WorldWideScience

Sample records for high-performance corrosion-resistant materials

  1. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  2. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  3. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

    2007-09-21

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

  4. Corrosion resistant composite materials

    International Nuclear Information System (INIS)

    Ul'yanin, E.A.

    1986-01-01

    Foundations for corrosion-resistant composite materials design are considered with account of components compatibility. Fibrous and lamellar composites with metal matrix, dispersion-hardened steels and alloys, refractory metal carbides-, borides-, nitrides-, silicides-based composites are described. Cermet compositions and fields of their application, such as protective coatings for operation in agressive media at high temperatures, are presented

  5. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  6. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  7. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO and DOE OCRWM Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  8. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  9. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Resistance FY05 HPCRM Annual Report No. Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Day, S D

    2007-01-01

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  10. In hydrofluoric acid corrosion-resistant materials

    International Nuclear Information System (INIS)

    Hauffe, K.

    1985-01-01

    Copper, red brass (Cu-15 Zn), special treated carbon steel and chromium-nickel-molybdenum steel represent materials of high resistivity against concentrated hydrofluoric acid ( 2 O 3 ) are employed for windows in the presence of hydrogen fluoride and/or hydrofluoric acid because of their superior optical properties and their excellent corrosion resistance. Polyethylen, polypropylene and polyvinyl chloride (PVC) belong to the cheapest corrosion resistant material for container and for coatings in the presence of hydrofluoric acid. Special polyester resins reinforced by glass or graphite fibers have been successfully employed as material for production units with hydrofluoric acid containing liquids up to 330 K. By carbon reinforced epoxy resin represents a corrosion resistant coating. Because of their excellent friction and corrosion resistance against concentrated hot hydrofluoric acid and HNO 3 -HF-solutions, PTFE and polyvinylidene fluoride are used as material for valves and axles in such environment. The expensive alloys, as for instance hastelloy and monel, are substituted more and more by fiber-reinfored polyolefins, PVC and fluorine containing polymers. (orig.) [de

  11. Corrosion resistance of high performance stainless steels in cooling water and other refinery environments

    International Nuclear Information System (INIS)

    Kovach, C.W.; Redmerski, L.S.

    1984-01-01

    The recent successful introduction of high performance stainless steels as tubing for seawater cooled electric utility condensers suggests that these alloys can also provide useful service in refinery heat exchanger applications. Since many of these applications involve higher temperature exposure than steam condensers, a study was conducted to evaluate crevice corrsion resistance over a range of cooling water temperature and chloride concentrations, and also to evaluate general corrosion resistance in some strong chemical and refinery environments. These stainless steels display excellent crevice corrosion resistance as well as good resistance to a variety of chemical environments that may be encountered in refinery, petrochemical and chemical plant service

  12. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  13. Corrosion resistance of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban

    2007-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  14. Corrosion resistance of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban [Corrosion and Metals Research Institute, Sto ckholm (Sweden)

    2007-03-15

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  15. HIGH TEMPERATURE CORROSION RESISTANCE OF METALLIC MATERIALS IN HARSH CONDITIONS

    OpenAIRE

    Novello, Frederic; Dedry, Olivier; De Noose, Vincent; Lecomte-Beckers, Jacqueline

    2014-01-01

    Highly efficient energy recovery from renewable sources and from waste incineration causes new problems of corrosion at high temperature. A similar situation exists for new recycling processes and new energy storage units. These corrosions are generally considered to be caused by ashes or molten salts, the composition of which differs considerably from one plant to another. Therefore, for the assessment of corrosion-resistance of advanced materials, it is essential to precisely evaluate the c...

  16. Corrosion resistance of metal materials for HLW canister

    International Nuclear Information System (INIS)

    Furuya, Takashi; Muraoka, Susumu; Tashiro, Shingo

    1982-02-01

    In order to verify the materials as an important artificial barrier for canister of vitrified high-level waste from spent fuel reprocessing, data and reports were researched on corrosion resistance of the materials under conditions from glass form production to final disposal. Then, in this report, investigated subjects, improvement methods and future subjects are reviewed. It has become clear that there would be no problem on the inside and outside corrosion of the canister during glass production, but long term corrosion and radiation effect tests and the vitrification methods would be subjects in future on interim storage and final disposal conditions. (author)

  17. A High-Performance Corrosion-Resistant Iron-Based Amorphous Metal - The Effects of Composition, Structure and Environment on Corrosion Resistance

    International Nuclear Information System (INIS)

    Farmer, J.; Haslam, J.; Day, D.; Lian, T.; Saw, C.; Hailey, P.; Choi, J.S.; Rebak, R.; Yang, N.; Bayles, R.; Aprigliano, L.; Payer, J.; Perepezko, J.; Hildal, K.; Lavernia, E.; Ajdelsztajn, L.; Branagan, D.; Beardsley, B.

    2007-01-01

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of high-performance Ni-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal also makes it an effective neutron absorber, and suitable for criticality control applications, as discussed in companion publications. Corrosion data for SAM2X5 (Fe 49.7 Cr 17.7 Mn 1.9 Mo 7.4 W 1.6 B 15.2 C 3.8 Si 2.4 ) is discussed here. (authors)

  18. Lead-Bismuth technology ; corrosion resistance of structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Park, Won Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Lead-Bismuth (Pb-Bi) eutectic alloy was determined as a coolant material for the HYPER system being studied by KAERI. The Pb-Bi alloy as a coolant, has a number of the favorable thermo-physical and technological properties, while it is comparatively corrosive to the structural materials. It is necessary to solve this problem for providing a long failure-proof operation of the facilities with Pb-Bi coolant. It seems to be possible to maintain corrosion resistance on structural material up to 600 deg C by using of various technologies, but it needs more studies for application to large-scale NPPs. 22 refs., 11 figs., 7 tabs. (Author)

  19. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    R.B. Rebak

    2006-01-01

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking

  20. Evaluation of corrosion resistance of various concrete reinforcing materials.

    Science.gov (United States)

    2013-06-01

    The Vermont Agency of Transportation undertook a simple experiment to determine the corrosion : resistance ability of various reinforcing steels (rebar) that may be used in bridges and other concrete : structures. Eight types of rebar were used in th...

  1. Corrosion-Resistant Container for Molten-Material Processing

    Science.gov (United States)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  2. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-01-01

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  3. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  4. Highly corrosion resistant zirconium based alloy for reactor structural material

    International Nuclear Information System (INIS)

    Ito, Yoichi.

    1996-01-01

    The alloy of the present invention is a zirconium based alloy comprising tin (Sn), chromium (Cr), nickel (Ni) and iron (Fe) in zirconium (Zr). The amount of silicon (Si) as an impurity is not more than 60ppm. It is preferred that Sn is from 0.9 to 1.5wt%, that of Cr is from 0.05 to 0.15wt%, and (Fe + Ni) is from 0.17 to 0.5wt%. If not less than 0.12wt% of Fe is added, resistance against nodular corrosion is improved. The upper limit of Fe is preferably 0.40wt% from a view point of uniform suppression for the corrosion. The nodular corrosion can be suppressed by reducing the amount of Si-rich deposition product in the zirconium based alloy. Accordingly, a highly corrosion resistant zirconium based alloy improved for the corrosion resistance of zircaloy-2 and usable for a fuel cladding tube of a BWR type reactor can be obtained. (I.N.)

  5. Improving corrosion resistance of post-tensioned substructures emphasizing high performance grouts

    Science.gov (United States)

    Schokker, Andrea Jeanne

    The use of post-tensioning in bridges can provide durability and structural benefits to the system while expediting the construction process. When post-tensioning is combined with precast elements, traffic interference can be greatly reduced through rapid construction. Post-tensioned concrete substructure elements such as bridge piers, hammerhead bents, and straddle bents have become more prevalent in recent years. Chloride induced corrosion of steel in concrete is one of the most costly forms of corrosion each year. Coastal substructure elements are exposed to seawater by immersion or spray, and inland bridges may also be at risk due to the application of deicing salts. Corrosion protection of the post-tensioning system is vital to the integrity of the structure because loss of post-tensioning can result in catastrophic failure. Documentation for durability design of the grout, ducts, and anchorage systems is very limited. The objective of this research is to evaluate the effectiveness of corrosion protection measures for post-tensioned concrete substructures by designing and testing specimens representative of typical substructure elements using state-of-the-art practices in aggressive chloride exposure environments. This was accomplished through exposure testing of twenty-seven large-scale beam specimens and ten large-scale column specimens. High performance grout for post-tensioning tendon injection was also developed through a series of fresh property tests, accelerated exposure tests, and a large-scale pumping test to simulate field conditions. A high performance fly ash grout was developed for applications with small vertical rises, and a high performance anti-bleed grout was developed for applications involving large vertical rises such as tall bridge piers. Long-term exposure testing of the beam and column specimens is ongoing, but preliminary findings indicate increased corrosion protection with increasing levels of post-tensioning, although traditional

  6. Corrosion resistance of metallic materials for use in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Legry, J.P.; Pelras, M.; Turluer, G.

    1989-01-01

    This paper reviews the corrosion resistance properties required from metallic materials to be used in the various developments of the PUREX process for nuclear fuel reprocessing. Stainless steels, zirconium or titanium base alloys are considered for the various plant components, where nitric acid is the main electrolyte with differing acid and nitrate concentrations, temperature and oxidizing species. (author)

  7. PRODUCTION OF POROUS POWDER MATERIALS OF SPHERICAL POWDERS OF CORROSION-RESISTANT STEEL

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevskij

    2012-01-01

    Full Text Available Production of porous powder materials from spherical powders of corrosion-resistant steel 12Х18н10Т with formation at low pressures 120–140 mpa in the mold with the subsequent activated sintering became possible due to increase of duration of process of spattering and formation of condensate particles (Si–C or (Mo–Si on surface.

  8. Corrosion resistant materials for fluorine and hydrogen fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Hauffe, K.

    1984-12-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with <0,3 mm.a/sup -1/ is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a/sup -1/. In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials.

  9. Corrosion resistant materials for fluorine and hydrogen fluoride

    International Nuclear Information System (INIS)

    Hauffe, K.

    1984-01-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with -1 is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a -1 . In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials. (orig.) [de

  10. Improvement on corrosion resistance of NiTi orthopedic materials by carbon plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Luk, Camille M.Y.; Liu Xuanyong; Chung, Jonathan C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2006-01-01

    Nickel-titanium shape memory alloys (NiTi) have potential applications as orthopedic implants because of their unique super-elastic properties and shape memory effects. However, the problem of out-diffusion of harmful Ni ions from the alloys during prolonged use inside a human body must be overcome before they can be widely used in orthopedic implants. In this work, we enhance the corrosion resistance of NiTi using carbon plasma immersion ion implantation and deposition (PIII and D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII and D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Results of atomic force microscopy (AFM) indicate that both C 2 H 2 -PIII and D and C 2 H 2 -PIII do not roughen the original flat surface to an extent that can lead to degradation in corrosion resistance

  11. High Performance Macromolecular Material

    National Research Council Canada - National Science Library

    Forest, M

    2002-01-01

    .... In essence, most commercial high-performance polymers are processed through fiber spinning, following Nature and spider silk, which is still pound-for-pound the toughest liquid crystalline polymer...

  12. Progress with alloy 33 (UNS R20033), a new corrosion resistant chromium-based austenitic material

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.; Eichenhofer, K.W.; Renner, M.

    1996-01-01

    Alloy 33 (UNS R20033), a new chromium-based corrosion resistant austenitic material with nominally (wt. %) 33 Cr, 32 Fe, 31 Ni, 1.6 Mo, 0.6 Cu, 0.4 N has been introduced to the market in 1995. This paper provides new data on this alloy with respect to mechanical properties, formability, weldability, sensitization characteristics and corrosion behavior. Mechanical properties of weldments including ductility have been established, and match well with those of wrought plate material, without any degradation of ISO V-notch impact toughness in the heat affected zone. When aged up to 8 hours between 600 C and 1,000 C the alloy is not sensitized when tested in boiling azeotropic nitric acid (Huey test). Under field test conditions alloy 33 shows excellent resistance to corrosion in flowing 96--98.5% H 2 SO 4 at 135 C--140 C and flowing 99.1% H 2 SO 4 at 150 C. Alloy 33 has also been tested with some success in 96% H 2 SO 4 with nitrosyl additions at 240 C. In nitric acid alloy 33 is corrosion resistant up to 85% HNO 3 and 75 C or even more. Alloy 33 is also corrosion resistant in 1 mol. HCl at 40 C and in NaOH/NaOCl-solutions. In artificial seawater the pitting potential remains unchanged up to 75 C and is still well above the seawater's redox potential at 95 C. Alloy 33 can be easily manufactured into all product forms required. The new data provided support the multipurpose character of alloy 33 to cope successfully with many requirements of the Chemical Process Industry, the Oil and Gas Industry and the Refinery Industry

  13. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  14. The corrosion resistance of materials used for the manufacture of ear piercing studs

    International Nuclear Information System (INIS)

    Correa, O. V.; Saiki, M.; Rogero, S. O.; Costa, I.

    2003-01-01

    Nickel containing alloy shave been widely used as substrates for the manufacture of studs used for ear piercing. Unfortunately, nickel has also been related to the development of allergic contact dermatitis caused by skin sensitization due to Ni''2+ ions. Nickel ions can be leached out into the body fluids due to corrosion reactions. Defect free coatings are very difficult to produce, and therefore nickel free materials should be used as substrates of ear piercing studs, although the commercial alloys used usually contain this element. In this study, the corrosion resistance of two kinds of commercial studs prepared with nickel containing substrates and a titanium laboratory made stud was determined in a culture medium. The corrosion resistance of the studs was investigated by means of potentiodynamic polarization tests and electrochemical impedance spectroscopy as a function of immersion time in the culture medium. The elements that leached out into the medium due to corrosion reactions were analyzed by instrumental neutron activation analysis. The surfaces of the commercial gold-coated studs were examined by scanning electron microscopy and analyzed by energy dispersive spectroscopy, both before and after exposure to the culture medium. The cytotoxicity of the tested studs was also determined in the culture medium. (Author) 10 refs

  15. Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method

    Science.gov (United States)

    Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.

    2018-06-01

    Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.

  16. Corrosion resistance of structural material AlMg-2 in water following heat treatment and cooling

    International Nuclear Information System (INIS)

    Maman Kartaman A; Djoko Kisworo; Dedi Hariyadi; Sigit

    2005-01-01

    Corrosion tests of structural material AlMg-2 in water were carried out using autoclave in order to study the effects of heat treatment on the corrosion resistance of the material. Prior to the tests, the samples were heat-treated at temperatures of 90, 200, 300 and 500 °C and cooled in air, sand and water. The corrosion tests were conducted in water at temperature of 150 °C for 250 hours. The results showed that AlMg-2 samples were corroded although the increase of mass gain was relatively small. Heat treatment from 90 to 500 °C in sand cooling media resulted in an increase of mass gain despite that at 300 °C the increase was less than those at 200 °C and 500 °C. For water cooling media in the temperature range of 90 to 200 °C, the mass gain increased from 0.1854 g/cm 2 to 2.1204 g/cm 2 although after 200 °C it decreased to 1.8207 g/cm 2 and 1.6779 g/cm 2 respectively. For air cooling media, the mass gain was relatively constant. Based on the experiment results, it can be concluded that heat treatment and cooling did not significantly influence the corrosion resistance of material AlMg-2. The passive film Al 2 O 3 on the surface was able to protect the inner surface from further corrosion. Water media with pH range from 4 – 9 did not cause damage to passive layer formed. (author)

  17. Wrought stainless steel butt-welding fittings: including reference to other corrosion resistant materials - approved 1971

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    ANSI B16.9 is the American Standard for steel butt-welding fittings and although not so stated, it is implied that its scope deals primarily with the schedules of wall thicknesses which are common to carbon steel and the grades of alloy steel piping that are selected for pressure and temperature considerations. The purpose of this standard is to provide industry with a set of dimensional standards for butt-welding fittings that can be used with these light wall pipes of corrosion resisting materials. The center-to-end dimensions of all fittings are identical with those in ANSI B16.9 which give to industry the advantage of uniform design room practice and a maximum utilization of existing die equipment. The only departure from this is in the lap-joint stub end where for purposes of economy the face-to-end of the product has been reduced for use with thin wall piping

  18. Corrosion resistant structural materials for use in lithium fluoride molten salts and thermonuclear device using it

    International Nuclear Information System (INIS)

    Kawamura, Kazutaka; Takagi, Ryuzo.

    1987-01-01

    Purpose: To provide blanket materials for thermo nuclear devices and structural materials for containers with less MHD effect and good heat exchanging efficiency. Constitution: LiF-PbF 2 is used as the liquid blanket material for moderating the MHD effect. That is, the lithium compound, in the form of a fluoride, can be made easily liquefiable being and PbF 2 is added for lowering the melting point. The reason of using the fluoride is that fluorine material is less activated by the adsorption of neutrons. Copper, phosphor bronze, nickel or nickel-based alloy, e.g., Monel metal is used as corrosion resistant structural material to LiF-PbF 2 molten salts. Use of copper as the low activating structural material can provide an excellent effect also in view of the maintenance and, further, a series of processes for purifying, separating injecting and recoverying tritium can be conducted safely and stationarily without contaminating the circumferences. (Kamimura, M.)

  19. Organo-Aluminate Polymeric Materials as Advanced Erosion/Corrosion Resistant Thin Film Coatings

    National Research Council Canada - National Science Library

    Cook, Ronald

    1997-01-01

    ...) and hazardous air pollutants (HAPs). The coating system is based on the development of carboxylato- alumoxane precursors for fabrication of corrosion resistant oxide barrier layers and alumoxane-epoxy based primer coats...

  20. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  1. Development of corrosion resistant materials for an electrolytic reduction process of a spent nuclear fuel

    International Nuclear Information System (INIS)

    Jong-Hyeon Lee; Soo-Haeng Cho; Jeong-Gook Oh; Eung-Ho Kim

    2008-01-01

    New alloys were designed and prepared to improve their corrosion resistance in an electrolytic reduction environment for a spent oxide fuel on the basis of a thermodynamical assessment. A considerable solubility of Si was confirmed in the Ni alloys and their corrosion resistance was drastically increased with the addition of Si. It was confirmed that a protective oxide layer was formed during a corrosion test due to a reaction among the alloying elements such as Cr, Al and Si. (authors)

  2. Creep resistance and material degradation of a candidate Ni–Mo–Cr corrosion resistant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Sachin L., E-mail: sachin@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhattacharyya, Dhriti [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Yuan, Guangzhou; Li, Zhijun J. [Center of Thorium Molten Salts Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Budzakoska-Testone, Elizabeth; De Los Reyes, Massey; Drew, Michael; Edwards, Lyndon [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2016-09-30

    This study investigated the creep deformation properties of GH3535, a Ni–Mo–Cr corrosion resistant structural alloy being considered for use in future Gen IV molten salt nuclear reactors (MSR) operating at around 700 °C. Creep testing of the alloy was conducted at 650–750 °C under applied stresses between 85–380 MPa. From the creep rupture results the long term creep strain and rupture life of the alloy were estimated by applying the Dorn Shepard and Larson Miller time-temperature parameters and the alloy's allowable ASME design stresses at the MSR's operating temperature were evaluated. The material's microstructural degradation at creep rupture was characterised using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The microstructural study revealed that the material failure was due to wedge cracking at triple grain boundary points and cavitation at coarse secondary grain boundary precipitates, nucleated and grown during high temperature exposure, leading to intergranular crack propagation. EBSD local misorientation maps clearly show that the root cause of cavitation and crack propagation was due to large strain localisation at the grain boundaries and triple points instigated by grain boundary sliding during creep deformation. This caused the grain boundary decohesion and subsequent material failure.

  3. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  4. Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeong Yong; Jeong, Y. H.; Park, S. Y.

    2010-04-01

    The irradiation test for HANA claddings conducted and a series of evaluation for next-HANA claddings as well as their in-pile and out-of pile performances tests were also carried out at Halden research reactor. The 6th irradiation test have been completed successfully in Halden research reactor. As a result, HANA claddings showed high performance, such as corrosion resistance increased by 40% compared to Zircaloy-4. The high performance of HANA claddings in Halden test has enabled lead test rod program as the first step of the commercialization of HANA claddings. DB has been established for thermal and LOCA-related properties. It was confirmed from the thermal shock test that the integrity of HANA claddings was maintained in more expanded region than the criteria regulated by NRC. The manufacturing process of strips was established in order to apply HANA alloys, which were originally developed for the claddings, to the spacer grids. 250 kinds of model alloys for the next-generation claddings were designed and manufactured over 4 times and used to select the preliminary candidate alloys for the next-generation claddings. The selected candidate alloys showed 50% better corrosion resistance and 20% improved high temperature oxidation resistance compared to the foreign advanced claddings. We established the manufacturing condition controlling the performance of the dual-cooled claddings by changing the reduction rate in the cold working steps

  5. Studies of Corrosion Resistant Materials Being Considered for High-Level Nuclear Waste Containment in Yucca Mountain Relevant Environments

    International Nuclear Information System (INIS)

    McCright, R.D.; Ilevbare, G.; Estill, J.; Rebak, R.

    2001-01-01

    Containment of spent nuclear fuel and vitrified forms of high level nuclear waste require use of materials that are highly corrosion resistant to all of the anticipated environmental scenarios that can occur in a geological repository. Ni-Cr-Mo Alloy 22 (UNS N60622) is proposed for the corrosion resistant outer barrier of a two-layer waste package container at the potential repository site at Yucca Mountain. A range of water compositions that may contact the outer barrier is under consideration, and a testing program is underway to characterize the forms of corrosion and to quantify the corrosion rates. Results from the testing support models for long term prediction of the performance of the container. Results obtained to date indicate a very low general corrosion rate for Alloy 22 and very high resistance to all forms of localized and environmentally assisted cracking in environments tested to date

  6. The corrosion resistance of materials used for the manufacture of ear piercing studs

    Directory of Open Access Journals (Sweden)

    Correa, O. V.

    2003-12-01

    Full Text Available Nickel containing alloys have been widely used as substrates for the manufacture of studs used for ear piercing. Unfortunately, nickel has also been related to the development of allergic contact dermatitis caused by skin sensitization due to Ni2+ ions. Nickel ions can be leached out into the body fluids due to corrosion reactions. Defect free coatings are very difficult to produce, and therefore nickel free materials should be used as substrates of ear piercing studs, although the commercial alloys used usually contain this element. In this study, the corrosion resistance of two kinds of commercial studs prepared with nickel containing substrates and a titanium laboratory made stud was determined in a culture medium. The corrosion resistance of the studs was investigated by means of potentiodynamic polarization tests and electrochemical impedance spectroscopy as a function of immersion time in the culture medium. The elements that leached out into the medium due to corrosion reactions were analyzed by instrumental neutron activation analysis. The surfaces of the commercial gold-coated studs were examined by scanning electron microscopy and analyzed by energy dispersive spectroscopy, both before and after exposure to the culture medium. The cytotoxicity of the tested studs was also determined in the culture medium.

    Aleaciones conteniendo níquel se han utilizado como substratos para la fabricación de aretes perforantes para orejas. Desafortunadamente, el níquel ha sido relacionado con el desarrollo de una reacción alérgica conocida como dermatitis de contacto, causada por la sensibilización debido a los iones de Ni2+. Estos iones pueden ser liberados hacia los fluidos corporales debido a las reacciones de corrosión. Los aretes, habitualmente, se revisten con películas de oro. Sin embargo, es muy difícil hacer los revestimientos libres de defectos superficiales. Por lo tanto, materiales sin níquel deber

  7. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    Science.gov (United States)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples

  8. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  9. Development of advanced corrosion resistant materials for molten coal ash; Yoyu sekitanbai ni taisuru kotaishokusei zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For development of materials for heat exchangers under severe corrosion environment due to ultra-high temperature coal combustion gas, basic data were surveyed. On the study in fiscal 1996, the corrosion resistance of one kind of commercially available material and 2 kinds of created materials was studied by coal slag coating test. The commercially available material was subjected to high- temperature corrosion tests of 1500 and 1550degC for a long time. The result showed that SiC is most excellent in the above temperature range. On new materials, 7 kinds of Cr2O3 system ceramics such as Cr2O3-Al2O3 system and Cr2O3- MgO system were selected considering high-temperature corrosion resistance, and the optimum composition and fabrication process of the new materials were studied. High- temperature corrosion tests, and measurement of thermal conductivity and thermal expansion were carried out for every specimen. The result suggested that some materials of Cr2O3- Al2O3 system are promising. 23 refs., 76 figs., 23 tabs.

  10. Canister materials proposed for final disposal of high level nuclear waste - a review with respect to corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, E; Odoj, R; Merz, E [eds.

    1981-06-01

    Spent fuel from nuclear reactors has to be disposed of either after reprocessing or without such treatment. Due to toxic radiation the nuclear waste has to be isolated from the biosphere for 300-1000 years, or in extreme cases for more than 100,000 years. The nuclear waste will be enclosed in corrosion resistant canisters. These will be deposited in repositories in geological formations, such as granite, basalt, clay, bedded or domed salt, or the sediments beneath the deep ocean floor. There the canisters will be exposed to groundwater, brine or seawater at an elevated temperature. Species formed by radiolysis may affect the corrosivity of the agent. The corrosion resistance of candidate canister materials is evaluated by corrosion tests and by thermodynamic and mass transport calculations. Examination of ancient metal objects after long exposure in nature may give additional information. On the basis of the work carried out so far, the principal candidate canister materials are titanium materials, copper and high purity alumina.

  11. Corrosion resistance of materials of construction for high temperature sulfuric acid service in thermochemical IS process. Alloy 800, Alloy 600, SUSXM15J1 and SiC

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Onuki, Kaoru; Shimizu, Saburo; Yamaguchi, Akihisa

    2006-01-01

    Exposure tests of candidate materials were carried out up to 1000 hr in the sulfuric acid environments of thermochemical hydrogen production IS process, focusing on the corrosion of welded portion and of crevice area. In the gas phase sulfuric acid decomposition condition at 850degC, welded samples of Alloy 800 and of Alloy 600 showed the same good corrosion resistance as the base materials. In the boiling condition of 95 wt% sulfuric acid solution, test sample of SiC showed the same good corrosion resistance. Also negligible corrosion was observed in crevice corrosion. (author)

  12. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  13. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  14. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Unknown

    Corrosion resistant coating materials and their application ... technology demand such corrosion resistant coatings having a ... mill additives used are as follows: China clay, 3⋅0–10⋅0; .... stage involves modification in processing of the deve-.

  15. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Science.gov (United States)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  16. HIGH-PERFORMANCE COATING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  17. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications

    Science.gov (United States)

    DellaCorte, Christopher; Jefferson, Michael

    2015-01-01

    NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  18. Effect of Exchanging Advancing and Retreating Side Materials on Mechanical Properties and Electrochemical Corrosion Resistance of Dissimilar 6013-T4 and 7003 Aluminum Alloys FSW Joints

    Science.gov (United States)

    Zhao, Zhixia; Liang, Haimei; Zhao, Yong; Yan, Keng

    2018-03-01

    Friction stir welding (FSW) was used to weld dissimilar joints between Al 6013-T4 and Al7003 alloys in this work. The effect of exchanging advancing (AS) and retreating (RS) side material on microstructure, mechanical behaviors and electrochemical corrosion resistance was discussed. Results showed that different joint cross sections were obtained when exchanging AS and RS materials. The material on the AS would be more deformed during the welding process. When the Al6013 placed on the AS, the plastic flow of weld is more sufficient. Whether on the AS or RS, the Al6013-T4 side is the weak region for both tensile specimens and hardness samples. The fracture position corresponds to the minimum hardness position. Also, more strengthening phase can be retained in the joint, and the joint of A6R7 has better corrosion resistance.

  19. Vegetable-Oil-Based Hyperbranched Polyester-Styrene Copolymer Containing Silver Nanoparticle as Antimicrobial and Corrosion-Resistant Coating Materials

    Directory of Open Access Journals (Sweden)

    Manawwer Alam

    2013-01-01

    Full Text Available Pongamia oil (PO was converted to Pongamia oil hydroxyl (POH via epoxidation process. The esterification of POH with linolenic acid was carried out to form hyperbranched polyester (HBPE, and further styrenation was performed at the conjugated double bond in the chain of linolenic acid. After styrenation, silver nanoparticle was added in different weight percentages (0.1–0.4 wt%. The structural elucidation of POH, HBPE, and HBPE-St was carried out by FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques. Physicochemical and physicomechanical analyses were performed by standard method. Thermal behavior of the HBPE-St was analyzed by using thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The coatings of HBPE-St were prepared on mild steel strips. The anticorrosive behavior of HBPE-St resin-based coatings in acid, saline, and tap water was evaluated, and the molecular weight of HBPE-St was determined by gel permeation chromatography (GPC. The antibacterial activities of the HBPE-St copolymers were tested in vitro against bacteria and fungi by disc diffusion method. The HBPE-St copolymers exhibited good antibacterial activities and can be used as antimicrobial and corrosion-resistant coating materials.

  20. Corrosion resistance of ceramic materials in pyrochemical reprocessing atmosphere by using molten salt for spent nuclear oxide fuel. Corrosion research under chlorine gas condition

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Hanada, Keiji; Koizumi, Tsutomu; Aose, Shinichi; Kato, Toshihiro

    2002-12-01

    Pyrochemical reprocessing using molten salts (RIAR process) has been recently developed for spent nuclear oxide fuel and discussed in feasibility study. It is required to improve the corrosion resistance of equipments such as electrolyzer because the process is operated in severe corrosion environment. In this study, the corrosion resistance of ceramic materials was discussed through the thermodynamic calculation and corrosion test. The corrosion test was basically carried out in alkali molten salt under chlorine gas condition. And further consideration about the effects of oxygen, carbon and main fission product's chlorides were evaluated in molten salt. The result of thermodynamic calculation shows most of ceramic oxides have good chemical stability on chlorine, oxygen and uranyl chloride, however the standard Gibb's free energies with carbon have negative value. On the other hand, eleven kinds of ceramic materials were examined by corrosion test, then silicon nitride, mullite and cordierite have a good corrosion resistance less than 0.1 mm/y. Cracks were not observed on the materials and flexural strength did not reduce remarkably after 480 hours test in molten salt with Cl 2 -O 2 bubbling. In conclusion, these three ceramic materials are most applicable materials for the pyrochemical reprocessing process with chlorine gas condition. (author)

  1. Manufacturing method of zirconium alloy-type structural material in reactor core excellent in corrosion resistance, especially in uniform corrosion resistance and hydrogen absorption resistance

    International Nuclear Information System (INIS)

    Mozumi, Yasuhiro.

    1997-01-01

    A zirconium alloy comprising from 0.8 to 1.6wt% of Sn, from 0.17 to 0.25wt% of Fe, from 0.15 to 0.25wt% of Cr and from 0.01 to 0.08wt% of Ni and Si at a concentration of 120ppm or lower as an impurity and the balance of Zr is melted into cast pieces and then subjected to an β annealing. It is controlled so as to satisfy Fe + Cr + Ni ≤ 0.52wt%. Then, rolling and annealing are applied so that the total heat injection amount ΣA i to the materials is within a range of from 1 x 10 -19 to 1 x 10 -17 . ΣA i = Σt i · exp(-Q/RT i ), in which t i represents processing time (hour) at an ith heat treatment step after the β annealing, T i represents a processing temperature (K) in the step i. Q represents an activating energy, R represents a gas constant, and Q/R 40,000. (I.N.)

  2. Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution

    International Nuclear Information System (INIS)

    Alar, Vesna; Stojanovic, Ivan; Simunovic, Vinko

    2014-01-01

    The effects of applied torque on the corrosion behaviour of W.-Nr. 1.4404 and 1.4462 stainless steels and W.-Nr. 2.4605 and 2.4858 nickel alloys with crevices were investigated using the cyclic potentiodynamic polarization method. Crevice corrosion (material-to-polytetrafluoroethylene) was tested in 3.5 % NaCl solution at 22 C. The corroded surface was examined using scanning electron microscopy. The results indicate similar trends in susceptibility to crevice corrosion with increasing torque. Among the four specimens, the W.-Nr. 1.4404 is the most susceptible to crevice corrosion. (orig.)

  3. High performance fuel technology development : Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeongyong; Jeong, Y. H.; Park, S. Y.

    2012-04-01

    The superior in-pile performance of the HANA claddings have been verified by the successful irradiation test and in the Halden research reactor up to the high burn-up of 67GWD/MTU. The in-pile corrosion and creep resistances of HANA claddings were improved by 40% and 50%, respectively, over Zircaloy-4. HANA claddings have been also irradiated in the commercial reactor up to 2 reactor cycles, showing the corrosion resistance 40% better than that of ZIRLO in the same fuel assembly. Long-term out-of-pile performance tests for the candidates of the next generation cladding materials have produced the highly reliable test results. The final candidate alloys were selected and they showed the corrosion resistance 50% better than the foreign advanced claddings, which is beyond the original target. The LOCA-related properties were also improved by 20% over the foreign advanced claddings. In order to establish the optimal manufacturing process for the inner and outer claddings of the dual-cooled fuel, 18 different kinds of specimens were fabricated with various cold working and annealing conditions. Based on the performance tests and various out-of-pile test results obtained from the specimens, the optimal manufacturing process was established for the inner and outer cladding tubes of the dual-cooled fuel

  4. Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier

    International Nuclear Information System (INIS)

    Barletta, M.; Gisario, A.; Puopolo, M.; Vesco, S.

    2015-01-01

    Highlights: • Polysiloxane coatings as protective barriers to delay erosion/corrosion of Fe 430 B metal substrates. • Methyl groups feature a very small steric hindrance and confer ductility to the Si–O–Si backbone. • Phenyl groups feature a larger steric hindrance, but they ensure stability and high chemical inertness. • Remarkable adhesion to the substrate, good scratch resistance and high wear endurance. • Innovative ways to design of long lasting protective barriers against corrosion and aggressive chemicals. - Abstract: Polysiloxanes are widely used as protective barriers to delay erosion/corrosion and increase chemical inertness of metal substrates. In the present work, a high molecular weight methyl phenyl polysiloxane resin was designed to manufacture a protective coating for Fe 430 B structural steel. Methyl groups feature very small steric hindrance and confer ductility to the Si–O–Si backbone of the organic inorganic hybrid resin, thus allowing the achievement of high thickness. Phenyl groups feature larger steric hindrance, but they ensure stability and high chemical inertness. Visual appearance and morphology of the coatings were studied by field emission scanning electron microscopy and contact gauge surface profilometry. Micro-mechanical response of the coatings was analyzed by instrumented progressive load scratch, while wear resistance by dry sliding linear reciprocating tribological tests. Lastly, chemical inertness and corrosion endurance of the coatings were evaluated by linear sweep voltammetry and chronoamperometry in aggressive acid environment. The resulting resins yielded protective materials, which feature remarkable adhesion to the substrate, good scratch resistance and high wear endurance, thus laying the foundations to manufacture long lasting protective barriers against corrosion and, more in general, against aggressive chemicals

  5. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  6. Corrosion resistant steel

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Borisov, V.P.; Latyshev, V.B.

    1980-01-01

    Corrosion resistant steel for production of sheets and tubes containing C, Mn, Cr, Si, Fe is suggested. It is alloyed with vanadium and cerium for improving tensile properties and ductility. The steel can be melted by a conventional method in electric-arc or induction furnaces. The mentioned steel is intended to be used as a substitute for nickel-bearing austenitic steels

  7. FY 2000 report on the survey on energy conservation technology of large plant using ultra high corrosion resistant materials; 2000 nendo chokotaishokusei zairyo wo mochiita ogata plant no sho energy gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of achieving remarkable energy conservation/resource conservation in large plants, the paper carried out an investigational survey of effects obtained in case of applying amorphous super metal which is the newest corrosion resistant material. Amorphous alloys as an ultra high corrosion resistant material are a peculiar material which shows the extremely excellent corrosion resistance even in much strong acid by containing passivated elements with the needed concentration. The corrosion resistant amorphous alloy applied to large plants need the thickness and diameter of more than several millimeters as a bulk material. The subjects are scaling-up of bulk materials and stabilization of characteristics. Even under the tough dew point corrosion environment of the waste power plant, etc., heat recovery from exhaust gas is made possible by heat exchanger applied with ultra high corrosion resistant materials. Effects of the annual heat recovery from the nationwide refuse incinerators and coal thermal power plants are estimated to be approximately 5.2 million kL toe, that is, to be equal to energy conservation of 6 x a million kW class power plant. (NEDO)

  8. The addition of Si to the Ti-35Nb alloy and its effect on the corrosion resistance, when applied to biomedical materials

    International Nuclear Information System (INIS)

    Tavares, A.M.G.; Souza, S.A.; Batista, W.W.; Macedo, M.C.S.S.

    2014-01-01

    Alloy elements such as niobium and silicon have been added to titanium as an alternative for new materials to be used in orthopedic implants. However, these new materials' behavior, in face of corrosion is still demanding careful investigations because they will be subjected to an aggressive environ, such as the human body. This study, the corrosion resistance of the Ti-35Nb-(0; 0,15; 0,35; 0,55)Si (% in mass) when in physiological medium was assessed by means of polarization curves, open circuit potential and electrochemical impedance spectroscopy. The compositions of the passive films were analyzed by XPS. Outcomes show that the alloys presented good rapid repassivation capacity after film breaking under high potentials. The high values of resistance to polarization- Rp-pinpoint that the formed oxide films are resistive. They work as a protecting barrier against aggressive ions. Data suggest that the studied alloys are promising for orthopedic implant applications. (author)

  9. Corrosion resistant cemented carbide

    International Nuclear Information System (INIS)

    Hong, J.

    1990-01-01

    This paper describes a corrosion resistant cemented carbide composite. It comprises: a granular tungsten carbide phase, a semi-continuous solid solution carbide phase extending closely adjacent at least a portion of the grains of tungsten carbide for enhancing corrosion resistance, and a substantially continuous metal binder phase. The cemented carbide composite consisting essentially of an effective amount of an anti-corrosion additive, from about 4 to about 16 percent by weight metal binder phase, and with the remaining portion being from about 84 to about 96 percent by weight metal carbide wherein the metal carbide consists essentially of from about 4 to about 30 percent by weight of a transition metal carbide or mixtures thereof selected from Group IVB and of the Periodic Table of Elements and from about 70 to about 96 percent tungsten carbide. The metal binder phase consists essentially of nickel and from about 10 to about 25 percent by weight chromium, the effective amount of an anti-corrosion additive being selected from the group consisting essentially of copper, silver, tine and combinations thereof

  10. Corrosion-Resistant High-Entropy Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Yunzhu Shi

    2017-02-01

    Full Text Available Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods on the corrosion resistance are analyzed in detail. Furthermore, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.

  11. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  12. Nanomechanical analysis of high performance materials

    CERN Document Server

    2014-01-01

    This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have contributed chapters. Novices will learn the techniques directly from the inventors and senior researchers will gain in-depth information on the new technologies that are suitable for advanced analysis. On the one hand, fundamental concepts that are needed to understand the nanomechanical behavior of materials is included in t...

  13. High Performance Lead--free Piezoelectric Materials

    OpenAIRE

    Gupta, Shashaank

    2013-01-01

    Piezoelectric materials find applications in number of devices requiring inter-conversion of mechanical and electrical energy.  These devices include different types of sensors, actuators and energy harvesting devices. A number of lead-based perovskite compositions (PZT, PMN-PT, PZN-PT etc.) have dominated the field in last few decades owing to their giant piezoresponse and convenient application relevant tunability. With increasing environmental concerns, in the last one decade, focus has be...

  14. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications, Report on NASA-Kamatics SAA3-1288

    Science.gov (United States)

    Dellacorte, Christopher; Jefferson, Michael

    2015-01-01

    Under NASA Space Act Agreement (SAA3-1288), NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54 kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  15. Influences of Alloying Element and Annealing on the Microstructure and Corrosion Resistance of Steam Generator Tubing Materials of Nuclear Power Plant (I)

    International Nuclear Information System (INIS)

    Kim, Young Sik; Pari, Yong Soo; Kuk, Il Hiun

    1996-01-01

    Influences of alloying elements and annealing heat treatments on Alloy 690 and Alloy 600 for steam generator tubing materials of nuclear power plants were studied. OM, SEM, TEM, and XRD analyses were used to study the microstructural changes of the alloys. Mechanical properties were investigated by means of tension tests and Rockwell hardness tests, and corrosion resistance was evaluated using the anodic polarization tests and the 65% boiling nitric acid immersion tests. Increasing the carbon content of Alloy 690, the hardness and tensile strength were increased, but the elongation and grain size were decreased. However, increasing the annealing temperature, the tensile strength and hardness were decreased, but the elongation and grain size were increased. Increasing the carbon content of Alloy 690, the results of the anodic polarization tests and the nitric acid immersion tests showed that the annealing temperature to reveal a minimum corrosion rate was increased. This behavior seemed to be due to the combination of the solid solution of carbon in the matrix and grain growth with annealing. In this work, the corrosion properties of Alloy 690 were better than that of Alloy 600, and the range of the optimum annealing temperature of Alloy 690 was from 1100 .deg. C to 1150 .deg. C

  16. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    International Nuclear Information System (INIS)

    Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-01-01

    Highlights: • The scraped debris can be recycled and easily reused to fabricate the superhydrophobic materials. • The obtained materials displayed liquid-repellent toward water and several other liquids of daily life. • The superhydrophobic materials can retain excellent chemical stability and mechanical durability after rigorous tests. • This as-prepared material can be regarded as a real superhydrophobic “material”, not just the superhydrophobic “surface”. - Abstract: In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  17. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Mengnan, E-mail: mnanqu@gmail.com; Liu, Shanshan; He, Jinmei, E-mail: jinmhe@gmail.com; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-07-15

    Highlights: • The scraped debris can be recycled and easily reused to fabricate the superhydrophobic materials. • The obtained materials displayed liquid-repellent toward water and several other liquids of daily life. • The superhydrophobic materials can retain excellent chemical stability and mechanical durability after rigorous tests. • This as-prepared material can be regarded as a real superhydrophobic “material”, not just the superhydrophobic “surface”. - Abstract: In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  18. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    Science.gov (United States)

    Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-07-01

    In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  19. Screening of candidate corrosion resistant materials for coal combustion environments -- Volume 4. Final report, January 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Boss, D.E.

    1997-12-31

    The development of a silicon carbide heat exchanger is a critical step in the development of the Externally-Fired Combined Cycle (EFCC) power system. SiC is the only material that provides the necessary combination of resistance to creep, thermal shock, and oxidation. While the SiC structural materials provide the thermomechanical and thermophysical properties needed for an efficient system, the mechanical properties of the SiC tubes are severely degraded through corrosion by the coal combustion products. To obtain the necessary service life of thousands of hours at temperature, a protective coating is needed that is stable with both the SiC tube and the coal combustion products, resists erosion from the particle laden gas stream, is thermal-shock resistant, adheres to SiC during repeated thermal shocks (start-up, process upsets, shut-down), and allows the EFCC system to be cost competitive. The candidate protective materials identified in a previous effort were screened for their stability to the EFCC combustion environment. Bulk samples of each of the eleven candidate materials were prepared, and exposed to coal slag for 100 hours at 1,370 C under flowing air. After exposure the samples were mounted, polished, and examined via x-ray diffraction, energy dispersive spectroscopy, and scanning electron microscopy. In general, the alumina-based materials behaved well, with comparable corrosion depths in all five samples. Magnesium chromite formed a series of reaction products with the slag, which included an alumina-rich region. These reaction products may act as a diffusion barrier to slow further reaction between the magnesium chromite and the slag and prove to be a protective coating. As for the other materials; calcium titanate failed catastrophically, the CS-50 exhibited extension microstructural and compositional changes, and zirconium titanate, barium zironate, and yttrium chromite all showed evidence of dissolution with the slag.

  20. Corrosion resistance of materials for use in geothermal power plants; Korrosionsbestaendigkeit von Werkstoffen fuer den Einsatz in Geothermieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Baessler, Ralph [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachbereich ' Korrosionsschutz von Technischen Anlagen und Geraeten' ; Sarmiento Klapper, Helmuth [Baker Hughes - Celle Technology Center, Celle (Germany). Bereich ' Drilling and Evaluation' ; Burkert, Andreas [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachbereich ' Korrosion im Bauwesen'

    2012-10-15

    Due to the extreme operation conditions, the material selection for drill technical and process technical installations is decisive for a safe and reliable operation of geothermal power plant. The authors of the contribution under consideration report on the limits in the range of geothermal deep drillings for the exploration of high saline aquifer fluids of Gross Schoenebeck (Federal Republic of Germany). These limits were estimated by means of electrochemical investigations and classical outsourcing experiments within the materials qualifications for two high-alloyed steels.

  1. Improvements in zirconium alloy corrosion resistance

    International Nuclear Information System (INIS)

    Kilp, G.R.; Thornburg, D.R.; Comstock, R.J.

    1990-01-01

    The corrosion rates of a series of Zircaloy 4 and Zr-Nb alloys were evaluated in long-term (exceeding 500 days in some cases) autoclave tests. The testing was done at various conditions including 633 K (680 F) water, 633 K (650 F) water, 633 k (680 F) lithiated water (70 PPM/0.01 molal lithium), and 673 K (750 F) steam. Materials evaluated are from the following three groups: (1) standard Zircaloy 4; (2) Zircaloy 4 with tightened controls on chemistry limits and heat-treatment history; and (3) Zr-Nb alloys. To optimize the corrosion resistance of the Zircaloy 4 material, the effects of specific chemistry controls (tighter limits on nitrogen, oxygen, silicon, carbon and tin) were evaluated. Also the effects of the thermal history, as measured by integrated annealing of ''A'' time were determined. The ''A'' times ranged from 0.1x10 -18 (h) to 46x10 -18 (h). A material referred to as ''Improved Zircaloy 4'', having optimized chemistry and ''A'' time levels for reduced corrosion, has been developed and tested. This material has a reduced and more uniform corrosion rate compared to the prior Zircaloy 4 material. Alternative alloys were also evaluated for potential improvement in cladding corrosion resistance. ZIRLO TM material was chosen for development and has been included in the long-term corrosion testing. Demonstration fuel assemblies using ZIRLO cladding are now operating in a commercial reactor. The results for the various test conditions and compositions are reported and the relative corrosion characteristics summarized. Based on the BR-3 data, there is a ranking correspondence between in-reactor corrosion and autoclave testing in lithiated water. In particular, the ZIRLO material has significantly improved relative corrosion resistance in the lithiated water tests. Reduced Zircaloy-4 corrosion rates are also obtained from the tighter controls on the chemistry (specifically lower tin, nitrogen, and carbon; higher silicon; and reduced oxygen variability) and ''A

  2. An electrochemical engineering technique to improve the corrosion resistance of some structural materials in lead-alloy coolants

    International Nuclear Information System (INIS)

    Tacica, M.; Andrei, V.; Rusu, O.; Coaca, E.; Minca, M.; Florea, S.; Oncioiu, G.

