WorldWideScience

Sample records for high-performance computing research

  1. AHPCRC - Army High Performance Computing Research Center

    2010-01-01

    computing. Of particular interest is the ability of a distrib- uted jamming network (DJN) to jam signals in all or part of a sensor or communications net...and reasoning, assistive technologies. FRIEDRICH (FRITZ) PRINZ Finmeccanica Professor of Engineering, Robert Bosch Chair, Department of Engineering...High Performance Computing Research Center www.ahpcrc.org BARBARA BRYAN AHPCRC Research and Outreach Manager, HPTi (650) 604-3732 bbryan@hpti.com Ms

  2. DOE research in utilization of high-performance computers

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-12-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models whose execution is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex; consequently, it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  3. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  4. Department of Energy research in utilization of high-performance computers

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-08-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programmatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models, the execution of which is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex, and consequently it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  5. High Performance Computing Assets for Ocean Acoustics Research

    2016-11-18

    processors, effectively), and 512GB memory . The second has 24 CPU cores, dual -thread, (48 processors, effectively), and 512GB memory . The third has...28 CPU cores, dual -thread, (56 processors, effectively), and 256GB memory . Mr. Arthur Newhall ofWHOI worked with the vendors to secure the best...Headrick Office ofNaval Research, Code 322 One Liberty Center 875 North Randolph Street, Suite 4125 Arlington, VA 22203 Dear Dr. Headrick

  6. High Performance Computing Multicast

    2012-02-01

    A History of the Virtual Synchrony Replication Model,” in Replication: Theory and Practice, Charron-Bost, B., Pedone, F., and Schiper, A. (Eds...Performance Computing IP / IPv4 Internet Protocol (version 4.0) IPMC Internet Protocol MultiCast LAN Local Area Network MCMD Dr. Multicast MPI

  7. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    Willis, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC is the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.

  8. High Performance Computing and Visualization Infrastructure for Simultaneous Parallel Computing and Parallel Visualization Research

    2016-11-09

    Total Number: Sub Contractors (DD882) Names of Personnel receiving masters degrees Names of personnel receiving PHDs Names of other research staff...Broadcom 5720 QP 1Gb Network Daughter Card (2) Intel Xeon E5-2680 v3 2.5GHz, 30M Cache, 9.60GT/s QPI, Turbo, HT , 12C/24T (120W...Broadcom 5720 QP 1Gb Network Daughter Card (2) Intel Xeon E5-2680 v3 2.5GHz, 30M Cache, 9.60GT/s QPI, Turbo, HT , 12C/24T (120W

  9. High-performance computing using FPGAs

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  10. High Performance Computing and Storage Requirements for Biological and Environmental Research Target 2017

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Wasserman, Harvey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)

    2013-05-01

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In addition to large-­scale computing and storage resources NERSC provides support and expertise that help scientists make efficient use of its systems. The latest review revealed several key requirements, in addition to achieving its goal of characterizing BER computing and storage needs.

  11. AHPCRC (Army High Performance Computing Research Center) Bulletin. Volume 1, Issue 2

    2011-01-01

    area and the researchers working on these projects. Also inside: news from the AHPCRC consortium partners at Morgan State University and the NASA ...Computing Research Center is provided by the supercomputing and research facilities at Stanford University and at the NASA Ames Research Center at...atomic and molecular level, he said. He noted that “every general would like to have” a Star Trek -like holodeck, where holographic avatars could

  12. Tracking the NGS revolution: managing life science research on shared high-performance computing clusters.

    Dahlö, Martin; Scofield, Douglas G; Schaal, Wesley; Spjuth, Ola

    2018-05-01

    Next-generation sequencing (NGS) has transformed the life sciences, and many research groups are newly dependent upon computer clusters to store and analyze large datasets. This creates challenges for e-infrastructures accustomed to hosting computationally mature research in other sciences. Using data gathered from our own clusters at UPPMAX computing center at Uppsala University, Sweden, where core hour usage of ∼800 NGS and ∼200 non-NGS projects is now similar, we compare and contrast the growth, administrative burden, and cluster usage of NGS projects with projects from other sciences. The number of NGS projects has grown rapidly since 2010, with growth driven by entry of new research groups. Storage used by NGS projects has grown more rapidly since 2013 and is now limited by disk capacity. NGS users submit nearly twice as many support tickets per user, and 11 more tools are installed each month for NGS projects than for non-NGS projects. We developed usage and efficiency metrics and show that computing jobs for NGS projects use more RAM than non-NGS projects, are more variable in core usage, and rarely span multiple nodes. NGS jobs use booked resources less efficiently for a variety of reasons. Active monitoring can improve this somewhat. Hosting NGS projects imposes a large administrative burden at UPPMAX due to large numbers of inexperienced users and diverse and rapidly evolving research areas. We provide a set of recommendations for e-infrastructures that host NGS research projects. We provide anonymized versions of our storage, job, and efficiency databases.

  13. Tracking the NGS revolution: managing life science research on shared high-performance computing clusters

    2018-01-01

    Abstract Background Next-generation sequencing (NGS) has transformed the life sciences, and many research groups are newly dependent upon computer clusters to store and analyze large datasets. This creates challenges for e-infrastructures accustomed to hosting computationally mature research in other sciences. Using data gathered from our own clusters at UPPMAX computing center at Uppsala University, Sweden, where core hour usage of ∼800 NGS and ∼200 non-NGS projects is now similar, we compare and contrast the growth, administrative burden, and cluster usage of NGS projects with projects from other sciences. Results The number of NGS projects has grown rapidly since 2010, with growth driven by entry of new research groups. Storage used by NGS projects has grown more rapidly since 2013 and is now limited by disk capacity. NGS users submit nearly twice as many support tickets per user, and 11 more tools are installed each month for NGS projects than for non-NGS projects. We developed usage and efficiency metrics and show that computing jobs for NGS projects use more RAM than non-NGS projects, are more variable in core usage, and rarely span multiple nodes. NGS jobs use booked resources less efficiently for a variety of reasons. Active monitoring can improve this somewhat. Conclusions Hosting NGS projects imposes a large administrative burden at UPPMAX due to large numbers of inexperienced users and diverse and rapidly evolving research areas. We provide a set of recommendations for e-infrastructures that host NGS research projects. We provide anonymized versions of our storage, job, and efficiency databases. PMID:29659792

  14. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  15. DURIP: High Performance Computing in Biomathematics Applications

    2017-05-10

    Mathematics and Statistics (AMS) at the University of California, Santa Cruz (UCSC) to conduct research and research-related education in areas of...Computing in Biomathematics Applications Report Title The goal of this award was to enhance the capabilities of the Department of Applied Mathematics and...DURIP: High Performance Computing in Biomathematics Applications The goal of this award was to enhance the capabilities of the Department of Applied

  16. Computational Biology and High Performance Computing 2000

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  17. Big Data solutions on a small scale: Evaluating accessible high-performance computing for social research

    Dhiraj Murthy

    2014-11-01

    Full Text Available Though full of promise, Big Data research success is often contingent on access to the newest, most advanced, and often expensive hardware systems and the expertise needed to build and implement such systems. As a result, the accessibility of the growing number of Big Data-capable technology solutions has often been the preserve of business analytics. Pay as you store/process services like Amazon Web Services have opened up possibilities for smaller scale Big Data projects. There is high demand for this type of research in the digital humanities and digital sociology, for example. However, scholars are increasingly finding themselves at a disadvantage as available data sets of interest continue to grow in size and complexity. Without a large amount of funding or the ability to form interdisciplinary partnerships, only a select few find themselves in the position to successfully engage Big Data. This article identifies several notable and popular Big Data technologies typically implemented using large and extremely powerful cloud-based systems and investigates the feasibility and utility of development of Big Data analytics systems implemented using low-cost commodity hardware in basic and easily maintainable configurations for use within academic social research. Through our investigation and experimental case study (in the growing field of social Twitter analytics, we found that not only are solutions like Cloudera’s Hadoop feasible, but that they can also enable robust, deep, and fruitful research outcomes in a variety of use-case scenarios across the disciplines.

  18. PRODEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP : HIGH PERFORMANCE COMPUTING WITH QCDOC AND BLUEGENE.

    CHRIST,N.; DAVENPORT,J.; DENG,Y.; GARA,A.; GLIMM,J.; MAWHINNEY,R.; MCFADDEN,E.; PESKIN,A.; PULLEYBLANK,W.

    2003-03-11

    Staff of Brookhaven National Laboratory, Columbia University, IBM and the RIKEN BNL Research Center organized a one-day workshop held on February 28, 2003 at Brookhaven to promote the following goals: (1) To explore areas other than QCD applications where the QCDOC and BlueGene/L machines can be applied to good advantage, (2) To identify areas where collaboration among the sponsoring institutions can be fruitful, and (3) To expose scientists to the emerging software architecture. This workshop grew out of an informal visit last fall by BNL staff to the IBM Thomas J. Watson Research Center that resulted in a continuing dialog among participants on issues common to these two related supercomputers. The workshop was divided into three sessions, addressing the hardware and software status of each system, prospective applications, and future directions.

  19. Big Data solutions on a small scale: Evaluating accessible high-performance computing for social research

    Murthy, Dhiraj; Bowman, S. A.

    2014-01-01

    Though full of promise, Big Data research success is often contingent on access to the newest, most advanced, and often expensive hardware systems and the expertise needed to build and implement such systems. As a result, the accessibility of the growing number of Big Data-capable technology solutions has often been the preserve of business analytics. Pay as you store/process services like Amazon Web Services have opened up possibilities for smaller scale Big Data projects. There is high dema...

  20. High Performance Spaceflight Computing (HPSC)

    National Aeronautics and Space Administration — Space-based computing has not kept up with the needs of current and future NASA missions. We are developing a next-generation flight computing system that addresses...

  1. High-performance computing in seismology

    NONE

    1996-09-01

    The scientific, technical, and economic importance of the issues discussed here presents a clear agenda for future research in computational seismology. In this way these problems will drive advances in high-performance computing in the field of seismology. There is a broad community that will benefit from this work, including the petroleum industry, research geophysicists, engineers concerned with seismic hazard mitigation, and governments charged with enforcing a comprehensive test ban treaty. These advances may also lead to new applications for seismological research. The recent application of high-resolution seismic imaging of the shallow subsurface for the environmental remediation industry is an example of this activity. This report makes the following recommendations: (1) focused efforts to develop validated documented software for seismological computations should be supported, with special emphasis on scalable algorithms for parallel processors; (2) the education of seismologists in high-performance computing technologies and methodologies should be improved; (3) collaborations between seismologists and computational scientists and engineers should be increased; (4) the infrastructure for archiving, disseminating, and processing large volumes of seismological data should be improved.

  2. High performance computing in Windows Azure cloud

    Ambruš, Dejan

    2013-01-01

    High performance, security, availability, scalability, flexibility and lower costs of maintenance have essentially contributed to the growing popularity of cloud computing in all spheres of life, especially in business. In fact cloud computing offers even more than this. With usage of virtual computing clusters a runtime environment for high performance computing can be efficiently implemented also in a cloud. There are many advantages but also some disadvantages of cloud computing, some ...

