this study which could potentially yield a highly reconfigurable and rapidly scalable solution.

  6. A high performance long-reach passive optical network with a novel excess bandwidth distribution scheme

    Science.gov (United States)

    Chao, I.-Fen; Zhang, Tsung-Min

    2015-06-01

    Long-reach passive optical networks (LR-PONs) have been considered to be promising solutions for future access networks. In this paper, we propose a distributed medium access control (MAC) scheme over an advantageous LR-PON network architecture that reroutes the control information from and back to all ONUs through an (N + 1) × (N + 1) star coupler (SC) deployed near the ONUs, thereby overwhelming the extremely long propagation delay problem in LR-PONs. In the network, the control slot is designed to contain all bandwidth requirements of all ONUs and is in-band time-division-multiplexed with a number of data slots within a cycle. In the proposed MAC scheme, a novel profit-weight-based dynamic bandwidth allocation (P-DBA) scheme is presented. The algorithm is designed to efficiently and fairly distribute the amount of excess bandwidth based on a profit value derived from the excess bandwidth usage of each ONU, which resolves the problems of previously reported DBA schemes that are either unfair or inefficient. The simulation results show that the proposed decentralized algorithms exhibit a nearly three-order-of-magnitude improvement in delay performance compared to the centralized algorithms over LR-PONs. Moreover, the newly proposed P-DBA scheme guarantees low delay performance and fairness even when under attack by the malevolent ONU irrespective of traffic loads and burstiness.

  7. Entrepreneurial networking a blessing or a curse? : Differential effects for low, medium and high performing franchisees

    NARCIS (Netherlands)

    Brand, Maryse J.; Croonen, Evelien P. M.; Leenders, Roger T. A. J.

    Recent studies have called for a better understanding of the link between networking and entrepreneurial performance. We provide such understanding in three ways: by focusing on a specific entrepreneurial context (franchise systems), by developing a multi-faceted theoretical framework and by

  8. Entrepreneurial networking: A blessing or a curse? : Differential effects for low, medium and high performing franchisees

    NARCIS (Netherlands)

    Croonen, Evelien; Brand, Maryse; Leenders, R.T.A.J.

    2018-01-01

    Recent studies have called for a better understanding of the link between networking and entrepreneurial performance. We provide such understanding in three ways: by focusing on a specific entrepreneurial context (franchise systems), by developing a multi-faceted theoretical framework, and by

  9. The Livermore Brain: Massive Deep Learning Networks Enabled by High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Barry Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-29

    The proliferation of inexpensive sensor technologies like the ubiquitous digital image sensors has resulted in the collection and sharing of vast amounts of unsorted and unexploited raw data. Companies and governments who are able to collect and make sense of large datasets to help them make better decisions more rapidly will have a competitive advantage in the information era. Machine Learning technologies play a critical role for automating the data understanding process; however, to be maximally effective, useful intermediate representations of the data are required. These representations or “features” are transformations of the raw data into a form where patterns are more easily recognized. Recent breakthroughs in Deep Learning have made it possible to learn these features from large amounts of labeled data. The focus of this project is to develop and extend Deep Learning algorithms for learning features from vast amounts of unlabeled data and to develop the HPC neural network training platform to support the training of massive network models. This LDRD project succeeded in developing new unsupervised feature learning algorithms for images and video and created a scalable neural network training toolkit for HPC. Additionally, this LDRD helped create the world’s largest freely-available image and video dataset supporting open multimedia research and used this dataset for training our deep neural networks. This research helped LLNL capture several work-for-others (WFO) projects, attract new talent, and establish collaborations with leading academic and commercial partners. Finally, this project demonstrated the successful training of the largest unsupervised image neural network using HPC resources and helped establish LLNL leadership at the intersection of Machine Learning and HPC research.

  10. A high-performance network for a distributed-control system

    International Nuclear Information System (INIS)

    Cuttone, G.; Aghion, F.; Giove, D.

    1989-01-01

    Local area networks play a central rule in modern distributed-control systems for accelerators. For a superconducting cyclotron under construction at the University of Milan, an optical Ethernet network has been implemented for the interconnection of multicomputer-based stations. Controller boards, with VLSI protocol chips, have been used. The higher levels of the ISO OSI model have been implemented to suit real-time control requirements. The experimental setup for measuring the data throughput between stations will be described. The effect of memory-to-memory data transfer with respect to the packet size has been studied for packets ranging from 200 bytes to 10 Kbytes. Results, showing the data throughput to range from 0.2 to 1.1 Mbit/s, will be discussed. (orig.)

  11. N-Doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors.

    Science.gov (United States)

    Wang, Shoupei; Zhang, Jianan; Shang, Pei; Li, Yuanyuan; Chen, Zhimin; Xu, Qun

    2014-10-18

    N-doped carbon spheres with hierarchical micropore-nanosheet networks (HPSCSs) were facilely fabricated by a one-step carbonization and activation process of N containing polymer spheres by KOH. With the synergy effect of the multiple structures, HPSCSs exhibit a very high specific capacitance of 407.9 F g(-1) at 1 mV s(-1) (1.2 times higher than that of porous carbon spheres) and a robust cycling stability for supercapacitors.

  12. Circuit-Switched Memory Access in Photonic Interconnection Networks for High-Performance Embedded Computing

    Science.gov (United States)

    2010-07-22

    Memory Systems: Cadle. DRAM, Disk. Morgan Kaufmann , 2007. (2 1) A. Joshi, C. Ballen, Y.-J. Kwon. S . Beamcr, I. Shamim . K. Asano\\’ic, and V...COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

  13. High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Duk; Kwak, Jinsung; Kim, Se-Yang [School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); Seo, Han; Bang, In Cheol; Kim, Sung Youb [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); Kang, Seoktae [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Korea, Republic of); Kwon, Soon-Yong, E-mail: sykwon@unist.ac.kr [School of Materials Science and Engineering & Low-Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of); School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Korea, Republic of)

    2016-08-05

    Indium tin oxide-free, flexible transparent electrodes (TEs) are crucial for the future commercialization of flexible and wearable electronics. While carbon-based TEs containing carbon nanotube (CNT) networks show promise, they usually exhibit poor dispersion properties, limiting their performance and practicality. In this study, we report a highly efficient and bending durable all-carbon composite TE (ac-TE) that employs uniform CNT networks on a monolayer graphene/polyethylene terephthalate (PET) substrate via a simple air spray deposition method. The air-sprayed CNT/graphene assembly was free-standing on solution, making a polymer-free transfer of carbon composites to target substrates possible. The excellent performance of the ac-TEs was attributed to the uniformly networked CNTs on the polycrystalline graphene with a well-controlled density, effectively bridging the line defects and filling the tears/voids or folds necessarily existing in the as-processed graphene. The sheet resistance of the ac-TEs was increased only 6% from its original value at a bending radius of 2.7 mm, while that of the pristine graphene/PET assembly increased 237%. Mechanical bending of the ac-TEs worsened the electrical performance by only ∼1.7% after 2000 bending cycles at a bending radius of 2.5 mm. Degradation of the performance by the bending was the result of line defects formation in the graphene, demonstrating the potential of the uniform CNT networks to achieve more efficient and flexible carbon-based TEs. Furthermore, the chemically-doped ac-TEs showed commercially suitable electronic and optical properties with much enhanced thermal stability, closer to practical TEs in flexible devices. - Highlights: • Highly efficient and bending durable all-carbon composite transparent electrodes (TEs) are designed. • The performance was strongly dependent on morphology of CNT networks on graphene. • The mechanism relies on the defect reductions in graphene by uniform CNT coating

  14. High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks

    International Nuclear Information System (INIS)

    Yun, Hyung Duk; Kwak, Jinsung; Kim, Se-Yang; Seo, Han; Bang, In Cheol; Kim, Sung Youb; Kang, Seoktae; Kwon, Soon-Yong

    2016-01-01

    Indium tin oxide-free, flexible transparent electrodes (TEs) are crucial for the future commercialization of flexible and wearable electronics. While carbon-based TEs containing carbon nanotube (CNT) networks show promise, they usually exhibit poor dispersion properties, limiting their performance and practicality. In this study, we report a highly efficient and bending durable all-carbon composite TE (ac-TE) that employs uniform CNT networks on a monolayer graphene/polyethylene terephthalate (PET) substrate via a simple air spray deposition method. The air-sprayed CNT/graphene assembly was free-standing on solution, making a polymer-free transfer of carbon composites to target substrates possible. The excellent performance of the ac-TEs was attributed to the uniformly networked CNTs on the polycrystalline graphene with a well-controlled density, effectively bridging the line defects and filling the tears/voids or folds necessarily existing in the as-processed graphene. The sheet resistance of the ac-TEs was increased only 6% from its original value at a bending radius of 2.7 mm, while that of the pristine graphene/PET assembly increased 237%. Mechanical bending of the ac-TEs worsened the electrical performance by only ∼1.7% after 2000 bending cycles at a bending radius of 2.5 mm. Degradation of the performance by the bending was the result of line defects formation in the graphene, demonstrating the potential of the uniform CNT networks to achieve more efficient and flexible carbon-based TEs. Furthermore, the chemically-doped ac-TEs showed commercially suitable electronic and optical properties with much enhanced thermal stability, closer to practical TEs in flexible devices. - Highlights: • Highly efficient and bending durable all-carbon composite transparent electrodes (TEs) are designed. • The performance was strongly dependent on morphology of CNT networks on graphene. • The mechanism relies on the defect reductions in graphene by uniform CNT coating

  15. Achievable capacity design for irregular and clustered high performance mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2012-11-01

    Full Text Available interference, it is assumed that no any two HPNs are placed within a radius less than 400 m at the edge and less than 700 m toward the centre of the deployment area. However, between any two HPNs the largest separation distance is allowed as much possible... q mc p bit-meters/sec when cm = O(n). Proof : Let us consider that in irregular and static networks, the node den- sity varies over space (i.e., an area) but stays constant over time. Suppose the regularity rate (probability) of HPN...

  16. A robust and high-performance queue management controller for large round trip time networks

    Science.gov (United States)

    Khoshnevisan, Ladan; Salmasi, Farzad R.

    2016-05-01

    Congestion management for transmission control protocol is of utmost importance to prevent packet loss within a network. This necessitates strategies for active queue management. The most applied active queue management strategies have their inherent disadvantages which lead to suboptimal performance and even instability in the case of large round trip time and/or external disturbance. This paper presents an internal model control robust queue management scheme with two degrees of freedom in order to restrict the undesired effects of large and small round trip time and parameter variations in the queue management. Conventional approaches such as proportional integral and random early detection procedures lead to unstable behaviour due to large delay. Moreover, internal model control-Smith scheme suffers from large oscillations due to the large round trip time. On the other hand, other schemes such as internal model control-proportional integral and derivative show excessive sluggish performance for small round trip time values. To overcome these shortcomings, we introduce a system entailing two individual controllers for queue management and disturbance rejection, simultaneously. Simulation results based on Matlab/Simulink and also Network Simulator 2 (NS2) demonstrate the effectiveness of the procedure and verify the analytical approach.

  17. Prediction of compression strength of high performance concrete using artificial neural networks

    International Nuclear Information System (INIS)

    Torre, A; Moromi, I; Garcia, F; Espinoza, P; Acuña, L

    2015-01-01

    High-strength concrete is undoubtedly one of the most innovative materials in construction. Its manufacture is simple and is carried out starting from essential components (water, cement, fine and aggregates) and a number of additives. Their proportions have a high influence on the final strength of the product. This relations do not seem to follow a mathematical formula and yet their knowledge is crucial to optimize the quantities of raw materials used in the manufacture of concrete. Of all mechanical properties, concrete compressive strength at 28 days is most often used for quality control. Therefore, it would be important to have a tool to numerically model such relationships, even before processing. In this aspect, artificial neural networks have proven to be a powerful modeling tool especially when obtaining a result with higher reliability than knowledge of the relationships between the variables involved in the process. This research has designed an artificial neural network to model the compressive strength of concrete based on their manufacturing parameters, obtaining correlations of the order of 0.94

  18. High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks.

    Science.gov (United States)

    Purkait, Taniya; Singh, Guneet; Kumar, Dinesh; Singh, Mandeep; Dey, Ramendra Sundar

    2018-01-12

    A simple approach for growing porous electrochemically reduced graphene oxide (pErGO) networks on copper wire, modified with galvanostatically deposited copper foam is demonstrated. The as-prepared pErGO networks on the copper wire are directly used to fabricate solid-state supercapacitor. The pErGO-based supercapacitor can deliver a specific capacitance (C sp ) as high as 81±3 F g -1 at 0.5 A g -1 with polyvinyl alcohol/H 3 PO 4 gel electrolyte. The C sp per unit length and area are calculated as 40.5 mF cm -1 and 283.5 mF cm -2 , respectively. The shape of the voltammogram retained up to high scan rate of 100 V s -1 . The pErGO-based supercapacitor device exhibits noticeably high charge-discharge cycling stability, with 94.5% C sp retained even after 5000 cycles at 5 A g -1 . Nominal change in the specific capacitance, as well as the shape of the voltammogram, is observed at different bending angles of the device even after 5000 cycles. The highest energy density of 11.25 W h kg -1 and the highest power density of 5 kW kg -1 are also achieved with this device. The wire-based supercapacitor is scalable and highly flexible, which can be assembled with/without a flexible substrate in different geometries and bending angles for illustrating promising use in smart textile and wearable device.

  19. Use of high performance networks and supercomputers for real-time flight simulation

    Science.gov (United States)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  20. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    Science.gov (United States)

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  1. Elements of Network-Based Assessment

    Science.gov (United States)

    Gibson, David

    2007-01-01

    Elements of network-based assessment systems are envisioned based on recent advances in knowledge and practice in learning theory, assessment design and delivery, and semantic web interoperability. The architecture takes advantage of the meditating role of technology as well as recent models of assessment systems. This overview of the elements…

  2. High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator.

    Science.gov (United States)

    Huang, Min; Hou, Yi; Li, Yubao; Wang, Danqing; Zhang, Li

    2017-01-01

    A dual network hydrogel made up of polyvinylalcohol (PVA) crosslinked by borax and polyvinylpyrrolidone (PVP) was prepared by means of freezing-thawing circles. Here PVP was incorporated by linking with PVA to form a network structure, while the introduction of borax played the role of crosslinking PVA chains to accelerate the formation of a dual network structure in PVA/PVP composite hydrogel, thus endowing the hydrogel with high mechanical properties. The effects of both PVP and borax on the hydrogels were evaluated by comparing the two systems of PVA/PVP/borax and PVA/borax hydrogels. In the former system, adding 4.0% PVP not only increased the water content and the storage modulus but also enhanced the mechanical strength of the final hydrogel. But an overdose of PVP just as more than 4.0% tended to undermine the structure of hydrogels, and thus deteriorated hydrogels' properties because of the weakened secondary interaction between PVP and PVA. Likewise, increasing borax could promote the gel crosslinking degree, thus making gels show a decrease in water content and swelling ratio, meanwhile shrinking the pores inside the hydrogels and finally enhancing the mechanical strength of hydrogels prominently. The developed hydrogel with high performances holds great potential for applications in biomedical and industrial fields.

  3. Sulfur cathode integrated with multileveled carbon nanoflake-nanosphere networks for high-performance lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, S.H.; Wang, X.H.; Xia, X.H.; Wang, Y.D.; Wang, X.L.; Tu, J.P.

    2017-01-01

    Tailored design/construction of high-quality sulfur/carbon composite cathode is critical for development of advanced lithium-sulfur batteries. We report a powerful strategy for integrated fabrication of sulfur impregnated into three-dimensional (3D) multileveled carbon nanoflake-nanosphere networks (CNNNs) by means of sacrificial ZnO template plus glucose carbonization. The multileveled CNNNs are not only utilized as large-area host/backbone for sulfur forming an integrated S/CNNNs composite electrode, but also serve as multiple carbon blocking barriers (nanoflake infrastructure andnanosphere superstructure) to physically confine polysulfides at the cathode. The designedself-supported S/CNNNs composite cathodes exhibit superior electrochemical performances with high capacities (1395 mAh g −1 at 0.1C, and 769 mAh g −1 at 5.0C after 200 cycles) and noticeable cycling performance (81.6% retention after 200 cycles). Our results build a new bridge between sulfur and carbon networks with multiple blocking effects for polysulfides, and provide references for construction of other high-performance sulfur cathodes.

  4. Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries.

    Science.gov (United States)

    Armstrong, Eileen; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2015-12-09

    High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li(+) is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g(-1)) and outstanding capacity retention and rate capability.

  5. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    Science.gov (United States)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  6. Final Project Report: DOE Award FG02-04ER25606 Overlay Transit Networking for Scalable, High Performance Data Communication across Heterogeneous Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Micah; Moore, Terry

    2007-08-31

    As the flood of data associated with leading edge computational science continues to escalate, the challenge of supporting the distributed collaborations that are now characteristic of it becomes increasingly daunting. The chief obstacles to progress on this front lie less in the synchronous elements of collaboration, which have been reasonably well addressed by new global high performance networks, than in the asynchronous elements, where appropriate shared storage infrastructure seems to be lacking. The recent report from the Department of Energy on the emerging 'data management challenge' captures the multidimensional nature of this problem succinctly: Data inevitably needs to be buffered, for periods ranging from seconds to weeks, in order to be controlled as it moves through the distributed and collaborative research process. To meet the diverse and changing set of application needs that different research communities have, large amounts of non-archival storage are required for transitory buffering, and it needs to be widely dispersed, easily available, and configured to maximize flexibility of use. In today's grid fabric, however, massive storage is mostly concentrated in data centers, available only to those with user accounts and membership in the appropriate virtual organizations, allocated as if its usage were non-transitory, and encapsulated behind legacy interfaces that inhibit the flexibility of use and scheduling. This situation severely restricts the ability of application communities to access and schedule usable storage where and when they need to in order to make their workflow more productive. (p.69f) One possible strategy to deal with this problem lies in creating a storage infrastructure that can be universally shared because it provides only the most generic of asynchronous services. Different user communities then define higher level services as necessary to meet their needs. One model of such a service is a Storage Network

  7. High Performance Microaccelerometer with Wafer-level Hermetic Packaged Sensing Element and Continuous-time BiCMOS Interface Circuit

    International Nuclear Information System (INIS)

    Ko, Hyoungho; Park, Sangjun; Paik, Seung-Joon; Choi, Byoung-doo; Park, Yonghwa; Lee, Sangmin; Kim, Sungwook; Lee, Sang Chul; Lee, Ahra; Yoo, Kwangho; Lim, Jaesang; Cho, Dong-il

    2006-01-01

    A microaccelerometer with highly reliable, wafer-level packaged MEMS sensing element and fully differential, continuous time, low noise, BiCMOS interface circuit is fabricated. The MEMS sensing element is fabricated on a (111)-oriented SOI wafer by using the SBM (Sacrificial/Bulk Micromachining) process. To protect the silicon structure of the sensing element and enhance the reliability, a wafer level hermetic packaging process is performed by using a silicon-glass anodic bonding process. The interface circuit is fabricated using 0.8 μm BiCMOS process. The capacitance change of the MEMS sensing element is amplified by the continuous-time, fully-differential transconductance input amplifier. A chopper-stabilization architecture is adopted to reduce low-frequency noise including 1/f noise. The fabricated microaccelerometer has the total noise equivalent acceleration of 0.89 μg/√Hz, the bias instability of 490 μg, the input range of ±10 g, and the output nonlinearity of ±0.5 %FSO

  8. Three-dimensional nano-heterojunction networks: a highly performing structure for fast visible-blind UV photodetectors.

    Science.gov (United States)

    Nasiri, Noushin; Bo, Renheng; Fu, Lan; Tricoli, Antonio

    2017-02-02

    Visible-blind ultraviolet photodetectors are a promising emerging technology for the development of wide bandgap optoelectronic devices with greatly reduced power consumption and size requirements. A standing challenge is to improve the slow response time of these nanostructured devices. Here, we present a three-dimensional nanoscale heterojunction architecture for fast-responsive visible-blind UV photodetectors. The device layout consists of p-type NiO clusters densely packed on the surface of an ultraporous network of electron-depleted n-type ZnO nanoparticles. This 3D structure can detect very low UV light densities while operating with a near-zero power consumption of ca. 4 × 10 -11 watts and a low bias of 0.2 mV. Most notably, heterojunction formation decreases the device rise and decay times by 26 and 20 times, respectively. These drastic enhancements in photoresponse dynamics are attributed to the stronger surface band bending and improved electron-hole separation of the nanoscale NiO/ZnO interface. These findings demonstrate a superior structural design and a simple, low-cost CMOS-compatible process for the engineering of high-performance wearable photodetectors.

  9. Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-Performance Gas Sensing.

    Science.gov (United States)

    Wan, Pengbo; Wen, Xuemei; Sun, Chaozheng; Chandran, Bevita K; Zhang, Han; Sun, Xiaoming; Chen, Xiaodong

    2015-10-28

    A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in-situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as-prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high-performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface-to-volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low-cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development of Tools for Engineering Analysis and Design of High-Performance FRP-Composite Structural Elements

    DEFF Research Database (Denmark)

    Mortensen, Fl.

    as general specification of loads and boundary conditions. For all the structural problems addressed, the analyses are carried out following the same principal approach, which is based on an explicit formulation of the governing set of differential equations. The governing differential equations...... in ESAComp. The solution procedures for the adhesive bonded joints have been used to conduct a parametric study, where the influence of using laminated adherends has been investigated. Based on this, a set of general design guidelines has been given in order to improve the structural performance and strength...... for joints with laminated adherends. The guidelines are also valid for the ply drop problems, since their mechanical behaviour are very similar. The results obtained for adhesive bonded joints, ply drops and insert problems have been compared with finite element analysis results. The results obtained...

  11. Carbon nanotube network film directly grown on carbon cloth for high-performance solid-state flexible supercapacitors

    International Nuclear Information System (INIS)

    Zhou, Cheng; Liu, Jinping

    2014-01-01

    Carbon nanotubes (CNTs) have received increasing attention as electrode materials for high-performance supercapacitors. We herein present a straightforward method to synthesize CNT films directly on carbon cloths as electrodes for all-solid-state flexible supercapacitors (AFSCs). The as-made highly conductive electrodes possess a three-dimensional (3D) network architecture for fast ion diffusion and good flexibility, leading to an AFSC with a specific capacitance of 106.1 F g −1 , an areal capacitance of 38.75 mF cm −2 , an ultralong cycle life of 100 000 times (capacitance retention: 99%), a good rate capability (can scan at 1000 mV s −1 , at which the capacitance is still ∼37.8% of that at 5 mV s −1 ), a high energy density (2.4 μW h cm −2 ) and a high power density (19 mW cm −2 ). Moreover, our AFSC maintains excellent electrochemical attributes even with serious shape deformation (bending, folding, etc), high mechanical pressure (63 kPa) and a wide temperature window (up to 100 ° C). After charging for only 5 s, three such AFSC devices connected in series can efficiently power a red round LED for 60 s. Our work could pave the way for the design of practical AFSCs, which are expected to be used for various flexible portable/wearable electronic devices in the future. (paper)

  12. NiO nanoparticles supported on graphene 3D network current collector for high-performance electrochemical energy storage

    International Nuclear Information System (INIS)

    Wang, Mingjun; Song, Xuefen; Dai, Shuge; Xu, Weina; Yang, Qi; Liu, Jianlin; Hu, Chenguo; Wei, Dapeng

    2016-01-01

    Owing to the faradaic oxidation and reduction reactions mainly taking place on surface, enlarging the specific surface of redox materials is one of the most effective ways to achieve excellent electrochemical performance. Here we report a binder-free three dimensional (3D) architecture electrode consisting of a graphene 3D network (G3DN) structure growing on flexible carbon paper (CP) by chemical vapor deposition and NiO nanoparticles growing on the G3DN by in-situ thermal decomposition for high rate battery and high-performance electrochemical capacitors. Such a nanostructure provides a large specific surface and fast electronic transmission channels. The unique structure design for this electrode enables outstanding performance, showing high specific capacity of 89.1 mAh cm −2 (119.2 mAh/g) at current density of 0.5 mA cm −2 (0.67 A/g) with the NiO loading of 0.7471 mg cm −2 . Meanwhile the electrode displays excellent rate capability and cycling stability, which keeps 85.48% of initial capacity after 3000 deep-discharge cycles. Furthermore, a solid-state symmetric electrochemical capacitor based on two NiO/G3DN/CP electrodes with an area of 4 cm 2 each is fabricated, and two pieces of them in series can light up 100 green LEDs for 2 min. The architecture of G3DN loaded with NiO might be generally applied to different kinds of nanomaterials for high-rate energy storage to improve their overall electrochemical performance.

  13. Computational Approach for Securing Radiology-Diagnostic Data in Connected Health Network using High-Performance GPU-Accelerated AES.

    Science.gov (United States)

    Adeshina, A M; Hashim, R

    2017-03-01

    Diagnostic radiology is a core and integral part of modern medicine, paving ways for the primary care physicians in the disease diagnoses, treatments and therapy managements. Obviously, all recent standard healthcare procedures have immensely benefitted from the contemporary information technology revolutions, apparently revolutionizing those approaches to acquiring, storing and sharing of diagnostic data for efficient and timely diagnosis of diseases. Connected health network was introduced as an alternative to the ageing traditional concept in healthcare system, improving hospital-physician connectivity and clinical collaborations. Undoubtedly, the modern medicinal approach has drastically improved healthcare but at the expense of high computational cost and possible breach of diagnosis privacy. Consequently, a number of cryptographical techniques are recently being applied to clinical applications, but the challenges of not being able to successfully encrypt both the image and the textual data persist. Furthermore, processing time of encryption-decryption of medical datasets, within a considerable lower computational cost without jeopardizing the required security strength of the encryption algorithm, still remains as an outstanding issue. This study proposes a secured radiology-diagnostic data framework for connected health network using high-performance GPU-accelerated Advanced Encryption Standard. The study was evaluated with radiology image datasets consisting of brain MR and CT datasets obtained from the department of Surgery, University of North Carolina, USA, and the Swedish National Infrastructure for Computing. Sample patients' notes from the University of North Carolina, School of medicine at Chapel Hill were also used to evaluate the framework for its strength in encrypting-decrypting textual data in the form of medical report. Significantly, the framework is not only able to accurately encrypt and decrypt medical image datasets, but it also

  14. High-performance liquid chromatography using reversed-phase stationary phases dynamically modified with organophosphorus compound for the separation and determination of lanthanoid elements

    International Nuclear Information System (INIS)

    Tsuyoshi, Akira; Akiba, Kenichi

    2000-01-01

    An acidic organophosphorus compound, 2-ethylhexylphosphonic acid mono-2-ethlhexyl ester (EHPA), has been applied to reversed-phase high-performance liquid chromatography (RP-HPLC). The reversed-phase stationary phase was dynamically modified with EHPA by flowing the mobile phase of an acetone-water mixture containing the extracting regent. The retention of lanthanoid elements was widely varied by changing the conditions of the mobile phase, i.e., the pH, the EHPA concentration and the acetone content. The selectivity of EHPA is well reflected to the chromatographic systems, and a precise separation of lanthanoid elements was achieved with sufficient resolution. The determination of Sm was examined in the presence of a large amount of Nd. A linear calibration graph was obtained for Sm at the level of 10 -7 mol dm -3 , in the presence of 1x10 -4 mol dm -3 of Nd. (author)

  15. Application of the Instrumental Neutron Activation Analysis and High Performance Liquid Chromatography (HPLC) in the rare earth elements determination in reference geological materials

    International Nuclear Information System (INIS)

    Figueiredo, Ana M.G.; Moraes, Noemia M.P. de; Shihomatsu, Helena M.

    1997-01-01

    Instrumental Neutron Activation Analysis (INAA) and High Performance Liquid Chromatography (HPLC) were applied to the determination of rare earth elements (REE) in the geological reference materials AGV-1, G-2 and GSP-1 (USGS). Results obtained by both techniques showed good agreement with certified values, giving relative errors less than 10%. The La, Ce, Nd, Sm, Eu, Tb, Yb and Lu REE elements were determined. All the REE except Dy and Y were determined by HPLC. The reference material G94, employed in the International Proficiency Test for Analytical Geochemistry Laboratories (GeoTP1) was analysed. The results obtained are a contribution to REE contents in this sample. The INAA and HPLC application to the determination of REE in this kind of matrix is also discussed. (author). 10 refs., 1 fig., 5 tabs

  16. High performance nuclear fuel element

    International Nuclear Information System (INIS)

    Mordarski, W.J.; Zegler, S.T.

    1980-01-01

    A fuel-pellet composition is disclosed for use in fast breeder reactors. Uranium carbide particles are mixed with a powder of uraniumplutonium carbides having a stable microstructure. The resulting mixture is formed into fuel pellets. The pellets thus produced exhibit a relatively low propensity to swell while maintaining a high density

  17. High performance SDN enabled flat data center network architecture based on scalable and flow-controlled optical switching system

    NARCIS (Netherlands)

    Calabretta, N.; Miao, W.; Dorren, H.J.S.

    2015-01-01

    We demonstrate a reconfigurable virtual datacenter network by utilizing statistical multiplexing offered by scalable and flow-controlled optical switching system. Results show QoS guarantees by the priority assignment and load balancing for applications in virtual networks.

  18. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Packet-Level Analysis

    Science.gov (United States)

    2015-09-01

    individual fragments using the hash-based method. In general, fragments 6 appear in order and relatively close to each other in the file. A fragment...data product derived from the data model is shown in Fig. 5, a Google Earth12 Keyhole Markup Language (KML) file. This product includes aggregate...System BLOb binary large object FPGA field-programmable gate array HPC high-performance computing IP Internet Protocol KML Keyhole Markup Language

  19. Growth of zinc cobaltate nanoparticles and nanorods on reduced graphene oxide porous networks toward high-performance supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaling; Zhao, Changhui; Fu, Wenbin; Zhang, Zemin; Zhang, Mingxiang; Zhou, Jinyuan; Pan, Xiaojun, E-mail: xjpan@lzu.edu.cn; Xie, Erqing

    2016-05-25

    A type of composite network constructed from zinc cobaltate (ZnCo{sub 2}O{sub 4}) nanoparticles and nanorods on reduced graphene oxide (rGO) nanosheets has been prepared by a facile hydrothermal method. Transmission electron microscope results reveal that the rGO nanosheets are covered by ZnCo{sub 2}O{sub 4} nanoparticles evenly due to the abundant surface functional groups on surface of original GO, and supported by some cross-linked ZnCo{sub 2}O{sub 4} nanorods in the entire structures. With a rational combination, the composite networks present a meso-/macroporous architecture with a larger specific surface area than those of pristine ZnCo{sub 2}O{sub 4} nanorods. As expected, the prepared ZnCo{sub 2}O{sub 4}/rGO electrode exhibits improved electrochemical performances, which shows a high specific capacitance (626 F g{sup −1} at 1 A g{sup −1}), excellent rate capability (81% retention of the initial capacitance at 30 A g{sup −1}), and long-term cycling stability (99.7% retention after 3000 cycles at 10 A g{sup −1}). Such remarkable electrochemical performances of ZnCo{sub 2}O{sub 4}/rGO electrode can be due to the effective pathways for both electronic and ionic transport in these porous networks. - Highlights: • Porous ZnCo{sub 2}O{sub 4}/rGO composite networks can be prepared by a hydrothermal method. • These networks are mainly constructed from ZnCo{sub 2}O{sub 4} nanorods and rGO nanosheets. • The rGO nanosheets are uniformly covered by ZnCo{sub 2}O{sub 4} nanoparticles. • The composite networks can promote capacitive performances as electrode materials.

  20. Functional Carbon Nanotube/Mesoporous Carbon/MnO2 Hybrid Network for High-Performance Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tao Tao

    2014-01-01

    Full Text Available A functional carbon nanotube/mesoporous carbon/MnO2 hybrid network has been developed successfully through a facile route. The resulting composites exhibited a high specific capacitance of 351 F/g at 1 A g−1, with intriguing charge/discharge rate performance and cycling stability due to a synergistic combination of large surface area and excellent electron-transport capabilities of MnO2 with the good conductivity of the carbon nanotube/mesoporous carbon networks. Such composite shows great potential to be used as electrodes for supercapacitors.

  1. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    NARCIS (Netherlands)

    Calabretta, N.; Miao, W.; Dorren, H.J.S.; Schroder, H.; Chen, R.T.

    2016-01-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and

  2. An open source high-performance solution to extract surface water drainage networks from diverse terrain conditions

    Science.gov (United States)

    Stanislawski, Larry V.; Survila, Kornelijus; Wendel, Jeffrey; Liu, Yan; Buttenfield, Barbara P.

    2018-01-01

    This paper describes a workflow for automating the extraction of elevation-derived stream lines using open source tools with parallel computing support and testing the effectiveness of procedures in various terrain conditions within the conterminous United States. Drainage networks are extracted from the US Geological Survey 1/3 arc-second 3D Elevation Program elevation data having a nominal cell size of 10 m. This research demonstrates the utility of open source tools with parallel computing support for extracting connected drainage network patterns and handling depressions in 30 subbasins distributed across humid, dry, and transitional climate regions and in terrain conditions exhibiting a range of slopes. Special attention is given to low-slope terrain, where network connectivity is preserved by generating synthetic stream channels through lake and waterbody polygons. Conflation analysis compares the extracted streams with a 1:24,000-scale National Hydrography Dataset flowline network and shows that similarities are greatest for second- and higher-order tributaries.

  3. High performance liquid chromatographic separation of beryllium from some transition metals produced in high energy proton irradiations of medium mass elements: measurement of (p,7Be) cross sections

    International Nuclear Information System (INIS)

    Fassbender, M.; Spellerberg, S.; Qaim, S.M.

    1996-01-01

    A high performance liquid chromatographic (HPLC) method was developed for the separation of 7 Be formed in high energy proton irradiation of medium mass elements like Fe, Cu etc. The bulk of the target material was removed in a preseparation step. Thereafter beryllium was obtained in a high purity within a few minutes elution time using a mixture of 5 mM citric acid and 1.0 mM pyridinedicarboxylic acid as eluent and a SYKAM KO2 analytical cation-exchange column. The effect of Be-carrier on the quality of separation was investigated. The quality of separation deteriorated with the increasing Be-carrier column loading. A certain amount of Be-carrier was, however, necessary in order to quantitate the results. By using low Be-carrier amounts (∝100 μg) and determining the elution yield via a conductometric method, it was possible to obtain quantitative separation results. Besides the analytical column, a semi-preparative column was also used, and the Be separation yield determined gravimetrically. The cross sections for the (p, 7 Be) process on Cu obtained using the two separation columns (analytical and semipreparative) and the two separation yield determination methods agreed within 15%. (orig.)