    2013-01-01

    The goal of this paper is to present some conclusions resulted from the literature studies referring to the materials potential to be used in Lead Fast Reactors (LFR), and the results obtained in the surface engineering field which can be used in our institute in order to obtain materials with appropriate properties for their use in LFR. In this context, the paper presents some preliminary results obtained in Surface Analysis Laboratory of INR Pitesti and research works in progress referring to: controlled modification of AISI 316 L surface by electrochemical plasma treatment (carburization, nitrocarburizings); electrodeposition of some protective thin-films based on Ni and Al obtained from ionic liquids; development of some procedures related to the activities involved in the behaviour evaluation, in LFR specific conditions, for material samples subjected to treatments by surface engineering techniques using the LEad COrrosion TEsting LOop (LECOTELO) test bench. The superficial structures obtained have been characterized by metallographic microscopy, X-Ray Photoemission Spectroscopy (XPS), Electrochemical Impedance Spectroscopy (EIS); the electrochemical techniques were used to evaluate the corrosion behaviour. The preliminary results have shown that the used electrochemical surface engineering techniques are appropriate in order to improve the mechanical properties and corrosion behaviour of AISI 316 L steel. (authors)

  3. Development of experimental apparatus for evaluating corrosion resistance of cladding materials applied for advanced power reactor. 1

    International Nuclear Information System (INIS)

    Inohara, Yasuto; Ioka, Ikuo; Fukaya, Kiyoshi; Tachibana, Katsumi; Suzuki, Tomio; Kiuchi, Kiyoshi

    2001-03-01

    On the development of cladding materials for advanced power reactors, it is important to clarify long performance and to control the compatibility to high temperature water at heat conducting surfaces under heavy irradiation. On the present study, the high temperature water loop with an autoclave was made for examining the corrosion behavior up to the super critical water range and for developing the simulation testing technique under irradiation in the hot cell. The loop is applicable to immersion tests in the temperature and pressure ranges up to 450degC and 25 MPa that are covered the surface temperature range of fuel claddings. One of the characteristics of this apparatus is a pair of sapphire windows of autoclave for in-situ observations, and a phase transition from water to super critical water conditions was clearly verified through these windows. In this apparatus, it is possible to control the temperature, pressure and Dissolved Oxygen (DO) within a fluctuations of few % on three phases, namely, water, steam and super critical water. (author)

  4. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong

    2015-01-01

    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  5. Inorganic nanostructured materials for high performance electrochemical supercapacitors

    Science.gov (United States)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-01-01

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  6. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  7. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  8. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  9. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  10. Powder metallurgical high performance materials. Proceedings. Volume 3: general topics

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgy High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (boteke)

  11. Corrosion resistance testing of high-boron-content stainless steels

    International Nuclear Information System (INIS)

    Petrman, I.; Safek, V.

    1994-01-01

    Boron steels, i.e. stainless steels with boron contents of 0.2 to 2.25 wt.%, are employed in nuclear engineering for the manufacture of baskets or wells in which radioactive fissile materials are stored, mostly spent nuclear fuel elements. The resistance of such steels to intergranular corrosion and uniform corrosion was examined in the Strauss solution and in boric acid; the dependence of the corrosion rate of the steels on their chemical composition was investigated, and their resistance was compared with that of AISI 304 type steel. Corrosion resistance tests in actual conditions of ''wet'' compact storage (demineralized water or a weak boric acid solution) gave evidence that boron steels undergo nearly no uniform corrosion and, as electrochemical measurements indicated, match standard corrosion-resistant steels. Corrosion resistance was confirmed to decrease slightly with increasing boron content and to increase somewhat with increasing molybdenum content. (Z.S.). 3 tabs., 4 figs., 7 refs

  12. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  13. An Alternative Corrosion Resistance Test Method for Solar Cells and Interconnection Materials Limiting the Number of Long-lasting and Expensive Damp-Heat Climate Chamber Tests

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.B.; Gouwen, R.J.; Veldman, D.; Bende, E.E.; Eerenstein, W. [ECN Solar Energy, Petten (Netherlands)

    2013-06-15

    Damp-heat testing of PV modules is a time-consuming process, taking months. We present an alternative test method: electrochemical noise (EcN) measurements. Data acquisition times vary between minutes for direct exposure to several tens of hours for encapsulated samples. EcN measurements are presented for several solar cell concepts and different environments. We have found that the degradation in damp-heat testing is proportional to the electrochemical noise signal. In conclusion, the electrochemical noise measurements are a fast, versatile tool to test the corrosion resistance of solar cells, which can be tested for different environments including encapsulation.

  14. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach...... naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...

  15. Zirconium alloy barrier having improved corrosion resistance

    International Nuclear Information System (INIS)

    Adamson, R.B.; Rosenbaum, H.S.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor has a composite cladding container having a substrate and a dilute zirconium alloy liner bonded to the inside surface of the substrate. The dilute zirconium alloy liner forms about 1 to about 20 percent of the thickness of the cladding and is comprised of zirconium and a metal selected from the group consisting of iron, chromium, iron plus chromium, and copper. The dilute zirconium alloy liner shields the substrate from impurities or fission products from the nuclear fuel material and protects the substrate from stress corrosion and stress cracking. The dilute zirconium alloy liner displays greater corrosion resistance, especially to oxidation by hot water or steam than unalloyed zirconium. The substrate material is selected from conventional cladding materials, and preferably is a zirconium alloy. (author)

  16. A high performance scientific cloud computing environment for materials simulations

    OpenAIRE

    Jorissen, Kevin; Vila, Fernando D.; Rehr, John J.

    2011-01-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including...

  17. Potential of ultrafine grained materials as high performance penetrator materials

    Directory of Open Access Journals (Sweden)

    Lee C.S.

    2012-08-01

    Full Text Available The shear formability and the metal jet formability are important for the kinetic energy penetrator and the chemical energy penetrator, respectively. The shear formability of ultrafine grained (UFG steel was examined, mainly focusing on the effects of the grain shape on the shear characteristics. For this purpose, UFG 4130 steel having the different UFG structures, the lamellar UFG and the equiaxed UFG, was prepared by equal channel angular pressing (ECAP. The lamellar UFG steel exhibited more sharper and localized shear band formation than the equiaxed UFG steel. This is because a lamellar UFG structure was unfavourable against grain rotation which is a main mechanism of the band propagation in UFG materials. Meanwhile, the metal jet formability of UFG OFHC Cu also processed by ECAP was compared to that of coarse grained (CG one by means of dynamic tensile extrusion (DTE tests. CG OFHC Cu exhibited the higher DTE ductility, i.e. better metal jet stability, than UFG OFHC Cu. The initial high strength and the lack of strain hardenability of UFG OFHC Cu were harmful to the metal jet formability.

  18. A Study on the Effects of the Use of Gas or Water Atomized AISI 316L Steel Powder on the Corrosion Resistance of Laser Deposited Material

    Science.gov (United States)

    Tobar, M. J.; Amado, J. M.; Montero, J.; Yáñez, A.

    Water atomized and gas atomized powders are commonly used in 3D laser manufacturing. Both types of AISI 316L stainless steel powders are available which differ in their manganese content. This is due to specific procedures related to the two different atomization process. The amount of manganese in the laser processed part might have important implications in its corrosion resistance. It could lead to the formation of manganese sulfides (MnS) which are known to be initiation sites for pitting corrosion. In this work, corrosion performance of laser deposited 316L steel using gas and atomized powders is compared by means of potentiodynamic polarization tests in 0.35%wt. NaCL solution. Worse performance of the gas atomized samples is observed as with respect to the water atomized ones in terms of polarization resistance, corrosion rate and pitting susceptibility.

  19. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  20. Dielectric characterization of high-performance spaceflight materials

    Science.gov (United States)

    Kleppe, Nathan; Nurge, Mark A.; Bowler, Nicola

    2015-03-01

    As commercial space travel increases, the need for reliable structural health monitoring to predict possible weaknesses or failures of structural materials also increases. Monitoring of these materials can be done through the use of dielectric spectroscopy by comparing permittivity or conductivity measurements performed on a sample in use to that of a pristine sample from 100 μHz to 3 GHz. Fluctuations in these measured values or of the relaxation frequencies, if present, can indicate chemical or physical changes occurring within the material and the possible need for maintenance/replacement. In this work, we establish indicative trends that occur due to changes in dielectric spectra during accelerated aging of various high-performance polymeric materials: ethylene vinyl alcohol (EVOH), Poly (ether ether ketone) (PEEK), polyphenylene sulfide (PPS), and ultra-high molecular weight polyethylene (UHMWPE). Uses for these materials range from electrical insulation and protective coatings to windows and air- or space-craft parts that may be subject to environmental damage over long-term operation. Samples were prepared by thermal exposure and, separately, by ultraviolet/water-spray cyclic aging. The aged samples showed statistically-significant trends of either increasing or decreasing real or imaginary permittivity values, relaxation frequencies, conduction or the appearance of new relaxation modes. These results suggest that dielectric testing offers the possibility of nondestructive evaluation of the extent of age-related degradation in these materials.

  1. The addition of Si to the Ti-35Nb alloy and its effect on the corrosion resistance, when applied to biomedical materials; Efeito da adicao de Si sobre a resistencia a corrosao da liga Ti-35Nb para aplicacoes biomedicas

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, A.M.G.; Souza, S.A.; Batista, W.W.; Macedo, M.C.S.S., E-mail: sasouza.sandra@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Ciencia e Engenharia de Materiais

    2014-07-01

    Alloy elements such as niobium and silicon have been added to titanium as an alternative for new materials to be used in orthopedic implants. However, these new materials' behavior, in face of corrosion is still demanding careful investigations because they will be subjected to an aggressive environ, such as the human body. This study, the corrosion resistance of the Ti-35Nb-(0; 0,15; 0,35; 0,55)Si (% in mass) when in physiological medium was assessed by means of polarization curves, open circuit potential and electrochemical impedance spectroscopy. The compositions of the passive films were analyzed by XPS. Outcomes show that the alloys presented good rapid repassivation capacity after film breaking under high potentials. The high values of resistance to polarization- Rp-pinpoint that the formed oxide films are resistive. They work as a protecting barrier against aggressive ions. Data suggest that the studied alloys are promising for orthopedic implant applications. (author)

  2. A high performance scientific cloud computing environment for materials simulations

    Science.gov (United States)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  3. Towards high-performance materials for road construction

    Science.gov (United States)

    Gladkikh, V.; Korolev, E.; Smirnov, V.

    2017-10-01

    Due to constant increase of traffic, modern road construction is in need of high-performance pavement materials. The operational performance of such materials can be characterized by many properties. Nevertheless, the most important ones are resistance to rutting and resistance to dynamical loads. It was proposed earlier to use sulfur extended asphalt concrete in road construction practice. To reduce the emission of sulfur dioxide and hydrogen sulfide during the concrete mix preparation and pavement production stages, it is beneficial to make such a concrete on the base of complex sulfur modifier. In the present work the influence of the complex modifier to mechanical properties of sulfur extended asphalt concrete was examined. It was shown that sulfur extended asphalt concrete is of high mechanical properties. It was also revealed that there as an anomalous negative correlations between strain capacity, fatigue life and fracture toughness.

  4. Functionalized Materials From Elastomers to High Performance Thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Laura Ann [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis

  5. Characterization and properties of shock and corrosion resistant of titanium based coatings

    International Nuclear Information System (INIS)

    Motoiu, P.; Rosso, M.

    2001-01-01

    Thermal spraying technologies are an effective way to ensure surface protection against destructive effects of wear, corrosion and oxidizing phenomena. These technologies can be applied in majority of industrial sectors in order to improve properties of new parts or for reconditioning worn out parts technology. Ideally, it would be comfortable to have a material able to resist to all type of wear, but the work condition intricacy combined with economic reason have lead to the development of a big number of powder materials that are used in thermal spraying technologies. The titanium powders are suitable for coating layers which have a good behavior in 'metal on metal friction', toughness, shock and corrosion resistance. In particular, titanium layers obtained by plasma spraying are used in different aerospace and non aerospace applications due to the combination of low density, very good mechanical properties and high corrosion resistance. The accomplishment of new titanium thermal layers is effectively used in order to increase the lifetime of different engine parts securing the thermal protection in use, resistance to high corrosion and oxidizing phenomena. This paper deals about the mechanical properties of Ti based coatings applied by plasma spray process on steel substrates, the obtained results show the possibility to apply titanium coatings where special and high performance materials are needed. (author)

  6. Micro-crack detection in high-performance cementitious materials

    DEFF Research Database (Denmark)

    Lura, Pietro; Guang, Ye; Tanaka, Kyoji

    2005-01-01

    of high-performance cement pastes in silicone moulds that exert minimal external restraint. Cast-in steel rods with varying diameter internally restrain the autogenous shrinkage and lead to crack formation. Dimensions of the steel rods are chosen so that the size of this restraining inclusion resembles......-ray tomography, do not allow sufficient resolution of microcracks. A new technique presented in this paper allows detection of microcracks in cement paste while avoiding artefacts induced by unwanted restraint, drying or temperature variations. The technique consists in casting small circular cylindrical samples...... aggregate size. Gallium intrusion of the cracks and subsequent examination by electron probe micro analysis, EPMA, are used to identify the cracks. The gallium intrusion technique allows controllable impregnation of cracks in the cement paste. A distinct contrast between gallium and the surrounding material...

  7. Novel nano materials for high performance logic and memory devices

    Science.gov (United States)

    Das, Saptarshi

    After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect

  8. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. (1) Development of a powder feeding system for the laser cladding. (2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. (3) Development of laser cladding technology with amorphous alloy. (4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. (5) Evaluation of the mechanical properties of the clads. (6) Development of an ultrasonic vibrator for VSR.

  9. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    International Nuclear Information System (INIS)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S.

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. 1) Development of a powder feeding system for the laser cladding. 2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. 3) Development of laser cladding technology with amorphous alloy. 4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. 5) Evaluation of the mechanical properties of the clads. 6) Development of an ultrasonic vibrator for VSR

  10. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    International Nuclear Information System (INIS)

    Suh, Jeong Hun; Kim, J. S.; Hwang, S. S.; Lim, Y. S.

    1999-08-01

    A technology of laser hardfacing of amorphous materials on materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. 1) Development of a power feeding system for the primary system. 2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. 3) Development of laser cladding technology with amorphous alloy. 4) Examination and analysis of the microstructure, chemical composition, and phase of the clad. 5) Evaluation of the mechanical properties of the clad. 6) Development of an ultrasonic vibrator for VSR. (author)

  11. Approaches for Making High Performance Polymer Materials from Commodity Polymers

    Institute of Scientific and Technical Information of China (English)

    Xu Xi

    2004-01-01

    A brief surrey of ongoing research work done for improving and enhancing the properties of commodity polymers by the author and author's colleagues is given in this paper. A series of high performance polymers and polymer nanomaterials were successfully prepared through irradiation and stress-induced reactions of polymers and hydrogen bonding. The methods proposed are viable, easy in operation, clean and efficient.1. The effect of irradiation source (UV light, electron beam, γ -ray and microwave), irradiation dose, irradiation time and atmosphere etc. on molecular structure of polyolefine during irradiation was studied. The basic rules of dominating oxidation, degradation and cross-linking reactions were mastered. Under the controlled conditions, cross-linking reactions are prevented, some oxygen containing groups are introduced on the molecular chain of polyolefine to facilitate the interface compatibility of their blends. A series of high performance polymer materials: u-HDPE/PA6,u-HDPE/CaCO3, u-iPP/STC, γ-HDPE/STC, γ-LLDPE/ATH, e-HDPE, e-LLDPE and m-HDPEfilled system were prepared (u- ultraviolet light irradiated, γ- γ-ray irradiated, e- electron beam irradiated, m- microwave irradiated)2. The effect of ultrasonic irradiation, jet and pan-milling on structure and changes in properties of polymers were studied. Imposition of critical stress on polymer chain can cause the scission of bonds to form macroradicals. The macroradicals formed in this way may recombine or react with monomer or other radicals to form linear, branched or cross-linked polymers or copolymers. About 20 kinds of block/graft copolymers have been synthesized from polymer-polymer or polymer-monomer through ultrasonic irradiation.Through jet-milling, the molecular weight of PVC is decreased somewhat, the intensity of its crystalline absorption bonds becomes indistinct. The processability, the yield strength, strength at break and elongation at break of PVC get increased quite a lot after

  12. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Application

    International Nuclear Information System (INIS)

    Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Jung, Y. H.; Bang, B. G.

    2006-08-01

    The systematic study was performed to develop the advanced corrosion-resistant Zr alloys for high burnup and Gen IV application. The corrosion behavior was significantly changed with the alloy composition and the corrosion environment. In general, the model alloys with a higher alloying elements showed a higher corrosion resistance. Among the model alloys tested in this study, Zr-10Cr-0.2Fe showed the best corrosion resistance regardless of the corrosion condition. The oxide on the higher corrosion-resistant alloy such as Zr-1.0Cr-0.2Fe consisted of mainly columnar grains, and it have a higher tetragonal phase stability. In comparison with other alloys being considered for the SCWR, the Zr alloys showed a lower corrosion rate than ferritic-martensitic steels. The results of this study imply that, at least from a corrosion standpoint, Zr alloys deserve consideration as potential cladding or structural materials in supercritical water cooled reactors

  13. FY 1998 annual report on the study on development of corrosion-resistant ceramic materials for garbage incinerators; 1998 nendo gomi shori shisetsuyo taishoku ceramics zairyo no kaihatsu ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1988 results of development of corrosion-resistant ceramic materials for garbage incinerators. Residue released when porcelain stocks are collected is selected as the inexpensive stock for SiO{sub 2}-Al{sub 2}O{sub 3}-based refractory materials. It is incorporated with carbon black and reduced at 1,200 to 1,500 degrees C in a nitrogen atmosphere. Synthesis of the target Si-Al-C-N-O-based compound succeeds in the presence of a solid catalyst, but it is a fine powder, and hence that of the massive compound fails. The commercial ceramic materials and new refractory materials, made on a trial basis, are evaluated for their resistance to corrosion using fry ashes collected from a commercial incinerator. These ashes are higher in melting point, more viscous, holding a larger quantity of attached slag and more corrosive than synthetic ashes. These materials are corroded acceleratedly as temperature increases to 1,200 degrees C or higher, more noted with the ceramic materials than with the refractory materials. Oxidation and melting characteristics of the molten slag affect corrosion of some materials. Use of the graphite-based material shall be limited to a section below the slag surface, where graphite is oxidized to a smaller extent. The MgO-based material is promising. The Al{sub 2}O{sub 3}-Cr{sub 2}O{sub 3}-based material is more promising than any other material developed in this study. Their bending strength before and after the corrosion test is measured at normal temperature to 1,700 degrees C, to investigate their deterioration by high temperature and corrosion. (NEDO)

  14. Corrosion resistance of titanium alloys for dentistry

    International Nuclear Information System (INIS)

    Laskawiec, J.; Michalik, R.

    2001-01-01

    Titanium and its alloys belong to biomaterials which the application scope in medicine increases. Some properties of the alloys, such as high mechanical strength, low density, low Young's modulus, high corrosion resistance and good biotolerance decide about it. The main areas of the application of titanium and its alloys are: orthopedics and traumatology, cardiosurgery, faciomaxillary surgery and dentistry. The results of investigations concerning the corrosion resistance of the technical titanium and Ti6Al14V alloy and comparatively a cobalt alloy of the Vitallium type in the artificial saliva is presented in the work. Significantly better corrosion resistance of titanium and the Ti6Al14V than the Co-Cr-Mo alloy was found. (author)

  15. Development of high performance cladding

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  16. Strong, corrosion-resistant aluminum tubing

    Science.gov (United States)

    Reed, M. W.; Adams, F. F.

    1980-01-01

    When aluminum tubing having good corrosion resistance and postweld strength is needed, type 5083 alloy should be considered. Chemical composition is carefully controlled and can be drawn into thin-wall tubing with excellent mechanical properties. Uses of tubing are in aircraft, boats, docks, and process equipment.

  17. Corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Kajimura, H.; Morikawa, H.; Nagano, H.

    1987-01-01

    Slow strain rate tests are effected on zirconium in boiling nitric acid to study the influence of nitric acid concentration, of oxidizing ions (Cr and Ce) and of electric potential. Corrosion resistance is excellent and stress corrosion cracking occurs only for severe conditions: 350 mV over electric potential for corrosion with nitric acid concentration of 40 % [fr

  18. Development and application of high performance liquid shielding materials

    International Nuclear Information System (INIS)

    Miura, Toshimasa; Omata, Sadao; Otano, Naoteru; Hirao, Yoshihiro; Kanai, Yasuji

    1998-01-01

    Development of liquid shielding material with good performance for neutron and γ-ray was investigated. Lead, hydrogen and boron were selected as the elements of shielding materials which were made by the ultraviolet curing method. Good performance shielding materials with about 1 mm width to neutron and gamma ray were produced by mixing lead, boron compound and ultraviolet curing monomer with many hydrogens. The shielding performance was the same as a concrete with two times width. The activation was very small such as 1/10 6 -1/10 8 of the standard concrete. The weight and the external appearance did not charged from room temperature to 100degC. Polyfunctional monomer had good thermal resistance. This shielding material was applied to double bending cylindrical duct and annulus ring duct. The results proved the shielding materials developed had good performance. (S.Y.)

  19. High performance of low cost soft magnetic materials

    Indian Academy of Sciences (India)

    Administrator

    The consistent interest in supporting research and development of magnetic materials during the last century is revealed in their ... type of nanocrystalline alloys, i.e. crystals 10–20 nm in ..... nonetheless useful for a qualitative analysis of phase.

  20. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua; Xie, Xing; Pan, Lijia; Bao, Zhenan; Cui, Yi

    2013-01-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer

  1. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices

    DEFF Research Database (Denmark)

    Smith, Anders; Bahl, Christian; Bjørk, Rasmus

    2012-01-01

    Magnetocaloric materials with a Curie temperature near room temperature have attracted signifi cant interest for some time due to their possible application for high-effi ciency refrigeration devices. This review focuses on a number of key issues of relevance for the characterization, performance....... The question of how to evaluate the suitability of a given material for use in a magnetocaloric device is covered in some detail, including a critical assessment of a number of common performance metrics. Of particular interest is which non-magnetocaloric properties need to be considered in this connection....... An overview of several important materials classes is given before considering the performance of materials in actual devices. Finally, an outlook on further developments is presented....

  2. High-performance green semiconductor devices: materials, designs, and fabrication

    Science.gov (United States)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  3. In Search Of Novel, High Performance And Intelligent Materials For ...

    African Journals Online (AJOL)

    Journal of Applied Science and Technology ... For extreme operating conditions in aerospace, nuclear power plants and ... technological requirements of advanced materials for emerging industries. ... resistance against corrosion and degradation, and for applications in hostile environ-ment of human body are discussed.

  4. High performance p-type half-Heusler thermoelectric materials

    Science.gov (United States)

    Yu, Junjie; Xia, Kaiyang; Zhao, Xinbing; Zhu, Tiejun

    2018-03-01

    Half-Heusler compounds, which possess robust mechanical strength, good high temperature thermal stability and multifaceted physical properties, have been verified as a class of promising thermoelectric materials. During the last two decades, great progress has been made in half-Heusler thermoelectrics. In this review, we summarize some representative work of p-type half-Heusler materials, the thermoelectric performance of which has been remarkably enhanced in recent years. We introduce the features of the crystal and electronic structures of half-Heusler compounds, and successful strategies for optimizing electrical and thermal transport in the p-type RFeSb (R  =  V, Nb, Ta) and MCoSb (M  =  Ti, Zr, Hf) based systems, including band engineering, the formation of solid solutions and hierarchical phonon scattering. The outlook for future research directions of half-Heusler thermoelectrics is also presented.

  5. High performance lignin-acrylonitrile polymer blend materials

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Tran, Chau D.

    2017-11-14

    A polymer blend material comprising: (i) a lignin component having a weight-average molecular weight of up to 1,000,000 g/mol; and (ii) an acrylonitrile-containing copolymer rubber component comprising acrylonitrile units in combination with diene monomer units, and having an acrylonitrile content of at least 20 mol %; wherein said lignin component is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii); and said polymer blend material possesses a tensile yield stress of at least 5 MPa, or a tensile stress of at least 5 MPa at 10% elongation, or a tensile stress of at least 5 MPa at 100% elongation. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  6. Low to high performance recycled cementitious materials: case studies

    OpenAIRE

    Etxeberria Larrañaga, Miren

    2015-01-01

    In this work, four real case studies using concrete produced with recycled aggregates are described. The four real cases carried out in Barcelona are: 1) Pavement filling with control low strength material (CLSM) employing fine recycled aggregates, 2) pervious recycled aggregate concrete employing coarse mixed recycled aggregates in the works undertaken at Cervantes park; 3) Concrete blocks produced employing recycled and slag aggregates as well as sea water for a new breakwater dyke and 4) R...

  7. PM alloy 625M for high strength corrosion resistant applications

    International Nuclear Information System (INIS)

    Rizzo, F.J.; Floreen, S.

    1997-06-01

    In applications where the combination of high strength and good corrosion resistance are required, there have been only a few alloys of choice. A new powder metallurgy alloy has been developed, PM 625M, a niobium modification of Alloy 625, as a material to fill this need. One area of particular interest is the nuclear power industry, where many problems have been encountered with bolts, springs, and guidepins. Mechanical properties and stress corrosion cracking data of PM 625M are presented in this paper

  8. Is cell viability always directly related to corrosion resistance of stainless steels?

    International Nuclear Information System (INIS)

    Salahinejad, E.; Ghaffari, M.; Vashaee, D.; Tayebi, L.

    2016-01-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn–Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn–Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. - Highlights: • Cell viability vs. corrosion resistance for medical-grade stainless steels • The stainless steel samples were prepared by powder metallurgy. • Unpenetrated additive played a critical role in the correlation.

  9. Is cell viability always directly related to corrosion resistance of stainless steels?

    Energy Technology Data Exchange (ETDEWEB)

    Salahinejad, E., E-mail: salahinejad@kntu.ac.ir [Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Ghaffari, M. [Bruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711 (United States); Vashaee, D. [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Tayebi, L. [Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201 (United States); Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom)

    2016-05-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn–Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn–Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. - Highlights: • Cell viability vs. corrosion resistance for medical-grade stainless steels • The stainless steel samples were prepared by powder metallurgy. • Unpenetrated additive played a critical role in the correlation.

  10. Decoupling interrelated parameters for designing high performance thermoelectric materials.

    Science.gov (United States)

    Xiao, Chong; Li, Zhou; Li, Kun; Huang, Pengcheng; Xie, Yi

    2014-04-15

    The world's supply of fossil fuels is quickly being exhausted, and the impact of their overuse is contributing to both climate change and global political unrest. In order to help solve these escalating problems, scientists must find a way to either replace combustion engines or reduce their use. Thermoelectric materials have attracted widespread research interest because of their potential applications as clean and renewable energy sources. They are reliable, lightweight, robust, and environmentally friendly and can reversibly convert between heat and electricity. However, after decades of development, the energy conversion efficiency of thermoelectric devices has been hovering around 10%. This is far below the theoretical predictions, mainly due to the interdependence and coupling between electrical and thermal parameters, which are strongly interrelated through the electronic structure of the materials. Therefore, any strategy that balances or decouples these parameters, in addition to optimizing the materials' intrinsic electronic structure, should be critical to the development of thermoelectric technology. In this Account, we discuss our recently developed strategies to decouple thermoelectric parameters for the synergistic optimization of electrical and thermal transport. We first highlight the phase transition, which is accompanied by an abrupt change of electrical transport, such as with a metal-insulator and semiconductor-superionic conductor transition. This should be a universal and effective strategy to optimize the thermoelectric performance, which takes advantage of modulated electronic structure and critical scattering across phase transitions to decouple the power factor and thermal conductivity. We propose that solid-solution homojunction nanoplates with disordered lattices are promising thermoelectric materials to meet the "phonon glass electron crystal" approach. The formation of a solid solution, coupled with homojunctions, allows for

  11. Polythiophene nanocomposites as high performance electrode material for supercapacitor application

    Science.gov (United States)

    Vijeth, H.; Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Devendrappa, H.

    2018-04-01

    A polythiophene-aluminium oxide nanocomposite is prepared by in situ chemical polymerisation in presence of anionic surfactant camphor sulfonic acid (CSA). The characterisation of nano composite was done by X-ray Diffraction (XRD), surface morphology was studied using Atomic Force Microscopy (AFM). The electrochemical performance is evaluated using cyclic voltammetry in 1M H2SO4. As an electroactive material, it exhibits high specific capacitance of 654.5 and 757 F/g for PTH and PTHA nanocomposites at scan rate of 30mV s-1 respectively.

  12. High performance lithium insertion negative electrode materials for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Channu, V.S. Reddy, E-mail: chinares02@gmail.com [SMC Corporation, College Station, TX 77845 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Kumari, Kusum [Department of Physics, National Institute of Technology, Warangal (India); Kalluru, Rajmohan R. [The University of Southern Mississippi, College of Science and Technology, 730 E Beach Blvd, Long Beach, MS 39560 (United States); Holze, Rudolf [Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-11-30

    Highlights: • LiCrTiO{sub 4} nanostructures were synthesized for electrochemical applications by soft chemical synthesis followed by annealing. • The presence of Cr and Ti elements are confirmed from the EDS spectrum. • Oxalic acid assisted LiCrTiO{sub 4} electrode shows higher specific capacity (mAh/g). - Abstract: Spinel LiCrTiO{sub 4} oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50–10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO{sub 4} electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO{sub 4} shows higher specific capacity.This LiCrTiO{sub 4} is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm{sup 2}. The specific capacity decreases with increasing current densities.

  13. Strategies toward High Performance Organic Photovoltaic Cell: Material and Process

    Science.gov (United States)

    Kim, Bong Gi

    The power conversion efficiency of organic photovoltaic (OPV) cells has been rapidly improved during the last few years and currently reaches around 10 %. The performance is evenly governed by absorption, exciton diffusion, exciton dissociation, carrier transfer, and collection efficiencies. Establishing a better understanding of OPV device physics combined with the development of new materials for each executive step contributes to this dramatic improvement. This dissertation focuses mainly on material design and development to correlate the intrinsic properties of organic semiconductors and the OPV performance. The introductory Chapter 1 briefly reviews the motivation of OPV research, its working mechanism, and representative organic materials for OPV application. Chapter 2 discusses the modulation of conjugated polymer's (CP's) absorption behavior and an efficient semi-empirical approach to predict CP's energy levels from its constituent monomers' HOMO/LUMO values. A strong acceptor lowered both the HOMO and LUMO levels of the CP, but the LUMO dropped more rapidly which ultimately produced a narrowed band-gap in the electron donating/accepting alternating copolymer system. In addition, the energy level difference between the CP and the constituent monomers converged to a constant value, providing an energy level prediction tool. Chapter 3 illustrates the systematic investigation on the relationship between the molecular structure of an energy harvesting organic dye and the exciton dissociation efficiency. The study showed that the quantum yield decreased as the exciton binding energy increases, and dipole moment direction should be properly oriented in the dye framework in order to improve photo-current generation when used in a dye sensitized photovoltaic device. Chapter 4 demonstrates the ultrasonic-assisted self-assembly of CPs in solution, rapidly and efficiently. Ultrasonication combined with dipolar media accelerated CP's aggregation, and the effect of CP

  14. Organic-inorganic composite materials for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, N.L. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Chemical Engineering

    2010-07-01

    This study investigated the use of super-absorbent polymers (SAP) to increase the geometric capacitance density (GCD) of supercapacitor metal current collectors. A manganese (MnO{sub 2}) supercapacitor with a polyacrylate (PAA) polymer was characterized in order to demonstrate the SAP's ability to facilitate electrolyte distribution throughout the active layer due to its electrolyte-absorbing and swelling behaviour. The study demonstrated that the capacitance of the MnO{sub 2} remained unchanged over a wide range of heavy-active material loadings and current rates. Placing the PAA throughout the entire active layer magnified interactions between the PAA and MnO{sub 2}, and enhanced the capacitance of individual MnO{sub 2} particles. GCD values were higher than values obtained in the literature. Results suggested that the same method can be used in other SAP supercapacitor systems.

  15. High corrosion-resistant fuel spacers

    International Nuclear Information System (INIS)

    Yoshida, Toshimi; Takase, Iwao; Ikeda, Shinzo; Masaoka, Isao; Nakajima, Junjiro.

    1986-01-01

    Purpose: To enable manufacturing BWR fuel spacers by prior-art production process, using a zirconium-base alloy having very excellent corrosion resistance. Method: A highly improved nodular-resistant, corrosion-resistant zirconium alloy is devised by adding a slight amount of niobium, titanium and vanadium to zircaloy, of which fuel spacers are produced. That is, there can be obtained an alloy having much more excellent nodular resistance than conventional zircaloy, and free from a large change in plasticity, workability, and weldability, by adding to zirconium about 1.5 % of tin, about 0.15 % of iron, about 0.05 % of chromium, about 0.05 % of nickel, and 0.05 to 0.5 % of at least one or two kinds of niobium, titanium and vanadium. Using this zirconium-base alloy can manufacture fuel spacers by the same manufacturing process, thus improving economy and reliability. (Kamimura, M.)

  16. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  17. Ferritic stainless steels: corrosion resistance + economy

    International Nuclear Information System (INIS)

    Remus, A.L.

    1976-01-01

    Ferritic stainless steels provide corrosion resistance at lower cost. They include Type 409, Type 439, 18SR, 20-Mo (1.6 Mo), 18-2 (2 Mo), 26-1S, E-Brite 26-1, 29 Cr-4 Mo, and 29 Cr-4 Mo-2 Ni. Their corrosion and mechanical properties are examined. Resistance to stress-corrosion cracking is an advantage compared to austenitic types

  18. Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ying [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Guosong; Lu, Qiuyuan [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Jun [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Xu, Ruizhen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Yeung, Kelvin W.K., E-mail: wkkyeung@hku.hk [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-02-01

    Magnesium alloys are potential biodegradable materials and have attracted much attention due to their outstanding biological performance and mechanical properties. However, their rapid degradation inside the human body cannot meet clinical needs. In order to improve the corrosion resistance, dual titanium and oxygen ion implantation is performed to modify the surface of the WE43 magnesium alloy. X-ray photoelectron spectroscopy is used to characterize the microstructures in the near surface layer and electrochemical impedance spectroscopy, potentiodynamic polarization, and immersion tests are employed to investigate the corrosion resistance of the implanted alloys in simulated body fluids. The results indicate that dual titanium and oxygen ion implantation produces a TiO{sub 2}-containing surface film which significantly enhances the corrosion resistance of WE43 magnesium alloy. Our data suggest a simple and practical means to improve the corrosion resistance of degradable magnesium alloys. - Highlights: ► Surface modification of WE43 magnesium alloy using dual ion implantation ► Dual Ti and O ion implantation produces a homogeneous TiO{sub 2}-containing surface film ► Significant improvement of the alloy corrosion resistance after the dual ion implantation.

  19. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Dundar, F. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Department of Materials Science and Engineering, Gebze Institute of Technology (Turkey); Dur, Ender; Koc, M. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Mahabunphachai, S. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); National Metal and Materials Technology Center (MTEC), Pathumthani (Thailand)

    2010-06-01

    Metallic bipolar plates have several advantages over bipolar plates made from graphite and composites due to their high conductivity, low material and production costs. Moreover, thin bipolar plates are possible with metallic alloys, and hence low fuel cell stack volume and mass are. Among existing fabrication methods for metallic bipolar plates, stamping and hydroforming are seen as prominent approaches for mass production scales. In this study, the effects of important process parameters of these manufacturing processes on the corrosion resistance of metallic bipolar plates made of SS304 were investigated. Specifically, the effects of punch speed, pressure rate, stamping force and hydroforming pressure were studied as they were considered to inevitably affect the bipolar plate micro-channel dimensions, surface topography, and hence the corrosion resistance. Corrosion resistance under real fuel cell conditions was examined using both potentiodynamic and potentiostatic experiments. The majority of the results exhibited a reduction in the corrosion resistance for both stamped and hydroformed plates when compared with non-deformed blank plates of SS304. In addition, it was observed that there exist an optimal process window for punch speed in stamping and the pressure rate in hydroforming to achieve improved corrosion resistance at a faster production rate. (author)

  20. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Science.gov (United States)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  1. Development of sulfuric acid dew point corrosion resistant stainless steel for smokestacks and its ducts. Entotsu endoyo tairyusan roten fushoku stainless ko no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, E.; Matsuhashi, R.; Koseki, T. (Nippon Steel Corp., Tokyo (Japan)); Ebara, R.; Nakamoto, H. (Mitsubishi Heavy Industries, Ltd., Tokyo (Japan))

    1993-05-20

    A new corrosion resistant steel was developed as a metal system lining material to prevent sulfuric acid dew point corrosion in smokestacks and ducts. SO3 in stack gas turns to sulfuric acid as a result of reacting with coexistent moisture in non-steady conditions during boiler actuation and shutdown when smokestack walls have low temperatures. When sulfuric acid thus generated contacts with metallic materials at temperatures lower than the sulfuric acid dew point temperature, sulfuric acid dew point corrosion occurs. During boiler steady operation, localized corrosion develops at clearance between salt deposits and the metallic materials. In order to improve the corrosion resistance, Mo, Cu and N were added in a reasonable range of amount. Entire surface corrosion resistance and local corrosion resistance were experimented in aqueous solutions simulating the smokestack environments to derive relational formulas with steel compositions. The new corrosion resistant steel met the the entire surface and local corrosion resistance requirements and was found economical. Low torsional velocity tensile and U-bend tests proved the steel satisfying the stress corrosion resistance requirement. Semi-automatic CO2 welding and shielded are welding provided good workability with no cracking, and impact strength and corrosion resistance in joints equivalent to those in the base material. 3 refs., 4 figs., 4 tabs.

  2. HIGH PERFORMANCE TAPS FOR CUTTING THREADS IN DIFFICULT TO MACHINE MATERIALS

    Directory of Open Access Journals (Sweden)

    M. R. Akhmedova

    2016-01-01

    Full Text Available Objectives. This article explores in detail questions of instrument operation function of tapping internal threads in hard materials. The existing relationship between vibration system amplitude and tool durability is indicated; on this basis, it is determined that the best course for improving the durability performance is increasing vibratory resistance. Based on a critical analysis of existing designs with consideration of their flaws, the development of new technological designs of taps is tasked with ensuring stable operation when handling hard materials. Methods. It is noteworthy that one of the main vibration resistance improvement methods of the tool is to reduce the contact area of the tool with the work piece in the cutting zone. Methods are proposed for improving the vibration resistance of taps, considering the correlation adjustment of tap teeth in order to completely eliminate friction at the sides of the thread cutting surface and uneven implementation flute cutting steps. Results. The idea of increasing vibration resistance has seen the new development of vibration-proof tap designs, heralded as innovations due to the accuracy of thread cutting and durability achieved by reducing the thread contact area with the work piece in the cutting zone. Increased vibration resistance is achieved in the modified taps through high correction by means of thread side downgrading of the coarse tap cone by an additional angle of 30º. In another design, the stylus provided with uneven angular spacing. Test results of designed taps machined in corrosion-resistant 1Kh18N9T steel. A manifold increase in tool durability was achieved due to its high vibration resistance. Conclusions. The redesigned taps have a number of advantages, characterised by a high resistance when processing difficult materials and an insignificant increase in the complexity of their manufacture compared with standard taps. Therefore they can be recommended for large

  3. Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation

    Science.gov (United States)

    Xu, Ruizhen; Yang, Xiongbo; Suen, Kai Wong; Wu, Guosong; Li, Penghui; Chu, Paul K.

    2012-12-01

    Magnesium and its alloys have promising applications as biodegradable materials, and plasma ion implantation can enhance the corrosion resistance by modifying the surface composition. In this study, suitable amounts of zinc and aluminum are plasma-implanted into pure magnesium. The surface composition, phases, and chemical states are determined, and electrochemical tests and electrochemical impedance spectroscopy (EIS) are conducted to investigate the surface corrosion behavior and elucidate the mechanism. The corrosion resistance enhancement after ion implantation is believed to stem from the more compact oxide film composed of magnesium oxide and aluminum oxide as well as the appearance of the β-Mg17Al12 phase.

  4. Studying titanium-molybdenum-zirconium alloys of increased corrosion resistance in acid solutions

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Kazarin, V.I.; Mikheev, V.S.; Goncharenko, B.A.; Sigalovskaya, T.M.; Kalyanova, M.P.

    1977-01-01

    New promising Ti-Mo-Nb-Zr system alloys, possessing good workability and a high corrosion resistance in non-oxidizing solutions of acids, have been developed. The alloys may be recommended as structural materials for equipment operating in severely agressive acid media, such as hydrochloric, sulphuric and phosphoric acids. The corrosion resistance of alloys of the above system in solutions of H 2 SO 4 , HCl and H 3 PO 4 acids may be maximized by increasing the overall alloying to 42% (keeping the ratio of the alloying components Mo/Nb/Zr=4/1/1 unchanged), while retaining sufficiently good plasticity and workability

  5. Testing the permeability and corrosion resistance of micro-mechanically interlocked joints

    DEFF Research Database (Denmark)

    Byskov-Nielsen, Jeppe; Holm, Allan Hjarbæk; Højsholt, Rune

    2011-01-01

    Micro-mechanical interlocking (MMI) can be applied to create new and interesting composite materials. We have employed laser structuring to achieve MMI between stainless steel and plastic with extremely high joint strength. However, the water permeability and corrosion resistance of the joint must...... is conducted. The permeability seems to be consistent with the Hagen–Poiseuille equation independent of the laser structuring technique and is orders of magnitudes larger than the diffusion rate through the plastic. Two different types of corrosion tests have been undertaken, and we show that care must...... be taken in order not to degrade the corrosion resistance of the sample to an unacceptable level....

  6. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    Science.gov (United States)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  7. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Naiming, E-mail: lnmlz33@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Junwen [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Faqin [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Zou, Jiaojuan; Tian, Wei [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yao, Xiaofei [School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Zhang, Hongyan; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2014-08-30

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance.

  8. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    International Nuclear Information System (INIS)

    Lin, Naiming; Guo, Junwen; Xie, Faqin; Zou, Jiaojuan; Tian, Wei; Yao, Xiaofei; Zhang, Hongyan; Tang, Bin

    2014-01-01

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance

  9. Properties of corrosion resistance in C + Mo multi implanted steel

    International Nuclear Information System (INIS)

    Zhang Tonghe; Wu Yuguang; Wang Xiaoyan

    2001-01-01

    The influence of multi-implantation on the corrosion resistance of H13 steel was studied using multi-sweep cyclic voltammetry. The formation conditions of phases and its effects on corrosion resistance were studied. The mechanism of improvement in corrosion resistance was discussed. The experimental results show that the increase of Mo dose can improve corrosion resistance, however the increase of C dose can enhance pitting corrosion potential. Both effects were obtained using dual-and multi-implantation. The passivation layer consists of the phases of Fe 2 Mo, FeMo, MoC, Fe 5 C 3 and Fe 7 C 3 in dual implantation surface of steel. It can improve corrosion resistance and increase pitting corrosion potential. Multi-implantation can further improve corrosion and pitting corrosion resistance compared with dual implantation

  10. Development of Custom 465® Corrosion-Resisting Steel for Landing Gear Applications

    Science.gov (United States)

    Daymond, Benjamin T.; Binot, Nicolas; Schmidt, Michael L.; Preston, Steve; Collins, Richard; Shepherd, Alan

    2016-04-01

    Existing high-strength low-alloy steels have been in place on landing gear for many years owing to their superior strength and cost performance. However, there have been major advances in improving the strength of high-performance corrosion-resisting steels. These materials have superior environmental robustness and remove the need for harmful protective coatings such as chromates and cadmium now on the list for removal under REACH legislation. A UK government-funded collaborative project is underway targeting a refined specification Custom 465® precipitation hardened stainless steel to replace the current material on Airbus A320 family aircraft main landing gear, a main fitting component developed by Messier-Bugatti-Dowty. This is a collaborative project between Airbus, Messier-Bugatti-Dowty, and Carpenter Technology Corporation. An extensive series of coupon tests on four production Heats of the material have been conducted, to obtain a full range of mechanical, fatigue, and corrosion properties. Custom 465® is an excellent replacement to the current material, with comparable tensile strength and fracture toughness, better ductility, and very good general corrosion and stress corrosion cracking resistance. Fatigue performance is the only significant area of deficit with respect to incumbent materials, fatigue initiation being often related to carbo-titanium-nitride particles and cleavage zones.

  11. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

    2014-01-01

    Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12-18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8-9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel. (author)

  12. Is cell viability always directly related to corrosion resistance of stainless steels?

    Science.gov (United States)

    Salahinejad, E; Ghaffari, M; Vashaee, D; Tayebi, L

    2016-05-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn-Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn-Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    International Nuclear Information System (INIS)

    Zaitseva, L.V.; Romaniv, V.I.

    1984-01-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid

  14. Steel corrosion resistance in model solutions and reinforced mortar containing wastes

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste

  15. Powder metallurgical high performance materials. Proceedings. Volume 2: P/M hard materials

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15{sup th} Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  16. Powder metallurgical high performance materials. Proceedings. Volume 2: P/M hard materials

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  17. Corrosion resistance of heat exchange equipment in hydrotreating Orenburg Condensate

    International Nuclear Information System (INIS)

    Teslya, B.M.; Burlov, V.V.; Parputs, I.V.; Parputs, T.P.

    1986-01-01

    The authors study the corrosion resistance of materials of construction and select appropriate materials for the fabrication of heat exchange equipment that will be serviceable under hydrotreating conditions. This paper discusses the Orenburg condensate hydrotreating unit which has been shut down repeatedly for repair because of corrosion damage to components of heat exchangers in the reactor section: tube bundles (08Kh18N10T steel), corrugated compensators (12Kh18N10T steel), and pins of the floating heads (37Kh13N8G8MFB steel). The authors recommend that the tube bundles and the compensators in heat exchangers in the reaction section should be fabricated of 08Kh21N6M2T or 10Kh17N13M2T steel. The pins have been replaced by new pins made of 10Kh17N13 X M2T steel, increasing the service life from 6-12 months to 2 years

  18. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J

    2007-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  19. Determination of trimethyllead reference material using high performance liquid chromatography-inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lu Hai; Wei Chao; Wang Jun; Chao Jingbo; Zhou Tao; Chen Dazhou

    2005-01-01

    A high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) was combined, and the chromatography conditions were optimized. The stability and homogeneity of a trimethyllead reference material were determined using this method. (authors)

  20. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  1. CORROSION RESISTANCE OF DYNAMIC LOADED CAST ALLOY AS12

    Directory of Open Access Journals (Sweden)

    A. A. Andrushevich

    2017-01-01

    Full Text Available The assessment of influence of powder particles in the mode of super deep penetration (SDP on change of corrosion resistance of aluminum cast alloy AK12 is executed. The aluminum alloy reinforced by fiber zones with the reconstructed structure has the increased corrosion resistance.

  2. Plasma nitrocarburizing process - a solution to improve wear and corrosion resistance

    International Nuclear Information System (INIS)

    Joseph, Alphonsa J.; Ghanshyam, J.; Mukherjee, S.

    2015-01-01

    To prevent wear and corrosion problems in steam turbines, coatings have proved to have an advantage of isolating the component substrate from the corrosive environment with minimal changes in turbine material and design. Diffusion based coatings like plasma nitriding and plasma nitrocarburizing have been used for improving the wear and corrosion resistance of components undergoing wear during their operation. In this study plasma nitrocarburizing process was carried out on ferritic alloys like ASTM A182 Grade F22 and ATM A105 alloy steels and austenitic stainless steels like AISI 304 and AISI 316 which are used to make trim parts of control valves used for high pressure and high temperature steam lines to enhance their wear and corrosion resistance properties. The corrosion rate was measured by a potentiodynamic set up and salt spray unit in two different environments viz., tap water and 5% NaCl solutions. The Tafel plots of ferritic alloys and austenitic stainless steels show that plasma nitrocarburizing process show better corrosion resistance compared to that of the untreated steel. It was found that after plasma nitrocarburizing process the hardness of the alloy steels increased by a factor of two. The corrosion resistance of all the steels mentioned above improved in comparison to the untreated steels. This improvement can be attributed to the nitrogen and carbon incorporation in the surface of the material. This process can be also applied to components used in nuclear industries to cater to the wear and corrosion problems. (author)

  3. The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys.

    Science.gov (United States)

    Ntasi, Argyro; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros

    2010-12-01

    The aim of the present study was to evaluate the effect of Electro Discharge Machining (EDM) on the corrosion resistance of two types of dental alloys used for fabrication of implant retained superstructures. Two groups of specimens were prepared from a Co-Cr (Okta-C) and a grade II cpTi (Biotan) alloys respectively. Half of the specimens were subjected to EDM with Cu electrodes and the rest were conventionally finished (CF). The corrosion resistance of the alloys was evaluated by anodic polarization in Ringer's solution. Morphological and elemental alterations before and after corrosion testing were studied by SEM/EDX. Six regions were analyzed on each surface before and after corrosion testing and the results were statistically analyzed by paired t-test (a=0.05). EDM demonstrated inferior corrosion resistance compared to CF surfaces, the latter being passive in a wider range of potential demonstrating higher polarization resistance and lower I(corr) values. Morphological alterations were found before and after corrosion testing for both materials tested after SEM analysis. EDX showed a significant decrease in Mo, Cr, Co, Cu (Co-Cr) and Ti, Cu (cpTi) after electrochemical testing plus an increase in C. According to the results of this study the EDM procedure decreases the corrosion resistance of both the alloys tested, increasing thus the risk of possible adverse biological reactions. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. In search of novel, high performance and intelligent materials for applications in severe and unconditioned environments

    International Nuclear Information System (INIS)

    Gyeabour Ayensu, A. I.; Normeshie, C. M. K.