  3. High-performance computing — an overview

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  4. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  5. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  6. Embedded High Performance Scalable Computing Systems

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  7. Debugging a high performance computing program

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  8. High performance computing on vector systems

    Roller, Sabine

    2008-01-01

    Presents the developments in high-performance computing and simulation on modern supercomputer architectures. This book covers trends in hardware and software development in general and specifically the vector-based systems and heterogeneous architectures. It presents innovative fields like coupled multi-physics or multi-scale simulations.

  9. High Performance Computing in Science and Engineering '02 : Transactions of the High Performance Computing Center

    Jäger, Willi

    2003-01-01

    This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

  10. Monitoring SLAC High Performance UNIX Computing Systems

    Lettsome, Annette K.

    2005-01-01

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface

  11. High-performance computing for airborne applications

    Quinn, Heather M.; Manuzatto, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-01-01

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  12. High Performance Computing Operations Review Report

    Cupps, Kimberly C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  13. Evaluation of high-performance computing software

    Browne, S.; Dongarra, J. [Univ. of Tennessee, Knoxville, TN (United States); Rowan, T. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  14. High performance parallel computers for science

    Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.

    1989-01-01

    This paper reports that Fermilab's Advanced Computer Program (ACP) has been developing cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 Mflops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction

  15. High Performance Computing Modernization Program Kerberos Throughput Test Report

    2017-10-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5524--17-9751 High Performance Computing Modernization Program Kerberos Throughput Test ...NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 6. AUTHOR(S) 8. PERFORMING...PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT High Performance Computing Modernization Program Kerberos Throughput Test Report Daniel G. Gdula* and

  16. High performance computing in linear control

    Datta, B.N.

    1993-01-01

    Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments

  17. The path toward HEP High Performance Computing

    Apostolakis, John; Brun, René; Gheata, Andrei; Wenzel, Sandro; Carminati, Federico

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on the development of a highperformance prototype for particle transport. Achieving a good concurrency level on the emerging parallel architectures without a complete redesign of the framework can only be done by parallelizing at event level, or with a much larger effort at track level. Apart the shareable data structures, this typically implies a multiplication factor in terms of memory consumption compared to the single threaded version, together with sub-optimal handling of event processing tails. Besides this, the low level instruction pipelining of modern processors cannot be used efficiently to speedup the program. We have implemented a framework that allows scheduling vectors of particles to an arbitrary number of computing resources in a fine grain parallel approach. The talk will review the current optimisation activities within the SFT group with a particular emphasis on the development perspectives towards a simulation framework able to profit

  18. A High Performance COTS Based Computer Architecture

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  19. The path toward HEP High Performance Computing

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on th...

  20. High Performance Computing in Science and Engineering '08 : Transactions of the High Performance Computing Center

    Kröner, Dietmar; Resch, Michael

    2009-01-01

    The discussions and plans on all scienti?c, advisory, and political levels to realize an even larger “European Supercomputer” in Germany, where the hardware costs alone will be hundreds of millions Euro – much more than in the past – are getting closer to realization. As part of the strategy, the three national supercomputing centres HLRS (Stuttgart), NIC/JSC (Julic ¨ h) and LRZ (Munich) have formed the Gauss Centre for Supercomputing (GCS) as a new virtual organization enabled by an agreement between the Federal Ministry of Education and Research (BMBF) and the state ministries for research of Baden-Wurttem ¨ berg, Bayern, and Nordrhein-Westfalen. Already today, the GCS provides the most powerful high-performance computing - frastructure in Europe. Through GCS, HLRS participates in the European project PRACE (Partnership for Advances Computing in Europe) and - tends its reach to all European member countries. These activities aligns well with the activities of HLRS in the European HPC infrastructur...

  1. High Performance Computing in Science and Engineering '14

    Kröner, Dietmar; Resch, Michael

    2015-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and   engineers. The book comes with a wealth of color illustrations and tables of results.  

  2. Enabling high performance computational science through combinatorial algorithms

    Boman, Erik G; Bozdag, Doruk; Catalyurek, Umit V; Devine, Karen D; Gebremedhin, Assefaw H; Hovland, Paul D; Pothen, Alex; Strout, Michelle Mills

    2007-01-01

    The Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) Institute is developing algorithms and software for combinatorial problems that play an enabling role in scientific and engineering computations. Discrete algorithms will be increasingly critical for achieving high performance for irregular problems on petascale architectures. This paper describes recent contributions by researchers at the CSCAPES Institute in the areas of load balancing, parallel graph coloring, performance improvement, and parallel automatic differentiation

  3. Enabling high performance computational science through combinatorial algorithms

    Boman, Erik G [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Bozdag, Doruk [Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University (United States); Catalyurek, Umit V [Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University (United States); Devine, Karen D [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Gebremedhin, Assefaw H [Computer Science and Center for Computational Science, Old Dominion University (United States); Hovland, Paul D [Mathematics and Computer Science Division, Argonne National Laboratory (United States); Pothen, Alex [Computer Science and Center for Computational Science, Old Dominion University (United States); Strout, Michelle Mills [Computer Science, Colorado State University (United States)

    2007-07-15

    The Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) Institute is developing algorithms and software for combinatorial problems that play an enabling role in scientific and engineering computations. Discrete algorithms will be increasingly critical for achieving high performance for irregular problems on petascale architectures. This paper describes recent contributions by researchers at the CSCAPES Institute in the areas of load balancing, parallel graph coloring, performance improvement, and parallel automatic differentiation.

  4. Economic Model For a Return on Investment Analysis of United States Government High Performance Computing (HPC) Research and Development (R & D) Investment

    Joseph, Earl C. [IDC Research Inc., Framingham, MA (United States); Conway, Steve [IDC Research Inc., Framingham, MA (United States); Dekate, Chirag [IDC Research Inc., Framingham, MA (United States)

    2013-09-30

    This study investigated how high-performance computing (HPC) investments can improve economic success and increase scientific innovation. This research focused on the common good and provided uses for DOE, other government agencies, industry, and academia. The study created two unique economic models and an innovation index: 1 A macroeconomic model that depicts the way HPC investments result in economic advancements in the form of ROI in revenue (GDP), profits (and cost savings), and jobs. 2 A macroeconomic model that depicts the way HPC investments result in basic and applied innovations, looking at variations by sector, industry, country, and organization size. A new innovation index that provides a means of measuring and comparing innovation levels. Key findings of the pilot study include: IDC collected the required data across a broad set of organizations, with enough detail to create these models and the innovation index. The research also developed an expansive list of HPC success stories.

  5. High Performance Computing in Science and Engineering '99 : Transactions of the High Performance Computing Center

    Jäger, Willi

    2000-01-01

    The book contains reports about the most significant projects from science and engineering of the Federal High Performance Computing Center Stuttgart (HLRS). They were carefully selected in a peer-review process and are showcases of an innovative combination of state-of-the-art modeling, novel algorithms and the use of leading-edge parallel computer technology. The projects of HLRS are using supercomputer systems operated jointly by university and industry and therefore a special emphasis has been put on the industrial relevance of results and methods.

  6. High Performance Computing in Science and Engineering '98 : Transactions of the High Performance Computing Center

    Jäger, Willi

    1999-01-01

    The book contains reports about the most significant projects from science and industry that are using the supercomputers of the Federal High Performance Computing Center Stuttgart (HLRS). These projects are from different scientific disciplines, with a focus on engineering, physics and chemistry. They were carefully selected in a peer-review process and are showcases for an innovative combination of state-of-the-art physical modeling, novel algorithms and the use of leading-edge parallel computer technology. As HLRS is in close cooperation with industrial companies, special emphasis has been put on the industrial relevance of results and methods.

  7. High Performance Computing in Science and Engineering '16 : Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2016

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2016. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  8. High-performance scientific computing in the cloud

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  9. FY 1995 Blue Book: High Performance Computing and Communications: Technology for the National Information Infrastructure

    Networking and Information Technology Research and Development, Executive Office of the President — The Federal High Performance Computing and Communications HPCC Program was created to accelerate the development of future generations of high performance computers...

  10. High-Performance Computing Paradigm and Infrastructure

    Yang, Laurence T

    2006-01-01

    With hyperthreading in Intel processors, hypertransport links in next generation AMD processors, multi-core silicon in today's high-end microprocessors from IBM and emerging grid computing, parallel and distributed computers have moved into the mainstream

  11. High performance computing and communications: FY 1996 implementation plan

    NONE

    1995-05-16

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage of the High Performance Computing Act of 1991, signed on December 9, 1991. Twelve federal agencies, in collaboration with scientists and managers from US industry, universities, and research laboratories, have developed the Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1995 and FY 1996. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency.

  12. A Heterogeneous High-Performance System for Computational and Computer Science

    2016-11-15

    expand the research infrastructure at the institution but also to enhance the high -performance computing training provided to both undergraduate and... cloud computing, supercomputing, and the availability of cheap memory and storage led to enormous amounts of data to be sifted through in forensic... High -Performance Computing (HPC) tools that can be integrated with existing curricula and support our research to modernize and dramatically advance

  13. Peregrine System | High-Performance Computing | NREL

    classes of nodes that users access: Login Nodes Peregrine has four login nodes, each of which has Intel E5 /scratch file systems, the /mss file system is mounted on all login nodes. Compute Nodes Peregrine has 2592

  14. HIGH PERFORMANCE PHOTOGRAMMETRIC PROCESSING ON COMPUTER CLUSTERS

    V. N. Adrov

    2012-07-01

    Full Text Available Most cpu consuming tasks in photogrammetric processing can be done in parallel. The algorithms take independent bits as input and produce independent bits as output. The independence of bits comes from the nature of such algorithms since images, stereopairs or small image blocks parts can be processed independently. Many photogrammetric algorithms are fully automatic and do not require human interference. Photogrammetric workstations can perform tie points measurements, DTM calculations, orthophoto construction, mosaicing and many other service operations in parallel using distributed calculations. Distributed calculations save time reducing several days calculations to several hours calculations. Modern trends in computer technology show the increase of cpu cores in workstations, speed increase in local networks, and as a result dropping the price of the supercomputers or computer clusters that can contain hundreds or even thousands of computing nodes. Common distributed processing in DPW is usually targeted for interactive work with a limited number of cpu cores and is not optimized for centralized administration. The bottleneck of common distributed computing in photogrammetry can be in the limited lan throughput and storage performance, since the processing of huge amounts of large raster images is needed.

  15. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  16. High-Performance Java Codes for Computational Fluid Dynamics

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  17. Component-based software for high-performance scientific computing

    Alexeev, Yuri; Allan, Benjamin A; Armstrong, Robert C; Bernholdt, David E; Dahlgren, Tamara L; Gannon, Dennis; Janssen, Curtis L; Kenny, Joseph P; Krishnan, Manojkumar; Kohl, James A; Kumfert, Gary; McInnes, Lois Curfman; Nieplocha, Jarek; Parker, Steven G; Rasmussen, Craig; Windus, Theresa L

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly.