  4. Elemental speciation via high-performance liquid chromatography combined with inductively coupled plasma atomic emission spectroscopic detection: application of a direct injection nebulizer

    International Nuclear Information System (INIS)

    LaFreniere, K.E; Fassel, V.A.; Eckels, D.E.

    1987-01-01

    An evaluation is presented of a direct injection nebulizer (DIN) interfaced to a high-performance liquid chromatograph (HPLC) with inductively coupled plasma atomic emission spectroscopic (ICP-AES) detection for simultaneous multielement speciation. The limits of detection (LODs) obtained with the DIN interface in the HPLC mode were found to be comparable to those obtained by continuous-flow sample introduction into the ICP, or inferior by up to only a factor of 4. In addition, the DIN allowed for the direct injection into the ICP of a variety of common HPLC solvents (up to 100% methanol, acetonitrile, methyl isobutyl ketone, pyridine, and water). The HPLC-DIN-ICP-AES system was compared to other HPLC-atomic spectroscopic detection techniques and was found to offer substantial improvement over the alternative on-line, detection methods in terms of LODs. Representative applications of the HPLC-DIN-ICP-AES system to the elemental speciation of coal process streams, shale oil, solvent refined coal, and crude oil are presented

  5. Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors.

    Science.gov (United States)

    Bai, Shouli; Sun, Chaozheng; Wan, Pengbo; Wang, Cheng; Luo, Ruixian; Li, Yaping; Liu, Junfeng; Sun, Xiaoming

    2015-01-21

    Transparent chemical gas sensors are assembled from a transparent conducting film of hierarchically nanostructured polyaniline (PANI) networks fabricated on a flexible PET substrate, by coating silver nanowires (Ag NWs) followed by the in situ polymerization of aniline near the sacrificial Ag NW template. The sensor exhibits enhanced gas sensing performance at room temperature in both sensitivity and selectivity to NH3 compared to pure PANI film. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High Performance All-solid Supercapacitors Based on the Network of Ultralong Manganese dioxide/Polyaniline Coaxial Nanowires

    Science.gov (United States)

    Zhou, Junli; Yu, Lin; Liu, Wei; Zhang, Xiaodan; Mu, Wei; Du, Xu; Zhang, Zhe; Deng, Yulin

    2015-12-01

    In recent years, thin, lightweight and flexible solid supercapacitors are of considerable interest as energy storage devices. Here we demonstrated all-solid supercapacitors (SSCs) with high electrochemical properties, low self-discharge characteristics based on manganese dioxide/polyaniline (MNW/PANI) coaxial nanowire networks. The synergistic effect of MnO2/PANI plus the unique coaxial nanostructure of the ultralong nanowires with a highly interconnected network effectively enhance the conductivity and capacitive performance of the SSCs device. The MNW/PANI composite with 62.5% MnO2 exhibits an outstanding areal specific capacitance reaching 346 mF/cm2 at 5 mV s-1 which is significant higher than most previously reported solid supercapacitors (15.3 mF/cm2-109 mF/cm2) and is close to the that of the best graphene films solid state supercapacitors (372 mF/cm2). In contrast, only 190 mF/cm2 of areal specific capacitance was obtained for the pure MnO2 NW network. The supercapacitors also exhibited low leakage current as small as 20.1 μA, which demonstrated that the MNW/PANI SSCs have great potential for practical applications.

  7. High Performance All-solid Supercapacitors Based on the Network of Ultralong Manganese dioxide/Polyaniline Coaxial Nanowires.

    Science.gov (United States)

    Zhou, Junli; Yu, Lin; Liu, Wei; Zhang, Xiaodan; Mu, Wei; Du, Xu; Zhang, Zhe; Deng, Yulin

    2015-12-08

    In recent years, thin, lightweight and flexible solid supercapacitors are of considerable interest as energy storage devices. Here we demonstrated all-solid supercapacitors (SSCs) with high electrochemical properties, low self-discharge characteristics based on manganese dioxide/polyaniline (MNW/PANI) coaxial nanowire networks. The synergistic effect of MnO2/PANI plus the unique coaxial nanostructure of the ultralong nanowires with a highly interconnected network effectively enhance the conductivity and capacitive performance of the SSCs device. The MNW/PANI composite with 62.5% MnO2 exhibits an outstanding areal specific capacitance reaching 346 mF/cm(2) at 5 mV s(-1) which is significant higher than most previously reported solid supercapacitors (15.3 mF/cm(2)-109 mF/cm(2)) and is close to the that of the best graphene films solid state supercapacitors (372 mF/cm(2)). In contrast, only 190 mF/cm(2) of areal specific capacitance was obtained for the pure MnO2 NW network. The supercapacitors also exhibited low leakage current as small as 20.1 μA, which demonstrated that the MNW/PANI SSCs have great potential for practical applications.

  8. An Overview of High-performance Parallel Big Data transfers over multiple network channels with Transport Layer Security (TLS) and TLS plus Perfect Forward Secrecy (PFS)

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corttrell, R. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-06

    This Technical Note provides an overview of high-performance parallel Big Data transfers with and without encryption for data in-transit over multiple network channels. It shows that with the parallel approach, it is feasible to carry out high-performance parallel "encrypted" Big Data transfers without serious impact to throughput. But other impacts, e.g. the energy-consumption part should be investigated. It also explains our rationales of using a statistics-based approach for gaining understanding from test results and for improving the system. The presentation is of high-level nature. Nevertheless, at the end we will pose some questions and identify potentially fruitful directions for future work.

  9. Theory of fractional order elements based impedance matching networks

    KAUST Repository

    Radwan, Ahmed G.

    2011-03-01

    Fractional order circuit elements (inductors and capacitors) based impedance matching networks are introduced for the first time. In comparison to the conventional integer based L-type matching networks, fractional matching networks are much simpler and versatile. Any complex load can be matched utilizing a single series fractional element, which generally requires two elements for matching in the conventional approach. It is shown that all the Smith chart circles (resistance and reactance) are actually pairs of completely identical circles. They appear to be single for the conventional integer order case, where the identical circles completely overlap each other. The concept is supported by design equations and impedance matching examples. © 2010 IEEE.

  10. Preparation and property investigation of multi-walled carbon nanotube (MWCNT/epoxy composite films as high-performance electric heating (resistive heating element

    Directory of Open Access Journals (Sweden)

    F. X. Wang

    2018-04-01

    Full Text Available A series of multi-walled carbon nanotube (MWCNT/epoxy composite films with a thickness of ~700 µm is prepared by a sequential process of premixing, post dispersing, film casting, and thermal curing. The effects of the physical shear dispersion on the properties of conductive polymer composites as the electric heating element are investigated. The scanning electron microscope (SEM images show that highly efficient conductive networks form with shear dispersions of MWCNTs in the polymer matrix. The electrical resistivity decreases sharply from ~1015 Ω·cm for the neat epoxy resin to ~102 Ω·cm for the composite film with 2.0 wt% MWCNTs in accordance with the percolation behaviour, and a low percolation threshold of ~0.018 wt% is fitted. The electric heating behaviour of the composite film is observed at a low MWCNT content of 0.05 wt% due to the high electrical conductivity. For the composite film with 2.0 wt% MWCNTs, an equilibrium temperature of 115 °C is reached at an applied voltage of 40 V within 30 s. The excellent electric heating behaviour, including the rapid temperature response, electric heating efficiency, and operational stability, is primarily related to the conductive two-dimensional networks consisting of MWCNTs and the thermodynamically stable polymer matrix.

  11. Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode.

    Science.gov (United States)

    Zhou, Xiaosi; Yin, Ya-Xia; Cao, An-Min; Wan, Li-Jun; Guo, Yu-Guo

    2012-05-01

    The utilization of silicon particles as anode materials for lithium-ion batteries is hindered by their low intrinsic electric conductivity and large volume changes during cycling. Here we report a novel Si nanoparticle-carbon nanoparticle/graphene composite, in which the addition of carbon nanoparticles can effectively alleviate the aggregation of Si nanoparticles by separating them from each other, and help graphene sheets build efficient 3D conducting networks for Si nanoparticles. Such Si-C/G composite shows much improved electrochemical properties in terms of specific capacity and cycling performance (ca. 1521 mA h g(-1) at 0.2 C after 200 cycles), as well as a favorable high-rate capability.

  12. Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Sun, Hongyu; Liu, Yanguo; Yu, Yanlong; Ahmad, Mashkoor; Nan, Ding; Zhu, Jing

    2014-01-01

    Graphical abstract: - Highlights: • The mesoporous Co 3 O 4 nanosheets-3D graphene networks have been found to display better LIB performance as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. • Electrochemical impedance spectroscopy shows that the addition of 3DGN largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. • The large specific surface area and porous nature of the Co 3 O 4 nanosheets are very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. - Abstract: Mesoporous Co 3 O 4 nanosheets-3D graphene networks (3DGN) hybrid materials have been synthesized by combining chemical vapor deposition (CVD) and hydrothermal method and investigated as anode materials for Li-ion batteries (LIBs). Microscopic characterizations have been performed to confirm the 3DGN and mesoporous Co 3 O 4 nanostructures. The specific surface area and pore size of the hybrid structures have been found ∼ 34.5 m 2 g −1 and ∼ 3.8 nm respectively. It has been found that the Co 3 O 4 /3DGNs composite displays better LIB performance with enhanced reversible capacity, good cyclic performance and rate capability as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. Electrochemical impedance spectroscopy (EIS) results show that the addition of 3DGN not only preserves high conductivity of the composite electrode, but also largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. The improved electrochemical performance is considered due to the addition of 3DGNs which prevent the cracking of electrode. In addition, the large specific surface area and porous nature of the Co 3 O 4 nanosheets are also very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. Therefore, this combination can be considered to be an attractive candidate as an anode material for LIBs

  13. SPLAI: Computational Finite Element Model for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ruzana Ishak

    2006-01-01

    Full Text Available Wireless sensor network refers to a group of sensors, linked by a wireless medium to perform distributed sensing task. The primary interest is their capability in monitoring the physical environment through the deployment of numerous tiny, intelligent, wireless networked sensor nodes. Our interest consists of a sensor network, which includes a few specialized nodes called processing elements that can perform some limited computational capabilities. In this paper, we propose a model called SPLAI that allows the network to compute a finite element problem where the processing elements are modeled as the nodes in the linear triangular approximation problem. Our model also considers the case of some failures of the sensors. A simulation model to visualize this network has been developed using C++ on the Windows environment.

  14. Direct formation of reduced graphene oxide and 3D lightweight nickel network composite foam by hydrohalic acids and its application for high-performance supercapacitors.

    Science.gov (United States)

    Huang, Haifu; Tang, Yanmei; Xu, Lianqiang; Tang, Shaolong; Du, Youwei

    2014-07-09

    Here, a novel graphene composite foam with 3D lightweight continuous and interconnected nickel network was successfully synthesized by hydroiodic (HI) acid using nickel foam as substrate template. The graphene had closely coated on the backbone of the 3D nickel conductive network to form nickel network supported composite foam without any polymeric binder during the HI reduction of GO process, and the nickel conductive network can be maintained even in only a small amount of nickel with 1.1 mg/cm(2) and had replaced the traditional current collector nickel foam (35 mg/cm(2)). In the electrochemical measurement, a supercapacitor device based on the 3D nickel network and graphene composite foam exhibited high rate capability of 100 F/g at 0.5 A/g and 86.7 F/g at 62.5 A/g, good cycle stability with capacitance retention of 95% after 2000 cycles, low internal resistance (1.68 Ω), and excellent flexible properties. Furthermore, the gravimetric capacitance (calculated using the total mass of the electrode) was high up to 40.9 F/g. Our work not only demonstrates high-quality graphene/nickel composite foam, but also provides a universal route for the rational design of high performance of supercapacitors.

  15. Interconnected 3 D Network of Graphene-Oxide Nanosheets Decorated with Carbon Dots for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhao, Xiao; Li, Ming; Dong, Hanwu; Liu, Yingliang; Hu, Hang; Cai, Yijin; Liang, Yeru; Xiao, Yong; Zheng, Mingtao

    2017-06-22

    Interconnected 3 D nanosheet networks of reduced graphene oxide decorated with carbon dots (rGO/CDs) are successfully fabricated through a simple one-pot hydrothermal process. The as-prepared rGO/CDs present appropriate 3 D interconnectivity and abundant stable oxygen-containing functional groups, to which we can attribute the excellent electrochemical performance such as high specific capacitance, good rate capability, and great cycling stability. Employed as binder-free electrodes for supercapacitors, the resulting rGO/CDs exhibit excellent long-term cycling stability (ca. 92 % capacitance retention after 20 000 charge/discharge cycles at current density of 10 A g -1 ) as well as a maximum specific capacitance of about 308 F g -1 at current density of 0.5 A g -1 , which is much higher than that of rGO (200 F g -1 ) and CDs (2.2 F g -1 ). This work provides a promising strategy to fabricate graphene-based nanomaterials with greatly boosted electrochemical performances by decoration of with CDs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    Science.gov (United States)

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  17. Three-dimensional cross-linked carbon network wrapped with ordered polyaniline nanowires for high-performance pseudo-supercapacitors

    Science.gov (United States)

    Hu, Huan; Liu, Shuwu; Hanif, Muddasir; Chen, Shuiliang; Hou, Haoqing

    2014-12-01

    The polyaniline (PANI)-based pseudo-supercapacitor has been extensively studied due to its good conductivity, ease of synthesis, low-cost monomer, tunable properties and remarkable specific capacitance. In this work, a three-dimensional cross-linked carbon network (3D-CCN) was used as a contact-resistance-free substrate for PANI-based pseudo-supercapacitors. The ordered PANI nanowires (PaNWs) were grown on the 3D-CCN to form PaNWs/3D-CCN composites by in-situ polymerization. The PaNWs/3D-CCN composites exhibited a specific capacitance (Cs) of 1191.8 F g-1 at a current density of 0.5 A g-1 and a superior rate capability with 66.4% capacitance retention at 100.0 A g-1. The high specific capacitance is attributed to the thin PaNW coating and the spaced PANI nanowire array, which ensure a higher utilization of PANI due to the ease of diffusion of protons through/on the PANI nanowires. In addition, the unique 3D-CCN was used as a high-conductivity platform (or skeleton) with no contact resistance for fast electron transfer and facile charge transport within the composites. Therefore, the binder-free composites can process rapid gains or losses of electrons and ions, even at a high current density. As a result, the specific capacitance and rate capability of our composites are remarkably higher than those of other PANI composites.

  18. Optimization of deformation monitoring networks using finite element strain analysis

    Science.gov (United States)

    Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.

    2018-04-01

    An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.

  19. Network application of PIXE trace element analysis

    International Nuclear Information System (INIS)

    Niizeki, T.; Kawasaki, K.; Hattori, T.

    2003-01-01

    Particle Induced X-ray Emission (PIXE) is a very sensitive analytical technique for determinations of trace elements. But the number of users is limited because there are not so much accelerators which can be used easily. On the other hand, PIXE is a typical machine analysis which can easily analyze automatically and make online data acquisition system. If there is useful online data handling system then PIXE analysis should be more useful for many persons. Therefore we develop to online PIXE facility at Tokyo Institute of Technology VdG laboratory and use it for environmental educations. (author)

  20. FY1995 ultra-high performance semiconductor lasers for advanced optical information network; 1995 nendo kodo hikari joho tsushinmo e muketa kyokugen seino handotai laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this research was to study and develop ultra-high performance semiconductor light source devices that should facilitate construction of advanced optical information networks. The semiconductor devices mentioned above are enhanced and integrated versions of distributed feedback (DFB) lasers based on 'gain coupling', which the group of the research coordinator has been investigating as a pioneer in the world. This research aimed at development of ultra-high performance semiconductor lasers that surpass the first generation conventional DFB lasers in any respect, by strengthening important device characteristics for system applications of the gain-coupled DFB lasers. The achievements of this research are listed below : 1. In-situ characterization of As-P exchange in MOVPE 2. Development of 1.55 {mu}m gain-coupled DFB lasers of absorptive grating type 3. Establishment of measurement technique for gain-coupling coefficients 4. Enlargement of small signal modulation response by the absorptive grating 5. Prediction of lower analog modulation distortion 6. Characterization of reflection-induced noise 7. Proposal and Demonstration of wavelength trimming 8. Proposal and Fabrication of GC DFB laser triode (NEDO)

  1. The EU network on trace element speciation in full swing

    DEFF Research Database (Denmark)

    Cornelis, R.; Camara, C.; Ebdon, L.

    2000-01-01

    health and hygiene. The network covers a number of important issues including organotin compounds, chromium and nickel species, chemical characterisation of environmental and industrial particulate samples, risk assessment, selenium and a series of other essential and toxic elements in food, as well......The EC-funded thematic network 'Speciation 21' links scientists in analytical chemistry working in method development for the chemical speciation of trace elements, and potential users from industry and representatives of legislative agencies, in the field of environment, food and occupational...

  2. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors

    Science.gov (United States)

    Hao, Xiaodong; Wang, Jie; Ding, Bing; Wang, Ya; Chang, Zhi; Dou, Hui; Zhang, Xiaogang

    2017-06-01

    Bacterial cellulose (BC), a typical biomass prepared from the microbial fermentation process, has been proved that it can be an ideal platform for design of three-dimensional (3D) multifunctional nanomaterials in energy storage and conversion field. Here we developed a simple and general silica-assisted strategy for fabrication of interconnected 3D meso-microporous carbon nanofiber networks by confine nanospace pyrolysis of sustainable BC, which can be used as binder-free electrodes for high-performance supercapacitors. The synthesized carbon nanofibers exhibited the features of interconnected 3D networks architecture, large surface area (624 m2 g-1), mesopores-dominated hierarchical porosity, and high graphitization degree. The as-prepared electrode (CN-BC) displayed a maximum specific capacitance of 302 F g-1 at a current density of 0.5 A g-1, high-rate capability and good cyclicity in 6 M KOH electrolyte. This work, together with cost-effective preparation strategy to make high-value utilization of cheap biomass, should have significant implications in the green and mass-producible energy storage.

  3. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yapei; Pitet, Louis M.; Finlay, John A.; Brewer, Lenora H.; Cone, Gemma; Betts, Douglas E.; Callow, Maureen E.; Callow, James A.; Wendt, Dean E.; Hillmyer, Marc A.; DeSimone, Joseph M. (Birmingham UK); (NCSU); (UNC); (Cal. Polytech.); (UMM)

    2013-03-07

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M{sub w} = 1500 g mol{sup -1}) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M{sub w} = 300, 475, 1100 g mol{sup -1}), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  4. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings.

    Science.gov (United States)

    Wang, Yapei; Pitet, Louis M; Finlay, John A; Brewer, Lenora H; Cone, Gemma; Betts, Douglas E; Callow, Maureen E; Callow, James A; Wendt, Dean E; Hillmyer, Marc A; DeSimonea, Joseph M

    2011-01-01

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  5. Towards a Scalable and Adaptive Application Support Platform for Large-Scale Distributed E-Sciences in High-Performance Network Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chase Qishi [New Jersey Inst. of Technology, Newark, NJ (United States); Univ. of Memphis, TN (United States); Zhu, Michelle Mengxia [Southern Illinois Univ., Carbondale, IL (United States)

    2016-06-06

    The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models feature diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific

  6. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  7. Ultra-Sensitive Elemental Analysis Using Plasmas 5.Speciation of Arsenic Compounds in Biological Samples by High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry System

    Science.gov (United States)

    Kaise, Toshikazu

    Arsenic originating from the lithosphere is widely distributed in the environment. Many arsenicals in the environment are in organic and methylated species. These arsenic compounds in drinking water or food products of marine origin are absorbed in human digestive tracts, metabolized in the human body, and excreted viatheurine. Because arsenic shows varying biological a spects depending on its chemical species, the biological characteristics of arsenic must be determined. It is thought that some metabolic pathways for arsenic and some arsenic circulation exist in aqueous ecosystems. In this paper, the current status of the speciation analysis of arsenic by HPLC/ICP-MS (High Performance Liquid Chromatography-Inductively Coupled Plasma Mass spectrometry) in environmental and biological samples is summarized using recent data.

  8. School-wide implementation of the elements of effective classroom instruction: Lessons from a high-performing, high-poverty urban school

    Science.gov (United States)

    Dyson, Hilarie

    2008-10-01

    The purpose of the study was to identify structures and systems implemented in a high-performing high-poverty urban school to promote high academic achievement among students of color. The researcher used a sociocultural theoretical framework to examine the influence of culture on the structures and systems that increased performance by African American and Hispanic students. Four research questions guided the study: (1) What are the trends and patterns of student performance among students of color? (2) What are the organizational structures and systems that are perceived to contribute to high student performance in high-poverty urban schools with high concentrations of students of color? (3) How are the organizational structures and systems implemented to support school-wide effective classroom instruction that promotes student learning? (4) How is the construct of race reflected in the school's structures and systems? Qualitative data were collected through interviews, observations, and artifact collection. A single case study method was employed and collected data were triangulated to capture and explore the rich details of the study. The study focused on a high-performing high-poverty urban elementary school located in southern California. The school population consisted of 99% students of color and 93% were economically disadvantaged. The school was selected for making significant and consistent growth in Academic Performance Index and Adequate Yearly Progress over a 3-year period. The school-wide structures and systems studied were (a) leadership, (b) school climate and culture, (c) standards-based instruction, (d) data-driven decision making, and (e) professional development. Four common themes emerged from the findings: (a) instructional leadership that focused on teaching and learning; (b) high expectations for all students; (c) school-wide focus on student achievement using standards, data, and culturally responsive teaching; and (d) positive

  9. Distributed Finite Element Analysis Using a Transputer Network

    Science.gov (United States)

    Watson, James; Favenesi, James; Danial, Albert; Tombrello, Joseph; Yang, Dabby; Reynolds, Brian; Turrentine, Ronald; Shephard, Mark; Baehmann, Peggy

    1989-01-01

    The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the $80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the $15,000,000 Cray X-MP24 system.

  10. Behavior of new complexes of tetrakis(4-methoxylphenyl)porphyrin with heavy rare earth elements in reversed-phase high performance liquid chromatography.

    Science.gov (United States)

    Zhang, Jun-Feng; Wang, Hong; Hou, An-Xin; Wang, Chang-Fa; Zhang, Hua-Shan

    2004-08-01

    An HPLC method has been developed for the separation of new complexes of tetrakis(4-methoxylphenyl)porphyrin (TMOPP) with four heavy rare earth elements (RE = Y, Er, Tm, and Yb). The function of amine and acid in the mobile phase has been investigated and a reasonable explanation is presented. Successful separation of the RE-TMOPP-Cl complexes is accomplished in 10 min with a mobile phase consisting of methanol-water-acetic acid-triethanolamine. The detection limits (S/N= 3) for the four complexes are 0.01 microg/mL. This method is rapid, sensitive, and simple.

  11. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  12. High Performance Macromolecular Material

    National Research Council Canada - National Science Library

    Forest, M

    2002-01-01

    .... In essence, most commercial high-performance polymers are processed through fiber spinning, following Nature and spider silk, which is still pound-for-pound the toughest liquid crystalline polymer...

  13. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Transport Protocol (Transmission Control Protocol/User Datagram Protocol [TCP/UDP]) Analysis

    Science.gov (United States)

    2015-09-01

    the network Mac8 Medium Access Control ( Mac ) (Ethernet) address observed as destination for outgoing packets subsessionid8 Zero-based index of...15. SUBJECT TERMS tactical networks, data reduction, high-performance computing, data analysis, big data 16. SECURITY CLASSIFICATION OF: 17...Integer index of row cts_deid Device (instrument) Identifier where observation took place cts_collpt Collection point or logical observation point on

  14. Neural network applied to elemental archaeological Marajoara ceramic compositions

    International Nuclear Information System (INIS)

    Toyota, Rosimeiri G.; Munita, Casimiro S.; Boscarioli, Clodis

    2009-01-01

    In the last decades several analytical techniques have been used in archaeological ceramics studies. However, instrumental neutron activation analysis, INAA, employing gamma-ray spectrometry seems to be the most suitable technique because it is a simple analytical method in its purely instrumental form. The purpose of this work was to determine the concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, and Zn in 160 original marajoara ceramic fragments by INAA. Marajoara ceramics culture was sophisticated and well developed. This culture reached its peak during the V and XIV centuries in Marajo Island located on the Amazon River delta area in Brazil. The purpose of the quantitative data was to identify compositionally homogeneous groups within the database. Having this in mind, the data set was first converted to base-10 logarithms to compensate for the differences in magnitude between major elements and trace elements, and also to yield a closer to normal distribution for several trace elements. After that, the data were analyzed using the Mahalanobis distance and using the lambda Wilks as critical value to identify the outliers. The similarities among the samples were studied by means of cluster analysis, principal components analysis and discriminant analysis. Additional confirmation of these groups was made by using elemental concentration bivariate plots. The results showed that there were two very well defined groups in the data set. In addition, the database was studied using artificial neural network with unsupervised learning strategy known as self-organizing maps to classify the marajoara ceramics. The experiments carried out showed that self-organizing maps artificial neural network is capable of discriminating ceramic fragments like multivariate statistical methods, and, again the results showed that the database was formed by two groups. (author)

  15. High performance conductometry

    International Nuclear Information System (INIS)

    Saha, B.

    2000-01-01

    Inexpensive but high performance systems have emerged progressively for basic and applied measurements in physical and analytical chemistry on one hand, and for on-line monitoring and leak detection in plants and facilities on the other. Salient features of the developments will be presented with specific examples

  16. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  17. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...... concretes, workability, ductility, and confinement problems....

  18. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    . Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  19. Using NVMe Gen3 PCIe SSD Cards in High-density Servers for High-performance Big Data Transfer Over Multiple Network Channels

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chin [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-07

    This Technical Note describes how the Zettar team came up with a data transfer cluster design that convincingly proved the feasibility of using high-density servers for high-performance Big Data transfers. It then outlines the tests, operations, and observations that address a potential over-heating concern regarding the use of Non-Volatile Memory Host Controller Interface Specification (NVMHCI aka NVM Express or NVMe) Gen 3 PCIe SSD cards in high-density servers. Finally, it points out the possibility of developing a new generation of high-performance Science DMZ data transfer system for the data-intensive research community and commercial enterprises.

  20. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  1. High performance polymeric foams

    International Nuclear Information System (INIS)

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  2. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors

    Science.gov (United States)

    Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; Xu, Zhichuan J.

    2016-01-01

    Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices. PMID:26795067

  3. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  4. Determination of trace amounts of rare-earth elements in highly pure neodymium oxide by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and high-performance liquid chromatography (HPLC) techniques

    Science.gov (United States)

    Pedreira, W. R.; Sarkis, J. E. S.; da Silva Queiroz, C. A.; Rodrigues, C.; Tomiyoshi, I. A.; Abrão, A.

    2003-02-01

    Recently rare-earth elements (REE) have received much attention in fields of geochemistry and industry. Rapid and accurate determinations of them are increasingly required as industrial demands expand. Sector field inductively coupled plasma mass spectrometry (ICP-SFMS) with high-performance liquid chromatography (HPLC) has been applied to the determination of REE. HR ICP-MS was used as an element-selective detector for HPLC in highly pure materials. The separation of REE with HPLC helped to avoid erroneous analytical results due to spectral interferences. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the HPLC/ICP-SFMS system using a concentration gradient methods. The detection limits with the HPLC/ICP-SFMS system were about 0.5-10 pg mL-1. The percentage recovery ranged from 90% to 100% for different REE. The %RSD of the methods varying between 2.5% and 4.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two highly pure neodymium oxides samples (IPEN and Johnson Matthey Company) were performed. In short, the IPEN's materials which are highly pure (>99.9%) were successfully analyzed without spectral interferences.

  5. Determination of trace amounts of rare-earth elements in highly pure neodymium oxide by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and high-performance liquid chromatography (HPLC) techniques

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Sarkis, J.E.S.; Silva Queiroz, C.A. da; Rodrigues, C.; Tomiyoshi, I.A.; Abrao, A.

    2003-01-01

    Recently rare-earth elements (REE) have received much attention in fields of geochemistry and industry. Rapid and accurate determinations of them are increasingly required as industrial demands expand. Sector field inductively coupled plasma mass spectrometry (ICP-SFMS) with high-performance liquid chromatography (HPLC) has been applied to the determination of REE. HR ICP-MS was used as an element-selective detector for HPLC in highly pure materials. The separation of REE with HPLC helped to avoid erroneous analytical results due to spectral interferences. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the HPLC/ICP-SFMS system using a concentration gradient methods. The detection limits with the HPLC/ICP-SFMS system were about 0.5-10 pg mL -1 . The percentage recovery ranged from 90% to 100% for different REE. The %RSD of the methods varying between 2.5% and 4.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two highly pure neodymium oxides samples (IPEN and Johnson Matthey Company) were performed. In short, the IPEN's materials which are highly pure (>99.9%) were successfully analyzed without spectral interferences

  6. High performance data transfer

    Science.gov (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  7. A High-Performance Recycling Solution for Polystyrene Achieved by the Synthesis of Renewable Poly(thioether) Networks Derived from d-Limonene

    Science.gov (United States)

    Nash, Landon D.; Rodriguez, Jennifer N.; Lonnecker, Alexander T.; Raymond, Jeffery E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    Nanocomposite polymers have been prepared using a new sustainable materials synthesis process in which d-Limonene functions simultaneously both as a solvent for recycling polystyrene (PS) waste and as a monomer that undergoes UV-catalyzed thiol-ene polymerization reactions with polythiol co-monomers to afford polymeric products comprised of precipitated PS phases dispersed throughout elastomeric poly(thioether) networks. These blended networks exhibit mechanical properties that greatly exceed those of either polystyrene or the poly(thioether) network homopolymers alone. PMID:24249666

  8. High Performance Computing Multicast

    Science.gov (United States)

    2012-02-01

    A History of the Virtual Synchrony Replication Model,” in Replication: Theory and Practice, Charron-Bost, B., Pedone, F., and Schiper, A. (Eds...Performance Computing IP / IPv4 Internet Protocol (version 4.0) IPMC Internet Protocol MultiCast LAN Local Area Network MCMD Dr. Multicast MPI

  9. Phase reduction and synchronization of a network of coupled dynamical elements exhibiting collective oscillations

    Science.gov (United States)

    Nakao, Hiroya; Yasui, Sho; Ota, Masashi; Arai, Kensuke; Kawamura, Yoji

    2018-04-01

    A general phase reduction method for a network of coupled dynamical elements exhibiting collective oscillations, which is applicable to arbitrary networks of heterogeneous dynamical elements, is developed. A set of coupled adjoint equations for phase sensitivity functions, which characterize the phase response of the collective oscillation to small perturbations applied to individual elements, is derived. Using the phase sensitivity functions, collective oscillation of the network under weak perturbation can be described approximately by a one-dimensional phase equation. As an example, mutual synchronization between a pair of collectively oscillating networks of excitable and oscillatory FitzHugh-Nagumo elements with random coupling is studied.

  10. Controllable synthesis of cobalt oxide nanoflakes on three-dimensional porous cobalt networks as high-performance cathode for alkaline hybrid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua, E-mail: chenminghuahrb@126.com [Key Laboratory of Engineering Dielectric and Applications, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Jiawei; Qi, Meili; Yin, Jinghua; Chen, Qingguo [Key Laboratory of Engineering Dielectric and Applications, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China)

    2016-02-15

    Highlights: • Construct self-supported porous Co networks. • Porous Co/CoO composite films show high capacity and good cycling life. • Porous conductive metal network is favorable for fast ion/electron transfer. - Abstract: Herein we report porous three-dimensional cobalt networks supported CoO nanoflakes by the combination of successive electro-deposition methods. The electrodeposited Co networks have average large pores of ∼5 μm and all the branches are composed of interconnected nanoparticles. CoO nanoflakes with thickness of ∼15 nm are uniformly coated on the Co networks forming self-supported Co/CoO composite films. The as-prepared Co/CoO composite films possess combined properties of porous structure and strong mechanical stability. As cathode for alkaline hybrid batteries, the Co/CoO composite films exhibit good electrochemical performances with high capacity of 83.5 mAh g{sup −1} at 1 A g{sup −1} and stable high-rate cycling life (65 mAh g{sup −1} at 10 A g{sup −1} after 15,000 cycles). The hierarchical porous architecture provides positive roles in the enhancement of electrochemical properties, including fast electronic transportation path, short diffusion of ions and high contact area between the active material and the electrolyte.

  11. Determination of 20 trace elements and arsenic species for a realgar-containing traditional Chinese medicine Niuhuang Jiedu tablets by direct inductively coupled plasma-mass spectrometry and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Jin, Pengfei; Liang, Xiaoli; Xia, Lufeng; Jahouh, Farid; Wang, Rong; Kuang, Yongmei; Hu, Xin

    2016-01-01

    Niuhuang Jiedu tablet (NHJDT) is a realgar-containing traditional Chinese medicine. A direct inductively coupled plasma-mass spectrometry (ICP-MS) method for the simultaneous determination of 20 trace elements (Mg, K, Ca, Na, Fe, As, Zn, Sr, Ba, Cu, Mn, Ni, Pb, V, Cr, Se, Co, Mo, Cd, Hg) in NHJDT, as well as in water, gastric fluid and intestinal fluid was established. Meanwhile, a high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and for the identification of arsenobetaine (AsB) and arsenocholine (AsC) in these extracts. Both methods were fully validated in the respect of linearity, sensitivity, precision, stability and accuracy. The reliability of the ICP-MS method was further evaluated using a certified standard reference material prepared from dried tomato leaves (NIST, SRM 1572a). The analysis showed that some manufacturers formulated lower amount of realgar than required in the Chinese Pharmacopoeia (ChP) in their preparations. In addition, almost same extraction profiles for total As and inorganic As were found in water and in gastrointestinal fluids, while higher extraction rates for other 19 elements were observed in gastrointestinal fluids. Our findings show that the toxicities of Hg, Cu, Cd and Pb in NHJDP are low, while the real As toxicity in NHJDT should be deeply investigated. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. High performance sapphire windows

    Science.gov (United States)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  13. Morphology-controllable synthesis of 3D CoNiO_2 nano-networks as a high-performance positive electrode material for supercapacitors

    International Nuclear Information System (INIS)

    Zhang, Jijun; Chen, Zexiang; Wang, Yan; Li, Hai

    2016-01-01

    Here, we report a novel three-dimensional (3D) assembly of CoNiO_2 nanowire networks using a facile and scalable hydrothermal method followed by an annealing process for supercapacitor applications. The X-ray diffraction (XRD) results revealed the formation of highly-crystalline CoNiO_2 nano-networks. Scanning electron microscope (SEM) analysis showed the formation of a 3D interconnected network of CoNiO_2 nanowires during the synthesis. In addition, a formation mechanism for 3D CoNiO_2 nano-networks was proposed. Electrochemical analysis showed a typical pseudocapacitive behavior for the CoNiO_2 nanowire networks. The as-prepared CoNiO_2 electrode exhibited a high specific capacitance of 1462 F g"−"1 (45.32 F cm"−"2) at a current density of 1 A g"−"1 (31 mA cm"−"2) and an excellent rate capability of 1000 F g"−"1 (31 F cm"−"2) at 32 A g"−"1 (992 mA cm"−"2). Moreover, a good cycle stability was achieved at 4 A g"−"1 with no degradation over 800 cycles, indicating the stable 3D structure of CoNiO_2 after the redox reactions. The high rate capability and the good cycle stability indicated that the as-prepared 3D CoNiO_2 electrode could satisfy the needs of supercapacitors with both high power and energy densities. - Highlights: • A three-dimensional (3D) assembly of CoNiO_2 nanowire networks was prepared. • Sodium-p-styrenesulfonate (PSS) plays a key role in forming the structure. • The as-prepared 3D CoNiO_2 electrode exhibits high power and energy densities. • The proposed method is easy to provide an industrial mass production. • The method can be used to fabricate different morphologies of nanomaterials.