    2007-01-01

    For extreme operating conditions in aerospace, nuclear power plants and medical applications, novel materials have become more competitive over traditional materials because of the unique characteristics. Extensive research programmes are being undertaken to develop high performance and knowledge-intensive new materials, since existing materials cannot meet the stringent technological requirements of advanced materials for emerging industries. The technologies of intermetallic compounds, nanostructural materials, advanced composites, and photonics materials are presented. In addition, medical biomaterial implants of high functional performance based on biocompatibility, resistance against corrosion and degradation, and for applications in hostile environment of human body are discussed. The opportunities for African researchers to collaborate in international research programmes to develop local raw materials into high performance materials are also highlighted. (au)

  5. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  6. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  7. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    Science.gov (United States)

    Minárik, P.; Král, R.; Janeček, M.

    2013-09-01

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  8. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Minárik, P., E-mail: peter.minarik@mff.cuni.cz [Charles University, Department of Physics of Materials, Prague (Czech Republic); Král, R.; Janeček, M. [Charles University, Department of Physics of Materials, Prague (Czech Republic)

    2013-09-15

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  9. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    International Nuclear Information System (INIS)

    Minárik, P.; Král, R.; Janeček, M.

    2013-01-01

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  10. Effect of Heat treatment on Hardness and Corrosion Resistance of Super Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Roun; Kim, Young Sik [Andong National University, Andong (Korea, Republic of)

    2014-07-15

    In fossil-fuel-fired power plants, a variety of pollutants are produced from the combustion of conventional fuels such as coal, oil and gas. Major component of such pollution are ash and corrosive chemicals, which also destroy pumps and piping; by causing erosion/corrosion, pitting, and wear. In order to over come such damage, materials with high hardness and high corrosion resistance are needed. In this work, we melted super-cast-iron with excellent corrosion resistance and high hardness. To elucidate the effect of heat treatment, microstructural analysis, hardness measurement, and corrosion tests were performed. Test results revealed that the super-cast-iron had several tens better corrosion resistance than 316 L stainless steel, and it also had a high surface hardness (> HRC45). High hardness, in spite of its low carbon content (0.74%C), could resulted from a hardening heat treatment to precipitate sufficient Cr{sub 7}C{sub 3} and Cr{sub 2}3C{sub 6}. Also, it was concluded that the excellent corrosion resistance of the super-cast-iron was due to the increase of the relative chromium content by minimizing the carbon content, and by the enhancement of passive film by the addition of Cr, Mo, Cu, and W.

  11. The corrosion resistance of 140MXC, 530AS and 560AS coatings produced by thermal spraying

    Directory of Open Access Journals (Sweden)

    Edwin Alexis López Covaleda

    2013-01-01

    Full Text Available Three commercial materials were deposited using electric arc thermal spraying: 140MXC (with Fe, W, Cr, Nb, 530AS (AISI 1015 steel and 560AS (AISI 420 steel on AISI 4340 steel. The aim of this paper was to evaluate the best strategy for improving a coating-substrate system’s corrosion resistance, using the following combinations: homogeneous single coatings, bilayers consisting of 530AS or 560AS under 140MXC and 140MXC + 530AS and 140MXC + 560AS coatings deposited simultaneously. The coatings were characterised using optical microscopy, scanning electron microscopy and X-ray diffraction. Corrosion resistance was evaluated through potentiodynamic polarisation and hardness by using the Vickers test. Corrosion resistance depends on the amount of microstructure defects, the deposition strategy and the alloy elements. However, corrosion resistance was similar in single coatings of 140MXC and bilayers, having -630 V corrosion potential and 708 nA corrosion current. The details and corrosion mechanism of the coatings so produced are described in this paper.

  12. Corrosion Resistance of Galvanized Steel in the Environment of a Bioreactor

    Directory of Open Access Journals (Sweden)

    Šustr Michal

    2016-06-01

    Full Text Available The article deals with monitoring the corrosion resistibility of welded materials in the anaerobic fermenter (bioreactor. The main goal of this research is to assess the change of hardness after degradation. The change of hardness occurs in the corrosion environment and it correlates with the corrosion resistibility of material. The purpose of this experiment is to recognize the possibilities of using the CMT welded materials in the defined environment. As an innovative technology the acoustic emission method is used for assessment of surface layer disruption during hardness testing. Aluminium alloy with galvanized steel (AluZinc was used as an experimental material. The basic materials were welded by the filler material AlSi3.

  13. Corrosion resistance improvement of ferritic steels through hydrogen additions to the BWR coolant

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jewett, C.W.; Pickett, A.E.; Indig, M.E.

    1984-01-01

    Motivated by the success of oxygen suppression for mitigation of intergranular stress corrosion cracking (IGSCC) in weld sensitized austenitic materials used in Boiling Water Reactors (BWRs), oxygen suppression, through hydrogen additions to the feedwater was investigated to determine its affect on the corrosion resistance of ferritic and martensitic BWR structural materials. The results of these investigations are presented in this paper, where particular emphasis is placed on the corrosion performance of BWR pressure vessel low alloy steels, carbon steel piping materials and martensitic pump materials. It is important to note that the corrosion resistance of these materials in the BWR environment is excellent. Consequently this investigation was also motivated to determine whether there were any detrimental effects of hydrogen additions, as well as to identify any additional margin in ferritic/martensitic materials corrosion performance

  14. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-01-01

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO 2 with some Mg(OH) 2 . The middle layer that is 50 nm thick comprises predominantly TiO 2 and MgO with minor contributions from MgAl 2 O 4 and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti 3 Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37±1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased β-Mg 12 Al 17 phase

  15. Application of secondary ion mass spectrometry for the characterization of commercial high performance materials

    International Nuclear Information System (INIS)

    Gritsch, M.

    2000-09-01

    The industry today offers an uncounted number of high performance materials, that have to meet highest standards. Commercial high performance materials, though often sold in large quantities, still require ongoing research and development to keep up to date with increasing needs and decreasing tolerances. Furthermore, a variety of materials is on the market that are not fully understood in their microstructure, in the way they react under application conditions, and in which mechanisms are responsible for their degradation. Secondary Ion Mass Spectrometry (SIMS) is an analytical method that is now in commercial use for over 30 years. Its main advantages are the very high detection sensitivity (down to ppb), the ability to measure all elements with isotopic sensitivity, the ability of gaining laterally resolved images, and the inherent capability of depth-profiling. These features make it an ideal tool for a wide field of applications within advanced material science. The present work gives an introduction into the principles of SIMS and shows the successful application for the characterization of commercially used high performance materials. Finally, a selected collection of my publications in reviewed journals will illustrate the state of the art in applied materials research and development with dynamic SIMS. All publications focus on the application of dynamic SIMS to analytical questions that stem from questions arising during the production and improvement of high-performance materials. (author)

  16. Improving pitting corrosion resistance of aluminum by anodizing process

    International Nuclear Information System (INIS)

    John, P.; Khan, I.U.

    2013-01-01

    Summary: Anodizing of aluminum was studied in sulphuric/citric/boric acid electrolyte system to improve pitting corrosion resistance. Maximum oxide film thickness was obtained using 5% sulphuric acid, 3% citric acid and 0.5% boric acid electrolyte composition. The corrosion resistance of aluminum sample was determined to find the effectiveness of oxide coating by potentiodynamic polarization test. The surface morphology of aluminum samples was investigated using scanning electron microscope (SEM) before and after corrosion test. It was found that the coated aluminum sample obtained by anodizing in sulphuric/citric/boric acid electrolyte system exhibited better pitting corrosion resistance with no significant difference in surface morphology. (author)

  17. The study on corrosion resistance of decorative satin nickel plating

    Directory of Open Access Journals (Sweden)

    LU Wenya

    2012-10-01

    Full Text Available This study examined the corrosion resistance of satin nickel plating on conductive plastic.The electrochemical tests were to analyze the corrosion behavior of satin nickel plating with different processes in 3.5% NaCl solution.The results show that,because the satin nickel plating has an organic film on its surface due to process characteristics,the film results in different corrosion resistance.By increasing satin additive dosage,the nickel plating chroma decreases,the microsurface of the plating becomes rough,and the corrosion resistance is followed by decrease.

  18. Corrosion-resistant amorphous alloy ribbons for electromagnetic filtration of iron rusts from water

    International Nuclear Information System (INIS)

    Kawashima, Asahi; Asami, Katsuhiko; Sato, Takeaki; Hashimoto, Koji

    1985-01-01

    An attempt was made to use corrosion-resistant amorphous Fe-9Cr-13P-7C alloy ribbons as an electromagnetic filter material for trapping various iron rusts suspended in water at 40 0 C. The ferrimagnetic Fe 3 O 4 rust was trapped with the 100 % efficiency and paramagnetic rusts such as α-Fe 2 O 3 , α-FeOOH and amorphous ferric oxyhydroxide were trapped with certain efficiencies at the magnetic field strength of 0.5-10 kOe. The regeneration of the filter by back-washing was easy. The trapping capacity of electromagnetic filter was proportional to the edge length of the filter material where the high magnetic field strength existed. Therefore, melt-spun thin and narrow amorphous alloy ribbons having the high corrosion resistance have the potential utility as electromagnetic filter material. (author)

  19. Stainless steel welding method with excellent nitric acid corrosion resistance

    International Nuclear Information System (INIS)

    Matsushita, Yukinobu; Inazumi, Toru; Hyakubo, Tamako; Masamura, Katsumi.

    1996-01-01

    The present invention concerns a welding method for a stainless steel used in a circumstance being in contact with a highly oxidizing nitric acid solution such as nuclear fuel reprocessing facilities, upon welding 316 type austenite steel containing Mo while giving excellent nitric acid resistance. A method of TIG welding using a filler metal having a composition of C, Si, Mn, P, S, Ni, Cr, Mo and Cu somewhat different from a stainless steel mother material in which C, Si, Mn, P, S, Ni, Cr and Mo are specified comprises a step of TIG-welding the surface of the mother material and a step of TIG-welding the rear face of the mother material, in which the welding conditions for the rear face of the mother material are such that the distance between the surface of the outermost welding metal layer on the side of the surface of the mother material and the bottom of the groove is not less than 5mm, and an amount of welding heat is made constant. As a result, even if the method is used in a circumstance being in contact with a highly corrosive solution such as nitric acid, corrosion resistance is not degraded. (N.H.)

  20. Corrosion resistant metallic glasses for biosensing applications

    Science.gov (United States)

    Sagasti, Ariane; Lopes, Ana Catarina; Lasheras, Andoni; Palomares, Verónica; Carrizo, Javier; Gutierrez, Jon; Barandiaran, J. Manuel

    2018-04-01

    We report the fabrication by melt spinning, the magnetic and magnetoelastic characterization and corrosion behaviour study (by potentiodynamic methods) of an Fe-based, Fe-Ni-Cr-Si-B metallic glass to be used as resonant platform for biological and chemical detection purposes. The same study has been performed in Fe-Co-Si-B (with excellent magnetoelastic properties) and Fe-Ni-B (with good corrosion properties due to the substitution of Co by Ni) composition amorphous alloys. The well-known, commercial metallic glass with high corrosion resistance Metglas 2826MB®(Fe40Ni38Mo4B18), widely used for such biological and chemical detection purposes, has been also fully characterized and used as reference. For our Fe-Ni-Cr-Si-B alloy, we have measured values of magnetization (1.22 T), magnetostriction (11.5 ppm) and ΔE effect (6.8 %) values, as well as corrosion potential (-0.25 V), current density (2.54 A/m2), and polarization resistance (56.22 Ω.cm2) that make this composition very promising for the desired biosensing applications. The obtained parameters from our exhaustive characterization are compared with the values obtained for the other different composition metallic glasses and discussed in terms of Ni and Cr content.

  1. Corrosion resistant metallic glasses for biosensing applications

    Directory of Open Access Journals (Sweden)

    Ariane Sagasti

    2018-04-01

    Full Text Available We report the fabrication by melt spinning, the magnetic and magnetoelastic characterization and corrosion behaviour study (by potentiodynamic methods of an Fe-based, Fe-Ni-Cr-Si-B metallic glass to be used as resonant platform for biological and chemical detection purposes. The same study has been performed in Fe-Co-Si-B (with excellent magnetoelastic properties and Fe-Ni-B (with good corrosion properties due to the substitution of Co by Ni composition amorphous alloys. The well-known, commercial metallic glass with high corrosion resistance Metglas 2826MB®(Fe40Ni38Mo4B18, widely used for such biological and chemical detection purposes, has been also fully characterized and used as reference. For our Fe-Ni-Cr-Si-B alloy, we have measured values of magnetization (1.22 T, magnetostriction (11.5 ppm and ΔE effect (6.8 % values, as well as corrosion potential (-0.25 V, current density (2.54 A/m2, and polarization resistance (56.22 Ω.cm2 that make this composition very promising for the desired biosensing applications. The obtained parameters from our exhaustive characterization are compared with the values obtained for the other different composition metallic glasses and discussed in terms of Ni and Cr content.

  2. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    Directory of Open Access Journals (Sweden)

    URKHANOVA Larisa Alekseevna

    2014-08-01

    Full Text Available Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of basalt fiber.

  3. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    OpenAIRE

    URKHANOVA Larisa Alekseevna; LKHASARANOV Solbon Aleksandrovich; ROZINA Victoria Yevgenievna; BUYANTUEV Sergey Lubsanovich; BARDAKHANOV Sergey Prokopievich

    2014-01-01

    Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of ba...

  4. Effects of Rare Earth Metal addition on the cavitation erosion-corrosion resistance of super duplex stainless steels

    Science.gov (United States)

    Shim, Sung-Ik; Park, Yong-Soo; Kim, Soon-Tae; Song, Chi-Bok

    2002-05-01

    Austenitic stainless steels such as AISI 316L have been used in equipment in which fluid flows at high speeds which can induce cavitation erosion on metallic surfaces due to the collapse of cavities, where the collapse is caused by the sudden change of local pressure within the liquid. Usually AISI 316L is susceptible to cavitation erosion. This research focuses on developing a better material to replace the AISI 316L used in equipment with high speed fluid flow, such as impellers. The effects of Rare Earth Metal (REM) additions on the cavitation erosion-corrosion resistance of duplex stainless steels were studied using metallographic examination, the potentiodynamic anodic polarization test, the tensile test, the X-ray diffraction test and the ultrasonic cavitation erosion test. The experimental alloys were found to have superior mechanical properties due to interstitial solid solution strengthening, by adding high nitrogen (0.4%), as well as by the refinement of phases and grains induced by fine REM oxides and oxy-sulfides. Corrosion resistance decreases in a gentle gradient as the REM content increases. However, REM containing alloys show superior corrosion resistance compared with that of other commercial alloys (SAF 2507, AISI 316L). Owing to their excellent mechanical properties and corrosion resistance, the alloys containing REM have high cavitation erosion-corrosion resistance.

  5. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials.

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K V; Rödel, Jürgen; Xing, Xianran

    2017-07-07

    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic M_{A} structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic M_{B}, rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  6. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  7. A comparative study of the corrosion resistance of incoloy MA 956 and PM 2000 superalloys

    Directory of Open Access Journals (Sweden)

    Maysa Terada

    2010-12-01

    Full Text Available Austenitic stainless steels, titanium and cobalt alloys are widely used as biomaterials. However, new medical devices require innovative materials with specific properties, depending on their application. The magnetic properties are among the properties of interest for some biomedical applications. However, due to the interaction of magnetic materials with Magnetic Resonance Image equipments they might used only as not fixed implants or for medical devices. The ferromagnetic superalloys, Incoloy MA 956 and PM 2000, produced by mechanical alloying, have similar chemical composition, high corrosion resistance and are used in high temperature applications. In this study, the corrosion resistance of these two ferritic superalloys was compared in a phosphate buffer solution. The electrochemical results showed that both superalloys are passive in this solution and the PM 2000 present a more protective passive film on it associated to higher impedances than the MA 956.

  8. Experimental Study of Laser - enhanced 5A03 Aluminum Alloy and Its Stress Corrosion Resistance

    Science.gov (United States)

    Wang, Guicheng; Chen, Jing; Pang, Tao

    2018-02-01

    Based on the study of improving the stress corrosion resistance of 5A03 aluminum alloy for ship, this paper mainly studied the tensile test, surface morphology and residual stress under laser shock, high temperature and stress corrosion. It is found that the residual compressive stress and the grain refinement on the surface of the material during the heat strengthening process increase the breaking strength of the sample in the stress corrosion environment. Appropriate high temperature maintenance helps to enhance the effect of deformation strengthening. In the 300°C environment insulation, due to recrystallization of the material, the performance decreased significantly. This study provides an experimental basis for effectively improving the stress corrosion resistance of 5A03 aluminum alloy.

  9. Reactor fuel cladding tube with excellent corrosion resistance and method of manufacturing the same

    International Nuclear Information System (INIS)

    Okuda, Takanari; Kanehara, Mitsuo; Abe, Katsuhiro; Nishimura, Takashi.

    1995-01-01

    The present invention provides a fuel cladding tube having an excellent corrosion resistance and thus a long life, and a suitable manufacturing method therefor. Namely, in the fuel cladding tube, the outer circumference of an inner layer made of a zirconium base alloy is coated with an outer layer made of a metal more corrosion resistant than the zirconium base alloy. Ti or a titanium alloy is suitable for the corrosion resistant metal. In addition, the outer layer can be coated by a method such as vapor deposition or plating, not limited to joining of the inner layer material and the outer layer material. Specifically, a composite material having an inner layer made of a zirconium alloy coated by the outer material made of a titanium alloy is applied with hot fabrication at a temperature within a range of from 500 to 850degC and at a fabrication rate of not less than 5%. The fabrication method includes any of extrusion, rolling, drawing, and casting. As the titanium-base alloy, a Ti-Al alloy or a Ti-Nb alloy containing Al of not more than 20wt%, or Nb of not more than 20wt% is preferred. (I.S.)

  10. Influence of reactive fillers on concrete corrosion resistance

    Science.gov (United States)

    Rakhimbayev, Sh M.; Tolypina, N. M.; Khakhaleva, E. N.

    2018-03-01

    Contact surfaces represent the weakest link in a conglomerate structure of materials. They ensure the diffusion of aggressive agents inside the material. To reduce the conductivity of contact surfaces it is advisable to use reactive fillers, which interact with cement matrix via certain mechanisms, which in turn, reduces the permeability of the contact layer and fosters durability of products. The interaction of reactive fillers with calcium hydroxide of a concrete liquid phase in a contact area leads to the formation of hydrated calcium silicates of a tobermorite group. Such compounds, being settled in pores and capillaries of a product, colmatage and clog them to some extent thus leading to diffusion delay (inhibition) with regard to aggressive components of external media inside porous material, which in turn inhibits the corrosion rate. The authors studied and compared the corrosion of cement concrete with a standard filler (quartz sand) and a reactive filler (perlite and urtit). The experiments confirmed the positive influence of active fillers on concrete corrosion resistance.

  11. Use of alternative waste materials in producing ultra-high performance concrete

    Directory of Open Access Journals (Sweden)

    Ahmad Shamsad

    2017-01-01

    Full Text Available In a corrosive environment similar to that of the Arabian Gulf, use of high-performance concrete is one of the options to ensure a target service life of concrete structures. However, in absence of good quality coarse aggregates, it is a challenging task to produce high-performance concrete. Recently, the possibility of producing ultra-high-performance concrete (UHPC has been widely reported in the literature. UHPC is produced without coarse aggregates at very low water to cementitious materials ratio, high amounts of cement, mineral admixtures, and superplasticizer along with fine quartz sand as aggregate, quartz powder as micro-filler, a nd steel fibres for fracture toughness. In the present work, an effort was made to utilize local waste materials as alternative mineral admixtures and local dune sand as aggregate in producing different UHPC mixtures without addition of quartz powder. The mechanical properties, shrinkage, and durability characteristics of the UHPC mixtures were studied. Test results indicate that it is possible to produce UHPC mixtures using alternative waste materials, which would have targeted flow, strength, toughness, and resistance against reinforcement corrosion. The information presented in the paper would help in optimum selection of a mixture of UHPC considering the availability of local materials, exposure conditions and structural requirements.

  12. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    International Nuclear Information System (INIS)

    Tsutomi Kochi; Toshio Kojima; Suemi Hirata; Ichiro Morita; Katsura Ohwaki

    2002-01-01

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater

  13. Air-Filled Nanopore Based High-Performance Thermal Insulation Materials

    OpenAIRE

    Gangåssæter, Haakon Fossen; Jelle, Bjørn Petter; Alex Mofid, Sohrab; Gao, Tao

    2017-01-01

    State-of-the-art thermal insulation solutions like vacuum insulation panels (VIP) and aerogels have low thermal conductivity, but their drawbacks may make them unable to be the thermal insulation solutions that will revolutionize the building industry regarding energy-efficient building envelopes. Nevertheless, learning from these materials may be crucial to make new and novel high-performance thermal insulation products. This study presents a review on the state-of-the-art air-filled thermal...

  14. Improvement of corrosion resistance in austenitic stainless steel by grain boundary character distribution control

    International Nuclear Information System (INIS)

    Wang, Yun; Kaneda, Junya; Kasahara, Shigeki; Shigenaka, Naoto

    2012-01-01

    Strauss test, Coriou test and Huey test were conducted on a Type 316L austenitic stainless steel. Improvement in grain boundary corrosion resistance was verified after raising low Σ coincidence site lattice (CSL) grain boundary (GB) frequency by controlling grain boundary character distribution (GBCD). During crevice corrosion test under gamma-ray irradiation, initiation frequency of GB corrosion after GBCD controlled specimens decreased to 1/10 of GBCD uncontrolled counterpart along with lower depth of corrosion. Stress corrosion cracking (SCC) propagation rate of GBCD controlled specimen decreased to less than 1/2 of GBCD uncontrolled specimen in high temperature and high pressure water. Based on these results, we expect that GBCD control will improve corrosion resistance of austenitic material in a wide range of application and environment. (author)

  15. An evaluation of corrosion resistant alloys by field corrosion test in Japanese refuse incineration plants

    International Nuclear Information System (INIS)

    Kawahara, Yuuzou; Nakamura, Masanori; Shibuya, Eiichi; Yukawa, Kenichi

    1995-01-01

    As the first step for development of the corrosion resistant superheater tube materials of 500 C, 100 ata used in high efficient waste-to-energy plants, field corrosion tests of six conventional alloys were carried out at metal temperatures of 450 C and 550 C for 700 and 3,000 hours in four typical Japanese waste incineration plants. The test results indicate that austenitic alloys containing approximately 80 wt% [Cr+Ni] show excellent corrosion resistance. When the corrosive environment is severe, intergranular corrosion of 40∼200 microm depth occurs in stainless steel and high alloyed materials. It is confirmed quantitatively that corrosion behavior is influenced by environmental corrosion factors such as Cl concentration and thickness of deposits on tube surface, metal temperature, and flue gas temperature. The excellent corrosion resistance of high [Cr+Ni+Mo] alloys such as Alloy 625 is explained by the stability of its protective oxide, such that the time dependence of corrosion nearly obeys the parabolic rate law

  16. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    Science.gov (United States)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  17. Band engineering and rational design of high-performance thermoelectric materials by first-principles

    Directory of Open Access Journals (Sweden)

    Lili Xi

    2016-06-01

    Full Text Available Understanding and manipulation of the band structure are important in designing high-performance thermoelectric (TE materials. Our recent work has involved the utilization of band structure in various topics of TE research, i.e., the band convergence, the conductive network, dimensionality reduction by quantum effects, and high throughput material screening. In non-cubic chalcopyrite compounds, we revealed the relations between structural factors and band degeneracy, and a simple unity-η rule was proposed for selecting high performance diamond-like TE materials. Based on the deep understanding of the electrical and thermal transport, we identified the conductive network in filled skutterudites with the “phonon glass-electron crystal” (PGEC paradigm, and extended this concept to caged-free Cu-based diamond-like compounds. By combining the band structure calculations and the Boltzmann transport theory, we conducted a high-throughput material screening in half-Heusler (HH systems, and several promising compositions with high power factors were proposed out of a large composition collection. At last, we introduced the Rashba spin-splitting effect into thermoelectrics, and its influence on the electrical transport properties was discussed. This review demonstrated the importance of the microscopic perspectives for the optimization and design of novel TE materials.

  18. Corrosion resistance of zinc-magnesium coated steel

    International Nuclear Information System (INIS)

    Hosking, N.C.; Stroem, M.A.; Shipway, P.H.; Rudd, C.D.

    2007-01-01

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn 5 Cl 2 (OH) 8 . H 2 O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH) 2 ) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH) 2 , which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature

  19. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hamid [Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Moosavifard, Seyyed Ebrahim, E-mail: info_seyyed@yahoo.com [Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Elyasi, Saeed [Department of Chemical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Shahraki, Mohammad [Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of)

    2017-02-01

    Highlights: • Nanoporous CuS nano-hollow spheres were synthesized by a facile method. • Nano-hollow spheres have a large specific surface area (97 m{sup 2} g{sup −1}) and nanoscale shell thickness (<20 nm). • Such unique structures exhibit excellent electrochemical properties for high-performance SCs. - Abstract: Due to unique advantages, the development of high-performance supercapacitors has stimulated a great deal of scientific research over the past decade. The electrochemical performance of a supercapacitor is strongly affected by the surface and structural properties of its electrode materials. Herein, we report a facile synthesis of high-performance supercapacitor electrode material based on CuS nano-hollow spheres with nanoporous structures, large specific surface area (97 m{sup 2} g{sup −1}) and nanoscale shell thickness (<20 nm). This interesting electrode structure plays a key role in providing more active sites for electrochemical reactions, short ion and electron diffusion pathways and facilitated ion transport. The CuS nano-hollow spheres electrode exhibits excellent electrochemical performance including a maximum specific capacitance of 948 F g{sup −1} at 1 A g{sup −1}, significant rate capability of 46% capacitance retention at a high current density of 50 A g{sup −1}, and outstanding long-term cycling stability at various current densities. This work not only demonstrates the promising potential of the CuS-NHS electrodes for application in high-performance supercapacitors, but also sheds a new light on the metal sulfides design philosophy.

  20. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods

  1. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-06-15

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  2. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    International Nuclear Information System (INIS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-01-01

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields

  3. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H 2 SO 4 , even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni 2 (Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and

  4. Corrosion resistance of uranium with carbon ion implantation

    International Nuclear Information System (INIS)

    Liang Hongwei; Yan Dongxu; Bai Bin; Lang Dingmu; Xiao Hong; Wang Xiaohong

    2008-01-01

    The carbon modified layers prepared on uranium surface by carbon ion implantation, gradient implantation, recoil implantation and ion beam assisted deposition process techniques were studied. Depth profile elements of the samples based on Auger electron spectroscopy, phase composition identified by X-ray diffraction as well as corrosion resistance of the surface modified layers by electrochemistry tester and humid-thermal oxidation test were carried out. The carbon modified layers can be obtained by above techniques. The samples deposited with 45 keV ion bombardment, implanted by 50 keV ions and implanted with gradient energies are of better corrosion resistance properties. The samples deposited carbon before C + implantation and C + assisted deposition exhibit worse corrosion resistance properties. The modified layers are dominantly dot-corraded, which grows from the dots into substructure, however, the assisted deposition samples have comparatively high carbon composition and are corraded weakly. (authors)

  5. Corrosion resistance of chromium-nickel steel containing rare earths

    International Nuclear Information System (INIS)

    Asatiani, G.N.; Mandzhgaladze, S.N.; Tavadze, L.F.; Chuvatina, S.N.; Saginadze, D.I.

    1983-01-01

    Effect of additional out-of-furnace treatment with complex alloy (foundry alloy) calcite-silicon-magnesium-rare earth metal on corrosion resistance of the 03Kh18N20M3D3C3B steel has been studied. It is shown that introduction of low additions of rare earths improves its corrosion resistance improves its corrosion resistance in agressive media (in 70% - sulfuric acid) in the range of transition from active to passive state. Effect of additional introduction of rare earth metals is not considerable, if potential of steel corrosion is in the range of stable passive state (32% - sulfuric acid). Additional out-of-furnace treatment with complex foundry alloy, containing rare earth metals, provides a possibility to use a steel with a lower content of Cr, Ni, Mo, than in conventional acid-resistant steels in highly agressive media

  6. Effect of tempering on corrosion resistance of cast aluminium bronzes

    International Nuclear Information System (INIS)

    Aaltonen, P.; Klemetti, K.; Haenninen, H.

    1985-01-01

    The subject of this study is corrosion resistance of aluminium bronzes, which are copper base alloys containing aluminium up to 12% with additions of nickel, iron and manganese. The main conclutions that can be drawn are: (1) The dealloying corrosion resistance of nickel-aluminium bronze is much better than that of aluminium bronze with iron and manganese additions, but it is not immune; (2) The dealloying corrosion resistance of aluminium bronzes can be improved by appropiate heat treatments. The best properties were obtained by temperering between 600 and 800 deg C, depending on the initial microstructure; (3) In crevice conditions, where local acidification can occur, dealloying of aluminium bronzes is a consequence of the preferential attack of aluminium-rich phases. By appropriate tempering, a uniform distribution of aluminium-rich phases is obtained and the continous path for selective corrosion is not formed

  7. High-performance ferroelectric and magnetoresistive materials for next-generation thermal detector arrays

    Science.gov (United States)

    Todd, Michael A.; Donohue, Paul P.; Watton, Rex; Williams, Dennis J.; Anthony, Carl J.; Blamire, Mark G.

    2002-12-01

    This paper discusses the potential thermal imaging performance achievable from thermal detector arrays and concludes that the current generation of thin-film ferroelectric and resistance bolometer based detector arrays are limited by the detector materials used. It is proposed that the next generation of large uncooled focal plane arrays will need to look towards higher performance detector materials - particularly if they aim to approach the fundamental performance limits and compete with cooled photon detector arrays. Two examples of bolometer thin-film materials are described that achieve high performance from operating around phase transitions. The material Lead Scandium Tantalate (PST) has a paraelectric-to-ferroelectric phase transition around room temperature and is used with an applied field in the dielectric bolometer mode for thermal imaging. PST films grown by sputtering and liquid-source CVD have shown merit figures for thermal imaging a factor of 2 to 3 times higher than PZT-based pyroelectric thin films. The material Lanthanum Calcium Manganite (LCMO) has a paramagnetic to ferromagnetic phase transition around -20oC. This paper describes recent measurements of TCR and 1/f noise in pulsed laser-deposited LCMO films on Neodymium Gallate substrates. These results show that LCMO not only has high TCR's - up to 30%/K - but also low 1/f excess noise, with bolometer merit figures at least an order of magnitude higher than Vanadium Oxide, making it ideal for the next generation of microbolometer arrays. These high performance properties come at the expense of processing complexities and novel device designs will need to be introduced to realize the potential of these materials in the next generation of thermal detectors.

  8. Improved corrosion resistance of spin-valve film

    International Nuclear Information System (INIS)

    Tetsukawa, H.; Hommura, H.; Okabe, A.; Soda, Y.

    2007-01-01

    We investigated the corrosion behavior and magnetoresistance of spin-valve film in order to improve the corrosion resistance of the spin-valve head for a tape recording system. The conventional spin-valve head (sub./Ta/NiFe/CoFe/Cu/CoFe/PtMn/Ta) with no diamond-like carbon (DLC) protective layer showed poor corrosion resistance. This is because the CoFe for ferromagnetic layer and Cu for spacer in the spin-valve film exhibited poor corrosion resistance. The corrosion resistance of the CoFe film and Cu film improved with the addition of Ni and Au, respectively. The spin-valve film (sub./Ta/NiFe/CoNiFe/CuAu/CoNiFe/PtMn/Ta) showed higher pitting potential than the conventional spin-valve film by +0.45 V. This presents a significant improvement over the conventional spin-valve film. We also investigated the effect of the composition of ferromagnetic layer and spacer on the magnetoresistance of the spin-valve film. The magnetoresistance of the spin-valve film by substitution of CoNiFe for CoFe in ferromagnetic layer decreased slightly. The magnetoresistance of the spin-valve film decreased as the addition of Au of the spacer increased. The diffusion at CoNiFe/CuAu interface has not been observed in annealing process. The quantitative relation between corrosion resistance and magnetoresistance of spin-valve film, and its ferromagnetic layer and spacer's compositions have been clarified. The output voltage at 50 Oe of the corrosion-resistant spin-valve head with CoNiFe ferromagnetic layer and CuAu spacer was about 50% of that of the conventional spin-valve head

  9. Improved corrosion resistance of spin-valve film

    Energy Technology Data Exchange (ETDEWEB)

    Tetsukawa, H. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan)]. E-mail: tetsukaw@arc.sony.co.jp; Hommura, H. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan); Okabe, A. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan); Soda, Y. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan)

    2007-06-15

    We investigated the corrosion behavior and magnetoresistance of spin-valve film in order to improve the corrosion resistance of the spin-valve head for a tape recording system. The conventional spin-valve head (sub./Ta/NiFe/CoFe/Cu/CoFe/PtMn/Ta) with no diamond-like carbon (DLC) protective layer showed poor corrosion resistance. This is because the CoFe for ferromagnetic layer and Cu for spacer in the spin-valve film exhibited poor corrosion resistance. The corrosion resistance of the CoFe film and Cu film improved with the addition of Ni and Au, respectively. The spin-valve film (sub./Ta/NiFe/CoNiFe/CuAu/CoNiFe/PtMn/Ta) showed higher pitting potential than the conventional spin-valve film by +0.45 V. This presents a significant improvement over the conventional spin-valve film. We also investigated the effect of the composition of ferromagnetic layer and spacer on the magnetoresistance of the spin-valve film. The magnetoresistance of the spin-valve film by substitution of CoNiFe for CoFe in ferromagnetic layer decreased slightly. The magnetoresistance of the spin-valve film decreased as the addition of Au of the spacer increased. The diffusion at CoNiFe/CuAu interface has not been observed in annealing process. The quantitative relation between corrosion resistance and magnetoresistance of spin-valve film, and its ferromagnetic layer and spacer's compositions have been clarified. The output voltage at 50 Oe of the corrosion-resistant spin-valve head with CoNiFe ferromagnetic layer and CuAu spacer was about 50% of that of the conventional spin-valve head.

  10. Corrosion resistance investigation of vanadium alloys in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Borovitskaya, I. V., E-mail: symp@imet.ac.ru [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Lyublinskiy, I. E. [JSC Red Star (Russian Federation); Bondarenko, G. G. [National Research University Higher School of Economics (Russian Federation); Paramonova, V. V. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Korshunov, S. N.; Mansurova, A. N. [National Research Center Kurchatov Institute (Russian Federation); Lyakhovitskiy, M. M. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Zharkov, M. Yu. [JSC Red Star (Russian Federation)

    2016-12-15

    A major concern in using vanadium alloys for first wall/blanket systems in fusion reactors is their activity with regard to nonmetallic impurities in the coolants. This paper presents the results of studying the corrosion resistance in high-purity liquid lithium (with the nitrogen and carbon content of less than 10{sup –3} wt %) of vanadium and vanadium alloys (V–1.86Ga, V–3.4Ga–0.62Si, V–4.81Ti–4.82Cr) both in the initial state and preliminarily irradiated with Ar+ ions with energy of 20 keV to a dose of 10{sup 22} m{sup –2} at an irradiation temperature of ~400°C. The degree of corrosion was estimated by measuring the changes in the weight and microhardness. Corrosion tests were carried out under static isothermal conditions at a temperature of 600°C for 400 h. The identity of corrosion mechanisms of materials both irradiated with Ar ions and not irradiated, which consisted in an insignificant penetration of nitrogen into the materials and a substantial escape of oxygen from the materials, causing the formation of a zone with a reduced microhardness near the surface, was established. The influence of the corrosive action of lithium on the surface morphology of the materials under study was found, resulting in the manifestation of grain boundaries and slip lines on the sample surface, the latter being most clearly observed in the case of preliminary irradiation with Ar ions.

  11. The study on corrosion resistance of decorative satin nickel plating

    OpenAIRE

    LU Wenya; CHENG Xianhua

    2012-01-01

    This study examined the corrosion resistance of satin nickel plating on conductive plastic.The electrochemical tests were to analyze the corrosion behavior of satin nickel plating with different processes in 3.5% NaCl solution.The results show that,because the satin nickel plating has an organic film on its surface due to process characteristics,the film results in different corrosion resistance.By increasing satin additive dosage,the nickel plating chroma decreases,the microsurface of the p...

  12. Machining of high performance workpiece materials with CBN coated cutting tools

    International Nuclear Information System (INIS)

    Uhlmann, E.; Fuentes, J.A. Oyanedel; Keunecke, M.

    2009-01-01

    The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 μm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.

  13. Determining the Environmental Benefits of Ultra High Performance Concrete as a Bridge Construction Material

    Science.gov (United States)

    Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein

    2017-10-01

    Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.

  14. Influence of Al-W-B Recycled Composite Material on the Properties of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Baronins Janis

    2015-12-01

    Full Text Available The aim of this study is to obtain high performance boron containing material with sufficient carrying capacity with increased porosity and lower density at the same time. The influence of the different concentrations of Al-W-B powder on the properties of the fresh and hardened HPC was investigated. In the concrete mix design, the allite containing White Portland cement CEM I 52,5 R, granite stone, sand, microsilica, on polycarboxylates based super plasticizer and Al-W-B powder were used. As a source of boron composite material (CM, previously grinded powder containing boron-tungsten fiber and aluminium matrix (CM Al-W-B was used. Grinding was used for processing of CM Al-W-B powder.

  15. Processing bulk natural wood into a high-performance structural material

    Science.gov (United States)

    Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H.; Bruck, Hugh A.; Zhu, J. Y.; Vellore, Azhar; Li, Heng; Minus, Marilyn L.; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing

    2018-02-01

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.

  16. FY 1999 report on the results of the technology development of super metal. Development of technology of high corrosion resistant iron-base fine structure controlling metal materials; 1999 nendo super metal no gijutsu kaihatsu seika hokokusho. Kotaishokusei tetsukei bisai kozo seigyo kinzoku zairyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of developing iron/steel materials which enable remarkable improvement of maintenance loads and longevity of oil field developmental materials, study was conducted for remarkable improvement of strength and corrosion resistance by making crystal grain of iron/steel materials micro-fine to the limit, and the FY 1999 results were summed up. The study was conducted on the technology of fine structure formation using strong magnetic field and technology to predict material quality of micro structure using computational science. As a result, it was found that the fine grain even in size can be obtained by a combination of magnetic field orientation and recrystallization. By this, an image was constructed of the industrialization process of fine grained steel production which was combined with warm rolling process and applied strong magnetic field. Using the method to homogenize the finite element method, the basement was established for the method to evaluate an effect of the second phase on mechanical characteristics of fine multi-phase structure steel. The cementite single-phase film which is an important structural phase of carbon steel was successfully formed, and the Young's modulus and Poison ratio were determined as basic data for material design. (NEDO)

  17. Research on optimizing components of microfine high-performance composite cementitious materials

    International Nuclear Information System (INIS)

    Hu Shuguang; Guan Xuemao; Ding Qingjun

    2002-01-01

    The relationship between material components and mechanical properties was studied in terms of composite material principles and orthogonal experimental design. Moreover, the microstructure of microfine high-performance composite cementitious material (MHPCC) paste was investigated by means of scanning electron microscopy (SEM) methods. The results showed that the composite material consisting of blast furnace slag (BFS), gypsum (G 2 ) and expansive agent (EA) could obviously improve the strength of the cementitious material containing 40% fly ash (FA). Although microfine cement (MC) was merely 45% percent of the MHPCC, the compressive strength of MHPCC paste was higher than that of neat MC paste. BFS played an important role in MHPCC. The optimum-added quantity of BFS was 15%. The needle-shaped ettringite obtained from the EA reacting with Ca(OH) 2 forms a three-dimensional network structure, which not only improved the early strength of MHPCC paste but also increased its late strength. The reason was that the network structure, which was similar to a fiber-reinforced composite, was formed in the late period of hydration with the progress of hydration and the deposition of hydration products into the network structure

  18. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J David [Bolingbrook, IL; Mawdsley, Jennifer R [Woodridge, IL; Niyogi, Suhas [Woodridge, IL; Wang, Xiaoping [Naperville, IL; Cruse, Terry [Lisle, IL; Santos, Lilia [Lombard, IL

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  19. Effect of temperature on structure and corrosion resistance for ...

    Indian Academy of Sciences (India)

    The effect of plating temperatures between 60 and 90◦C on structure and corrosion resistance for elec- troless NiWP coatings ..... which helps to form fine grain. At 80 .... [23] Zhang W X, Jiang Z H, Li G Y and Jiang Q 2008 Surf. Coat. Technol.

  20. High strength corrosion-resistant zirconium aluminum alloys

    International Nuclear Information System (INIS)

    Schulson, E.M.; Cameron, D.J.

    1976-01-01

    A zirconium-aluminum alloy is described possessing superior corrosion resistance and mechanical properties. This alloy, preferably 7.5-9.5 wt% aluminum, is cast, worked in the Zr(Al)-Zr 2 Al region, and annealed to a substantially continuous matrix of Zr 3 Al. (E.C.B.)

  1. Surface Corrosion Resistance in Turning of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available This work addresses the issues associated with implant surface modification. We propose a method to form the oxide film on implant surfaces by dry turning to generate heat and injecting oxygen-rich gas at the turning-tool flank. The morphology, roughness, composition, and thickness of the oxide films in an oxygen-rich atmosphere were characterized using scanning electron microscopy, optical profiling, and Auger electron spectroscopy. Electrochemical methods were used to study the corrosion resistance of the modified surfaces. The corrosion resistance trends, analyzed relative to the oxide film thickness, indicate that the oxide film thickness is the major factor affecting the corrosion resistance of titanium alloys in a simulated body fluid (SBF. Turning in an oxygen-rich atmosphere can form a thick oxide film on the implant surface. The thickness of surface oxide films processed at an oxygen concentration of 80% was improved to 4.6 times that of films processed at an oxygen concentration of 21%; the free corrosion potential shifted positively by 0.357 V, which significantly improved the corrosion resistance of titanium alloys in the SBF. Therefore, the proposed method may (partially replace the subsequent surface oxidation. This method is significant for biomedical development because it shortens the process flow, improves the efficiency, and lowers the cost.

  2. Ion implanting ferrous metals to improve corrosion resistance

    International Nuclear Information System (INIS)

    Dearnaley, G.; Goode, P.D.

    1981-01-01

    A process is described for the treatment of a surface of a ferrous article to improve its corrosion resistance, wherein the surface is subjected to ion bombardment at a temperature above one hundred degrees centigrade in an evacuated enclosure which contains a residual quantity of gaseous oxygen. (author)

  3. Structural Characterization of Highly Corrosion-resistant Steel

    Czech Academy of Sciences Publication Activity Database

    Lančok, Adriana; Kmječ, T.; Štefánik, M.; Sklenka, L.; Miglierini, M.

    2015-01-01

    Roč. 88, č. 4 (2015), s. 355-361 ISSN 0011-1643 R&D Projects: GA ČR(CZ) GA14-12449S Institutional support: RVO:61388980 Keywords : Mossbauer spectroscopy * corrosion-resistant steel * LC200 * CEMS Subject RIV: CA - Inorganic Chemistry Impact factor: 0.732, year: 2015

  4. Comparative corrosion resistance of selected metals and nonmetals

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The relative corrosion resistance to 140 corrosive media is tabulated for the following substances: stainless steels 302, 303, 304, 305, 316, 410, 416, and 430, brass, silicon bronze, copper alloy 110, monel alloy 400, aluminum, and nylon (type 6/6)

  5. Electrolytic deposition and corrosion resistance of Zn–Ni coatings

    Indian Academy of Sciences (India)

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, ...

  6. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    Science.gov (United States)

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Improvement of pitting corrosion resistance of AISI 304L stainless steel by nano-pulsed laser surface melting

    International Nuclear Information System (INIS)

    Pacquentin, W.; Blanc, C.; Caron, N.; Thro, P.Y.; Cheniere, A.; Tabarant, M.; Moutiers, G.; Miserque, F.; Plouzennec, H.; Oltra, R.

    2013-01-01

    The stainless steel 304L is widely used, however, in particular conditions, it may be sensitive to pitting corrosion. Nano-pulsed laser surface melting is a surface treatment which allows improving the corrosion resistance of this steel. This treatment consists in focusing a laser beam on the surface of the material, involving its quite immediately melting through a few microns depth, then an ultra-fast solidification occurs with cooling rate about 1011 K/s. The laser parameters control the modifications of the physico-chemical properties. In particular, we studied the influence of the impacts overlap of an ytterbium laser-fiber on the corrosion resistance of a 304L stainless steel in conditions of an aerated and agitated solution of NaCl (concentration of 30 g/L). We obtained an increase of the pitting potential of 220 mV, highlighting an improvement of the corrosion resistance. The study of the chemical and structural modifications is not enough to explain the improvement of the corrosion resistance. Other phenomena must be taken into account, as the quality of the oxide layer, in terms of physico-chemical and mechanical properties. (authors)

  8. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods.

    Science.gov (United States)

    Tuna, Süleyman Hakan; Özçiçek Pekmez, Nuran; Kürkçüoğlu, Işin

    2015-11-01

    The effects of fabrication methods on the corrosion resistance of frameworks produced with Co-Cr alloys are not clear. The purpose of this in vitro study was to evaluate the electrochemical corrosion resistance of Co-Cr alloy specimens that were fabricated by conventional casting, milling, and laser sintering. The specimens fabricated with 3 different methods were investigated by potentiodynamic tests and electrochemical impedance spectroscopy in an artificial saliva. Ions released into the artificial saliva were estimated with inductively coupled plasma-mass spectrometry, and the results were statistically analyzed. The specimen surfaces were investigated with scanning electron microscopy before and after the tests. In terms of corrosion current and Rct properties, statistically significant differences were found both among the means of the methods and among the means of the material groups (Pcorrosion than those produced by milling and laser sintering. The corrosion resistance of a Co-Cr alloy specimens fabricated by milling or laser sintering was greater than that of the conventionally cast alloy specimens. The Co-Cr specimens produced by the same method also differed from one another in terms of corrosion resistance. These differences may be related to the variations in the alloy compositions. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Corrosion resistance of magnesium treated by hydrocarbon plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Yekehtaz, M.; Baba, K.; Hatada, R.; Flege, S.; Sittner, F.; Ensinger, W.

    2009-01-01

    Due to its low weight, magnesium is increasingly being used as construction materials for e.g. automobile bodies or cell phone housings. However, the material suffers from poor tribological features and particularly from poor corrosion resistance. In order to protect magnesium from corrosion, it was treated by hydrocarbon plasma immersion ion implantation. Magnesium samples were implanted with methane and acetylene at different process times at ambient temperature. Electrochemical corrosion measurements in dilute buffered acetic acid showed that the treatment led to well-adhering films with an effective corrosion protection.

  10. Corrosion resistance of magnesium treated by hydrocarbon plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Yekehtaz, M. [Technische Universitaet Darmstadt, Department of Materials Science, Petersenstr. 23, 64287 Darmstadt (Germany)], E-mail: Yekehtaz@ca.tu-darmstadt.de; Baba, K. [Nagasaki Center of Industrial Technology, 2-1303-8 Ikeda, Omura, Nagasaki 856-0026 (Japan); Hatada, R. [Technische Universitaet Darmstadt, Department of Materials Science, Petersenstr. 23, 64287 Darmstadt (Germany); Nagasaki Center of Industrial Technology, 2-1303-8 Ikeda, Omura, Nagasaki 856-0026 (Japan); Flege, S.; Sittner, F.; Ensinger, W. [Technische Universitaet Darmstadt, Department of Materials Science, Petersenstr. 23, 64287 Darmstadt (Germany)

    2009-05-01

    Due to its low weight, magnesium is increasingly being used as construction materials for e.g. automobile bodies or cell phone housings. However, the material suffers from poor tribological features and particularly from poor corrosion resistance. In order to protect magnesium from corrosion, it was treated by hydrocarbon plasma immersion ion implantation. Magnesium samples were implanted with methane and acetylene at different process times at ambient temperature. Electrochemical corrosion measurements in dilute buffered acetic acid showed that the treatment led to well-adhering films with an effective corrosion protection.