  18. Component-based software for high-performance scientific computing

    Alexeev, Yuri; Allan, Benjamin A; Armstrong, Robert C; Bernholdt, David E; Dahlgren, Tamara L; Gannon, Dennis; Janssen, Curtis L; Kenny, Joseph P; Krishnan, Manojkumar; Kohl, James A; Kumfert, Gary; McInnes, Lois Curfman; Nieplocha, Jarek; Parker, Steven G; Rasmussen, Craig; Windus, Theresa L

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly

  19. Inclusive vision for high performance computing at the CSIR

    Gazendam, A

    2006-02-01

    Full Text Available and computationally intensive applications. A number of different technologies and standards were identified as core to the open and distributed high-performance infrastructure envisaged...

  20. High performance computations using dynamical nucleation theory

    Windus, T L; Crosby, L D; Kathmann, S M

    2008-01-01

    Chemists continue to explore the use of very large computations to perform simulations that describe the molecular level physics of critical challenges in science. In this paper, we describe the Dynamical Nucleation Theory Monte Carlo (DNTMC) model - a model for determining molecular scale nucleation rate constants - and its parallel capabilities. The potential for bottlenecks and the challenges to running on future petascale or larger resources are delineated. A 'master-slave' solution is proposed to scale to the petascale and will be developed in the NWChem software. In addition, mathematical and data analysis challenges are described

  1. RISC Processors and High Performance Computing

    Bailey, David H.; Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    This tutorial will discuss the top five RISC microprocessors and the parallel systems in which they are used. It will provide a unique cross-machine comparison not available elsewhere. The effective performance of these processors will be compared by citing standard benchmarks in the context of real applications. The latest NAS Parallel Benchmarks, both absolute performance and performance per dollar, will be listed. The next generation of the NPB will be described. The tutorial will conclude with a discussion of future directions in the field. Technology Transfer Considerations: All of these computer systems are commercially available internationally. Information about these processors is available in the public domain, mostly from the vendors themselves. The NAS Parallel Benchmarks and their results have been previously approved numerous times for public release, beginning back in 1991.

  2. NINJA: Java for High Performance Numerical Computing

    José E. Moreira

    2002-01-01

    Full Text Available When Java was first introduced, there was a perception that its many benefits came at a significant performance cost. In the particularly performance-sensitive field of numerical computing, initial measurements indicated a hundred-fold performance disadvantage between Java and more established languages such as Fortran and C. Although much progress has been made, and Java now can be competitive with C/C++ in many important situations, significant performance challenges remain. Existing Java virtual machines are not yet capable of performing the advanced loop transformations and automatic parallelization that are now common in state-of-the-art Fortran compilers. Java also has difficulties in implementing complex arithmetic efficiently. These performance deficiencies can be attacked with a combination of class libraries (packages, in Java that implement truly multidimensional arrays and complex numbers, and new compiler techniques that exploit the properties of these class libraries to enable other, more conventional, optimizations. Two compiler techniques, versioning and semantic expansion, can be leveraged to allow fully automatic optimization and parallelization of Java code. Our measurements with the NINJA prototype Java environment show that Java can be competitive in performance with highly optimized and tuned Fortran code.

  3. High-performance computing in accelerating structure design and analysis

    Li Zenghai; Folwell, Nathan; Ge Lixin; Guetz, Adam; Ivanov, Valentin; Kowalski, Marc; Lee, Lie-Quan; Ng, Cho-Kuen; Schussman, Greg; Stingelin, Lukas; Uplenchwar, Ravindra; Wolf, Michael; Xiao, Liling; Ko, Kwok

    2006-01-01

    Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R and D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high-performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high-performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long-range wakefields)

  4. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially

  5. Contemporary high performance computing from petascale toward exascale

    Vetter, Jeffrey S

    2013-01-01

    Contemporary High Performance Computing: From Petascale toward Exascale focuses on the ecosystems surrounding the world's leading centers for high performance computing (HPC). It covers many of the important factors involved in each ecosystem: computer architectures, software, applications, facilities, and sponsors. The first part of the book examines significant trends in HPC systems, including computer architectures, applications, performance, and software. It discusses the growth from terascale to petascale computing and the influence of the TOP500 and Green500 lists. The second part of the

  6. High Performance Computing - Power Application Programming Interface Specification.

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  7. Enabling High-Performance Computing as a Service

    AbdelBaky, Moustafa; Parashar, Manish; Kim, Hyunjoo; Jordan, Kirk E.; Sachdeva, Vipin; Sexton, James; Jamjoom, Hani; Shae, Zon-Yin; Pencheva, Gergina; Tavakoli, Reza; Wheeler, Mary F.

    2012-01-01

    With the right software infrastructure, clouds can provide scientists with as a service access to high-performance computing resources. An award-winning prototype framework transforms the Blue Gene/P system into an elastic cloud to run a

  8. Computational Environments and Analysis methods available on the NCI High Performance Computing (HPC) and High Performance Data (HPD) Platform

    Evans, B. J. K.; Foster, C.; Minchin, S. A.; Pugh, T.; Lewis, A.; Wyborn, L. A.; Evans, B. J.; Uhlherr, A.

    2014-12-01

    The National Computational Infrastructure (NCI) has established a powerful in-situ computational environment to enable both high performance computing and data-intensive science across a wide spectrum of national environmental data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress in addressing harmonisation of the underlying data collections for future transdisciplinary research that enable accurate climate projections. NCI makes available 10+ PB major data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. The data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. This computational environment supports a catalogue of integrated reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. To enable transdisciplinary research on this scale, data needs to be harmonised so that researchers can readily apply techniques and software across the corpus of data available and not be constrained to work within artificial disciplinary boundaries. Future challenges will

  9. A high performance scientific cloud computing environment for materials simulations

    Jorissen, Kevin; Vila, Fernando D.; Rehr, John J.

    2011-01-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including...

  10. What Physicists Should Know About High Performance Computing - Circa 2002

    Frederick, Donald

    2002-08-01

    High Performance Computing (HPC) is a dynamic, cross-disciplinary field that traditionally has involved applied mathematicians, computer scientists, and others primarily from the various disciplines that have been major users of HPC resources - physics, chemistry, engineering, with increasing use by those in the life sciences. There is a technological dynamic that is powered by economic as well as by technical innovations and developments. This talk will discuss practical ideas to be considered when developing numerical applications for research purposes. Even with the rapid pace of development in the field, the author believes that these concepts will not become obsolete for a while, and will be of use to scientists who either are considering, or who have already started down the HPC path. These principles will be applied in particular to current parallel HPC systems, but there will also be references of value to desktop users. The talk will cover such topics as: computing hardware basics, single-cpu optimization, compilers, timing, numerical libraries, debugging and profiling tools and the emergence of Computational Grids.

  11. FY 1992 Blue Book: Grand Challenges: High Performance Computing and Communications

    Networking and Information Technology Research and Development, Executive Office of the President — High performance computing and computer communications networks are becoming increasingly important to scientific advancement, economic competition, and national...

  12. FY 1993 Blue Book: Grand Challenges 1993: High Performance Computing and Communications

    Networking and Information Technology Research and Development, Executive Office of the President — High performance computing and computer communications networks are becoming increasingly important to scientific advancement, economic competition, and national...

  13. Quantum Accelerators for High-Performance Computing Systems

    Britt, Keith A.; Mohiyaddin, Fahd A.; Humble, Travis S.

    2017-01-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantu...

  14. High Performance Networks From Supercomputing to Cloud Computing

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  15. High Performance Computing Software Applications for Space Situational Awareness

    Giuliano, C.; Schumacher, P.; Matson, C.; Chun, F.; Duncan, B.; Borelli, K.; Desonia, R.; Gusciora, G.; Roe, K.

    The High Performance Computing Software Applications Institute for Space Situational Awareness (HSAI-SSA) has completed its first full year of applications development. The emphasis of our work in this first year was in improving space surveillance sensor models and image enhancement software. These applications are the Space Surveillance Network Analysis Model (SSNAM), the Air Force Space Fence simulation (SimFence), and physically constrained iterative de-convolution (PCID) image enhancement software tool. Specifically, we have demonstrated order of magnitude speed-up in those codes running on the latest Cray XD-1 Linux supercomputer (Hoku) at the Maui High Performance Computing Center. The software applications improvements that HSAI-SSA has made, has had significant impact to the warfighter and has fundamentally changed the role of high performance computing in SSA.

  16. Micromagnetics on high-performance workstation and mobile computational platforms

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  17. High performance computing and communications: FY 1997 implementation plan

    NONE

    1996-12-01

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage, with bipartisan support, of the High-Performance Computing Act of 1991, signed on December 9, 1991. The original Program, in which eight Federal agencies participated, has now grown to twelve agencies. This Plan provides a detailed description of the agencies` FY 1996 HPCC accomplishments and FY 1997 HPCC plans. Section 3 of this Plan provides an overview of the HPCC Program. Section 4 contains more detailed definitions of the Program Component Areas, with an emphasis on the overall directions and milestones planned for each PCA. Appendix A provides a detailed look at HPCC Program activities within each agency.

  18. Visualization and Data Analysis for High-Performance Computing

    Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    This is a set of slides from a guest lecture for a class at the University of Texas, El Paso on visualization and data analysis for high-performance computing. The topics covered are the following: trends in high-performance computing; scientific visualization, such as OpenGL, ray tracing and volume rendering, VTK, and ParaView; data science at scale, such as in-situ visualization, image databases, distributed memory parallelism, shared memory parallelism, VTK-m, "big data", and then an analysis example.

  19. Quantum Accelerators for High-performance Computing Systems

    Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL

    2017-11-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.

  20. Australia's new high performance research reactor

    Miller, R.; Abbate, P.M.

    2003-01-01

    A contract for the design and construction of the Replacement Research Reactor was signed in July 2000 between ANSTO and INVAP from Argentina. Since then the detailed design has been completed, a construction authorization has been obtained, and construction has commenced. The reactor design embodies modern safety thinking together with innovative solutions to ensure a highly safe and reliable plant. Also significant effort has been placed on providing the facility with diverse and ample facilities to maximize its use for irradiating material for radioisotope production as well as providing high neutron fluxes for neutron beam research. The project management organization and planing is commensurate with the complexity of the project and the number of players involved. (author)

  1. The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    Wojtek James eGoscinski

    2014-03-01

    Full Text Available The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE is a national imaging and visualisation facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organisation (CSIRO, and the Victorian Partnership for Advanced Computing (VPAC, with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI, x-ray computer tomography (CT, electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i integrated multiple different neuroimaging analysis software components, (ii enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research.

  2. Optical interconnection networks for high-performance computing systems

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  3. A new high performance research reactor

    Abbate, Pablo M.