  14. Essential elements of online information networks on invasive alien species

    Science.gov (United States)

    Simpson, A.; Sellers, E.; Grosse, A.; Xie, Y.

    2006-01-01

    In order to be effective, information must be placed in the proper context and organized in a manner that is logical and (preferably) standardized. Recently, invasive alien species (IAS) scientists have begun to create online networks to share their information concerning IAS prevention and control. At a special networking session at the Beijing International Symposium on Biological Invasions, an online Eastern Asia-North American IAS Information Network (EA-NA Network) was proposed. To prepare for the development of this network, and to provide models for other regional collaborations, we compare four examples of global, regional, and national online IAS information networks: the Global Invasive Species Information Network, the Invasives Information Network of the Inter-American Biodiversity Information Network, the Chinese Species Information System, and the Invasive Species Information Node of the US National Biological Information Infrastructure. We conclude that IAS networks require a common goal, dedicated leaders, effective communication, and broad endorsement, in order to obtain sustainable, long-term funding and long-term stability. They need to start small, use the experience of other networks, partner with others, and showcase benefits. Global integration and synergy among invasive species networks will succeed with contributions from both the top-down and the bottom-up. ?? 2006 Springer.

  15. Development of high performance cladding

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  16. Modern industrial simulation tools: Kernel-level integration of high performance parallel processing, object-oriented numerics, and adaptive finite element analysis. Final report, July 16, 1993--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Deb, M.K.; Kennon, S.R.

    1998-04-01

    A cooperative R&D effort between industry and the US government, this project, under the HPPP (High Performance Parallel Processing) initiative of the Dept. of Energy, started the investigations into parallel object-oriented (OO) numerics. The basic goal was to research and utilize the emerging technologies to create a physics-independent computational kernel for applications using adaptive finite element method. The industrial team included Computational Mechanics Co., Inc. (COMCO) of Austin, TX (as the primary contractor), Scientific Computing Associates, Inc. (SCA) of New Haven, CT, Texaco and CONVEX. Sandia National Laboratory (Albq., NM) was the technology partner from the government side. COMCO had the responsibility of the main kernel design and development, SCA had the lead in parallel solver technology and guidance on OO technologies was Sandia`s main expertise in this venture. CONVEX and Texaco supported the partnership by hardware resource and application knowledge, respectively. As such, a minimum of fifty-percent cost-sharing was provided by the industry partnership during this project. This report describes the R&D activities and provides some details about the prototype kernel and example applications.

  17. NEBULAS A High Performance Data-Driven Event-Building Architecture based on an Asynchronous Self-Routing Packet-Switching Network

    CERN Multimedia

    Costa, M; Letheren, M; Djidi, K; Gustafsson, L; Lazraq, T; Minerskjold, M; Tenhunen, H; Manabe, A; Nomachi, M; Watase, Y

    2002-01-01

    RD31 : The project is evaluating a new approach to event building for level-two and level-three processor farms at high rate experiments. It is based on the use of commercial switching fabrics to replace the traditional bus-based architectures used in most previous data acquisition sytems. Switching fabrics permit the construction of parallel, expandable, hardware-driven event builders that can deliver higher aggregate throughput than the bus-based architectures. A standard industrial switching fabric technology is being evaluated. It is based on Asynchronous Transfer Mode (ATM) packet-switching network technology. Commercial, expandable ATM switching fabrics and processor interfaces, now being developed for the future Broadband ISDN infrastructure, could form the basis of an implementation. The goals of the project are to demonstrate the viability of this approach, to evaluate the trade-offs involved in make versus buy options, to study the interfacing of the physics frontend data buffers to such a fabric, a...

  18. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Peichao, E-mail: lianpeichao@126.com [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jingyi [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Cai, Dandan; Liu, Guoxue [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yingying [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Haihui, E-mail: hhwang@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-08-01

    Highlights: • Porous nano-sized Sn@C/graphene electrode material was designed and prepared. • The preparation method presented here can avoid the agglomeration of nanoparticles. • The prepared Sn@C/graphene electrode material exhibits outstanding cyclability. - Abstract: Tin is a promising high-capacity anode material for lithium-ion batteries, but it usually suffers from the problem of poor cycling stability due to the large volume change during the charge–discharge process. In this article, porous nano-sized Sn@C/graphene electrode material with three-dimensional carbon network was designed and prepared. Reducing the size of the Sn particles to nanoscale can mitigate the absolute strain induced by the large volume change during lithiation–delithiation process, and retard particle pulverization. The porous structure can provide a void space, which helps to accommodate the volume changes of the Sn nanoparticles during the lithium uptake-release process. The carbon shell can avoid the aggregation of the Sn nanoparticles on the same piece of graphene and detachment of the pulverized Sn particles during the charge–discharge process. The 3D carbon network consisted of graphene sheets and carbon shells can not only play a structural buffering role in minimizing the mechanical stress caused by the volume change of Sn, but also keep the overall electrode highly conductive during the lithium uptake-release process. As a result, the as-prepared Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries exhibited outstanding cyclability. The reversible specific capacity is almost constant from the tenth cycle to the fiftieth cycle, which is about 600 mA h g{sup −1}. The strategy presented in this work may be extended to improve the cycle performances of other high-capacity electrode materials with large volume variations during charge–discharge processes.

  19. Ultra-fine CuO Nanoparticles Embedded in Three-dimensional Graphene Network Nano-structure for High-performance Flexible Supercapacitors

    International Nuclear Information System (INIS)

    Li, Yanrong; Wang, Xue; Yang, Qi; Javed, Muhammad Sufyan; Liu, Qipeng; Xu, Weina; Hu, Chenguo; Wei, Dapeng

    2017-01-01

    High conductivity, large specific surface area and excellent performance redox materials are urgently desired for improving electrochemical energy storage. However, with single redox material it is hard to achieve these properties. Herein, we develop ultra-fine CuO nanoparticles embedded in three-dimensional graphene network grown on carbon cloth (CuO/3DGN/CC) to construct a novel electrode material with advantages of high conductivity, large specific area and excellent redox activity for supercapacitor application. The CuO/3DGN/CC with different CuO mass ratios are utilized to fabricate supercapacitors and the optimized mass loading achieves the high areal capacitance of 2787 mF cm"−"2 and specific capacitance of 1539.8 F g"−"1 at current density of 6 mA cm"−"2 with good stability. In addition, a high-flexible solid-state symmetric supercapacitor is also fabricated by using this CuO/3DGN/CC composite. The device shows excellent electrochemical performance even at various bending angles indicating a promising application for wearable electronic devices, and two devices with area 2 × 4 cm"2 in series can light nine light emitting diodes for more than 3 minutes.

  20. Electrochemically synthesized large area network of Co{sub x}Ni{sub y}Al{sub z} layered triple hydroxides nanosheets: A high performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay [Carbon Technology Unit, National Physical Laboratory, New Delhi 110012 (India); Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan); Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012 (Japan); Gupta, Shubhra; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2009-04-15

    A network of Co{sub x}Ni{sub y}Al{sub z} layered triple hydroxides (LTHs) nanosheets was prepared by the potentiostatic deposition process at -1.0 V (vs. Ag/AgCl) onto stainless steel electrodes. X-ray diffraction patterns show that the Co{sub x}Ni{sub y}Al{sub z}LTHs belong to the hexagonal system with layered structure. Cyclic voltammetry and charge discharge measurements in the potential range of -0.1 to 0.5 V and 0.0-0.4 V, respectively, vs. Ag/AgCl in 1 M KOH electrolyte indicate that Co{sub x}Ni{sub y}Al{sub z}LTHs have excellent supercapacitive characteristics. The maximum specific capacitance of {proportional_to}1263 F g{sup -1} was obtained for Co{sub 0.59}Ni{sub 0.21}Al{sub 0.20}LTH. The impedance studies indicated highly conducting nature of the Co{sub x}Ni{sub y}Al{sub z}LTHs. (author)

  1. High Performance Work Systems for Online Education

    Science.gov (United States)

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  2. Assuring SS7 dependability: A robustness characterization of signaling network elements

    Science.gov (United States)

    Karmarkar, Vikram V.

    1994-04-01

    Current and evolving telecommunication services will rely on signaling network performance and reliability properties to build competitive call and connection control mechanisms under increasing demands on flexibility without compromising on quality. The dimensions of signaling dependability most often evaluated are the Rate of Call Loss and End-to-End Route Unavailability. A third dimension of dependability that captures the concern about large or catastrophic failures can be termed Network Robustness. This paper is concerned with the dependability aspects of the evolving Signaling System No. 7 (SS7) networks and attempts to strike a balance between the probabilistic and deterministic measures that must be evaluated to accomplish a risk-trend assessment to drive architecture decisions. Starting with high-level network dependability objectives and field experience with SS7 in the U.S., potential areas of growing stringency in network element (NE) dependability are identified to improve against current measures of SS7 network quality, as per-call signaling interactions increase. A sensitivity analysis is presented to highlight the impact due to imperfect coverage of duplex network component or element failures (i.e., correlated failures), to assist in the setting of requirements on NE robustness. A benefit analysis, covering several dimensions of dependability, is used to generate the domain of solutions available to the network architect in terms of network and network element fault tolerance that may be specified to meet the desired signaling quality goals.

  3. Determination of trace elements in high pure rare earth oxide by double focusing inductively coupled plasma mass spectrometry (HR ICP-MS) and high performance liquid chromatography (HPLC) techniques

    International Nuclear Information System (INIS)

    Pedreira Filho, Walter dos Reis

    2000-01-01

    Rare earth oxides are used in several technological fields whose applications can be observed in several areas of modern technology, among which are included: lasers, semiconductors semi, high purity materials and metallic alloys. The field of applications of the rare earth elements is quite wide. Several important industrial applications are ceramics, catalysts and metallurgical as well as research areas and high technology sectors. Such applications have been presenting an accentuated growth in the last years. Chemical characterization of rare earth oxides of high purity has been constituting one of the major challenges of analytical chemistry. Several analytical techniques were used for chemical characterization of high purity rare earth the oxides. Even so, those techniques present limitations when one needs to characterize materials of a high level of purity, as in the case of rare earth oxides. Some of those limitations are associated, for example, to spectral interference. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a powerful analytical tool for quantitative analysis of metal impurities in high purity materials. The Instituto de Pesquisas Energeticas e Nucleares (IPEN) has an unit of production and purification of rare earth oxides, with above 99,9% level of purity. In this work, the rare earth impurities were characterized in samples (La 2 O 3 ; CeO 2 ; Pr 6 O 11 ; Nd 2 O 3 ; Sm 2 O 3 ; Gd 2 O 3 ; Y 2 O 3 ) produced at the IPEN and certified standard materials produced by Johnson Matthey Chemical (JMC). The technique of high performance liquid chromatography (HPLC) was used in the separation of the impurities. Quantification of metallic impurities was carried out as inductively coupled plasma mass spectrometer (HR-ICP MS). In this work it is presented a new analytical methodology in the chemical characterization of metallic impurities in rare earth oxides of high purity (> 99,9%) with and without separation of the matrix. Analyses of standard

  4. Elements of learning technologies designing of engineering networks heat

    Directory of Open Access Journals (Sweden)

    Sidorkina Irina G.

    2016-01-01

    Full Text Available Modern educational systems function as a medium fast analysis of shared information that defines them as analytical. The purpose of analytical information processing systems: working with distributed data on a global computer networks, mining and processing of semi structured information, knowledge. Existing mathematical and heuristic methods for the automated synthesis of electronic courses and their corresponding algorithms do not allow the full compliance of development realized in the form of adequate criteria for the totality of the properties distributed educational systems within acceptable time limits and characteristic. Therefore, the development of electronic educational applications must be accompanied by a variety of software support intelligent and adaptive functions. In addition, there is no theoretical justification for integrative aspects and their practical applications for intelligent and adaptive systems of designing distance learning courses. Currently, this type of problem may be considered as a potentially promising. The article presents the functionality of the e-learning course on the design engineering of thermal networks, process modeling in engineering networks with the solution of energy efficiency, detection of problem areas; identify the irrational layout of heaters and others.

  5. Polymeric electrochemical element for adaptive networks: Pulse mode

    International Nuclear Information System (INIS)

    Smerieri, Anteo; Berzina, Tatiana; Erokhin, Victor; Fontana, M. P.

    2008-01-01

    An electrochemically controlled polymeric heterojunction working as a memristor, i.e., having memory properties, was investigated in pulse mode, mimicking synaptic behavior of signal transmission in biological systems. Influence of parameters such as pulse duration, interval between pulses, and value of potential base level was analyzed. Learning capabilities were shown to be reversible and repeatable for both potentiation and inhibition of signal transmission. The adaptive behavior of the element was investigated and was shown to be more efficient than the dc mode

  6. AHPCRC - Army High Performance Computing Research Center

    Science.gov (United States)

    2010-01-01

    computing. Of particular interest is the ability of a distrib- uted jamming network (DJN) to jam signals in all or part of a sensor or communications net...and reasoning, assistive technologies. FRIEDRICH (FRITZ) PRINZ Finmeccanica Professor of Engineering, Robert Bosch Chair, Department of Engineering...High Performance Computing Research Center www.ahpcrc.org BARBARA BRYAN AHPCRC Research and Outreach Manager, HPTi (650) 604-3732 bbryan@hpti.com Ms

  7. Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors

    International Nuclear Information System (INIS)

    Liu, Sainan; Wu, Jun; Zhou, Jiang; Fang, Guozhao; Liang, Shuquan

    2015-01-01

    Graphical abstract: Mesoporous NiCo 2 O 4 nanoneedles grown on three dimensional graphene networks have been successfully prepared by a facile solvothermal reaction with subsequent annealing treatment. Significantly, as a binder-free electrode for high-performance lithium-ion batteries and supercapacitors, the hybrid exhibits high specific capacity/capacitance and excellent cycling stability over long-term cycling. - Highlights: • Mesoporous NiCo 2 O 4 nanoneedles grown on 3D graphene networks are successfully prepared. • The NiCo 2 O 4 /3DGN hybrid is directly used as binder-free electrode for LIBs and SCs. • The hybrid exhibits superior long-term cycling stability up to 2000 cycles for LIBs application. • The hybrid delivers a high specific capacitance of 970 F g −1 at 20 A g −1 . • The hybrid demonstrates excellent capacitance retention of ∼96.5% after 3000 cycles for SCs application. - Abstract: Mesoporous nickel cobaltite (NiCo 2 O 4 ) nanoneedles grown on three dimensional graphene networks have been successfully prepared by a facile solvothermal reaction with subsequent annealing treatment. The NiCo 2 O 4 /3DGN hybrid is then used as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. The three dimensional graphene based binder-free electrode is considered more desirable than powder nanostructures in terms of shorter Li + ion diffusion and electron transportation paths, good strain accommodation, better interfacial/chemical distributions and high electrical conductivity. As a result, when used as an anode material for lithium-ion batteries (LIBs), it exhibits high specific discharge capacity as well as superior cycling stability up to 2000 cycles. When it is used for supercapacitor application, this hybrid delivers a high specific capacitance of 970 F g −1 at a high current density of 20 A g −1 with excellent capacitance retention of ∼96.5% after 3000 cycles. Moreover, this synthesis strategy is simple

  8. RavenDB high performance

    CERN Document Server

    Ritchie, Brian

    2013-01-01

    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  9. Phrenic motoneurons: output elements of a highly organized intraspinal network.

    Science.gov (United States)

    Ghali, Michael George Zaki

    2018-03-01

    pontomedullary respiratory network generates the respiratory pattern and relays it to bulbar and spinal respiratory motor outputs. The phrenic motor system controlling diaphragm contraction receives and processes descending commands to produce orderly, synchronous, and cycle-to-cycle-reproducible spatiotemporal firing. Multiple investigators have studied phrenic motoneurons (PhMNs) in an attempt to shed light on local mechanisms underlying phrenic pattern formation. I and colleagues (Marchenko V, Ghali MG, Rogers RF. Am J Physiol Regul Integr Comp Physiol 308: R916-R926, 2015.) recorded PhMNs in unanesthetized, decerebrate rats and related their activity to simultaneous phrenic nerve (PhN) activity by creating a time-frequency representation of PhMN-PhN power and coherence. On the basis of their temporal firing patterns and relationship to PhN activity, we categorized PhMNs into three classes, each of which emerges as a result of intrinsic biophysical and network properties and organizes the orderly contraction of diaphragm motor fibers. For example, early inspiratory diaphragmatic activation by the early coherent burst generated by high-frequency PhMNs may be necessary to prime it to overcome its initial inertia. We have also demonstrated the existence of a prominent role for local intraspinal inhibitory mechanisms in shaping phrenic pattern formation. The objective of this review is to relate and synthesize recent findings with those of previous studies with the aim of demonstrating that the phrenic nucleus is a region of active local processing, rather than a passive relay of descending inputs.

  10. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  11. A novel network of chaotic elements and its application in multi-valued associative memory

    International Nuclear Information System (INIS)

    Xiu Chunbo; Liu Xiangdong; Tang Yunyu; Zhang Yuhe

    2004-01-01

    We give a novel chaotic element model whose activation function composed of Gauss and Sigmoid function. It is shown that the model may exhibit a complex dynamic behavior. The most significant bifurcation processes, leading to chaos, are investigated through the computation of the Lyapunov exponents. Based on this model, we propose a novel network of chaotic elements, which can be applied in associative memory, and then investigate its dynamic behavior. It is worth noting that multi-valued associative memory can also be realized by this network

  12. Planing of land use of structural elements of ecological network at local level

    OpenAIRE

    Tretiak V.; Hun'ko L.

    2016-01-01

    and Management projecting of structural elements of land use of the ecological network on the territory of the village council begins with ecological and landscape micro zoning of the territory of village council, held during the preparatory work for the drafting of land and are finished by the formation of environmentally homogeneous regions, to which the system components of ecological network are tied, as well as environmental measures in the form of local environmental restrictions (encum...

  13. Identification of tipping elements of the Indian Summer Monsoon using climate network approach

    Science.gov (United States)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Spatial and temporal variability of the rainfall is a vital question for more than one billion of people inhabiting the Indian subcontinent. Indian Summer Monsoon (ISM) rainfall is crucial for India's economy, social welfare, and environment and large efforts are being put into predicting the Indian Summer Monsoon. For predictability of the ISM, it is crucial to identify tipping elements - regions over the Indian subcontinent which play a key role in the spatial organization of the Indian monsoon system. Here, we use climate network approach for identification of such tipping elements of the ISM. First, we build climate networks of the extreme rainfall, surface air temperature and pressure over the Indian subcontinent for pre-monsoon, monsoon and post-monsoon seasons. We construct network of extreme rainfall event using observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). For the network of surface air temperature and pressure fields, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). Second, we filter out data by coarse-graining the network through network measures, and identify tipping regions of the ISM. Finally, we compare obtained results of the network analysis with surface wind fields and show that occurrence of the tipping elements is mostly caused by monsoonal wind circulation, migration of the Intertropical Convergence Zone (ITCZ) and Westerlies. We conclude that climate network approach enables to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to identify tipping regions of the ISM. Obtained tipping elements deserve a

  14. ACINO: Report on the design of programmability elements for in-operation network control

    OpenAIRE

    Sköldström Pontus; Junique Stéphane; Marsico Antonio

    2017-01-01

    This ACINO deliverable presents the work performed in task “Design of the programmability elements for in-operation network control” to design the northbound interface of the ACINO orchestrator. The document begins with a review of the requirements of the northbound interface, derived from previous work done related to use cases and application requirements and the expected properties of the ACINO framework (see report "ACINO: The framework for the application-centric network orchestra...

  15. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    International Nuclear Information System (INIS)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  16. Architecting Web Sites for High Performance

    Directory of Open Access Journals (Sweden)

    Arun Iyengar

    2002-01-01

    Full Text Available Web site applications are some of the most challenging high-performance applications currently being developed and deployed. The challenges emerge from the specific combination of high variability in workload characteristics and of high performance demands regarding the service level, scalability, availability, and costs. In recent years, a large body of research has addressed the Web site application domain, and a host of innovative software and hardware solutions have been proposed and deployed. This paper is an overview of recent solutions concerning the architectures and the software infrastructures used in building Web site applications. The presentation emphasizes three of the main functions in a complex Web site: the processing of client requests, the control of service levels, and the interaction with remote network caches.

  17. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  18. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  19. Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis.

    Science.gov (United States)

    Arsovski, Andrej A; Pradinuk, Julian; Guo, Xu Qiu; Wang, Sishuo; Adams, Keith L

    2015-12-01

    Plant genomes contain large numbers of duplicated genes that contribute to the evolution of new functions. Following duplication, genes can exhibit divergence in their coding sequence and their expression patterns. Changes in the cis-regulatory element landscape can result in changes in gene expression patterns. High-throughput methods developed recently can identify potential cis-regulatory elements on a genome-wide scale. Here, we use a recent comprehensive data set of DNase I sequencing-identified cis-regulatory binding sites (footprints) at single-base-pair resolution to compare binding sites and network connectivity in duplicated gene pairs in Arabidopsis (Arabidopsis thaliana). We found that duplicated gene pairs vary greatly in their cis-regulatory element architecture, resulting in changes in regulatory network connectivity. Whole-genome duplicates (WGDs) have approximately twice as many footprints in their promoters left by potential regulatory proteins than do tandem duplicates (TDs). The WGDs have a greater average number of footprint differences between paralogs than TDs. The footprints, in turn, result in more regulatory network connections between WGDs and other genes, forming denser, more complex regulatory networks than shown by TDs. When comparing regulatory connections between duplicates, WGDs had more pairs in which the two genes are either partially or fully diverged in their network connections, but fewer genes with no network connections than the TDs. There is evidence of younger TDs and WGDs having fewer unique connections compared with older duplicates. This study provides insights into cis-regulatory element evolution and network divergence in duplicated genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. High performance in software development

    CERN Multimedia

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  1. Identifying High Performance ERP Projects

    OpenAIRE

    Stensrud, Erik; Myrtveit, Ingunn

    2002-01-01

    Learning from high performance projects is crucial for software process improvement. Therefore, we need to identify outstanding projects that may serve as role models. It is common to measure productivity as an indicator of performance. It is vital that productivity measurements deal correctly with variable returns to scale and multivariate data. Software projects generally exhibit variable returns to scale, and the output from ERP projects is multivariate. We propose to use Data Envelopment ...

  2. Neo4j high performance

    CERN Document Server

    Raj, Sonal

    2015-01-01

    If you are a professional or enthusiast who has a basic understanding of graphs or has basic knowledge of Neo4j operations, this is the book for you. Although it is targeted at an advanced user base, this book can be used by beginners as it touches upon the basics. So, if you are passionate about taming complex data with the help of graphs and building high performance applications, you will be able to get valuable insights from this book.

  3. MAIN LAND USE PLANNING APPROACHES TO STRUCTURAL ELEMENTS LOCAL ECOLOGICAL NETWORK

    Directory of Open Access Journals (Sweden)

    TretiakV.M.

    2016-08-01

    Full Text Available In modern conditions of social development, changes in land eco-system of economic relations in Ukraine, the problem of providing conditions for the creation of sustainable land use and creation of protected areas get the status of special urgency. Ideology establishment of ecological networks became logical continuation of environmental thought in general. Considering the methodological approach to the establishment of ecological networks we can constitute, that it is an environmental frame of spatial infrastructure, land conservation and environmental areas, major part of land is the basis of the structural elements of ecological network. Designing an ecological network is made through developing regional schemes of Econet formation, regional and local schemes for establishing an ecological network areas, settlements and other areas. Land Management uses design of structural elements of the ecological network in the village council, as a rule, begins with ecological and landscape mikrozonationof the village council, held during the preparatory work for the land drafting and finishing the formation of environmentally homogeneous regions, which represents the tied system components of ecological network, environmental measures in the form of local environmental restrictions (encumbrances to use land and other natural resources. Additionally, there are some project organization and territorial measures that increase the sustainability area, such as: key, binders, buffer areas and renewable ecological network. Land management projects on the formation of structural elements of ecological network as territorial restrictions (encumbrances in land are used within the territories Councils determined the location and size of land: - Protection zones around especially valuable natural objects of cultural heritage, meteorological stations, etc. in order to protect them from adverse human impacts; - Protection zones along telecommunication lines, power

  4. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  5. NETWORK CENTRISM OPTIMIZATION OF EXPEDITIOUS SERVICE OF ELEMENTS OF THE POWER SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    Ye.I. Sokol

    2016-06-01

    Full Text Available Purpose. Development of precision selection criteria of options of technical realization of effective active and adaptive system of expeditious service of elements of a power supply system in the conditions of network-centric management. Methodology. In development of power supply systems their evolution from the elementary forms using elementary network technologies and models of interactions in power to more irregular shapes within the concept of Smart Grid with elements of network-centric character is observed. This direction is based on Internet-technologies of the last generation, and realize models of power activity which couldn't be realized before. Results. The number of possible options of active and adaptive system of expeditious service of elements of a power supply system is usually rather big and it is difficult to choose the acceptable option by direct search. Elimination of admissible options of the technical realization constructed on the principles of a network centrism means application of the theory of multicriteria optimization from a position of discrete programming. The basis of procedure of elimination is made by algorithm of an assessment of system by criterion of accuracy. Originality. The case of an assessment of the precision characteristic of system at restrictions for the set accuracy is connected with need of decomposition of requirements of all system in general and on separate subsystems. For such decomposition the ratios connecting the accuracy of functioning of a separate subsystem with variations of parameters of all system, and also with precision characteristics of subsystems of the lower levels influencing this subsystem are received. Practical value. In the conditions of the network-centric organization of management of expeditious service of elements of a power supply system elimination of options of subsystems when using precision criterion allows to receive the maximum number of essentially possible

  6. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Malang, S.; Nishio, S.; Raffray, R.; Sagara, A.

    2002-01-01

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  7. High Performance Proactive Digital Forensics

    International Nuclear Information System (INIS)

    Alharbi, Soltan; Traore, Issa; Moa, Belaid; Weber-Jahnke, Jens

    2012-01-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  8. An optimization on strontium separation model for fission products (inactive trace elements) using artificial neural networks

    International Nuclear Information System (INIS)

    Moosavi, K.; Setayeshi, S.; Maragheh, M.Gh.; Ahmadi, S.J.; Kardan, M.R.; Banaem, L.M.

    2009-01-01

    In this study, an experimental design using artificial neural networks for an optimization on the strontium separation model for fission products (inactive trace elements) is investigated. The goal is to optimize the separation parameters to achieve maximum amount of strontium that is separated from the fission products. The result of the optimization method causes a proper purity of Strontium-89 that was separated from the fission products. It is also shown that ANN may be establish a method to optimize the separation model.

  9. Preisach hysteresis implementation in reluctance network method, comparison with finite element method

    OpenAIRE

    Allag , Hicham; Kedous-Lebouc , Afef; Latreche , Mohamed E. H.

    2008-01-01

    International audience; In this work, an implementation of static magnetic hysteresis in the reluctance network method is presented and its effectiveness is demonstrated. This implementation is achieved by a succession of iterative steps in the form of algorithm explained and developed for simple examples. However it remains valid for any magnetic circuit. The results obtained are compared to those given by finite element method simulation and essentially the effect of relaxation is discussed...

  10. Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE

    International Nuclear Information System (INIS)

    Correa, R.; Chesta, M.A.; Morales, J.R.; Dinator, M.I.; Requena, I.; Vila, I.

    2006-01-01

    An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses

  11. Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R. [Universidad Tecnologica Metropolitana, Departamento de Fisica, Av. Jose Pedro Alessandri 1242, Nunoa, Santiago (Chile)]. E-mail: rcorrea@utem.cl; Chesta, M.A. [Universidad Nacional de Cordoba, Facultad de Matematica, Astronomia y Fisica, Medina Allende s/n Ciudad Universitaria, 5000 Cordoba (Argentina)]. E-mail: chesta@famaf.unc.edu.ar; Morales, J.R. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: rmorales@uchile.cl; Dinator, M.I. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: mdinator@uchile.cl; Requena, I. [Universidad de Granada, Departamento de Ciencias de la Computacion e Inteligencia Artificial, Daniel Saucedo Aranda s/n, 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Vila, I. [Universidad de Chile, Facultad de Ciencias, Departamento de Ecologia, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: limnolog@uchile.cl

    2006-08-15

    An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses.

  12. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements.

    Science.gov (United States)

    Iranzo, Jaime; Koonin, Eugene V; Prangishvili, David; Krupovic, Mart

    2016-12-15

    Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions

  13. High-Performance Data Converters

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    -resolution internal D/A converters are required. Unit-element mismatch-shaping D/A converters are analyzed, and the concept of mismatch-shaping is generalized to include scaled-element D/A converters. Several types of scaled-element mismatch-shaping D/A converters are proposed. Simulations show that, when implemented...... in a standard CMOS technology, they can be designed to yield 100 dB performance at 10 times oversampling. The proposed scaled-element mismatch-shaping D/A converters are well suited for use as the feedback stage in oversampled delta-sigma quantizers. It is, however, not easy to make full use of their potential......-order difference of the output signal from the loop filter's first integrator stage. This technique avoids the need for accurate matching of analog and digital filters that characterizes the MASH topology, and it preserves the signal-band suppression of quantization errors. Simulations show that quantizers...

  14. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    Science.gov (United States)

    Li, Zhiqiang; Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-04-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit.

  15. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  16. FY 1995 Blue Book: High Performance Computing and Communications: Technology for the National Information Infrastructure

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The Federal High Performance Computing and Communications HPCC Program was created to accelerate the development of future generations of high performance computers...

  17. How to create high-performing teams.

    Science.gov (United States)

    Lam, Samuel M

    2010-02-01

    This article is intended to discuss inspirational aspects on how to lead a high-performance team. Cogent topics discussed include how to hire staff through methods of "topgrading" with reference to Geoff Smart and "getting the right people on the bus" referencing Jim Collins' work. In addition, once the staff is hired, this article covers how to separate the "eagles from the ducks" and how to inspire one's staff by creating the right culture with suggestions for further reading by Don Miguel Ruiz (The four agreements) and John Maxwell (21 Irrefutable laws of leadership). In addition, Simon Sinek's concept of "Start with Why" is elaborated to help a leader know what the core element should be with any superior culture. Thieme Medical Publishers.

  18. Learning and innovative elements of strategy adoption rules expand cooperative network topologies.

    Science.gov (United States)

    Wang, Shijun; Szalay, Máté S; Zhang, Changshui; Csermely, Peter

    2008-04-09

    Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular, small-word, scale-free and modular network models in repeated, multi-agent Prisoner's Dilemma and Hawk-Dove games. Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.

  19. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    Science.gov (United States)

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Failure Diagnosis and Prognosis of Rolling - Element Bearings using Artificial Neural Networks: A Critical Overview

    Science.gov (United States)

    Rao, B. K. N.; Srinivasa Pai, P.; Nagabhushana, T. N.

    2012-05-01

    Rolling - Element Bearings are extensively used in almost all global industries. Any critical failures in these vitally important components would not only affect the overall systems performance but also its reliability, safety, availability and cost-effectiveness. Proactive strategies do exist to minimise impending failures in real time and at a minimum cost. Continuous innovative developments are taking place in the field of Artificial Neural Networks (ANNs) technology. Significant research and development are taking place in many universities, private and public organizations and a wealth of published literature is available highlighting the potential benefits of employing ANNs in intelligently monitoring, diagnosing, prognosing and managing rolling-element bearing failures. This paper attempts to critically review the recent trends in this topical area of interest.

  1. Failure Diagnosis and Prognosis of Rolling - Element Bearings using Artificial Neural Networks: A Critical Overview

    International Nuclear Information System (INIS)

    Rao, B K N; Pai, P Srinivasa; Nagabhushana, T N

    2012-01-01

    Rolling - Element Bearings are extensively used in almost all global industries. Any critical failures in these vitally important components would not only affect the overall systems performance but also its reliability, safety, availability and cost-effectiveness. Proactive strategies do exist to minimise impending failures in real time and at a minimum cost. Continuous innovative developments are taking place in the field of Artificial Neural Networks (ANNs) technology. Significant research and development are taking place in many universities, private and public organizations and a wealth of published literature is available highlighting the potential benefits of employing ANNs in intelligently monitoring, diagnosing, prognosing and managing rolling-element bearing failures. This paper attempts to critically review the recent trends in this topical area of interest.

  2. Adaptive Data Gathering in Mobile Sensor Networks Using Speedy Mobile Elements

    Science.gov (United States)

    Lai, Yongxuan; Xie, Jinshan; Lin, Ziyu; Wang, Tian; Liao, Minghong

    2015-01-01

    Data gathering is a key operator for applications in wireless sensor networks; yet it is also a challenging problem in mobile sensor networks when considering that all nodes are mobile and the communications among them are opportunistic. This paper proposes an efficient data gathering scheme called ADG that adopts speedy mobile elements as the mobile data collector and takes advantage of the movement patterns of the network. ADG first extracts the network meta-data at initial epochs, and calculates a set of proxy nodes based on the meta-data. Data gathering is then mapped into the Proxy node Time Slot Allocation (PTSA) problem that schedules the time slots and orders, according to which the data collector could gather the maximal amount of data within a limited period. Finally, the collector follows the schedule and picks up the sensed data from the proxy nodes through one hop of message transmissions. ADG learns the period when nodes are relatively stationary, so that the collector is able to pick up the data from them during the limited data gathering period. Moreover, proxy nodes and data gathering points could also be timely updated so that the collector could adapt to the change of node movements. Extensive experimental results show that the proposed scheme outperforms other data gathering schemes on the cost of message transmissions and the data gathering rate, especially under the constraint of limited data gathering period. PMID:26389903

  3. Adaptive Data Gathering in Mobile Sensor Networks Using Speedy Mobile Elements.

    Science.gov (United States)

    Lai, Yongxuan; Xie, Jinshan; Lin, Ziyu; Wang, Tian; Liao, Minghong

    2015-09-15

    Data gathering is a key operator for applications in wireless sensor networks; yet it is also a challenging problem in mobile sensor networks when considering that all nodes are mobile and the communications among them are opportunistic. This paper proposes an efficient data gathering scheme called ADG that adopts speedy mobile elements as the mobile data collector and takes advantage of the movement patterns of the network. ADG first extracts the network meta-data at initial epochs, and calculates a set of proxy nodes based on the meta-data. Data gathering is then mapped into the Proxy node Time Slot Allocation (PTSA) problem that schedules the time slots and orders, according to which the data collector could gather the maximal amount of data within a limited period. Finally, the collector follows the schedule and picks up the sensed data from the proxy nodes through one hop of message transmissions. ADG learns the period when nodes are relatively stationary, so that the collector is able to pick up the data from them during the limited data gathering period. Moreover, proxy nodes and data gathering points could also be timely updated so that the collector could adapt to the change of node movements. Extensive experimental results show that the proposed scheme outperforms other data gathering schemes on the cost of message transmissions and the data gathering rate, especially under the constraint of limited data gathering period.