  11. Fracture-tough, corrosion-resistant bearing steels

    Science.gov (United States)

    Olson, Gregory B.

    1990-01-01

    The fundamental principles allowing design of stainless bearing steels with enhanced toughness and stress corrosion resistance has involved both investigation of basic phenomena in model alloys and evaluation of a prototype bearing steel based on a conceptual design exercise. Progress in model studies has included a scanning Auger microprobe (SAM) study of the kinetics of interfacial segregation of embrittling impurities which compete with the kinetics of alloy carbide precipitation in secondary hardening steels. These results can define minimum allowable carbide precipitation rates and/or maximum allowable free impurity contents in these ultrahigh strength steels. Characterization of the prototype bearing steel designed to combine precipitated austenite transformation toughening with secondary hardening shows good agreement between predicted and observed solution treatment response including the nature of the high temperature carbides. An approximate equilibrium constraint applied in the preliminary design calculations to maintain a high martensitic temperature proved inadequate, and the solution treated alloy remained fully austenitic down to liquid nitrogen temperature rather than transforming above 200 C. The alloy can be martensitically transformed by cryogenic deformation, and material so processed will be studied further to test predicted carbide and austenite precipitation behavior. A mechanistically-based martensitic kinetic model was developed and parameters are being evaluated from available kinetic data to allow precise control of martensitic temperatures of high alloy steels in future designs. Preliminary calculations incorporating the prototype stability results suggest that the transformation-toughened secondary-hardening martensitic-stainless design concept is still viable, but may require lowering Cr content to 9 wt. pct. and adding 0.5 to 1.0 wt. pct. Al. An alternative design approach based on strain-induced martensitic transformation during

  12. Oxasmaragdyrins as New and Efficient Hole-Transporting Materials for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Mane, Sandeep B; Sutanto, Albertus Adrian; Cheng, Chih-Fu; Xie, Meng-Yu; Chen, Chieh-I; Leonardus, Mario; Yeh, Shih-Chieh; Beyene, Belete Bedemo; Diau, Eric Wei-Guang; Chen, Chin-Ti; Hung, Chen-Hsiung

    2017-09-20

    The high performance of the perovskite solar cells (PSCs) cannot be achieved without a layer of efficient hole-transporting materials (HTMs) to retard the charge recombination and transport the photogenerated hole to the counterelectrode. Herein, we report the use of boryl oxasmaragdyrins (SM01, SM09, and SM13), a family of aromatic core-modified expanded porphyrins, as efficient hole-transporting materials (HTMs) for perovskite solar cells (PSCs). These oxasmaragdyrins demonstrated complementary absorption spectra in the low-energy region, good redox reversibility, good thermal stability, suitable energy levels with CH 3 NH 3 PbI 3 perovskite, and high hole mobility. A remarkable power conversion efficiency of 16.5% (V oc = 1.09 V, J sc = 20.9 mA cm -2 , fill factor (FF) = 72%) is achieved using SM09 on the optimized PSCs device employing a planar structure, which is close to that of the state-of-the-art hole-transporting materials (HTMs), spiro-OMeTAD of 18.2% (V oc = 1.07 V, J sc = 22.9 mA cm -2 , FF = 74%). In contrast, a poor photovoltaic performance of PSCs using SM01 is observed due to the interactions of terminal carboxylic acid functional group with CH 3 NH 3 PbI 3 .

  13. Hyperbranched epoxy/MWCNT-CuO-nystatin nanocomposite as a high performance, biocompatible, antimicrobial material

    Science.gov (United States)

    Barua, Shaswat; Chattopadhyay, Pronobesh; Phukan, Mayur M.; Konwar, Bolin K.; Karak, Niranjan

    2014-12-01

    Hyperbranched epoxy MWCNT-CuO-nystatin nanocomposite has been presented here as an advanced antimicrobial high performance material. The material showed significant improvement of mechanical properties (tensile strength from 38 to 63 MPa) over the pristine matrix without effecting elongation. MWCNT was modified by a non-ionic surfactant, triton X-100, wherein copper oxide nanoparticles were anchored in situ by a ‘green’ method. Further, sonochemical immobilization of nystatin enhanced the stability of the system. The immobilized nanohybrid system was incorporated into the hyperbranched matrix in 1, 2 and 3 wt%. The resultant system proved its ability to prevent bacterial, fungal and microalgal fouling against the tested strains, Staphylococcus aureus, Candida albicans and Chlorella sp. Additionally, this system is quite compatible with rat heart cells. Furthermore, in vivo assessment showed that this could be utilized as an implantable antimicrobial biomaterial. Thus, the overall study pointed out that the prepared material may have immense utility in marine industry as well as in biomedical domain to address microbial fouling, without inducing any toxicity to higher organisms.

  14. Hyperbranched epoxy/MWCNT-CuO-nystatin nanocomposite as a high performance, biocompatible, antimicrobial material

    International Nuclear Information System (INIS)

    Barua, Shaswat; Karak, Niranjan; Chattopadhyay, Pronobesh; Phukan, Mayur M; Konwar, Bolin K

    2014-01-01

    Hyperbranched epoxy MWCNT-CuO-nystatin nanocomposite has been presented here as an advanced antimicrobial high performance material. The material showed significant improvement of mechanical properties (tensile strength from 38 to 63 MPa) over the pristine matrix without effecting elongation. MWCNT was modified by a non-ionic surfactant, triton X-100, wherein copper oxide nanoparticles were anchored in situ by a ‘green’ method. Further, sonochemical immobilization of nystatin enhanced the stability of the system. The immobilized nanohybrid system was incorporated into the hyperbranched matrix in 1, 2 and 3 wt%. The resultant system proved its ability to prevent bacterial, fungal and microalgal fouling against the tested strains, Staphylococcus aureus, Candida albicans and Chlorella sp. Additionally, this system is quite compatible with rat heart cells. Furthermore, in vivo assessment showed that this could be utilized as an implantable antimicrobial biomaterial. Thus, the overall study pointed out that the prepared material may have immense utility in marine industry as well as in biomedical domain to address microbial fouling, without inducing any toxicity to higher organisms. (paper)

  15. Perspectives for high-performance permanent magnets: applications, coercivity, and new materials

    Science.gov (United States)

    Hirosawa, Satoshi; Nishino, Masamichi; Miyashita, Seiji

    2017-03-01

    High-performance permanent magnets are indispensable in the production of high-efficiency motors and generators and ultimately for sustaining the green earth. The central issue of modern permanent magnetism is to realize high coercivity near and above room temperature on marginally hard magnetic materials without relying upon the critical elements such as heavy rare earths by means of nanostructure engineering. Recent investigations based on advanced nanostructure analysis and large-scale first principles calculations have led to significant paradigm shifts in the understandings of coercivity mechanism in Nd-Fe-B permanent magnets, which includes the discovery of the ferromagnetism of the thin (2 nm) intergranular phase surrounding the Nd2Fe14B grains, the occurrence of negative (in-plane) magnetocrystalline anisotropy of Nd ions and some Fe atoms at the interface which degrades coercivity, and visualization of the stochastic behaviors of magnetization in the magnetization reversal process at high temperatures. A major change may occur also in the motor topologies, which is currently overwhelmed by the magnetic flux weakening interior permanent magnet motor type, to other types with variable flux permanent magnet type in some applications to open up a niche for new permanent magnet materials. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  16. Development of high-performance shielding material by heat curing method

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Toshimasa; Hirao, Yoshihiro; Hayashi, Takayuki; Okuno, Koichi; Sato, Osamu [National Maritime Research Institute, Ibaraki (Japan)

    2002-07-01

    A high-performance shielding material is developed by a heat curing method. It is mainly made of a thermosetting resin, lead powder, and a boron compound. To make the resin, a single functional monomer stearyl methacrylate (SMA) is used. To get good dispersion of lead and the boron compound in the resin, the viscosity of the SMA is increased by adding a small amount of a peroxide into the liquid monomer and heating up to the temperature of 100 .deg. C. Next, a peroxide, lead powder, a boron compound, a three functional monomer, and a curing accelerator are mixed into the viscous SMA. The mixture is cured in an atmosphere of nitrogen after removing bubbles using a vacuum pump. Measured properties of the cured material are as follows. The curing rate of SMA is 97 %. The density is kept 2.35 g/cm{sub 3} in the range from room temperature to 150 .deg. C. The weight-change measured by a thermogravimetry is 0.16 % in the range from room temperature to 200 .deg. C. Details of fragments in the gas released from the material is analyzed by a gas chromatography and a mass spectrometry. The hydrogen content of the material is 6.04x10 {sub 22} /cm{sub 3} . The shielding effect is calculated for a fission source by an Sn code ANISN. The shielding effect of the curing material is excellent. For example, concrete shield of a certain thickness can be replaced by the material having a thickness less than a half of concrete. Several samples of the material are irradiated at an irradiation equipment of the research reactor JRR-4 installed at Japan Atomic Energy Research Institute. At the 14{sub th} day after irradiating with the thermal neutron fluence of 6.6x10{sub 15} /cm{sub 2} , the radioactivity is less than one tenth of 75 Bq/g above which materials are regulated as the radioactive substance in Japan.

  17. Formic acid as additive for the preparation of high-performance FePO4 materials by spray drying method

    CSIR Research Space (South Africa)

    Yanga, F

    2017-12-01

    Full Text Available International, vol. 43(18): 16652-16658 Formic acid as additive for the preparation of high-performance FePO4 materials by spray drying method Yanga F Zhang H Shao Y Song H Liao S Ren J ABSTRACT: High-performance ferric phosphate (FePO4...

  18. Study of corrosion resistance of AISI 444 ferritic stainless steel for application as a biomaterial

    International Nuclear Information System (INIS)

    Marques, Rogerio Albuquerque

    2014-01-01

    Ferritic stainless steels are ferromagnetic materials. This property does not allow their use in orthopedic prosthesis. Nevertheless, in some specific applications, this characteristic is very useful, such as, for fixing dental and facial prostheses by using magnetic attachments. In this study, the corrosion resistance and cytotoxicity of the AISI 444 ferritic stainless steel, with low nickel content, extra-low interstitial levels (C and N) and Ti and Nb stabilizers, were investigated for magnetic dental attachments application. The ISO 5832-1 (ASTM F-139) austenitic stainless steel and a commercial universal keeper for dental attachment (Neo-magnet System) were evaluated for comparison reasons. The first stainless steel is the most used metallic material for prostheses, and the second one, is a ferromagnetic keeper for dental prostheses (NeoM). In vitro cytotoxicity analysis was performed by the red neutral incorporation method. The results showed that the AISI 444 stainless steel is non cytotoxic. The corrosion resistance was studied by anodic polarization methods and electrochemical impedance spectroscopy (EIS), in a saline phosphate buffered solution (PBS) at 37 °C. The electronic properties of the passive film formed on AISI 444 SS were evaluated by the Mott-Schottky approach. All tested materials showed passivity in the PBS medium and the passive oxide film presented a duplex nature. The highest susceptibility to pitting corrosion was associated to the NeoM SS. This steel was also associated to the highest dopant concentration. The comparatively low levels of chromium (nearly 12.5%) and molybdenum (0.3%) of NeoM relatively to the other studied stainless steels are the probable cause of its lower corrosion resistance. The NeoM chemical composition does not match that of the SUS444 standards. The AISI 444 SS pitting resistance was equivalent to the ISO 5832-1 pointing out that it is a potential candidate for replacement of commercial ferromagnetic alloys used

  19. Comparison of the crevice corrosion resistance of alloys 625 and 22

    International Nuclear Information System (INIS)

    Palmer, J.; Kehler, B.; Iloybare, G.O.; Scully, J.R.

    1999-01-01

    The Yucca Mountain Site Characterization Project is concerned with the corrosion resistance of candidate engineered waste package materials. A variety of waste package designs have been proposed for US and Canadian High Level Nuclear Waste Repositories. A common feature of each design is the possibility of utilizing a corrosion resistant material such as a nickel-based super alloy or titanium-based alloy. A suitable corrosion resistant material may provide (a) kinetic immunity if the combination of repository environmental conditions and alloy resistance assure both: (i) a passive condition with negligible chance of localized corrosion stabilization, as well as (ii) low enough passive dissolution rates to insure conventional corrosion allowance over geological times, (b) a second form of ''corrosion allowance,'' if it can be scientifically demonstrated that a mechanism for stifling (i.e., death) of localized corrosion propagation occurs well before waste canisters are penetrated, or (c) such a low probability of initiation and continued propagation that a tolerably low degree of penetration occurs. Unfortunately, a large database on the crevice corrosion properties of alloy 22 does not exist in comparison to alloy 625. Alloy screening tests in oxidizing acids containing FeCl3 indicate that alloy 22 is more resistant to crevice corrosion than 625 as indicated by critical pit and crevice temperatures. Differences in alloying element compositions as expressed by pitting resistance equivalency number calculations support these findings. However, these data only provide the relative ranking of these alloys in terms of crevice corrosion and do not answer the critical questions proposed above

  20. Improvements in the corrosion resistance and biocompatibility of biomedical Ti–6Al–7Nb alloy using an electrochemical anodization treatment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Wu, Chia-Ping; Sun, Ying-Sui [Department of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2013-01-01

    The biocompatibility of an implant material is determined by its surface characteristics. This study investigated the application of an electrochemical anodization surface treatment to improve both the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for implant applications. The electrochemical anodization treatment produced an Al-free oxide layer with nanoscale porosity on the Ti–6Al–7Nb alloy surface. The surface topography and microstructure of Ti–6Al–7Nb alloy were analyzed. The corrosion resistance was investigated using potentiodynamic polarization curve measurements in simulated blood plasma (SBP). The adhesion and proliferation of human bone marrow mesenchymal stem cells to test specimens were evaluated using various biological analysis techniques. The results showed that the presence of a nanoporous oxide layer on the anodized Ti–6Al–7Nb alloy increased the corrosion resistance (i.e., increased the corrosion potential and decreased both the corrosion rate and the passive current) in SBP compared with the untreated Ti–6Al–7Nb alloy. Changes in the nanotopography also improved the cell adhesion and proliferation on the anodized Ti–6Al–7Nb alloy. We conclude that a fast and simple electrochemical anodization surface treatment improves the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for biomedical implant applications. - Highlights: ► Simple/fast electrochemical anodization was applied to biomedical Ti–6Al–7Nb surface. ► Anodized surface had nano-porous topography and contained Al-free oxide layer. ► Anodized surface raised corrosion resistance in three simulated biological solutions. ► Anodized surface enhanced cell adhesion and cell proliferation. ► Electrochemical anodization has potential as biomedical implant surface treatment.

  1. Improvements in the corrosion resistance and biocompatibility of biomedical Ti–6Al–7Nb alloy using an electrochemical anodization treatment

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Lee, Tzu-Hsin

    2013-01-01

    The biocompatibility of an implant material is determined by its surface characteristics. This study investigated the application of an electrochemical anodization surface treatment to improve both the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for implant applications. The electrochemical anodization treatment produced an Al-free oxide layer with nanoscale porosity on the Ti–6Al–7Nb alloy surface. The surface topography and microstructure of Ti–6Al–7Nb alloy were analyzed. The corrosion resistance was investigated using potentiodynamic polarization curve measurements in simulated blood plasma (SBP). The adhesion and proliferation of human bone marrow mesenchymal stem cells to test specimens were evaluated using various biological analysis techniques. The results showed that the presence of a nanoporous oxide layer on the anodized Ti–6Al–7Nb alloy increased the corrosion resistance (i.e., increased the corrosion potential and decreased both the corrosion rate and the passive current) in SBP compared with the untreated Ti–6Al–7Nb alloy. Changes in the nanotopography also improved the cell adhesion and proliferation on the anodized Ti–6Al–7Nb alloy. We conclude that a fast and simple electrochemical anodization surface treatment improves the corrosion resistance and biocompatibility of Ti–6Al–7Nb alloy for biomedical implant applications. - Highlights: ► Simple/fast electrochemical anodization was applied to biomedical Ti–6Al–7Nb surface. ► Anodized surface had nano-porous topography and contained Al-free oxide layer. ► Anodized surface raised corrosion resistance in three simulated biological solutions. ► Anodized surface enhanced cell adhesion and cell proliferation. ► Electrochemical anodization has potential as biomedical implant surface treatment

  2. Development of high performance and low radio activation concrete material for concrete cask

    International Nuclear Information System (INIS)

    Shirai, Koji; Sonobe, Ryoji

    2005-01-01

    For the realization of the long-term storage of the nuclear spent fuel with the concrete cask technology, a low radio activation high performance concrete was developed, which contains extremely small quantity of Eu and Co and assures enough heat-resistance and durability for degradation. Firstly, the activation analysis was performed to estimate the allowable content limit of their quantities according to the rules issued by Japanese government for determining the classification of the radioactive waste. Secondly, various candidate materials were sampled and irradiated to find out the activation level. As a result, as the optimum concrete mix, the combination of limestone and white fused alumina aggregates with fry-ash was chosen. Moreover, the basic characteristics of the candidate concrete (workability, strength under high temperature, heat conductivity and so on) were evaluated, and the thermal cracking test was executed with hollow cylinders. Finally, the developed concrete material seems to be suitable for the long-term use of concrete cask considering the low activation, high heat resistance and durability during storage. (author)

  3. High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites.

    Science.gov (United States)

    Erden, Fuat; Li, Hui; Wang, Xizu; Wang, FuKe; He, Chaobin

    2018-04-04

    In the present work, we report the fabrication of high-performance thermoelectric materials using TiO2/CNT/PANI ternary composites. We showed that a conductivity of ∼2730 S cm-1 can be achieved for the binary CNT (70%)/PANI (30%) composite, which is the highest recorded value for the reported CNT/PANI composites. We further demonstrated that the Seebeck coefficient of CNT/PANI composites could be enhanced by incorporating TiO2 nanoparticles into the binary CNT/PANI composites, which could be attributed to lower carrier density and the energy scattering of low-energy carriers at the interfaces of TiO2/a-CNT and TiO2/PANI. The resulting TiO2/a-CNT/PANI ternary system exhibits a higher Seebeck coefficient and enhanced thermoelectric power. Further optimization of the thermoelectric power was achieved by water treatment and by tuning the processing temperature. A high thermoelectric power factor of 114.5 μW mK-2 was obtained for the ternary composite of 30% TiO2/70% (a-CNT (70%)/PANI (30%)), which is the highest reported value among the reported PANI based ternary composites. The improvement of thermoelectric performance by incorporation of TiO2 suggests a promising approach to enhance power factor of organic thermoelectric materials by judicial tuning of the carrier concentration and electrical conductivity.

  4. Development of organic-inorganic double hole-transporting material for high performance perovskite solar cells

    Science.gov (United States)

    Jo, Jea Woong; Seo, Myung-Seok; Jung, Jae Woong; Park, Joon-Suh; Sohn, Byeong-Hyeok; Ko, Min Jae; Son, Hae Jung

    2018-02-01

    The control of the optoelectronic properties of the interlayers of perovskite solar cells (PSCs) is crucial for achieving high photovoltaic performances. Of the solution-processable interlayer candidates, NiOx is considered one of the best inorganic hole-transporting layer (HTL) materials. However, the power conversion efficiencies (PCEs) of NiOx-based PSCs are limited by the unfavorable contact between perovskite layers and NiOx HTLs, the high density of surface trap sites, and the inefficient charge extraction from perovskite photoactive layers to anodes. Here, we introduce a new organic-inorganic double HTL consisting of a Cu:NiOx thin film passivated by a conjugated polyelectrolyte (PhNa-1T) film. This double HTL has a significantly lower pinhole density and forms better contact with perovskite films, which results in enhanced charge extraction. As a result, the PCEs of PSCs fabricated with the double HTL are impressively improved up to 17.0%, which is more than 25% higher than that of the corresponding PSC with a Cu:NiOx HTL. Moreover, PSCs with the double HTLs exhibit similar stabilities under ambient conditions to devices using inorganic Cu:NiOx. Therefore, this organic-inorganic double HTL is a promising interlayer material for high performance PSCs with high air stability.

  5. Study through potentiodynamic techniques of the corrosion resistance of different aluminium base MMC's with boron additions

    International Nuclear Information System (INIS)

    Abenojar, J.; Bautista, A.; Guzman, S.; Velasco, F.; Martinez, M.A.

    2009-01-01

    This paper compares a wrought aluminium with a PM aluminium and PM aluminium alloys with boron-base additions, containing boron carbide and Fe/B (obtained by mechanical alloying during 36 hours from a Fe-B 50% mixture by weight). The effect of sintering temperature for the Fe/B containing material and the effect of mechanical alloying for the boron carbide containing aluminium alloy on the corrosion resistance of those materials have been studied. Their behaviour is followed through cyclic anodic polarization curves in chloride media. In the Al+20%Fe/B composite, low sintering temperatures (650- 950 deg C) exert a negative effect. However, when the material was sintered at high temperature (1000-1100 deg C) its behaviour was very similar to the PM pure aluminium. The effect of mechanical alloying studied in aluminium with boron carbide was also important in corrosion resistance, finding a lower corrosion rate in the mechanically alloyed material. (author)

  6. Thermal properties and corrosion resistance of organoclay/epoxy resin film

    Science.gov (United States)

    Baiquni, M.; Soegijono, B.

    2018-03-01

    Hybrid materials organoclay/epoxy resin films were prepared by varying organoclay content in epoxy resin as a matrix. The film were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermal conductivity. TGA and FT-IR results confirmed that the melting temperature shifted to a lower point. The thermal conductivity and corrosion resistant generally increase with increasing organoclay content. The changes on these properties may due to cross link between organoclay and epoxy.

  7. Alpha prime effect on mechanical properties and corrosion resistance of UR 52N+ duplex stainless steel

    International Nuclear Information System (INIS)

    Fontes, Talita Filier

    2009-01-01

    Alpha prime phase leads to decreased corrosion resistance and mechanical properties losses of duplex stainless steels. In this work mechanical and electrochemical tests were performed in duplex stainless steel UR 52N+ aged at 475 degree C for various periods in order to determine the sensibility of these tests to alpha prime presence. Hardness tests showed a gradual increase in its values; on the other hand, impact tests revealed that the material aged for 12h losses about 80% of energy absorption capacity of the solution annealed sample. Notwithstanding cyclic polarization tests showed that significant changes are only noted for aging times greater than 96h. (author)

  8. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  9. Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material

    International Nuclear Information System (INIS)

    Barua, Shaswat; Dutta, Nipu; Karak, Niranjan; Karmakar, Sanjeev; Chattopadhyay, Pronobesh; Aidew, Lipika; Buragohain, Alak K

    2014-01-01

    Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48–58 MPa) and elongation at break (11.9–16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration. (paper)

  10. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers.

    Science.gov (United States)

    Cai, Jie; Niu, Haitao; Li, Zhenyu; Du, Yong; Cizek, Pavel; Xie, Zongli; Xiong, Hanguo; Lin, Tong

    2015-07-15

    Nitrogen-functionalized carbon nanofibers (N-CNFs) were prepared by carbonizing polypyrrole (PPy)-coated cellulose NFs, which were obtained by electrospinning, deacetylation of electrospun cellulose acetate NFs, and PPy polymerization. Supercapacitor electrodes prepared from N-CNFs and a mixture of N-CNFs and Ni(OH)2 showed specific capacitances of ∼236 and ∼1045 F g(-1), respectively. An asymmetric supercapacitor was further fabricated using N-CNFs/Ni(OH)2 and N-CNFs as positive and negative electrodes. The supercapacitor device had a working voltage of 1.6 V in aqueous KOH solution (6.0 M) with an energy density as high as ∼51 (W h) kg(-1) and a maximum power density of ∼117 kW kg(-1). The device had excellent cycle lifetime, which retained ∼84% specific capacitance after 5000 cycles of cyclic voltammetry scans. N-CNFs derived from electrospun cellulose may be useful as an electrode material for development of high-performance supercapacitors and other energy storage devices.

  11. Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material.

    Science.gov (United States)

    Barua, Shaswat; Dutta, Nipu; Karmakar, Sanjeev; Chattopadhyay, Pronobesh; Aidew, Lipika; Buragohain, Alak K; Karak, Niranjan

    2014-04-01

    Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48-58 MPa) and elongation at break (11.9-16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration.

  12. Influence of heat treatment on corrosive resistance of concrete steels

    International Nuclear Information System (INIS)

    Woldan, A.; Suliga, I.; Kusinski, J.; Jazowy, R.

    1998-01-01

    The reinforcing bars are essential elements of ferro-concrete structures. During the building structure service the reinforcing bars should co-operate with surrounding concrete. Any bonding defects as well as corrosion induced strength reduction may result in construction failure. The reinforcing steel working environment is determined by concrete chemical and phase composition and surrounding environmental properties. The aggressive corrosive activity of the letter implies necessity of effective ways development to protect elements against corrosion. The effect of heat treatment, increased Si content in steel on corrosion resistance of reinforcing steel in concrete was studied in the current work. Corrosion tests and metallographic examinations proved a positive influence of hardening and Si enrichment on corrosion resistance of reinforcing bars in ferro-concrete structures. (author)

  13. Investigation on the corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Fauvet, P.; Mur, P.

    1990-01-01

    Zirconium in nitric solutions exhibits an excellent corrosion resistance in the passive state, and a mediocre corrosion resistance in the unpassive state with risk of stress corrosion cracking. Results of the influence of some parameters (medium, potential, temperature, stress, friction, metallurgical structure and surface state) on zirconium passivation are presented. Zirconium remains passive in a large range of HNO 3 concentration (at least up to 14.4N), in the presence of oxidizing ions (Cr 4 , Ce 4 ), in a spent fuel dissolution solution. Zirconium is depassived by friction at high speed and pressure, by platinum coupling in boiling 14.4N HNO 3 with or without stress, or by imposed deformation speed under high potential. (A.B.)

  14. On the corrosion resistance of 01Kh25 ferritic steel

    International Nuclear Information System (INIS)

    Eremeeva, R.A.; Koval', E.K.

    1989-01-01

    Effect of non-ferrous metal ions on corrosion behaviour of 01Kh25 specific low carbon steel as compared to austenitic 12Kh18N10T and 06KhN28MDT steels in boiling solutions of sulfuric and nitric acids and their mixture is studied. Compositions initating commercial ones are chosen the media. It is shown that trough corrosion resistance of 01Kh25 steel in 10% H 2 SO 4 is two order below 06KhN28MDT austenitic steel in presence of Cu 2+ ions as a result of the surface passivation corrosion resistance of ferritic steel is an order higher the austenitic ones. Ferrite steel resistance in the nitric acid and its mixture with sulfuric acid is five timesas much as in 12Kh18N10T austenitic steel

  15. Corrosion Resistance of Zinc Coatings With Aluminium Additive

    Directory of Open Access Journals (Sweden)

    Votava Jiří

    2014-08-01

    Full Text Available This paper is focused on evaluation of anticorrosion protection of inorganic metal coatings such as hot-dipped zinc and zinc-galvanized coatings. The thickness and weight of coatings were tested. Further, the evaluation of ductile characteristics in compliance with the norm ČSN EN ISO 20482 was processed. Based on the scratch tests, there was evaluated undercorrosion in the area of artificially made cut. Corrosion resistance was evaluated in compliance with the norm ČSN EN ISO 9227 (salt-spray test. Based on the results of the anticorrosion test, there can be stated corrosion resistance of each individual protective coating. Tests were processed under laboratory conditions and may vary from tests processed under conditions of normal atmosphere.

  16. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  17. Possible origin of superior corrosion resistance for electrodeposited nanocrystalline Ni

    International Nuclear Information System (INIS)

    Roy, I.; Yang, H.W.; Dinh, L.; Lund, I.; Earthman, J.C.; Mohamed, F.A.

    2008-01-01

    We present here for the first time observations that grain boundaries in electrodeposited (ED) nanocrystalline (nc) Ni are predominantly of Σ3 character. The results presented are based on orientation imaging microscopy (OIM) performed to produce electron backscatter diffraction (EBSD) maps. This large volume fraction of coherent low sigma coincidence site lattice (CSL) boundaries appears to be consistent with the superior corrosion resistance of ED nc-Ni in comparison with its coarse-grained counterpart

  18. Corrosion resistant coatings suitable for elevated temperature application

    Science.gov (United States)

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  19. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings

    Science.gov (United States)

    Szeptycka, Benigna; Gajewska-Midzialek, Anna; Babul, Tomasz

    2016-08-01

    The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed an important role of graphene in an increased corrosion resistance of these coatings. Watts-type nickel plating bath with low concentration of nickel ions, organic addition agents, and graphene as dispersed particles were used for deposition of the composite coatings nickel-graphene. The results of investigations of composite coatings nickel-graphene deposited from the bath containing 0.33, 0.5, and 1 g/dm3 graphene and one surface-active substance were shown. The contents of particles in coatings, the surface morphology, the cross-sectional structures of the coated samples, and their thickness and the internal stresses were studied. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The application of organic compounds was advantageous because it caused compressive stresses in the deposited coatings. All of the nickel-graphene composite layers had better corrosion resistance than the nickel coating.

  20. Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance

    Science.gov (United States)

    Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker

    2018-04-01

    In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.

  1. Effect of ion nitridation process on hardness and the corrosion resistance of biomaterials

    International Nuclear Information System (INIS)

    Wirjoadi; Lely Susita; Bambang Siswanto; Sudjatmoko

    2012-01-01

    Ion nitriding process has been performed on metal biomaterials to improve their mechanical properties of materials, particularly to increase hardness and corrosion resistance. This metallic biomaterials used for artificial bone or a prosthetic graft and used as devices of orthopedic biomaterials are usually of 316L SS metal-type and Ti-6Al-4V alloy. The purpose of this study is to research the development and utilization of ion nitridation method in order to get iron and titanium nitride thin films on the metallic biomaterials for artificial bone that has wear resistance and corrosion resistance is better. Microhardness of the samples was measured using a microhardness tester, optimum hardness of SS 316L samples are about 582 VHN, this was obtained at the nitriding temperature of 500 °C, the nitriding time of 3 hours and the nitrogen gas pressure of 1.6 mbar, while optimum hardness of Ti-6Al-4V alloy is 764 VHN, this was obtained at the nitriding temperature of 500 °C, the nitriding time of 4 hours and the nitrogen gas pressure of 1.6 mbar. The hardness value of SS 316L sample and Ti-6Al-4V alloy increase to 143% and 153%, if compared with standard samples. The optimum corrosion resistance at temperature of 350 °C for SS 316L and Ti-6Al-4V are 260,12 and 110,49 μA/cm 2 or corrosion rate are 29,866 and 15,189 mpy, respectively. (author)

  2. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments.

    Science.gov (United States)

    Mercieca, Sven; Caligari Conti, Malcolm; Buhagiar, Joseph; Camilleri, Josette

    2018-01-01

    The aim of this study was to compare the degradation resistance of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys used as a base material for partial dentures in contact with saliva. Wiron® 99 and Wironit Extra-Hard® were selected as representative casting alloys for Ni-Cr and Co-Cr alloys, respectively. The alloys were tested in contact with deionized water, artificial saliva and acidified artificial saliva. Material characterization was performed by X-ray diffractometry (XRD) and microhardness and nanohardness testing. The corrosion properties of the materials were then analyzed using open circuit potential analysis and potentiodynamic analysis. Alloy leaching in solution was assessed by inductively coupled plasma mass spectrometry techniques. Co-Cr alloy was more stable than the Ni-Cr alloy in all solutions tested. Leaching of nickel and corrosion attack was higher in Ni-Cr alloy in artificial saliva compared with the acidified saliva. The corrosion resistance of the Co-Cr alloy was seen to be superior to that of the Ni-Cr alloy, with the former exhibiting a lower corrosion current in all test solutions. Microstructural topographical changes were observed for Ni-Cr alloy in contact with artificial saliva. The Ni-Cr alloy exhibited microstructural changes and lower corrosion resistance in artificial saliva. The acidic changes did not enhance the alloy degradation. Ni-Cr alloys are unstable in solution and leach nickel. Co-Cr alloys should be preferred for clinical use.

  3. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    Science.gov (United States)

    Peyvandi, Amirpasha

    Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. Thoroughly dispersed and well-bonded nanomaterials provide for effective control of the size and propagation of defects (microcracks) in matrix, and also act as closely spaced barriers against diffusion of moisture and aggressive solutions into concrete. Modified graphite nanomaterials can play multi-faceted roles towards enhancing the mechanical, physical and functional attributes of concrete materials. Graphite nanoplatelets (GP) and carbon nanofibers (CNF) were chosen for use in cementitious materials. Experimental results highlighted the balanced gains in diverse engineering properties of high-performance concrete realized by introduction of graphite nanomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy was used in order to gain further insight into the effects of nanomaterials on the hydration process and structure of cement hydrates. NMR exploits the magnetic properties of certain atomic nuclei, and the sensitivity of these properties to local environments to generate data which enables determination of the internal structure, reaction state, and chemical environment of molecules and bulk materials. 27 Al and 29Si NMR spectroscopy techniques were employed in order to evaluate the effects of graphite nanoplatelets on the structure of cement hydrates, and their resistance to alkali-silica reaction (ASR), chloride ion diffusion, and sulfate attack. Results of 29Si NMR spectroscopy indicated that the percent condensation of C-S-H in cementitious paste was lowered in the presence of nanoplatelets at the same age. The extent of chloride diffusion was assessed indirectly by detecting Friedel's salt as a reaction product of chloride ions with aluminum-bearing cement hydrates. Graphite nanoplatelets were found to significantly reduce the concentration of Friedel's salt at different depths after various periods

  4. Effect of Bi on the corrosion resistance of zirconium alloys

    International Nuclear Information System (INIS)

    Yao Meiyi; Zhou Bangxin; Li Qiang; Zhang Weipeng; Zhu Li; Zou Linghong; Zhang Jinlong; Peng Jianchao

    2014-01-01

    In order to investigate systematically the effect of Bi addition on the corrosion resistance of zirconium alloys, different zirconium-based alloys, including Zr-4 (Zr-l.5Sn-0.2Fe-0.1Cr), S5 (Zr-0.8Sn-0.35Nb-0.4Fe-0.1Cr), T5 (Zr-0.7Sn-l.0Nb-0.3Fe-0.1Cr) and Zr-1Nb, were adopted to prepare the zirconium alloys containing Bi of 0∼0.5% in mass fraction. These alloys were denoted as Zr-4 + xBi, S5 + xBi, T5 + xBi and Zr-1Nb + xBi, respectively. The corrosion behavior of these specimens was investigated by autoclave testing in lithiated water with 0.01 M LiOH or deionized water at 360 ℃/18.6 MPa and in superheated steam at 400 ℃/10.3 MPa. The microstructure of the alloys was examined by TEM and the second phase particles (SPPs) were analyzed by EDS. Microstructure observation shows that the addition of Bi promotes the precipitation of Sn as second phase particles (SPPs) because Sn is in solid solution in α-Zr matrix in Zr-4, S5 and T5 alloys. The concentration of Bi dissolved in α-Zr matrix increase with the increase of Nb in the alloys, and the excess Bi precipitates as Bi-containing SPPs. The corrosion results show that the effect of Bi addition on the corrosion behavior of different zirconium-based alloys is very complicated, depending on their compositions and corrosion conditions. In the case of higher Bi concentration in α-Zr, the zirconium alloys exhibit better corrosion resistance. However, in the case of precipitation of Bi-containing SPPs, the corrosion resistance gets worse. This indicates that the solid solution of Bi in α-Zr matrix can improve the corrosion resistance, while the precipitation of the Bi-containing SPPs is harmful to the corrosion resistance. (authors)

  5. The corrosion resistance of Nitinol alloy in simulated physiological solutions

    International Nuclear Information System (INIS)

    Milošev, Ingrid; Kapun, Barbara

    2012-01-01

    The corrosion behaviour of Nitinol alloy containing nearly equi-atomic composition of nickel and titanium and its constituent metals (nickel and titanium) was investigated in simulated Hanks physiological solution (pH value 7.5) and pH modified simulated Hanks physiological solution (pH values 4.5 and 6.5) and by electrochemical method of anodic potentiodynamic polarization at 37 °C. In this chloride-rich medium the corrosion stability of Nitinol is limited by the susceptibility to localized corrosion and is in that sense more similar to nickel than to titanium. The corrosion stability of Nitinol is strongly dependent on the surface preparation—grinding, polishing or chemical etching. Whereas a ground surface is not resistant to localized corrosion, polished and chemically etched surfaces are resistant to this type of corrosion attack. The reasons for this behaviour were investigated through metallurgical, topographical and chemical properties of the surface as a function of surface preparation. For that purpose, scanning electron microscopy combined with chemical analysis, confocal microscopy and X-ray photoelectron spectroscopy were used. The surface roughness decreased in the following order: chemically etched > ground > polished surface. Besides differences in topography, distinct differences in the chemical composition of the outermost surface are observed. Ground, rough surfaces comprised mainly titanium oxides and small amounts of nickel metal. Chemically etched and, especially, polished surfaces are composed of a mixture of titanium, nickel and titanium oxides, as studied by angle resolved X-ray photoelectron spectroscopy. These results emphasize the importance of detailed investigation of the metal surface since small differences in surface preparation may induce large differences in corrosion stability of material when exposed to corrosive environments. - Highlights: ► The corrosion resistance of Nitinol is dependent on the surface preparation.

  6. Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel

    Science.gov (United States)

    Markwitz, A.; Kennedy, J.

    2017-10-01

    A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.

  7. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    Science.gov (United States)

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society

  8. Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062

    Science.gov (United States)

    Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.

    2017-03-01

    The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.

  9. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    Science.gov (United States)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-03-01

    The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks' solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  10. Plasma nitriding of a precipitation hardening stainless steel to improve erosion and corrosion resistance

    International Nuclear Information System (INIS)

    Cabo, Amado; Bruhl, Sonia P.; Vaca, Laura S.; Charadia, Raul Charadia

    2010-01-01

    Precipitation hardening stainless steels are used as structural materials in the aircraft and the chemical industry because of their good combination of mechanical and corrosion properties. The aim of this work is to analyze the structural changes produced by plasma nitriding in the near surface of Thyroplast PH X Supra®, a PH stainless steel from ThyssenKrupp, and to study the effect of nitriding parameters in wear and corrosion resistance. Samples were first aged and then nitriding was carried out in an industrial facility at two temperatures, with two different nitrogen partial pressures in the gas mixture. After nitriding, samples were cut, polished, mounted in resin and etched with Vilella reagent to reveal the nitrided case. Nitrided structure was also analyzed with XRD. Erosion/Corrosion was tested against sea water and sand flux, and corrosion in a salt spray fog (ASTM B117). All nitrided samples presented high hardness. Samples nitrided at 390 deg C with different nitrogen partial pressure showed similar erosion resistance against water and sand flux. The erosion resistance of the nitrided samples at 500 deg C was the highest and XRD revealed nitrides. Corrosion resistance, on the contrary, was diminished; the samples suffered of general corrosion during the salt spray fog test. (author)

  11. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys.

    Science.gov (United States)

    Zhao, Ying; Jamesh, Mohammed Ibrahim; Li, Wing Kan; Wu, Guosong; Wang, Chenxi; Zheng, Yufeng; Yeung, Kelvin W K; Chu, Paul K

    2014-01-01

    Magnesium alloys are potential biodegradable materials and have received increasing attention due to their outstanding biological performance and mechanical properties. However, rapid degradation in the physiological environment and potential toxicity limit clinical applications. Recently, special magnesium-calcium (Mg-Ca) and magnesium-strontium (Mg-Sr) alloys with biocompatible chemical compositions have been reported, but the rapid degradation still does not meet clinical requirements. In order to improve the corrosion resistance, a rough, hydrophobic and ZrO(2)-containing surface film is fabricated on Mg-Ca and Mg-Sr alloys by dual zirconium and oxygen ion implantation. Weight loss measurements and electrochemical corrosion tests show that the corrosion rate of the Mg-Ca and Mg-Sr alloys is reduced appreciably after surface treatment. A systematic investigation of the in vitro cellular response and antibacterial capability of the modified binary magnesium alloys is performed. The amounts of adherent bacteria on the Zr-O-implanted and Zr-implanted samples diminish remarkably compared to the unimplanted control. In addition, significantly enhanced cell adhesion and proliferation are observed from the Zr-O-implanted sample. The results suggest that dual zirconium and oxygen ion implantation, which effectively enhances the corrosion resistance, in vitro biocompatibility and antimicrobial properties of Mg-Ca and Mg-Sr alloys, provides a simple and practical means to expedite clinical acceptance of biodegradable magnesium alloys. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    Science.gov (United States)

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  13. Development of high-performance sintered friction material for synchronizer ring; Koseino shoketsu synchronizer ring masatsu zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, K; Fuwa, Y; Okajima, H; Yoshikawa, K [Toyota Motor Corp., Aichi (Japan); Nakamura, M [Japan Powder Metallurgy Co. Ltd., Tokyo (Japan)

    1997-10-01

    Increasing vehicle speed and power, high-performance synchronizer ring of manual transmission is required. We develop double layer sintered synchronizer ring for high performance and cost reduction. The main structure is consisted of ferrous sinter for high strength. In this paper, friction materials of sintered synchronizer ring are studied. We can get the good friction and anti-wear property by means of hard particles (FeTi, ZrO2), solid lubricant (Graphite) and suitable porosity in brass sinter matrix. And we also achieve high joining strength between double layers adding Cu-P material. 6 refs., 13 figs., 2 tabs.

  14. Corrosion resistance of Fe-based amorphous alloys

    International Nuclear Information System (INIS)

    Botta, W.J.; Berger, J.E.; Kiminami, C.S.; Roche, V.; Nogueira, R.P.; Bolfarini, C.

    2014-01-01

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe 66 B 30 Nb 4 , [(Fe 0.6 Co 0.4 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , [(Fe 0.7 Co 0.3 ) 0.75 B 0.2 Si 0.05 ] 96 Nb 4 , Fe 56 Cr 23 Ni 5.7 B 16 , Fe 53 Cr 22 Ni 5.6 B 19 and Fe 50 Cr 22 Ni 5.4 B 23 . The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau

  15. Development of weldable, corrosion-resistant iron-aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  16. Corrosion resistance of zirconium: general mechanisms, behaviour in nitric acid

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1990-01-01

    Corrosion resistance of zirconium results from the strong affinity of this metal for oxygen; as a result a thin protective oxide film is spontaneously formed in air or aqueous media, its thickness and properties depending on the physicochemical conditions at the interface. This film passivates the underlying metal but obviously if the passive film is partially or completely removed, localised or generalised corrosion phenomena will occur. In nitric acid, this depassivation may be chemical (fluorides) or mechanical (straining, creep, fretting). In these cases it is useful to determine the physicochemical conditions (concentration, temperature, potential, stress) which will have to be observed to use safely zirconium and its alloys in nitric acid solutions [fr

  17. Corrosion Resistance of Some Stainless Steels in Chloride Solutions

    Directory of Open Access Journals (Sweden)

    Kasprzyk D.

    2017-06-01

    Full Text Available The present work compares corrosion behaviour of four types of S30403, S31603, S32615 austenitic and S32404 austenitic-ferritic stainless steels in chloride solutions (1%, 3% NaCl and in Ringer solution, at 37°C temperature. Corrosion resistance was determined by potentiodynamic polarization measurements and a thirty day immersion test conducted in Ringer solution. The immersion test was performed in term of biomedical application. These alloy were spontaneously passivated in all electrolytes, wherein S30403, S31603 and S32404 undergo pitting corrosion. Only S32615 containing 5.5% Si shows resistance to pitting corrosion.

  18. Galvanic corrosion resistance of welded dissimilar nickel-base alloys

    International Nuclear Information System (INIS)

    Corbett, R.A.; Morrison, W.S.; Snyder, R.J.

    1986-01-01

    A program for evaluating the corrosion resistance of various dissimilar welded nickel-base alloy combinations is outlined. Alloy combinations included ALLCORR, Hastelloy C-276, Inconel 72 and Inconel 690. The GTAW welding process involved both high and minimum heat in-put conditions. Samples were evaluated in the as-welded condition, as well as after having been aged at various condtions of time and temperature. These were judged to be most representative of process upset conditions which might be expected. Corrosion testing evaluated resistance to an oxidizing acid and a severe service environment in which the alloy combinations might be used. Mechanical properties are also discussed

  19. Effects of the Solid Solution Heat Treatment on the Corrosion Resistance Property of SSC13 Cast Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk-Jin [Hi-Sten Co., Ltd., Gimhae (Korea, Republic of); Lim, Su Gun [Gyeongsang National University, Jinju (Korea, Republic of); Pak, S. J. [Gachon BioNano Research Institute, Gachon University, Sungnam (Korea, Republic of)

    2015-04-15

    Recently, Stainless steels have been increasingly selected as the fitting or the valve materials of water pipes as the human health issue is getting higher and higher. Therefore, the connectors attached at pipes to deliver water are exposed to more severe environments than the pipes because crevice or galvanic corrosion is apt to occur at the fittings or the valves. Effects of the solid solution annealing, cooling rate after this heat treatment, and passivation on the corrosion properties of the shell mold casted SSC13 (STS304 alloy equivalent) were studied. The heating and quenching treatment more or less reduced hardness but effectively improved corrosion resistance. It was explained by the reduction of delta ferrite contents. Independent of heat treatment, the chemical passivation treatment also lowered corrosion rate but the improvement of corrosion resistance depended on temperature and time for passivation treatment indicating that the optimum conditions for passivation treatment were the bath temperature of 34 .deg. C and operating time of 10 minutes. Therefore it is suggested that the corrosion resistance of SSC13 can be effectively improved with the heat treatment, where SSC13 is heated for 10 minutes at 1120 °C and quenched and passivation treatment, where SSC13 is passivated for at least 10 seconds at 34 °C nitric acid solution.

  20. Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance

    International Nuclear Information System (INIS)

    Pacquentin, Wilfried; Caron, Nadège; Oltra, Roland

    2014-01-01

    Surface modifications of AISI 304L stainless steel by laser surface melting (LSM) were investigated using a nanosecond pulsed laser-fibre doped by ytterbium at different overlaps. The objective was to study the change in the corrosion properties induced by the treatment of the outer-surface of the stainless steel without modification of the bulk material. Different analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and glow discharge optical emission spectrometry (GDOES) were used to characterize the laser-melted surface. The corrosion resistance was evaluated in a chloride solution at room temperature by electrochemical tests. The results showed that the crystallographic structure, the chemical composition, the properties of the induced oxide layer and consequently the pitting corrosion resistance strongly depend on the overlap rate. The most efficient laser parameters led to an increase of the pitting potential by more than 300 mV, corresponding to a quite important improvement of the corrosion resistance. This latter was correlated to chromium enrichment (47 wt.%) at the surface of the stainless steel and the induced absence of martensite and ferrite phases. However, these structural and chemical modifications were not sufficient to explain the change in corrosion behaviour: defects and adhesion of the surface oxide layer must have been taken into consideration.