    2002-01-01

    A contract for the design, construction and commissioning of the Replacement Research Reactor was signed in July 2000 between Australia authorities and INVAP from Argentina. Since then the detailed design has been completed, an application for a construction license was made in May 2001 and the construction authorisation was issued on 4 th April 2002. This paper explains the safety philosophy embedded into the design together with the approach taken for main elements of the design and their relation to the proposed applications of the reactor. Also information is provided on the suit of neutron beam facilities and irradiation facilities being constructed. Finally it is presented an outline of the project management organisation, project planing and schedule. (author)

  4. Software Systems for High-performance Quantum Computing

    Humble, Travis S [ORNL; Britt, Keith A [ORNL

    2016-01-01

    Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.

  5. GPU-based high-performance computing for radiation therapy

    Jia, Xun; Jiang, Steve B; Ziegenhein, Peter

    2014-01-01

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of study has been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this paper, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. (topical review)

  6. High performance computing in power and energy systems

    Khaitan, Siddhartha Kumar [Iowa State Univ., Ames, IA (United States); Gupta, Anshul (eds.) [IBM Watson Research Center, Yorktown Heights, NY (United States)

    2013-07-01

    The twin challenge of meeting global energy demands in the face of growing economies and populations and restricting greenhouse gas emissions is one of the most daunting ones that humanity has ever faced. Smart electrical generation and distribution infrastructure will play a crucial role in meeting these challenges. We would need to develop capabilities to handle large volumes of data generated by the power system components like PMUs, DFRs and other data acquisition devices as well as by the capacity to process these data at high resolution via multi-scale and multi-period simulations, cascading and security analysis, interaction between hybrid systems (electric, transport, gas, oil, coal, etc.) and so on, to get meaningful information in real time to ensure a secure, reliable and stable power system grid. Advanced research on development and implementation of market-ready leading-edge high-speed enabling technologies and algorithms for solving real-time, dynamic, resource-critical problems will be required for dynamic security analysis targeted towards successful implementation of Smart Grid initiatives. This books aims to bring together some of the latest research developments as well as thoughts on the future research directions of the high performance computing applications in electric power systems planning, operations, security, markets, and grid integration of alternate sources of energy, etc.

  7. Enabling High-Performance Computing as a Service

    AbdelBaky, Moustafa

    2012-10-01

    With the right software infrastructure, clouds can provide scientists with as a service access to high-performance computing resources. An award-winning prototype framework transforms the Blue Gene/P system into an elastic cloud to run a representative HPC application. © 2012 IEEE.

  8. Computer science of the high performance; Informatica del alto rendimiento

    Moraleda, A.

    2008-07-01

    The high performance computing is taking shape as a powerful accelerator of the process of innovation, to drastically reduce the waiting times for access to the results and the findings in a growing number of processes and activities as complex and important as medicine, genetics, pharmacology, environment, natural resources management or the simulation of complex processes in a wide variety of industries. (Author)

  9. Contemporary high performance computing from petascale toward exascale

    Vetter, Jeffrey S

    2015-01-01

    A continuation of Contemporary High Performance Computing: From Petascale toward Exascale, this second volume continues the discussion of HPC flagship systems, major application workloads, facilities, and sponsors. The book includes of figures and pictures that capture the state of existing systems: pictures of buildings, systems in production, floorplans, and many block diagrams and charts to illustrate system design and performance.

  10. A high performance scientific cloud computing environment for materials simulations

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  11. FY 1996 Blue Book: High Performance Computing and Communications: Foundations for America`s Information Future

    Networking and Information Technology Research and Development, Executive Office of the President — The Federal High Performance Computing and Communications HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of...

  12. FY 1997 Blue Book: High Performance Computing and Communications: Advancing the Frontiers of Information Technology

    Networking and Information Technology Research and Development, Executive Office of the President — The Federal High Performance Computing and Communications HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of...

  13. 3rd International Conference on High Performance Scientific Computing

    Kostina, Ekaterina; Phu, Hoang; Rannacher, Rolf

    2008-01-01

    This proceedings volume contains a selection of papers presented at the Third International Conference on High Performance Scientific Computing held at the Hanoi Institute of Mathematics, Vietnamese Academy of Science and Technology (VAST), March 6-10, 2006. The conference has been organized by the Hanoi Institute of Mathematics, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, and its International PhD Program ``Complex Processes: Modeling, Simulation and Optimization'', and Ho Chi Minh City University of Technology. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and control, parallel computing, software development, applications of scientific computing in physics, chemistry, biology and mechanics, environmental and hydrology problems, transport, logistics and site loca...

  14. 5th International Conference on High Performance Scientific Computing

    Hoang, Xuan; Rannacher, Rolf; Schlöder, Johannes

    2014-01-01

    This proceedings volume gathers a selection of papers presented at the Fifth International Conference on High Performance Scientific Computing, which took place in Hanoi on March 5-9, 2012. The conference was organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University, Ho Chi Minh City University of Technology, and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and practical applications. Subjects covered include mathematical modeling; numerical simulation; methods for optimization and control; parallel computing; software development; and applications of scientific computing in physics, mechanics and biomechanics, material science, hydrology, chemistry, biology, biotechnology, medicine, sports, psychology, transport, logistics, com...

  15. 6th International Conference on High Performance Scientific Computing

    Phu, Hoang; Rannacher, Rolf; Schlöder, Johannes

    2017-01-01

    This proceedings volume highlights a selection of papers presented at the Sixth International Conference on High Performance Scientific Computing, which took place in Hanoi, Vietnam on March 16-20, 2015. The conference was jointly organized by the Heidelberg Institute of Theoretical Studies (HITS), the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University, and the Vietnam Institute for Advanced Study in Mathematics, Ministry of Education The contributions cover a broad, interdisciplinary spectrum of scientific computing and showcase recent advances in theory, methods, and practical applications. Subjects covered numerical simulation, methods for optimization and control, parallel computing, and software development, as well as the applications of scientific computing in physics, mechanics, biomechanics and robotics, material science, hydrology, biotechnology, medicine, transport, scheduling, and in...

  16. Unravelling the structure of matter on high-performance computers

    Kieu, T.D.; McKellar, B.H.J.

    1992-11-01

    The various phenomena and the different forms of matter in nature are believed to be the manifestation of only a handful set of fundamental building blocks-the elementary particles-which interact through the four fundamental forces. In the study of the structure of matter at this level one has to consider forces which are not sufficiently weak to be treated as small perturbations to the system, an example of which is the strong force that binds the nucleons together. High-performance computers, both vector and parallel machines, have facilitated the necessary non-perturbative treatments. The principles and the techniques of computer simulations applied to Quantum Chromodynamics are explained examples include the strong interactions, the calculation of the mass of nucleons and their decay rates. Some commercial and special-purpose high-performance machines for such calculations are also mentioned. 3 refs., 2 tabs

  17. Top scientific research center deploys Zambeel Aztera (TM) network storage system in high performance environment

    2002-01-01

    " The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory has implemented a Zambeel Aztera storage system and software to accelerate the productivity of scientists running high performance scientific simulations and computations" (1 page).

  18. Multi-Language Programming Environments for High Performance Java Computing

    Vladimir Getov; Paul Gray; Sava Mintchev; Vaidy Sunderam

    1999-01-01

    Recent developments in processor capabilities, software tools, programming languages and programming paradigms have brought about new approaches to high performance computing. A steadfast component of this dynamic evolution has been the scientific community’s reliance on established scientific packages. As a consequence, programmers of high‐performance applications are reluctant to embrace evolving languages such as Java. This paper describes the Java‐to‐C Interface (JCI) tool which provides ...

  19. Nuclear forces and high-performance computing: The perfect match

    Luu, T; Walker-Loud, A

    2009-01-01

    High-performance computing is now enabling the calculation of certain hadronic interaction parameters directly from Quantum Chromodynamics, the quantum field theory that governs the behavior of quarks and gluons and is ultimately responsible for the nuclear strong force. In this paper we briefly describe the state of the field and show how other aspects of hadronic interactions will be ascertained in the near future. We give estimates of computational requirements needed to obtain these goals, and outline a procedure for incorporating these results into the broader nuclear physics community.

  20. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    Brown, Maxine D. [Acting Director, EVL; Leigh, Jason [PI

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascale computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.

  1. A High Performance VLSI Computer Architecture For Computer Graphics

    Chin, Chi-Yuan; Lin, Wen-Tai

    1988-10-01

    A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.

  2. High performance computing in science and engineering '09: transactions of the High Performance Computing Center, Stuttgart (HLRS) 2009

    Nagel, Wolfgang E; Kröner, Dietmar; Resch, Michael

    2010-01-01

    ...), NIC/JSC (J¨ u lich), and LRZ (Munich). As part of that strategic initiative, in May 2009 already NIC/JSC has installed the first phase of the GCS HPC Tier-0 resources, an IBM Blue Gene/P with roughly 300.000 Cores, this time in J¨ u lich, With that, the GCS provides the most powerful high-performance computing infrastructure in Europe alread...

  3. Overview of Parallel Platforms for Common High Performance Computing

    T. Fryza

    2012-04-01

    Full Text Available The paper deals with various parallel platforms used for high performance computing in the signal processing domain. More precisely, the methods exploiting the multicores central processing units such as message passing interface and OpenMP are taken into account. The properties of the programming methods are experimentally proved in the application of a fast Fourier transform and a discrete cosine transform and they are compared with the possibilities of MATLAB's built-in functions and Texas Instruments digital signal processors with very long instruction word architectures. New FFT and DCT implementations were proposed and tested. The implementation phase was compared with CPU based computing methods and with possibilities of the Texas Instruments digital signal processing library on C6747 floating-point DSPs. The optimal combination of computing methods in the signal processing domain and new, fast routines' implementation is proposed as well.

  4. High performance computing and communications: FY 1995 implementation plan

    NONE

    1994-04-01

    The High Performance Computing and Communications (HPCC) Program was formally established following passage of the High Performance Computing Act of 1991 signed on December 9, 1991. Ten federal agencies in collaboration with scientists and managers from US industry, universities, and laboratories have developed the HPCC Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1994 and FY 1995. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency. Although the Department of Education is an official HPCC agency, its current funding and reporting of crosscut activities goes through the Committee on Education and Health Resources, not the HPCC Program. For this reason the Implementation Plan covers nine HPCC agencies.

  5. Benchmarking high performance computing architectures with CMS’ skeleton framework

    Sexton-Kennedy, E.; Gartung, P.; Jones, C. D.

    2017-10-01

    In 2012 CMS evaluated which underlying concurrency technology would be the best to use for its multi-threaded framework. The available technologies were evaluated on the high throughput computing systems dominating the resources in use at that time. A skeleton framework benchmarking suite that emulates the tasks performed within a CMSSW application was used to select Intel’s Thread Building Block library, based on the measured overheads in both memory and CPU on the different technologies benchmarked. In 2016 CMS will get access to high performance computing resources that use new many core architectures; machines such as Cori Phase 1&2, Theta, Mira. Because of this we have revived the 2012 benchmark to test it’s performance and conclusions on these new architectures. This talk will discuss the results of this exercise.