  4. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  5. Finite element model updating of a small steel frame using neural networks

    International Nuclear Information System (INIS)

    Zapico, J L; González, M P; Alonso, R; González-Buelga, A

    2008-01-01

    This paper presents an experimental and analytical dynamic study of a small-scale steel frame. The experimental model was physically built and dynamically tested on a shaking table in a series of different configurations obtained from the original one by changing the mass and by causing structural damage. Finite element modelling and parameterization with physical meaning is iteratively tried for the original undamaged configuration. The finite element model is updated through a neural network, the natural frequencies of the model being the net input. The updating process is made more accurate and robust by using a regressive procedure, which constitutes an original contribution of this work. A novel simplified analytical model has been developed to evaluate the reduction of bending stiffness of the elements due to damage. The experimental results of the rest of the configurations have been used to validate both the updated finite element model and the analytical one. The statistical properties of the identified modal data are evaluated. From these, the statistical properties and a confidence interval for the estimated model parameters are obtained by using the Latin Hypercube sampling technique. The results obtained are successful: the updated model accurately reproduces the low modes identified experimentally for all configurations, and the statistical study of the transmission of errors yields a narrow confidence interval for all the identified parameters

  6. Planing of land use of structural elements of ecological network at local level

    Directory of Open Access Journals (Sweden)

    Tretiak V.

    2016-05-01

    Full Text Available and Management projecting of structural elements of land use of the ecological network on the territory of the village council begins with ecological and landscape micro zoning of the territory of village council, held during the preparatory work for the drafting of land and are finished by the formation of environmentally homogeneous regions, to which the system components of ecological network are tied, as well as environmental measures in the form of local environmental restrictions (encumbrances in land usage and other natural resources. Additionally organization and territorial measures are projected that increase the ecological sustainability of the area: key, binders, buffer areas and renewable ecological network. The regional scheme of ecological network is intended for usage while projecting of creation of new territories that fall under special protection, for defining the tasks as for changing the category of land in the land use planning documents, for development of specifications regarding the reproduction of natural systems on conservation ready lands withdrawn from agricultural use, for accounting the problems of formation the areas of ecological network in forest management and land management projects, while development of the projects of areas organization of natural - reserve fund, in the definition of wetlands of international importance, in determining the habitats of various plants and animals of various categories of protection in accordance with international conventions and national laws - regulations, in planning targeted actions in the conservation of landscape and biological diversity. The main stages of designing local ecological network are: • inventory and identification of rights for land and other natural resources, drawing created territories and objects of natural reserve fund and other areas of natural systems on the planning and cartographic materials, which are under special protection; • rationale of

  7. EDITORIAL: High performance under pressure High performance under pressure

    Science.gov (United States)

    Demming, Anna

    2011-11-01

    nanoelectromechanical systems. Researchers in China exploit the coupling between piezoelectric and semiconducting properties of ZnO in an optimised diode device design [6]. They used a Schottky rather than an ohmic contact to depress the off current. In addition they used ZnO nanobelts that have dominantly polar surfaces instead of [0001] ZnO nanowires to enhance the on current under the small applied forces obtained by using an atomic force microscopy tip. The nanobelts have potential for use in random access memory devices. Much of the success in applying piezoresistivity in device applications stems from a deepening understanding of the mechanisms behind the process. A collaboration of researchers in the USA and China have proposed a new criterion for identifying the carrier type of individual ZnO nanowires based on the piezoelectric output of a nanowire when it is mechanically deformed by a conductive atomic force microscopy tip in contact mode [7]. The p-type/n-type shell/core nanowires give positive piezoelectric outputs, while the n-type nanowires produce negative piezoelectric outputs. In this issue Zhong Lin Wang and colleagues in Italy and the US report theoretical investigations into the piezoresistive behaviour of ZnO nanowires for energy harvesting. The work develops previous research on the ability of vertically aligned ZnO nanowires under uniaxial compression to power a nanodevice, in particular a pH sensor [8]. Now the authors have used finite element simulations to study the system. Among their conclusions they find that, for typical geometries and donor concentrations, the length of the nanowire does not significantly influence the maximum output piezopotential because the potential mainly drops across the tip. This has important implications for low-cost, CMOS- and microelectromechanical-systems-compatible fabrication of nanogenerators. The simulations also reveal the influence of the dielectric surrounding the nanowire on the output piezopotential, especially for

  8. Indoor Air Quality in High Performance Schools

    Science.gov (United States)

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  9. Spatial patterns of some trace elements in four Swedish stream networks

    Directory of Open Access Journals (Sweden)

    J. Temnerud

    2013-03-01

    Full Text Available Four river basins in southern Sweden, with catchment sizes from 0.3 to 127 km2 (median 1.9, were sampled in October~2007. The 243 samples were analysed for 26 trace elements (Ag, As, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, Ga, Ge, In, La, Li, Mo, Ni, Pb, Sb, Se, Sn, Tl, Ti, U, V and Zn to identify spatial patterns within drainage networks. The range and median of each element were defined for different stream orders, and relationships to catchment characteristics, including deposition history, were explored. The sampling design made it possible to compare the differences along 40 stream reaches, above and below 53 stream junctions with 107 tributaries and between the 77 inlets and outlets of 36 lakes. The largest concentration differences (at reaches, junctions and lakes were observed for lakes, with outlets usually having lower concentration compared to the inlets for As, Ba, Be, Bi, Cd, Co, Cr, Ga, Ge, Ni, Pb, Sn, Ti, Tl, U, V and Zn. Significantly lower concentrations were observed for Cd and Co when comparing headwaters with downstream sites in each catchment. Common factor analysis (FA revealed that As, Bi, Cr, Ga, Ge, Tl and V co-vary positively with Al, Fe and total organic carbon (TOC and negatively with La, Li and pH. The strong removal of a large number of trace elements when passing through lakes is evident though in the FA, where lake surface coverage plots opposite to many of those elements. Forest volume does not respond in a similar systematic fashion and, surprisingly, the amount of wetland does not relate strongly to either Fe or TOC at any of the rivers. A better understanding of the quantitative removal of organic carbon and iron will aid in understanding trace element fluxes from landscapes rich in organic matter and iron.

  10. Carpet Aids Learning in High Performance Schools

    Science.gov (United States)

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  11. Integrating advanced facades into high performance buildings

    International Nuclear Information System (INIS)

    Selkowitz, Stephen E.

    2001-01-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  12. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  13. FY 1992 Blue Book: Grand Challenges: High Performance Computing and Communications

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — High performance computing and computer communications networks are becoming increasingly important to scientific advancement, economic competition, and national...

  14. FY 1993 Blue Book: Grand Challenges 1993: High Performance Computing and Communications

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — High performance computing and computer communications networks are becoming increasingly important to scientific advancement, economic competition, and national...

  15. IP Network Design and Implementation for the Caltech-USGS Element of TriNet

    Science.gov (United States)

    Johnson, M. L.; Busby, R.; Watkins, M.; Schwarz, S.; Hauksson, E.

    2001-12-01

    The new seismic network IP numbering scheme for the Caltech-USGS element of TriNet is designed to provide emergency response plans for computer outages and/or telemetry circuit failures so that data acquisition may continue with minimal interruption. IP numbers from the seismic stations through the Caltech acquisition machines are numbered using private, non-routable IP addresses, which allows the network administrator to create redundancy in the network design, more freedom in choosing IP numbers, and uniformity in the LAN and WAN network addressing. The network scheme used by the Caltech-USGS element of TriNet is designed to create redundancy and load sharing over three or more T1 circuits. A T1 circuit can support 80 dataloggers sending data at a design rate of 19.2 kbps or 120 dataloggers transmitting at a nominal rate of 12.8 kbps. During a circuit detour, the 80 dataloggers on the failed T1 are equally divided between the remaining two circuits. This increases the loads on the remaining two circuits to 120 dataloggers, which is the maximum load each T1 can handle at the nominal rate. Each T1 circuit has a router interface onto a LAN at Caltech with an independent subnet address. Some devices, such as Solaris computers, allow a single interface to be numbered with several IP addresses, a so called "multinetted" interface. This allows the central acquisition computers to appear with distinct addresses that are routable via different T1 circuits, but simplifies the physical cables between devices. We identify these T1 circuits as T1-1, T1-2, and T1-3. At the remote end, each Frame Relay Access Device (FRAD) and connected datalogger(s) is a subnetted LAN. The numbering is arranged so the second octet in the LAN IP address of the FRAD and datalogger identify the datalogger's primary and alternate T1 circuits. For example; a LAN with an IP address of 10.12.0.0/24 has T1-1 as its primary T1, and T1-2 as its alternate circuit. Stations with this number scheme are

  16. Improving UV Resistance of High Performance Fibers

    Science.gov (United States)

    Hassanin, Ahmed

    % rutile TiO2 nanoparticles showed excellent protection of braid from PBO. Only 7.5% strength loss was observed. To optimize the degree of protection of the sheath loaded with UV blocker particles, computational models were developed to optimize the protective layer thickness/weight and the amount of UV particles that provide the maximum protection with lightest weight of the protective layer and minimum amount of UV particles. The simulated results were found to be higher that the experimental results due to the tendency of nanoparticles to be agglomerated in real experiments. The third approach to achieve a maximum protection with the minimum weight added is constructing a sleeve from SpectraRTM (Ultra High Molecular Weight Polyethylene (UHMWPE) high performance fiber), which is known to resist UV, woven fabric. Covering the braid from PBO fiber with Spectra RTM woven fabric provide hybrid structure with two compatible components that can share the load and thus maintain the high strength to weight ratio. Although the SpectraRTM fabric had maximum cover factor, 20 % of visible light and about 15 % of UV were able to penetrate the fabric. This transmittance of UV-VIS light negatively affected the protection performance of the SpectraRTM woven fabric layer. It is thought that SpectraRTM fabric be coated with a thin layer (mentioned earlier) containing UV blocker for additional protection while maintain strength contribution to the hybrid structure. To maximize the strength to weight ratio of the hybrid structure (with core from PBO braid and sheath from SpectraRTM woven fabric) an established finite element model was utilized. The theoretical results using the finite element theory indicated that by controlling the bending rigidity of the filling yarn of the SpectraRTM fabric, the extension at peak load of woven fabric in warp direction (loading direction) could be controlled to match the braid extension at peak load. The match in the extension at peak load of the two

  17. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  18. Micromagnetics on high-performance workstation and mobile computational platforms

    Science.gov (United States)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  19. Studies on high performance Timeslice building on the CBM FLES

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Helvi [Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    In contrast to already existing high energy physics experiments the Compressed Baryonic Matter (CBM) experiment collects all data untriggered. The First-level Event Selector (FLES), which denotes a high performance computer cluster, processes the very high incoming data rate of 1 TByte/s and performs a full online event reconstruction. For this task it needs to access the raw detector data in time intervals referred to as Timeslices. In order to construct the Timeslices, the FLES Timeslice building has to combine data from all input links and distribute them via a high-performance network to the compute nodes. For fast data transfer the Infiniband network has proven to be appropriate. One option to address the network is using Infiniband (RDMA) Verbs directly and potentially making best use of Infiniband. However, it is a very low-level implementation relying on the hardware and neglecting other possible network technologies in the future. Another approach is to apply a high-level API like MPI which is independent of the underlying hardware and suitable for less error prone software development. I present the given possibilities and show the results of benchmarks ran on high-performance computing clusters. The solutions are evaluated regarding the Timeslice building in CBM.

  20. Delivering high performance BWR fuel reliably

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1998-01-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  1. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe

    2015-04-27

    Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  2. High Performance Computing Software Applications for Space Situational Awareness

    Science.gov (United States)

    Giuliano, C.; Schumacher, P.; Matson, C.; Chun, F.; Duncan, B.; Borelli, K.; Desonia, R.; Gusciora, G.; Roe, K.

    The High Performance Computing Software Applications Institute for Space Situational Awareness (HSAI-SSA) has completed its first full year of applications development. The emphasis of our work in this first year was in improving space surveillance sensor models and image enhancement software. These applications are the Space Surveillance Network Analysis Model (SSNAM), the Air Force Space Fence simulation (SimFence), and physically constrained iterative de-convolution (PCID) image enhancement software tool. Specifically, we have demonstrated order of magnitude speed-up in those codes running on the latest Cray XD-1 Linux supercomputer (Hoku) at the Maui High Performance Computing Center. The software applications improvements that HSAI-SSA has made, has had significant impact to the warfighter and has fundamentally changed the role of high performance computing in SSA.

  3. High performance liquid chromatography in pharmaceutical analyses

    Directory of Open Access Journals (Sweden)

    Branko Nikolin

    2004-05-01

    Full Text Available In testing the pre-sale procedure the marketing of drugs and their control in the last ten years, high performance liquid chromatographyreplaced numerous spectroscopic methods and gas chromatography in the quantitative and qualitative analysis. In the first period of HPLC application it was thought that it would become a complementary method of gas chromatography, however, today it has nearly completely replaced gas chromatography in pharmaceutical analysis. The application of the liquid mobile phase with the possibility of transformation of mobilized polarity during chromatography and all other modifications of mobile phase depending upon the characteristics of substance which are being tested, is a great advantage in the process of separation in comparison to other methods. The greater choice of stationary phase is the next factor which enables realization of good separation. The separation line is connected to specific and sensitive detector systems, spectrafluorimeter, diode detector, electrochemical detector as other hyphernated systems HPLC-MS and HPLC-NMR, are the basic elements on which is based such wide and effective application of the HPLC method. The purpose high performance liquid chromatography(HPLC analysis of any drugs is to confirm the identity of a drug and provide quantitative results and also to monitor the progress of the therapy of a disease.1 Measuring presented on the Fig. 1. is chromatogram obtained for the plasma of depressed patients 12 h before oral administration of dexamethasone. It may also be used to further our understanding of the normal and disease process in the human body trough biomedical and therapeutically research during investigation before of the drugs registration. The analyses of drugs and metabolites in biological fluids, particularly plasma, serum or urine is one of the most demanding but one of the most common uses of high performance of liquid chromatography. Blood, plasma or

  4. Virus world as an evolutionary network of viruses and capsidless selfish elements.

    Science.gov (United States)

    Koonin, Eugene V; Dolja, Valerian V

    2014-06-01

    Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. High-performance ceramics. Fabrication, structure, properties

    International Nuclear Information System (INIS)

    Petzow, G.; Tobolski, J.; Telle, R.

    1996-01-01

    The program ''Ceramic High-performance Materials'' pursued the objective to understand the chaining of cause and effect in the development of high-performance ceramics. This chain of problems begins with the chemical reactions for the production of powders, comprises the characterization, processing, shaping and compacting of powders, structural optimization, heat treatment, production and finishing, and leads to issues of materials testing and of a design appropriate to the material. The program ''Ceramic High-performance Materials'' has resulted in contributions to the understanding of fundamental interrelationships in terms of materials science, which are summarized in the present volume - broken down into eight special aspects. (orig./RHM)

  6. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  7. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  8. Safety-related Innovative Nuclear Reactor Technology Elements R and D (SINTER) Network and Global HTGR R and D Network (GHTRN). Strategic benefits of international networking

    International Nuclear Information System (INIS)

    Von Lensa, W.

    1998-01-01

    Action on 'Safety-related Innovative Nuclear Reactor Technology Elements - R and D - (SINTER) Network' both aim at the identification of priority items for sustainable innovations of nuclear technologies and work-shared European collaboration structures. Such an approach can also be realised for future R and D on HTGR-related R and D under the umbrella of the IAEA as already proposed by the 'International Working Group on Gas-Cooled Reactors (IWGGCR)' in 1996 and illustrated in this paper for the construction of a 'Global HTGR R and D Network (GHTRN)'. 3 refs

  9. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    ) high performance liquid chromatography (HPLC) grade .... applications. These are important requirements if the reagent is to be applicable to on-line pre or post column derivatisation in a possible automation of the analytical.

  10. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  11. Strategies and Experiences Using High Performance Fortran

    National Research Council Canada - National Science Library

    Shires, Dale

    2001-01-01

    .... High performance Fortran (HPF) is a relative new addition to the Fortran dialect It is an attempt to provide an efficient high-level Fortran parallel programming language for the latest generation of been debatable...

  12. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  13. Embedded High Performance Scalable Computing Systems

    National Research Council Canada - National Science Library

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  14. Gradient High Performance Liquid Chromatography Method ...

    African Journals Online (AJOL)

    Purpose: To develop a gradient high performance liquid chromatography (HPLC) method for the simultaneous determination of phenylephrine (PHE) and ibuprofen (IBU) in solid ..... nimesulide, phenylephrine. Hydrochloride, chlorpheniramine maleate and caffeine anhydrous in pharmaceutical dosage form. Acta Pol.

  15. High performance computing in Windows Azure cloud

    OpenAIRE

    Ambruš, Dejan

    2013-01-01

    High performance, security, availability, scalability, flexibility and lower costs of maintenance have essentially contributed to the growing popularity of cloud computing in all spheres of life, especially in business. In fact cloud computing offers even more than this. With usage of virtual computing clusters a runtime environment for high performance computing can be efficiently implemented also in a cloud. There are many advantages but also some disadvantages of cloud computing, some ...

  16. Carbon nanomaterials for high-performance supercapacitors

    OpenAIRE

    Tao Chen; Liming Dai

    2013-01-01

    Owing to their high energy density and power density, supercapacitors exhibit great potential as high-performance energy sources for advanced technologies. Recently, carbon nanomaterials (especially, carbon nanotubes and graphene) have been widely investigated as effective electrodes in supercapacitors due to their high specific surface area, excellent electrical and mechanical properties. This article summarizes the recent progresses on the development of high-performance supercapacitors bas...

  17. Delivering high performance BWR fuel reliably

    Energy Technology Data Exchange (ETDEWEB)

    Schardt, J.F. [GE Nuclear Energy, Wilmington, NC (United States)

    1998-07-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  18. HPTA: High-Performance Text Analytics

    OpenAIRE

    Vandierendonck, Hans; Murphy, Karen; Arif, Mahwish; Nikolopoulos, Dimitrios S.

    2017-01-01

    One of the main targets of data analytics is unstructured data, which primarily involves textual data. High-performance processing of textual data is non-trivial. We present the HPTA library for high-performance text analytics. The library helps programmers to map textual data to a dense numeric representation, which can be handled more efficiently. HPTA encapsulates three performance optimizations: (i) efficient memory management for textual data, (ii) parallel computation on associative dat...

  19. High-performance computing — an overview

    Science.gov (United States)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  20. Research on high performance mirrors for free electron lasers

    International Nuclear Information System (INIS)

    Kitatani, Fumito

    1996-01-01

    For the stable functioning of free electron laser, high performance optical elements are required because of its characteristics. In particular in short wavelength free electron laser, since its gain is low, the optical elements having very high reflectivity are required. Also in free electron laser, since high energy noise light exists, the optical elements must have high optical breaking strength. At present in Power Reactor and Nuclear Fuel Development Corporation, the research for heightening the performance of dielectric multi-layer film elements for short wavelength is carried out. For manufacturing such high performance elements, it is necessary to develop the new materials for vapor deposition, new vapor deposition process, and the techniques of accurate substrate polishing and inspection. As the material that satisfies the requirements, there is diamond-like carbon (DLC) film, of which the properties are explained. As for the manufacture of the DLC films for short wavelength optics, the test equipment for forming the DLC films, the test of forming the DLC films, the change of the film quality due to gas conditions, discharge conditions and substrate materials, and the measurement of the optical breaking strength are reported. (K.I.)

  1. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Yunyong; Zhang, Haiyan; Chen, Yiming; Shi, Zhicong; Cao, Xiaoguo; Guo, Zaiping; Shen, Pei Kang

    2016-01-13

    A peculiar nanostructure consisting of nitrogen-doped, carbon-encapsulated (N-C) SnO2@Sn nanoparticles grafted on three-dimensional (3D) graphene-like networks (designated as N-C@SnO2@Sn/3D-GNs) has been fabricated via a low-cost and scalable method, namely an in situ hydrolysis of Sn salts and immobilization of SnO2 nanoparticles on the surface of 3D-GNs, followed by an in situ polymerization of dopamine on the surface of the SnO2/3D-GNs, and finally a carbonization. In the composites, three-layer core-shell N-C@SnO2@Sn nanoparticles were uniformly grafted onto the surfaces of 3D-GNs, which promotes highly efficient insertion/extraction of Li(+). In addition, the outermost N-C layer with graphene-like structure of the N-C@SnO2@Sn nanoparticles can effectively buffer the large volume changes, enhance electronic conductivity, and prevent SnO2/Sn aggregation and pulverization during discharge/charge. The middle SnO2 layer can be changed into active Sn and nano-Li2O during discharge, as described by SnO2 + Li(+) → Sn + Li2O, whereas the thus-formed nano-Li2O can provide a facile environment for the alloying process and facilitate good cycling behavior, so as to further improve the cycling performance of the composite. The inner Sn layer with large theoretical capacity can guarantee high lithium storage in the composite. The 3D-GNs, with high electrical conductivity (1.50 × 10(3) S m(-1)), large surface area (1143 m(2) g(-1)), and high mechanical flexibility, tightly pin the core-shell structure of the N-C@SnO2@Sn nanoparticles and thus lead to remarkably enhanced electrical conductivity and structural integrity of the overall electrode. Consequently, this novel hybrid anode exhibits highly stable capacity of up to 901 mAh g(-1), with ∼89.3% capacity retention after 200 cycles at 0.1 A g(-1) and superior high rate performance, as well as a long lifetime of 500 cycles with 84.0% retention at 1.0 A g(-1). Importantly, this unique hybrid design is expected to be

  2. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies.

    Science.gov (United States)

    Yutin, Natalya; Raoult, Didier; Koonin, Eugene V

    2013-05-23

    Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor. We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknown virus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements. The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary connections between bona fide

  3. COST action TD1407: network on technology-critical elements (NOTICE)--from environmental processes to human health threats.

    Science.gov (United States)

    Cobelo-García, A; Filella, M; Croot, P; Frazzoli, C; Du Laing, G; Ospina-Alvarez, N; Rauch, S; Salaun, P; Schäfer, J; Zimmermann, S

    2015-10-01

    The current socio-economic, environmental and public health challenges that countries are facing clearly need common-defined strategies to inform and support our transition to a sustainable economy. Here, the technology-critical elements (which includes Ga, Ge, In, Te, Nb, Ta, Tl, the Platinum Group Elements and most of the rare-earth elements) are of great relevance in the development of emerging key technologies-including renewable energy, energy efficiency, electronics or the aerospace industry. In this context, the increasing use of technology-critical elements (TCEs) and associated environmental impacts (from mining to end-of-life waste products) is not restricted to a national level but covers most likely a global scale. Accordingly, the European COST Action TD1407: Network on Technology-Critical Elements (NOTICE)-from environmental processes to human health threats, has an overall objective for creating a network of scientists and practitioners interested in TCEs, from the evaluation of their environmental processes to understanding potential human health threats, with the aim of defining the current state of knowledge and gaps, proposing priority research lines/activities and acting as a platform for new collaborations and joint research projects. The Action is focused on three major scientific areas: (i) analytical chemistry, (ii) environmental biogeochemistry and (iii) human exposure and (eco)-toxicology.

  4. High performance bio-integrated devices

    Science.gov (United States)

    Kim, Dae-Hyeong; Lee, Jongha; Park, Minjoon

    2014-06-01

    In recent years, personalized electronics for medical applications, particularly, have attracted much attention with the rise of smartphones because the coupling of such devices and smartphones enables the continuous health-monitoring in patients' daily life. Especially, it is expected that the high performance biomedical electronics integrated with the human body can open new opportunities in the ubiquitous healthcare. However, the mechanical and geometrical constraints inherent in all standard forms of high performance rigid wafer-based electronics raise unique integration challenges with biotic entities. Here, we describe materials and design constructs for high performance skin-mountable bio-integrated electronic devices, which incorporate arrays of single crystalline inorganic nanomembranes. The resulting electronic devices include flexible and stretchable electrophysiology electrodes and sensors coupled with active electronic components. These advances in bio-integrated systems create new directions in the personalized health monitoring and/or human-machine interfaces.

  5. Strategy Guideline. Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  6. Resting-state networks in healthy adult subjects: a comparison between a 32-element and an 8-element phased array head coil at 3.0 Tesla.

    Science.gov (United States)

    Paolini, Marco; Keeser, Daniel; Ingrisch, Michael; Werner, Natalie; Kindermann, Nicole; Reiser, Maximilian; Blautzik, Janusch

    2015-05-01

    Little research exists on the influence of a magnetic resonance imaging (MRI) head coil's channel count on measured resting-state functional connectivity. To compare a 32-element (32ch) and an 8-element (8ch) phased array head coil with respect to their potential to detect functional connectivity within resting-state networks. Twenty-six healthy adults (mean age, 21.7 years; SD, 2.1 years) underwent resting-state functional MRI at 3.0 Tesla with both coils using equal standard imaging parameters and a counterbalanced design. Independent component analysis (ICA) at different model orders and a dual regression approach were performed. Voxel-wise non-parametric statistical between-group contrasts were determined using permutation-based non-parametric inference. Phantom measurements demonstrated a generally higher image signal-to-noise ratio using the 32ch head coil. However, the results showed no significant differences between corresponding resting-state networks derived from both coils (p coil does not offer any significant advantages in detecting ICA-based functional connectivity within RSNs. © The Foundation Acta Radiologica 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Southern California Seismic Network: Caltech/USGS Element of TriNet 1997-2001

    OpenAIRE

    Hauksson, Egill; Small, Patrick; Hafner, Katrin; Busby, Robert; Clayton, Robert; Goltz, James; Heaton, Tom; Hutton, Kate; Kanamori, Hiroo; Polet, Jascha

    2001-01-01

    The California Institute of Technology (Caltech), the United States Geological Survey (USGS), and the California Department of Conservation, Division of Mines and Geology (CDMG) are completing the implementation of TriNet, a modern seismic information system for southern California. TriNet consists of two elements, the Caltech-USGS element and the CDMG element (Mori et al., 1998). The Caltech-USGS element (Caltech-USGS TriNet) concentrates on rapid notification and archiving...

  8. Periodic Table of the Elements in the Perspective of Artificial Neural Networks

    Science.gov (United States)

    Lemes, Mauricio R.; Dal Pino, Arnaldo

    2011-01-01

    Although several chemical elements were not known by end of the 19th century, Mendeleev came up with an astonishing achievement, the periodic table of elements. He was not only able to predict the existence of (then) new elements, but also to provide accurate estimates of their chemical and physical properties. This is a profound example of the…

  9. High performance parallel I/O

    CERN Document Server

    Prabhat

    2014-01-01

    Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har

  10. High-performance commercial building systems

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  11. GaAs Photonic Integrated Circuit (PIC) development for high performance communications

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, C.T.

    1998-03-01

    Sandia has established a foundational technology in photonic integrated circuits (PICs) based on the (Al,Ga,In)As material system for optical communication, radar control and testing, and network switching applications at the important 1.3{mu}m/1.55{mu}m wavelengths. We investigated the optical, electrooptical, and microwave performance characteristics of the fundamental building-block PIC elements designed to be as simple and process-tolerant as possible, with particular emphasis placed on reducing optical insertion loss. Relatively conventional device array and circuit designs were built using these PIC elements: (1) to establish a baseline performance standard; (2) to assess the impact of epitaxial growth accuracy and uniformity, and of fabrication uniformity and yield; (3) to validate our theoretical and numerical models; and (4) to resolve the optical and microwave packaging issues associated with building fully packaged prototypes. Novel and more complex PIC designs and fabrication processes, viewed as higher payoff but higher risk, were explored in a parallel effort with the intention of meshing those advances into our baseline higher-yield capability as they mature. The application focus targeted the design and fabrication of packaged solitary modulators meeting the requirements of future wideband and high-speed analog and digital data links. Successfully prototyped devices are expected to feed into more complex PICs solving specific problems in high-performance communications, such as optical beamforming networks for phased array antennas.

  12. Team Development for High Performance Management.

    Science.gov (United States)

    Schermerhorn, John R., Jr.

    1986-01-01

    The author examines a team development approach to management that creates shared commitments to performance improvement by focusing the attention of managers on individual workers and their task accomplishments. It uses the "high-performance equation" to help managers confront shared beliefs and concerns about performance and develop realistic…

  13. Validated High Performance Liquid Chromatography Method for ...

    African Journals Online (AJOL)

    Purpose: To develop a simple, rapid and sensitive high performance liquid chromatography (HPLC) method for the determination of cefadroxil monohydrate in human plasma. Methods: Schimadzu HPLC with LC solution software was used with Waters Spherisorb, C18 (5 μm, 150mm × 4.5mm) column. The mobile phase ...

  14. An Introduction to High Performance Fortran

    Directory of Open Access Journals (Sweden)

    John Merlin

    1995-01-01

    Full Text Available High Performance Fortran (HPF is an informal standard for extensions to Fortran 90 to assist its implementation on parallel architectures, particularly for data-parallel computation. Among other things, it includes directives for specifying data distribution across multiple memories, and concurrent execution features. This article provides a tutorial introduction to the main features of HPF.

  15. High performance computing on vector systems

    CERN Document Server

    Roller, Sabine

    2008-01-01

    Presents the developments in high-performance computing and simulation on modern supercomputer architectures. This book covers trends in hardware and software development in general and specifically the vector-based systems and heterogeneous architectures. It presents innovative fields like coupled multi-physics or multi-scale simulations.

  16. Debugging a high performance computing program

    Science.gov (United States)

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  17. Teacher Accountability at High Performing Charter Schools

    Science.gov (United States)

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  18. Technology Leadership in Malaysia's High Performance School

    Science.gov (United States)

    Yieng, Wong Ai; Daud, Khadijah Binti

    2017-01-01

    Headmaster as leader of the school also plays a role as a technology leader. This applies to the high performance schools (HPS) headmaster as well. The HPS excel in all aspects of education. In this study, researcher is interested in examining the role of the headmaster as a technology leader through interviews with three headmasters of high…

  19. Toward High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...

  20. Towards high performance in industrial refrigeration systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, R.; Niemann, Hans Henrik

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...

  1. Validated high performance liquid chromatographic (HPLC) method ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-22

    Feb 22, 2010 ... specific and accurate high performance liquid chromatographic method for determination of ZER in micro-volumes ... tional medicine as a cure for swelling, sores, loss of appetite and ... Receptor Activator for Nuclear Factor κ B Ligand .... The effect of ... be suitable for preclinical pharmacokinetic studies. The.

  2. Validated High Performance Liquid Chromatography Method for ...

    African Journals Online (AJOL)

    Purpose: To develop a simple, rapid and sensitive high performance liquid ... response, tailing factor and resolution of six replicate injections was < 3 %. ... Cefadroxil monohydrate, Human plasma, Pharmacokinetics Bioequivalence ... Drug-free plasma was obtained from the local .... Influence of probenicid on the renal.

  3. High-performance OPCPA laser system

    International Nuclear Information System (INIS)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J.

    2006-01-01

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  4. High-performance OPCPA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  5. Comparing Dutch and British high performing managers

    NARCIS (Netherlands)

    Waal, A.A. de; Heijden, B.I.J.M. van der; Selvarajah, C.; Meyer, D.

    2016-01-01

    National cultures have a strong influence on the performance of organizations and should be taken into account when studying the traits of high performing managers. At the same time, many studies that focus upon the attributes of successful managers show that there are attributes that are similar

  6. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  7. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  8. A new high performance current transducer

    International Nuclear Information System (INIS)

    Tang Lijun; Lu Songlin; Li Deming

    2003-01-01

    A DC-100 kHz current transducer is developed using a new technique on zero-flux detecting principle. It was shown that the new current transducer is of high performance, its magnetic core need not be selected very stringently, and it is easy to manufacture

  9. An approach to unfold the response of a multi-element system using an artificial neural network

    International Nuclear Information System (INIS)

    Cordes, E.; Fehrenbacher, G.; Schuetz, R.; Sprunck, M.; Hahn, K.; Hofmann, R.; Wahl, W.

    1998-01-01

    An unfolding procedure is proposed which aims at obtaining spectral information of a neutron radiation field by the analysis of the response of a multi-element system consisting of converter type semiconductors. For the unfolding procedure an artificial neural network (feed forward network), trained by the back-propagation method, was used. The response functions of the single elements to neutron radiation were calculated by application of a computational model for an energy range from 10 -2 eV to 10 MeV. The training of the artificial neural network was based on the computation of responses of a six-element system for a set of 300 neutron spectra and the application of the back-propagation method. The validation was performed by the unfolding of 100 computed responses. Two unfolding examples were pointed out for the determination of the neutron spectra. The spectra resulting from the unfolding procedure agree well with the original spectra used for the response computation

  10. High performance data acquisition with InfiniBand

    International Nuclear Information System (INIS)

    Adamczewski, Joern; Essel, Hans G.; Kurz, Nikolaus; Linev, Sergey

    2008-01-01

    For the new experiments at FAIR new concepts of data acquisition systems have to be developed like the distribution of self-triggered, time stamped data streams over high performance networks for event building. In this concept any data filtering is done behind the network. Therefore the network must achieve up to 1 GByte/s bi-directional data transfer per node. Detailed simulations have been done to optimize scheduling mechanisms for such event building networks. For real performance tests InfiniBand has been chosen as one of the fastest available network technology. The measurements of network event building have been performed on different Linux clusters from four to over hundred nodes. Several InfiniBand libraries have been tested like uDAPL, Verbs, or MPI. The tests have been integrated in the data acquisition backbone core software DABC, a general purpose data acquisition library. Detailed results are presented. In the worst cases (over hundred nodes) 50% of the required bandwidth can be already achieved. It seems possible to improve these results by further investigations

  11. A performance model for the communication in fast multipole methods on high-performance computing platforms

    KAUST Repository

    Ibeid, Huda; Yokota, Rio; Keyes, David E.