  1. Investigation on the of effect of self assembling molecules on the corrosion resistance of the 1050 aluminium alloy

    International Nuclear Information System (INIS)

    Szurkalo, Margarida

    2009-01-01

    Surface treatments are widely used to increase the corrosion resistance of metallic materials. Specifically for aluminum and aluminum alloys, treatment with hexavalent chromium is one of the most used, due to its efficiency and ease of application. However, because of environmental restrictions and the high cost involved in the treatments of waste generated in this process, alternative methods for its replacement are necessary. In this context, this study investigated the effect of the surface treatment with self-assembling molecules (SAM) based on phosphonate compounds on the corrosion of the 1050 aluminum alloy. The conditions adopted for the SAM treatment were determined by conductivity and contact angle measurements, besides electrochemical experiments. Electrochemical techniques, specifically: measurement of the open circuit potential (OCP) variation with time, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves were used to evaluate the corrosion resistance of the 1050 aluminum alloy exposed to SAM treatment The experimental impedance diagrams were interpreted using equivalent electrical circuit models that simulate film that is formed on the alloy surface. The results of the samples treated with SAM were compared with those of samples either without any treatment or treated with chromatizing conversion coating with Cr(VI) and showed that the first treatment significantly increased the corrosion resistance of the aluminum alloy and approached that of chromatizing with Cr(VI) process. (author)

  2. Testing of corrosion resistant materials for evaporation plants for waste water from wet scrubbing of flue gas from power plants; Erprobung korrosionsbestaendiger Werkstoffe fuer Eindampfanlagen fuer Abwasser aus der Rauchgasreinigung von Grossfeuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, G. [Institut fuer Korrosionsschutz GmbH, Dresden (Germany); Stenner, F.; Brill, U. [Krupp-VDM GmbH, Werdohl (Germany)

    2001-07-01

    High alloyed superaustenitic steels and NiCrMo alloys are recommended in consequence of the results of extensive laboratory corrosion experiments under the strong corrosive conditions with up to 360 g chloride content at temperatures up to 85 C. Because results of laboratory corrosion tests are only of limited relevance to the behaviour in practice, field tests were carried out with immersion of welded materials and of heat exchanger tubes under operating conditions of an evaporation plant for waste water from flue gas desulphurization of a coal-fired power plant. Different kinds of high alloy superaustenitic steels and NiCrMo alloys were studied as TIG-welded specimens in immersion tests. (orig.) [German] Hochlegierte Sonderedelstaehle und NiCrMo-Legierungen empfehlen sich aufgrund der Ergebnisse umfassender Laboruntersuchungen unter den stark korrosiven Bedingungen fuer Eindampfanlagen fuer Abwasser aus der Nassreinigung von Rauchgasen von Grossfeuerungsanlagen mit bis zu 360 g/l Chloridgehalt und Temperaturen bis zu 85 C. Weil aber Ergebnisse von Laborpruefungen nur begrenzte Aussagefaehigkeit fuer das Verhalten unter Praxisbedingungen haben, wurden Feldversuche mit der Auslagerung geschweisster Werkstoffe und von Waermetauscherrohren unter Betriebsbedingungen einer Eindampfanlage fuer Abwasser aus der Rauchgasentschwefelung eines kohlebefeuerten Kraftwerks durchgefuehrt. (orig.)

  3. Corrosion resistance characterization of porous alumina membrane supports

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yingchao, E-mail: dongyc9@mail.ustc.edu.cn [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland); USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Lin Bin [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Zhou Jianer [Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Zhang Xiaozhen [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Ling Yihan; Liu Xingqin; Meng Guangyao [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Hampshire, Stuart [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-04-15

    Tubular porous alumina ceramic membrane supports were fabricated by an extrusion-drying-sintering process and then characterized in detail in terms of corrosion resistance in both H{sub 2}SO{sub 4} and NaOH aqueous solutions. Variations in the properties of the alumina supports such as mass loss percent, mechanical strength, open porosity and pore size distribution were studied before and after corrosion under different conditions. In addition, the microstructures were analyzed using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction before and after corrosion. The fabricated porous alumina supports offer possibilities for some potential applications as micro-filtration or ultra-filtration membrane supports, as well as in the pre-treatment of strongly acidic industrial waste-liquids. - Research highlights: {yields} Porous alumina membrane supports fabricated by extrusion-drying-sintering process. {yields} Corrosion resistance in 20 wt.% H{sub 2}SO{sub 4} and 1, 5, 10 wt.% NaOH aqueous solutions. {yields} Rapid mass loss and loss of flexural strength occurred in hot NaOH solution. {yields} Resistant to strong acid corrosion with low mass loss, low flexural strength loss. {yields} Porous alumina supports have potential for treatment of strong acid waste liquids.

  4. Corrosion resistance of metals and alloys in molten alkalies

    International Nuclear Information System (INIS)

    Zarubitskij, O.G.; Dmitruk, B.F.; Minets, L.A.

    1979-01-01

    Literature data on the corrosion of non-ferrous and noble metals, iron and steels in the molten alkalis and mixtures of their base are presented. It is shown that zirconium, niobium and tantalum are characterized by high corrosion stability in the molten NaOH. Additions of NaOH and KOH to the alkali chloride melts result in a 1000 time decrease of zirconium corrosion rate at 850 deg. The data testify to the characteristic passivating properties of OH - ions; Mo and W do not possess an ability to selfpassivation in hydroxide melts. Corrosion resistance of carbon and chromium-nickel steels in hydroxide melts depends considerably on the temperature, electrolyte composition and atmosphere over them. At the temperatures up to 600 deg C chromium-nickel steel is corrosion resistant in the molten alkali only in the inert atmosphere. Corrosion rate of chromium-nickel alloy is the lower the less chromium and the more nickel it contains. For the small installations the 4Kh18N25S2 and Kh23N28M3D3T steels can be recommended

  5. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study

    Directory of Open Access Journals (Sweden)

    Venith Jojee Pulikkottil

    2016-01-01

    Full Text Available Objective: (1 To evaluate the corrosion resistance of four different orthodontic archwires and to determine the effect of 0.5% NaF (simulating high fluoride-containing toothpaste of about 2250 ppm on corrosion resistance of these archwires. (2 To assess whether surface roughness (Ra is the primary factor influencing the corrosion resistance of these archwires. Materials and Methods: Four different archwires (stainless steel [SS], nickel-titanium [NiTi], titanium molybdenum alloy [TMA], and ion-implanted TMA were considered for this study. Surface characteristics were analyzed using scanning electron microscopy, atomic force microscopy (AFM, and energy dispersive spectroscopy. Linear polarization test, a fast electrochemical technique, was used to evaluate the corrosion resistance, in terms of polarization resistance of four different archwires in artificial saliva with NaF concentrations of 0% and 0.5%. Statistical analysis was performed by one-way analysis of variance. Results: The potentiostatic study reveals that the corrosion resistance of low-friction TMA (L-TMA > TMA > NiTi > SS. AFM analysis showed the surface Ra of TMA > NiTi > L-TMA > SS. This indicates that the chemical composition of the wire is the primary influential factor to have high corrosion resistance and surface Ra is only secondary. The corrosion resistance of all wires had reduced significantly in 0.5% acidic fluoride-containing artificial saliva due to formation of fluoride complex compound. Conclusion: The presence of 0.5% NaF in artificial saliva was detrimental to the corrosion resistance of the orthodontic archwires. Therefore, complete removal of residual high-fluorinated toothpastes from the crevice between archwire and bracket during tooth brushing is mandatory.

  6. Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.

    Science.gov (United States)

    Wang, Kai-Xue; Zhu, Qian-Cheng; Chen, Jie-Sheng

    2018-05-11

    Rechargeable aprotic lithium (Li)-O 2 batteries with high theoretical energy densities are regarded as promising next-generation energy storage devices and have attracted considerable interest recently. However, these batteries still suffer from many critical issues, such as low capacity, poor cycle life, and low round-trip efficiency, rendering the practical application of these batteries rather sluggish. Cathode catalysts with high oxygen reduction reaction (ORR) and evolution reaction activities are of particular importance for addressing these issues and consequently promoting the application of Li-O 2 batteries. Thus, the rational design and preparation of the catalysts with high ORR activity, good electronic conductivity, and decent chemical/electrochemical stability are still challenging. In this Review, the strategies are outlined including the rational selection of catalytic species, the introduction of a 3D porous structure, the formation of functional composites, and the heteroatom doping which succeeded in the design of high-performance cathode catalysts for stable Li-O 2 batteries. Perspectives on enhancing the overall electrochemical performance of Li-O 2 batteries based on the optimization of the properties and reliability of each part of the battery are also made. This Review sheds some new light on the design of highly active cathode catalysts and the development of high-performance lithium-O 2 batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Processing bulk natural wood into a high-performance structural material

    Science.gov (United States)

    Jianwei Song; Chaoji Chen; Shuze Zhu; Mingwei Zhu; Jiaqi Dai; Upamanyu Ray; Yiju Li; Yudi Kuang; Yongfeng Li; Nelson Quispe; Yonggang Yao; Amy Gong; Ulrich H. Leiste; Hugh A. Bruck; J. Y. Zhu; Azhar Vellore; Heng Li; Marilyn L. Minus; Zheng Jia; Ashlie Martini; Teng Li; Liangbing Hu

    2018-01-01

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites)1–8. Natural wood is a low-cost and abundant material and has been used...

  8. Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution

    International Nuclear Information System (INIS)

    Chelariu, R.; Bolat, G.; Izquierdo, J.; Mareci, D.; Gordin, D.M.; Gloriant, T.; Souto, R.M.

    2014-01-01

    Graphical abstract: - Highlights: • Microstructural and electrochemical characterization of metastable beta Ti-Nb-Mo alloys for biomedical implantation. • Corrosion resistance was established in 0.9 wt% NaCl saline solution at 25 °C using conventional and microelectrochemical techniques. • The materials spontaneously form passivating oxide films on their surface. • Surface films are stable for polarizations more positive than those encountered in the human body. • The addition of niobium to Ti12Mo enhances the capacitive characteristics of the passivating oxide layers. - Abstract: The present study explores the microstructural characteristics and electrochemical responses of four metastable beta Ti-Nb-Mo alloys for biomedical implantation. They were synthesized by the cold crucible levitation melting technique, and compositions were selected to keep the molybdenum equivalency close to 12 wt% Mo eq . For the sake of comparison, Ti12Mo was also investigated. Microstructural characterization reveals that all the alloys are β (body-centred cubic structure), and the surface is composed by β equiaxial grains with dimensions in the range of tens to hundreds μm. The corrosion resistance (potentiodynamic polarization and electrochemical impedance spectroscopy) of the alloys was determined in 0.9 wt% NaCl saline solution at 25 °C. The materials spontaneously form a passivating oxide film on their surface, and they are stable for polarizations up to +1.0 V SCE . No evidence of localized breakdown of the oxide layers is found for polarizations more positive than those encountered in the human body. The passive layers show dielectric characteristics, and the wide frequency ranges displaying capacitive characteristics occur for both higher niobium contents in the alloy and longer exposures to the saline solution. The insulating characteristics of the oxide-covered surfaces were investigated by scanning electrochemical microscopy operated in the feedback mode

  9. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    Science.gov (United States)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  10. An Influence of Ageing on the Structure, Corrosion Resistance and Hardness of High Aluminum ZnAl40Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-03-01

    Full Text Available Zn-Al-Cu alloys are used primarily because of their tribological properties as an alternative material for bronze, cast iron and aluminum alloy bearings and as a construction material. Particularly interesting are high aluminum zinc alloys. Monoeutectic zinc and aluminum alloys are characterized by the highest hardness, tensile strength and wear resistance of all of the zinc alloys. A significant problem with the use of the Zn-Al-Cu alloys is their insufficient resistance to electrochemical corrosion. Properties of Zn-Al-Cu alloys can be improved by heat treatment. The purpose of examination was to determine the effect of heat treatment (aging at various temperatures on the microstructure and corrosion resistance of the ZnAl40Cu3 alloy. The scope of the examination included: structural examinations, determination of hardness using Brinell’s method and corrosion resistance examinations. Ageing at higher temperatures causes a creation of areas where is an eutectoid mixture. The study showed that ageing causes a decrease in hardness of ZnAl40Cu3 alloy. This decrease is even greater, when the temperature of ageing is lower. The studies have shown a significant influence of ageing on the corrosion resistance of the alloy ZnAl40Cu3. Maximum corrosion resistance were characterized by the sample after ageing at higher temperatures.

  11. Different immersion periods and aqueous solutions effects upon the corrosion resistance of zinc and aluminium specimens

    Directory of Open Access Journals (Sweden)

    Osório, W. R.

    2005-12-01

    Full Text Available Several metallic materials form spontaneously an oxide film at the surface when is exposed in a corrosive environment. It is well known that the type of corrosive media may develop different results at the material corrosion resistance. The aim of the present paper is to investigate the influence of immersion periods and different solutions upon the corrosion resistance of pure Zn and Al specimens presenting different grain morphologies. The specimens were monitored for several periods in a 3 % NaCl solution at room temperature. Tests were also performed with variations of the 3 % NaCl solution modified by additions of acid and alkaline components. Both the electrochemical impedance spectroscopy (EIS and polarization methods were applied.

    Algunos materiales metálicos, cuando se encuentran en un entorno corrosivo, forman espontáneamente una película de óxido en su superficie. Se sabe que los medios corrosivos pueden dar resultados diferentes, según sea la resistencia a la corrosión del material. El propósito del siguiente trabajo es investigar la influencia de los períodos de inmersión en diferentes soluciones sobre la resistencia a la corrosión de probetas de cinc y aluminio puros, con morfologías de grano diferentes. Las probetas fueron ensayadas durante varios períodos de tiempo en soluciones de NaCl 3 % y también con adiciones de ácidos y bases. Se utilizaron las técnicas de espectrometría de impedancia electroquímica (EIS y de polarización.

  12. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    Science.gov (United States)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is

  13. Nanomechanical analysis of high performance materials (solid mechanics and its applications)

    CERN Document Server

    2013-01-01

    This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have contributed chapters. Novices will learn the techniques directly from the inventors and senior researchers will gain in-depth information on the new technologies that are suitable for advanced analysis. On one hand, fundamental concepts that are needed to understand the nanomechanical behavior of materials is included in the i...

  14. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Scott [Northwestern Univ., Evanston, IL (United States); Poeppelmeier, Ken [Northwestern Univ., Evanston, IL (United States); Mason, Tom [Northwestern Univ., Evanston, IL (United States); Marks, Lawrence [Northwestern Univ., Evanston, IL (United States); Voorhees, Peter [Northwestern Univ., Evanston, IL (United States)

    2016-09-07

    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encountered in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.

  15. Effects of alloying elements on nodular and uniform corrosion resistance of zirconium-based alloys

    International Nuclear Information System (INIS)

    Abe, Katsuhiro

    1992-01-01

    The effects of alloying and impurity elements (tin, iron, chromium, nickel, niobium, tantalum, oxygen, aluminum, carbon, nitrogen, silicon, and phosphorus) on the nodular and uniform corrosion resistance of zirconium-based alloys were studied. The improving effect of iron, nickel and niobium in nodular corrosion resistance were observed. The uniform corrosion resistance was also improved by nickel, niobium and tantalum. The effects of impurity elements, nitrogen, aluminum and phosphorus were negligibly small but increasing the silicon content seemed to improve slightly the uniform corrosion resistance. Hydrogen pick-up fraction were not changed by alloying and impurity elements except nickel. Nickel addition increased remarkably hydrogen pick-up fraction. Although the composition of secondary precipitates changed with contents of alloying elements, the correlation of composition of secondary precipitates to corrosion resistance was not observed. (author)

  16. Acquisition of a High Performance Computer Cluster for Materials Research and Education

    Science.gov (United States)

    2015-04-17

    NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER Form Approved OMB NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 17-04-2015 1-Feb-2014 31-Jan...significantly reduce the time and labour required for materials development. The proposed cluster will also play an important role for education and...the paradigm of materials design based on time-consuming trial-and-error experiments and significantly reduce the time and labour required for

  17. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials.

    Science.gov (United States)

    Li, Shaohui; Chen, Jingwei; Cui, Mengqi; Cai, Guofa; Wang, Jiangxin; Cui, Peng; Gong, Xuefei; Lee, Pooi See

    2017-02-01

    Lithium-ion capacitors (LICs) are promising electrical energy storage systems for mid-to-large-scale applications due to the high energy and large power output without sacrificing long cycle stability. However, due to the different energy storage mechanisms between anode and cathode, the energy densities of LICs often degrade noticeably at high power density, because of the sluggish kinetics limitation at the battery-type anode side. Herein, a high-performance LIC by well-defined ZnMn 2 O 4 -graphene hybrid nanosheets anode and N-doped carbon nanosheets cathode is presented. The 2D nanomaterials offer high specific surface areas in favor of a fast ion transport and storage with shortened ion diffusion length, enabling fast charge and discharge. The fabricated LIC delivers a high specific energy of 202.8 Wh kg -1 at specific power of 180 W kg -1 , and the specific energy remains 98 Wh kg -1 even when the specific power achieves as high as 21 kW kg -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials.

    Science.gov (United States)

    Sun, Hongmei; He, Wenhui; Zong, Chenghua; Lu, Lehui

    2013-03-01

    The urgent need for sustainable development has forced material scientists to explore novel materials for next-generation energy storage devices through a green and facile strategy. In this context, yeast, which is a large group of single cell fungi widely distributed in nature environments, will be an ideal candidate for developing effective electrode materials with fascinating structures for high-performance supercapacitors. With this in mind, herein, we present the first example of creating three-dimensional (3D) interpenetrating macroporous carbon materials via a template-free method, using the green, renewable, and widespread yeast cells as the precursors. Remarkably, when the as-prepared materials are used as the electrode materials for supercapacitors, they exhibit outstanding performance with high specific capacitance of 330 F g(-1) at a current density of 1 A g(-1), and good stability, even after 1000 charge/discharge cycles. The approach developed in this work provides a new view of making full use of sustainable resources endowed by nature, opening the avenue to designing and producing robust materials with great promising applications in high-performance energy-storage devices.

  19. Thermal behaviour and corrosion resistance of nano-ZnO/polyurethane film

    Science.gov (United States)

    Virgawati, E.; Soegijono, B.

    2018-03-01

    Hybrid materials Nano-ZnO/polyurethane film was prepared with different zinc oxide (ZnO) content in polyurethane as a matrix. The film was deposited on low carbon steel plate using high volume low pressure (HVLP) method. To observe thermal behaviour of the film, the sample was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to see whether any chemical reaction of ZnO in polyurethane occured. TGA and FTIR results showed that the decomposition temperature shifted to a higher point and the chemical reaction of zinc oxide in polyurethane occurred. The surface morphology changed and the corrosion resistance increased with an increase of ZnO content

  20. Investigation and technical reviews of the long term stability and corrosion resistance of engineering barriers

    International Nuclear Information System (INIS)

    Tachikawa, Hirokazu

    2004-03-01

    The Japan Nuclear Fuel Cycle Development Institute submitted 'Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan' to the Japanese government. This report contains investigations of the long term behavior of alteration of bentonite, and of the corrosion life time of overpack on the basis of experimental data and past research, assuming the ranging geological environment of Japan. However some subjects, such as the behavior of the bentonite and overpack under high pH conditions and the behavior of the engineering barrier with change of near-field environmental condition with time for promoting reliability have still been left. To take into account these conditions, expert committees composed of clay science and metal corrosion science experts were established in the Nuclear Safety Research Association and past research outcomes and the theory of safety assessment were investigated and technically reviewed from the view points of long term stability and corrosion resistance of engineering buffer materials. (author)

  1. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, S.S.M., E-mail: ssmtavares@terra.com.b [Universidade Federal Fluminense - Programa de Pos-graduacao em Engenharia Mecanica (PGMEC), Rua Passo da Patria, 156 - CEP 24210-240 - Niteroi/RJ (Brazil); Silva, F.J. da; Scandian, C. [Universidade Federal do Espirito Santo - Departamento de Engenharia Mecanica - Av. Fernando Ferrrari, 514 - CEP 29075-910 - Vitoria/ES (Brazil); Silva, G.F. da [Universidade Federal Fluminense - Programa de Pos-graduacao em Engenharia Mecanica (PGMEC), Rua Passo da Patria, 156 - CEP 24210-240 - Niteroi/RJ (Brazil); Abreu, H.F.G. de [Universidade Federal do Ceara - Departamento de Engenharia Metalurgica e Materiais - Campus do Pici, Bloco 702 - CEP 60455-760 - Fortaleza/CE (Brazil)

    2010-11-15

    UNS S17400 or 17-4PH is a precipitation hardening martensitic stainless steel with many industrial applications. Quite different mechanical properties can be produced in this material by varying the aging temperature. In this work, the influence of aging temperature on the intergranular corrosion susceptibility was evaluated by electrochemical and metallographic tests. The microstructural features were investigated by X-ray diffraction, optical and scanning electron microscopy. Intergranular chromium carbide precipitation occurs in specimens aged at high temperatures, although NbC carbides were also observed. The results obtained by double loop electrochemical potentiodynamic reactivation tests (DL-EPR) show that the susceptibility to intergranular corrosion resistance increases with the increase of aging temperature. Healing due to Cr diffusion in the 600-650 {sup o}C range was not observed by DL-EPR tests.

  2. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel

    International Nuclear Information System (INIS)

    Tavares, S.S.M.; Silva, F.J. da; Scandian, C.; Silva, G.F. da; Abreu, H.F.G. de

    2010-01-01

    UNS S17400 or 17-4PH is a precipitation hardening martensitic stainless steel with many industrial applications. Quite different mechanical properties can be produced in this material by varying the aging temperature. In this work, the influence of aging temperature on the intergranular corrosion susceptibility was evaluated by electrochemical and metallographic tests. The microstructural features were investigated by X-ray diffraction, optical and scanning electron microscopy. Intergranular chromium carbide precipitation occurs in specimens aged at high temperatures, although NbC carbides were also observed. The results obtained by double loop electrochemical potentiodynamic reactivation tests (DL-EPR) show that the susceptibility to intergranular corrosion resistance increases with the increase of aging temperature. Healing due to Cr diffusion in the 600-650 o C range was not observed by DL-EPR tests.

  3. Accelerated SCC Testing of Stainless Steels According to Corrosion Resistance Classes

    Energy Technology Data Exchange (ETDEWEB)

    Borchert, M.; Mori, G. [General Analytical and Physical Chemistry, Montanuniversitaet Leoben (Austria); Bischof, M.; Tomandl, A. [Hilti Corporation, Liechtenstein (Austria)

    2015-12-15

    The German Guidelines for stainless steel in buildings (Z.30.3-6) issued by the German Institute for Building Technology (DIBt) categorize various stainless steel grades into five corrosion resistance classes (CRCs). Only 21 frequently used grades are approved and assigned to these CRCs. To assign new or less commonly used materials, a large program of outdoor exposure tests and laboratory tests is required. The present paper shows the results of stress corrosion cracking (SCC) tests that can distinguish between different CRCs. Slow strain rate tests (SSRT) were performed in various media and at different temperatures. CRC IV could be distinguished from CRC II and CRC III with a 31.3 % Cl{sup -} as MgCl{sub 2} solution at 140 .deg. C. CRC II and CRC III could be differentiated by testing in a 30% Cl{sup -} as MgCl{sub 2} solution at 100 .deg. C.

  4. Evaluation of properties of low activation Mn-Cr steel. 3. Evaluation of corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukaya, Kiyoshi [Nihon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan); Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Takeshi [Japan Steel Works Ltd., Muroran, Hokkaido (Japan). Muroran Plant; Takahashi, Heishichiro [Hokkaido Univ., Sapporo, Hokkaido (Japan); Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-05-01

    JAERI and the Japan Steel Works LTD. (JSW) have developed new Mn-Cr steels as low induced activation material. Until now, chemical composition and metallurgical processes were optimized and some steels named VC-series were selected. The properties of the steels have been evaluated and reported elsewhere. In this study, corrosion resistance of VC-series was studied. Corrosion tests for stainless steels were performed to investigate a relationship between corrosion rate and chemical composition or sensitization. Furthermore, corrosion tests under actual environment for the vacuum vessel of the reinforced JT-60 were done for non-magnetic steels. As a result, almost no weight change was observed for uniform and gap corrosion tests, No crack was shown for double U-bend corrosion tests. (author)

  5. A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance

    Science.gov (United States)

    Qing, Yongquan; Yang, Chuanning; Hu, Chuanbo; Zheng, Yansheng; Liu, Changsheng

    2015-01-01

    In this paper, we report a simple and inexpensive method for fabricating fluorinated polysiloxane/ZnO nanocomposite coatings on the steel substrates. The surface wettability and topology of coating were characterized by contact angle measurement, scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic sbnd CH3 and sbnd CH2sbnd groups were introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to fluorinated polysiloxane was 13:7, the contact angle of nanocomposite coating was 166°, and a sliding angle of 4°, coating surface with hierarchical micro/nano-structures. In addition, the as-prepared superhydrophobic surface has excellent durability and corrosion resistance. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on steel materials.

  6. MaMR: High-performance MapReduce programming model for material cloud applications

    Science.gov (United States)

    Jing, Weipeng; Tong, Danyu; Wang, Yangang; Wang, Jingyuan; Liu, Yaqiu; Zhao, Peng

    2017-02-01

    With the increasing data size in materials science, existing programming models no longer satisfy the application requirements. MapReduce is a programming model that enables the easy development of scalable parallel applications to process big data on cloud computing systems. However, this model does not directly support the processing of multiple related data, and the processing performance does not reflect the advantages of cloud computing. To enhance the capability of workflow applications in material data processing, we defined a programming model for material cloud applications that supports multiple different Map and Reduce functions running concurrently based on hybrid share-memory BSP called MaMR. An optimized data sharing strategy to supply the shared data to the different Map and Reduce stages was also designed. We added a new merge phase to MapReduce that can efficiently merge data from the map and reduce modules. Experiments showed that the model and framework present effective performance improvements compared to previous work.

  7. From rice husk to high performance shape stabilized phase change materials for thermal energy storage

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Latibari, Sara Tahan; Rosen, Marc A.

    2016-01-01

    A novel shape-stabilized phase change material (SSPCM) was fabricated by using a vacuum impregnation technique. The lightweight, ultra-high specific surface area and porous activated carbon was prepared from waste material (rice husk) through the combination of an activation temperature approach...... and a sodium hydroxide activation procedure. Palmitic acid as a phase change material was impregnated into the porous carbon by a vacuum impregnation technique. Graphene nanoplatelets (GNPs) were employed as an additive for thermal conductivity enhancement of the SSPCMs. The attained composites exhibited...... exceptional phase change behavior, having a desirable latent heat storage capacity of 175 kJ kg(-1). When exposed to high solar radiation intensities, the composites can absorb and store the thermal energy. An FTIR analysis of the SSPCMs indicated that there was no chemical interaction between the palmitic...

  8. Hierarchical porous carbon materials derived from petroleum pitch for high-performance supercapacitors

    Science.gov (United States)

    Abudu, Patiman; Wang, Luxiang; Xu, Mengjiao; Jia, Dianzeng; Wang, Xingchao; Jia, Lixia

    2018-06-01

    In this work, a honeycomb-like carbon material derived from petroleum pitch was synthesized by a simple one-step carbonization/activation method using silica nanospheres as the hard templates. The obtained hierarchical porous carbon materials (HPCs) with a large specific surface area and uniform macropore distribution provide abundant active sites and sufficient ion migration channels. When used as an electrode material for supercapacitors, the HPCs exhibit a high specific capacitance of 341.0 F g-1 at 1 A g-1, excellent rate capability with a capacitance retention of 55.6% at 50 A g-1 (189.5 F g-1), and outstanding cycling performance in the three-electrode system.

  9. Assessing resistance of stabilized corrosion resistant steels to intergranular corrosion

    International Nuclear Information System (INIS)

    Karas, A.; Cihal, V. Jr.; Vanek, V.; Herzan, J.; Protiva, K.; Cihal, V.

    1987-01-01

    Resistance to intergranular corrosion was determined for four types of titanium-stabilized steels from the coefficients of stabilization efficiency according to the degree the chemical composition was known. The ATA SUPER steel showed the highest resistance parameter value. The resistance of this type of steel of a specific composition, showing a relatively low value of mean nitrogen content was compared with steel of an optimized chemical composition and with low-carbon niobium stabilized, molybdenum modified steels. The comparison showed guarantees of a sufficient resistance of the steel to intergranular corrosion. The method of assessing the resistance to intergranular corrosion using the calculation of the minimum content of Cr', i.e., the effective chromium content, and the maximum effective carbon content C' giving the resistance parameter k seems to be prospective for practical use in the production of corrosion resistant steels. (author). 1 tab., 5 figs., 15 refs

  10. Finite element simulations and experiments of ballistic impacts on high performance PE composite material

    NARCIS (Netherlands)

    Herlaar, K.; Jagt-Deutekom, M.J. van der; Jacobs, M.J.N.

    2005-01-01

    The use of lightweight composite armour concepts is essential for the protection of future combat systems, both vehicles and personal. The design of such armour systems is challenging due to the complex material behaviour. Finite element simulations can be used to help understand the important

  11. Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications

    International Nuclear Information System (INIS)

    Liu, Huili; Wang, Yi; Gou, Xinglong; Qi, Tao; Yang, Jun; Ding, Yulong

    2013-01-01

    Highlights: ► A novel 3D graphene showed high specific surface area and large mesopore volume. ► Aniline monomer was polymerized in the presence of 3D graphene at room temperature. ► The supercapacitive properties were studied by CV and charge–discharge tests. ► The composite show a high gravimetric capacitance and good cyclic stability. ► The 3D graphene/polyaniline has never been report before our work. -- Abstract: A novel three-dimensional (3D) graphene/polyaniline nanocomposite material which is synthesized using in situ polymerization of aniline monomer on the graphene surface is reported as an electrode for supercapacitors. The morphology and structure of the material are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The electrochemical properties of the resulting materials are systematically studied using cyclic voltammetry (CV) and constant current charge–discharge tests. A high gravimetric capacitance of 463 F g −1 at a scan rate of 1 mV s −1 is obtained by means of CVs with 3 mol L −1 KOH as the electrolyte. In addition, the composite material shows only 9.4% capacity loss after 500 cycles, indicating better cyclic stability for supercapacitor applications. The high specific surface area, large mesopore volume and three-dimensional nanoporous structure of 3D graphene could contribute to the high specific capacitance and good cyclic life

  12. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin [Northwestern Univ., Evanston, IL (United States)

    2016-11-18

    The science of organic photovoltaic (OPV) cells has made dramatic advances over the past three years with power conversion efficiencies (PCEs) now reaching ~12%. The upper PCE limit of light-to-electrical power conversion for single-junction OPVs as predicted by theory is ~23%. With further basic research, the vision of such devices, composed of non-toxic, earth-abundant, readily easily processed materials replacing/supplementing current-generation inorganic solar cells may become a reality. Organic cells offer potentially low-cost, roll-to-roll manufacturable, and durable solar power for diverse in-door and out-door applications. Importantly, further gains in efficiency and durability, to that competitive with inorganic PVs, will require fundamental, understanding-based advances in transparent electrode and interfacial materials science and engineering. This team-science research effort brought together an experienced and highly collaborative interdisciplinary group with expertise in hard and soft matter materials chemistry, materials electronic structure theory, solar cell fabrication and characterization, microstructure characterization, and low temperature materials processing. We addressed in unconventional ways critical electrode-interfacial issues underlying OPV performance -- controlling band offsets between transparent electrodes and organic active-materials, addressing current loss/leakage phenomena at interfaces, and new techniques in cost-effective low temperature and large area cell fabrication. The research foci were: 1) Theory-guided design and synthesis of advanced crystalline and amorphous transparent conducting oxide (TCO) layers which test our basic understanding of TCO structure-transport property relationships, and have high conductivity, transparency, and tunable work functions but without (or minimizing) the dependence on indium. 2) Development of theory-based understanding of optimum configurations for the interfaces between oxide electrodes

  13. 75 FR 55745 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

    Science.gov (United States)

    2010-09-14

    ... Products covered by this order are certain corrosion-resistant carbon steel flat products from Korea. These... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE...

  14. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    .... Scope of the Order Products covered by this order are certain corrosion-resistant carbon steel flat... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... countervailing duty (CVD) order on corrosion-resistant carbon steel flat products from the Republic of Korea for...

  15. 78 FR 55241 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-10

    ... merchandise covered by this Order \\2\\ is certain corrosion- resistant carbon steel flat products from Korea... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE) from the...

  16. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Science.gov (United States)

    2013-03-19

    ...] Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation of... ``ITC'') that revocation of the antidumping duty (``AD'') orders on corrosion-resistant carbon steel... (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel Flat Products From...

  17. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  18. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Zhang, Li; Amirkhiz, Babak Shalchi; Tan, Xuehai; Xu, Zhanwei; Wang, Huanlei; Olsen, Brian C.; Holt, Chris M.B.; Mitlin, David [Chemical and Materials Engineering, University of Alberta, Edmonton, AB (Canada); National Institute for Nanotechnology (NINT), NRC, Edmonton, AB (Canada)

    2012-04-15

    Supercapacitor electrode materials are synthesized by carbonizing a common livestock biowaste in the form of chicken eggshell membranes. The carbonized eggshell membrane (CESM) is a three-dimensional macroporous carbon film composed of interwoven connected carbon fibers containing around 10 wt% oxygen and 8 wt% nitrogen. Despite a relatively low surface area of 221 m{sup 2} g{sup -1}, exceptional specific capacitances of 297 F g{sup -1} and 284 F g{sup -1} are achieved in basic and acidic electrolytes, respectively, in a 3-electrode system. Furthermore, the electrodes demonstrate excellent cycling stability: only 3% capacitance fading is observed after 10 000 cycles at a current density of 4 A g{sup -1}. These very attractive electrochemical properties are discussed in the context of the unique structure and chemistry of the material. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Inherent N,O-containing carbon frameworks as electrode materials for high-performance supercapacitors.

    Science.gov (United States)

    Hu, Fangyuan; Wang, Jinyan; Hu, Shui; Li, Linfei; Wang, Gang; Qiu, Jieshan; Jian, Xigao

    2016-09-15

    N,O-Containing micropore-dominated materials have been developed successfully via temperature-dependent cross-linking of 4,4'-(dioxo-diphenyl-2,3,6,7-tetraazaanthracenediyl)dibenzonitrile (DPDN) monomers. By employing a molecular engineering strategy, we have designed and synthesized a series of porous heteroatom-containing carbon frameworks (PHCFs), in which nitrogen and oxygen heteroatoms are distributed homogeneously throughout the whole framework at the atomic level, which can ensure the stability of its electrical properties. The as-made PHCFs@550 exhibits a high specific capacitance of 378 F g -1 , with an excellent long cycling life, including excellent cycling stability (capacitance retention of ca. 120% over 20 000 cycles). Moreover, the successful preparation of PHCFs provides new insights for the fabrication of nitrogen and oxygen-containing electrode materials from readily available components via a facile route.

  20. Development, preparation, and characterization of high-performance superconducting materials for space applications. Progress Report

    International Nuclear Information System (INIS)

    Thorpe, A.N.; Barkatt, A.

    1991-12-01

    The preparation of high-temperature superconducting ceramics in bulk form is a major challenge in materials science. The current status of both partial melting and melt quenching techniques, with or without an intermediate powder processing stage, is described in detail, and the problems associated with each of the methods are discussed. Results of studies performed on melt-processed materials are reported and discussed. The discussion places emphasis on magnetization and on other physical properties associated with it, such as critical current density, levitation force, and flux creep. The nature of structural features which give rise to flux pinning, including both small and large defects, is discussed with reference to theoretical considerations. The rates of flux creep and the factors involved in attempting to retard the decay of the magnetization are surveyed

  1. Procurement of a Nanoindenter for Structure-Function Analyses of Biologically Inspired High Performance Composite Materials

    Science.gov (United States)

    2012-01-13

    abalone shell (Figures 3, 4). Here, we can see that the damage is significantly mitigated in the nacreous regions while cracks formed in the Calcitic...properties. Page 5 / 11 Identifying the crack propagation mechanisms helps to identify new designs for impact resistant materials, so the...human tooth from dentin – dentin/ enamel junction – enamel . It is clear that higher resolution scans are necessary to interrogate local structure

  2. Synthesis and characterization of prospective polyanionic electrode materials for high performance energy storage applications

    Science.gov (United States)

    Jayachandran, M.; Durai, G.; Vijayakumar, T.

    2018-04-01

    In the present study, Polyanionic compound (SO4)-group based on Li2Ni(SO4)2 (Lithium Nickel Sulphate) composite electrodes materials were prepared by a ball-milling method and solid-state reaction route. X-ray diffraction analysis confirmed the formation of a polycrystalline orthorhombic phase of composite Li2Ni(SO4)2 with an average crystallite size of about 50.16 nm. Field Emission Scanning electron microscopy investigation reveals the spherical shape particles with the particle size of around 200–500 nm. Raman and FTIR analysis confirms the structural and functional groups of the synthesized materials and also the formation of Li2Ni(SO4)2. The electrochemical measurements using cyclic voltammetry (CV) and galvanostatic charging-discharging (GCD) techniques were carried out to study the electrochemical supercapacitive performance of the composite Li2Ni (SO4)2 electrodes. From the CV investigations, an areal capacitance of 508 mF cm‑2 was obtained at 10 mV s‑1. The galvanostatic charge-discharge (GCD) measurements exhibited the areal capacitance of 101 mF cm‑2 at a constant current density of 2 mA cm‑2 in 2 M KOH. These GCD profiles were linear and also symmetric in nature with the maximum columbic efficiency of about 85%. The electrochemical performance of the composite Li2Ni(SO4)2 electrode material shows excellent performance for supercapacitor applications.

  3. A metallization and bonding approach for high performance carbon nanotube thermal interface materials

    International Nuclear Information System (INIS)

    Cross, Robert; Graham, Samuel; Cola, Baratunde A; Fisher, Timothy; Xu Xianfan; Gall, Ken

    2010-01-01

    A method has been developed to create vertically aligned carbon nanotube (VACNT) thermal interface materials that can be attached to a variety of metallized surfaces. VACNT films were grown on Si substrates using standard CVD processing followed by metallization using Ti/Au. The coated CNTs were then bonded to metallized substrates at 220 deg. C. By reducing the adhesion of the VACNTs to the growth substrate during synthesis, the CNTs can be completely transferred from the Si growth substrate and used as a die attachment material for electronic components. Thermal resistance measurements using a photoacoustic technique showed thermal resistances as low as 1.7 mm 2 K W -1 for bonded VACNT films 25-30 μm in length and 10 mm 2 K W -1 for CNTs up to 130 μm in length. Tensile testing demonstrated a die attachment strength of 40 N cm -2 at room temperature. Overall, these metallized and bonded VACNT films demonstrate properties which are promising for next-generation thermal interface material applications.

  4. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor.

    Science.gov (United States)

    Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-08-15

    Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Graphene/VO2 hybrid material for high performance electrochemical capacitor

    International Nuclear Information System (INIS)

    Deng, Lingjuan; Zhang, Gaini; Kang, Liping; Lei, Zhibin; Liu, Chunling; Liu, Zong-Huai

    2013-01-01

    Graphical abstract: Graphene/VO 2 hybrid materials are prepared by one-step simultaneous hydrothermal reduction technology. The prepared graphene (1.0)/VO 2 hybrid material shows a specific capacitances of 225 F g −1 in 0.5 mol L −1 K 2 SO 4 solution. Furthermore, an asymmetric electrochemical capacitor with graphene (1.0)/VO 2 as a positive electrode and graphene as a negative electrode is assembled, and it can work in a cell voltage of 1.7 V and show excellent capacitive property. - Highlights: • Graphene/VO 2 hybrid material has been prepared by one-step hydrothermal reduction. • Graphene/VO 2 hybrid material exhibits high specific capacitance. • An asymmetric capacitor working at 1.7 V in aqueous solution is assembled based on graphene/VO 2 electrode. • The asymmetric capacitor exhibits high energy density. - Abstract: Vanadium oxides have attracted significant attention for electrochemical capacitor because of their extensive multifunctional properties. In the present work, graphene/VO 2 (RG/VO 2 ) hybrid materials with different RG amounts are prepared in a mixture of ammonium vanadate, formic acid and graphite oxide (GO) nanosheets by one-step simultaneous hydrothermal reduction technology. The hydrothermal treatment makes the reduction of GO into RG and the formation of VO 2 particles with starfruit morphology. The starfruit-like VO 2 particles are uniformly embedded in the hole constructed by RG nanosheets, which makes the electrode–electrolyte contact better. A high specific capacitance of 225 F g −1 has been achieved for RG(1.0)/VO 2 electrode with RG content of 26 wt% in 0.5 mol L −1 K 2 SO 4 electrolyte. An asymmetrical electrochemical capacitor is assembled by using RG(1.0)/VO 2 as positive electrode and RG as negative electrode, and it can be reversibly charged–discharged at a cell voltage of 1.7 V in 0.5 mol L −1 K 2 SO 4 electrolyte. The asymmetrical capacitor can deliver an energy density of 22.8 Wh kg −1 at a power density

  6. Two-dimensional hierarchical porous carbon composites derived from corn stalks for electrode materials with high performance

    International Nuclear Information System (INIS)

    Xu, Haitao; Zhang, Huijuan; Ouyang, Ya; Liu, Li; Wang, Yu

    2016-01-01

    Highlights: • Novel 2D porous carbon sheets from cornstalks are obtained for the first time. • The hierarchical porous carbon nansheets are gained by chemical activation. • The porous structure facilitates ion transfer and Li-ion absorption. • The strategy are applied to both cathode and anode electrode materials. • The porous nanocomposites exhibit excellent electrochemical performance. - Abstract: Herein, we propose a novel and green strategy to convert crop stalks waste into hierarchical porous carbon composites for electrode materials of lithium-ion batteries. In the method, the sustainable crop stalks, an abundant agricultural byproduct, is recycled and treated by a simple and clean chemical activation process. Afterwards, the obtained porous template is adopted for large-scale production of high-performance anode and cathode materials for lithium-ion batteries. Due to the large surface area, hierarchical porous structures and subsize of the functional particles, the electrode materials manifest excellent electrochemical performance. In particular, the prepared TiO 2 /C composite presents a reversible specific capacity of 203 mAh g −1 after 200 cycles. Our results demonstrate that the sheetlike composites show remarkable cycling stability, high specific capacity and excellent rate ability, and thus hold promise for commercializing the high-performance electrode materials as the advanced lithium-ion batteries.

  7. Synthesis of Hierarchically Porous Sandwich-Like Carbon Materials for High-Performance Supercapacitors.

    Science.gov (United States)

    Li, Yiju; Chen, Chaoji; Gao, Tingting; Zhang, Dongming; Huang, Xiaomei; Pan, Yue; Ye, Ke; Cheng, Kui; Cao, Dianxue; Wang, Guiling

    2016-11-14

    For the first time, hierarchically porous carbon materials with a sandwich-like structure are synthesized through a facile and efficient tri-template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich-like structure has a relatively high specific surface (1235 m 2  g -1 ), large pore volume (1.30 cm 3  g -1 ), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g -1 at 0.2 A g -1 and satisfying rate performance (87.7 % retention from 1 to 20 A g -1 ). More importantly, the symmetric supercapacitor with two identical as-prepared carbon samples shows a superior energy density of 18.47 Wh kg -1 at a power density of 179.9 W kg -1 . The asymmetric supercapacitor based on as-obtained carbon sample and its composite with manganese dioxide (MnO 2 ) can reach up to an energy density of 25.93 Wh kg -1 at a power density of 199.9 W kg -1 . Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Transparent conductors based on microscale/nanoscale materials for high performance devices

    Science.gov (United States)

    Gao, Tongchuan

    Transparent conductors are important as the top electrode for a variety of optoelectronic devices, including solar cells, light-emitting diodes (LEDs), at panel displays, and touch screens. Doped indium tin oxide (ITO) thin films are the predominant transparent conductor material. However, ITO thin films are brittle, making them unsuitable for the emerging flexible devices, and suffer from high material and processing cost. In my thesis, we developed a variety of transparent conductors toward a performance comparable with or superior to ITO thin films, with lower cost and potential for scalable manufacturing. Metal nanomesh (NM), hierarchical graphene/metal microgrid (MG), and hierarchical metal NM/MG materials were investigated. Simulation methods were used as a powerful tool to predict the transparency and sheet resistance of the transparent conductors by solving Maxwell's equations and Poisson's equation. Affordable and scalable fabrication processes were developed thereafter. Transparent conductors with over 90% transparency and less than 10 O/square sheet resistance were successfully fabricated on both rigid and flexible substrates. Durability tests, such as bending, heating and tape tests, were carried out to evaluate the robustness of the samples. Haze factor, which characterizes how blurry a transparent conductor appears, was also studied in-depth using analytical calculation and numerical simulation. We demonstrated a tunable haze factor for metal NM transparent conductors and analyzed the principle for tuning the haze factor. Plasmonic effects, excited by some transparent conductors, can lead to enhanced performance in photovoltaic devices. We systematically studied the effect of incorporating metal NM into ultrathin film silicon solar cells using numerical simulation, with the aid of optimization algorithms to reduce the optimization time. Mechanisms contributing to the enhanced performance were then identified and analyzed. Over 72% enhancement in short

  9. Integrated synthesis of poly(o-phenylenediamine)-derived carbon materials for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hui; Wang, Xiaolei; Liu, Xuexia; Yang, Xiurong [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China)

    2012-12-18

    Poly(o-phenylenediamine) (POPD)-derived functional carbon materials with excellent capacitive performance are successfully synthesized by means of an integrated one-step process, in which FeCl{sub 3} not only oxidizes the polymerization of the organic monomers but also activates the carbonization. Furthermore, extensive research has proved that this strategy to discover novel carbons is useful not only for capacitors but also for other energy storage/conversion devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Integrated synthesis of poly(o-phenylenediamine)-derived carbon materials for high performance supercapacitors.

    Science.gov (United States)

    Zhu, Hui; Wang, Xiaolei; Liu, Xuexia; Yang, Xiurong

    2012-12-18

    Poly(o-phenylenediamine) (POPD)-derived functional carbon materials with excellent capacitive performance are successfully synthesized by means of an integrated one-step process, in which FeCl(3) not only oxidizes the polymerization of the organic monomers but also activates the carbonization. Furthermore, extensive research has proved that this strategy to discover novel carbons is useful not only for capacitors but also for other energy storage/conversion devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials

    OpenAIRE

    Zhao, Junhong; Wu, Jinping; Li, Bing; Du, Weimin; Huang, Qingli; Zheng, Mingbo; Xue, Huaiguo; Pang, Huan

    2016-01-01

    Polypyrrole nanowires are facile synthesized under a mild condition with FeCl3 as an oxidant. Polypyrrole nanowires with the width of 120 nm form many nanogaps or pores due to the intertwined nanostructures. More importantly, PPy nanowires were further applied for supercapacitor electrode materials. After electrochemical testing, it was observed that the PPy nanowire based electrode showed a large specific capacitance (420 F g−1, 1.5 A g−1) and good rate capability (272 F g−1, 18.0 A g−1), wh...

  12. Chromium base high performance materials: Where and how do they come from?

    Science.gov (United States)

    Choi, In-Kap

    1996-08-01

    The origin of chromium base performance materials (CBPM) is described. CBPM may include (1) trivalent chromium chemicals such as chromic acetate, chromic chloride, chromic bromide, chromic fluoride, chromic iodide, chromic phosphate, and chromic sulfate; (2) hexavalent chromium chemicals such as chromic acid, lithium chromate, sodium chromate, sodium dichromate, and potassium dichromate; (3) oxide forms of chromium such as black chrome, chromium dioxide, chromium oxide, and chromium hydroxide; and (4) other chromium compounds such as chromium aluminide, chromium boride, chromium carbide, chromium molybdate, chromium nitride, chromium silicide, chromium tungstate and lanthanum chromite. Extensive reviews of production processes, properties, and applications/end uses of CBPM are made.

  13. Graphene nanoplatelets as high-performance filtration control material in water-based drilling fluids

    Science.gov (United States)

    Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal

    2018-05-01

    The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.

  14. Graphene/MnO{sub 2} hybrid nanosheets as high performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Anjon Kumar, E-mail: Anjon.K.Mondal@student.uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Zhang, Xiaogang [College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Wang, Guoxiu, E-mail: Guoxiu.wang@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia)

    2014-01-15

    Graphene/MnO{sub 2} hybrid nanosheets were prepared by incorporating graphene and MnO{sub 2} nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO{sub 2} hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na{sub 2}SO{sub 4} electrolyte. We found that the graphene/MnO{sub 2} hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO{sub 2}) delivered the highest specific capacitance of 320 F g{sup −1}. Graphene/MnO{sub 2} hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO{sub 2} hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO{sub 2} ratios. • The graphene/MnO{sub 2} hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles.