  6. Building a High Performance Computing Infrastructure for Novosibirsk Scientific Center

    Adakin, A; Chubarov, D; Nikultsev, V; Belov, S; Kaplin, V; Sukharev, A; Zaytsev, A; Kalyuzhny, V; Kuchin, N; Lomakin, S

    2011-01-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies (ICT), and Institute of Computational Mathematics and Mathematical Geophysics (ICM and MG). Since each institute has specific requirements on the architecture of the computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for the particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM and MG), and a Grid Computing Facility of BINP. Recently a dedicated optical network with the initial bandwidth of 10 Gbps connecting these three facilities was built in order to make it possible to share the computing resources among the research communities of participating institutes, thus providing a common platform for building the computing infrastructure for various scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technologies based on XEN and KVM platforms. The solution implemented was tested thoroughly within the computing environment of KEDR detector experiment which is being carried out at BINP, and foreseen to be applied to the use cases of other HEP experiments in the upcoming future.

  7. Simple, parallel, high-performance virtual machines for extreme computations

    Chokoufe Nejad, Bijan; Ohl, Thorsten; Reuter, Jurgen

    2014-11-01

    We introduce a high-performance virtual machine (VM) written in a numerically fast language like Fortran or C to evaluate very large expressions. We discuss the general concept of how to perform computations in terms of a VM and present specifically a VM that is able to compute tree-level cross sections for any number of external legs, given the corresponding byte code from the optimal matrix element generator, O'Mega. Furthermore, this approach allows to formulate the parallel computation of a single phase space point in a simple and obvious way. We analyze hereby the scaling behaviour with multiple threads as well as the benefits and drawbacks that are introduced with this method. Our implementation of a VM can run faster than the corresponding native, compiled code for certain processes and compilers, especially for very high multiplicities, and has in general runtimes in the same order of magnitude. By avoiding the tedious compile and link steps, which may fail for source code files of gigabyte sizes, new processes or complex higher order corrections that are currently out of reach could be evaluated with a VM given enough computing power.

  8. Trends in high-performance computing for engineering calculations.

    Giles, M B; Reguly, I

    2014-08-13

    High-performance computing has evolved remarkably over the past 20 years, and that progress is likely to continue. However, in recent years, this progress has been achieved through greatly increased hardware complexity with the rise of multicore and manycore processors, and this is affecting the ability of application developers to achieve the full potential of these systems. This article outlines the key developments on the hardware side, both in the recent past and in the near future, with a focus on two key issues: energy efficiency and the cost of moving data. It then discusses the much slower evolution of system software, and the implications of all of this for application developers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Power/energy use cases for high performance computing

    Laros, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Elmore, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Munch, Kristin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  10. Scalability of DL_POLY on High Performance Computing Platform

    Mabule Samuel Mabakane

    2017-12-01

    Full Text Available This paper presents a case study on the scalability of several versions of the molecular dynamics code (DL_POLY performed on South Africa‘s Centre for High Performance Computing e1350 IBM Linux cluster, Sun system and Lengau supercomputers. Within this study different problem sizes were designed and the same chosen systems were employed in order to test the performance of DL_POLY using weak and strong scalability. It was found that the speed-up results for the small systems were better than large systems on both Ethernet and Infiniband network. However, simulations of large systems in DL_POLY performed well using Infiniband network on Lengau cluster as compared to e1350 and Sun supercomputer.

  11. Business Models of High Performance Computing Centres in Higher Education in Europe

    Eurich, Markus; Calleja, Paul; Boutellier, Roman

    2013-01-01

    High performance computing (HPC) service centres are a vital part of the academic infrastructure of higher education organisations. However, despite their importance for research and the necessary high capital expenditures, business research on HPC service centres is mostly missing. From a business perspective, it is important to find an answer to…

  12. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    NONE

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  13. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    NONE

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  14. Real-time Tsunami Inundation Prediction Using High Performance Computers

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  15. High performance computing environment for multidimensional image analysis.

    Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo

    2007-07-10

    The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478x speedup. Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets.

  16. The Future of Software Engineering for High Performance Computing

    Pope, G [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-16

    DOE ASCR requested that from May through mid-July 2015 a study group identify issues and recommend solutions from a software engineering perspective transitioning into the next generation of High Performance Computing. The approach used was to ask some of the DOE complex experts who will be responsible for doing this work to contribute to the study group. The technique used was to solicit elevator speeches: a short and concise write up done as if the author was a speaker with only a few minutes to convince a decision maker of their top issues. Pages 2-18 contain the original texts of the contributed elevator speeches and end notes identifying the 20 contributors. The study group also ranked the importance of each topic, and those scores are displayed with each topic heading. A perfect score (and highest priority) is three, two is medium priority, and one is lowest priority. The highest scoring topic areas were software engineering and testing resources; the lowest scoring area was compliance to DOE standards. The following two paragraphs are an elevator speech summarizing the contributed elevator speeches. Each sentence or phrase in the summary is hyperlinked to its source via a numeral embedded in the text. A risk one liner has also been added to each topic to allow future risk tracking and mitigation.

  17. A checkpoint compression study for high-performance computing systems

    Ibtesham, Dewan [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Computer Science; Ferreira, Kurt B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Scalable System Software Dept.; Arnold, Dorian [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Computer Science

    2015-02-17

    As high-performance computing systems continue to increase in size and complexity, higher failure rates and increased overheads for checkpoint/restart (CR) protocols have raised concerns about the practical viability of CR protocols for future systems. Previously, compression has proven to be a viable approach for reducing checkpoint data volumes and, thereby, reducing CR protocol overhead leading to improved application performance. In this article, we further explore compression-based CR optimization by exploring its baseline performance and scaling properties, evaluating whether improved compression algorithms might lead to even better application performance and comparing checkpoint compression against and alongside other software- and hardware-based optimizations. Our results highlights are: (1) compression is a very viable CR optimization; (2) generic, text-based compression algorithms appear to perform near optimally for checkpoint data compression and faster compression algorithms will not lead to better application performance; (3) compression-based optimizations fare well against and alongside other software-based optimizations; and (4) while hardware-based optimizations outperform software-based ones, they are not as cost effective.

  18. Lightweight Provenance Service for High-Performance Computing

    Dai, Dong; Chen, Yong; Carns, Philip; Jenkins, John; Ross, Robert

    2017-09-09

    Provenance describes detailed information about the history of a piece of data, containing the relationships among elements such as users, processes, jobs, and workflows that contribute to the existence of data. Provenance is key to supporting many data management functionalities that are increasingly important in operations such as identifying data sources, parameters, or assumptions behind a given result; auditing data usage; or understanding details about how inputs are transformed into outputs. Despite its importance, however, provenance support is largely underdeveloped in highly parallel architectures and systems. One major challenge is the demanding requirements of providing provenance service in situ. The need to remain lightweight and to be always on often conflicts with the need to be transparent and offer an accurate catalog of details regarding the applications and systems. To tackle this challenge, we introduce a lightweight provenance service, called LPS, for high-performance computing (HPC) systems. LPS leverages a kernel instrument mechanism to achieve transparency and introduces representative execution and flexible granularity to capture comprehensive provenance with controllable overhead. Extensive evaluations and use cases have confirmed its efficiency and usability. We believe that LPS can be integrated into current and future HPC systems to support a variety of data management needs.

  19. Enabling Efficient Climate Science Workflows in High Performance Computing Environments

    Krishnan, H.; Byna, S.; Wehner, M. F.; Gu, J.; O'Brien, T. A.; Loring, B.; Stone, D. A.; Collins, W.; Prabhat, M.; Liu, Y.; Johnson, J. N.; Paciorek, C. J.

    2015-12-01

    A typical climate science workflow often involves a combination of acquisition of data, modeling, simulation, analysis, visualization, publishing, and storage of results. Each of these tasks provide a myriad of challenges when running on a high performance computing environment such as Hopper or Edison at NERSC. Hurdles such as data transfer and management, job scheduling, parallel analysis routines, and publication require a lot of forethought and planning to ensure that proper quality control mechanisms are in place. These steps require effectively utilizing a combination of well tested and newly developed functionality to move data, perform analysis, apply statistical routines, and finally, serve results and tools to the greater scientific community. As part of the CAlibrated and Systematic Characterization, Attribution and Detection of Extremes (CASCADE) project we highlight a stack of tools our team utilizes and has developed to ensure that large scale simulation and analysis work are commonplace and provide operations that assist in everything from generation/procurement of data (HTAR/Globus) to automating publication of results to portals like the Earth Systems Grid Federation (ESGF), all while executing everything in between in a scalable environment in a task parallel way (MPI). We highlight the use and benefit of these tools by showing several climate science analysis use cases they have been applied to.

  20. Multi-Language Programming Environments for High Performance Java Computing

    Vladimir Getov

    1999-01-01

    Full Text Available Recent developments in processor capabilities, software tools, programming languages and programming paradigms have brought about new approaches to high performance computing. A steadfast component of this dynamic evolution has been the scientific community’s reliance on established scientific packages. As a consequence, programmers of high‐performance applications are reluctant to embrace evolving languages such as Java. This paper describes the Java‐to‐C Interface (JCI tool which provides application programmers wishing to use Java with immediate accessibility to existing scientific packages. The JCI tool also facilitates rapid development and reuse of existing code. These benefits are provided at minimal cost to the programmer. While beneficial to the programmer, the additional advantages of mixed‐language programming in terms of application performance and portability are addressed in detail within the context of this paper. In addition, we discuss how the JCI tool is complementing other ongoing projects such as IBM’s High‐Performance Compiler for Java (HPCJ and IceT’s metacomputing environment.

  1. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    Moon, Hongsik

    changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.

  2. High performance computing in science and engineering Garching/Munich 2016

    Wagner, Siegfried; Bode, Arndt; Bruechle, Helmut; Brehm, Matthias (eds.)

    2016-11-01

    Computer simulations are the well-established third pillar of natural sciences along with theory and experimentation. Particularly high performance computing is growing fast and constantly demands more and more powerful machines. To keep pace with this development, in spring 2015, the Leibniz Supercomputing Centre installed the high performance computing system SuperMUC Phase 2, only three years after the inauguration of its sibling SuperMUC Phase 1. Thereby, the compute capabilities were more than doubled. This book covers the time-frame June 2014 until June 2016. Readers will find many examples of outstanding research in the more than 130 projects that are covered in this book, with each one of these projects using at least 4 million core-hours on SuperMUC. The largest scientific communities using SuperMUC in the last two years were computational fluid dynamics simulations, chemistry and material sciences, astrophysics, and life sciences.