    2016-01-01

    model and the actual communication time on four high-performance computing (HPC) systems, when latency, bandwidth, network topology, and multicore penalties are all taken into account. To our knowledge, this is the first formal characterization

  12. FY 1996 Blue Book: High Performance Computing and Communications: Foundations for America`s Information Future

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The Federal High Performance Computing and Communications HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of...

  13. FY 1997 Blue Book: High Performance Computing and Communications: Advancing the Frontiers of Information Technology

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The Federal High Performance Computing and Communications HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of...

  14. High-performance parallel interface to synchronous optical network gateway

    Science.gov (United States)

    St. John, Wallace B.; DuBois, David H.

    1998-08-11

    A digital system provides sending and receiving gateways for HIPPI interfaces. Electronic logic circuitry formats data signals and overhead signals in a data frame that is suitable for transmission over a connecting fiber optic link. Multiplexers route the data and overhead signals to a framer module. The framer module allocates the data and overhead signals to a plurality of 9-byte words that are arranged in a selected protocol. The formatted words are stored in a storage register for output through the gateway.

  15. High performance computing network for cloud environment using simulators

    OpenAIRE

    Singh, N. Ajith; Hemalatha, M.

    2012-01-01

    Cloud computing is the next generation computing. Adopting the cloud computing is like signing up new form of a website. The GUI which controls the cloud computing make is directly control the hardware resource and your application. The difficulty part in cloud computing is to deploy in real environment. Its' difficult to know the exact cost and it's requirement until and unless we buy the service not only that whether it will support the existing application which is available on traditional...

  16. Modeling the growth and interaction of stylolite networks, using the discrete element method for pressure solution

    Science.gov (United States)

    Makedonska, N.; Sparks, D. W.; Aharonov, E.

    2012-12-01

    Pressure solution (also termed chemical compaction) is considered the most important ductile deformation mechanism operating in the Earth's upper crust. This mechanism is a major player in a variety of geological processes, including evolution of sedimentary basins, hydrocarbon reservoirs, aquifers, earthquake recurrence cycles, and fault healing. Pressure solution in massive rocks often localizes into solution seams or stylolites. Field observations of stylolites often show elastic/brittle interactions in regions between pressure solution features, including and shear fractures, veins and pull-apart features. To understand these interactions, we use a grain-scale model based on the Discrete Element Method that allows granular dissolution at stressed contacts between grains. The new model captures both the slow chemical compaction process and the more abrupt brittle fracturing and sliding between grains. We simulate a sample of rock as a collection of particles, each representing either a grain or a unit of rock, bonded to each other with breakable cement. We apply external stresses to this sample, and calculate elastic and frictional interactions between the grains. Dissolution is modeled by an irreversible penetration of contacting grains into each other at a rate that depends on the contact stress and an adjustable rate constant. Experiments have shown that dissolution rates at grain contacts are greatly enhanced when there is a mineralogical contrast. Therefore, we dissolution rate constant can be increased to account for an amount of impurities (e.g. clay in a quartz or calcite sandstone) that can accumulate on dissolving contacts. This approach allows large compaction and shear strains within the rock, while allowing examination of local grain-scale heterogeneity. For example, we will describe the effect of pressure solution on the distribution of contact forces magnitudes and orientations. Contact forces in elastic granular packings are inherently

  17. High-performance mass storage system for workstations

    Science.gov (United States)

    Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.

    1993-01-01

    Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive

  18. Evaluation of high-performance computing software

    Energy Technology Data Exchange (ETDEWEB)

    Browne, S.; Dongarra, J. [Univ. of Tennessee, Knoxville, TN (United States); Rowan, T. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  19. High performance cloud auditing and applications

    CERN Document Server

    Choi, Baek-Young; Song, Sejun

    2014-01-01

    This book mainly focuses on cloud security and high performance computing for cloud auditing. The book discusses emerging challenges and techniques developed for high performance semantic cloud auditing, and presents the state of the art in cloud auditing, computing and security techniques with focus on technical aspects and feasibility of auditing issues in federated cloud computing environments.   In summer 2011, the United States Air Force Research Laboratory (AFRL) CyberBAT Cloud Security and Auditing Team initiated the exploration of the cloud security challenges and future cloud auditing research directions that are covered in this book. This work was supported by the United States government funds from the Air Force Office of Scientific Research (AFOSR), the AFOSR Summer Faculty Fellowship Program (SFFP), the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP), the National Science Foundation (NSF) and the National Institute of Health (NIH). All chapters were partially suppor...

  20. Monitoring SLAC High Performance UNIX Computing Systems

    International Nuclear Information System (INIS)

    Lettsome, Annette K.

    2005-01-01

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface

  1. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe; Sarmiento, Adel; Cortes, Adriano Mauricio; Dalcin, L.; Collier, N.; Calo, Victor M.

    2015-01-01

    and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  2. Designing a High Performance Parallel Personal Cluster

    OpenAIRE

    Kapanova, K. G.; Sellier, J. M.

    2016-01-01

    Today, many scientific and engineering areas require high performance computing to perform computationally intensive experiments. For example, many advances in transport phenomena, thermodynamics, material properties, computational chemistry and physics are possible only because of the availability of such large scale computing infrastructures. Yet many challenges are still open. The cost of energy consumption, cooling, competition for resources have been some of the reasons why the scientifi...

  3. Governance among Malaysian high performing companies

    Directory of Open Access Journals (Sweden)

    Asri Marsidi

    2016-07-01

    Full Text Available Well performed companies have always been linked with effective governance which is generally reflected through effective board of directors. However many issues concerning the attributes for effective board of directors remained unresolved. Nowadays diversity has been perceived as able to influence the corporate performance due to the likelihood of meeting variety of needs and demands from diverse customers and clients. The study therefore aims to provide a fundamental understanding on governance among high performing companies in Malaysia.

  4. DURIP: High Performance Computing in Biomathematics Applications

    Science.gov (United States)

    2017-05-10

    Mathematics and Statistics (AMS) at the University of California, Santa Cruz (UCSC) to conduct research and research-related education in areas of...Computing in Biomathematics Applications Report Title The goal of this award was to enhance the capabilities of the Department of Applied Mathematics and...DURIP: High Performance Computing in Biomathematics Applications The goal of this award was to enhance the capabilities of the Department of Applied

  5. High Performance Computing Operations Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Cupps, Kimberly C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  6. Planning for high performance project teams

    International Nuclear Information System (INIS)

    Reed, W.; Keeney, J.; Westney, R.

    1997-01-01

    Both industry-wide research and corporate benchmarking studies confirm the significant savings in cost and time that result from early planning of a project. Amoco's Team Planning Workshop combines long-term strategic project planning and short-term tactical planning with team building to provide the basis for high performing project teams, better project planning, and effective implementation of the Amoco Common Process for managing projects

  7. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  8. High performance work practices, innovation and performance

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim

    2013-01-01

    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from......, and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a practice that has been identified in HPWP literature and potential variables that can facilitate or hinder the effects of these practices of innovation- and performance...

  9. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  10. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall......The paper treats the redesign of the float structure of the Wavestar wave energy converter. Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has been initiated. The new float structure will be designed as a double curved Ultra High Performance...

  11. Euler-Lagrange Equations of Networks with Higher-Order Elements

    Directory of Open Access Journals (Sweden)

    Z. Biolek

    2017-06-01

    Full Text Available The paper suggests a generalization of the classic Euler-Lagrange equation for circuits compounded of arbitrary elements from Chua’s periodic table. Newly defined potential functions for general (α, β elements are used for the construction of generalized Lagrangians and generalized dissipative functions. Also procedures of drawing the Euler-Lagrange equations are demonstrated.

  12. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  13. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  14. Scalability of DL_POLY on High Performance Computing Platform

    Directory of Open Access Journals (Sweden)

    Mabule Samuel Mabakane

    2017-12-01

    Full Text Available This paper presents a case study on the scalability of several versions of the molecular dynamics code (DL_POLY performed on South Africa‘s Centre for High Performance Computing e1350 IBM Linux cluster, Sun system and Lengau supercomputers. Within this study different problem sizes were designed and the same chosen systems were employed in order to test the performance of DL_POLY using weak and strong scalability. It was found that the speed-up results for the small systems were better than large systems on both Ethernet and Infiniband network. However, simulations of large systems in DL_POLY performed well using Infiniband network on Lengau cluster as compared to e1350 and Sun supercomputer.

  15. High performance repairing of reinforced concrete structures

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.; Holschemacher, K.; Mueller, T.

    2013-01-01

    Highlights: ► Steel fibered high strength concrete is effective for repairing concrete elements. ► Changing fibers’ content, required ductility of the repaired element is achieved. ► Experiments prove previously developed design concepts for two layer beams. -- Abstract: Steel fibered high strength concrete (SFHSC) is an effective material that can be used for repairing concrete elements. Design of normal strength concrete (NSC) elements that should be repaired using SFHSC can be based on general concepts for design of two-layer beams, consisting of SFHSC in the compressed zone and NSC without fibers in the tensile zone. It was previously reported that such elements are effective when their section carries rather large bending moments. Steel fibers, added to high strength concrete, increase its ultimate deformations due to the additional energy dissipation potential contributed by fibers. When changing the fibers’ content, a required ductility level of the repaired element can be achieved. Providing proper ductility is important for design of structures to dynamic loadings. The current study discusses experimental results that form a basis for finding optimal fiber content, yielding the highest Poisson coefficient and ductility of the repaired elements’ sections. Some technological issues as well as distribution of fibers in the cross section of two-layer bending elements are investigated. The experimental results, obtained in the frame of this study, form a basis for general technological provisions, related to repairing of NSC beams and slabs, using SFHSC.

  16. Elements of an algorithm for optimizing a parameter-structural neural network

    Science.gov (United States)

    Mrówczyńska, Maria

    2016-06-01

    The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

  17. IMPULSE---an advanced, high performance nuclear thermal propulsion system

    International Nuclear Information System (INIS)

    Petrosky, L.J.; Disney, R.K.; Mangus, J.D.; Gunn, S.A.; Zweig, H.R.

    1993-01-01

    IMPULSE is an advanced nuclear propulsion engine for future space missions based on a novel conical fuel. Fuel assemblies are formed by stacking a series of truncated (U, Zr)C cones with non-fueled lips. Hydrogen flows radially inward between the cones to a central plenum connected to a high performance bell nozzle. The reference IMPULSE engine rated at 75,000 lb thrust and 1800 MWt weighs 1360 kg and is 3.65 meters in height and 81 cm in diameter. Specific impulse is estimated to be 1000 for a 15 minute life at full power. If longer life times are required, the operating temperature can be reduced with a concomitant decrease in specific impulse. Advantages of this concept include: well defined coolant paths without outlet flow restrictions; redundant orificing; very low thermal gradients and hence, thermal stresses, across the fuel elements; and reduced thermal stresses because of the truncated conical shape of the fuel elements

  18. Toward a theory of high performance.

    Science.gov (United States)

    Kirby, Julia

    2005-01-01

    What does it mean to be a high-performance company? The process of measuring relative performance across industries and eras, declaring top performers, and finding the common drivers of their success is such a difficult one that it might seem a fool's errand to attempt. In fact, no one did for the first thousand or so years of business history. The question didn't even occur to many scholars until Tom Peters and Bob Waterman released In Search of Excellence in 1982. Twenty-three years later, we've witnessed several more attempts--and, just maybe, we're getting closer to answers. In this reported piece, HBR senior editor Julia Kirby explores why it's so difficult to study high performance and how various research efforts--including those from John Kotter and Jim Heskett; Jim Collins and Jerry Porras; Bill Joyce, Nitin Nohria, and Bruce Roberson; and several others outlined in a summary chart-have attacked the problem. The challenge starts with deciding which companies to study closely. Are the stars the ones with the highest market caps, the ones with the greatest sales growth, or simply the ones that remain standing at the end of the game? (And when's the end of the game?) Each major study differs in how it defines success, which companies it therefore declares to be worthy of emulation, and the patterns of activity and attitude it finds in common among them. Yet, Kirby concludes, as each study's method incrementally solves problems others have faced, we are progressing toward a consensus theory of high performance.

  19. Utilities for high performance dispersion model PHYSIC

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1992-09-01

    The description and usage of the utilities for the dispersion calculation model PHYSIC were summarized. The model was developed in the study of developing high performance SPEEDI with the purpose of introducing meteorological forecast function into the environmental emergency response system. The procedure of PHYSIC calculation consists of three steps; preparation of relevant files, creation and submission of JCL, and graphic output of results. A user can carry out the above procedure with the help of the Geographical Data Processing Utility, the Model Control Utility, and the Graphic Output Utility. (author)

  20. Playa: High-Performance Programmable Linear Algebra

    Directory of Open Access Journals (Sweden)

    Victoria E. Howle

    2012-01-01

    Full Text Available This paper introduces Playa, a high-level user interface layer for composing algorithms for complex multiphysics problems out of objects from other Trilinos packages. Among other features, Playa provides very high-performance overloaded operators implemented through an expression template mechanism. In this paper, we give an overview of the central Playa objects from a user's perspective, show application to a sequence of increasingly complex solver algorithms, provide timing results for Playa's overloaded operators and other functions, and briefly survey some of the implementation issues involved.

  1. An integrated high performance fastbus slave interface

    International Nuclear Information System (INIS)

    Christiansen, J.; Ljuslin, C.

    1992-01-01

    A high performance Fastbus slave interface ASIC is presented. The Fastbus slave integrated circuit (FASIC) is a programmable device, enabling its direct use in many different applications. The FASIC acts as an interface between Fastbus and a 'standard' processor/memory bus. It can work stand-alone or together with a microprocessor. A set of address mapping windows can map Fastbus addresses to convenient memory addresses and at the same time act as address decoding logic. Data rates of 100 MBytes/s to Fastbus can be obtained using an internal FIFO buffer in the FASIC. (orig.)

  2. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  3. A quantitative metric to identify critical elements within seafood supply networks.

    Science.gov (United States)

    Plagányi, Éva E; van Putten, Ingrid; Thébaud, Olivier; Hobday, Alistair J; Innes, James; Lim-Camacho, Lilly; Norman-López, Ana; Bustamante, Rodrigo H; Farmery, Anna; Fleming, Aysha; Frusher, Stewart; Green, Bridget; Hoshino, Eriko; Jennings, Sarah; Pecl, Gretta; Pascoe, Sean; Schrobback, Peggy; Thomas, Linda

    2014-01-01

    A theoretical basis is required for comparing key features and critical elements in wild fisheries and aquaculture supply chains under a changing climate. Here we develop a new quantitative metric that is analogous to indices used to analyse food-webs and identify key species. The Supply Chain Index (SCI) identifies critical elements as those elements with large throughput rates, as well as greater connectivity. The sum of the scores for a supply chain provides a single metric that roughly captures both the resilience and connectedness of a supply chain. Standardised scores can facilitate cross-comparisons both under current conditions as well as under a changing climate. Identification of key elements along the supply chain may assist in informing adaptation strategies to reduce anticipated future risks posed by climate change. The SCI also provides information on the relative stability of different supply chains based on whether there is a fairly even spread in the individual scores of the top few key elements, compared with a more critical dependence on a few key individual supply chain elements. We use as a case study the Australian southern rock lobster Jasus edwardsii fishery, which is challenged by a number of climate change drivers such as impacts on recruitment and growth due to changes in large-scale and local oceanographic features. The SCI identifies airports, processors and Chinese consumers as the key elements in the lobster supply chain that merit attention to enhance stability and potentially enable growth. We also apply the index to an additional four real-world Australian commercial fishery and two aquaculture industry supply chains to highlight the utility of a systematic method for describing supply chains. Overall, our simple methodological approach to empirically-based supply chain research provides an objective method for comparing the resilience of supply chains and highlighting components that may be critical.

  4. A Quantitative Metric to Identify Critical Elements within Seafood Supply Networks

    Science.gov (United States)

    Plagányi, Éva E.; van Putten, Ingrid; Thébaud, Olivier; Hobday, Alistair J.; Innes, James; Lim-Camacho, Lilly; Norman-López, Ana; Bustamante, Rodrigo H.; Farmery, Anna; Fleming, Aysha; Frusher, Stewart; Green, Bridget; Hoshino, Eriko; Jennings, Sarah; Pecl, Gretta; Pascoe, Sean; Schrobback, Peggy; Thomas, Linda

    2014-01-01

    A theoretical basis is required for comparing key features and critical elements in wild fisheries and aquaculture supply chains under a changing climate. Here we develop a new quantitative metric that is analogous to indices used to analyse food-webs and identify key species. The Supply Chain Index (SCI) identifies critical elements as those elements with large throughput rates, as well as greater connectivity. The sum of the scores for a supply chain provides a single metric that roughly captures both the resilience and connectedness of a supply chain. Standardised scores can facilitate cross-comparisons both under current conditions as well as under a changing climate. Identification of key elements along the supply chain may assist in informing adaptation strategies to reduce anticipated future risks posed by climate change. The SCI also provides information on the relative stability of different supply chains based on whether there is a fairly even spread in the individual scores of the top few key elements, compared with a more critical dependence on a few key individual supply chain elements. We use as a case study the Australian southern rock lobster Jasus edwardsii fishery, which is challenged by a number of climate change drivers such as impacts on recruitment and growth due to changes in large-scale and local oceanographic features. The SCI identifies airports, processors and Chinese consumers as the key elements in the lobster supply chain that merit attention to enhance stability and potentially enable growth. We also apply the index to an additional four real-world Australian commercial fishery and two aquaculture industry supply chains to highlight the utility of a systematic method for describing supply chains. Overall, our simple methodological approach to empirically-based supply chain research provides an objective method for comparing the resilience of supply chains and highlighting components that may be critical. PMID:24633147

  5. A quantitative metric to identify critical elements within seafood supply networks.

    Directory of Open Access Journals (Sweden)

    Éva E Plagányi

    Full Text Available A theoretical basis is required for comparing key features and critical elements in wild fisheries and aquaculture supply chains under a changing climate. Here we develop a new quantitative metric that is analogous to indices used to analyse food-webs and identify key species. The Supply Chain Index (SCI identifies critical elements as those elements with large throughput rates, as well as greater connectivity. The sum of the scores for a supply chain provides a single metric that roughly captures both the resilience and connectedness of a supply chain. Standardised scores can facilitate cross-comparisons both under current conditions as well as under a changing climate. Identification of key elements along the supply chain may assist in informing adaptation strategies to reduce anticipated future risks posed by climate change. The SCI also provides information on the relative stability of different supply chains based on whether there is a fairly even spread in the individual scores of the top few key elements, compared with a more critical dependence on a few key individual supply chain elements. We use as a case study the Australian southern rock lobster Jasus edwardsii fishery, which is challenged by a number of climate change drivers such as impacts on recruitment and growth due to changes in large-scale and local oceanographic features. The SCI identifies airports, processors and Chinese consumers as the key elements in the lobster supply chain that merit attention to enhance stability and potentially enable growth. We also apply the index to an additional four real-world Australian commercial fishery and two aquaculture industry supply chains to highlight the utility of a systematic method for describing supply chains. Overall, our simple methodological approach to empirically-based supply chain research provides an objective method for comparing the resilience of supply chains and highlighting components that may be critical.

  6. CONCEPTION OF USE VIBROACOUSTIC SIGNALS AND NEURAL NETWORKS FOR DIAGNOSING OF CHOSEN ELEMENTS OF INTERNAL COMBUSTION ENGINES IN CAR VEHICLES

    Directory of Open Access Journals (Sweden)

    Piotr CZECH

    2014-03-01

    Full Text Available Currently used diagnostics systems are not always efficient and do not give straightforward results which allow for the assessment of the technological condition of the engine or for the identification of the possible damages in their early stages of development. Growing requirements concerning durability, reliability, reduction of costs to minimum and decrease of negative influence on the natural environment are the reasons why there is a need to acquire information about the technological condition of each of the elements of a vehicle during its exploitation. One of the possibilities to achieve information about technological condition of a vehicle are vibroacoustic phenomena. Symptoms of defects, achieved as a result of advanced methods of vibroacoustic signals processing can serve as models which can be used during construction of intelligent diagnostic system based on artificial neural networks. The work presents conception of use artificial neural networks in the task of combustion engines diagnosis.

  7. High-performance computing in seismology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The scientific, technical, and economic importance of the issues discussed here presents a clear agenda for future research in computational seismology. In this way these problems will drive advances in high-performance computing in the field of seismology. There is a broad community that will benefit from this work, including the petroleum industry, research geophysicists, engineers concerned with seismic hazard mitigation, and governments charged with enforcing a comprehensive test ban treaty. These advances may also lead to new applications for seismological research. The recent application of high-resolution seismic imaging of the shallow subsurface for the environmental remediation industry is an example of this activity. This report makes the following recommendations: (1) focused efforts to develop validated documented software for seismological computations should be supported, with special emphasis on scalable algorithms for parallel processors; (2) the education of seismologists in high-performance computing technologies and methodologies should be improved; (3) collaborations between seismologists and computational scientists and engineers should be increased; (4) the infrastructure for archiving, disseminating, and processing large volumes of seismological data should be improved.

  8. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  9. A High Performance COTS Based Computer Architecture

    Science.gov (United States)

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  10. High-performance computing for airborne applications

    International Nuclear Information System (INIS)

    Quinn, Heather M.; Manuzatto, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-01-01

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  11. Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeong Yong; Jeong, Y. H.; Park, S. Y.

    2010-04-01

    The irradiation test for HANA claddings conducted and a series of evaluation for next-HANA claddings as well as their in-pile and out-of pile performances tests were also carried out at Halden research reactor. The 6th irradiation test have been completed successfully in Halden research reactor. As a result, HANA claddings showed high performance, such as corrosion resistance increased by 40% compared to Zircaloy-4. The high performance of HANA claddings in Halden test has enabled lead test rod program as the first step of the commercialization of HANA claddings. DB has been established for thermal and LOCA-related properties. It was confirmed from the thermal shock test that the integrity of HANA claddings was maintained in more expanded region than the criteria regulated by NRC. The manufacturing process of strips was established in order to apply HANA alloys, which were originally developed for the claddings, to the spacer grids. 250 kinds of model alloys for the next-generation claddings were designed and manufactured over 4 times and used to select the preliminary candidate alloys for the next-generation claddings. The selected candidate alloys showed 50% better corrosion resistance and 20% improved high temperature oxidation resistance compared to the foreign advanced claddings. We established the manufacturing condition controlling the performance of the dual-cooled claddings by changing the reduction rate in the cold working steps

  12. Integrated plasma control for high performance tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Deranian, R.D.; Ferron, J.R.; Johnson, R.D.; LaHaye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; Jayakumar, R.J.; Makowski, M.A.; Khayrutdinov, R.R.

    2005-01-01

    Sustaining high performance in a tokamak requires controlling many equilibrium shape and profile characteristics simultaneously with high accuracy and reliability, while suppressing a variety of MHD instabilities. Integrated plasma control, the process of designing high-performance tokamak controllers based on validated system response models and confirming their performance in detailed simulations, provides a systematic method for achieving and ensuring good control performance. For present-day devices, this approach can greatly reduce the need for machine time traditionally dedicated to control optimization, and can allow determination of high-reliability controllers prior to ever producing the target equilibrium experimentally. A full set of tools needed for this approach has recently been completed and applied to present-day devices including DIII-D, NSTX and MAST. This approach has proven essential in the design of several next-generation devices including KSTAR, EAST, JT-60SC, and ITER. We describe the method, results of design and simulation tool development, and recent research producing novel approaches to equilibrium and MHD control in DIII-D. (author)

  13. Strategy Guideline: Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  14. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    1999-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  15. High-performance vertical organic transistors.

    Science.gov (United States)

    Kleemann, Hans; Günther, Alrun A; Leo, Karl; Lüssem, Björn

    2013-11-11

    Vertical organic thin-film transistors (VOTFTs) are promising devices to overcome the transconductance and cut-off frequency restrictions of horizontal organic thin-film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self-assembly processes which impedes a future large-area production. In this contribution, high-performance vertical organic transistors comprising pentacene for p-type operation and C60 for n-type operation are presented. The static current-voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self-assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high-performance applications of organic transistors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Linux Workstation for High Performance Graphics

    Science.gov (United States)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  17. High performance separation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Sivaraman, N.; Vasudeva Rao, P.R.

    2011-01-01

    The major advantage of High Performance Liquid Chromatography (HPLC) is its ability to provide rapid and high performance separations. It is evident from Van Deemter curve for particle size versus resolution that packing materials with particle sizes less than 2 μm provide better resolution for high speed separations and resolving complex mixtures compared to 5 μm based supports. In the recent past, chromatographic support material using monolith has been studied extensively at our laboratory. Monolith column consists of single piece of porous, rigid material containing mesopores and micropores, which provide fast analyte mass transfer. Monolith support provides significantly higher separation efficiency than particle-packed columns. A clear advantage of monolith is that it could be operated at higher flow rates but with lower back pressure. Higher operating flow rate results in higher column permeability, which drastically reduces analysis time and provides high separation efficiency. The above developed fast separation methods were applied to assay the lanthanides and actinides from the dissolver solutions of nuclear reactor fuels

  18. Building Trust in High-Performing Teams

    Directory of Open Access Journals (Sweden)

    Aki Soudunsaari

    2012-06-01

    Full Text Available Facilitation of growth is more about good, trustworthy contacts than capital. Trust is a driving force for business creation, and to create a global business you need to build a team that is capable of meeting the challenge. Trust is a key factor in team building and a needed enabler for cooperation. In general, trust building is a slow process, but it can be accelerated with open interaction and good communication skills. The fast-growing and ever-changing nature of global business sets demands for cooperation and team building, especially for startup companies. Trust building needs personal knowledge and regular face-to-face interaction, but it also requires empathy, respect, and genuine listening. Trust increases communication, and rich and open communication is essential for the building of high-performing teams. Other building materials are a shared vision, clear roles and responsibilities, willingness for cooperation, and supporting and encouraging leadership. This study focuses on trust in high-performing teams. It asks whether it is possible to manage trust and which tools and operation models should be used to speed up the building of trust. In this article, preliminary results from the authors’ research are presented to highlight the importance of sharing critical information and having a high level of communication through constant interaction.

  19. The path toward HEP High Performance Computing

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on th...

  20. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  1. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

    KAUST Repository

    Wu, Hui; Hu, Liangbing; Rowell, Michael W.; Kong, Desheng; Cha, Judy J.; McDonough, James R.; Zhu, Jia; Yang, Yuan; McGehee, Michael D.; Cui, Yi

    2010-01-01

    Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as replacements. A low junction resistance between nanostructures is important for decreasing the sheet resistance. However, the junction resistances between CNTs and boundry resistances between graphene nanostructures are too high. The aspect ratios of silver nanowires are limited to ∼100, and silver is relatively expensive. Here, we show high-performance transparent electrodes with copper nanofiber networks by a low-cost and scalable electrospinning process. Copper nanofibers have ultrahigh aspect ratios of up to 100000 and fused crossing points with ultralow junction resistances, which result in high transmitance at low sheet resistance, e.g., 90% at 50 Ω/sq. The copper nanofiber networks also show great flexibility and stretchabilty. Organic solar cells using copper nanowire networks as transparent electrodes have a power efficiency of 3.0%, comparable to devices made with ITO electrodes. © 2010 American Chemical Society.

  2. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

    KAUST Repository

    Wu, Hui

    2010-10-13

    Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as replacements. A low junction resistance between nanostructures is important for decreasing the sheet resistance. However, the junction resistances between CNTs and boundry resistances between graphene nanostructures are too high. The aspect ratios of silver nanowires are limited to ∼100, and silver is relatively expensive. Here, we show high-performance transparent electrodes with copper nanofiber networks by a low-cost and scalable electrospinning process. Copper nanofibers have ultrahigh aspect ratios of up to 100000 and fused crossing points with ultralow junction resistances, which result in high transmitance at low sheet resistance, e.g., 90% at 50 Ω/sq. The copper nanofiber networks also show great flexibility and stretchabilty. Organic solar cells using copper nanowire networks as transparent electrodes have a power efficiency of 3.0%, comparable to devices made with ITO electrodes. © 2010 American Chemical Society.

  3. High-performance reconfigurable hardware architecture for restricted Boltzmann machines.

    Science.gov (United States)

    Ly, Daniel Le; Chow, Paul

    2010-11-01

    Despite the popularity and success of neural networks in research, the number of resulting commercial or industrial applications has been limited. A primary cause for this lack of adoption is that neural networks are usually implemented as software running on general-purpose processors. Hence, a hardware implementation that can exploit the inherent parallelism in neural networks is desired. This paper investigates how the restricted Boltzmann machine (RBM), which is a popular type of neural network, can be mapped to a high-performance hardware architecture on field-programmable gate array (FPGA) platforms. The proposed modular framework is designed to reduce the time complexity of the computations through heavily customized hardware engines. A method to partition large RBMs into smaller congruent components is also presented, allowing the distribution of one RBM across multiple FPGA resources. The framework is tested on a platform of four Xilinx Virtex II-Pro XC2VP70 FPGAs running at 100 MHz through a variety of different configurations. The maximum performance was obtained by instantiating an RBM of 256 × 256 nodes distributed across four FPGAs, which resulted in a computational speed of 3.13 billion connection-updates-per-second and a speedup of 145-fold over an optimized C program running on a 2.8-GHz Intel processor.

  4. Trace elements during primordial plexiform network formation in human cerebral organoids

    Directory of Open Access Journals (Sweden)

    Rafaela C. Sartore

    2017-02-01

    Full Text Available Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.

  5. Actions with economic elements embedded in the social networks of Danish farmer investors abroad

    DEFF Research Database (Denmark)

    Hajderllari, Luljeta

    and advice given and received to and from other DFIs) and social relationships (friendship). The data of the four different networks was analysed by the Double Dekker Semi-Partialling Multiple Regression Quadratic Assignment Procedure in UCINET. The results indicate that cooperation as well as received......The main aim of this paper is to investigate the “embeddedness” of business relationships with social relationships of Danish farmer investors (DFI) concerning agricultural investment and expansion abroad. A survey was sent to 61 DFIs with activities in Central and Eastern European countries who...... are members of an organisation named Danish Farmers Abroad. The survey elicited information regarding their organisational network connections to other DFIs who also have activities abroad. Information about the DFIs’ network was obtained regarding their business relationships (cooperation, competition...

  6. High Performance Circularly Polarized Microstrip Antenna

    Science.gov (United States)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  7. Two Scales, Hybrid Model for Soils, Involving Artificial Neural Network and Finite Element Procedure

    Directory of Open Access Journals (Sweden)

    Krasiński Marcin

    2015-02-01

    Full Text Available A hybrid ANN-FE solution is presented as a result of two level analysis of soils: a level of a laboratory sample and a level of engineering geotechnical problem. Engineering properties of soils (sands are represented directly in the form of ANN (this is in contrast with our former paper where ANN approximated constitutive relationships. Initially the ANN is trained with Duncan formula (Duncan and Chang [2], then it is re-trained (calibrated with some available experimental data, specific for the soil considered. The obtained approximation of the constitutive parameters is used directly in finite element method at the level of a single element at the scale of the laboratory sample to check the correct representation of the laboratory test. Then, the finite element that was successfully tested at the level of laboratory sample is used at the macro level to solve engineering problems involving the soil for which it was calibrated.

  8. Intel Xeon Phi coprocessor high performance programming

    CERN Document Server

    Jeffers, James

    2013-01-01

    Authors Jim Jeffers and James Reinders spent two years helping educate customers about the prototype and pre-production hardware before Intel introduced the first Intel Xeon Phi coprocessor. They have distilled their own experiences coupled with insights from many expert customers, Intel Field Engineers, Application Engineers and Technical Consulting Engineers, to create this authoritative first book on the essentials of programming for this new architecture and these new products. This book is useful even before you ever touch a system with an Intel Xeon Phi coprocessor. To ensure that your applications run at maximum efficiency, the authors emphasize key techniques for programming any modern parallel computing system whether based on Intel Xeon processors, Intel Xeon Phi coprocessors, or other high performance microprocessors. Applying these techniques will generally increase your program performance on any system, and better prepare you for Intel Xeon Phi coprocessors and the Intel MIC architecture. It off...

  9. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.

    2013-01-01

    on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water......Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... permeability of ~ 4 L/(m2 h bar) with a NaCl rejection > 97% at an applied hydraulic pressure of 5 bar. The water permeability was ~40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR). In FO, the ABMs had > 90...

  10. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  11. High Performance OLED Panel and Luminaire

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC, Rochester, NY (United States)

    2017-02-20

    In this project, OLEDWorks developed and demonstrated the technology required to produce OLED lighting panels with high energy efficiency and excellent light quality. OLED panels developed in this program produce high quality warm white light with CRI greater than 85 and efficacy up to 80 lumens per watt (LPW). An OLED luminaire employing 24 of the high performance panels produces practical levels of illumination for general lighting, with a flux of over 2200 lumens at 60 LPW. This is a significant advance in the state of the art for OLED solid-state lighting (SSL), which is expected to be a complementary light source to the more advanced LED SSL technology that is rapidly replacing all other traditional forms of lighting.

  12. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  13. High performance nano-composite technology development

    International Nuclear Information System (INIS)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D.; Kim, E. K.; Jung, S. Y.; Ryu, H. J.; Hwang, S. S.; Kim, J. K.; Hong, S. M.; Chea, Y. B.; Choi, C. H.; Kim, S. D.; Cho, B. G.; Lee, S. H.

    1999-06-01

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  14. Development of high-performance blended cements

    Science.gov (United States)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  15. High performance parallel computers for science

    International Nuclear Information System (INIS)

    Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.

    1989-01-01

    This paper reports that Fermilab's Advanced Computer Program (ACP) has been developing cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 Mflops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction

  16. High Performance with Prescriptive Optimization and Debugging

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo

    parallelization and automatic vectorization is attractive as it transparently optimizes programs. The thesis contributes an improved dependence analysis for explicitly parallel programs. These improvements lead to more loops being vectorized, on average we achieve a speedup of 1.46 over the existing dependence...... analysis and vectorizer in GCC. Automatic optimizations often fail for theoretical and practical reasons. When they fail we argue that a hybrid approach can be effective. Using compiler feedback, we propose to use the programmer’s intuition and insight to achieve high performance. Compiler feedback...... enlightens the programmer why a given optimization was not applied, and suggest how to change the source code to make it more amenable to optimizations. We show how this can yield significant speedups and achieve 2.4 faster execution on a real industrial use case. To aid in parallel debugging we propose...