  15. Amorphous Mn oxide-ordered mesoporous carbon hybrids as a high performance electrode material for supercapacitors.

    Science.gov (United States)

    Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop

    2012-07-01

    A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.

  16. High-performance GFRP materials with glass fibre prepregs; Hochleistungs-Faserverbundwerkstoffe aus UD-Gelegeprepregs

    Energy Technology Data Exchange (ETDEWEB)

    Prause, J.P. [Schichtstoff-Technik, Arnsberg (Germany); Schroeder, K.F. [Wissenschaftliche Verlagsanstalt, Mettmann (Germany)

    1999-07-01

    The US 3M Company is the producer of the 'Scotchply' glass fibre prepreg which results in materials that can withstand higher dynamic loads than conventional glass fibre reinforced plastics. The new materials are used, e.g., for leaf spring construction. The fatigue characteristics of GFRP leaf springs were discussed at the DGM 'Verbundwerkstoffe und Werkstoffverbunde' conference at Kaiserslauter in September 1997. This contribution presents tools for the engineer for calculation of leaf springs in consideration of the expected loads. [German] Bereits frueher konnte nachgewiesen werden, dass mit Glasgarngelegen verstaerkte Kunststoffe dynamisch hoeher beansprucht werden koennen als gleichartige Konstruktionen mit Glasgewebeverstaerkung. Dieser Vorteil wird in der industriellen Praxis genutzt, um den breiten Einsatzbereich von Blattfedern aus Stahl durch solche aus Faserverbundwerkstoffen zu erweitern. Mit Glasfasern verstaerkte Kunststoffe (GFK) sind seit Jahren Stand der Technik. Die Verarbeitung als Gelegeprepreg hat sich oekonomisch und oekologisch als eine guenstige Technologie bewaehrt. Die Prepregs werden im Wickelverfahren in die endgueltige Form gebracht oder zu Platten verpresst, aus denen die gewuenschten Werkstuecke mechanisch herausgearbeitet werden. Eine ideale Ausnutzung aller in UD-Gelegen vorgegebenen Eigenschaften ist die Form der Blattfeder. Werkstoff und Geometrie koennen optimal an die Belastung angepasst werden. Ueber die Ermuedungsfestigkeit von GFK-Blattfedern wurde waehrend der Vortragstagung der DGM 'Verbundwerkstoffe und Werkstoffverbunde' im September 1997 in Kaiserslautern eingehend berichtet. Mit dieser Veroeffentlichung soll dem Ingenieur eine Hilfe gegeben werden, solche Blattfedern entsprechend der spaeteren Beanspruchung zu berechnen. (orig.)

  17. Niobium Nitride Nb4N5 as a New High-Performance Electrode Material for Supercapacitors.

    Science.gov (United States)

    Cui, Houlei; Zhu, Guilian; Liu, Xiangye; Liu, Fengxin; Xie, Yian; Yang, Chongyin; Lin, Tianquan; Gu, Hui; Huang, Fuqiang

    2015-12-01

    Supercapacitors suffer either from low capacitance for carbon or derivate electrodes or from poor electrical conductivity and electrochemical stability for metal oxide or conducting polymer electrodes. Transition metal nitrides possess fair electrical conductivity but superior chemical stability, which may be desirable candidates for supercapacitors. Herein, niobium nitride, Nb 4 N 5 , is explored to be an excellent capacitive material for the first time. An areal capacitance of 225.8 mF cm -2 , with a reasonable rate capability (60.8% retention from 0.5 to 10 mA cm -2 ) and cycling stability (70.9% retention after 2000 cycles), is achieved in Nb 4 N 5 nanochannels electrode with prominent electrical conductivity and electrochemical activity. Faradaic pseudocapacitance is confirmed by the mechanistic studies, deriving from the proton incorporation/chemisorption reaction owing to the copious +5 valence Nb ions in Nb 4 N 5 . Moreover, this Nb 4 N 5 nanochannels electrode with an ultrathin carbon coating exhibits nearly 100% capacitance retention after 2000 CV cycles, which is an excellent cycling stability for metal nitride materials. Thus, the Nb 4 N 5 nanochannels are qualified for a candidate for supercapacitors and other energy storage applications.

  18. Printable Materials for the Realization of High Performance RF Components: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Eva S. Rosker

    2018-01-01

    Full Text Available Printing methods such as additive manufacturing (AM and direct writing (DW for radio frequency (RF components including antennas, filters, transmission lines, and interconnects have recently garnered much attention due to the ease of use, efficiency, and low-cost benefits of the AM/DW tools readily available. The quality and performance of these printed components often do not align with their simulated counterparts due to losses associated with the base materials, surface roughness, and print resolution. These drawbacks preclude the community from realizing printed low loss RF components comparable to those fabricated with traditional subtractive manufacturing techniques. This review discusses the challenges facing low loss RF components, which has mostly been material limited by the robustness of the metal and the availability of AM-compatible dielectrics. We summarize the effective printing methods, review ink formulation, and the postprint processing steps necessary for targeted RF properties. We then detail the structure-property relationships critical to obtaining enhanced conductivities necessary for printed RF passive components. Finally, we give examples of demonstrations for various types of printed RF components and provide an outlook on future areas of research that will require multidisciplinary teams from chemists to RF system designers to fully realize the potential for printed RF components.

  19. Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Mondal, Anjon Kumar; Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Zhang, Xiaogang; Wang, Guoxiu

    2014-01-01

    Graphene/MnO 2 hybrid nanosheets were prepared by incorporating graphene and MnO 2 nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO 2 hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na 2 SO 4 electrolyte. We found that the graphene/MnO 2 hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO 2 ) delivered the highest specific capacitance of 320 F g −1 . Graphene/MnO 2 hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO 2 hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO 2 ratios. • The graphene/MnO 2 hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles

  20. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    Science.gov (United States)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20

  1. Mechanical properties and corrosion resistance of supermartensitic stainless steel surfaces nitrided by plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Schibicheski, Bruna Corina Emanuely; Souza, Gelson Biscaia de; Oliveira, Willian Rafael de; Serbena, Francisco Carlos, E-mail: bruna_schibicheski@hotmail.com [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Marino, Cláudia E.B. [Universidade Federal do Paraná (UFPR), Curitiba, PR (Brazil)

    2016-07-01

    Full text: The supermartensitic stainless steel UNS S41426 is employed in marine oil and gas extraction ducts, where it is subjected to severe conditions of temperature, pressure and exposure to corrosive agents (as the H{sub 2}S). In such environments, pitting corrosion is a major cause of degradation of metallic alloys [1]. This work investigated the effectiveness of the nitrogen inlet, attained here by the plasma immersion ion implantation (PIII) technique, in improving the mechanical properties and corrosion resistance of the material surface. Samples were initially austenitized at 1100°C with a subsequent room temperature oil quenching in order to obtain a fully martensitic structure. The nitriding was carried out under 10 kV implantation energy and 30 ms pulse width. The temperatures ranged from 300 °C to 400°C, achieved by controlling the pulse repetition rates. Samples were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, instrumented indentation, scanning electron microscopy, potentiodynamic anodic polarization tests (in NaCl solution), and cathodic hydrogenation tests (in H{sub 2}SO{sub 4} solution). The PIII nitriding produced stratified layers up to 30 mm thick containing nitrogen expanded martensite and iron nitride phases (γ’-Fe{sub 4}N, ε- Fe{sub 2+x}N), depending on the treatment temperature. Consequently, the surface hardness increased from ∼3GPa (reference) up to ∼13GPa (400°C). Regarding the corrosion resistance, the nitrided surfaces presented a significant improvement as compared with the pristine surface, evidenced by the increase of the corrosion potential, which was also correlated to the hydrogen embrittlement reduction and the subsequent suppression of morphological changes. References: [1] M.G. Fontana, Corrosion Engineering, Singapore: McGraw-Hill, 1987. [2] B.C.E.S. Kurelo et al., Applied Surface Science 349 (2015) 403-414. (author)

  2. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    International Nuclear Information System (INIS)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-01-01

    Graphical abstract: - Highlights: • Laser technology is a fast, clean and flexible method for surface hardening of TNZT. • Laser can form a protective hard layer on TNZT surface without altering surface roughness. • The laser-formed layer is metallurgically bonded to the substrate. • Laser-treated TNZT is highly resistant to corrosion and wear in Hank's solution. - Abstract: The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti–Nb–Zr–Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti–35.3Nb–7.3Zr–5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  3. The effect of fatigue on the corrosion resistance of common medical alloys.

    Science.gov (United States)

    Di Prima, Matthew; Gutierrez, Erick; Weaver, Jason D

    2017-10-01

    The effect of mechanical fatigue on the corrosion resistance of medical devices has been a concern for devices that experience significant fatigue during their lifespan and devices made from metallic alloys. The Food and Drug Administration had recommended in some instances for corrosion testing to be performed on post-fatigued devices [Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. 2005: Food and Drug Administration, Center for Devices and Radiological Health], although the need for this has been debated [Nagaraja S, et al., J Biomed Mater Res Part B: Appl Biomater 2016, 8.] This study seeks to evaluate the effect of fatigue on the corrosion resistance of 5 different materials commonly used in medical devices: 316 LVM stainless steel, MP35N cobalt chromium, electropolished nitinol, mechanically polished nitinol, and black oxide nitinol. Prior to corrosion testing per ASTM F2129, wires of each alloy were split into subgroups and subjected to either nothing (that is, as received); high strain fatigue for less than 8 min; short-term phosphate buffered saline (PBS) soak for less than 8 min; low strain fatigue for 8 days; or long-term PBS soak for 8 days. Results from corrosion testing showed that the rest potential trended to an equilibrium potential with increasing time in PBS and that there was no statistical (p > 0.05) difference in breakdown potential between the fatigued and matching PBS soak groups for 9 out of 10 test conditions. Our results suggest that under these nonfretting conditions, corrosion susceptibility as measured by breakdown potential per ASTM F2129 was unaffected by the fatigue condition. 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2019-2026, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vladescu, A., E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Braic, M. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Azem, F. Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey); Titorencu, I. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Braic, V. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Pruna, V. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Kiss, A. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Parau, A.C.; Birlik, I. [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey)

    2015-11-01

    Highlights: • Hydroxyapatite has been produced at temperature from 400 to 800 °C by magnetron sputtering. • Hydroxyapatite crystallinity is improved by increasing substrate temperature. • The increase of substrate temperature resulted in corrosion resistance increasing. • The coating shows high growth of the osteosarcoma cells over a wide temperature range. - Abstract: Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  5. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  6. Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaojie; Liao, Qiaogan; Manley, Eric F.; Wu, Zishan; Wang, Yulun; Wang, Weida; Yang, Tingbin; Shin, Young-Eun; Cheng, Xing; Liang, Yongye; Chen, Lin X.; Baeg, Kang-Jun; Marks, Tobin J.; Guo, Xugang

    2016-03-15

    We report the design, synthesis, and implemention in semiconducting polymers of a novel head-to-head linkage containing the TRTOR (3-alkyl-3'-alkoxy-2,2'-bithiophene) donor subunit having a single strategically optimized, planarizing noncovalent S···O interaction. Diverse complementary thermal, optical, electrochemical, X-ray scattering, electrical, photovoltaic, and electron microscopic characterization techniques are applied to establish structure-property correlations in a TRTOR-based polymer series. In comparison to monomers having double S···O interactions, replacing one alkoxy substituent with a less electron-donating alkyl one yields TRTOR-based polymers with significantly depressed (0.2-0.3 eV) HOMOs. Furthermore, the weaker single S···O interaction and greater TRTOR steric encumberance enhances materials processability without sacrificing backbone planarity. From another perspective, TRTOR has comparable electronic properties to ring-fused 5Hdithieno[ 3,2-b:2',3'-d]pyran (DTP) subunits, but a centrosymmetric geometry which promotes a more compact and ordered structure than bulkier, axisymmetric DTP. Compared to monosubstituted TTOR (3-alkoxy-2,2'-bithiophene), alkylation at the TRTOR bithiophene 3-position enhances conjugation and polymer crystallinity with contracted π-π stacking. Grazing incidence wide-angle X-ray scattering (GIWAXS) data reveal that the greater steric hindrance and the weaker single S···O interaction are not detrimental to close packing and high crystallinity. As a proof of materials design, copolymerizing TRTOR with phthalimides yields copolymers with promising thin-film transistor mobility as high as 0.42 cm2/(V·s) and 6.3% power conversion efficiency in polymer solar cells, the highest of any phthalimide copolymers reported to date. The depressed TRTOR HOMOs imbue these polymers with substantially increased Ion/Ioff ratios and Voc’s versus analogous subunits with multiple electron donating

  7. Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaojie [Shenzhen Key Laboratory; Liao, Qiaogan [Shenzhen Key Laboratory; Manley, Eric F. [Department; Chemical; Wu, Zishan [Shenzhen Key Laboratory; Wang, Yulun [Shenzhen Key Laboratory; Wang, Weida [Shenzhen Key Laboratory; Yang, Tingbin [Shenzhen Key Laboratory; Shin, Young-Eun [Department; Cheng, Xing [Shenzhen Key Laboratory; Liang, Yongye [Shenzhen Key Laboratory; Chen, Lin X. [Department; Chemical; Baeg, Kang-Jun [Department; Marks, Tobin J. [Department; Guo, Xugang [Shenzhen Key Laboratory

    2016-03-15

    We report the design, synthesis, and implemention in semiconducting polymers of a novel head-to-head linkage containing the TRTOR (3-alkyl-3'-alkoxy-2,2'-bithiophene) donor subunit having a single strategically optimized, planarizing noncovalent S···O interaction. Diverse complementary thermal, optical, electrochemical, X-ray scattering, electrical, photovoltaic, and electron microscopic characterization techniques are applied to establish structure–property correlations in a TRTOR-based polymer series. In comparison to monomers having double S···O interactions, replacing one alkoxy substituent with a less electron-donating alkyl one yields TRTOR-based polymers with significantly depressed (0.2–0.3 eV) HOMOs. Furthermore, the weaker single S···O interaction and greater TRTOR steric encumberance enhances materials processability without sacrificing backbone planarity. From another perspective, TRTOR has comparable electronic properties to ring-fused 5H-dithieno[3,2-b:2',3'-d]pyran (DTP) subunits, but a centrosymmetric geometry which promotes a more compact and ordered structure than bulkier, axisymmetric DTP. Compared to monosubstituted TTOR (3-alkoxy-2,2'-bithiophene), alkylation at the TRTOR bithiophene 3-position enhances conjugation and polymer crystallinity with contracted π–π stacking. Grazing incidence wide-angle X-ray scattering (GIWAXS) data reveal that the greater steric hindrance and the weaker single S···O interaction are not detrimental to close packing and high crystallinity. As a proof of materials design, copolymerizing TRTOR with phthalimides yields copolymers with promising thin-film transistor mobility as high as 0.42 cm2/(V·s) and 6.3% power conversion efficiency in polymer solar cells, the highest of any phthalimide copolymers reported to date. The depressed TRTOR HOMOs imbue these polymers with substantially increased Ion/Ioff ratios and Voc’s versus analogous subunits with multiple electron

  8. Ag/MnO₂ Nanorod as Electrode Material for High-Performance Electrochemical Supercapacitors.

    Science.gov (United States)

    Guo, Zengcai; Guan, Yuming; Dai, Chengxiang; Mu, Jingbo; Che, Hongwei; Wang, Guangshuo; Zhang, Xiaoliang; Zhang, Zhixiao; Zhang, Xiliang

    2018-07-01

    A one-dimensional hierarchical Ag nanoparticle (AgNP)/MnO2 nanorod (MND) nanocomposite was synthesized by combining a simple solvothermal method and a facile reduction approach in situ. Owing to its high electrical conductivity, the resulting AgNP/MND nanocomposite displayed a high specific capacitance of 314 F g-1 at a current density of 2 A g-1, which was much higher than that of pure MNDs (178 F g-1). Resistances of the electrolyte (Rs) and charge transportation (Rct) of the nanocomposite were much lower than that of pure MNDs. Moreover, the nanocomposite exhibited outstanding long-term cycling ability (9% loss of initial capacity after 1000 cycles). These results indicated that the nanocomposite could serve as a promising and useful electrode material for future energy-storage applications.

  9. High-performance zig-zag and meander inductors embedded in ferrite material

    International Nuclear Information System (INIS)

    Stojanovic, Goran; Damnjanovic, Mirjana; Desnica, Vladan; Zivanov, Ljiljana; Raghavendra, Ramesh; Bellew, Pat; Mcloughlin, Neil

    2006-01-01

    This paper describes the design, modeling, simulation and fabrication of zig-zag and meander inductors embedded in low- or high-permeability soft ferrite material. These microinductors have been developed with ceramic coprocessing technology. We compare the electrical properties of zig-zag and meander inductors structures installed as surface-mount devices. The equivalent model of the new structures is presented, suitable for design, circuit simulations and for prediction of the performance of proposed inductors. The relatively high impedance values allow these microinductors to be used in high-frequency suppressors. The components were tested in the frequency range of 1 MHz-3 GHz using an Agilent 4287A RF LCR meter. The measurements confirm the validity of the analytical model

  10. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    Science.gov (United States)

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  11. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials

    Directory of Open Access Journals (Sweden)

    Junhong Zhao

    2016-06-01

    Full Text Available Polypyrrole nanowires are facile synthesized under a mild condition with FeCl3 as an oxidant. Polypyrrole nanowires with the width of 120 nm form many nanogaps or pores due to the intertwined nanostructures. More importantly, PPy nanowires were further applied for supercapacitor electrode materials. After electrochemical testing, it was observed that the PPy nanowire based electrode showed a large specific capacitance (420 F g−1, 1.5 A g−1 and good rate capability (272 F g−1, 18.0 A g−1, which is larger than that of most of published results. The as-prepared electrode can work well even after 8000 cycles at 1.5 A g−1.

  12. Electrospun fibers for high performance anodes in microbial fuel cells. Optimizing materials and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuiliang

    2010-04-15

    the results of above, the porosity and the pore size in the fiber mat are utmost important for the performance of anode in MFCs. With concept of curve or helix in fibers can lead to higher porosity in the fiber mat, a novel 3D porous architecture, nanospring, was designed for high performance anode structure in future MFC. Polymeric nanospring was prepared by bicomponent electrospinning. The reasons for the formation of polymeric nanosprings were investigated by coaxial electrospinning of bicomponent rigid i.e. Nomex {sup registered} or polysulfonamide (PSA) (rigid) and flexible polymers i.e. thermoplastic polyurethane (TPU) (flexible). The results indicated that the nanospring formation is attributed to longitudinal compressive forces which are resulted from the different shrinkages of the rigid and flexible two polymer components and a good electrical conductivity of one of the polymer solutions in coaxial electrospinning system. The modified electrospinning i.e. off-centered electrospinning and side-by-side electrospinning are much more effective than the coaxial electrospinning for generating polymer spring or helical structures, because of the higher longitudinal compressive forces which derived from the lopsided elastic forces. The aligned nanofiber mat with high percent of nanospring shows higher elongation and higher storage modulus below transition glass temperature (T{sub g}) compared to that with straight fibers. The nanospring or helical shape preserves much void-space in the mat. It would be a potential architecture for highly efficient anode in future MFCs. (orig.)

  13. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Mohammad J. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Ketabchi, Mostafa [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Mining and Metallurgical Engineering Dept.

    2016-02-01

    Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively. [German] Nickellegierungen sind aufgrund ihres exzellenten Korrosionswiderstandes eine bedeutende Werkstoffklasse. In der diesem Beitrag zugrunde liegenden Studie wurden mittels WIG-Schweissens ein- und zweilagige Schweissplattierungen auf den Kohlenstoffstahl A516 (Grade 70) aufgebracht. Die Vermischung in Form des Fe-, Ni-, Mo- und Nb-Gehaltes wurde an 30 Punkten der Schweissplattierungen berechnet. Die mikrostrukturellen Untersuchungen ergaben, dass die Legierung 625 eine austenitische Struktur mit zwei Arten von

  14. Development of a software system for spatial resolved trace analysis of high performance materials with SIMS

    International Nuclear Information System (INIS)

    Brunner, Ch. H.

    1997-09-01

    The following work is separated into two distinctly different parts. The first one is dealing with the SIMSScan software project, an application system for secondary ion mass spectrometry. This application system primarily lays down the foundation, for the research activity introduced in the second part of this work. SIMSScan is an application system designed to provide data acquisition routines for different requirements in the field of secondary ion mass spectroscopy. The whole application package is divided into three major sections, each one dealing with specific measurement tasks. Various supporting clients and wizards, providing extended functionality to the main application, build the core of the software. The MassScan as well as the DepthScan module incorporate the SIMS in the direct imaging or stigmatic mode and are featuring the capabilities for mass spectra recording or depth profile analysis. In combination with an image recording facility the DepthScan module features the capability of spatial resolved material analysis - 3D SIMS. The RasterScan module incorporates the SIMS in scanning mode and supports an fiber optical link for optimized data transfer. The primary goal of this work is to introduce the basic ideas behind the implementation of the main application modules and the supporting clients. Furthermore, it is the intention to lay down the foundation for further developments. At the beginning a short introduction into the paradigm of object oriented programming as well as Windows TM programming is given. Besides explaining the basic ideas behind the Doc/View application architecture the focus is mainly shifted to the routines controlling the SIMS hardware and the basic concepts of multithreaded programming. The elementary structures of the view and document objects is discussed in detail only for the MassScan module, because the ideas behind data abstraction and encapsulation are quite similar. The second part introduces the research activities

  15. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    Science.gov (United States)

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  16. Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance

    Science.gov (United States)

    Qiu, Yongfu; Fan, Hongbo; Chang, Xueyi; Dang, Haifeng; Luo, Qun; Cheng, Zhiyu

    2018-03-01

    In this paper, the ultrathin Bi2O3 nanowires are synthesized by an oxidative metal vapor transport deposition technique. Their diameters and length are about 10 nm and several tens of micrometers, the growth direction is along [101] and the specific surface area is about 7.34 m2 g-1. The galvanostatic charge-discharge measurement results show that the specific capacitances of the Bi2O3 nanowires-based electrodes increase with the decrease of the current densities. The maximum capacitance is 691.3 F g-1 at the current density of 2.0 A g-1. The Ragone plot shows that the Bi2O3 nanowires has excellent supercapacitive performance. Moreover, the cyclic stability is measured by the galvanostatic charge/discharge technique at a constant current density of 10.0 A g-1 in 6.0 M KOH electrolyte. The results show the excellent capacitance retention of 75.5% over 3000 cycles. In a word, the Bi2O3 nanowires should be the ideal potential electrode materials for low-costing and effective electrochemical supercapacitors.

  17. Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application.

    Science.gov (United States)

    Zhang, Siwen; Yin, Bosi; Jiang, He; Qu, Fengyu; Umar, Ahmad; Wu, Xiang

    2015-02-07

    Heterostructured ZnO/ZnS nanoforests are prepared through a simple two-step thermal evaporation method at 650 °C and 1300 °C in a tube furnace under the flow of argon gas, respectively. A metal catalyst (Au) to form a binary alloy has been used in the process. The as-obtained ZnO/ZnS products are characterized by using a series of techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersion X-ray spectroscopy (EDS), Raman spectroscopy and photoluminescence. A possible growth mechanism is temporarily proposed. The hybrid structures are also directly functionalized as supercapacitor (SC) electrodes without using any ancillary materials such as carbon black or binder. Results show that the as-synthesized ZnO/ZnS heterostructures exhibit a greatly reduced ultraviolet emission and dramatically enhanced green emission compared to pure ZnO nanorods. The SCs data demonstrate high specific capacitance of 217 mF cm(-2) at 1 mA cm(-2) and excellent cyclic performance with 82% capacity retention after 2000 cycles at a current density of 2.0 mA cm(-2).

  18. Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material

    International Nuclear Information System (INIS)

    Chang, Xueting; Sun, Shibin; Dong, Lihua; Hu, Xiong; Yin, Yansheng

    2014-01-01

    Graphical abstract: Electrochromic mechanism of tungsten oxide nanowires-reduced graphene oxide composite. - Highlights: • A novel inorganic-nano-carbon hybrid composite was prepared. • The hybrid composite has sandwich-like structure. • The hybrid composite exhibited high-quality electrohcromic performance. - Abstract: In this work, we report the synthesis of a novel hybrid electrochromic composite through nucleation and growth of ultrathin tungsten oxide nanowires on graphene oxide sheets using a facile solvothermal route. The competition between the growth of tungsten oxide nanowires and the reduction of graphene oxide sheets leads to the formation of sandwich-structured tungsten oxide-reduced graphene oxide composite. Due to the strongly coupled effect between the ultrathin tungsten oxide nanowires and the reduced graphene oxide nanosheets, the novel electrochromic composite exhibited high-quality electrochromic performance with fast color-switching speed, good cyclic stability, and high coloration efficiency. The present tungsten oxide-reduced graphene oxide composite represents a new approach to prepare other inorganic-reduced graphene oxide hybrid materials for electrochemical applications

  19. Vapor Phase Polymerization Deposition Conducting Polymer Nanocomposites on Porous Dielectric Surface as High Performance Electrode Materials

    Institute of Scientific and Technical Information of China (English)

    Ya jie Yang; Luning Zhang; Shibin Li; Zhiming Wang; Jianhua Xu; Wenyao Yang; Yadong Jiang

    2013-01-01

    We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta2O5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta2O5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta2O5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance(ESR) ca. 12 m? and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.

  20. Vapor phase polymerization deposition of conducting polymer/graphene nanocomposites as high performance electrode materials.

    Science.gov (United States)

    Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong

    2013-05-22

    In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.

  1. Porous materials as high performance adsorbents for CO2 capture, gas separation and purification

    Science.gov (United States)

    Wang, Jun

    Global warming resulted from greenhouse gases emission has received a widespread attention. Among the greenhouse gases, CO2 contributes more than 60% to global warming due to its huge emission amount. The flue gas contains about 15% CO2 with N2 as the balance. If CO2 can be separated from flue gas, the benefit is not only reducing the global warming effect, but also producing pure CO2 as a very useful industry raw material. Substantial progress is urgent to be achieved in an industrial process. Moreover, energy crisis is one of the biggest challenges for all countries due to the short life of fossil fuels, such as, petroleum will run out in 50 years and coal will run out in 150 years according to today's speed. Moreover, the severe pollution to the environment caused by burning fossil fuels requires us to explore sustainable, environment-friendly, and facile energy sources. Among several alternative energy sources, natural gas is one of the most promising alternative energy sources due to its huge productivity, abundant feed stock, and ease of generation. In order to realize a substantial adsorption process in industry, synthesis of new adsorbents or modification of existing adsorbent with improved properties has become the most critical issue. This dissertation reports systemic characterization and development of five serials of novel adsorbents with advanced adsorption properties. In chapter 2, nitrogen-doped Hypercross-linking Polymers (HCPs) have been synthesized successfully with non-carcinogenic chloromethyl methyl ether (CME) as the cross-linking agent within a single step. Texture properties, surface morphology, CO2/N2 selectivity, and adsorption heat have been presented and demonstrated properly. A comprehensive discussion on factors that affect the CO2 adsorption and CO2/N 2 separation has also been presented. It was found that high micropore proportion and N-content could effectively enhance CO2 uptake and CO2/N2 separation selectivity. In chapter 3, a

  2. Durable Corrosion Resistance of Copper Due to Multi-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Abhishek Tiwari

    2017-09-01

    Full Text Available Ultra-thin graphene coating has been reported to provide considerable resistance against corrosion during short-term exposures, however, there is great variability in the corrosion resistance due to graphene coating in different studies. It may be possible to overcome the problem of hampered corrosion protection ability of graphene that is caused due to defective single layer graphene by applying multilayer graphene. Systematic electrochemical characterization showed that the multilayer graphene coating developed in the study provided significant corrosion resistance in a chloride solution and the corrosion resistance was sustained for long durations (~400 h, which is attributed to the multilayer graphene.

  3. Corrosion resistance of nickel alloys with chromium and silicon to the red fuming nitric acid

    International Nuclear Information System (INIS)

    Gurvich, L.Ya.; Zhirnov, A.D.

    1994-01-01

    Corrosion and electrochemical behaviour of binary Ni-Cr, Ni-Si nickel and ternary Ni-Cr-Si alloys in the red fuming nitric acid (RFNA) (8-% of HNO 3 +20% of N 2 O 4 ) is studied. It is shown that nickel alloying with chromium improves its corrosion resistance to the red fuming nitric acid. Nickel alloying with silicon in quantities of up to 5 % reduces, and up to 10%-increases abruptly the corrosion resistance with subsequent decrease of the latter after the further increase of concentration. Ni-15% of Cr alloy alloying with silicon increases monotonously the corrosion resistance. 10 refs., 7 figs., 3 tabs

  4. Nanostructure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    Directory of Open Access Journals (Sweden)

    K. M. Zhang

    2013-01-01

    Full Text Available The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nanostructure formations of steels by using a low energy high pulsed electron beam (LEHCPEB treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels.

  5. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K.

    2015-01-01

    Highlights: • The CuCl 2 doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl 2 ) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl 2 doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl 2 with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared nanocomposite can be used

  6. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K., E-mail: chapal12@yahoo.co.in

    2015-03-15

    Highlights: • The CuCl{sub 2} doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl{sub 2}) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl{sub 2} doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl{sub 2} with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared

  7. EVALUATION OF CORROSION RESISTANCE OF STEEL SHEETS FOR AUTOMOTIVE INDUSTRY WITH THE USE OF THE SPOTFACE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Alberto Nei Carvalho Costa

    2013-03-01

    Full Text Available Innovation, leading to weight and cost reduction, is a key word concerning the design of steel auto body for auto makers that aim to keep and improve their market share worldwide. On the other hand, auto body life, which is related to the corrosion resistance of the materials employed, should always be considered. The latter has led the auto makers to team up with suppliers to find the best solutions concerning the materials selection. The end result always points towards different sets of steels either zinc-coated or zinc alloyed-coated. Taking all these aspects into consideration, the overall challenge the auto makers face is to mitigate the time required for selection and narrow down the options available. This paper studies the corrosion resistance of several materials applied on steel auto bodies using the technique named spotface, which main advantage is reducing the time required by the traditional scribe to evaluate and compare different materials, when they are submitted either to accelerated or field corrosion testing. Concerning the accelerated corrosion testing, they were performed according to the General Motors do Brasil’s requirements.

  8. Coated steel rebar for enhanced concrete-steel bond strength and corrosion resistance.

    Science.gov (United States)

    2010-10-01

    This report summarizes the findings and recommendations on the use of enamel coating in reinforced concrete structures both for bond strength and : corrosion resistance of steel rebar. Extensive laboratory tests were conducted to characterize the pro...

  9. Structural design guidelines for concrete bridge decks reinforced with corrosion-resistant reinforcing bars.

    Science.gov (United States)

    2014-10-01

    This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...

  10. Investigation of corrosion resistance of alloys with high mechanical characteristics in some environments of food industry

    International Nuclear Information System (INIS)

    Tremoureux, Yves

    1978-01-01

    This research thesis aimed at improving knowledge in the field of stress-free corrosion of alloys with high mechanical characteristics in aqueous environments, at highlighting some necessary aspects of their behaviour during cleaning or disinfection, and at selecting alloys which possess a good stress-free corrosion resistance in view of a later investigation of their stress corrosion resistance. After a presentation of the metallurgical characteristics of high mechanical strength alloys and the report of a bibliographical study on corrosion resistance of these alloys, the author presents and discusses the results obtained in the study of a possible migration of metallic ions in a milk product which is submitted to a centrifugation, and of the corrosion resistance of selected alloys with respect to the different media they will be in contact with during ultra-centrifugation. The following alloys have been used in this research: Marval 18, Marphynox, Marval X12, 17-4PH steel, Inconel 718 [fr

  11. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    Science.gov (United States)

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  12. Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time

    Energy Technology Data Exchange (ETDEWEB)

    Waterman, J., E-mail: jay.waterman@pg.canterbury.ac.nz [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand); Pietak, A. [Department of Anatomy and Structural Biology, University of Otago, Dunedin (New Zealand); Birbilis, N. [Department of Materials Engineering, Monash University (Australia); Woodfield, T. [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand); Department of Orthopaedic Surgery, University of Otago, Christchurch (New Zealand); Dias, G. [Department of Anatomy and Structural Biology, University of Otago, Dunedin (New Zealand); Staiger, M.P., E-mail: mark.staiger@canterbury.ac.nz [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand)

    2011-12-15

    Calcium phosphate coatings were prepared on magnesium substrates via a biomimetic coating process. The effects of a magnesium hydroxide pretreatment on the formation and the ultimate corrosion protection of the coatings were studied. The pretreatment layer was found to affect the amount of defects present in the coatings. Corrosion resistance of the coatings was studied in vitro using two simulated body fluids, 0.8% NaCl and Hanks solution. In NaCl, the resistance to corrosion of all samples decreases with time as corrosion proceeded through cracks and other defects in the coatings. Samples with no pretreatment displayed the highest corrosion resistance as these samples had the fewest defects in the coating. However, in Hanks solution, corrosion resistance increased with time due to additional nucleation of calcium phosphate from the fluid on to the substrate. In this solution, additional pretreatment time was beneficial to the overall corrosion resistance.

  13. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    Science.gov (United States)

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  14. Corrosion resistance and development length of steel reinforcement with cementitious coatings

    Science.gov (United States)

    Pei, Xiaofei

    This research program focused on the corrosion resistance and development length of reinforcing steel coated with Cementitious Capillary Crystalline Waterproofing (CCCW) materials. The first part of this research program involved using the half-cell potential method to evaluate the corrosion resistance of CCCW coating materials. One hundred and two steel bars were embedded in concrete cylinders and monitored. In total, 64 steel reinforcing bars were coated with CCCW prior to embedment, 16 mortar cylinders were externally coated with CCCW, and 22 control (uncoated) samples were tested. All the samples were immersed in a 3.5% concentration chloride solution for a period of one year. Three coating types were studied: CCCW-B, CCCW-B+ C and CCCW-C+D. The test results showed that the CCCW coating materials delayed the corrosion activity to varying degrees. In particular, CCCW-C+D applied on the reinforcing steel surface dramatically delayed the corrosion activity when compared to the control samples. After being exposed to the chloride solution for a period of one year, no sign of corrosion was observed for the cylinders where the concrete surface was coated. The second part of this research evaluated the bond strength and development length of reinforcing steel coated with two types of CCCW coating materials (CCCW-B+C and CCCW-C+D) using a modified pull-out test method. A self-reacting inverted T-shaped beam was designed to avoid compression in the concrete surrounding the reinforcing steel. Steel reinforcing bars were embedded along the web portion of the T-beam with various embedded lengths and were staggered side by side. In total, six T-beams were fabricated and each beam contained 8 samples. Both short-term (7 days) and long-term (3 months) effects of water curing were evaluated. The reinforcing steel bars coated with CCCW-B+C demonstrated a higher bond strength than did samples coated with CCCW-C+D. However, the bond strengths of samples with coating materials

  15. Investigations into the corrosion resistance of copper aluminium alloys. Effect of phosphorus as corrosion resistant third alloying element in the ternary system CuAl20P1

    International Nuclear Information System (INIS)

    Allwardt, A.

    1997-01-01

    The effect of phosphorus on the corrosion resistance of Al-bronzes is studied in detail in this work. A literature review showed that there are a lot of things known about the microstructure and the mechanical properties of Al-bronzes. In spite of their corrosion resistance the corrosion properties and the structure of the protective oxide films of Al-bronzes were seldom a matter of interest. Systematic studies of the influence of different alloying elements on the oxide film and the corrosion properties are rare. Therefore, it is not possible to predict the corrosion resistance of Al-bronzes, made by alloying particular elements. The high corrosion resistance of the new alloy CuAl 20 P 1 was the reason to investigate the influence of phosphorus on the corrosion properties of Al-bronzes in more detail. A systematic study of the microstructure and the corrosion properties of Cu, CuP x , CuAl 20 and CuAl 20 P x offers an insight into the effect of aluminium and phosphorus on the formation of the oxide film on Al-bronzes. It was found that there exists a critical amount of 1 at.-% of phosphorus. Above and below this amount the corrosion resistance becomes worse. This behaviour could be explained by XPS-and electrochemical measurements. Although there are still some questions about the influence of phosphorus on the corrosion resistance of Al-bronzes, this work has produced some important results, which in the future may be helpful to develop new high corrosion resistant Al-bronzes more efficiently: - on clean surface Al-bronze, the oxidation of Al and Cu takes place simultaneously, - Al promotes the formation of Cu 2 O but impedes the formation of Cu(II)-oxide/-hydride in neutral solutions, - P impedes the formation of Cu 2 O and as a consequence promotes the formation of aluminium oxide. This results in a higher amount of Al in the oxide film on the surface of the alloy, which leads to a better corrosion resistance. (author) figs., tabs., 106 refs

  16. Improving by postoxidation of corrosion resistance of plasma nitrocarburized AISI 316 stainless steels

    Science.gov (United States)

    Yenilmez, A.; Karakan, M.; Çelik, İ.

    2017-01-01

    Austenitic stainless steels are widely used in several industries such as chemistry, food, health and space due to their perfect corrosion resistance. However, in addition to corrosion resistance, the mechanic and tribological features such as wear resistance and friction are required to be good in the production and engineering of this type of machines, equipment and mechanic parts. In this study, ferritic (FNC) and austenitic (ANC) nitrocarburizing were applied on AISI 316 stainless steel specimens with perfect corrosion resistance in the plasma environment at the definite time (4 h) and constant gas mixture atmosphere. In order to recover corrosion resistance which was deteriorated after nitrocarburizing again, plasma postoxidation process (45 min) was applied. After the duplex treatment, the specimens' structural analyses with XRD and SEM methods, corrosion analysis with polarization method and surface hardness with microhardness method were examined. At the end of the studies, AISI 316 surface hardness of stainless steel increased with nitrocarburizing process, but the corrosion resistance was deteriorated with FNC (570 °C) and ANC (670 °C) nitrocarburizing. With the following of the postoxidation treatment, it was detected that the corrosion resistance became better and it approached its value before the process.

  17. Corrosion resistance of amorphous NiCrZr and NiCrMoZr alloys

    International Nuclear Information System (INIS)

    Naka, M.; Miyake, M.; Okamoto, I.

    1987-01-01

    One of the authors has reported that the corrosion resistance of chromium containing amorphous alloys is extremely improved by alloying phosphorus among metalloids. Two factors operate for the improvement of corrosion resistance of the amorphous alloys. First, phosphorus serves for the rapid formation of protective passive film. Second, the compositional and structural homogeneity in amorphous state also account for the formation of protective film. The latter factor has been clearly seen in the high corrosion resistance of CoCrMoZr and CoCrWZr alloys without metalloids. In order to clarify the separately two factors in the corrosion resistance of amorphous alloys, the corrosion resistance of amorphous alloys without metalloids has to be further investigated. This paper also deals with the corrosion resistance and electrochemical behavior of NiCrZr and NiCrMoZr alloys in 1N HCl, and compare them with the corrosion behavior of the crystalline alloys containing the same composition as that of the amorphous alloys

  18. The prospects of phosphorene as an anode material for high-performance lithium-ion batteries: a fundamental study.

    Science.gov (United States)

    Zhang, Congyan; Yu, Ming; Anderson, George; Dharmasena, Ruchira Ravinath; Sumanasekera, Gamini

    2017-02-17

    To completely understand lithium adsorption, diffusion, and capacity on the surface of phosphorene and, therefore, the prospects of phosphorene as an anode material for high-performance lithium-ion batteries (LIBs), we carried out density-functional-theory calculations and studied the lithium adsorption energy landscape, the lithium diffusion mobility, the lithium intercalation, and the lithium capacity of phosphorene. We also carried out, for the very first time, experimental measurement of the lithium capacity of phosphorene. Our calculations show that the lithium diffusion mobility along the zigzag direction in the valley of phosphorene was about 7 to 11 orders of magnitude faster than that along the other directions, indicating its ultrafast and anisotropic diffusivity. The lithium intercalation in phosphorene was studied by considering various Li n P 16 configurations (n = 1-16) including single-side and double-side adsorptions. We found that phosphorene could accommodate up to a ratio of one Li per P atom (i.e. Li 16 P 16 ). In particular, we found that, even at a high Li concentration (e.g. x = 1 in Li x P), there was no lithium clustering, and the structure of phosphorene (when fractured) is reversible during lithium intercalation. The theoretical value of the lithium capacity for a monolayer phosphorene is predicted to be above 433 mAh g -1 , depending on whether Li atoms are adsorbed on the single side or the double side of phosphorene. Our experimental measurement of the lithium capacity for few-layer phosphorene networks shows a reversible stable value of ∼453 mAh g -1 even after 50 cycles. Our results clearly show that phosphorene, compared to graphene and other two-dimensional materials, has great promise as a novel anode material for high-performance LIBs.

  19. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  20. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-01

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g −1 at 100 mA g −1 after 30th cycles. At high current density value of 1 A g −1 , B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states

  1. LL13-MatModelRadDetect-PD2Jf Final Report: Materials Modeling for High-Performance Radiation Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-12-11

    The aims of this project are to enable rational materials design for select high-payoff challenges in radiation detection materials by using state-of-the-art predictive atomistic modeling techniques. Three specific high-impact challenges are addressed: (i) design and optimization of electrical contact stacks for TlBr detectors to stabilize temporal response at room-temperature; (ii) identification of chemical design principles of host glass materials for large-volume, low-cost, highperformance glass scintillators; and (iii) determination of the electrical impacts of dislocation networks in Cd1-xZnxTe (CZT) that limit its performance and usable single-crystal volume. The specific goals are to establish design and process strategies to achieve improved materials for high performance detectors. Each of the major tasks is discussed below in three sections, which include the goals for the task and a summary of the major results, followed by a listing of publications that contain the full details, including details of the methodologies used. The appendix lists 12 conference presentations given for this project, including 1 invited talk and 1 invited poster.

  2. High-Performance and Simply-Synthesized Ladder-Like Structured Methacrylate Siloxane Hybrid Material for Flexible Hard Coating

    Directory of Open Access Journals (Sweden)

    Yun Hyeok Kim

    2018-04-01

    Full Text Available A high performance ladder-like structured methacrylate siloxane hybrid material (LMSH was fabricated via simple hydrolytic sol–gel reaction, followed by free-radical polymerization. A structurally ordered siloxane backbone, the ladder-like structure, which is an essential factor for high performance, could be achieved by a short period of sol–gel reaction in only 4 h. This results in superior optical (Transmittance > 90% at 550 nm, thermal (T5 wt % decomposition > 400 ℃ , mechanical properties(elastic recovery = 0.86, hardness = 0.6 GPa compared to the random- and even commercialized cage-structured silsesquioxane, which also has ordered structure. It was investigated that the fabricated ladder-like structured MSH showed the highest overall density of organic/inorganic co-networks that are originated from highly ordered siloxane network, along with high conversion rate of polymerizable methacrylate groups. Our findings suggest a potential of the ladder-like structured MSH as a powerful alternative for the methacrylate polysilsesquioxane, which can be applied to thermally stable and flexible optical coatings, even with an easier and simpler preparation process.

  3. Nano structure Formations and Improvement in Corrosion Resistance of Steels by Means of Pulsed Electron Beam Surface Treatment

    International Nuclear Information System (INIS)

    Zhang, K.M.; Zou, J.X.; Zou, J.X.; Grosdidier, T.; Zou, J.X.; Grosdidier, T.; Grosdidier, T.

    2013-01-01

    The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels The corrosion of steels has long been the topic for materials scientists. It is established that surface treatment is an efficient way to improve the corrosion resistance of steels without changing the bulk properties and with low costs. In the present paper, different kinds of surface treatment techniques for steels are briefly reviewed. In particular, the surface modification involving nano structure formations of steels by using a low energy high pulsed electron beam (LEHCPEB) treatment is lightened in the case of an AISI 316L stainless steel and D2 steel. The overall results demonstrate the high potential of the LEHCPEB technique for improving the corrosion performance of steels

  4. Corrosion resistance of Fe-Al alloy-coated steel under bending stress in high temperature lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Yamaki, Eriko; Takahashi, Minoru

    2009-01-01

    Formation of thin Fe-Al alloy layers on the surface of cladding and structural materials is effective to protect a base material from corrosion in high temperature LBE. However, it is concerned that these protective layers may be damaged under various stress conditions. This study on Fe-Al alloy coatings deposited by unbalanced magnetron sputtering (UBMS) is focused to evaluate corrosion resistance and integrity of the Fe-Al coating layers with thickness of 0.5 mm under bending stress in high temperature LBE. High chromium steel specimens (HCM12A, Recloy10) with Fe-Al alloy coating were exposed to LBE pool with low oxygen concentration (up to 5.2x10 -8 wt%) at 550 and 650degC under 45kg-loading for 240 and 500 h. No LBE corrosion was observed in the base metal and coating layer after the tests at 550degC for 550 h. The coating layers could be barrier for corrosion resistance from LBE at 550degC, although the coating scales are cracked by the load. At 650degC, because the base metal was contoccured directly with LBE through cracks across the coating layer. Penetration of LBE to base metal and dissolution of beset metal into LBE occurred. Fe-Al coating layer was not corroded by LBE. (author)

  5. Influence of gas-powder laser cladding’s technological parameters on structural characteristics of corrosion-resistant steels’ restored surface layer

    Science.gov (United States)

    Krylova, S. E.; Oplesnin, S. P.; Goltyapin, M. I.

    2018-03-01

    The results of the developed industrial technology for surface restoration of corrosion-resistant steels by laser surfacing are presented in the article. A comparative analysis of the microstructure of the welded wear-resistant layer, the fusion zone with the base material and the diffusion zone for different technological surfacing regimes are given. Dyrometric studies and nondestructive testing of the deposited layer for defects were performed

  6. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries

    Science.gov (United States)

    Chen, Wufeng; Zhu, Zhiye; Li, Sirong; Chen, Chunhua; Yan, Lifeng

    2012-03-01

    A novel method has been developed to prepare hydrogenated graphene (HG) via a direct synchronized reduction and hydrogenation of graphene oxide (GO) in an aqueous suspension under 60Co gamma ray irradiation at room temperature. GO can be reduced by the aqueous electrons (eaq-) while the hydrogenation takes place due to the hydrogen radicals formed in situ under irradiation. The maximum hydrogen content of the as-prepared highly hydrogenated graphene (HHG) is found to be 5.27 wt% with H/C = 0.76. The yield of the target product is on the gram scale. The as-prepared HHG also shows high performance as an anode material for lithium ion batteries.

  7. Effect of thermal aging on corrosion resistance of C-22 alloy in chloride solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.