  3. 14th annual Results and Review Workshop on High Performance Computing in Science and Engineering

    Nagel, Wolfgang E; Resch, Michael M; Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2011; High Performance Computing in Science and Engineering '11

    2012-01-01

    This book presents the state-of-the-art in simulation on supercomputers. Leading researchers present results achieved on systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2011. The reports cover all fields of computational science and engineering, ranging from CFD to computational physics and chemistry, to computer science, with a special emphasis on industrially relevant applications. Presenting results for both vector systems and microprocessor-based systems, the book allows readers to compare the performance levels and usability of various architectures. As HLRS

  4. COMPUTERS: Teraflops for Europe; EEC Working Group on High Performance Computing

    Anon.

    1991-03-15

    In little more than a decade, simulation on high performance computers has become an essential tool for theoretical physics, capable of solving a vast range of crucial problems inaccessible to conventional analytic mathematics. In many ways, computer simulation has become the calculus for interacting many-body systems, a key to the study of transitions from isolated to collective behaviour.

  5. COMPUTERS: Teraflops for Europe; EEC Working Group on High Performance Computing

    Anon.

    1991-01-01

    In little more than a decade, simulation on high performance computers has become an essential tool for theoretical physics, capable of solving a vast range of crucial problems inaccessible to conventional analytic mathematics. In many ways, computer simulation has become the calculus for interacting many-body systems, a key to the study of transitions from isolated to collective behaviour

  6. International Conference on Modern Mathematical Methods and High Performance Computing in Science and Technology

    Srivastava, HM; Venturino, Ezio; Resch, Michael; Gupta, Vijay

    2016-01-01

    The book discusses important results in modern mathematical models and high performance computing, such as applied operations research, simulation of operations, statistical modeling and applications, invisibility regions and regular meta-materials, unmanned vehicles, modern radar techniques/SAR imaging, satellite remote sensing, coding, and robotic systems. Furthermore, it is valuable as a reference work and as a basis for further study and research. All contributing authors are respected academicians, scientists and researchers from around the globe. All the papers were presented at the international conference on Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST 2015), held at Raj Kumar Goel Institute of Technology, Ghaziabad, India, from 27–29 December 2015, and peer-reviewed by international experts. The conference provided an exceptional platform for leading researchers, academicians, developers, engineers and technocrats from a broad range of disciplines ...

  7. High performance computing network for cloud environment using simulators

    Singh, N. Ajith; Hemalatha, M.

    2012-01-01

    Cloud computing is the next generation computing. Adopting the cloud computing is like signing up new form of a website. The GUI which controls the cloud computing make is directly control the hardware resource and your application. The difficulty part in cloud computing is to deploy in real environment. Its' difficult to know the exact cost and it's requirement until and unless we buy the service not only that whether it will support the existing application which is available on traditional...

  8. High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility

    Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; White, Julia C [ORNL

    2010-08-01

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools

  9. Resilient and Robust High Performance Computing Platforms for Scientific Computing Integrity

    Jin, Yier [Univ. of Central Florida, Orlando, FL (United States)

    2017-07-14

    As technology advances, computer systems are subject to increasingly sophisticated cyber-attacks that compromise both their security and integrity. High performance computing platforms used in commercial and scientific applications involving sensitive, or even classified data, are frequently targeted by powerful adversaries. This situation is made worse by a lack of fundamental security solutions that both perform efficiently and are effective at preventing threats. Current security solutions fail to address the threat landscape and ensure the integrity of sensitive data. As challenges rise, both private and public sectors will require robust technologies to protect its computing infrastructure. The research outcomes from this project try to address all these challenges. For example, we present LAZARUS, a novel technique to harden kernel Address Space Layout Randomization (KASLR) against paging-based side-channel attacks. In particular, our scheme allows for fine-grained protection of the virtual memory mappings that implement the randomization. We demonstrate the effectiveness of our approach by hardening a recent Linux kernel with LAZARUS, mitigating all of the previously presented side-channel attacks on KASLR. Our extensive evaluation shows that LAZARUS incurs only 0.943% overhead for standard benchmarks, and is therefore highly practical. We also introduced HA2lloc, a hardware-assisted allocator that is capable of leveraging an extended memory management unit to detect memory errors in the heap. We also perform testing using HA2lloc in a simulation environment and find that the approach is capable of preventing common memory vulnerabilities.

  10. High performance computing and communications: Advancing the frontiers of information technology

    NONE

    1997-12-31

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental in the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.

  11. 8th International Workshop on Parallel Tools for High Performance Computing

    Gracia, José; Knüpfer, Andreas; Resch, Michael; Nagel, Wolfgang

    2015-01-01

    Numerical simulation and modelling using High Performance Computing has evolved into an established technique in academic and industrial research. At the same time, the High Performance Computing infrastructure is becoming ever more complex. For instance, most of the current top systems around the world use thousands of nodes in which classical CPUs are combined with accelerator cards in order to enhance their compute power and energy efficiency. This complexity can only be mastered with adequate development and optimization tools. Key topics addressed by these tools include parallelization on heterogeneous systems, performance optimization for CPUs and accelerators, debugging of increasingly complex scientific applications, and optimization of energy usage in the spirit of green IT. This book represents the proceedings of the 8th International Parallel Tools Workshop, held October 1-2, 2014 in Stuttgart, Germany – which is a forum to discuss the latest advancements in the parallel tools.

  12. Research on high performance mirrors for free electron lasers

    Kitatani, Fumito

    1996-01-01

    For the stable functioning of free electron laser, high performance optical elements are required because of its characteristics. In particular in short wavelength free electron laser, since its gain is low, the optical elements having very high reflectivity are required. Also in free electron laser, since high energy noise light exists, the optical elements must have high optical breaking strength. At present in Power Reactor and Nuclear Fuel Development Corporation, the research for heightening the performance of dielectric multi-layer film elements for short wavelength is carried out. For manufacturing such high performance elements, it is necessary to develop the new materials for vapor deposition, new vapor deposition process, and the techniques of accurate substrate polishing and inspection. As the material that satisfies the requirements, there is diamond-like carbon (DLC) film, of which the properties are explained. As for the manufacture of the DLC films for short wavelength optics, the test equipment for forming the DLC films, the test of forming the DLC films, the change of the film quality due to gas conditions, discharge conditions and substrate materials, and the measurement of the optical breaking strength are reported. (K.I.)

  13. 10th International Workshop on Parallel Tools for High Performance Computing

    Gracia, José; Hilbrich, Tobias; Knüpfer, Andreas; Resch, Michael; Nagel, Wolfgang

    2017-01-01

    This book presents the proceedings of the 10th International Parallel Tools Workshop, held October 4-5, 2016 in Stuttgart, Germany – a forum to discuss the latest advances in parallel tools. High-performance computing plays an increasingly important role for numerical simulation and modelling in academic and industrial research. At the same time, using large-scale parallel systems efficiently is becoming more difficult. A number of tools addressing parallel program development and analysis have emerged from the high-performance computing community over the last decade, and what may have started as collection of small helper script has now matured to production-grade frameworks. Powerful user interfaces and an extensive body of documentation allow easy usage by non-specialists. research community.

  14. High Performance Computing Facility Operational Assessment 2015: Oak Ridge Leadership Computing Facility

    Barker, Ashley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bland, Arthur S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Gary, Jeff D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Hack, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; McNally, Stephen T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Rogers, James H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Smith, Brian E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Straatsma, T. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Sukumar, Sreenivas Rangan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Thach, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Tichenor, Suzy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Wells, Jack C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility

    2016-03-01

    Oak Ridge National Laboratory’s (ORNL’s) Leadership Computing Facility (OLCF) continues to surpass its operational target goals: supporting users; delivering fast, reliable systems; creating innovative solutions for high-performance computing (HPC) needs; and managing risks, safety, and security aspects associated with operating one of the most powerful computers in the world. The results can be seen in the cutting-edge science delivered by users and the praise from the research community. Calendar year (CY) 2015 was filled with outstanding operational results and accomplishments: a very high rating from users on overall satisfaction that ties the highest-ever mark set in CY 2014; the greatest number of core-hours delivered to research projects; the largest percentage of capability usage since the OLCF began tracking the metric in 2009; and success in delivering on the allocation of 60, 30, and 10% of core hours offered for the INCITE (Innovative and Novel Computational Impact on Theory and Experiment), ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and Director’s Discretionary programs, respectively. These accomplishments, coupled with the extremely high utilization rate, represent the fulfillment of the promise of Titan: maximum use by maximum-size simulations. The impact of all of these successes and more is reflected in the accomplishments of OLCF users, with publications this year in notable journals Nature, Nature Materials, Nature Chemistry, Nature Physics, Nature Climate Change, ACS Nano, Journal of the American Chemical Society, and Physical Review Letters, as well as many others. The achievements included in the 2015 OLCF Operational Assessment Report reflect first-ever or largest simulations in their communities; for example Titan enabled engineers in Los Angeles and the surrounding region to design and begin building improved critical infrastructure by enabling the highest-resolution Cybershake map for Southern

  15. RAPPORT: running scientific high-performance computing applications on the cloud.

    Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt

    2013-01-28

    Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.

  16. The ongoing investigation of high performance parallel computing in HEP

    Peach, Kenneth J; Böck, R K; Dobinson, Robert W; Hansroul, M; Norton, Alan Robert; Willers, Ian Malcolm; Baud, J P; Carminati, F; Gagliardi, F; McIntosh, E; Metcalf, M; Robertson, L; CERN. Geneva. Detector Research and Development Committee

    1993-01-01

    Past and current exploitation of parallel computing in High Energy Physics is summarized and a list of R & D projects in this area is presented. The applicability of new parallel hardware and software to physics problems is investigated, in the light of the requirements for computing power of LHC experiments and the current trends in the computer industry. Four main themes are discussed (possibilities for a finer grain of parallelism; fine-grain communication mechanism; usable parallel programming environment; different programming models and architectures, using standard commercial products). Parallel computing technology is potentially of interest for offline and vital for real time applications in LHC. A substantial investment in applications development and evaluation of state of the art hardware and software products is needed. A solid development environment is required at an early stage, before mainline LHC program development begins.

  17. Distributed metadata in a high performance computing environment

    Bent, John M.; Faibish, Sorin; Zhang, Zhenhua; Liu, Xuezhao; Tang, Haiying

    2017-07-11

    A computer-executable method, system, and computer program product for managing meta-data in a distributed storage system, wherein the distributed storage system includes one or more burst buffers enabled to operate with a distributed key-value store, the co computer-executable method, system, and computer program product comprising receiving a request for meta-data associated with a block of data stored in a first burst buffer of the one or more burst buffers in the distributed storage system, wherein the meta data is associated with a key-value, determining which of the one or more burst buffers stores the requested metadata, and upon determination that a first burst buffer of the one or more burst buffers stores the requested metadata, locating the key-value in a portion of the distributed key-value store accessible from the first burst buffer.