  17. The path toward HEP High Performance Computing

    International Nuclear Information System (INIS)

    Apostolakis, John; Brun, René; Gheata, Andrei; Wenzel, Sandro; Carminati, Federico

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on the development of a highperformance prototype for particle transport. Achieving a good concurrency level on the emerging parallel architectures without a complete redesign of the framework can only be done by parallelizing at event level, or with a much larger effort at track level. Apart the shareable data structures, this typically implies a multiplication factor in terms of memory consumption compared to the single threaded version, together with sub-optimal handling of event processing tails. Besides this, the low level instruction pipelining of modern processors cannot be used efficiently to speedup the program. We have implemented a framework that allows scheduling vectors of particles to an arbitrary number of computing resources in a fine grain parallel approach. The talk will review the current optimisation activities within the SFT group with a particular emphasis on the development perspectives towards a simulation framework able to profit

  18. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  19. Neural Network Modeling for the Extraction of Rare Earth Elements from Eudialyte Concentrate by Dry Digestion and Leaching

    Directory of Open Access Journals (Sweden)

    Yiqian Ma

    2018-04-01

    Full Text Available Eudialyte is a promising mineral for rare earth elements (REE extraction due to its good solubility in acid, low radioactive, and relatively high content of REE. In this paper, a two stage hydrometallurgical treatment of eudialyte concentrate was studied: dry digestion with hydrochloric acid and leaching with water. The hydrochloric acid for dry digestion to eudialyte concentrate ratio, mass of water for leaching to mass of eudialyte concentrate ratio, leaching temperature and leaching time as the predictor variables, and the total rare earth elements (TREE extraction efficiency as the response were considered. After experimental work in laboratory conditions, according to design of experiment theory (DoE, the modeling process was performed using Multiple Linear Regression (MLR, Stepwise Regression (SWR, and Artificial Neural Network (ANN. The ANN model of REE extraction was adopted. Additional tests showed that values predicted by the neural network model were in very good agreement with the experimental results. Finally, the experiments were performed on a scaled up system under optimal conditions that were predicted by the adopted ANN model. Results at the scale-up plant confirmed the results that were obtained in the laboratory.

  20. Assessment of the influence of anthropogenic factors on elements of the ecological network in Vojvodina (Serbia using the Leopold matrix

    Directory of Open Access Journals (Sweden)

    Kicošev Vesna

    2015-01-01

    Full Text Available Salt steppes and marshes represent the most valuable ecosystems in the world, providing numerous ecosystem services that are extremely vulnerable to anthropogenic influences. These types of habitat in the territory of Serbia are most dominant in Banat and a significant portion of them is under protection or in the process of becoming protected. The section surrounding the protected areas of Slano Kopovo Special Nature Reserve, Rusanda Nature Park and Okanj Bara Special Nature Reserve with the non-building area of Novi Bečej, Kumane, Melenci, Elemir and Taraš cadastral municipalities, has been chosen for the analysis. The aim of this paper was to assess the influence of specific anthropogenic factors on the elements of an ecological network using the analytical method that can generate the required results in a manner suitable for presentation to various stakeholders. To achieve this aim, the Leopold matrix model, used for assessing anthropogenic influence on the environment, has been chosen. The specificity of this issue of protecting and preserving elements of an ecological network resulted in the need to isolate and evaluate the factors affecting the preservation of habitats and functionality of ecosystems, unlike the concept of Leopold matrix, which treats all factors as equally important in the process of evaluation. Evaluation results indicate significant effects of historical, perennial manner of using the area and other resources in the non-building area.

  1. Secure neighborhood discovery: A fundamental element for mobile ad hoc networking

    DEFF Research Database (Denmark)

    Papadimitratos, P.; Poturalski, M.; Schaller, P.

    2008-01-01

    Pervasive computing systems will likely be deployed in the near future, with the proliferation of wireless devices and the emergence of ad hoc networking as key enablers. Coping with mobility and the volatility of wireless communications in such systems is critical. Neighborhood discovery (ND......) - the discovery of devices directly reachable for communication or in physical proximity - becomes a fundamental requirement and building block for various applications. However, the very nature of wireless mobile networks makes it easy to abuse ND and thereby compromise the overlying protocols and applications....... Thus, providing methods to mitigate this vulnerability and secure ND is crucial. In this article we focus on this problem and provide definitions of neighborhood types and ND protocol properties, as well as a broad classification of attacks. Our ND literature survey reveals that securing ND is indeed...

  2. A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods

    International Nuclear Information System (INIS)

    Inakollu, Prasanthi; Philip, Thomas; Rai, Awadhesh K.; Yueh Fangyu; Singh, Jagdish P.

    2009-01-01

    A comparative study of analysis methods (traditional calibration method and artificial neural networks (ANN) prediction method) for laser induced breakdown spectroscopy (LIBS) data of different Al alloy samples was performed. In the calibration method, the intensity of the analyte lines obtained from different samples are plotted against their concentration to form calibration curves for different elements from which the concentrations of unknown elements were deduced by comparing its LIBS signal with the calibration curves. Using ANN, an artificial neural network model is trained with a set of input data of known composition samples. The trained neural network is then used to predict the elemental concentration from the test spectra. The present results reveal that artificial neural networks are capable of predicting values better than traditional method in most cases

  3. Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements

    Science.gov (United States)

    2013-12-03

    based on physiochemical features not captured by residue co-evolution. In all the networks we characterized, it was evident that some residues were...corresponding iron and sulphur related parameters, were obtained from Bathelt et al. [46]. These parameters are based on QM/MM calculations and have been...2007) Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 282: 14348-14355. doi

  4. Application of 1 D Finite Element Method in Combination with Laminar Solution Method for Pipe Network Analysis

    Science.gov (United States)

    Dudar, O. I.; Dudar, E. S.

    2017-11-01

    The features of application of the 1D dimensional finite element method (FEM) in combination with the laminar solutions method (LSM) for the calculation of underground ventilating networks are considered. In this case the processes of heat and mass transfer change the properties of a fluid (binary vapour-air mix). Under the action of gravitational forces it leads to such phenomena as natural draft, local circulation, etc. The FEM relations considering the action of gravity, the mass conservation law, the dependence of vapour-air mix properties on the thermodynamic parameters are derived so that it allows one to model the mentioned phenomena. The analogy of the elastic and plastic rod deformation processes to the processes of laminar and turbulent flow in a pipe is described. Owing to this analogy, the guaranteed convergence of the elastic solutions method for the materials of plastic type means the guaranteed convergence of the LSM for any regime of a turbulent flow in a rough pipe. By means of numerical experiments the convergence rate of the FEM - LSM is investigated. This convergence rate appeared much higher than the convergence rate of the Cross - Andriyashev method. Data of other authors on the convergence rate comparison for the finite element method, the Newton method and the method of gradient are provided. These data allow one to conclude that the FEM in combination with the LSM is one of the most effective methods of calculation of hydraulic and ventilating networks. The FEM - LSM has been used for creation of the research application programme package “MineClimate” allowing to calculate the microclimate parameters in the underground ventilating networks.

  5. SISYPHUS: A high performance seismic inversion factory

    Science.gov (United States)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with

  6. NCI's Transdisciplinary High Performance Scientific Data Platform

    Science.gov (United States)

    Evans, Ben; Antony, Joseph; Bastrakova, Irina; Car, Nicholas; Cox, Simon; Druken, Kelsey; Evans, Bradley; Fraser, Ryan; Ip, Alex; Kemp, Carina; King, Edward; Minchin, Stuart; Larraondo, Pablo; Pugh, Tim; Richards, Clare; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    The Australian National Computational Infrastructure (NCI) manages Earth Systems data collections sourced from several domains and organisations onto a single High Performance Data (HPD) Node to further Australia's national priority research and innovation agenda. The NCI HPD Node has rapidly established its value, currently managing over 10 PBytes of datasets from collections that span a wide range of disciplines including climate, weather, environment, geoscience, geophysics, water resources and social sciences. Importantly, in order to facilitate broad user uptake, maximise reuse and enable transdisciplinary access through software and standardised interfaces, the datasets, associated information systems and processes have been incorporated into the design and operation of a unified platform that NCI has called, the National Environmental Research Data Interoperability Platform (NERDIP). The key goal of the NERDIP is to regularise data access so that it is easily discoverable, interoperable for different domains and enabled for high performance methods. It adopts and implements international standards and data conventions, and promotes scientific integrity within a high performance computing and data analysis environment. NCI has established a rich and flexible computing environment to access to this data, through the NCI supercomputer; a private cloud that supports both domain focused virtual laboratories and in-common interactive analysis interfaces; as well as remotely through scalable data services. Data collections of this importance must be managed with careful consideration of both their current use and the needs of the end-communities, as well as its future potential use, such as transitioning to more advanced software and improved methods. It is therefore critical that the data platform is both well-managed and trusted for stable production use (including transparency and reproducibility), agile enough to incorporate new technological advances and

  7. Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools

    Directory of Open Access Journals (Sweden)

    Namık KılıÇ

    2015-06-01

    Full Text Available Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods (FEM in this research field. The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort, therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time. This study aims to apply a hybrid method using FEM simulation and artificial neural network (ANN analysis to approximate ballistic limit thickness for armor steels. To achieve this objective, a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition. In this methodology, the FEM simulations are used to create training cases for Multilayer Perceptron (MLP three layer networks. In order to validate FE simulation methodology, ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569. Afterwards, the successfully trained ANN(s is used to predict the ballistic limit thickness of 500 HB high hardness steel armor. Results show that even with limited number of data, FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.

  8. High Performance Data Transfer for Distributed Data Intensive Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chin [Zettar Inc., Mountain View, CA (United States); Cottrell, R ' Les' A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hanushevsky, Andrew B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kroeger, Wilko [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yang, Wei [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    We report on the development of ZX software providing high performance data transfer and encryption. The design scales in: computation power, network interfaces, and IOPS while carefully balancing the available resources. Two U.S. patent-pending algorithms help tackle data sets containing lots of small files and very large files, and provide insensitivity to network latency. It has a cluster-oriented architecture, using peer-to-peer technologies to ease deployment, operation, usage, and resource discovery. Its unique optimizations enable effective use of flash memory. Using a pair of existing data transfer nodes at SLAC and NERSC, we compared its performance to that of bbcp and GridFTP and determined that they were comparable. With a proof of concept created using two four-node clusters with multiple distributed multi-core CPUs, network interfaces and flash memory, we achieved 155Gbps memory-to-memory over a 2x100Gbps link aggregated channel and 70Gbps file-to-file with encryption over a 5000 mile 100Gbps link.

  9. Optimizing High Performance Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Raymond A Yonathan

    2017-01-01

    Full Text Available This paper’s objectives are to learn the effect of glass powder, silica fume, Polycarboxylate Ether, and gravel to optimizing composition of each factor in making High Performance SCC. Taguchi method is proposed in this paper as best solution to minimize specimen variable which is more than 80 variations. Taguchi data analysis method is applied to provide composition, optimizing, and the effect of contributing materials for nine variable of specimens. Concrete’s workability was analyzed using Slump flow test, V-funnel test, and L-box test. Compressive and porosity test were performed for the hardened state. With a dimension of 100×200 mm the cylindrical specimens were cast for compressive test with the age of 3, 7, 14, 21, 28 days. Porosity test was conducted at 28 days. It is revealed that silica fume contributes greatly to slump flow and porosity. Coarse aggregate shows the greatest contributing factor to L-box and compressive test. However, all factors show unclear result to V-funnel test.

  10. An integrated high performance Fastbus slave interface

    International Nuclear Information System (INIS)

    Christiansen, J.; Ljuslin, C.

    1993-01-01

    A high performance CMOS Fastbus slave interface ASIC (Application Specific Integrated Circuit) supporting all addressing and data transfer modes defined in the IEEE 960 - 1986 standard is presented. The FAstbus Slave Integrated Circuit (FASIC) is an interface between the asynchronous Fastbus and a clock synchronous processor/memory bus. It can work stand-alone or together with a 32 bit microprocessor. The FASIC is a programmable device enabling its direct use in many different applications. A set of programmable address mapping windows can map Fastbus addresses to convenient memory addresses and at the same time act as address decoding logic. Data rates of 100 MBytes/sec to Fastbus can be obtained using an internal FIFO in the FASIC to buffer data between the two buses during block transfers. Message passing from Fastbus to a microprocessor on the slave module is supported. A compact (70 mm x 170 mm) Fastbus slave piggy back sub-card interface including level conversion between ECL and TTL signal levels has been implemented using surface mount components and the 208 pin FASIC chip

  11. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-01-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of < 100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipment: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost

  12. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M.; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-03-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of <100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipments: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost. 1 fig

  13. High Performance Graphene Oxide Based Rubber Composites

    Science.gov (United States)

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-01-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435

  14. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  15. High performance computing in linear control

    International Nuclear Information System (INIS)

    Datta, B.N.

    1993-01-01

    Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments

  16. Development of a High Performance Spacer Grid

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Song, K. N.; Yoon, K. H. (and others)

    2007-03-15

    A spacer grid in a LWR fuel assembly is a key structural component to support fuel rods and to enhance the heat transfer from the fuel rod to the coolant. In this research, the main research items are the development of inherent and high performance spacer grid shapes, the establishment of mechanical/structural analysis and test technology, and the set-up of basic test facilities for the spacer grid. The main research areas and results are as follows. 1. 18 different spacer grid candidates have been invented and applied for domestic and US patents. Among the candidates 16 are chosen from the patent. 2. Two kinds of spacer grids are finally selected for the advanced LWR fuel after detailed performance tests on the candidates and commercial spacer grids from a mechanical/structural point of view. According to the test results the features of the selected spacer grids are better than those of the commercial spacer grids. 3. Four kinds of basic test facilities are set up and the relevant test technologies are established. 4. Mechanical/structural analysis models and technology for spacer grid performance are developed and the analysis results are compared with the test results to enhance the reliability of the models.

  17. Low-Cost High-Performance MRI

    Science.gov (United States)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (standards for affordable (<$50,000) and robust portable devices.

  18. Energy Efficient Graphene Based High Performance Capacitors.

    Science.gov (United States)

    Bae, Joonwon; Kwon, Oh Seok; Lee, Chang-Soo

    2017-07-10

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Durability of high performance concrete in seawater

    International Nuclear Information System (INIS)

    Amjad Hussain Memon; Salihuddin Radin Sumadi; Rabitah Handan

    2000-01-01

    This paper presents a report on the effects of blended cements on the durability of high performance concrete (HPC) in seawater. In this research the effect of seawater was investigated. The specimens were initially subjected to water curing for seven days inside the laboratory at room temperature, followed by seawater curing exposed to tidal zone until testing. In this study three levels of cement replacement (0%, 30% and 70%) were used. The combined use of chemical and mineral admixtures has resulted in a new generation of concrete called HPC. The HPC has been identified as one of the most important advanced materials necessary in the effort to build a nation's infrastructure. HPC opens new opportunities in the utilization of the industrial by-products (mineral admixtures) in the construction industry. As a matter of fact permeability is considered as one of the fundamental properties governing the durability of concrete in the marine environment. Results of this investigation indicated that the oxygen permeability values for the blended cement concretes at the age of one year are reduced by a factor of about 2 as compared to OPC control mix concrete. Therefore both blended cement concretes are expected to withstand in the seawater exposed to tidal zone without serious deterioration. (Author)

  20. Towards High Performance Processing In Modern Java Based Control Systems

    CERN Document Server

    Misiowiec, M; Buttner, M

    2011-01-01

    CERN controls software is often developed on Java foundation. Some systems carry out a combination of data, network and processor intensive tasks within strict time limits. Hence, there is a demand for high performing, quasi real time solutions. Extensive prototyping of the new CERN monitoring and alarm software required us to address such expectations. The system must handle dozens of thousands of data samples every second, along its three tiers, applying complex computations throughout. To accomplish the goal, a deep understanding of multithreading, memory management and interprocess communication was required. There are unexpected traps hidden behind an excessive use of 64 bit memory or severe impact on the processing flow of modern garbage collectors. Tuning JVM configuration significantly affects the execution of the code. Even more important is the amount of threads and the data structures used between them. Accurately dividing work into independent tasks might boost system performance. Thorough profili...

  1. Software Systems for High-performance Quantum Computing

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL; Britt, Keith A [ORNL

    2016-01-01

    Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.

  2. A General Purpose High Performance Linux Installation Infrastructure

    International Nuclear Information System (INIS)

    Wachsmann, Alf

    2002-01-01

    With more and more and larger and larger Linux clusters, the question arises how to install them. This paper addresses this question by proposing a solution using only standard software components. This installation infrastructure scales well for a large number of nodes. It is also usable for installing desktop machines or diskless Linux clients, thus, is not designed for cluster installations in particular but is, nevertheless, highly performant. The infrastructure proposed uses PXE as the network boot component on the nodes. It uses DHCP and TFTP servers to get IP addresses and a bootloader to all nodes. It then uses kickstart to install Red Hat Linux over NFS. We have implemented this installation infrastructure at SLAC with our given server hardware and installed a 256 node cluster in 30 minutes. This paper presents the measurements from this installation and discusses the bottlenecks in our installation

  3. Network as transconcept: elements for a conceptual demarcation in the field of public health.

    Science.gov (United States)

    Amaral, Carlos Eduardo Menezes; Bosi, Maria Lúcia Magalhães

    2016-08-22

    The main proposal to set up an articulated mode of operation of health services has been the concept of network, which has been appropriated in different ways in the field of public health, as it is used in other disciplinary fields or even taking it from common sense. Amid the diversity of uses and concepts, we recognize the need for rigorous conceptual demarcation about networks in the field of health. Such concern aims to preserve the strategic potential of this concept in the research and planning in the field, overcoming uncertainties and distortions still observed in its discourse-analytic circulation in public health. To this end, we will introduce the current uses of network in different disciplinary fields, emphasizing dialogues with the field of public health. With this, we intend to stimulate discussions about the development of empirical dimensions and analytical models that may allow us to understand the processes produced within and around health networks. RESUMO A principal proposta para configurar um modo articulado de funcionamento dos serviços de saúde tem sido o conceito de rede, que vem sendo apropriado de diferentes formas no campo da saúde coletiva, conforme seu emprego em outros campos disciplinares ou mesmo tomando-o do senso comum. Em meio à pluralidade de usos e concepções, reconhecemos a necessidade de rigorosa demarcação conceitual acerca de redes no campo da saúde. Tal preocupação visa a preservar o potencial estratégico desse conceito na investigação e planificação no campo, superando precariedades e distorções ainda observadas em sua circulação discursivo-analítica na saúde coletiva. Para tanto, apresentaremos os usos correntes de rede em diferentes campos disciplinares, destacando interlocuções com o campo da saúde coletiva. Com isso, pretendemos estimular o debate acerca do desenvolvimento de dimensões empíricas e modelos de análise que permitam compreender os processos produzidos no interior e ao redor

  4. Achieving Mixtures of Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Mircea POPA

    2013-07-01

    Full Text Available Ultra-High Performance Concrete (UHPC is a relatively new concrete. According to [11] UHPC is that concrete which features compressive strength over C100/115 class. Up to this point standards for this type of concrete were not adopted, although its characteristic strength exceeds those specified in [33]. Its main property is high compressive strength. This provides the possibility of reducing the section of elements (beams or columns made of this type of concrete, while the load capacity remains high. The study consists in blending mixtures of UHPC made of varying proportions of materials. The authors have obtained strengths of up to 160 MPa. The materials used are: Portland cement, silica fume, quartz powder, steel fibers, superplasticiser, sand and crushed aggregate for concrete - andesite.

  5. Analysis of production factors in high performance concrete

    Directory of Open Access Journals (Sweden)

    Gilberto Carbonari

    2003-01-01

    Full Text Available The incorporation of silica fume and superplasticizers in high strength and high performance concrete, along with a low water-cement ratio, leads to significant changes in the workability and the energy needed to homogenize and compact the concrete. Moreover, several aspects of concrete production that are not critical for conventional concrete are important for high strength concrete. This paper will discuss the need for controlling the humidity of the aggregates, optimizing the mixing sequence used in the fabrication, and the slump loss. The application of a silica fume concrete in typical building columns will be analyzed considering the required consolidation, the variability of the material strength within the structural element and the relation between core and molded specimen strength. Comparisons will also be made with conventional concrete.

  6. High performance VLSI telemetry data systems

    Science.gov (United States)

    Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.

    1990-01-01

    NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.

  7. HIGH PERFORMANCE CERIA BASED OXYGEN MEMBRANE

    DEFF Research Database (Denmark)

    2014-01-01

    The invention describes a new class of highly stable mixed conducting materials based on acceptor doped cerium oxide (CeO2-8 ) in which the limiting electronic conductivity is significantly enhanced by co-doping with a second element or co- dopant, such as Nb, W and Zn, so that cerium and the co......-dopant have an ionic size ratio between 0.5 and 1. These materials can thereby improve the performance and extend the range of operating conditions of oxygen permeation membranes (OPM) for different high temperature membrane reactor applications. The invention also relates to the manufacturing of supported...

  8. HIGH PERFORMANCE ADVANCED TOKAMAK REGIMES FOR NEXT-STEP EXPERIMENTS

    International Nuclear Information System (INIS)

    GREENFIELD, C.M.; MURAKAMI, M.; FERRON, J.R.; WADE, M.R.; LUCE, T.C.; PETTY, C.C.; MENARD, J.E; PETRIE, T.W.; ALLEN, S.L.; BURRELL, K.H.; CASPER, T.A; DeBOO, J.C.; DOYLE, E.J.; GAROFALO, A.M; GORELOV, Y.A; GROEBNER, R.J.; HOBIRK, J.; HYATT, A.W; JAYAKUMAR, R.J; KESSEL, C.E; LA HAYE, R.J; JACKSON, G.L; LOHR, J.; MAKOWSKI, M.A.; PINSKER, R.I.; POLITZER, P.A.; PRATER, R.; STRAIT, E.J.; TAYLOR, T.S; WEST, W.P.

    2003-01-01

    OAK-B135 Advanced Tokamak (AT) research in DIII-D seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic (MHD) stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with non-axisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half-radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding (ELMing) H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts

  9. Ultra high performance concrete dematerialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    Concrete is the most widely used building material in the world and its use is expected to grow. It is well recognized that the production of portland cement results in the release of large amounts of carbon dioxide, a greenhouse gas (GHG). The main challenge facing the industry is to produce concrete in an environmentally sustainable manner. Reclaimed industrial by-proudcts such as fly ash, silica fume and slag can reduce the amount of portland cement needed to make concrete, thereby reducing the amount of GHGs released to the atmosphere. The use of these supplementary cementing materials (SCM) can also enhance the long-term strength and durability of concrete. The intention of the EcoSmart{sup TM} Concrete Project is to develop sustainable concrete through innovation in supply, design and construction. In particular, the project focuses on finding a way to minimize the GHG signature of concrete by maximizing the replacement of portland cement in the concrete mix with SCM while improving the cost, performance and constructability. This paper describes the use of Ductal{sup R} Ultra High Performance Concrete (UHPC) for ramps in a condominium. It examined the relationship between the selection of UHPC and the overall environmental performance, cost, constructability maintenance and operational efficiency as it relates to the EcoSmart Program. The advantages and challenges of using UHPC were outlined. In addition to its very high strength, UHPC has been shown to have very good potential for GHG emission reduction due to the reduced material requirements, reduced transport costs and increased SCM content. refs., tabs., figs.

  10. High-performance laboratories and cleanrooms; TOPICAL

    International Nuclear Information System (INIS)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-01-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations-primarily safety driven-that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities

  11. Developing Flexible, High Performance Polymers with Self-Healing Capabilities

    Science.gov (United States)

    Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.

    2011-01-01

    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface

  12. High Performance Data Distribution for Scientific Community

    Science.gov (United States)

    Tirado, Juan M.; Higuero, Daniel; Carretero, Jesus

    2010-05-01

    Institutions such as NASA, ESA or JAXA find solutions to distribute data from their missions to the scientific community, and their long term archives. This is a complex problem, as it includes a vast amount of data, several geographically distributed archives, heterogeneous architectures with heterogeneous networks, and users spread around the world. We propose a novel architecture (HIDDRA) that solves this problem aiming to reduce user intervention in data acquisition and processing. HIDDRA is a modular system that provides a highly efficient parallel multiprotocol download engine, using a publish/subscribe policy which helps the final user to obtain data of interest transparently. Our system can deal simultaneously with multiple protocols (HTTP,HTTPS, FTP, GridFTP among others) to obtain the maximum bandwidth, reducing the workload in data server and increasing flexibility. It can also provide high reliability and fault tolerance, as several sources of data can be used to perform one file download. HIDDRA architecture can be arranged into a data distribution network deployed on several sites that can cooperate to provide former features. HIDDRA has been addressed by the 2009 e-IRG Report on Data Management as a promising initiative for data interoperability. Our first prototype has been evaluated in collaboration with the ESAC centre in Villafranca del Castillo (Spain) that shows a high scalability and performance, opening a wide spectrum of opportunities. Some preliminary results have been published in the Journal of Astrophysics and Space Science [1]. [1] D. Higuero, J.M. Tirado, J. Carretero, F. Félix, and A. de La Fuente. HIDDRA: a highly independent data distribution and retrieval architecture for space observation missions. Astrophysics and Space Science, 321(3):169-175, 2009

  13. A new high performance research reactor

    International Nuclear Information System (INIS)

    Abbate, Pablo M.

    2002-01-01

    A contract for the design, construction and commissioning of the Replacement Research Reactor was signed in July 2000 between Australia authorities and INVAP from Argentina. Since then the detailed design has been completed, an application for a construction license was made in May 2001 and the construction authorisation was issued on 4 th April 2002. This paper explains the safety philosophy embedded into the design together with the approach taken for main elements of the design and their relation to the proposed applications of the reactor. Also information is provided on the suit of neutron beam facilities and irradiation facilities being constructed. Finally it is presented an outline of the project management organisation, project planing and schedule. (author)

  14. The need for high performance breeder reactors

    International Nuclear Information System (INIS)

    Vaughan, R.D.; Chermanne, J.

    1977-01-01

    It can be easily demonstrated, on the basis of realistic estimates of continued high oil costs, that an increasing portion of the growth in energy demand must be supplied by nuclear power and that this one might account for 20% of all the energy production by the end of the century. Such assumptions lead very quickly to the conclusion that the discovery, extraction and processing of the uranium will not be able to follow the demand; the bottleneck will essentially be related to the rate at which the ore can be discovered and extracted, and not to the existing quantities nor their grade. Figures as high as 150.000 T/annum and more would be quickly reached, and it is necessary to wonder already now if enough capital can be attracted to meet these requirements. There is only one solution to this problem: improve the conversion ratio of the nuclear system and quickly reach the breeding; this would lead to the reduction of the natural uranium consumption by a factor of about 50. However, this condition is not sufficient; the commercial breeder must have a breeding gain as high as possible because the Pu out-of-pile time and the Pu losses in the cycle could lead to an unacceptable doubling time for the system, if the breeding gain is too low. That is the reason why it is vital to develop high performance breeder reactors. The present paper indicates how the Gas-cooled Breeder Reactor [GBR] can meet the problems mentioned above, on the basis of recent and realistic studies. It briefly describes the present status of GBR development, from the predecessors in the gas cooled reactor line, particularly the AGR. It shows how the GBR fuel takes mostly profit from the LMFBR fuel irradiation experience. It compares the GBR performance on a consistent basis with that of the LMFBR. The GBR capital and fuel cycle costs are compared with those of thermal and fast reactors respectively. The conclusion is, based on a cost-benefit study, that the GBR must be quickly developed in order

  15. JT-60U high performance regimes

    International Nuclear Information System (INIS)

    Ishida, S.

    1999-01-01

    High performance regimes of JT-60U plasmas are presented with an emphasis upon the results from the use of a semi-closed pumped divertor with W-shaped geometry. Plasma performance in transient and quasi steady states has been significantly improved in reversed shear and high- βp regimes. The reversed shear regime elevated an equivalent Q DT eq transiently up to 1.25 (n D (0)τ E T i (0)=8.6x10 20 m-3·s·keV) in a reactor-relevant thermonuclear dominant regime. Long sustainment of enhanced confinement with internal transport barriers (ITBs) with a fully non-inductive current drive in a reversed shear discharge was successfully demonstrated with LH wave injection. Performance sustainment has been extended in the high- bp regime with a high triangularity achieving a long sustainment of plasma conditions equivalent to Q DT eq ∼0.16 (n D (0)τ E T i (0)∼1.4x10 20 m -3 ·s·keV) for ∼4.5 s with a large non-inductive current drive fraction of 60-70% of the plasma current. Thermal and particle transport analyses show significant reduction of thermal and particle diffusivities around ITB resulting in a strong Er shear in the ITB region. The W-shaped divertor is effective for He ash exhaust demonstrating steady exhaust capability of τ He */τ E ∼3-10 in support of ITER. Suppression of neutral back flow and chemical sputtering effect have been observed while MARFE onset density is rather decreased. Negative-ion based neutral beam injection (N-NBI) experiments have created a clear H-mode transition. Enhanced ionization cross- section due to multi-step ionization processes was confirmed as theoretically predicted. A current density profile driven by N-NBI is measured in a good agreement with theoretical prediction. N-NBI induced TAE modes characterized as persistent and bursting oscillations have been observed from a low hot beta of h >∼0.1-0.2% without a significant loss of fast ions. (author)

  16. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  17. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  18. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  19. Thermal interface pastes nanostructured for high performance

    Science.gov (United States)

    Lin, Chuangang

    Thermal interface materials in the form of pastes are needed to improve thermal contacts, such as that between a microprocessor and a heat sink of a computer. High-performance and low-cost thermal pastes have been developed in this dissertation by using polyol esters as the vehicle and various nanoscale solid components. The proportion of a solid component needs to be optimized, as an excessive amount degrades the performance, due to the increase in the bond line thickness. The optimum solid volume fraction tends to be lower when the mating surfaces are smoother, and higher when the thermal conductivity is higher. Both a low bond line thickness and a high thermal conductivity help the performance. When the surfaces are smooth, a low bond line thickness can be even more important than a high thermal conductivity, as shown by the outstanding performance of the nanoclay paste of low thermal conductivity in the smooth case (0.009 mum), with the bond line thickness less than 1 mum, as enabled by low storage modulus G', low loss modulus G" and high tan delta. However, for rough surfaces, the thermal conductivity is important. The rheology affects the bond line thickness, but it does not correlate well with the performance. This study found that the structure of carbon black is an important parameter that governs the effectiveness of a carbon black for use in a thermal paste. By using a carbon black with a lower structure (i.e., a lower DBP value), a thermal paste that is more effective than the previously reported carbon black paste was obtained. Graphite nanoplatelet (GNP) was found to be comparable in effectiveness to carbon black (CB) pastes for rough surfaces, but it is less effective for smooth surfaces. At the same filler volume fraction, GNP gives higher thermal conductivity than carbon black paste. At the same pressure, GNP gives higher bond line thickness than CB (Tokai or Cabot). The effectiveness of GNP is limited, due to the high bond line thickness. A

  20. A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Sunil Tyagi

    2017-04-01

    Full Text Available A classification technique using Support Vector Machine (SVM classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditions. The time-domain vibration signals were divided into 40 segments and simple features such as peaks in time domain and spectrum along with statistical features such as standard deviation, skewness, kurtosis etc. were extracted. Effectiveness of SVM classifier was compared with the performance of Artificial Neural Network (ANN classifier and it was found that the performance of SVM classifier is superior to that of ANN. The effect of pre-processing of the vibration signal by Discreet Wavelet Transform (DWT prior to feature extraction is also studied and it is shown that pre-processing of vibration signal with DWT enhances the effectiveness of both ANN and SVM classifiers. It has been demonstrated from experiment results that performance of SVM classifier is better than ANN in detection of bearing condition and pre-processing the vibration signal with DWT improves the performance of SVM classifier.

  1. Novel dynamic Bayesian networks for facial action element recognition and understanding

    Science.gov (United States)

    Zhao, Wei; Park, Jeong-Seon; Choi, Dong-You; Lee, Sang-Woong

    2011-12-01

    In daily life, language is an important tool of communication between people. Besides language, facial action can also provide a great amount of information. Therefore, facial action recognition has become a popular research topic in the field of human-computer interaction (HCI). However, facial action recognition is quite a challenging task due to its complexity. In a literal sense, there are thousands of facial muscular movements, many of which have very subtle differences. Moreover, muscular movements always occur simultaneously when the pose is changed. To address this problem, we first build a fully automatic facial points detection system based on a local Gabor filter bank and principal component analysis. Then, novel dynamic Bayesian networks are proposed to perform facial action recognition using the junction tree algorithm over a limited number of feature points. In order to evaluate the proposed method, we have used the Korean face database for model training. For testing, we used the CUbiC FacePix, facial expressions and emotion database, Japanese female facial expression database, and our own database. Our experimental results clearly demonstrate the feasibility of the proposed approach.

  2. Intelligent Facades for High Performance Green Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building

  3. Alternative High-Performance Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K. [Alfred Univ., NY (United States)

    2017-02-01

    This final report (M5NU-12-NY-AU # 0202-0410) summarizes the results of the project titled “Alternative High-Performance Ceramic Waste Forms,” funded in FY12 by the Nuclear Energy University Program (NEUP Project # 12-3809) being led by Alfred University in collaboration with Savannah River National Laboratory (SRNL). The overall focus of the project is to advance fundamental understanding of crystalline ceramic waste forms and to demonstrate their viability as alternative waste forms to borosilicate glasses. We processed single- and multiphase hollandite waste forms based on simulated waste streams compositions provided by SRNL based on the advanced fuel cycle initiative (AFCI) aqueous separation process developed in the Fuel Cycle Research and Development (FCR&D). For multiphase simulated waste forms, oxide and carbonate precursors were mixed together via ball milling with deionized water using zirconia media in a polyethylene jar for 2 h. The slurry was dried overnight and then separated from the media. The blended powders were then subjected to melting or spark plasma sintering (SPS) processes. Microstructural evolution and phase assemblages of these samples were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion analysis of x-rays (EDAX), wavelength dispersive spectrometry (WDS), transmission electron spectroscopy (TEM), selective area x-ray diffraction (SAXD), and electron backscatter diffraction (EBSD). These results showed that the processing methods have significant effect on the microstructure and thus the performance of these waste forms. The Ce substitution into zirconolite and pyrochlore materials was investigated using a combination of experimental (in situ XRD and x-ray absorption near edge structure (XANES)) and modeling techniques to study these single phases independently. In zirconolite materials, a transition from the 2M to the 4M polymorph was observed with increasing Ce content. The resulting

  4. HIGH PERFORMANCE PHOTOGRAMMETRIC PROCESSING ON COMPUTER CLUSTERS

    Directory of Open Access Journals (Sweden)

    V. N. Adrov

    2012-07-01

    Full Text Available Most cpu consuming tasks in photogrammetric processing can be done in parallel. The algorithms take independent bits as input and produce independent bits as output. The independence of bits comes from the nature of such algorithms since images, stereopairs or small image blocks parts can be processed independently. Many photogrammetric algorithms are fully automatic and do not require human interference. Photogrammetric workstations can perform tie points measurements, DTM calculations, orthophoto construction, mosaicing and many other service operations in parallel using distributed calculations. Distributed calculations save time reducing several days calculations to several hours calculations. Modern trends in computer technology show the increase of cpu cores in workstations, speed increase in local networks, and as a result dropping the price of the supercomputers or computer clusters that can contain hundreds or even thousands of computing nodes. Common distributed processing in DPW is usually targeted for interactive work with a limited number of cpu cores and is not optimized for centralized administration. The bottleneck of common distributed computing in photogrammetry can be in the limited lan throughput and storage performance, since the processing of huge amounts of large raster images is needed.