    2007-01-01

    Alloy 22 (N06022) belongs to the Ni-Cr-Mo family and it is highly resistant to localized corrosion. The anodic behavior of mill annealed (MA) and thermally aged (10 hours at 760 C degrees) Alloy 22 was studied in chloride solutions with different pH values at 90 C degrees. Thermal aging leads to a microstructure of full grain boundary precipitation of topologically closed packed (TCP) phases. Electrochemical tests included monitoring of open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy. Assessment of general and localized (crevice) corrosion was performed. Re passivation potentials were obtained from cyclic potentiodynamic polarization tests. Results indicate that MA and TCP material show similar general corrosion rates and crevice corrosion resistance in the tested environments. MA and TCP specimens suffered general corrosion in an active state when tested in low pH chloride solutions. The grain structure of the alloy was revealed for MA material, while TCP material suffered a preferential attack at grain boundaries. (author)

  8. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  9. Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries

    International Nuclear Information System (INIS)

    Li, Shuankui; Zuo, Shiyong; Wu, Zhiguo; Liu, Ying; Zhuo, Renfu; Feng, Juanjuan; Yan, De; Wang, Jun; Yan, Pengxun

    2014-01-01

    A hybrid of multi-walled carbon nanotubes (MWCNTs) anchored with SnS nanosheets is synthesized through a simple solvothermal method for the first time. Interestingly, SnS can be controllably deposited onto the MWCNTs backbone in the shape of nanosheets or nanoparticles to form two types of SnS/MWCNTs hybrids, SnS NSs/MWCNTs and SnS NPs/MWCNTs. When evaluated as an anode material for lithium-ion batteries, the hybrids exhibit higher lithium storage capacities and better cycling performance compared to pure SnS. It is found that the SnS NSs/MWCNTs hybrid exhibits a large reversible capacity of 620mAhg −1 at a current of 100mAg −1 as an anode material for lithium-ion batteries, which is better than SnS NPs/MWCNTs. The improved performance may be attributed to the ultrathin nanosheet subunits possess short distance for Li + ions diffusion and large electrode-electrolyte contact area for high Li + ions flux across the interface. It is believed that the structural design of electrodes demonstrated in this work will have important implications on the fabrication of high-performance electrode materials for lithium-ion batteries

  10. H-TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors

    Science.gov (United States)

    Di, Jing; Fu, Xincui; Zheng, Huajun; Jia, Yi

    2015-06-01

    Functionalized TiO2 nanotube arrays with decoration of MnO2 nanoparticles (denoted as H-TiO2/C/MnO2) have been synthesized in the application of electrochemical capacitors. To improve both areal and gravimetric capacitance, hydrogen treatment and carbon coating process were conducted on TiO2 nanotube arrays. By scanning electron microscopy and X-ray photoelectron spectroscopy, it is confirmed that the nanostructure is formed by the uniform incorporation of MnO2 nanoparticles growing round the surface of the TiO2 nanotube arrays. Impedance analysis proves that the enhanced capacitive is due to the decrease of charge transfer resistance and diffusion resistance. Electrochemical measurements performed on this H-TiO2/C/MnO2 nanocomposite when used as an electrode material for an electrochemical pseudocapacitor presents quasi-rectangular shaped cyclic voltammetry curves up to 100 mV/s, with a large specific capacitance (SC) of 299.8 F g-1 at the current density of 0.5 A g-1 in 1 M Na2SO4 electrolyte. More importantly, the electrode also exhibits long-term cycling stability, only 13 % of SC loss after 2000 continuous charge-discharge cycles. Based on the concept of integrating active materials on highly ordered nanostructure framework, this method can be widely applied to the synthesis of high-performance electrode materials for energy storage.

  11. Determination of phthalates released from paper packaging materials by solid-phase extraction-high-performance liquid chromatography.

    Science.gov (United States)

    Gao, Xin; Yang, Bofeng; Tang, Zhixu; Luo, Xin; Wang, Fengmei; Xu, Hui; Cai, Xue

    2014-01-01

    A solid phase extraction (SPE) high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of 10 phthalic acid esters (dimethyl phthalate, diethyl phthalate, dipropyl phthalate, benzylbutyl phthalate, diisobutyl phthalate, dicyclohexyl phthalate, diamyl phthalate, di-n-hexyl phthalate, di-n-octyl phthalate and di-2-ethylhexyl phthalate) released from food paper packaging materials. The use of distilled water, 3% acetic acid (w/v), 10% ethanol (v/v) and 95% ethanol (v/v) instead of the different types of food simulated the migration of 10 phthalic acid esters from food paper packaging materials; the phthalic acid esters in four food simulants were enriched and purified by a C18 SPE column and nitrogen blowing, and quantified by HPLC with a diode array detector. The chromatographic conditions and extraction conditions were optimized and all 10 of the phthalate acid esters had a maximum absorbance at 224 nm. The method showed limitations of detection in the range of 6.0-23.8 ng/mL the correlation coefficients were greater than 0.9999 in all cases, recovery values ranged between 71.27 and 106.97% at spiking levels of 30, 60 and 90 ng/mL and relative standard deviation values ranged from 0.86 to 8.00%. The method was considered to be simple, fast and reliable for a study on the migration of these 10 phthalic acid esters from food paper packaging materials into food.

  12. The Jules Horowitz reactor, a new high performance European material testing reactor open to international users: present status and objectives

    International Nuclear Information System (INIS)

    Iracane, D.; Bignan, G.

    2010-01-01

    The development of nuclear power as a sustainable and competitive energy source will continue to require research and development of fuel and material behaviour under irradiation. This necessitates a high performance material testing reactor (MTR). Facing the obsolescence of most of the existing MTR in Europe, France decided a few years ago the construction of the RJH (Jules Horowitz reactor). RJH is designed, built and will be operated as an international user facility. A first set of experimental hosting devices is being designed. For instance, there are the in-core CALIPSO Nak integrated loop for material studies and other loops for fuel studies under nominal or off-normal or accidental conditions. The RJH international program will focus on the following subjects: -) fuel reliability, assessed through power ramps tests and post-irradiation examination; -) Loss of coolant tests done out-of-pile in a first phase and in-pile in a possible second phase; and -) source term tests addressing fission products release. The paper reports also the point of view of VATTENFALL (a Swedish power utility), as a potential European RJH user. (A.C.)

  13. The Jules Horowitz Reactor - A new High Performance European Material Testing Reactor open to International Users Present Status and Objectives

    International Nuclear Information System (INIS)

    Iracane, Daniel; Bignan, Gilles; Lindbaeck, Jan-Erik; Blomgren, Jan

    2010-01-01

    The development of sustainable nuclear energy requires R and D on fuel and material behaviour under irradiation with a high level of performance in order to meet the needs and challenges for the benefit of industry, research and public bodies. These stakes require a sustainable and secured access to an up-to-date high performance Material Testing Reactor. Following a broad survey within the European Research Area, the international community agreed that the need for Material Test Reactors in support of nuclear power plant safety and operation will continue in the context of sustainable nuclear energy. The Jules Horowitz Reactor project (JHR) copes with this context. JHR is designed as a user facility addressing the needs of the international community. This means: - flexibility with irradiation loops able to reproduce a large variation in operation conditions of different power reactor technologies, - high flux capacity to address Generations II, III, and IV needs. JHR is designed, built and operated as an international user facility because: - Given the maturity and globalization of the industry, domestic tools have no more the required level of economic and technical efficiency. Meanwhile, countries with nuclear energy need an access to high performance irradiation experimental capabilities to support technical skill and guarantee the competitiveness and safety of nuclear energy. - Many research items related to safety or public policy (waste management, etc.) require international cooperation to share costs and benefits of resulting consensus. JHR design is optimised for offering high performance material and fuel irradiation capability for the coming decades. This project is driven and funded by an international consortium gathering vendors, utilities and public stakeholders. This consortium has been set up in March 2007 when the construction began. The construction is in progress and the start of operation is scheduled for 2014. The JHR is a research

  14. Research and development on is process components for hydrogen production. (2) Corrosion resistance of glass lining in high temperature sulfuric acid

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Iwatsuki, Jin; Kubo, Shinji; Terada, Atsuhiko; Onuki, Kaoru

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments on the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solution of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components has been studied as a crucial subject of the process development. This paper discusses corrosion resistance of commercially available glass-lining material in high temperature sulfuric acid. Corrosion resistance of a soda glass used for glass-lining was examined by immersion tests. The experiments were performed in 47-90wt% sulfuric acids at temperatures of up to 400degC and for the maximum immersion time of 100 hours using an autoclave designed for the concerned tests. In every condition tested, no indication of localized corrosion such as defect formation or pitting corrosion was observed. Also, the corrosion rates decreased with the progress of immersion, and were low enough (≅0.1 mm/year) after 60-90 hours of immersion probably due to formation of a silica rich surface. (author)

  15. Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells

    International Nuclear Information System (INIS)

    Bao, Sha; Wu, Jihuai; He, Xin; Tu, Yongguang; Wang, Shibo; Huang, Miaoliang; Lan, Zhang

    2017-01-01

    Highlights: •Large grain and mesoporous Zn 2 SnO 4 are synthesized by a facile hydrothermal method. •Perovskite device with Zn 2 SnO 4 electron transport layer get efficiency of 17.21%. •While the device with TiO 2 electron transport layer obtain an efficiency of 14.83%. •Superior photovoltaic performance stems from the intrinsic characteristics of Zn 2 SnO 4 . -- Abstract: Electron transport layer with higher carrier mobility and suitable band gap structure plays a significant role in determining the photovoltaic performance of perovskite solar cells (PSCs). Here, we report a synthesis of high crystalline zinc stannate (Zn 2 SnO 4 ) by a facile hydrothermal method. The as-synthesized Zn 2 SnO 4 possesses particle size of 20 nm, large surface area, mesoporous hierarchical structure, and can be used as a promising electron-transport materials to replace the conventional mesoporous TiO 2 material. A perovskite solar cell with structure of FTO/blocking layer/Zn 2 SnO 4 /CH 3 NH 3 PbI 3 /Spiro-OMeOTAD/Au is fabricated, and the preparation condition is optimized. The champion device based on Zn 2 SnO 4 electron transport material achieves a power conversion efficiency of 17.21%, while the device based on TiO 2 electron transport material gets an efficiency of 14.83% under the same experimental conditions. The results render Zn 2 SnO 4 an effective candidate as electron transport material for high performance perovskite solar cells and other devices.

  16. Effect of liquid phase sintering on the mechanical properties and corrosion resistance of infiltrated austenitic stainless steel; Efeito da sinterizacao com fase liquida sobre as propriedades mecanicas e resistencia a corrosao do aco inoxidavel austenitico infiltrado

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Cristine F. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Metalurgica e dos Materiais; Matos Dias, Arao de; Schaeffer, Lirio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Centro de Tecnologia. Lab. de Metalurgia do Po

    1996-12-31

    First, this work presents some considerations on the properties and corrosion resistance of the stainless steels and its relation with porosity. The infiltration technique of copper into compacted steels is presented as an efficacy alternative to improve both mechanical properties and corrosion resistance. In experimental development, it was carried out mechanical tests with stainless steel AISI 316 L to ratify the copper infiltration effects on the yield stress of the material, and corrosion tests in salt spray. The results confirm a considerable improvement in properties on the whole to infiltrated stainless steel. (author) 18 refs., 8 figs., 4 tabs.

  17. Development of CSS-42L{trademark}, a high performance carburizing stainless steel for high temperature aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, H.I.; Milam, L. [Timken Co., Canton, OH (United States); Tomasello, C.M.; Balliett, S.A.; Maloney, J.L. [Latrobe Steel Co., Latrobe, PA (United States); Ogden, W.P. [MPB Corp., Lebanon, NH (United States)

    1998-12-31

    Today`s aerospace engineering challenges demand materials which can operate under conditions of temperature extremes, high loads and harsh, corrosive environments. This paper presents a technical overview of the on-going development of CSS-42L (US Patent No. 5,424,028). This alloy is a case-carburizable, stainless steel alloy suitable for use in applications up to 427 C, particularly suited to high performance rolling element bearings, gears, shafts and fasteners. The nominal chemistry of CSS-42L includes: (by weight) 0.12% carbon, 14.0% chromium, 0.60% vanadium, 2.0% nickel, 4.75% molybdenum and 12.5% cobalt. Careful balancing of these components combined with VIM-VAR melting produces an alloy that can be carburized and heat treated to achieve a high surface hardness (>58 HRC at 1mm (0.040 in) depth) with excellent corrosion resistance. The hot hardness of the carburized case is equal to or better than all competitive grades, exceeding 60 HRC at 427 C. The fracture toughness and impact resistance of the heat treated core material have likewise been evaluated in detail and found to be better than M50-NiL steel. The corrosion resistance has been shown to be equivalent to that of 440C steel in tests performed to date.

  18. Effects of Copper and Sulfur Additions on Corrosion Resistance and Machinability of Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Kim, Soon Tae; Park, Yong Soo; Kim, Hyung Joon

    1999-01-01

    Effects of Cu and S on corrosion resistance and machinability of austenitic stainless steel were investigated using immersion test, metallographic examination, Auger surface analysis and tool life test with single point turning tools. Corrosion resistance of the experimental Cu containing alloys in 18.4N H 2 SO 4 at 80 ∼ 120 .deg. C and 3N HCl at 40 .deg. C decreased as S content increased. However, one of the experimental alloys (Fe- 18%Cr- 21%Ni-3.2%Mo- 1.6%W- 0.2%N- 3.1%Cu- 0.091%S) showed general and pitting corrosion resistance equivalent to that of CW12MW in highly concentrated SO 4 2- environment. The alloy also showed pitting corrosion resistance superior to super stainless steel such as 654SMO in Cl - environment. The reasons why the increase in S content deteriorated the corrosion resistance were first, that the number and size of (Mn, Cr)S sulfides having corrosion resistance lower than that of matrix increased, leading to pitting corrosion and second, that rapid dissolution of the matrix around the pits was caused by adsorbed S. However, the alloy containing 3.1 %Cu and 0.091 % S maintained high general and pitting corrosion resistance due to heavily enriched noble Cu through selective dissolution of active Fe and Ni. The tool life for 3.1 % Cu + 0.091 % S added alloy was about four times that of 0.06%Cu + 0.005% S added alloy due to high shear strain rate generated by Cu addition giving easy cross slip of dislocation, lubrication of ductile (Mn, Cr)S sulfides adhering to tool crater surface and low cutting force resulting from thin continuous sulfides formed in chips during machining

  19. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.

    Science.gov (United States)

    Oliveira, N T C; Guastaldi, A C

    2009-01-01

    Electrochemical behavior of pure Ti and Ti-Mo alloys (6-20wt.% Mo) was investigated as a function of immersion time in electrolyte simulating physiological media. Open-circuit potential values indicated that all Ti-Mo alloys studied and pure Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the chloride-containing solution. It also indicated that the addition of Mo to pure Ti up to 15wt.% seems to improve the protection characteristics of its spontaneous oxides. Electrochemical impedance spectroscopy (EIS) studies showed high impedance values for all samples, increasing with immersion time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film present on the metals' surface, improving their resistance with immersion time, presenting the highest values to Ti-15Mo alloy. Potentiodynamic polarization showed a typical valve-metal behavior, with anodic formation of barrier-type oxide films, without pitting corrosion, even in chloride-containing solution. In all cases, the passive current values were quite small, and decrease after 360h of immersion. All these electrochemical results suggest that the Ti-15Mo alloy is a promising material for orthopedic devices, since electrochemical stability is directly associated with biocompatibility and is a necessary condition for applying a material as biomaterial.

  20. Effect of Plasma Nitriding Process Conditions on Corrosion Resistance of 440B Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Łępicka Magdalena

    2014-09-01

    Full Text Available Martensitic stainless steels are used in a large number of various industrial applications, e.g. molds for plastic injections and glass moldings, automotive components, cutting tools, surgical and dental instruments. The improvement of their tribological and corrosion properties is a problem of high interest especially in medical applications, where patient safety becomes a priority. The paper covers findings from plasma nitrided AISI 440B (PN-EN or DIN X90CrMoV18 stainless steel corrosion resistance studies. Conventionally heat treated and plasma nitrided in N2:H2 reaction gas mixture (50:50, 65:35 and 80:20, respectively in two different temperature ranges (380 or 450°C specimens groups were examined. Microscopic observations and electrochemical corrosion tests were performed using a variety of analytical techniques. As obtained findings show, plasma nitriding of AISI 440B stainless steel, regardless of the process temperature, results in reduction of corrosion current density. Nevertheless, applying thermo-chemical process which requires exceeding temperature of about 400°C is not recommended due to increased risk of steel sensitization to intergranular and stress corrosion. According to the results, material ion nitrided in 450°C underwent leaching corrosion processes, which led to significant disproportion in chemical composition of the corroded and corrosion-free areas. The authors suggest further research into corrosion process of plasma nitrided materials and its degradation products.

  1. Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Department of Materials Science & Engineering, McMaster University, Hamilton, ON (Canada); Zheng, W. [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON (Canada); Guzonas, D.A. [Canadian Nuclear Laboratories Chalk River Laboratories, ON (Canada); Cook, W.G. [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB (Canada); Kish, J.R., E-mail: kishjr@mcmaster.ca [Department of Materials Science & Engineering, McMaster University, Hamilton, ON (Canada)

    2015-09-15

    There are still unknown aspects about the growth mechanism of oxide scales formed on candidate stainless steel fuel cladding materials during exposure in supercritical water (SCW) under the conditions relevant to the Canadian supercritical water-cooled reactor (SCWR). The tendency for intermetallic precipitates to form within the grains and on grain boundaries during prolonged exposure at high temperatures represents an unknown factor to corrosion resistance, since they tend to bind alloyed Cr. The objective of this study was to better understand the extent to which intermetallic precipitates affects the mode and extent of corrosion in SCW. Type 316L stainless steel, used as a model Fe–Cr–Ni–Mo alloy, was exposed to 25 MPa SCW at 550 °C for 500 h in a static autoclave for this purpose. Mechanically-abraded samples were tested in the mill-annealed (MA) and a thermally-treated (TT) condition. The thermal treatment was conducted at 815 °C for 1000 h to precipitate the carbide (M{sub 23}C{sub 6}), chi (χ), laves (η) and sigma (σ) phases. It was found that although relatively large intermetallic precipitates formed at the scale/alloy interface locally affected the oxide scale formation, their discontinuous formation did not affect the short-term overall apparent corrosion resistance.

  2. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Jun; Fan, Hongyuan; Pan, Dong

    2018-05-01

    The low-temperature liquid nitriding of stainless steels can result in the formation of a surface zone of so-called expanded austenite (S-phase) by the dissolution of large amounts of nitrogen in the solid solution and formation of a precipitate-free layer supersaturated with high hardness. Erosion-corrosion measurements were performed on low-temperature nitrided and non-nitrided 316L stainless steels. The total erosion-corrosion, erosion-only, and corrosion-only wastages were measured directly. As expected, it was shown that low-temperature nitriding dramatically reduces the degree of erosion-corrosion in stainless steels, caused by the impingement of particles in a corrosive medium. The nitrided 316L stainless steels exhibited an improvement of almost 84% in the erosion-corrosion resistance compared to their non-nitrided counterparts. The erosion-only rates and synergistic levels showed a general decline after low-temperature nitriding. Low-temperature liquid nitriding can not only reduce the weight loss due to erosion but also significantly reduce the weight loss rate of interactions, so that the total loss of material decreased evidently. Therefore, 316L stainless steels displayed excellent erosion-corrosion behaviors as a consequence of their highly favorable corrosion resistances and superior wear properties.

  3. Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water

    Science.gov (United States)

    Jiao, Y.; Zheng, W.; Guzonas, D. A.; Cook, W. G.; Kish, J. R.

    2015-09-01

    There are still unknown aspects about the growth mechanism of oxide scales formed on candidate stainless steel fuel cladding materials during exposure in supercritical water (SCW) under the conditions relevant to the Canadian supercritical water-cooled reactor (SCWR). The tendency for intermetallic precipitates to form within the grains and on grain boundaries during prolonged exposure at high temperatures represents an unknown factor to corrosion resistance, since they tend to bind alloyed Cr. The objective of this study was to better understand the extent to which intermetallic precipitates affects the mode and extent of corrosion in SCW. Type 316L stainless steel, used as a model Fe-Cr-Ni-Mo alloy, was exposed to 25 MPa SCW at 550 °C for 500 h in a static autoclave for this purpose. Mechanically-abraded samples were tested in the mill-annealed (MA) and a thermally-treated (TT) condition. The thermal treatment was conducted at 815 °C for 1000 h to precipitate the carbide (M23C6), chi (χ), laves (η) and sigma (σ) phases. It was found that although relatively large intermetallic precipitates formed at the scale/alloy interface locally affected the oxide scale formation, their discontinuous formation did not affect the short-term overall apparent corrosion resistance.

  4. Corrosion resistance of rigid bonded magnet MQP-0 (NdFeB compound) pre and post surface coating

    International Nuclear Information System (INIS)

    Purwanto, Setyo; Ihsan, M.; Mujamilah; Mashadi

    2002-01-01

    Rigid Bonded Magnet (RBM) MQP-0 (NdFeB magnetics material compound) has been created and done some treatment. It has been known that corrosion resistance of RBM with epoxy resin binder is higher than RBM with polyester binder (PE). Corrosion rate in variety solutions like water. Na CI, H 2 SO 4 , has proved the earlier statement. For corrosion testing of RBM in Na CI solution with concentrations 0.05 M and 0.10 M shows corrosion rate 0.18 milli inches/year (mpy) and 2.93 mpy for epoxy binder, and 4.10 mpy and 24.87 mpy for polyester binder. In order to enhance the corrosion resistance, coating of RBM with epoxy resin has been done. And it has been known that coating of RBM with epoxy resin decrease of corrosion rate almost 50%. Corrosion rate of RBM with epoxy coating in 0.15 M Na CI is 9.38 mpy, compared without coating 15.11 mpy

  5. Supramolecule-Inspired Fabrication of Carbon Nanoparticles In Situ Anchored Graphene Nanosheets Material for High-Performance Supercapacitors.

    Science.gov (United States)

    Huang, Yulan; Gao, Aimei; Song, Xiaona; Shu, Dong; Yi, Fenyun; Zhong, Jie; Zeng, Ronghua; Zhao, Shixu; Meng, Tao

    2016-10-12

    The remarkable electrochemical performance of graphene-based materials has drawn a tremendous amount of attention for their application in supercapacitors. Inspired by supramolecular chemistry, the supramolecular hydrogel is prepared by linking β-cyclodextrin to graphene oxide (GO). The carbon nanoparticles-anchored graphene nanosheets are then assembled after the hydrothermal reduction and carbonization of the supramolecular hydrogels; here, the β-cyclodextrin is carbonized to carbon nanoparticles that are uniformly anchored on the graphene nanosheets. Transmission electron microscopy reveals that carbon nanoparticles with several nanometers are uniformly anchored on both sides of graphene nanosheets, and X-ray diffraction spectra demonstrate that the interlayer spacing of graphene is enlarged due to the anchored nanoparticles among the graphene nanosheets. The as-prepared carbon nanoparticles-anchored graphene nanosheets material (C/r-GO-1:3) possesses a high specific capacitance (310.8 F g -1 , 0.5 A g -1 ), superior rate capability (242.5 F g -1 , 10 A g -1 ), and excellent cycle stability (almost 100% after 10 000 cycles, at the scan rate of 50 mV s -1 ). The outstanding electrochemical performance of the resulting C/r-GO-1:3 is mainly attributed to (i) the presence of the carbon nanoparticles, (ii) the enlarged interlayer spacing of the graphene sheets, and (iii) the accelerated ion transport rates toward the interior of the electrode material. The supramolecule-inspired approach for the synthesis of high-performance carbon nanoparticles-modified graphene sheets material is promising for future application in graphene-based energy storage devices.

  6. High-performance Sonitopia (Sonic Utopia): Hyper intelligent Material-based Architectural Systems for Acoustic Energy Harvesting

    Science.gov (United States)

    Heidari, F.; Mahdavinejad, M.

    2017-08-01

    The rate of energy consumption in all over the world, based on reliable statistics of international institutions such as the International Energy Agency (IEA) shows significant increase in energy demand in recent years. Periodical recorded data shows a continuous increasing trend in energy consumption especially in developed countries as well as recently emerged developing economies such as China and India. While air pollution and water contamination as results of high consumption of fossil energy resources might be consider as menace to civic ideals such as livability, conviviality and people-oriented cities. In other hand, automobile dependency, cars oriented design and other noisy activities in urban spaces consider as threats to urban life. Thus contemporary urban design and planning concentrates on rethinking about ecology of sound, reorganizing the soundscape of neighborhoods, redesigning the sonic order of urban space. It seems that contemporary architecture and planning trends through soundscape mapping look for sonitopia (Sonic + Utopia) This paper is to propose some interactive hyper intelligent material-based architectural systems for acoustic energy harvesting. The proposed architectural design system may be result in high-performance architecture and planning strategies for future cities. The ultimate aim of research is to develop a comprehensive system for acoustic energy harvesting which cover the aim of noise reduction as well as being in harmony with architectural design. The research methodology is based on a literature review as well as experimental and quasi-experimental strategies according the paradigm of designedly ways of doing and knowing. While architectural design has solution-focused essence in problem-solving process, the proposed systems had better be hyper intelligent rather than predefined procedures. Therefore, the steps of the inference mechanism of the research include: 1- understanding sonic energy and noise potentials as energy

  7. [Simultaneous determination of six fluorescent whitening agents in plastic and paper packaging materials by high performance liquid chromatography].

    Science.gov (United States)

    Zhang, Juzhou; Ji, Shuilin; Cai, Huimei; Li, Jing; Wang, Yongxin; Wang, Jingqiu

    2017-11-08

    A novel analytical method was developed for the simultaneous determination of six fluorescent whitening agents (FWAs:FWA 135, FWA 184, FWA 185, FWA 199, FWA 378 and FWA 393) in paper and plastic food packaging materials by high performance liquid chromatography with fluorescence detection (HPLC-FLD). The sample was extracted with mixed solution of chloroform and acetonitrile (3:7, v/v), then cleaned up by HLB solid phase extraction column. Qualitative and quantitative analyses were carried out by HPLC. The sample was separated on a Phenomenex C18 column using acetonitrile and 5 mmol/L ammonium acetate aqueous solution as mobile phases. The results indicated that the linear range of FWA393 was 15-1500 μg/L and the linear ranges of the other five FWAs were 5-500 μg/L with correlation coefficients greater than 0.999. The recoveries in spiked samples were between 80.4% and 125.0% with RSDs ( n =6) of 1%-13%. Furthermore, this method was applied to analyze 12 samples in the market to verify the practicality of the method. The method showed the advantages of simplicity, high recovery and good precision, and is suitable for the detection of the six fluorescent whitening agents in food packaging materials.

  8. Facile Synthesis and High performance of a New Carbazole-Based Hole Transporting Material for Hybrid Perovskite Solar Cells

    KAUST Repository

    Wang, Hong

    2015-06-26

    Perovskite solar cells are very promising for practical applications owing to their rapidly rising power conversion efficiency and low cost of solution-based processing. 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9’-spirobifluorene (Spiro-OMeTAD) is most widely used as hole transporting material (HTM) in perovskite solar cells. However, the tedious synthesis and high cost of Spiro-OMeTAD inhibit its commercial-scale application in the photovoltaic industry. In this article, we report a carbazole-based compound (R01) as a new HTM in efficient perovskite solar cells. R01 is synthesized via a facile route consisting of only two steps from inexpensive commercially available materials. Furthermore, R01 exhibits higher hole mobility and conductivity than the state-of-the-art Spiro-OMeTAD. Perovskite solar cells fabricated with R01 produce a power conversion efficiency of 12.03%, comparable to that obtained in devices using Spiro-OMeTAD in this study. Our findings underscore R01 as a highly promising HTM with high performance, and its facile synthesis and low cost may facilitate the large-scale applications of perovskite solar cells.

  9. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors.

    Science.gov (United States)

    Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing

    2015-10-28

    Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.

  10. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors.

    Science.gov (United States)

    Li, Gao-Ren; Feng, Zhan-Ping; Ou, Yan-Nan; Wu, Dingcai; Fu, Ruowen; Tong, Ye-Xiang

    2010-02-16

    MnO(2) as one of the most promising candidates for electrochemical supercapacitors has attracted much attention because of its superior electrochemical performance, low cost, and environmentally benign nature. In this Letter, we explored a novel route to prepare mesoporous MnO(2)/carbon aerogel composites by electrochemical deposition assisted by gas bubbles. The products were characterized by energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The MnO(2) deposits are found to have high purity and have a mesoporous structure that will optimize the electronic and ionic conductivity to minimize the total resistance of the system and thereby maximize the performance characteristics of this material for use in supercapacitor electrodes. The results of nitrogen adsorption-desorption experiments and electrochemical measurements showed that these obtained mesoporous MnO(2)/carbon aerogel composites had a large specific surface area (120 m(2)/g), uniform pore-size distribution (around 5 nm), high specific capacitance (515.5 F/g), and good stability over 1000 cycles, which give these composites potential application as high-performance supercapacitor electrode materials.

  11. Facile Synthesis and High performance of a New Carbazole-Based Hole Transporting Material for Hybrid Perovskite Solar Cells

    KAUST Repository

    Wang, Hong; Sheikh, Arif D.; Feng, Quanyou; Li, Feng; Chen, Yin; Yu, Weili; Alarousu, Erkki; Ma, Chun; Haque, Mohammed; Shi, Dong; Wang, Zhong-Sheng; Mohammed, Omar F.; Bakr, Osman; Wu, Tao

    2015-01-01

    Perovskite solar cells are very promising for practical applications owing to their rapidly rising power conversion efficiency and low cost of solution-based processing. 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9’-spirobifluorene (Spiro-OMeTAD) is most widely used as hole transporting material (HTM) in perovskite solar cells. However, the tedious synthesis and high cost of Spiro-OMeTAD inhibit its commercial-scale application in the photovoltaic industry. In this article, we report a carbazole-based compound (R01) as a new HTM in efficient perovskite solar cells. R01 is synthesized via a facile route consisting of only two steps from inexpensive commercially available materials. Furthermore, R01 exhibits higher hole mobility and conductivity than the state-of-the-art Spiro-OMeTAD. Perovskite solar cells fabricated with R01 produce a power conversion efficiency of 12.03%, comparable to that obtained in devices using Spiro-OMeTAD in this study. Our findings underscore R01 as a highly promising HTM with high performance, and its facile synthesis and low cost may facilitate the large-scale applications of perovskite solar cells.

  12. H–TiO{sub 2}/C/MnO{sub 2} nanocomposite materials for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Di, Jing; Fu, Xincui; Zheng, Huajun, E-mail: zhenghj@zjut.edu.cn [Zhejiang University of Technology, Department of Applied Chemistry (China); Jia, Yi [Griffith University, Nathan Campus, Queensland Micro and Nanotechnology Centre (Australia)

    2015-06-15

    Functionalized TiO{sub 2} nanotube arrays with decoration of MnO{sub 2} nanoparticles (denoted as H–TiO{sub 2}/C/MnO{sub 2}) have been synthesized in the application of electrochemical capacitors. To improve both areal and gravimetric capacitance, hydrogen treatment and carbon coating process were conducted on TiO{sub 2} nanotube arrays. By scanning electron microscopy and X-ray photoelectron spectroscopy, it is confirmed that the nanostructure is formed by the uniform incorporation of MnO{sub 2} nanoparticles growing round the surface of the TiO{sub 2} nanotube arrays. Impedance analysis proves that the enhanced capacitive is due to the decrease of charge transfer resistance and diffusion resistance. Electrochemical measurements performed on this H–TiO{sub 2}/C/MnO{sub 2} nanocomposite when used as an electrode material for an electrochemical pseudocapacitor presents quasi-rectangular shaped cyclic voltammetry curves up to 100 mV/s, with a large specific capacitance (SC) of 299.8 F g{sup −1} at the current density of 0.5 A g{sup −1} in 1 M Na{sub 2}SO{sub 4} electrolyte. More importantly, the electrode also exhibits long-term cycling stability, only ∼13 % of SC loss after 2000 continuous charge–discharge cycles. Based on the concept of integrating active materials on highly ordered nanostructure framework, this method can be widely applied to the synthesis of high-performance electrode materials for energy storage.

  13. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys

    International Nuclear Information System (INIS)

    Min, X.H.; Emura, S.; Nishimura, T.; Tsuchiya, K.; Tsuzaki, K.

    2010-01-01

    The microstructure, the tensile deformation mode at ambient temperature and the crevice corrosion resistance at a high temperature of 373 K were investigated in the Ti-10Mo-xFe (x = 0, 1, 3, 5) alloys. The stability of the β phase increased, and the formation of the α'' martensite and the athermal ω phase was suppressed by the increase in the Fe content. EPMA examinations indicated that the existence of the α'' martensite in the Ti-10Mo alloy was caused by the solidification segregation of Mo atoms. EBSD observations showed that the deformation mode changed from a {3 3 2} twinning to a slip by an increase in the Fe content, which coincided with the prediction by the electron/atom (e/a) ratio. The Ti-10Mo-3Fe alloy showed the highest yield strength of 935 MPa among all the alloys, while the Ti-10Mo-1Fe alloy showed the lowest value of 563 MPa due to the change in the deformation mode. On the other hand, all the alloys exhibited a high crevice corrosion resistance in a high chloride and high acidic solution at the high temperature, although the corrosion resistance decreased with an increase in the Fe content. The decrease in the corrosion resistance can be explained by the bond order (Bo). A good combination of tensile properties and crevice corrosion resistance may be obtainable through a further optimization of the Fe content by the e/a ratio and the Bo.

  14. Corrosion resistance and microstructure characterization of rare-earth-transition metal-aluminum-magnesium alloys

    International Nuclear Information System (INIS)

    Banczek, E.P.; Zarpelon, L.M.C.; Faria, R.N.; Costa, I.

    2009-01-01

    This paper reports the results of investigation carried out to evaluate the corrosion resistance and microstructure of some cast alloys represented by the general formula: La 0.7-x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x = 0, 0.1, 0.3, 0.5, and 0.7). Scanning electron microscopy (SEM) and electrochemical methods, specifically, polarization curves and electrochemical impedance spectroscopy (EIS), have been employed in this study. The effects of Pr substitution on the composition of the various phases in the alloys and their corrosion resistance have been studied. The electrochemical results showed that the alloy without Pr and the one with total La substitution showed the highest corrosion resistance among the studied alloys. The corrosion resistance of the alloys decreased when Pr was present in the lowest concentrations (0.1 and 0.3), but for higher Pr concentrations (0.5 and 0.7), the corrosion resistance increased. Corrosion occurred preferentially in a Mg-rich phase.

  15. The Evaluation of the Corrosion Resistance of the Al-Si Alloys Antimony Alloyed

    Directory of Open Access Journals (Sweden)

    Svobodova J.

    2014-06-01

    Full Text Available This paper deals with the evaluation of the corrosion resistance of the Al-Si alloys alloyed with the different amount of antimony. Specifically it goes about the alloy AlSi7Mg0,3 which is antimony alloyed in the concentrations 0; 0,001; 0,005; 0,01 a 0,05 wt. % of antimony. The introduction of the paper is dedicated to the theory of the aluminium alloys corrosion resistance, testing and evaluation of the corrosion resistance. The influence of the antimony to the Al-Si alloys properties is described further in the introduction. The experimental part describes the experimental samples which were prepared for the experiment and further they were exposed to the loading in the atmospheric conditions for a period of the 3 months. The experimental samples were evaluated macroscopically and microscopically. The results of the experiment were documented and the conclusions in terms of the antimony impact to the corrosion resistance of the Al-Si alloy were concluded. There was compared the corrosion resistance of the Al-Si alloy antimony alloyed (with the different antimony content with the results of the Al-Si alloy without the alloying after the corrosion load in the atmospheric conditions in the experiment.

  16. Development of Self-Healing Coatings Based on Linseed Oil as Autonomous Repairing Agent for Corrosion Resistance

    Directory of Open Access Journals (Sweden)

    Karan Thanawala

    2014-11-01

    Full Text Available In recent years corrosion-resistant self-healing coatings have witnessed strong growth and their successful laboratory design and synthesis categorises them in the family of smart/multi-functional materials. Among various approaches for achieving self-healing, microcapsule embedment through the material matrix is the main one for self-healing ability in coatings. The present work focuses on optimizing the process parameters for developing microcapsules by in-situ polymerization of linseed oil as core and urea-formaldehyde as shell material. Characteristics of these microcapsules with respect to change in processing parameters such as stirring rate and reaction time were studied by using optical microscopy (OM, scanning electron microscopy (SEM and Fourier transform infrared spectroscopy (FT-IR. The effectiveness of these microcapsules in coatings was characterized by studying their adhesion, performance, and mechanical properties.

  17. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    Science.gov (United States)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  18. Feasibility of long-life and corrosion-resistant canister with titanium cladding

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Tokiwai, Moriyasu; Saegusa, Toshiari

    2008-01-01

    In order to store nuclear spent fuels for a long term, we propose the concept of stainless steel canister with titanium cladding. The stainless canister is first brazed to titanium plates, and then the brazed joints are covered with other titanium plates. A MIG brazing for titanium and stainless steel was demonstrated with a brazing metal of Cu-1Mn-3Si alloy (MG960). JIS G 0601 shear strength, tensile shear stress and peel strength tests are conducted for the optimized MIG brazing conditions. These results showed the MIG brazing specimens possess adequate structural strength. After the salt spray test on the basis of JIS Z 2371, there were no pitting and general corrosions on a TIG welding specimen between titanium plates. The corrosion resistance is therefore, sufficiently high. Manufacturing cost estimation suggests that the titanium cladding concept is feasible thereby using 1-mm-thick titanium plates to reduce the material cost. In addition to this concept, we propose another concept of the canister by using titanium-stainless steel cladding plates to reduce a number of brazing joints. (author)

  19. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Science.gov (United States)

    Vladescu, A.; Braic, M.; Azem, F. Ak; Titorencu, I.; Braic, V.; Pruna, V.; Kiss, A.; Parau, A. C.; Birlik, I.

    2015-11-01

    Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  20. Experimental Investigation and Prediction of Compressive Strength of Ultra-High Performance Concrete Containing Supplementary Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Jisong Zhang

    2017-01-01

    Full Text Available Ultra-high performance concrete (UHPC has superior mechanical properties and durability to normal strength concrete. However, the high amount of cement, high environmental impact, and initial cost are regarded as disadvantages, restricting its wider application. Incorporation of supplementary cementitious materials (SCMs in UHPC is an effective way to reduce the amount of cement needed while contributing to the sustainability and cost. This paper investigates the mechanical properties and microstructure of UHPC containing fly ash (FA and silica fume (SF with the aim of contributing to this issue. The results indicate that, on the basis of 30% FA replacement, the incorporation of 10% and 20% SF showed equivalent or higher mechanical properties compared to the reference samples. The microstructure and pore volume of the UHPCs were also examined. Furthermore, to minimise the experimental workload of future studies, a prediction model is developed to predict the compressive strength of the UHPC using artificial neural networks (ANNs. The results indicate that the developed ANN model has high accuracy and can be used for the prediction of the compressive strength of UHPC with these SCMs.

  1. Poly(3,4-ethylenedioxythiophene Doped with Carbon Materials for High-Performance Supercapacitor: A Comparison Study

    Directory of Open Access Journals (Sweden)

    Shariffah Nur Jannah Syed Zainol Abidin

    2017-01-01

    Full Text Available A comparative study of multiwalled carbon nanotube (MWCNT, graphene oxide (GO, and nanocrystalline cellulose (NCC as a dopant in the preparation of poly(3,4-ethylenedioxythiophene- (PEDOT- based hybrid nanocomposites was presented here. The hybrid nanocomposites were prepared via the electrochemical method in aqueous solution. The FTIR and Raman spectra confirmed the successful incorporation of dopants (MWCNT, GO, and NCC into PEDOT matrix in the process of formation of the hybrid nanocomposites. It was observed that the choice of the carbon material affected the morphologies and supercapacitive properties of the hybrid nanocomposites. Incorporation of GO with PEDOT produces a paper-like sheet nanocomposite in which the wrinkled surface results in larger surface area compared to the network-like and rod-like structures of PEDOT/MWCNT and PEDOT/NCC, respectively. Owing to larger surface area, PEDOT/GO exhibits the highest specific capacitance (120.13 F/g, low equivalent series resistance (34.44 Ω, and retaining 87.99% of the initial specific capacitance after 1000 cycles, signifying a long-term cycling stability. Furthermore, the high performance of PEDOT/GO is also demonstrated by its high specific energy and specific power.

  2. Determination of Fluorescent Whitening Agents in Paper Materials by Ion-Pair Reversed-Phase High-Performance Liquid Chromatography

    International Nuclear Information System (INIS)

    Kim, Jeong Soo; Kim, Keon; Kim, Do Hwan

    2012-01-01

    A simple method was developed for the analysis of seven stilbene-type fluorescent whitening agents (FWAs) in paper materials by ion-pair reversed-phase high-performance liquid chromatography with fluorescence detection. These stilbene-type FWAs included two disulfonate, two tetrasulfonate, and three hexasulfonate compounds. After optimization of chromatographic conditions, the FWAs were satisfactorily separated using a reversed-phase column (RP-18) with the following isocratic mobile phase: methanol-water (60:40) containing 17.5 mM TBABr and 10 mM citrate buffer (pH = 7.0). The calibration plot was linear in the range from 5 to 500 ng/mL for two disulfo-FWAs and from 1 to 500 ng/mL for the other five FWAs. Precision levels of the calibration curve as indicated by RSD of response factors were 1.2 and 8.1%. Limits of quantitation (LOQ) ranged from 1.2 to 11 ng/mL

  3. Determination of Fluorescent Whitening Agents in Paper Materials by Ion-Pair Reversed-Phase High-Performance Liquid Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Soo; Kim, Keon [Korea Univ., Seoul (Korea, Republic of); Kim, Do Hwan [Daegu Univ., Gyeongsan (Korea, Republic of)

    2012-12-15

    A simple method was developed for the analysis of seven stilbene-type fluorescent whitening agents (FWAs) in paper materials by ion-pair reversed-phase high-performance liquid chromatography with fluorescence detection. These stilbene-type FWAs included two disulfonate, two tetrasulfonate, and three hexasulfonate compounds. After optimization of chromatographic conditions, the FWAs were satisfactorily separated using a reversed-phase column (RP-18) with the following isocratic mobile phase: methanol-water (60:40) containing 17.5 mM TBABr and 10 mM citrate buffer (pH = 7.0). The calibration plot was linear in the range from 5 to 500 ng/mL for two disulfo-FWAs and from 1 to 500 ng/mL for the other five FWAs. Precision levels of the calibration curve as indicated by RSD of response factors were 1.2 and 8.1%. Limits of quantitation (LOQ) ranged from 1.2 to 11 ng/mL.

  4. A flexible, transparent and high-performance gas sensor based on layer-materials for wearable technology

    Science.gov (United States)

    Zheng, Zhaoqiang; Yao, Jiandong; Wang, Bing; Yang, Guowei

    2017-10-01

    Gas sensors play a vital role among a wide range of practical applications. Recently, propelled by the development of layered materials, gas sensors have gained much progress. However, the high operation temperature has restricted their further application. Herein, via a facile pulsed laser deposition (PLD) method, we demonstrate a flexible, transparent and high-performance gas sensor made of highly-crystalline indium selenide (In2Se3) film. Under UV-vis-NIR light or even solar energy activation, the constructed gas sensors exhibit superior properties for detecting acetylene (C2H2) gas at room temperature. We attribute these properties to the photo-induced charger transfer mechanism upon C2H2 molecule adsorption. Moreover, no apparent degradation in the device properties is observed even after 100 bending cycles. In addition, we can also fabricate this device on rigid substrates, which is also capable to detect gas molecules at room temperature. These results unambiguously distinguish In2Se3 as a new candidate for future application in monitoring C2H2 gas at room temperature and open up new opportunities for developing next generation full-spectrum activated gas sensors.

  5. Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti–24Nb–4Zr–7.9Sn alloy for biomedical applications

    International Nuclear Information System (INIS)

    Guo, Shibo; Chu, Aimin; Wu, Haijiang; Cai, Chunbo; Qu, Xuanhui

    2014-01-01

    Highlights: • Ti–24Nb–4Zr–7.9Sn alloy is prepared by powder metallurgy method. • The alloy prepared at 1250 °C for 2 h has more β-matrix and tiny α-precipitation. • The alloy prepared at 1250 °C for 2 h possesses good mechanical properties. • The alloy prepared at 1250 °C for 2 h exhibits better corrosion resistance. - Abstract: Ti–24Nb–4Zr–7.9Sn alloy was prepared by Powder Metallurgy (PM) method using titanium hydride powder, niobium powder, zirconium powder, and tin powder as raw materials. The effect of sintering processing on microstructure, mechanical properties, and corrosion resistance was investigated in details. The alloy possessed dominant β-matrix and a little α-precipitation. The mechanical properties of the alloy sintered at 1250 °C for 2 h were better than those of the alloys with other sintering processing, which would avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, the electrochemical behaviors in a simulated body fluid (Hank’s solution and simulated saliva solution) were also evaluated. Potentiodynamic polarization curves exhibited that the sample sintered at 1250 °C for 2 h had better corrosion properties than those of other sintering processing. The good corrosion resistance combined with better mechanical biocompatibility made the Ti–24Nb–4Zr–7.9Sn alloy suitable for use as orthopedic implants

  6. Solvothermal Synthesis of Fe2O3 Loaded Activated Carbon as Electrode Materials for High-performance Electrochemical Capacitors

    International Nuclear Information System (INIS)

    Li, Ying; Kang, Litao; Bai, Gailing; Li, Peiyang; Deng, Jiachun; Liu, Xuguang; Yang, Yongzhen; Gao, Feng; Liang, Wei

    2014-01-01

    This article describes a facile solvothermal synthesis method to prepare Fe 2 O 3 /AC composites for electrochemical capacitors from Iron (III) chloride hexahydrate (FeCl 3 ·6H 2 O), activated carbon (AC, from petroleum coke), and four different precipitants (i.e., NaOH, CH 3 COONa, HMT, CO(NH 2 ) 2 ). X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Thermogravimetric (TG) analysis show that the products consisted of nanosized α-Fe 2 O 3 (weight ratios: 48.1, 47.9, 44.2, 44.3%) loaded onto AC particles (∼ 20 μm). Significantly, both kind and dosage of precipitants exhibit effects on the specific capacitances of Fe 2 O 3 /AC composites. The highest specific capacitance reaches up to 240 F g −1 (at a current density of 1 A g −1 in 6 M KOH aqueous electrolyte) when the molar ratio of CH 3 COONa: FeCl 3 is 9. On the other hand, the sample prepared with NaOH: FeCl 3 molar ratio being 1.5 exhibits excellent rate capability with specific capacitance of 215 F g −1 at 1 A g −1 , and 89.3, 82.3, 78.1, 72.6 and 65.1% capacity retention at 2, 5, 10, 20, and 40 A g −1 , respectively. These electrochemical performances are superior to other materials consisted of Fe 2 O 3 /carbon nanotube (CNT), graphene oxide (GO) or reduced graphene oxide (rGO) composites, demonstrating the great potential of Fe 2 O 3 /AC composites in the development of high-performance electrode materials for electrochemical capacitors

  7. Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2009-01-01

    Surface contaminants as a result of thermo-mechanical processing of magnesium alloys, e.g. sheet rolling, can have a negative effect on the corrosion resistance of magnesium alloys. Especially contaminants such as Fe, Ni and Cu, left on the surface of magnesium alloys result in the formation...... of micro-galvanic couples and can therefore increase corrosion attack on these alloys. Due to this influence they should be removed to obtain good corrosion resistance. In this study, the effect of inorganic acid pickling on the corrosion behaviour of a commercial AZ31 magnesium alloy sheet...... cleaning the AZ31 sheet. However, to obtain reasonable corrosion resistance at least 5 mu m of the surface of AZ31 magnesium alloy sheet have to be removed....

  8. Boron effect on fabrication properties and service behaviour of complex corrosion-resistant steels

    International Nuclear Information System (INIS)

    Gol'dshtejn, Ya.E.; Piskunova, A.I.; Shmatko, M.N.

    1978-01-01

    In order to determine the optimum boron admixtures for the improvement of the technological plasticity without the considerable reduction in the corrosion resistance of the complex alloy Cr-Ni-Mo steels, industrial heats of the 03KH16N15M3, 03KH17N14M3 and other steels, containing 0.0005-0.003% boron, have been researched. The plasticity, corrosion resistance and microstructure of certain steels have been determined. It is shown that small additions of boron enhance the technological plasticity during the ingot rolling. In order to prevent a sharp reduction in the corrosion resistance, the boron content should be confined to 0.0015% and the quenching temperature raised to 1,120-1,150 deg C. The positive effect of the quenching temperature increase is accounted for by the solution of the excess phases and by the reduction of the dislocation density in the near-the-boundary zones

  9. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  10. Hot corrosion resistance of a Pb-Sb alloy for lead acid battery grids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil); Aoki, Claudia S.C. [Research and Development Centre - CPqD Foundation, Rod. Campinas/Mogi, km 118.5, 13086-912 Campinas, SP (Brazil)

    2008-12-01

    The aim of this study was to evaluate the effects of the microstructural morphologies of a Pb-6.6 wt%Sb alloy on the resulting corrosion resistance in a 0.5 M H{sub 2}SO{sub 4} solution at different temperatures: environment temperature, 50 C and 70 C. A water-cooled unidirectional solidification system was employed permitting a wide range of microstructures to be analyzed. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the corrosion behavior of the Pb-Sb alloy samples. It was found that with increasing temperatures the general corrosion resistance of Pb-Sb dendritic alloys decreases, and that independently of the working temperature finer dendritic spacings exhibit better corrosion resistance than coarser ones. (author)

  11. Eelectrochemical properties and corrosion resistance of carbon-ion-implanted magnesium

    International Nuclear Information System (INIS)

    Xu, Ruizhen; Yang, Xiongbo; Li, Penghui; Suen, Kai Wong; Wu, Guosong; Chu, Paul K.