  18. Software Applications on the Peregrine System | High-Performance Computing

    Algebraic Modeling System (GAMS) Statistics and analysis High-level modeling system for mathematical reactivity. Gurobi Optimizer Statistics and analysis Solver for mathematical programming LAMMPS Chemistry and , reactivities, and vibrational, electronic and NMR spectra. R Statistical Computing Environment Statistics and

  19. Benchmark Numerical Toolkits for High Performance Computing, Phase I

    National Aeronautics and Space Administration — Computational codes in physics and engineering often use implicit solution algorithms that require linear algebra tools such as Ax=b solvers, eigenvalue,...

  20. Multicore Challenges and Benefits for High Performance Scientific Computing

    Ida M.B. Nielsen

    2008-01-01

    Full Text Available Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexity of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.

  1. Scalability of DL_POLY on High Performance Computing Platform

    Mabakane, Mabule S

    2017-12-01

    Full Text Available stream_source_info Mabakanea_19979_2017.pdf.txt stream_content_type text/plain stream_size 33716 Content-Encoding UTF-8 stream_name Mabakanea_19979_2017.pdf.txt Content-Type text/plain; charset=UTF-8 SACJ 29(3) December... when using many processors within the compute nodes of the supercomputer. The type of the processors of compute nodes and their memory also play an important role in the overall performance of the parallel application running on a supercomputer. DL...

  2. Running Batch Jobs on Peregrine | High-Performance Computing | NREL

    and run your application. Users typically create or edit job scripts using a text editor such as vi Using Resource Feature to Request Different Node Types Peregrine has several types of compute nodes , which differ in the amount of memory and number of processor cores. The majority of the nodes have 24

  3. Running Interactive Jobs on Peregrine | High-Performance Computing | NREL

    shell prompt, which allows users to execute commands and scripts as they would on the login nodes. Login performed on the compute nodes rather than on login nodes. This page provides instructions and examples of , start GUIs etc. and the commands will execute on that node instead of on the login node. The -V option

  4. Simulating elastic light scattering using high performance computing methods

    Hoekstra, A.G.; Sloot, P.M.A.; Verbraeck, A.; Kerckhoffs, E.J.H.

    1993-01-01

    The Coupled Dipole method, as originally formulated byPurcell and Pennypacker, is a very powerful method tosimulate the Elastic Light Scattering from arbitraryparticles. This method, which is a particle simulationmodel for Computational Electromagnetics, has one majordrawback: if the size of the

  5. High performance computer code for molecular dynamics simulations

    Levay, I.; Toekesi, K.

    2007-01-01

    Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions

  6. Topic 14+16: High-performance and scientific applications and extreme-scale computing (Introduction)

    Downes, Turlough P.

    2013-01-01

    As our understanding of the world around us increases it becomes more challenging to make use of what we already know, and to increase our understanding still further. Computational modeling and simulation have become critical tools in addressing this challenge. The requirements of high-resolution, accurate modeling have outstripped the ability of desktop computers and even small clusters to provide the necessary compute power. Many applications in the scientific and engineering domains now need very large amounts of compute time, while other applications, particularly in the life sciences, frequently have large data I/O requirements. There is thus a growing need for a range of high performance applications which can utilize parallel compute systems effectively, which have efficient data handling strategies and which have the capacity to utilise current and future systems. The High Performance and Scientific Applications topic aims to highlight recent progress in the use of advanced computing and algorithms to address the varied, complex and increasing challenges of modern research throughout both the "hard" and "soft" sciences. This necessitates being able to use large numbers of compute nodes, many of which are equipped with accelerators, and to deal with difficult I/O requirements. © 2013 Springer-Verlag.

  7. Thinking processes used by high-performing students in a computer programming task

    Marietjie Havenga

    2011-07-01

    Full Text Available Computer programmers must be able to understand programming source code and write programs that execute complex tasks to solve real-world problems. This article is a trans- disciplinary study at the intersection of computer programming, education and psychology. It outlines the role of mental processes in the process of programming and indicates how successful thinking processes can support computer science students in writing correct and well-defined programs. A mixed methods approach was used to better understand the thinking activities and programming processes of participating students. Data collection involved both computer programs and students’ reflective thinking processes recorded in their journals. This enabled analysis of psychological dimensions of participants’ thinking processes and their problem-solving activities as they considered a programming problem. Findings indicate that the cognitive, reflective and psychological processes used by high-performing programmers contributed to their success in solving a complex programming problem. Based on the thinking processes of high performers, we propose a model of integrated thinking processes, which can support computer programming students. Keywords: Computer programming, education, mixed methods research, thinking processes.  Disciplines: Computer programming, education, psychology

  8. High performance stream computing for particle beam transport simulations

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  9. A high level language for a high performance computer

    Perrott, R. H.

    1978-01-01

    The proposed computational aerodynamic facility will join the ranks of the supercomputers due to its architecture and increased execution speed. At present, the languages used to program these supercomputers have been modifications of programming languages which were designed many years ago for sequential machines. A new programming language should be developed based on the techniques which have proved valuable for sequential programming languages and incorporating the algorithmic techniques required for these supercomputers. The design objectives for such a language are outlined.

  10. WinHPC System Configuration | High-Performance Computing | NREL

    ), login node (WinHPC02) and worker/compute nodes. The head node acts as the file, DNS, and license server . The login node is where the users connect to access the cluster. Node 03 has dual Intel Xeon E5530 2008 R2 HPC Edition. The login node, WinHPC02, is where users login to access the system. This is where

  11. Architecture and Programming Models for High Performance Intensive Computation

    2016-06-29

    commands from the data processing center to the sensors is needed. It has been noted that the ubiquity of mobile communication devices offers the...commands from a Processing Facility by way of mobile Relay Stations. The activity of each component of this model other than the Merge module can be...evaluation of the initial system implementation. Gao also was in charge of the development of Fresh Breeze architecture backend on new many-core computers

  12. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing.

    Vineyard, Craig Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilize memory.

  13. High Performance Computing - Power Application Programming Interface Specification Version 2.0.

    Laros, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levenhagen, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olivier, Stephen Lecler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, H. Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Younge, Andrew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  14. Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information.

    Aimone, James Bradley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Betty, Rita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information - Sandia researchers developed novel methods and metrics for studying the computational function of neurogenesis, thus generating substantial impact to the neuroscience and neural computing communities. This work could benefit applications in machine learning and other analysis activities.

  15. Using High Performance Computing to Support Water Resource Planning

    Groves, David G. [RAND Corporation, Santa Monica, CA (United States); Lembert, Robert J. [RAND Corporation, Santa Monica, CA (United States); May, Deborah W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leek, James R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Syme, James [RAND Corporation, Santa Monica, CA (United States)

    2015-10-22

    In recent years, decision support modeling has embraced deliberation-withanalysis— an iterative process in which decisionmakers come together with experts to evaluate a complex problem and alternative solutions in a scientifically rigorous and transparent manner. Simulation modeling supports decisionmaking throughout this process; visualizations enable decisionmakers to assess how proposed strategies stand up over time in uncertain conditions. But running these simulation models over standard computers can be slow. This, in turn, can slow the entire decisionmaking process, interrupting valuable interaction between decisionmakers and analytics.

  16. Compact High Performance Spectrometers Using Computational Imaging, Phase I

    National Aeronautics and Space Administration — Energy Research Company (ERCo), in collaboration with CoVar Applied Technologies, proposes the development of high throughput, compact, and lower cost spectrometers...

  17. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing

    Anwar S. Shatil

    2015-01-01

    Full Text Available With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1 inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2 highlight their main advantages; 3 discuss when it may (and may not be advisable to use them; 4 review some of their potential problems and barriers to access; and finally 5 give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc., a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.

  18. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing.

    Shatil, Anwar S; Younas, Sohail; Pourreza, Hossein; Figley, Chase R

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.

  19. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing

    Shatil, Anwar S.; Younas, Sohail; Pourreza, Hossein; Figley, Chase R.

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications. PMID:27279746

  20. Mixed-Language High-Performance Computing for Plasma Simulations

    Quanming Lu

    2003-01-01

    Full Text Available Java is receiving increasing attention as the most popular platform for distributed computing. However, programmers are still reluctant to embrace Java as a tool for writing scientific and engineering applications due to its still noticeable performance drawbacks compared with other programming languages such as Fortran or C. In this paper, we present a hybrid Java/Fortran implementation of a parallel particle-in-cell (PIC algorithm for plasma simulations. In our approach, the time-consuming components of this application are designed and implemented as Fortran subroutines, while less calculation-intensive components usually involved in building the user interface are written in Java. The two types of software modules have been glued together using the Java native interface (JNI. Our mixed-language PIC code was tested and its performance compared with pure Java and Fortran versions of the same algorithm on a Sun E6500 SMP system and a Linux cluster of Pentium~III machines.

  1. Electromagnetic Modeling of Human Body Using High Performance Computing

    Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada

    Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.

  2. Industrial applications of high-performance computing best global practices

    Osseyran, Anwar

    2015-01-01

    ""This book gives a comprehensive and up-to-date overview of the rapidly expanding field of the industrial use of supercomputers. It is just a pleasure reading through informative country reports and in-depth case studies contributed by leading researchers in the field.""-Jysoo Lee, Principal Researcher, Korea Institute of Science and Technology Information""From telescopes to microscopes, from vacuums to hyperbaric chambers, from sonar waves to laser beams, scientists have perpetually strived to apply technology and invention to new frontiers of scientific advancement. Along the way, they hav

  3. Software on the Peregrine System | High-Performance Computing | NREL

    on the Peregrine System Software on the Peregrine System NREL maintains a variety of applications environment modules for use on Peregrine. Applications View list of software applications by name and research area/discipline. Libraries View list of software libraries available for linking and loading

  4. Big Data and High-Performance Computing in Global Seismology

    Bozdag, Ebru; Lefebvre, Matthieu; Lei, Wenjie; Peter, Daniel; Smith, James; Komatitsch, Dimitri; Tromp, Jeroen

    2014-05-01

    Much of our knowledge of Earth's interior is based on seismic observations and measurements. Adjoint methods provide an efficient way of incorporating 3D full wave propagation in iterative seismic inversions to enhance tomographic images and thus our understanding of processes taking place inside the Earth. Our aim is to take adjoint tomography, which has been successfully applied to regional and continental scale problems, further to image the entire planet. This is one of the extreme imaging challenges in seismology, mainly due to the intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated. We have started low-resolution inversions (T > 30 s and T > 60 s for body and surface waves, respectively) with a limited data set (253 carefully selected earthquakes and seismic data from permanent and temporary networks) on Oak Ridge National Laboratory's Cray XK7 "Titan" system. Recent improvements in our 3D global wave propagation solvers, such as a GPU version of the SPECFEM3D_GLOBE package, will enable us perform higher-resolution (T > 9 s) and longer duration (~180 m) simulations to take the advantage of high-frequency body waves and major-arc surface waves, thereby improving imbalanced ray coverage as a result of the uneven global distribution of sources and receivers. Our ultimate goal is to use all earthquakes in the global CMT catalogue within the magnitude range of our interest and data from all available seismic networks. To take the full advantage of computational resources, we need a solid framework to manage big data sets during numerical simulations, pre-processing (i.e., data requests and quality checks, processing data, window selection, etc.) and post-processing (i.e., pre-conditioning and smoothing kernels, etc.). We address the bottlenecks in our global seismic workflow, which are mainly coming from heavy I/O traffic during simulations and the pre- and post-processing stages, by defining new data

  5. 2009 High Performance Computing Modernization Program Users Group Conference

    2009-06-17

    Asymmetric Threats Future Peer GWoT / ungoverned areas Irregular Warfare Low-end Asymmetric 1-4-2-1 (State-to-State War) Disruptive technologies Superiority...2008 “As changes in this century’s threat environment create strategic challenges – irregular warfare, weapons of mass destruction, disruptive ... technologies – this request places greater emphasis on basic research, which in recent years has not kept pace with other parts of the budget.” • Personnel

  6. High Performance Computing for Solving Fractional Differential Equations with Applications

    Zhang, Wei

    2014-01-01

    Fractional calculus is the generalization of integer-order calculus to rational order. This subject has at least three hundred years of history. However, it was traditionally regarded as a pure mathematical field and lacked real world applications for a very long time. In recent decades, fractional calculus has re-attracted the attention of scientists and engineers. For example, many researchers have found that fractional calculus is a useful tool for describing hereditary materials and p...