  5. Livermore Big Artificial Neural Network Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.

  6. Miniature robust five-dimensional fingertip force/torque sensor with high performance

    International Nuclear Information System (INIS)

    Liang, Qiaokang; Huang, Xiuxiang; Li, Zhongyang; Zhang, Dan; Ge, Yunjian

    2011-01-01

    This paper proposes an innovative design and investigation for a five-dimensional fingertip force/torque sensor with a dual annular diaphragm. This sensor can be applied to a robot hand to measure forces along the X-, Y- and Z-axes (F x , F y and F z ) and moments about the X- and Y-axes (M x and M y ) simultaneously. Particularly, the details of the sensing principle, the structural design and the overload protection mechanism are presented. Afterward, based on the design of experiments approach provided by the software ANSYS®, a finite element analysis and an optimization design are performed. These are performed with the objective of achieving both high sensitivity and stiffness of the sensor. Furthermore, static and dynamic calibrations based on the neural network method are carried out. Finally, an application of the developed sensor on a dexterous robot hand is demonstrated. The results of calibration experiments and the application show that the developed sensor possesses high performance and robustness

  7. Development of a high performance liquid chromatography method ...

    African Journals Online (AJOL)

    Development of a high performance liquid chromatography method for simultaneous ... Purpose: To develop and validate a new low-cost high performance liquid chromatography (HPLC) method for ..... Several papers have reported the use of ...

  8. High Performance Home Building Guide for Habitat for Humanity Affiliates

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey Marburger

    2010-10-01

    This guide covers basic principles of high performance Habitat construction, steps to achieving high performance Habitat construction, resources to help improve building practices, materials, etc., and affiliate profiles and recommendations.

  9. High Performance Computing in Science and Engineering '99 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2000-01-01

    The book contains reports about the most significant projects from science and engineering of the Federal High Performance Computing Center Stuttgart (HLRS). They were carefully selected in a peer-review process and are showcases of an innovative combination of state-of-the-art modeling, novel algorithms and the use of leading-edge parallel computer technology. The projects of HLRS are using supercomputer systems operated jointly by university and industry and therefore a special emphasis has been put on the industrial relevance of results and methods.

  10. High Performance Computing in Science and Engineering '98 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    1999-01-01

    The book contains reports about the most significant projects from science and industry that are using the supercomputers of the Federal High Performance Computing Center Stuttgart (HLRS). These projects are from different scientific disciplines, with a focus on engineering, physics and chemistry. They were carefully selected in a peer-review process and are showcases for an innovative combination of state-of-the-art physical modeling, novel algorithms and the use of leading-edge parallel computer technology. As HLRS is in close cooperation with industrial companies, special emphasis has been put on the industrial relevance of results and methods.

  11. Can Knowledge of the Characteristics of "High Performers" Be Generalised?

    Science.gov (United States)

    McKenna, Stephen

    2002-01-01

    Two managers described as high performing constructed complexity maps of their organization/world. The maps suggested that high performance is socially constructed and negotiated in specific contexts and management competencies associated with it are context specific. Development of high performers thus requires personalized coaching more than…

  12. A high performance data parallel tensor contraction framework: Application to coupled electro-mechanics

    Science.gov (United States)

    Poya, Roman; Gil, Antonio J.; Ortigosa, Rogelio

    2017-07-01

    The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.

  13. Development of concrete mix proportions for minimizing/eliminating shrinkage cracks in slabs and high performance grouts : final report.

    Science.gov (United States)

    2017-02-01

    The two focus areas of this research address longstanding problems of (1) cracking of concrete slabs due to creep and shrinkage and (2) high performance compositions for grouting and joining precast concrete structural elements. Cracking of bridge de...

  14. High-performance computing on GPUs for resistivity logging of oil and gas wells

    Science.gov (United States)

    Glinskikh, V.; Dudaev, A.; Nechaev, O.; Surodina, I.

    2017-10-01

    We developed and implemented into software an algorithm for high-performance simulation of electrical logs from oil and gas wells using high-performance heterogeneous computing. The numerical solution of the 2D forward problem is based on the finite-element method and the Cholesky decomposition for solving a system of linear algebraic equations (SLAE). Software implementations of the algorithm used the NVIDIA CUDA technology and computing libraries are made, allowing us to perform decomposition of SLAE and find its solution on central processor unit (CPU) and graphics processor unit (GPU). The calculation time is analyzed depending on the matrix size and number of its non-zero elements. We estimated the computing speed on CPU and GPU, including high-performance heterogeneous CPU-GPU computing. Using the developed algorithm, we simulated resistivity data in realistic models.

  15. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.

    Science.gov (United States)

    Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-03-21

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Device Characterization of High Performance Quantum Dot Comb Laser

    KAUST Repository

    Rafi, Kazi

    2012-02-01

    The cost effective comb based laser sources are considered to be one of the prominent emitters used in optical communication (OC) and photonic integrated circuits (PIC). With the rising demand for delivering triple-play services (voice, data and video) in FTTH and FTTP-based WDM-PON networks, metropolitan area network (MAN), and short-reach rack-to-rack optical computer communications, a versatile and cost effective WDM transmitter design is required, where several DFB lasers can be replaced by a cost effective broadband comb laser to support on-chip optical signaling. Therefore, high performance quantum dot (Q.Dot) comb lasers need to satisfy several challenges before real system implementations. These challenges include a high uniform broadband gain spectrum from the active layer, small relative intensity noise with lower bit error rate (BER) and better temperature stability. Thus, such short wavelength comb lasers offering higher bandwidth can be a feasible solution to address these challenges. However, they still require thorough characterization before implementation. In this project, we briefly characterized the novel quantum dot comb laser using duty cycle based electrical injection and temperature variations where we have observed the presence of reduced thermal conductivity in the active layer. This phenomenon is responsible for the degradation of device performance. Hence, different performance trends, such as broadband emission and spectrum stability were studied with pulse and continuous electrical pumping. The tested comb laser is found to be an attractive solution for several applications but requires further experiments in order to be considered for photonic intergraded circuits and to support next generation computer-communications.

  17. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  18. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  19. High Performance Computing in Science and Engineering '02 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2003-01-01

    This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

  20. High performance ultrasonic field simulation on complex geometries

    Science.gov (United States)

    Chouh, H.; Rougeron, G.; Chatillon, S.; Iehl, J. C.; Farrugia, J. P.; Ostromoukhov, V.

    2016-02-01

    Ultrasonic field simulation is a key ingredient for the design of new testing methods as well as a crucial step for NDT inspection simulation. As presented in a previous paper [1], CEA-LIST has worked on the acceleration of these simulations focusing on simple geometries (planar interfaces, isotropic materials). In this context, significant accelerations were achieved on multicore processors and GPUs (Graphics Processing Units), bringing the execution time of realistic computations in the 0.1 s range. In this paper, we present recent works that aim at similar performances on a wider range of configurations. We adapted the physical model used by the CIVA platform to design and implement a new algorithm providing a fast ultrasonic field simulation that yields nearly interactive results for complex cases. The improvements over the CIVA pencil-tracing method include adaptive strategies for pencil subdivisions to achieve a good refinement of the sensor geometry while keeping a reasonable number of ray-tracing operations. Also, interpolation of the times of flight was used to avoid time consuming computations in the impulse response reconstruction stage. To achieve the best performance, our algorithm runs on multi-core superscalar CPUs and uses high performance specialized libraries such as Intel Embree for ray-tracing, Intel MKL for signal processing and Intel TBB for parallelization. We validated the simulation results by comparing them to the ones produced by CIVA on identical test configurations including mono-element and multiple-element transducers, homogeneous, meshed 3D CAD specimens, isotropic and anisotropic materials and wave paths that can involve several interactions with interfaces. We show performance results on complete simulations that achieve computation times in the 1s range.

  1. Research on Risk Evaluation of Transnational Power Networking Projects Based on the Matter-Element Extension Theory and Granular Computing

    Directory of Open Access Journals (Sweden)

    Jinying Li

    2017-10-01

    Full Text Available In project management, risk assessment is crucial for stakeholders to identify the risk factors during the whole life cycle of the project. A risk evaluation index system of a transnational networking project, which provides an effective way for the grid integration of clean electricity and the sustainable development of the power industry, is constructed in this paper. Meanwhile, a combination of granular computing and order relation analysis (G1 method is applied to determine the weight of each indicator and the matter-element extension evaluation model is also employed to seek the global optimal decision during the risk assessment. Finally, a case study is given to validate the index system and evaluation model established in this paper by assessing two different investment schemes of a transnational high voltage direct current (HVDC transmission project. The result shows that the comprehensive risk level of Scheme 1 is “Low” and the level of Scheme 2 is “General”, which means Scheme 1 is better for the stakeholders from the angle of risk control. The main practical significance of this paper lies in that it can provide a reference and decision support for the government’s power sectors, investment companies and other stakeholders when carrying out related activities.

  2. Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors

    Science.gov (United States)

    Cao, Hailiang; Zhou, Xufeng; Zhang, Yiming; Chen, Liang; Liu, Zhaoping

    2013-12-01

    Polyaniline/graphene nanocomposites with microspherical morphology and porous structure are prepared as electrode materials for supercapacitors. Using few-layer graphene obtained by liquid phase exfoliation of graphite as the raw material, porous graphene microspheres are produced by spray drying, and are then employed as the substrates for the growth of polyaniline nanowire arrays by in situ polymerization. In the composite, interconnected graphene sheets with few structural defects constitute a high-efficient conductive network to improve the electrical conductivity of polyaniline. Furthermore, the microspherical architecture prevents restacking of polyaniline/graphene composite nanosheets, thus facilitates fast diffusion of electrolytes. Consequently, the nanocomposite exhibits excellent electrochemical performance. A specific capacitance of 338 F g-1 is reached in 1 M H2SO4 at a scan rate of 20 mV s-1, and a high capacity retention rate of 87.4% after 10,000 cycles at a current density of 3 A g-1 can be achieved, which suggests that the polyaniline/graphene composite with such kind of 3D architecture is a promising electrode material for high-performance supercapacitors.

  3. High Performance Gigabit Ethernet Switches for DAQ Systems

    CERN Document Server

    Barczyk, Artur

    2005-01-01

    Commercially available high performance Gigabit Ethernet (GbE) switches are optimized mostly for Internet and standard LAN application traffic. DAQ systems on the other hand usually make use of very specific traffic patterns, with e.g. deterministic arrival times. Industry's accepted loss-less limit of 99.999% may be still unacceptably high for DAQ purposes, as e.g. in the case of the LHCb readout system. In addition, even switches passing this criteria under random traffic can show significantly higher loss rates if subject to our traffic pattern, mainly due to buffer memory limitations. We have evaluated the performance of several switches, ranging from "pizza-box" devices with 24 or 48 ports up to chassis based core switches in a test-bed capable to emulate realistic traffic patterns as expected in the readout system of our experiment. The results obtained in our tests have been used to refine and parametrize our packet level simulation of the complete LHCb readout network. In this paper we report on the...

  4. Simple, parallel, high-performance virtual machines for extreme computations

    International Nuclear Information System (INIS)

    Chokoufe Nejad, Bijan; Ohl, Thorsten; Reuter, Jurgen

    2014-11-01

    We introduce a high-performance virtual machine (VM) written in a numerically fast language like Fortran or C to evaluate very large expressions. We discuss the general concept of how to perform computations in terms of a VM and present specifically a VM that is able to compute tree-level cross sections for any number of external legs, given the corresponding byte code from the optimal matrix element generator, O'Mega. Furthermore, this approach allows to formulate the parallel computation of a single phase space point in a simple and obvious way. We analyze hereby the scaling behaviour with multiple threads as well as the benefits and drawbacks that are introduced with this method. Our implementation of a VM can run faster than the corresponding native, compiled code for certain processes and compilers, especially for very high multiplicities, and has in general runtimes in the same order of magnitude. By avoiding the tedious compile and link steps, which may fail for source code files of gigabyte sizes, new processes or complex higher order corrections that are currently out of reach could be evaluated with a VM given enough computing power.

  5. Lightweight Provenance Service for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Dong; Chen, Yong; Carns, Philip; Jenkins, John; Ross, Robert

    2017-09-09

    Provenance describes detailed information about the history of a piece of data, containing the relationships among elements such as users, processes, jobs, and workflows that contribute to the existence of data. Provenance is key to supporting many data management functionalities that are increasingly important in operations such as identifying data sources, parameters, or assumptions behind a given result; auditing data usage; or understanding details about how inputs are transformed into outputs. Despite its importance, however, provenance support is largely underdeveloped in highly parallel architectures and systems. One major challenge is the demanding requirements of providing provenance service in situ. The need to remain lightweight and to be always on often conflicts with the need to be transparent and offer an accurate catalog of details regarding the applications and systems. To tackle this challenge, we introduce a lightweight provenance service, called LPS, for high-performance computing (HPC) systems. LPS leverages a kernel instrument mechanism to achieve transparency and introduces representative execution and flexible granularity to capture comprehensive provenance with controllable overhead. Extensive evaluations and use cases have confirmed its efficiency and usability. We believe that LPS can be integrated into current and future HPC systems to support a variety of data management needs.

  6. Constructing disease-specific gene networks using pair-wise relevance metric: Application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements

    Directory of Open Access Journals (Sweden)

    Jiang Wei

    2008-08-01

    Full Text Available Abstract Background With the advance of large-scale omics technologies, it is now feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases. Current networking approaches are mainly focusing on building genetic networks at large without probing the interaction mechanisms specific to a physiological or disease condition. The aim of this study was thus to develop such a novel networking approach based on the relevance concept, which is ideal to reveal integrative effects of multiple genes in the underlying genetic circuit for complex diseases. Results The approach started with identification of multiple disease pathways, called a gene forest, in which the genes extracted from the decision forest constructed by supervised learning of the genome-wide transcriptional profiles for patients and normal samples. Based on the newly identified disease mechanisms, a novel pair-wise relevance metric, adjusted frequency value, was used to define the degree of genetic relationship between two molecular determinants. We applied the proposed method to analyze a publicly available microarray dataset for colon cancer. The results demonstrated that the colon cancer-specific gene network captured the most important genetic interactions in several cellular processes, such as proliferation, apoptosis, differentiation, mitogenesis and immunity, which are known to be pivotal for tumourigenesis. Further analysis of the topological architecture of the network identified three known hub cancer genes [interleukin 8 (IL8 (p ≈ 0, desmin (DES (p = 2.71 × 10-6 and enolase 1 (ENO1 (p = 4.19 × 10-5], while two novel hub genes [RNA binding motif protein 9 (RBM9 (p = 1.50 × 10-4 and ribosomal protein L30 (RPL30 (p = 1.50 × 10-4] may define new central elements in the gene network specific to colon cancer. Gene Ontology (GO based analysis of the colon cancer-specific gene network and

  7. Constructing disease-specific gene networks using pair-wise relevance metric: application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements.

    Science.gov (United States)

    Jiang, Wei; Li, Xia; Rao, Shaoqi; Wang, Lihong; Du, Lei; Li, Chuanxing; Wu, Chao; Wang, Hongzhi; Wang, Yadong; Yang, Baofeng

    2008-08-10

    With the advance of large-scale omics technologies, it is now feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases. Current networking approaches are mainly focusing on building genetic networks at large without probing the interaction mechanisms specific to a physiological or disease condition. The aim of this study was thus to develop such a novel networking approach based on the relevance concept, which is ideal to reveal integrative effects of multiple genes in the underlying genetic circuit for complex diseases. The approach started with identification of multiple disease pathways, called a gene forest, in which the genes extracted from the decision forest constructed by supervised learning of the genome-wide transcriptional profiles for patients and normal samples. Based on the newly identified disease mechanisms, a novel pair-wise relevance metric, adjusted frequency value, was used to define the degree of genetic relationship between two molecular determinants. We applied the proposed method to analyze a publicly available microarray dataset for colon cancer. The results demonstrated that the colon cancer-specific gene network captured the most important genetic interactions in several cellular processes, such as proliferation, apoptosis, differentiation, mitogenesis and immunity, which are known to be pivotal for tumourigenesis. Further analysis of the topological architecture of the network identified three known hub cancer genes [interleukin 8 (IL8) (p approximately 0), desmin (DES) (p = 2.71 x 10(-6)) and enolase 1 (ENO1) (p = 4.19 x 10(-5))], while two novel hub genes [RNA binding motif protein 9 (RBM9) (p = 1.50 x 10(-4)) and ribosomal protein L30 (RPL30) (p = 1.50 x 10(-4))] may define new central elements in the gene network specific to colon cancer. Gene Ontology (GO) based analysis of the colon cancer-specific gene network and the sub-network that

  8. Inductively coupled plasma emission spectrometric detection of simulated high performance liquid chromatographic peaks

    International Nuclear Information System (INIS)

    Fraley, D.M.; Yates, D.; Manahan, S.E.

    1979-01-01

    Because of its multielement capability, element-specificity, and low detection limits, inductively coupled plasma optical emission spectrometry (ICP) is a very promising technique for the detection of specific elemental species separated by high performance liquid chromatography (HPLC). This paper evaluated ICP as a detector for HPLC peaks containing specific elements. Detection limits for a number of elements have been evaluated in terms of the minimum detectable concentration of the element at the chromatographic peak maximum. The elements studies were Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sr, Ti, V, and Zn. In addition, ICP was compared with atomic absorption spectrometry for the detection of HPLC peaks composed of EDTA and NTA chelates of copper. Furthermore, ICP was compared to uv solution absorption for the detection of copper chelates. 6 figures, 4 tables

  9. High-performance computing for structural mechanics and earthquake/tsunami engineering

    CERN Document Server

    Hori, Muneo; Ohsaki, Makoto

    2016-01-01

    Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe.  To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows ...

  10. DOE research in utilization of high-performance computers

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-12-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models whose execution is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex; consequently, it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  11. High Performance Computing in Science and Engineering '08 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2009-01-01

    The discussions and plans on all scienti?c, advisory, and political levels to realize an even larger “European Supercomputer” in Germany, where the hardware costs alone will be hundreds of millions Euro – much more than in the past – are getting closer to realization. As part of the strategy, the three national supercomputing centres HLRS (Stuttgart), NIC/JSC (Julic ¨ h) and LRZ (Munich) have formed the Gauss Centre for Supercomputing (GCS) as a new virtual organization enabled by an agreement between the Federal Ministry of Education and Research (BMBF) and the state ministries for research of Baden-Wurttem ¨ berg, Bayern, and Nordrhein-Westfalen. Already today, the GCS provides the most powerful high-performance computing - frastructure in Europe. Through GCS, HLRS participates in the European project PRACE (Partnership for Advances Computing in Europe) and - tends its reach to all European member countries. These activities aligns well with the activities of HLRS in the European HPC infrastructur...

  12. Inclusive vision for high performance computing at the CSIR

    CSIR Research Space (South Africa)

    Gazendam, A

    2006-02-01

    Full Text Available and computationally intensive applications. A number of different technologies and standards were identified as core to the open and distributed high-performance infrastructure envisaged...

  13. Development of High-Performance Cast Crankshafts. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mark E [General Motors, Detroit, MI (United States)

    2017-03-31

    The objective of this project was to develop technologies that would enable the production of cast crankshafts that can replace high performance forged steel crankshafts. To achieve this, the Ultimate Tensile Strength (UTS) of the new material needs to be 850 MPa with a desired minimum Yield Strength (YS; 0.2% offset) of 615 MPa and at least 10% elongation. Perhaps more challenging, the cast material needs to be able to achieve sufficient local fatigue properties to satisfy the durability requirements in today’s high performance gasoline and diesel engine applications. The project team focused on the development of cast steel alloys for application in crankshafts to take advantage of the higher stiffness over other potential material choices. The material and process developed should be able to produce high-performance crankshafts at no more than 110% of the cost of current production cast units, perhaps the most difficult objective to achieve. To minimize costs, the primary alloy design strategy was to design compositions that can achieve the required properties with minimal alloying and post-casting heat treatments. An Integrated Computational Materials Engineering (ICME) based approach was utilized, rather than relying only on traditional trial-and-error methods, which has been proven to accelerate alloy development time. Prototype melt chemistries designed using ICME were cast as test specimens and characterized iteratively to develop an alloy design within a stage-gate process. Standard characterization and material testing was done to validate the alloy performance against design targets and provide feedback to material design and manufacturing process models. Finally, the project called for Caterpillar and General Motors (GM) to develop optimized crankshaft designs using the final material and manufacturing processing path developed. A multi-disciplinary effort was to integrate finite element analyses by engine designers and geometry-specific casting

  14. Reconfigurable network processing platforms

    NARCIS (Netherlands)

    Kachris, C.

    2007-01-01

    This dissertation presents our investigation on how to efficiently exploit reconfigurable hardware to design flexible, high performance, and power efficient network devices capable to adapt to varying processing requirements of network applications and traffic. The proposed reconfigurable network

  15. Control switching in high performance and fault tolerant control

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    The problem of reliability in high performance control and in fault tolerant control is considered in this paper. A feedback controller architecture for high performance and fault tolerance is considered. The architecture is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. By usi...

  16. Mechanical Properties of High Performance Cementitious Grout (II)

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report is an update of the report “Mechanical Properties of High Performance Cementitious Grout (I)” [1] and describes tests carried out on the high performance grout MASTERFLOW 9500, marked “WMG 7145 FP”, developed by BASF Construction Chemicals A/S and designed for use in grouted...

  17. Development of new high-performance stainless steels

    International Nuclear Information System (INIS)

    Park, Yong Soo

    2002-01-01

    This paper focused on high-performance stainless steels and their development status. Effect of nitrogen addition on super-stainless steel was discussed. Research activities at Yonsei University, on austenitic and martensitic high-performance stainless, steels, and the next-generation duplex stainless steels were introduced

  18. High-Performance Scalable Information Service for the ATLAS Experiment

    International Nuclear Information System (INIS)

    Kolos, S; Boutsioukis, G; Hauser, R

    2012-01-01

    The ATLAS[1] experiment is operated by a highly distributed computing system which is constantly producing a lot of status information which is used to monitor the experiment operational conditions as well as to assess the quality of the physics data being taken. For example the ATLAS High Level Trigger(HLT) algorithms are executed on the online computing farm consisting from about 1500 nodes. Each HLT algorithm is producing few thousands histograms, which have to be integrated over the whole farm and carefully analyzed in order to properly tune the event rejection. In order to handle such non-physics data the Information Service (IS) facility has been developed in the scope of the ATLAS Trigger and Data Acquisition (TDAQ)[2] project. The IS provides a high-performance scalable solution for information exchange in distributed environment. In the course of an ATLAS data taking session the IS handles about a hundred gigabytes of information which is being constantly updated with the update interval varying from a second to a few tens of seconds. IS provides access to any information item on request as well as distributing notification to all the information subscribers. In the latter case IS subscribers receive information within a few milliseconds after it was updated. IS can handle arbitrary types of information, including histograms produced by the HLT applications, and provides C++, Java and Python API. The Information Service is a unique source of information for the majority of the online monitoring analysis and GUI applications used to control and monitor the ATLAS experiment. Information Service provides streaming functionality allowing efficient replication of all or part of the managed information. This functionality is used to duplicate the subset of the ATLAS monitoring data to the CERN public network with a latency of a few milliseconds, allowing efficient real-time monitoring of the data taking from outside the protected ATLAS network. Each information

  19. Functionalized Materials From Elastomers to High Performance Thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Laura Ann [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis

  20. Matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    Science.gov (United States)

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2013-11-05

    Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.

  1. Multi-port network and 3D finite-element models for accurate transformer calculations: Single-phase load-loss test

    Energy Technology Data Exchange (ETDEWEB)

    Escarela-Perez, R. [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo 180, Col. Reynosa, C.P. 02200, Mexico D.F. (Mexico); Kulkarni, S.V. [Electrical Engineering Department, Indian Institute of Technology, Bombay (India); Melgoza, E. [Instituto Tecnologico de Morelia, Av. Tecnologico 1500, Morelia, Mich., C.P. 58120 (Mexico)

    2008-11-15

    A six-port impedance network for a three-phase transformer is obtained from a 3D time-harmonic finite-element (FE) model. The network model properly captures the eddy current effects of the transformer tank and frame. All theorems and tools of passive linear networks can be used with the multi-port model to simulate several important operating conditions without resorting anymore to computationally expensive 3D FE simulations. The results of the network model are of the same quality as those produced by the FE program. Although the passive network may seem limited by the assumption of linearity, many important transformer operating conditions imply unsaturated states. Single-phase load-loss measurements are employed to demonstrate the effectiveness of the network model and to understand phenomena that could not be explained with conventional equivalent circuits. In addition, formal deduction of novel closed-form formulae is presented for the calculation of the leakage impedance measured at the high and low voltage sides of the transformer. (author)

  2. Driver Injury Risk Variability in Finite Element Reconstructions of Crash Injury Research and Engineering Network (CIREN) Frontal Motor Vehicle Crashes.

    Science.gov (United States)

    Gaewsky, James P; Weaver, Ashley A; Koya, Bharath; Stitzel, Joel D

    2015-01-01

    A 3-phase real-world motor vehicle crash (MVC) reconstruction method was developed to analyze injury variability as a function of precrash occupant position for 2 full-frontal Crash Injury Research and Engineering Network (CIREN) cases. Phase I: A finite element (FE) simplified vehicle model (SVM) was developed and tuned to mimic the frontal crash characteristics of the CIREN case vehicle (Camry or Cobalt) using frontal New Car Assessment Program (NCAP) crash test data. Phase II: The Toyota HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations per case within the SVM. Five occupant positioning variables were varied using a Latin hypercube design of experiments: seat track position, seat back angle, D-ring height, steering column angle, and steering column telescoping position. An additional baseline simulation was performed that aimed to match the precrash occupant position documented in CIREN for each case. Phase III: FE simulations were then performed using kinematic boundary conditions from each vehicle's event data recorder (EDR). HIC15, combined thoracic index (CTI), femur forces, and strain-based injury metrics in the lung and lumbar vertebrae were evaluated to predict injury. Tuning the SVM to specific vehicle models resulted in close matches between simulated and test injury metric data, allowing the tuned SVM to be used in each case reconstruction with EDR-derived boundary conditions. Simulations with the most rearward seats and reclined seat backs had the greatest HIC15, head injury risk, CTI, and chest injury risk. Calculated injury risks for the head, chest, and femur closely correlated to the CIREN occupant injury patterns. CTI in the Camry case yielded a 54% probability of Abbreviated Injury Scale (AIS) 2+ chest injury in the baseline case simulation and ranged from 34 to 88% (mean = 61%) risk in the least and most dangerous occupant positions. The greater than 50% probability was consistent with the case occupant's AIS 2

  3. Flow Interactions of Two- and Three-Dimensional Networked Bio-Inspired Control Elements in an In-Line Arrangement.

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2018-04-19

    -dimensions. These results can aid in the design of networked bio-inspired control elements that through integrated sensing can synchronize to three-dimensional flow interactions. © 2018 IOP Publishing Ltd.

  4. COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats

    OpenAIRE

    Cobelo-García, A.; Filella, M.; Croot, P.; Frazzoli, C.; Du Laing, G.; Ospina-Alvarez, N.; Rauch, S.; Salaun, P.; Schäfer, J.; Zimmermann, S.

    2015-01-01

    The current socio-economic, environmental and public health challenges that countries are facing clearly need common-defined strategies to inform and support our transition to a sustainable economy. Here, the technology-critical elements (which includes Ga, Ge, In, Te, Nb, Ta, Tl, the Platinum Group Elements and most of the rare-earth elements) are of great relevance in the development of emerging key technologies—including renewable energy, energy efficiency, electronics or the aerospace ind...

  5. Novel nano materials for high performance logic and memory devices

    Science.gov (United States)

    Das, Saptarshi

    After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect

  6. Galvanic element. Galvanisches Element

    Energy Technology Data Exchange (ETDEWEB)

    Sprengel, D.; Haelbig, H.

    1980-01-03

    The invention concerns a gas-tight sealed accumulator with positive and negative electrode plates and an auxillary electrode electroconductively bound to the latter for suppressing oxygen pressure. The auxillary electrode is an intermediate film electrode. The film catalysing oxygen reduction is hydrophilic in character and the other film is hydrophobic. A double coated foil has proved to be advantageous, the hydrophilic film being formed from polymer-bound activated carbon and the hydrophrobic film from porous polytetrafluoroethylene. A metallic network of silver or nickel is rolled into the outer side of the activated carbon film. This auxillary electrode can be used to advantage in all galvanic elements. Even primary cells fall within the scope of application for auxillary electrodes because many of these contain a highly oxidized electrodic material which tends to give off oxygen.

  7. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  8. Decal electronics for printed high performance cmos electronic systems

    KAUST Repository

    Hussain, Muhammad Mustafa; Sevilla, Galo Torres; Cordero, Marlon Diaz; Kutbee, Arwa T.

    2017-01-01

    High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications

  9. Brain inspired high performance electronics on flexible silicon

    KAUST Repository

    Sevilla, Galo T.; Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2014-01-01

    Brain's stunning speed, energy efficiency and massive parallelism makes it the role model for upcoming high performance computation systems. Although human brain components are a million times slower than state of the art silicon industry components

  10. Enabling High-Performance Computing as a Service

    KAUST Repository

    AbdelBaky, Moustafa; Parashar, Manish; Kim, Hyunjoo; Jordan, Kirk E.; Sachdeva, Vipin; Sexton, James; Jamjoom, Hani; Shae, Zon-Yin; Pencheva, Gergina; Tavakoli, Reza; Wheeler, Mary F.

    2012-01-01

    With the right software infrastructure, clouds can provide scientists with as a service access to high-performance computing resources. An award-winning prototype framework transforms the Blue Gene/P system into an elastic cloud to run a

  11. Mechanical Properties of High Performance Cementitious Grout Masterflow 9200

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes tests carried out on the high performance grout Masterflow 9200, developed by BASF Construction Chemicals A/S and designed for use in grouted connections of windmill foundations....

  12. High Performance Low Mass Nanowire Enabled Heatpipe, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Illuminex Corporation proposes a NASA Phase I SBIR project to develop high performance, lightweight, low-profile heat pipes with enhanced thermal transfer properties...

  13. High Performance Thin-Film Composite Forward Osmosis Membrane

    KAUST Repository

    Yip, Ngai Yin; Tiraferri, Alberto; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2010-01-01

    obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed

  14. High Performance Low Mass Nanowire Enabled Heatpipe, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Heat pipes are widely used for passive, two-phase electronics cooling. As advanced high power, high performance electronics in space based and terrestrial...

  15. High Performing Greenways Design: A Case Study of Gainesville, GA

    OpenAIRE

    AKPINAR, Abdullah

    2015-01-01

    Greenways play a significant role in structuring and developing our living environment in urban as well as suburban areas. They provide many recreational, environmental, ecological, social, educational, and economical benefits to cities. This article questions what makes high performing greenways by exploring the concept, history, and development of greenways in the United States. The paper illustrates the concept of linked open spaces and high performing urban greenways in residential commun...

  16. High Performing Greenways Design: A Case Study of Gainesville, GA

    OpenAIRE

    AKPINAR, Abdullah

    2014-01-01

    Greenways play a significant role in structuring and developing our living environment in urban as well as suburban areas. They provide many recreational, environmental, ecological, social, educational, and economical benefits to cities. This article questions what makes high performing greenways by exploring the concept, history, and development of greenways in the United States. The paper illustrates the concept of linked open spaces and high performing urban greenways in residential commun...

  17. Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

  18. High Performance Computing Modernization Program Kerberos Throughput Test Report

    Science.gov (United States)

    2017-10-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5524--17-9751 High Performance Computing Modernization Program Kerberos Throughput Test ...NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 6. AUTHOR(S) 8. PERFORMING...PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT High Performance Computing Modernization Program Kerberos Throughput Test Report Daniel G. Gdula* and

  19. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Energy Design Guidelines for High Performance Schools--Tropical Island Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in tropical island climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

  20. Physics of integrated high-performance NSTX plasmas

    International Nuclear Information System (INIS)

    Menard, J. E.; Bell, M. G.; Bell, R. E.; Fredrickson, E. D.; Gates, D. A.; Heidbrink, W.; Kaita, R.; Kaye, S. M.; Kessel, C. E.; Kugel, H.; LeBlanc, B. P.; Lee, K. C.; Levinton, F. M.; Maingi, R.; Medley, S. S.; Mikkelsen, D. R.; Mueller, D.; Nishino, N.; Ono, M.; Park, H.; Park, W.; Paul, S. F.; Peebles, T.; Peng, M.; Raman, R.; Redi, M.; Roquemore, L.; Sabbagh, S. A.; Skiner, C. H.; Sontag, A.; Soukhanovskii, V.; Stratton, B.; Stutman, D.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K.; Wade, M.; Wilson, J. R.; Zhu, W.