    2014-01-01

    Highlights: • Carbon, as a biocompatible benign element, was implanted into Mg. • A protective amorphous carbon layer was formed after implantation. • Treated sample exhibits good corrosion resistance in two solutions. - Abstract: The corrosion resistance of magnesium-based biomaterials is critical to clinical applications. In this work, carbon as a biocompatible and benign nonmetallic element with high chemical inertness is implanted into pure magnesium to improve the corrosion behavior. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman scattering reveal the formation of an amorphous carbon layer after ion implantation. Electrochemical studies demonstrate remarkable improvement in the corrosion resistance of magnesium in simulated body fluids (SBF) and Dulbecco’s Modified Eagle Medium (DMEM)

  12. Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy

    International Nuclear Information System (INIS)

    Yang, K.H.; Ger, M.D.; Hwu, W.H.; Sung, Y.; Liu, Y.C.

    2007-01-01

    In this study, magnesium alloy (AZ61) was immersed in vanadium containing bath with various conditions, such as the vanadium concentration, immersion time and bath temperature. The results indicate that increase of both vanadium concentration and immersion time produces a thicker conversion layer. However, when immersion time is too long, it will worsen the corrosion resistance due to the increasing of the crack density. The experimental parameter of bath temperature has no significant effect on corrosion resistance. Our results demonstrated that the better corrosion resistance coating can be obtained when the samples are submitted to an immersion in the conversion bath containing NaVO 3 with concentration of 30 g l -1 for 10 min at 80 deg. C. The presented conversion treatment has its potential to replace the chrome-based conversion coating treatment

  13. Corrosion Resistance of Steels and Armco-Fe in Lead Melt Saturated by Oxygen at 550 degree C

    International Nuclear Information System (INIS)

    Tsisar, V.P.; Fedirko, V.N.; Eliseeva, O.I.

    2007-01-01

    Corrosion resistance of stainless steels and Armco-Fe in static lead melt saturated by oxygen at 550 degree C for 2000 h was investigated. It was determined that double oxide layer was formed on the surface of investigated materials. Outer part of double oxide growths from the initial interface 'solid metal/liquid lead' towards the melt and consists of Fe 3 O 4 . Inner part of double oxide based on the matrix is composed of Fe 3 O 4 for Armco-Fe, Fe 1+x Cr 2-x O 4 for martensitic 0.2 C-13 Cr and ferritic-martensitic EP823 steels and Fe 1+x Cr 2- xO 4 +Ni for austenitic 18Cr-10Ni-1Ti. Lead did not penetrate into the matrix of tested materials and was detected only in the scale formed on austenitic steel

  14. Thermal behaviour properties and corrosion resistance of organoclay/polyurethane film

    Science.gov (United States)

    Kurniawan, O.; Soegijono, B.

    2018-03-01

    Organoclay/polyurethane film composite was prepared by adding organoclay with different content (1, 3, and 5 wt.%) in polyurethane as a matrix. TGA and DSC showed decomposition temperature shifted to a lower point as organoclay content change. FT-IR spectra showed chemical bonding of organoclay and polyurethane as a matrix, which means that the bonding between filler and matrix occured and the composite was stronger but less bonding occur in composite with 5 wt.% organoclay. The corrosion resistance overall increased with the increasing organoclay content. Composite with 5 wt.% organoclay had more thermal stability and corrosion resistance may probably due to exfoliation of organoclay.

  15. Corrosion Resistance of Laser Clads of Inconel 625 and Metco 41C

    Science.gov (United States)

    Němeček, Stanislav; Fidler, Lukáš; Fišerová, Pavla

    The present paper explores the impact of laser cladding parameters on the corrosion behaviour of the resulting surface. Powders of Inconel 625 and austenitic Metco 41C steel were deposited on steel substrate. It was confirmed that the level of dilution has profound impact on the corrosion resistance and that dilution has to be minimized. However, the chemical composition of the cladding is altered even in the course of the cladding process, a fact which is related to the increase in the substrate temperature. The cladding process was optimized to achieve maximum corrosion resistance. The results were verified and validated using microscopic observation, chemical analysis and corrosion testing.

  16. Modification of corrosion resistances of steels by rare earths ion implantation

    International Nuclear Information System (INIS)

    Hu Zhaomin; Zhang Weiguo; Liu Fengying; Shao Tongyi; Xiang Xuyang; Gao Fengqin; Li Gongpan

    1987-01-01

    Five kinds of rare earth RE elements have been implanted into steel No.45 and GCr15 bearing steel respectively. The corrosion resistances of the specimens have been examined using electrochemical dynamic potential method, in a NaAc/HAc solution for steel No.45 specimens and in a NaAc/HAc solution containing 0.1 mol/lNaCl for GCr15 bearing steel specimens. It has been found that the aqueous solution corrosion resistances of steel No.45 are obviously modified by implantation of RE element, and the pitting corrosion properties of GCr15 bearing steel are significantly improved due to heavy RE element implantation

  17. Improvement of Corrosion Resistance of Aluminum Alloy with Wettability Controlled Porous Oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Sakairi, M.; Goyal, V. [Hokkaido University, Sapporo (Japan)

    2016-08-15

    The combined process of porous type anodizing and desiccation treatment was applied to improve wettability of A1050 aluminum alloy. The water contact angles of anodized samples were increaseds considerably with desiccation treatment. However, there was no considerable effect of polishing and anodizing time on water contact angle. The corrosion behavior with the treatments was investigated electrochemically. The corrosion resistance of the samples in 3.5 mass% NaCl solutions increased with higher contact angle. Anodized and desiccated samples showed better corrosion resistance than un-desiccated samples around rest potential region.

  18. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    The present study focuses on the ability of several computer models to accurately predict the solidification, microsegregation and pitting corrosion resistance of austenitic stainless steel weld metals. Emphasis was given to modelling the effect of welding speed on solute redistribution and ultimately to the prediction of weld pitting corrosion resistance. Calculations were experimentally verified by applying autogenous GTA- and laser processes over the welding speed range of 0.1 to 5 m/min for several austenitic stainless steel grades. Analytical and computer aided models were applied and linked together for modelling the solidification behaviour of welds. The combined use of macroscopic and microscopic modelling is a unique feature of this work. This procedure made it possible to demonstrate the effect of weld pool shape and the resulting solidification parameters on microsegregation and pitting corrosion resistance. Microscopic models were also used separately to study the role of welding speed and solidification mode in the development of microsegregation and pitting corrosion resistance. These investigations demonstrate that the macroscopic model can be implemented to predict solidification parameters that agree well with experimentally measured values. The linked macro-micro modelling was also able to accurately predict segregation profiles and CPT-temperatures obtained from experiments. The macro-micro simulations clearly showed the major roles of weld composition and welding speed in determining segregation and pitting corrosion resistance while the effect of weld shape variations remained negligible. The microscopic dendrite tip and interdendritic models were applied to welds with good agreement with measured segregation profiles. Simulations predicted that weld inhomogeneity can be substantially decreased with increasing welding speed resulting in a corresponding improvement in the weld pitting corrosion resistance. In the case of primary austenitic

  19. In-vitro evaluation of corrosion resistance of nitrogen ion implanted titanium simulated body fluid

    International Nuclear Information System (INIS)

    Subbaiyan, M.; Sundararajian, T.; Rajeswari, S.; Kamachi Mudali, U.; Nair, K.G.M.; Thampi, N.S.

    1997-01-01

    Titanium and its alloy Ti6Al4V enjoy widespread use in various biomedical applications because of favourable local tissue response, higher corrosion resistance and fatigue strength than the stainless steels and cobalt-chromium alloy previously used. The study reported in this paper aims to optimize the conditions of nitrogen ion implantation on commercially pure titanium and to correlate the implantation parameters to the corrosion resistance. X-ray photoelectron spectroscopy was used to analyse surface concentration and the implantation processes. An improvement in the electrochemical behaviour of the passive film was shown to occur with nitrogen ion implantation on titanium, in simulated body fluids. (UK)

  20. Improvement of Corrosion Resistance of Aluminum Alloy with Wettability Controlled Porous Oxide films

    International Nuclear Information System (INIS)

    Sakairi, M.; Goyal, V.

    2016-01-01

    The combined process of porous type anodizing and desiccation treatment was applied to improve wettability of A1050 aluminum alloy. The water contact angles of anodized samples were increaseds considerably with desiccation treatment. However, there was no considerable effect of polishing and anodizing time on water contact angle. The corrosion behavior with the treatments was investigated electrochemically. The corrosion resistance of the samples in 3.5 mass% NaCl solutions increased with higher contact angle. Anodized and desiccated samples showed better corrosion resistance than un-desiccated samples around rest potential region.

  1. Corrosion resistance of cement brick on an organo-mineral base in a hydrogen sulfide medium

    Energy Technology Data Exchange (ETDEWEB)

    Potapov, A G; Belousov, G A; Pustovalov, V I; Skorikov, B M

    1981-01-01

    Results are presented of strength tests of cement brick made of different types of cement as a function of the composition of the mixing liquid and storage conditions. It is established that cement brick made of cement on a cinder base mixed in hydrogen sulfide water possesses the highest corrosive resistance to hydrogen sulfide attack. A marked increase in corrosion resistance is observed in cement brick on an organo-mineral base. Results of industrial tests of organo-mineral grouting mortar in a hydrogen sulfide medium are demonstrated.

  2. Method for Evaluating the Corrosion Resistance of Aluminum Metallization of Integrated Circuits under Multifactorial Influence

    Science.gov (United States)

    Kolomiets, V. I.

    2018-03-01

    The influence of complex influence of climatic factors (temperature, humidity) and electric mode (supply voltage) on the corrosion resistance of metallization of integrated circuits has been considered. The regression dependence of the average time of trouble-free operation t on the mentioned factors has been established in the form of a modified Arrhenius equation that is adequate in a wide range of factor values and is suitable for selecting accelerated test modes. A technique for evaluating the corrosion resistance of aluminum metallization of depressurized CMOS integrated circuits has been proposed.

  3. Corrosion resistance of amorphous and crystalline Pd40Ni40P20 alloys in aqueous solutions

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Chu, J.

    2006-01-01

    The corrosion behaviors of amorphous and crystalline Pd40Ni40P20 alloys in various aqueous solutions are reported in this paper. The corrosion resistance of crystalline (annealed) Pd40Ni40P20 is better than that of amorphous Pd40Ni40P20 in various corrosive solutions, due to crystalline Pd40Ni40P20...... and mainly consists of inert Pd5P2, NI3P, Ni2Pd2P and noble Pd phases. These inert and noble properties result in a higher corrosion resistance in crystalline Pd40Ni40P20....

  4. Assessment of corrosion resistance of Nd–Fe–B magnets by silanization for orthodontic applications

    Energy Technology Data Exchange (ETDEWEB)

    Fabiano, F., E-mail: ffabiano@unime.it [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Celegato, F. [INRIM Electromagnetism Division, Torino (Italy); Giordano, A. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Borsellino, C. [Department of Civil Engineering, Computing, Construction, Environmental and Applied Mathematics, Messina (Italy); Bonaccorsi, L.; Calabrese, L. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Tiberto, P. [INRIM Electromagnetism Division, Torino (Italy); Cordasco, G.; Matarese, G. [Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Fabiano, V. [Department of Civil Engineering, Computing, Construction, Environmental and Applied Mathematics, Messina (Italy); Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy)

    2014-02-15

    Nd–Fe–B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd–Fe–B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  5. Assessment of corrosion resistance of Nd-Fe-B magnets by silanization for orthodontic applications

    Science.gov (United States)

    Fabiano, F.; Celegato, F.; Giordano, A.; Borsellino, C.; Bonaccorsi, L.; Calabrese, L.; Tiberto, P.; Cordasco, G.; Matarese, G.; Fabiano, V.; Azzerboni, B.

    2014-02-01

    Nd-Fe-B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd-Fe-B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  6. Porous polyhedral and fusiform Co3O4 anode materials for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang, Guoyong; Xu, Shengming; Lu, Shasha; Li, Linyan; Sun, Hongyu

    2014-01-01

    Graphical abstract: - Abstract: Co 3 O 4 is commonly used as a potential anode material for Li-ion batteries (LIBs). In this study, novel porous polyhedral and fusiform Co 3 O 4 powders have been synthesized successfully through the hydrothermal method with different solvents followed by thermal treatment. It is shown that both of the polyhedrons (1.0-3.0 μm in side length) and the spindles (2.0-5.0 μm in length, 0.5-2.0 μm in width) are composed of similar irregular nanoparticles (20-200 nm in diameter, 20-40 nm in thickness) bonded to each other. Evaluated by electrochemical measurements, both of them have high initial discharge capacities (1374.4 mAhg −1 and 1326.3 mAhg −1 ) and enhanced cycling stabilities at the low rate (the capacity retention ratios at 0.1 C after 70 cycles are 91.6% and 92.2%, respectively). However, the rate capability of the spindles (93.8%, 90.1% and 98.9% of the second discharge capacities after 70 cycles at 0.5 C, 1 C and 2 C, respectively) is better than the polyhedrons’ (only 76.2%, 42.1% and 59.3% under the same conditions). Remarkable, the unique morphologies and special structures may be extended to synthesize other similar transition metal oxides (NiO, Fe 3 O 4 , et al.) as high performance anodes for LIBs

  7. Effect of cold working on the corrosion resistance of JPCA stainless steel in flowing Pb–Bi at 450 °C

    International Nuclear Information System (INIS)

    Rivai, Abu Khalid; Saito, Shigeru; Tezuka, Masao; Kato, Chiaki; Kikuchi, Kenji

    2012-01-01

    Development of a high performance proton beam window material is one of the critical issues for the deployment of the accelerator-driven transmutation system (ADS) with liquid Pb–Bi eutectic as a spallation target and coolant. In the present study, we applied 20% cold work treatment to JPCA austenitic stainless steel and investigated it from the corrosion behavior viewpoint. The corrosion test of 20% cold-worked JPCA SS has been carried in the JLBL-1 (JAEA Lead–Bismuth Loop-1) apparatus. The maximum temperature, the temperature difference, the flow velocity and the exposure time of the liquid Pb–Bi were 450 °C, 100 °C, 1 m/s, and 1000 h, respectively. For comparison analysis, JPCA SS without cold working was also tested in the same time and conditions with the 20% cold-worked JPCA SS. The results showed a different corrosion behavior between the JPCA SS without and with cold working. As for the JPCA SS without cold working, Pb–Bi penetrated into the matrix through a ferrite layer which was formed because of constituent metals dissolution from the matrix into Pb–Bi. As for the 20% cold-worked JPCA SS, dissolution attack occurred only partially and formed localized superficial pitting corrosion. It was found that the different corrosion behavior occurred because the cold working induced a structure transformation from γ-austenite to α′-martensite and affected the corrosion resistance of the JPCA SS in flowing Pb–Bi at 450 °C.

  8. Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Syung-Yul; Won, Jong-Pil; Park, Dong-Hyun; Moon, Kyung-Man; Lee, Myeong-Hoon; Jeong, Jin-A [Korea Maritime and Ocean Univ., Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2014-02-15

    Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of 500 .deg. C was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The α, β and γ{sub 2} phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, β and γ{sub 2} phases decreased gradually with increasing the holding time at a constant temperature of 500 .deg. C. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that γ{sub 2} phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the γ{sub 2} phase with heat treatment

  9. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-350 and 731-TA-616 and 618 (Third Review)] Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five-Year Reviews... corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion...

  10. 75 FR 18153 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-04-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time Limit for Preliminary Results of... countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea. See Countervailing...

  11. 77 FR 16810 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-03-22

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for Preliminary Results of... Register the countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea...

  12. 76 FR 20954 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for Preliminary Results of... Register the countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea...

  13. 75 FR 55769 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2010-09-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant...) is conducting the sixteenth administrative review of the antidumping order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea).\\1\\ This review covers eight...

  14. 78 FR 59652 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2013-09-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant... corrosion-resistant carbon steel flat products (``CORE'') from the Republic of Korea (``Korea''), pursuant... administrative review of the antidumping duty order on CORE from Korea covering the period of review (``POR'') of...

  15. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... Department) is conducting an administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea), covering the period [[Page 55058...

  16. 78 FR 16247 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea; Final Results of...

    Science.gov (United States)

    2013-03-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... preliminary results of the administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea).\\1\\ This review covers seven manufacturers...

  17. 77 FR 25405 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-04-30

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for the Preliminary Results of...

  18. 76 FR 69703 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2011-11-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products from Korea, covering the period August 1, 2009, to July 31, 2010. See Initiation of Antidumping and Countervailing Duty...

  19. 76 FR 21332 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-15

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limits for the Preliminary Results of...

  20. 75 FR 25841 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-05-10

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limits for the Preliminary Results of...

  1. 77 FR 14501 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2012-03-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant... the preliminary results of the antidumping duty administrative review for certain corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea).\\1\\ This review covers eight...

  2. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... results of the administrative review of the countervailing duty order on corrosion-resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through December 31, 2009...

  3. 77 FR 54891 - Certain Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary...

    Science.gov (United States)

    2012-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant...) is conducting the 18th administrative review of the antidumping order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea \\1\\ (Korea). This review covers seven...

  4. 76 FR 4291 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... Commerce (the Department) initiated an administrative review of the countervailing duty order on corrosion- resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through...

  5. 78 FR 59651 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2013-09-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant... duty order on certain corrosion-resistant carbon steel flat products (``CORE'') from the Republic of... covering the period of review (``POR'') of August 1, 2006 through July 31, 2007, with respect to the...

  6. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Science.gov (United States)

    2012-05-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Certain Corrosion-Resistant... order on certain corrosion-resistant carbon steel flat products (``CORE'') from the Republic of Korea.... Scope of the Order The merchandise covered by the order includes flat-rolled carbon steel products, of...

  7. 76 FR 55004 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary...

    Science.gov (United States)

    2011-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant...) is conducting the seventeenth administrative review of the antidumping order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea \\1\\ (Korea). This review covers eight...

  8. 75 FR 77615 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2010-12-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products from Korea, covering the period August 1, 2008, to July 31, 2009. See Initiation of Antidumping and Countervailing Duty...

  9. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, R.

    2008-04-01

    Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

  10. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    Science.gov (United States)

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  11. Investigation on the corrosion resistance of PIM 316L stainless steel in PEM fuel cell simulated environment

    International Nuclear Information System (INIS)

    Oliveira, Mara Cristina Lopes de; Costa, Isolda; Antunes, Renato Altobelli

    2009-01-01

    Bipolar plates play main functions in PEM fuel cells, accounting for the most part of the weight and cost of these devices. Powder metallurgy may be an interesting manufacturing process of these components owing to the production of large scale, complex near-net shape parts. However, corrosion processes are a major concern due to the increase of the passive film thickness on the metal surface, lowering the power output of the fuel cell. In this work, the corrosion resistance of PIM AISI 316L stainless steel specimens was evaluated in 1M H 2 SO 4 + 2 ppm HF solution at room temperature during 30 days of immersion. The electrochemical measurements comprised potentiodynamic polarization and electrochemical impedance spectroscopy. The surface morphology of the specimens was observed before and after the corrosion tests through SEM images. The material presented low corrosion current density suggesting that it is suitable to operate in the PEM fuel cell environment. (author)

  12. The Use of AC-DC-AC Methods in Assessing Corrosion Resistance Performance of Coating Systems for Magnesium Alloys

    Science.gov (United States)

    McCune, Robert C.; Upadhyay, Vinod; Wang, Yar-Ming; Battocchi, Dante

    The potential utility of AC-DC-AC electrochemical methods in comparative measures of corrosion-resisting coating system performance for magnesium alloys under consideration for the USAMP "Magnesium Front End Research and Development" project was previously shown in this forum [1]. Additional studies of this approach using statistically-designed experiments have been conducted with focus on alloy types, pretreatment, topcoat material and topcoat thickness as the variables. Additionally, sample coupons made for these designed experiments were also subjected to a typical automotive cyclic corrosion test cycle (SAE J2334) as well as ASTM B117 for comparison of relative performance. Results of these studies are presented along with advantages and limitations of the proposed methodology.

  13. Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications

    Directory of Open Access Journals (Sweden)

    Saad Al-Saadi

    2017-11-01

    Full Text Available Magnesium and its alloys are attractive potential materials for construction of biodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesium alloy surface was modified by hexagonal boron nitride (hBN-impregnated silane coating. The coating was chemically characterised by Raman spectroscopy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS of the coated alloy in Hanks’ solution showed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosion analyses corroborated the electrochemical data and provided a mechanistic insight of the improvement provided by the composite coating.

  14. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-01-01

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water

  15. Improvement of wear and corrosion resistances of 17-4PH stainless steel by plasma nitrocarburizing

    International Nuclear Information System (INIS)

    Liu, R.L.; Yan, M.F.

    2010-01-01

    17-4PH stainless steel was plasma nitrocarburized at 460 o C for improving its mechanical properties without compromising its desirable corrosion resistance. The plasma nitrocarburized layers were studied by optical microscope, X-ray diffractometer, microhardness tester, pin-on-disc tribometer and the anodic polarization method in a 3.5% NaCl solution. The experimental results show that the nitrocarburized layer depths increase with increasing duration time and the layers growth conform approximately to the parabolic law. The phases in the nitrocarburized layer are mainly of γ'-Fe 4 N and α'-Fe with traces of CrN phase. The surface hardness of the modified specimen is more than 1200 HV, which is three times higher than that of untreated one. The friction coefficient and corrosion resistance of the specimen can be apparently improved by plasma nitrocarburizing. With the increase of duration time, the surface hardness slightly decreases whereas the friction coefficient and corrosion resistance of the modified specimen are first increase and then decrease. The 8 h treated specimen has the lowest friction coefficient and the best corrosion resistance in the present test conditions.

  16. A study on corrosion resistance of electrodeposited Zn-base alloy steel sheet

    International Nuclear Information System (INIS)

    Park, Hyun Soon

    1986-01-01

    Effects of electrodeposits of Zn-Ni or Zn-Co alloy with small amounts of Mo or W in sulphate bath on the corrosion resistance of plated steel sheet were studied. 1) The electrodeposition of Zn-Ni and Zn-Co alloy shows both anomalous codeposition behavior. The grade of anomalous codeposition of Zn-Co alloy rises with adding Mo or W in bath. 2) The Ni content in Zn-Ni deposits increases with decreasing cathode current density and with increasing bath temperature. 3) In case of electroplating of Zn-Co, the increase of cathodic current density of bath bring on increasing of the Co content, but on decreasing of the Mo content in deposits. And rising bath temperature increases both Co and Mo deposits. 4) The corrosion resistance of the Zn-Ni electrodeposited steel sheet is shown a maximum at the Ni content of 10-17%. The structure of Zn-Ni of these composition range was finegrained γ-phase. 5) The corrosion resistance of the Zn-Co electrodeposited steel sheet is improved with increasing Co content. The corrosion resistance of the Zn-Co-Mo or Zn-Co-W deposits electroplated by proper plating conditions was improved much more than that of Zn-Co deposits. (Author)

  17. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    Science.gov (United States)

    Hug, E.; Prasath Babu, R.; Monnet, I.; Etienne, A.; Moisy, F.; Pralong, V.; Enikeev, N.; Abramova, M.; Sauvage, X.; Radiguet, B.

    2017-01-01

    The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV 56Fe5+ ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  18. Nanostructure and Properties of Corrosion Resistance in C+Ti Multi-Ion-Implanted Steel

    Institute of Scientific and Technical Information of China (English)

    张通和; 吴瑜光; 刘安东; 张旭; 王晓妍

    2003-01-01

    The corrosion and pitting corrosion resistance of C+ Ti dual and C+Ti+C ternary implanted H13 steel were studied by using a multi-sweep cyclic voltammetry and a scanning electron microscope. The effects of phase formation on corrosion and pitting corrosion resistance were explored. The x-ray diffraction analysis shows that the nanometer-sized precipitate phases consist of compounds of Fe2 Ti, TiC, Fe2C and Fe3 C in dual implanted layer and even in ternary implanted layer. The passivation layer consists of these nanometer phases. It has been found that the corrosion and pitting corrosion resistance of dual and ternary implanted H13 steel are improved extremely. The corrosion resistance of ternary implanted layer is better than that of dual implantations and is enhanced with the increasing ion dose. When the ion dose of Ti is 6 × 1017/cm2 in the ternary implantation sample, the anodic peak current density is 95 times less than that of the H13 steel. The pitting corrosion potential of dual and ternary implantation samples is in the range from 55mV to 160mV which is much higher than that of the H13 steel. The phases against the corrosion and pitting corrosion are nanometer silkiness phases.

  19. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes normally are used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium-nickel steels in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  20. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0% and nickel does not exceed 50.0%

  1. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  2. KTA 625 alloy tube with excellent corrosion resistance and heat resistance

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Kadonaga, Toshiki; Kikuma, Seiji.

    1982-01-01

    The problems when seamless tubes are produced by using nickel base 625 alloy (61Ni-22Cr-9Mo-Cb) which is known as a corrosion resistant and heat resistant alloyF were examined, and the confirmation experiment was carried out on its corrosion resistance and heat resistance. Various difficulties have been experienced in the tube making owing to the characteristics due to the chemical composition, but they were able to be solved by the repeated experiments. As for the characteristics of the product, the corrosion resistance was excellent particularly in the environment containing high temperature, high concentration chloride, and also the heat resistance was excellent in the wide temperature range from normal temperature to 1000 deg C. From these facts, the wide fields of application are expected for these alloy tubes, including the evaporation and concentration equipment for radioactive wastes in atomic energy field. Expecting the increase of demand hereafter, Kobe Steel Ltd. examined the problems when seamless tubes are produced from the 625 alloy by Ugine Sejournet process. The aptitude for tube production such as the chemical composition, production process and the product characteristics, the corrosion resistance against chloride, hydrogen sulfide, polythionic and other acids,F the high temperature strength and oxidation resistance are reported. (Kako, I.)

  3. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  4. A new corrosion resistant, martensitic stainless steel for improved performance in miniature bearings

    Energy Technology Data Exchange (ETDEWEB)

    Tomasello, C.M.; Maloney, J.L.; Materkowski, J.P. [Latrobe Steel Co., Latrobe, PA (United States); Ward, P.C. [MPB Corp., Keene, NH (United States)

    1998-12-31

    A new alloy, 440 N-DUR{trademark} has been developed which will provide the corrosion resistance of 440C with improved carbide size and distribution for noiseless miniature precision bearing operation. The alloy may be through hardened to achieve a minimum hardness of 60 HRC. Its nominal composition is 0.65 wt.% C, 14.5 wt.% Cr, 0.30 wt.% Si, 0.45 wt.% Mn and 0.10 wt.% N{sub 2}. The development of the alloy is a result of a factorial experimental design including 17 alloy variants. The optimum alloy provides a combination of the best carbide structure, corrosion resistance and heat treat response. The addition of nitrogen combined with this carbon and chromium content improves the alloy`s hardenability and corrosion resistance. The alloy successfully withstands copper sulfate exposure and is currently being tested in several bearing applications. It also has great potential to outperform 440C and other corrosion resistant alloys for other ambient and low temperature applications because of its improved microstructure and heat treat response.

  5. Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.

    2015-01-01

    Highlights: • Nano zinc phosphate coating on mild steel was developed. • Nano zinc phosphate coatings on mild steel showed enhanced corrosion resistance. • The nano ZnO increases the number of nucleating sites for phosphating. • Faster attainment of steady state during nano zinc phosphating. - Abstract: Nano crystalline zinc phosphate coatings were developed on mild steel surface using nano zinc oxide particles. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The particles size of the nano zinc phosphate coating developed was also characterized by TEM analysis. Potentiodynamic polarization and electrochemical impedance studies were carried out in 3.5% NaCl solution. Significant variations in the coating weight, morphology and corrosion resistance were observed as nano ZnO concentrations were varied from 0.25 to 2 g/L in the phosphating baths. The results showed that nano ZnO particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal ZnO particles in the phosphating baths). Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano ZnO. The activation effect brought about by the nano ZnO reduces the amount of accelerator (NaNO 2 ) required for phosphating

  6. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2016-03-01

    Full Text Available Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt % alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt % and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance.

  7. Improved corrosion resistance of aluminum brazing sheet by a post-brazing heat treatment

    NARCIS (Netherlands)

    Norouzi Afshar, F.; Tichelaar, F.D.; Glenn, A. M.; Taheri, P.; Sababi, M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    This work studies the influence of the microstructure on the corrosion mechanism and susceptibility of as-brazed aluminum sheet. Various microstructures are obtained using postbrazing heat treatments developed to enhance the corrosion resistance of an AA4xxx/AA3xxx brazing sheet. The heat

  8. Structure Analysis Of Corrosion Resistant Thermal Sprayed Coatings On Low Alloy Steels

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pistofidis, N.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Metallic coatings have been proved to reduce the rate of corrosion of steel in various atmospheres. In this work the structure of Al, Cu-Al and Zn thermal sprayed coatings is examined. The as formed coatings are extremely rough, and they are composed of several phases which increase corrosion resistance as it was determined Salt Spray Chamber tests.

  9. Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions

    International Nuclear Information System (INIS)

    Bolat, G.; Izquierdo, J.; Gloriant, T.; Chelariu, R.; Mareci, D.; Souto, R.M.

    2015-01-01

    Graphical abstract: - Highlights: • Alloy fabrication method affects both surface finish and corrosion resistance. • More porous surface finish and higher wettability produced by powder sintering. • Passive layer formed on sintered alloy breaks down in saline solution. • Increase in surface porosity facilitated electron transfer through the oxide film. • More corrosion resistant alloy produced by cold crucible levitation melting. - Abstract: The electrochemical properties of Ti20Mo alloys prepared using different fabrication procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were investigated using linear potentiodynamic polarization and EIS measurements. The surface condition was established using AFM, with the observation of a more porous surface finish in the case of powder sintering. A major effect of surface conditioning on the corrosion resistance of Ti20Mo alloys was observed, where the compact finish exhibits a superior corrosion resistance in chloride-containing saline solutions. Less insulating surfaces towards electron exchange resulted for the more porous finish as revealed by scanning electrochemical microscopy (SECM)

  10. Corrosion resistance of Mo-Fe-Ti alloy for overpack in simulating underground environment

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Toshiyasu, E-mail: NISHIMURA.Toshiyasu@nims.go.jp [Structural metals Center, National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Aging heat-treated Mo-Fe-Ti alloy showed lower corrosion resistance than solution treated one, but much higher than pure Ti in EIS measurement. Black-Right-Pointing-Pointer As {alpha}-phases showed lower Mo content by TEM, they were preferentially dissolved from base metal in the corrosion test. Black-Right-Pointing-Pointer As Fe was involved in {beta} (b)-phase with Mo which increased the corrosion resistance, the addition of Fe did not decrease the corrosion resistance. - Abstract: In order to examine the application of Mo-Fe-Ti alloy for overpak, the corrosion resistance of heat-treated its alloys was investigated by electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The sample subjected to solution heat treatment (ST) had a single {beta} phase and samples subjected to aging heat treatment at 600-700 Degree-Sign C had {alpha} phase precipitation in {beta} phase. EIS results showed that the corrosion resistance of the aging heat-treated samples was lower than that of the ST sample, but much higher than that of pure Ti in 10% NaCl solution of pH 0.5 at 97 Degree-Sign C which simulating the crevice solution. Laser micrographs of the aging heat-treated samples indicated that {alpha} phase was caused selective dissolution in test solution. The TEM combined with EDAX (energy dispersive X-ray) analyses showed that {beta} phase matrix composed of 2.7 wt.% Mo and 4.8 wt.% Fe, and {alpha} phase composed of 0.7 wt.% Mo and 0.1 wt.% Fe in sample aged at 600 Degree-Sign C. Thus, Mo-poor {alpha} phase was selectively dissolved in a test solution. In EIS, the ST sample of only {beta} phase showed the highest resistance, and aging heat-treated samples containing {alpha} phase (0.7 wt.% Mo) showed higher values than pure Ti in the corrosion test. As Fe was involved in {beta} phase with Mo which increased remarkably the corrosion resistance, the addition of Fe did not decrease the corrosion resistance

  11. Influence of impurities and ion surface alloying on the corrosion resistance of E110 alloy

    International Nuclear Information System (INIS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Novikov, V. V.; Markelov, V. A.; Pimenov, Yu. V.

    2013-01-01

    The corrosion resistance of zirconium alloys depends on their structural-phase state, the type of core coolant and operating factors. The formation of a protective oxide film on the zirconium alloys is sensitive to the content of impurity atoms present in the charge base of alloys and accumulating in them in the manufacture of products. The impurity composition of the initial zirconium is determined by the method of its manufacture and generally remains unchanged in the products, deter-mining their properties, including their corrosion resistance. An increased content of impurities (C, N, Al, Mo, Fe) both individually and in their combination negatively affects the corrosion resistance of zirconium and its alloys. One of the potentially effective methods to increase the protective properties of oxide films on zirconium alloys is a surface alloying using the regime of mixing the atoms of a film, preliminarily coated on the surface, and the atoms of a target. This method makes it possible to form a given structural-phase state in the thin surface layer with unique physicochemical properties and thus to in-crease the corrosion resistance and wear resistance of fuel claddings. In this context, the object of investigation was samples of cladding tubes from alloy E110 with various content of impurity elements (nitrogen, aluminum, and carbon) with the aim to reduce the negative influence of impurities on the corrosion resistance by changing the structural-phase state of the surface layer of fuel claddings and fuel assembly components with alloying in the regime of ion mixing of atoms

  12. The characteristics of surface oxidation and corrosion resistance of nitrogen implanted zircaloy-4

    International Nuclear Information System (INIS)

    Tang, G.; Choi, B.H.; Kim, W.; Jung, K.S.; Kwon, H.S.; Lee, S.J.; Lee, J.H.; Song, T.Y.; Shon, D.H.; Han, J.G.

    1997-01-01

    This work is concerned with the development and application of ion implantation techniques for improving the corrosion resistance of zircaloy-4. The corrosion resistance in nitrogen implanted zircaloy-4 under a 120 keV nitrogen ion beam at an ion dose of 3 x 10 17 cm -2 depends on the implantation temperature. The characteristics of surface oxidation and corrosion resistance were analyzed with the change of implantation temperature. It is shown that as implantation temperature rises from 100 to 724 C, the colour of specimen surface changes from its original colour to light yellow at 100 C, golden at 175 C, pink at 300 C, blue at 440 C and dark blue at 550 C. As the implantation temperature goes above 640 C, the colour of surface changes to light black, and the surface becomes a little rough. The corrosion resistance of zircaloy-4 implanted with nitrogen is sensitive to the implantation temperature. The pitting potential of specimens increases from 176 to 900 mV (SCE) as the implantation temperature increases from 100 to 300 C, and decreases from 900 to 90 mV(SCE) as the implantation temperature increases from 300 to 640 C. The microstructure, the distribution of oxygen, nitrogen and carbon elements, the oxide grain size and the feature of the precipitation in the implanted surface were investigated by optical microscope, TEM, EDS, XRD and AES. The experimental results reveal that the ZrO 2 is distributed mainly on the outer surface. The ZrN is distributed under the ZrO 2 layer. The characteristics of the distribution of ZrO 2 and ZrN in the nitrogen-implanted zircaloy-4 is influenced by the implantation temperature of the sample, and in turn the corrosion resistance is influenced. (orig.)

  13. Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding

    International Nuclear Information System (INIS)

    Wang, Qin-Ying; Zhang, Yang-Fei; Bai, Shu-Lin; Liu, Zong-De

    2013-01-01

    Highlights: ► Hastelloy C22 coatings were prepared by diode laser cladding technique. ► Higher laser speed resulted in smaller grain size. ► Size-effect played the key role in the hardness measurements by different ways. ► Coating with higher laser scanning speed displayed higher nano-scratch resistance. ► Small grain size was beneficial for improvement of coating corrosion resistance. -- Abstract: The Hastelloy C22 coatings H1 and H2 were prepared by laser cladding technique with laser scanning speeds of 6 and 12 mm/s, respectively. Their microstructures, mechanical properties and corrosion resistance were investigated. The microstructures and phase compositions were studied by metallurgical microscope, scanning electron microscope and X-ray diffraction analysis. The hardness and scratch resistance were measured by micro-hardness and nanoindentation tests. The polarization curves and electrochemical impedance spectroscopy were tested by electrochemical workstation. Planar, cellular and dendritic solidifications were observed in the coating cross-sections. The coatings metallurgically well-bonded with the substrate are mainly composed of primary phase γ-nickel with solution of Fe, W, Cr and grain boundary precipitate of Mo 6 Ni 6 C. The hardness and corrosion resistance of steel substrate are significantly improved by laser cladding Hastelloy C22 coating. Coating H2 shows higher micro-hardness than that of H1 by 34% and it also exhibits better corrosion resistance. The results indicate that the increase of laser scanning speed improves the microstuctures, mechanical properties and corrosion resistance of Hastelloy C22 coating

  14. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E., E-mail: eric.hug@ensicaen.fr [Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, CNRS UMR 6508, 6 Bd Maréchal Juin, 14050 Caen (France); Prasath Babu, R. [School of Materials, University of Manchester, M13 9PL (United Kingdom); Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Normandie Université, Saint-Etienne du Rouvray Cedex (France); Monnet, I. [Centre de recherches sur les Ions, les Matériaux et la Photonique CEA-CNRS, Normandie Université, 6 Bd Maréchal Juin, 14050 Caen (France); Etienne, A. [Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Normandie Université, Saint-Etienne du Rouvray Cedex (France); Moisy, F. [Centre de recherches sur les Ions, les Matériaux et la Photonique CEA-CNRS, Normandie Université, 6 Bd Maréchal Juin, 14050 Caen (France); Pralong, V. [Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, CNRS UMR 6508, 6 Bd Maréchal Juin, 14050 Caen (France); Enikeev, N. [Institute of Physics of Advanced Materials, Ufa (Russian Federation); Saint Petersburg State University, Laboratory of the Mechanics of Bulk Nanostructured Materials, 198504 St. Petersburg (Russian Federation); Abramova, M. [Institute of Physics of Advanced Materials, Ufa (Russian Federation); and others

    2017-01-15

    Highlights: • Impacts of nanostructuration and irradiation on the properties of 316 stainless steels are reported. • Irradiation of nanostructured samples implies chromium depletion as than depicted in coarse grain specimens. • Hardness of nanocrystalline steels is only weakly affected by irradiation. • Corrosion resistance of the nanostructured and irradiated samples is less affected by the chromium depletion. - Abstract: The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV {sup 56}Fe{sup 5+} ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  15. Evaluation of the electrical conductivity and corrosion resistance for layers deposited via sputtering on stainless steel

    Science.gov (United States)

    Blanco, J.; Salas, Y.; Jiménez, C.; Pineda, Y.; Bustamante, A.

    2017-12-01

    In some Engineering fields, we need that conductive materials have a mechanic performance and specific electrical for that they maintain conditions or corrosive attack if they are in the environment or if they are closed structure. The stainless steels have an inert film on their surface and it has the function to act in contrast to external agents who generates the corrosion, especially for stings, spoiling the film until to fail. We found a solution taking into account the electrical performance and the anticorrosive; into the process we put recovering of specific oxides on, stainless steel using the method of sputtering with Unbalanced Magnetron, (UBM) varying the oxygen in the reactive environment. The coating obtained had a thickness one micron approximately and we saw on serious structural uniformity [1]. The corrosion resistance was evaluated through the potentiodynamics polarization and electrochemical spectroscopy impedance in NACL according to the standard. The cathode protection is the most important method employed for the corrosion prevention of metallic structures in the soil or immersed on the water. The electrical resistivity was evaluated with the four points methods and it showed a behaviour of diode type in some substrates with a threshold potential in several volts. We noticed a simple resistance solution when it was analysed in the Nyquist graphics whit the Electrochemical Impedance Spectroscopy technique. With on equivalent circuit, for this reason we determinate a variation in the corrosion speed in almost two orders of magnitude when we analysed the potentiodynamics curve by Tafel approximation. The data obtained and analysed show that this type of surface modification maintains the conductivity condition at the interface, improving the resistance in relation whit the corrosion of these elements where the recovering allowed the ionic flow wished for overcoming threshold voltage, acting as an insulator in different cases.

  16. 9% Cr steel high temperature oxidation. Solutions investigated for improving corrosion resistance of the steel

    Energy Technology Data Exchange (ETDEWEB)

    Evin, Harold Nicolas; Heintz, Olivier; Chevalier, Sebastien [UMR 5209 CNRS-Bourgogne Univ. (France). Lab. Interdisciplinaire Carnot de Bourgogne; Foejer, Cecilia; Jakani, Saad; Dhont, Annick; Claessens, Serge [OCAS N.V. ArcelorMittal Global R and D, Gent (Belgium)

    2010-07-01

    The improvement of high temperature oxidation resistance of low chromium content steels, such as T/P91, is of great interest in regards with their application in thermal power generating plants. Indeed, they possess good creep properties, but are facing their limits of use at temperature higher than 600 C, due to accelerated corrosion phenomena. Good knowledge of the mechanisms involved during their oxidation process is needed to prevent the degradation of the materials and to extend life time of the power plants components. Oxide layers thermally grown, on 9% Cr steels (provided by OCAS N.V), during isothermal tests between 600 C and 750 C in laboratory air under atmospheric pressure were investigated, by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The oxidation behaviour appeared very limited at 750 C, due to the presence of a breakaway, which can be linked to iron porous oxide grown over the surface of the samples. ''In situ'' X-ray Photoelectron spectroscopy (XPS) analyses were performed in air at 600 C after short exposures (between 5 min and 25 h). A complex mixture of iron oxide, Cr{sub 2}O{sub 3} and Cr (VI) species were characterized in the scales. The in-situ analyses were compared and related to XPS analyses performed on thick oxide scales formed on samples oxidized in air at 600 C for 100h. An oxidation mechanism is then proposed to understand the oxide scale growth in the temperature range 600 - 750 C. The second step of this study consists in improving the high temperature corrosion resistance of these steels without modifying their mechanical properties. Thus several solutions were investigated such as MOCVD coatings, pack cementation coatings, and tested in cycle conditions prior. (orig.)

  17. Electrochemical behavior of tube-fin assembly for an aluminum automotive condenser with improved corrosion resistance

    Science.gov (United States)

    Pech-Canul, M. A.; Guía-Tello, J. C.; Pech-Canul, M. I.; Aguilar, J. C.; Gorocica-Díaz, J. A.; Arana-Guillén, R.; Puch-Bleis, J.

    An aluminum automotive condenser was designed to exhibit high corrosion resistance in the seawater acetic acid test (SWAAT) combining zinc coated microchannel tubes and fins made with AA4343/AA3003(Zn)/AA4343 brazing sheet. Electrochemical measurements in SWAAT solution were carried out under laboratory conditions using tube-fin assembly and individual fin and tube samples withdrawn from the condenser core. The aim was to gain information on the protective role of the zinc sacrificial layer and about changes in corrosion behavior as a function of immersion time. External corrosion of the tube-fin system was simulated by immersion of mini-core samples under open circuit conditions. The corrosion rate increased rapidly during the first 6 h and slowly afterwards. The short time behavior was related to the dissolution of the oxide film and fast dissolution of the outermost part of the zinc diffusion layer. With the aid of cross-sectional depth corrosion potential profiles, it was shown that as the sacrificial layer gets dissolved, the surface concentration of zinc decreases and the potential shifts to less negative values. The results of galvanic coupling of tube and fins in a mini-cell showed that the tube became the anode while the fins exhibited cathodic behavior. An evolution in the galvanic interaction was observed, due to the progressive dissolution of the sacrificial zinc layer. The difference of uncoupled potentials between tube and fins decreased from 71 mV to 32 mV after 84 h of galvanic coupling. At the end of such period there was still a part of the zinc sacrificial layer remaining which would serve for protection of the tube material for even longer periods and there were indications of slight corrosion in the fins.

  18. Electrochemical behavior of tube-fin assembly for an aluminum automotive condenser with improved corrosion resistance

    Directory of Open Access Journals (Sweden)

    M.A. Pech-Canul

    Full Text Available An aluminum automotive condenser was designed to exhibit high corrosion resistance in the seawater acetic acid test (SWAAT combining zinc coated microchannel tubes and fins made with AA4343/AA3003(Zn/AA4343 brazing sheet. Electrochemical measurements in SWAAT solution were carried out under laboratory conditions using tube-fin assembly and individual fin and tube samples withdrawn from the condenser core. The aim was to gain information on the protective role of the zinc sacrificial layer and about changes in corrosion behavior as a function of immersion time. External corrosion of the tube-fin system was simulated by immersion of mini-core samples under open circuit conditions. The corrosion rate increased rapidly during the first 6 h and slowly afterwards. The short time behavior was related to the dissolution of the oxide film and fast dissolution of the outermost part of the zinc diffusion layer. With the aid of cross-sectional depth corrosion potential profiles, it was shown that as the sacrificial layer gets dissolved, the surface concentration of zinc decreases and the potential shifts to less negative values. The results of galvanic coupling of tube and fins in a mini-cell showed that the tube became the anode while the fins exhibited cathodic behavior. An evolution in the galvanic interaction was observed, due to the progressive dissolution of the sacrificial zinc layer. The difference of uncoupled potentials between tube and fins decreased from 71 mV to 32 mV after 84 h of galvanic coupling. At the end of such period there was still a part of the zinc sacrificial layer remaining which would serve for protection of the tube material for even longer periods and there were indications of slight corrosion in the fins. Keywords: Aluminum, Automotive, Corrosion, Galvanic, Zn coating

  19. Effect of chemical composition on corrosion resistance of Zircaloy fuel cladding tube for BWR

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Akahori, Kimihiko; Kuniya, Jirou; Masaoka, Isao; Suwa, Masateru; Maru, Akira; Yasuda, Teturou; Maki, Hideo.

    1990-01-01

    Effects of Fe and Ni contents on nodular corrosion susceptibility and hydrogen pick-up of Zircaloy were investigated. Total number of 31 Zr alloys having different chemical compositions; five Zr-Sn-Fe-Cr alloys, eight Zr-Sn-Fe-Ni alloys and eighteen Zr-Sn-Fe-Ni-Cr alloys, were melted and processed to thin plates for the corrosion tests in the environments of a high temperature (510degC) steam and a high temperature (288degC) water. In addition, four 450 kg ingots of Zr-Sn-Fe-Ni-Cr alloys were industrially melted and BWR fuel cladding tubes were manufactured through a current material processing sequence to study their producibility, tensile properties and corrosion resistance. Nodular corrosion susceptibility decreased with increasing Fe and Ni contents of Zircaloys. It was seen that the improved Zircaloys having Fe and Ni contents in the range of 0.30 [Ni]+0.15[Fe]≥0.045 (w%) showed no susceptibility to nodular corrosion. An increase of Fe content resulted in a decrease of hydrogen pick-up fraction in both steam and water environments. An increase of Fe and Ni content of Zircaloys in the range of Fe≤0.25 w% and Ni≤0.1 w% did not cause the changes in tensile properties and fabricabilities of fuel cladding tube. The fuel cladding tube of improved Zircaloy, containing more amount of Fe and Ni than the upper limit of Zircaloy-2 specification showed no susceptibility to nodular corrosion even in the 530degC steam test. (author)

  20. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY

    International Nuclear Information System (INIS)

    FENG, H.; JONES, K.W.; MCGUIGAN, M.; SMITH, G.J.; SPILETIC, J.

    2001-01-01

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data