    2005-01-01

    An overarching goal of magnetic fusion research is the integration of steady state operation with high fusion power density, high plasma β, good thermal and fast particle confinement, and manageable heat and particle fluxes to reactor internal components. NSTX has made significant progress in integrating and understanding the interplay between these competing elements. Sustained high elongation up to 2.5 and H-mode transitions during the I p ramp-up have increased β p and reduced l i at high current resulting in I p flat-top durations exceeding 0.8s for I p >0.8MA. These shape and profile changes delay the onset of deleterious global MHD activity yielding β N values >4.5 and β T ∼20% maintained for several current diffusion times. Higher ∫ N discharges operating above the non-wall limit are sustained via rotational stabilization of the RWM. H-mode confinement scaling factors relative to H98(y,2) span the range 1±0.4 for B T >4kG and show a stron (Nearly linear) residual scaling with B T . Power balance analysis indicates the electron thermal transport dominates the loss power in beam-heated H m ode discharges, but the core χ e can be significantly reduced through current profile modification consistent with reversed magnetic shear. Small ELM regimes have been obtained in high performance plasmas on NSTX, but the ELM type and associated pedestal energy loss are found to depend sensitively on the boundary elongation, magnetic balance, and edge collisionality. NPA data and TRANSP analysis suggest resonant interactions with mid-radius tearing modes may lead to large fast-ion transport. The associated fast-ion diffusion and/or loss likely impact(s) both the driven current and power deposition profiles from NBI heating. Results from experiments to initiate the plasma without the ohmic solenoid and integrated scenario with the TSC code will also be described. (Author)

  1. Cactus and Visapult: An ultra-high performance grid-distributedvisualization architecture using connectionless protocols

    Energy Technology Data Exchange (ETDEWEB)

    Bethel, E. Wes; Shalf, John

    2002-08-31

    This past decade has seen rapid growth in the size,resolution, and complexity of Grand Challenge simulation codes. Thistrend is accompanied by a trend towards multinational, multidisciplinaryteams who carry out this research in distributed teams, and thecorresponding growth of Grid infrastructure to support these widelydistributed Virtual Organizations. As the number and diversity ofdistributed teams grow, the need for visualization tools to analyze anddisplay multi-terabyte, remote data becomes more pronounced and moreurgent. One such tool that has been successfully used to address thisproblem is Visapult. Visapult is a parallel visualization tool thatemploys Grid-distributed components, latency tolerant visualization andgraphics algorithms, along with high performance network I/O in order toachieve effective remote analysis of massive datasets. In this paper wediscuss improvements to network bandwidth utilization and responsivenessof the Visapult application that result from using connectionlessprotocols to move data payload between the distributed Visapultcomponents and a Grid-enabled, high performance physics simulation usedto study gravitational waveforms of colliding black holes: The Cactuscode. These improvements have boosted Visapult's network efficiency to88-96 percent of the maximum theoretical available bandwidth onmulti-gigabit Wide Area Networks, and greatly enhanced interactivity.Such improvements are critically important for future development ofeffective interactive Grid applications.

  2. Au nanoparticles attached carbon nanotubes as a high performance active element in field effect transistor

    International Nuclear Information System (INIS)

    Lee, Myeongsoon; Kim, Don

    2016-01-01

    The Au nanoparticles attached carbon nanotubes (Au-CNTs), diameter ranged from 40 to 250 nm, were prepared and discussed their chemical and electrical properties. The shape and crystallinity of the carbon nanotubes (CNTs) phase depended main2ly on the diameter of CNTs (r_A_u_-_C_N_T). Highly crystalline, straight CNTs were observed when the r_A_u_-_C_N_T exceeded 80 nm, and less crystalline noodle-shaped CNTs were observed when the r_A_u_-_C_N_T was smaller than 80 nm. The crystallinity of the CNT phase was confirmed by analyzing the G and D bands in their Raman spectra and the electrical conductivities of the Au-CNTs. The electrical conductivity of the highly crystalline carbon phase of Au-CNTs (r_A_u_-_C_N_T = 250 nm) was ∼10"4 S/cm. The back-gated field effect transistors (FETs) based on the Au-CNTs, which were assembled on a SiO_2/Si wafer using the dielectrophoresis technique, showed that the Au-CNTs would be a good functional electronic material for future electronic and sensing applications. The transconductance and hole mobility of the FETs, which were assembled with the highly crystalline Au-CNTs (r_A_u_-_C_N_T = 250 nm), reached to 3.6 × 10"−"4 A/V and 3.1 × 10"4 cm"2/V s, respectively. These values are in the middle of those of reported for single walled carbon nanotubes and graphene. However, we could not find any field effect in a CNTFET, which assembled without Au nanoparticles, through the same process. - Highlights: • The shape and crystallinity of the CNTs depended mainly on the diameter of CNTs. • The electrical conductivity of the highly crystalline Au-CNTs was ∼10"4 S/cm. • The Au-CNT FET shows typical p-channel gate effect with the on/off ratio of ∼10"4. • The Au-CNT FET shows very high transconductance (g_m) and carrier mobility (μ_h).

  3. Au nanoparticles attached carbon nanotubes as a high performance active element in field effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeongsoon; Kim, Don, E-mail: donkim@pknu.ac.kr

    2016-08-15

    The Au nanoparticles attached carbon nanotubes (Au-CNTs), diameter ranged from 40 to 250 nm, were prepared and discussed their chemical and electrical properties. The shape and crystallinity of the carbon nanotubes (CNTs) phase depended main2ly on the diameter of CNTs (r{sub Au-CNT}). Highly crystalline, straight CNTs were observed when the r{sub Au-CNT} exceeded 80 nm, and less crystalline noodle-shaped CNTs were observed when the r{sub Au-CNT} was smaller than 80 nm. The crystallinity of the CNT phase was confirmed by analyzing the G and D bands in their Raman spectra and the electrical conductivities of the Au-CNTs. The electrical conductivity of the highly crystalline carbon phase of Au-CNTs (r{sub Au-CNT} = 250 nm) was ∼10{sup 4} S/cm. The back-gated field effect transistors (FETs) based on the Au-CNTs, which were assembled on a SiO{sub 2}/Si wafer using the dielectrophoresis technique, showed that the Au-CNTs would be a good functional electronic material for future electronic and sensing applications. The transconductance and hole mobility of the FETs, which were assembled with the highly crystalline Au-CNTs (r{sub Au-CNT} = 250 nm), reached to 3.6 × 10{sup −4} A/V and 3.1 × 10{sup 4} cm{sup 2}/V s, respectively. These values are in the middle of those of reported for single walled carbon nanotubes and graphene. However, we could not find any field effect in a CNTFET, which assembled without Au nanoparticles, through the same process. - Highlights: • The shape and crystallinity of the CNTs depended mainly on the diameter of CNTs. • The electrical conductivity of the highly crystalline Au-CNTs was ∼10{sup 4} S/cm. • The Au-CNT FET shows typical p-channel gate effect with the on/off ratio of ∼10{sup 4}. • The Au-CNT FET shows very high transconductance (g{sub m}) and carrier mobility (μ{sub h}).

  4. Experimental Studies on the Fire Behaviour of High Performance Concrete Thin Plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2015-01-01

    In recent decades, the use of structural high performance concrete (HPC) sandwich panels made with thin plates has increased as a response to modern environmental challenges. Fire endurance is a requirement in structural HPC elements, as for most structural elements. This paper presents experimen......In recent decades, the use of structural high performance concrete (HPC) sandwich panels made with thin plates has increased as a response to modern environmental challenges. Fire endurance is a requirement in structural HPC elements, as for most structural elements. This paper presents....... The parametric assessment of the specimen performance included: thickness of the specimen, testing apparatus, and concrete mix (both with and without polypropylene fibres). The results verified the ability of H-TRIS to impose an equivalent thermal boundary condition to that imposed during a standard furnace test......, with good repeatability, and at comparatively low economic and temporal costs. The results demonstrated that heat induced concrete spalling occurred 1 to 5 min earlier, and in a more destructive manner, for thinner specimens. An analysis is presented combining the thermal material degradation, vapour pore...

  5. Advancement of the Eddy Current Testing using neural network technique. Development of 3-D finite element analysis sytem of elctro-magnetic field

    International Nuclear Information System (INIS)

    Sakai, Takayuki; Soneda, Naoki

    1994-01-01

    In PWR plants, an automatic recognition system of Eddy Current Testing (ECT) signals of steam generator tubes are strongly required to reduce inspectors' labor and to improve the reliability of the testing. Although the neural-network technique is very promising for this kind of system, it is necessary to evaluate its applicability to ECT signals throughly, where a database of the relationship of the defects and ECT signals plays a very important role. In this paper, a three dimensional finite element analysis system of electromagnetic field, which consists of an FEM code and pre/post processor, is developed to generate a database of ECT signals. T-Ω method and the edge element are employed in the FEM code to reduce the required computer memory. The code is verified through some comparisons with experiments and other calculations. (author)

  6. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  7. High performance leadership in unusually challenging educational circumstances

    Directory of Open Access Journals (Sweden)

    Andy Hargreaves

    2015-04-01

    Full Text Available This paper draws on findings from the results of a study of leadership in high performing organizations in three sectors. Organizations were sampled and included on the basis of high performance in relation to no performance, past performance, performance among similar peers and performance in the face of limited resources or challenging circumstances. The paper concentrates on leadership in four schools that met the sample criteria.  It draws connections to explanations of the high performance ofEstoniaon the OECD PISA tests of educational achievement. The article argues that leadership in these four schools that performed above expectations comprised more than a set of competencies. Instead, leadership took the form of a narrative or quest that pursued an inspiring dream with relentless determination; took improvement pathways that were more innovative than comparable peers; built collaboration and community including with competing schools; and connected short-term success to long-term sustainability.

  8. Application of secondary ion mass spectrometry for the characterization of commercial high performance materials

    International Nuclear Information System (INIS)

    Gritsch, M.

    2000-09-01

    The industry today offers an uncounted number of high performance materials, that have to meet highest standards. Commercial high performance materials, though often sold in large quantities, still require ongoing research and development to keep up to date with increasing needs and decreasing tolerances. Furthermore, a variety of materials is on the market that are not fully understood in their microstructure, in the way they react under application conditions, and in which mechanisms are responsible for their degradation. Secondary Ion Mass Spectrometry (SIMS) is an analytical method that is now in commercial use for over 30 years. Its main advantages are the very high detection sensitivity (down to ppb), the ability to measure all elements with isotopic sensitivity, the ability of gaining laterally resolved images, and the inherent capability of depth-profiling. These features make it an ideal tool for a wide field of applications within advanced material science. The present work gives an introduction into the principles of SIMS and shows the successful application for the characterization of commercially used high performance materials. Finally, a selected collection of my publications in reviewed journals will illustrate the state of the art in applied materials research and development with dynamic SIMS. All publications focus on the application of dynamic SIMS to analytical questions that stem from questions arising during the production and improvement of high-performance materials. (author)

  9. High-performance workplace practices in nursing homes: an economic perspective.

    Science.gov (United States)

    Bishop, Christine E

    2014-02-01

    To develop implications for research, practice and policy, selected economics and human resources management research literature was reviewed to compare and contrast nursing home culture change work practices with high-performance human resource management systems in other industries. The organization of nursing home work under culture change has much in common with high-performance work systems, which are characterized by increased autonomy for front-line workers, self-managed teams, flattened supervisory hierarchy, and the aspiration that workers use specific knowledge gained on the job to enhance quality and customization. However, successful high-performance work systems also entail intensive recruitment, screening, and on-going training of workers, and compensation that supports selective hiring and worker commitment; these features are not usual in the nursing home sector. Thus despite many parallels with high-performance work systems, culture change work systems are missing essential elements: those that require higher compensation. If purchasers, including public payers, were willing to pay for customized, resident-centered care, productivity gains could be shared with workers, and the nursing home sector could move from a low-road to a high-road employment system.

  10. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2013-01-01

    Contemporary High Performance Computing: From Petascale toward Exascale focuses on the ecosystems surrounding the world's leading centers for high performance computing (HPC). It covers many of the important factors involved in each ecosystem: computer architectures, software, applications, facilities, and sponsors. The first part of the book examines significant trends in HPC systems, including computer architectures, applications, performance, and software. It discusses the growth from terascale to petascale computing and the influence of the TOP500 and Green500 lists. The second part of the

  11. Turbostratic stacked CVD graphene for high-performance devices

    Science.gov (United States)

    Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo

    2018-03-01

    We have fabricated turbostratic stacked graphene with high-transport properties by the repeated transfer of CVD monolayer graphene. The turbostratic stacked CVD graphene exhibited higher carrier mobility and conductivity than CVD monolayer graphene. The electron mobility for the three-layer turbostratic stacked CVD graphene surpassed 10,000 cm2 V-1 s-1 at room temperature, which is five times greater than that for CVD monolayer graphene. The results indicate that the high performance is derived from maintenance of the linear band dispersion, suppression of the carrier scattering, and parallel conduction. Therefore, turbostratic stacked CVD graphene is a superior material for high-performance devices.

  12. High performance computing and communications: FY 1997 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage, with bipartisan support, of the High-Performance Computing Act of 1991, signed on December 9, 1991. The original Program, in which eight Federal agencies participated, has now grown to twelve agencies. This Plan provides a detailed description of the agencies` FY 1996 HPCC accomplishments and FY 1997 HPCC plans. Section 3 of this Plan provides an overview of the HPCC Program. Section 4 contains more detailed definitions of the Program Component Areas, with an emphasis on the overall directions and milestones planned for each PCA. Appendix A provides a detailed look at HPCC Program activities within each agency.

  13. Visualization and Data Analysis for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    This is a set of slides from a guest lecture for a class at the University of Texas, El Paso on visualization and data analysis for high-performance computing. The topics covered are the following: trends in high-performance computing; scientific visualization, such as OpenGL, ray tracing and volume rendering, VTK, and ParaView; data science at scale, such as in-situ visualization, image databases, distributed memory parallelism, shared memory parallelism, VTK-m, "big data", and then an analysis example.

  14. Cactus and Visapult: A case study of ultra-high performance distributed visualization using connectionless protocols

    Energy Technology Data Exchange (ETDEWEB)

    Shalf, John; Bethel, E. Wes

    2002-05-07

    This past decade has seen rapid growth in the size, resolution, and complexity of Grand Challenge simulation codes. Many such problems still require interactive visualization tools to make sense of multi-terabyte data stores. Visapult is a parallel volume rendering tool that employs distributed components, latency tolerant algorithms, and high performance network I/O for effective remote visualization of massive datasets. In this paper we discuss using connectionless protocols to accelerate Visapult network I/O and interfacing Visapult to the Cactus General Relativity code to enable scalable remote monitoring and steering capabilities. With these modifications, network utilization has moved from 25 percent of line-rate using tuned multi-streamed TCP to sustaining 88 percent of line rate using the new UDP-based transport protocol.

  15. Simultaneous characterization of elemental segregation and cementite networks in high carbon steel products by spatially-resolved laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boué-Bigne, Fabienne, E-mail: fabienne.boue-bigne@tatasteel.com

    2014-06-01

    The reliable characterization of the level of elemental segregation and of the extent of grain-boundary cementite networks in high carbon steel products is a prerequisite for checking product quality, for the purpose of product release to customers, and to investigate the presence of defects that may have led to mechanical property failure of the product. Current methods for the characterization of segregation and cementite networks rely on two different methods of sample etching followed by visual observation, where quality scores are given based on human perception and judgment. With the continuous demand on increasing quality, some of the conventional characterization methods and their associated scoring boards have lost relevance for the precision of characterization that is required today to distinguish between a product that will perform well and one that will not. In order to move away from a qualitative, human perception based situation for the scoring of the severity of segregation and cementite networks, a new method of data evaluation based on spatially-resolved LIBS measurements was developed to provide quantitative and simultaneous characterization of both types of defects. The quantitative assessment of segregation and cementite networks is based on the acquisition of carbon concentration maps. The ability to produce rapid scanning measurements of micro and macro-scale features with adequate spatial resolution makes LIBS the measurement method of preference for this purpose. The characterization of both different defects is extracted simultaneously and from the same carbon concentration map following a series of statistical treatment and data extraction rules. LIBS results were validated against recognized methods and were applied to a significant number of routine samples. The new LIBS method offers a step change improvement in reliability for the characterization of segregation and cementite networks in steel products over the conventional methods

  16. Networking

    OpenAIRE

    Rauno Lindholm, Daniel; Boisen Devantier, Lykke; Nyborg, Karoline Lykke; Høgsbro, Andreas; Fries, de; Skovlund, Louise

    2016-01-01

    The purpose of this project was to examine what influencing factor that has had an impact on the presumed increasement of the use of networking among academics on the labour market and how it is expressed. On the basis of the influence from globalization on the labour market it can be concluded that the globalization has transformed the labour market into a market based on the organization of networks. In this new organization there is a greater emphasis on employees having social qualificati...

  17. Low Reynolds number steady state flow through a branching network of rigid vessels: II. A finite element mixture model

    NARCIS (Netherlands)

    Huyghe, J.M.R.J.; Oomens, C.W.J.; Campen, van D.H.; Heethaar, R.M.

    1989-01-01

    This research aims at formulating and verifying a finite element mixture formulation for blood perfusion. The equations derived in a companion paper [3] are discretized according to the Galerkin method. A flow experiment in a rigid model of a vascular tree of about 500 vessels is performed in order

  18. High-performance-vehicle technology. [fighter aircraft propulsion

    Science.gov (United States)

    Povinelli, L. A.

    1979-01-01

    Propulsion needs of high performance military aircraft are discussed. Inlet performance, nozzle performance and cooling, and afterburner performance are covered. It is concluded that nonaxisymmetric nozzles provide cleaner external lines and enhanced maneuverability, but the internal flows are more complex. Swirl afterburners show promise for enhanced performance in the high altitude, low Mach number region.

  19. Frictional behaviour of high performance fibrous tows: Friction experiments

    NARCIS (Netherlands)

    Cornelissen, Bo; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Tow friction is an important mechanism in the production and processing of high performance fibrous tows. The frictional behaviour of these tows is anisotropic due to the texture of the filaments as well as the tows. This work describes capstan experiments that were performed to measure the

  20. Determination of Caffeine in Beverages by High Performance Liquid Chromatography.

    Science.gov (United States)

    DiNunzio, James E.

    1985-01-01

    Describes the equipment, procedures, and results for the determination of caffeine in beverages by high performance liquid chromatography. The method is simple, fast, accurate, and, because sample preparation is minimal, it is well suited for use in a teaching laboratory. (JN)

  1. Enabling High-Performance Computing as a Service

    KAUST Repository

    AbdelBaky, Moustafa

    2012-10-01

    With the right software infrastructure, clouds can provide scientists with as a service access to high-performance computing resources. An award-winning prototype framework transforms the Blue Gene/P system into an elastic cloud to run a representative HPC application. © 2012 IEEE.

  2. High Performance Skiing. How to Become a Better Alpine Skier.

    Science.gov (United States)

    Yacenda, John

    This book is intended for people who desire to improve their skiing by exploring high performance techniques leading to: (1) more consistent performance; (2) less fatigue and more endurance; (3) greater strength and flexibility; (4) greater versatility; (5) greater confidence in all skiing conditions; and (6) the knowledge to participate in…

  3. Computer science of the high performance; Informatica del alto rendimiento

    Energy Technology Data Exchange (ETDEWEB)

    Moraleda, A.

    2008-07-01

    The high performance computing is taking shape as a powerful accelerator of the process of innovation, to drastically reduce the waiting times for access to the results and the findings in a growing number of processes and activities as complex and important as medicine, genetics, pharmacology, environment, natural resources management or the simulation of complex processes in a wide variety of industries. (Author)

  4. Sensitive high performance liquid chromatographic method for the ...

    African Journals Online (AJOL)

    A new simple, sensitive, cost-effective and reproducible high performance liquid chromatographic (HPLC) method for the determination of proguanil (PG) and its metabolites, cycloguanil (CG) and 4-chlorophenylbiguanide (4-CPB) in urine and plasma is described. The extraction procedure is a simple three-step process ...

  5. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2015-01-01

    A continuation of Contemporary High Performance Computing: From Petascale toward Exascale, this second volume continues the discussion of HPC flagship systems, major application workloads, facilities, and sponsors. The book includes of figures and pictures that capture the state of existing systems: pictures of buildings, systems in production, floorplans, and many block diagrams and charts to illustrate system design and performance.

  6. High-Performance Management Practices and Employee Outcomes in Denmark

    DEFF Research Database (Denmark)

    Cristini, Annalisa; Eriksson, Tor; Pozzoli, Dario

    High-performance work practices are frequently considered to have positive effects on corporate performance, but what do they do for employees? After showing that organizational innovation is indeed positively associated with firm performance, we investigate whether high-involvement work practices...

  7. Fatigue Behaviour of High Performance Cementitious Grout Masterflow 9500

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes the fatigue behaviour of the high performance grout MASTERFLOW 9500 subjected to cyclic loading, in air as well as submerged in water, at various frequencies and levels of maximum stress. Part of the results were also reported in [1] together with other mechanical...

  8. Two Profiles of the Dutch High Performing Employee

    Science.gov (United States)

    de Waal, A. A.; Oudshoorn, Michella

    2015-01-01

    Purpose: The purpose of this study is to explore the profile of an ideal employee, to be more precise the behavioral characteristics of the Dutch high-performing employee (HPE). Organizational performance depends for a large part on the commitment of employees. Employees provide their knowledge, skills, experiences and creativity to the…

  9. A high performance electrometer amplifier of hybrid design

    International Nuclear Information System (INIS)

    Rao, N.V.; Nazare, C.K.

    1979-01-01

    A high performance, reliable, electrometer amplifier of hybrid design for low current measurements in mass spectrometers has been developed. The short term instability with a 5 x 10 11 ohms input resistor is less than 1 x 10sup(-15) Amp. The drift is better than 1 mV/hour. The design steps are illustrated with a typical amplifier performance details. (auth.)

  10. Development and validation of a reversed phase High Performance ...

    African Journals Online (AJOL)

    A simple, rapid, accurate and economical isocratic Reversed Phase High Performance Liquid Chromatography (RPHPLC) method was developed, validated and used for the evaluation of content of different brands of paracetamol tablets. The method was validated according to ICH guidelines and may be adopted for the ...

  11. Resolution of RNA using high-performance liquid chromatography

    NARCIS (Netherlands)

    Mclaughlin, L.W.; Bischoff, Rainer

    1987-01-01

    High-performance liquid chromatographic techniques can be very effective for the resolution and isolation of nucleic acids. The characteristic ionic (phosphodiesters) and hydrophobic (nucleobases) properties of RNAs can be exploited for their separation. In this respect anion-exchange and

  12. Mallow carotenoids determined by high-performance liquid chromatography

    Science.gov (United States)

    Mallow (corchorus olitorius) is a green vegetable, which is widely consumed either fresh or dry by Middle East population. This study was carried out to determine the contents of major carotenoids quantitatively in mallow, by using a High Performance Liquid Chromatography (HPLC) equipped with a Bis...

  13. High-Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  14. Developments on HNF based high performance and green solid propellants

    NARCIS (Netherlands)

    Keizers, H.L.J.; Heijden, A.E.D.M. van der; Vliet, L.D. van; Welland-Veltmans, W.H.M.; Ciucci, A.

    2001-01-01

    Worldwide developments are ongoing to develop new and more energetic composite solid propellant formulations for space transportation and military applications. Since the 90's, the use of HNF as a new high performance oxidiser is being reinvestigated. Within European development programmes,

  15. High-Performance Matrix-Vector Multiplication on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    2012-01-01

    In this paper, we develop a high-performance GPU kernel for one of the most popular dense linear algebra operations, the matrix-vector multiplication. The target hardware is the most recent Nvidia Tesla 20-series (Fermi architecture), which is designed from the ground up for scientific computing...

  16. High-performance carbon nanotube-reinforced bioplastic

    CSIR Research Space (South Africa)

    Ramontja, J

    2009-12-01

    Full Text Available -1 High-Performance Carbon Nanotube-Reinforced Bioplastic 1. James Ramontja1,2, 2. Suprakas Sinha Ray1,*, 3. Sreejarani K. Pillai1, 4. Adriaan S. Luyt2 1. 1 DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials...

  17. High performance current controller for particle accelerator magnets supply

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used...

  18. The design of high performance weak current integrated amplifier

    International Nuclear Information System (INIS)

    Chen Guojie; Cao Hui

    2005-01-01

    A design method of high performance weak current integrated amplifier using ICL7650 operational amplifier is introduced. The operating principle of circuits and the step of improving amplifier's performance are illustrated. Finally, the experimental results are given. The amplifier has programmable measurement range of 10 -9 -10 -12 A, automatic zero-correction, accurate measurement, and good stability. (authors)

  19. Monitoring aged reversed-phase high performance liquid chromatography columns

    NARCIS (Netherlands)

    Bolck, A; Smilde, AK; Bruins, CHP

    1999-01-01

    In this paper, a new approach for the quality assessment of routinely used reversed-phase high performance liquid chromatography columns is presented. A used column is not directly considered deteriorated when changes in retention occur. If attention is paid to the type and magnitude of the changes,

  20. Ultra high performance liquid chromatography of seized drugs

    NARCIS (Netherlands)

    Lurie, I.S.

    2010-01-01

    The primary goal of this thesis is to investigate the use of ultra high performance liquid chromatography (UHPLC) for the analysis of seized drugs. This goal was largely achieved and significant progress was made in achieving improved separation and detection of drugs of forensic interest.

  1. Comparative Studies of Some Polypores Using High Performance ...

    African Journals Online (AJOL)

    ... these polypores in a previous work. The ability of the polypores to produce triterpenoids is affected by their age, period of collection, geographical location and method of drying, which also affected the High Performance Liquid Chromatography characteristics of their secondary metabolites. African Research Review Vol.

  2. Manufacturing Advantage: Why High-Performance Work Systems Pay Off.

    Science.gov (United States)

    Appelbaum, Eileen; Bailey, Thomas; Berg, Peter; Kalleberg, Arne L.

    A study examined the relationship between high-performance workplace practices and the performance of plants in the following manufacturing industries: steel, apparel, and medical electronic instruments and imaging. The multilevel research methodology combined the following data collection activities: (1) site visits; (2) collection of plant…

  3. Quantification of Tea Flavonoids by High Performance Liquid Chromatography

    Science.gov (United States)

    Freeman, Jessica D.; Niemeyer, Emily D.

    2008-01-01

    We have developed a laboratory experiment that uses high performance liquid chromatography (HPLC) to quantify flavonoid levels in a variety of commercial teas. Specifically, this experiment analyzes a group of flavonoids known as catechins, plant-derived polyphenolic compounds commonly found in many foods and beverages, including green and black…

  4. High performance co-polyimide nanofiber reinforced composites

    NARCIS (Netherlands)

    Yao, Jian; Li, Guang; Bastiaansen, Cees; Peijs, Ton

    2015-01-01

    Electrospun co-polyimide BPDA (3, 3′, 4, 4′-Biphenyltetracarboxylic dianhydride)/PDA (p-Phenylenediamine)/ODA (4, 4′-oxydianiline) nanofiber reinforced flexible composites were manufactured by impregnating these high performance nanofibers with styrene-butadiene-styrene (SBS) triblock copolymer

  5. High performance flexible CMOS SOI FinFETs

    KAUST Repository

    Fahad, Hossain M.; Sevilla, Galo T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2014-01-01

    We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due

  6. Flexible nanoscale high-performance FinFETs

    KAUST Repository

    Sevilla, Galo T.; Ghoneim, Mohamed T.; Fahad, Hossain M.; Rojas, Jhonathan Prieto; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2014-01-01

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show

  7. Radioactivity monitor for high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Reeve, D.R.; Crozier, A.

    1977-01-01

    The coupling of a homogeneous radioactivity monitor to a liquid chromatograph involves compromises between the sensitivity of the monitor and the resolution and speed of analysis of the chromatograph. The theoretical relationships between these parameters are considered and expressions derived which make it possible to calculate suitable monitor operating conditions for most types of high-performance liquid chromatography

  8. Cobra Strikes! High-Performance Car Inspires Students, Markets Program

    Science.gov (United States)

    Jenkins, Bonita

    2008-01-01

    Nestled in the Lower Piedmont region of upstate South Carolina, Piedmont Technical College (PTC) is one of 16 technical colleges in the state. Automotive technology is one of its most popular programs. The program features an instructive, motivating activity that the author describes in this article: building a high-performance car. The Cobra…

  9. Neural Correlates of High Performance in Foreign Language Vocabulary Learning

    Science.gov (United States)

    Macedonia, Manuela; Muller, Karsten; Friederici, Angela D.

    2010-01-01

    Learning vocabulary in a foreign language is a laborious task which people perform with varying levels of success. Here, we investigated the neural underpinning of high performance on this task. In a within-subjects paradigm, participants learned 92 vocabulary items under two multimodal conditions: one condition paired novel words with iconic…

  10. A high-performance, low-cost, leading edge discriminator

    Indian Academy of Sciences (India)

    Abstract. A high-performance, low-cost, leading edge discriminator has been designed with a timing performance comparable to state-of-the-art, commercially available discrim- inators. A timing error of 16 ps is achieved under ideal operating conditions. Under more realistic operating conditions the discriminator displays a ...

  11. Buffer-Free High Performance Liquid Chromatography Method for ...

    African Journals Online (AJOL)

    Purpose: To develop and validate a simple, economical and reproducible high performance liquid chromatographic (HPLC) method for the determination of theophylline in pharmaceutical dosage forms. Method: Caffeine was used as the internal standard and reversed phase C-18 column was used to elute the drug and ...

  12. Solid-Phase Extraction Combined with High Performance Liquid ...

    African Journals Online (AJOL)

    Methods: Solid-phase extraction method was employed for the extraction of the estrogen from milk and high performance liquid chromatography-diode array detector (HPLC-DAD) was used for the determination of estrogen. Results: Optimal chromatographic conditions were achieved on an Eclipse XDB-C18 column at a ...

  13. Kinetic Hydration Heat Modeling for High-Performance Concrete Containing Limestone Powder

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone powder is increasingly used in producing high-performance concrete in the modern concrete industry. Limestone powder blended concrete has many advantages, such as increasing the early-age strength, reducing the setting time, improving the workability, and reducing the heat of hydration. This study presents a kinetic model for modeling the hydration heat of limestone blended concrete. First, an improved hydration model is proposed which considers the dilution effect and nucleation effect due to limestone powder addition. A degree of hydration is calculated using this improved hydration model. Second, hydration heat is calculated using the degree of hydration. The effects of water to binder ratio and limestone replacement ratio on hydration heat are clarified. Third, the temperature history and temperature distribution of hardening limestone blended concrete are calculated by combining hydration model with finite element method. The analysis results generally agree with experimental results of high-performance concrete with various mixing proportions.

  14. High-performance control system for a heavy-ion medical accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, H.D.; Magyary, S.B.; Sah, R.C.

    1983-03-01

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species.

  15. High-performance control system for a heavy-ion medical accelerator

    International Nuclear Information System (INIS)

    Lancaster, H.D.; Magyary, S.B.; Sah, R.C.

    1983-03-01

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species

  16. High performance computing and communications: Advancing the frontiers of information technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental in the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.

  17. Classification of Antarctic algae by applying Kohonen neural network with 14 elements determined by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Balbinot, L. [Departamento de Quimica Analitica-Instituto de Quimica-Unicamp, PO Box 6154, CEP: 13083-971, Campinas, SP (Brazil); Smichowski, P. [Comision Nacional de Energia Atomica, Unidad de Actividad Quimica, Centro Atomico Constituyentes, Av. Gral Paz 1499, B1650KNA, San Martin, Provincia de Buenos Aires (Argentina); Farias, S. [Comision Nacional de Energia Atomica, Unidad de Actividad Quimica, Centro Atomico Constituyentes, Av. Gral Paz 1499, B1650KNA, San Martin, Provincia de Buenos Aires (Argentina); Arruda, M.A.Z. [Departamento de Quimica Analitica-Instituto de Quimica-Unicamp, PO Box 6154, CEP: 13083-971, Campinas, SP (Brazil); Vodopivez, C. [Instituto Antartico Argentino, Cerrito 1010, C1248AAZ, Buenos Aires (Argentina); Poppi, R.J. [Departamento de Quimica Analitica-Instituto de Quimica-Unicamp, PO Box 6154, CEP: 13083-971, Campinas, SP (Brazil)]. E-mail: ronei@iqm.unicamp.br

    2005-06-30

    Optical emission spectrometers can generate results, which sometimes are not easy to interpret, mainly when the analyses involve classifications. To make simultaneous data interpretation possible, the Kohonen neural network is used to classify different Antarctic algae according to their taxonomic groups from the determination of 14 analytes. The Kohonen neural network architecture used was 5x5 neurons, thus reducing 14-dimension input data to two-dimensional space. The input data were 14 analytes (As, Co, Cu, Fe, Mn, Sr, Zn, Cd, Cr, Mo, Ni, Pb, Se, V) with their concentrations, determined by inductively coupled plasma optical emission spectrometry in 11 different species of algae. Three taxonomic groups (Rhodophyta, Phaeophyta and Cholorophyta) can be differentiated and classified through only their Cu content.

  18. Classification of Antarctic algae by applying Kohonen neural network with 14 elements determined by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Balbinot, L.; Smichowski, P.; Farias, S.; Arruda, M.A.Z.; Vodopivez, C.; Poppi, R.J.

    2005-01-01

    Optical emission spectrometers can generate results, which sometimes are not easy to interpret, mainly when the analyses involve classifications. To make simultaneous data interpretation possible, the Kohonen neural network is used to classify different Antarctic algae according to their taxonomic groups from the determination of 14 analytes. The Kohonen neural network architecture used was 5x5 neurons, thus reducing 14-dimension input data to two-dimensional space. The input data were 14 analytes (As, Co, Cu, Fe, Mn, Sr, Zn, Cd, Cr, Mo, Ni, Pb, Se, V) with their concentrations, determined by inductively coupled plasma optical emission spectrometry in 11 different species of algae. Three taxonomic groups (Rhodophyta, Phaeophyta and Cholorophyta) can be differentiated and classified through only their Cu content

  19. Secondary flows in the cooling channels of the high-performance light-water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Laurien, E.; Wintterle, Th. [Stuttgart Univ., Institute for Nuclear Technolgy and Energy Systems (IKE) (Germany)

    2007-07-01

    The new design of a High-Performance Light-Water Reactor (HPLWR) involves a three-pass core with an evaporator region, where the compressed water is heated above the pseudo-critical temperature, and two superheater regions. Due to the strong dependency of the supercritical water density on the temperature significant mass transfer between neighboring cooling channels is expected if the temperature is unevenly distributed across the fuel element. An inter-channel flow is then superimposed to the secondary flow vortices induced by the non-isotropy of turbulence. In order to gain insight into the resulting flow patterns as well as into temperature and density distributions within the various subchannels of the fuel element CFD (Computational Fluid Dynamics) calculations for the 1/8 fuel element are performed. For simplicity adiabatic boundary conditions at the moderator box and the fuel element box are assumed. Our investigation confirms earlier results obtained by subchannel analysis that the axial mass flux is significantly reduced in the corner subchannel of this fuel element resulting in a net mass flux towards the neighboring subchannels. Our results provide a first estimation of the magnitude of the secondary flows in the pseudo-critical region of a supercritical light-water reactor. Furthermore, it is demonstrated that CFD is an efficient tool for investigations of flow patterns within nuclear reactor fuel elements. (authors)

  20. MODELING AND STRUCTURING OF ENTERPRISE MANAGEMENT SYSTEM RESORT SPHERE BASED ON ELEMENTS OF NEURAL NETWORK THEORY: THE METHODOLOGICAL BASIS

    Directory of Open Access Journals (Sweden)

    Rena R. Timirualeeva

    2015-01-01

    Full Text Available The article describes the methodology of modeling andstructuring of business networks theory. Accounting ofenvironmental factors mega-, macro- and mesolevels, theinternal state of the managed system and the error management command execution by control system implemented inthis. The proposed methodology can improve the quality of enterprise management of resort complex through a moreflexible response to changes in the parameters of the internaland external environments.