  7. The contribution of high-performance computing and modelling for industrial development

    Sithole, Happy

    2017-10-01

    Full Text Available Performance Computing and Modelling for Industrial Development Dr Happy Sithole and Dr Onno Ubbink 2 Strategic context • High-performance computing (HPC) combined with machine Learning and artificial intelligence present opportunities to non...

  8. Bringing high-performance computing to the biologist's workbench: approaches, applications, and challenges

    Oehmen, C S; Cannon, W R

    2008-01-01

    Data-intensive and high-performance computing are poised to significantly impact the future of biological research which is increasingly driven by the prevalence of high-throughput experimental methodologies for genome sequencing, transcriptomics, proteomics, and other areas. Large centers such as NIH's National Center for Biotechnology Information, The Institute for Genomic Research, and the DOE's Joint Genome Institute) have made extensive use of multiprocessor architectures to deal with some of the challenges of processing, storing and curating exponentially growing genomic and proteomic datasets, thus enabling users to rapidly access a growing public data source, as well as use analysis tools transparently on high-performance computing resources. Applying this computational power to single-investigator analysis, however, often relies on users to provide their own computational resources, forcing them to endure the learning curve of porting, building, and running software on multiprocessor architectures. Solving the next generation of large-scale biology challenges using multiprocessor machines-from small clusters to emerging petascale machines-can most practically be realized if this learning curve can be minimized through a combination of workflow management, data management and resource allocation as well as intuitive interfaces and compatibility with existing common data formats

  9. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  10. High Performance Computing and Storage Requirements for Nuclear Physics: Target 2017

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wasserman, Harvey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-04-30

    In April 2014, NERSC, ASCR, and the DOE Office of Nuclear Physics (NP) held a review to characterize high performance computing (HPC) and storage requirements for NP research through 2017. This review is the 12th in a series of reviews held by NERSC and Office of Science program offices that began in 2009. It is the second for NP, and the final in the second round of reviews that covered the six Office of Science program offices. This report is the result of that review

  11. Interactive Data Exploration for High-Performance Fluid Flow Computations through Porous Media

    Perovic, Nevena

    2014-09-01

    © 2014 IEEE. Huge data advent in high-performance computing (HPC) applications such as fluid flow simulations usually hinders the interactive processing and exploration of simulation results. Such an interactive data exploration not only allows scientiest to \\'play\\' with their data but also to visualise huge (distributed) data sets in both an efficient and easy way. Therefore, we propose an HPC data exploration service based on a sliding window concept, that enables researches to access remote data (available on a supercomputer or cluster) during simulation runtime without exceeding any bandwidth limitations between the HPC back-end and the user front-end.

  12. High performance parallel computers for science: New developments at the Fermilab advanced computer program

    Nash, T.; Areti, H.; Atac, R.

    1988-08-01

    Fermilab's Advanced Computer Program (ACP) has been developing highly cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 MFlops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction. 10 refs., 7 figs

  13. CUDA/GPU Technology : Parallel Programming For High Performance Scientific Computing

    YUHENDRA; KUZE, Hiroaki; JOSAPHAT, Tetuko Sri Sumantyo

    2009-01-01

    [ABSTRACT]Graphics processing units (GP Us) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. In the high performance computation capabilities, graphic processing units (GPU) lead to much more powerful performance than conventional CPUs by means of parallel processing. In 2007, the birth of Compute Unified Device Architecture (CUDA) and CUDA-enabled GPUs by NVIDIA Corporation brought a revolution in the general purpose GPU a...

  14. High performance computing, supercomputing, náročné počítání

    Okrouhlík, Miloslav

    2003-01-01

    Roč. 10, č. 5 (2003), s. 429-438 ISSN 1210-2717 R&D Projects: GA ČR GA101/02/0072 Institutional research plan: CEZ:AV0Z2076919 Keywords : high performance computing * vector and parallel computers * programing tools for parellelization Subject RIV: BI - Acoustics

  15. The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC

    Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan

    2016-04-01

    The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.

  16. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    Khaleel, Mohammad A.

    2009-01-01

    This report is an account of the deliberations and conclusions of the workshop on 'Forefront Questions in Nuclear Science and the Role of High Performance Computing' held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to (1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; (2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; (3) provide nuclear physicists the opportunity to influence the development of high performance computing; and (4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  17. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  18. High Performance Computing - Power Application Programming Interface Specification Version 1.4

    Laros III, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeBonis, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levenhagen, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olivier, Stephen Lecler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  19. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  20. A performance model for the communication in fast multipole methods on high-performance computing platforms

    Ibeid, Huda; Yokota, Rio; Keyes, David E.

    2016-01-01

    model and the actual communication time on four high-performance computing (HPC) systems, when latency, bandwidth, network topology, and multicore penalties are all taken into account. To our knowledge, this is the first formal characterization

  1. Spatial Processing of Urban Acoustic Wave Fields from High-Performance Computations

    Ketcham, Stephen A; Wilson, D. K; Cudney, Harley H; Parker, Michael W

    2007-01-01

    .... The objective of this work is to develop spatial processing techniques for acoustic wave propagation data from three-dimensional high-performance computations to quantify scattering due to urban...

  2. Optical high-performance computing: introduction to the JOSA A and Applied Optics feature.

    Caulfield, H John; Dolev, Shlomi; Green, William M J

    2009-08-01

    The feature issues in both Applied Optics and the Journal of the Optical Society of America A focus on topics of immediate relevance to the community working in the area of optical high-performance computing.

  3. Can We Build a Truly High Performance Computer Which is Flexible and Transparent?

    Rojas, Jhonathan Prieto; Sevilla, Galo T.; Hussain, Muhammad Mustafa

    2013-01-01

    cost advantage. In that context, low-cost mono-crystalline bulk silicon (100) based high performance transistors are considered as the heart of today's computers. One limitation is silicon's rigidity and brittleness. Here we show a generic batch process

  4. Comprehensive Simulation Lifecycle Management for High Performance Computing Modeling and Simulation, Phase I

    National Aeronautics and Space Administration — There are significant logistical barriers to entry-level high performance computing (HPC) modeling and simulation (M IllinoisRocstar) sets up the infrastructure for...

  5. Analysis and modeling of social influence in high performance computing workloads

    Zheng, Shuai; Shae, Zon Yin; Zhang, Xiangliang; Jamjoom, Hani T.; Fong, Liana

    2011-01-01

    Social influence among users (e.g., collaboration on a project) creates bursty behavior in the underlying high performance computing (HPC) workloads. Using representative HPC and cluster workload logs, this paper identifies, analyzes, and quantifies

  6. Export Controls: Implementation of the 1998 Legislative Mandate for High Performance Computers

    1999-01-01

    We found that most of the 938 proposed exports of high performance computers to civilian end users in countries of concern from February 3, 1998, when procedures implementing the 1998 authorization...

  7. On the impact of quantum computing technology on future developments in high-performance scientific computing

    Möller, Matthias; Vuik, Cornelis

    2017-01-01

    Quantum computing technologies have become a hot topic in academia and industry receiving much attention and financial support from all sides. Building a quantum computer that can be used practically is in itself an outstanding challenge that has become the ‘new race to the moon’. Next to researchers and vendors of future computing technologies, national authorities are showing strong interest in maturing this technology due to its known potential to break many of today’s encryption technique...

  8. High-performance data centers: A research roadmap

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Stein, Jay

    2004-03-30

    This report was developed for the California Energy Commission to document industry input and LBNL research into research topics appropriate for public interest support. Industry experts identified research topics and along with LBNL findings, helped to prioritize the technical areas for future public interest research.

  9. Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing

    Some, Raphael; Doyle, Richard; Bergman, Larry; Whitaker, William; Powell, Wesley; Johnson, Michael; Goforth, Montgomery; Lowry, Michael

    2013-01-01

    Spaceflight computing is a key resource in NASA space missions and a core determining factor of spacecraft capability, with ripple effects throughout the spacecraft, end-to-end system, and mission. Onboard computing can be aptly viewed as a "technology multiplier" in that advances provide direct dramatic improvements in flight functions and capabilities across the NASA mission classes, and enable new flight capabilities and mission scenarios, increasing science and exploration return. Space-qualified computing technology, however, has not advanced significantly in well over ten years and the current state of the practice fails to meet the near- to mid-term needs of NASA missions. Recognizing this gap, the NASA Game Changing Development Program (GCDP), under the auspices of the NASA Space Technology Mission Directorate, commissioned a study on space-based computing needs, looking out 15-20 years. The study resulted in a recommendation to pursue high-performance spaceflight computing (HPSC) for next-generation missions, and a decision to partner with the Air Force Research Lab (AFRL) in this development.

  10. Low-cost, high-performance and efficiency computational photometer design

    Siewert, Sam B.; Shihadeh, Jeries; Myers, Randall; Khandhar, Jay; Ivanov, Vitaly

    2014-05-01

    Researchers at the University of Alaska Anchorage and University of Colorado Boulder have built a low cost high performance and efficiency drop-in-place Computational Photometer (CP) to test in field applications ranging from port security and safety monitoring to environmental compliance monitoring and surveying. The CP integrates off-the-shelf visible spectrum cameras with near to long wavelength infrared detectors and high resolution digital snapshots in a single device. The proof of concept combines three or more detectors into a single multichannel imaging system that can time correlate read-out, capture, and image process all of the channels concurrently with high performance and energy efficiency. The dual-channel continuous read-out is combined with a third high definition digital snapshot capability and has been designed using an FPGA (Field Programmable Gate Array) to capture, decimate, down-convert, re-encode, and transform images from two standard definition CCD (Charge Coupled Device) cameras at 30Hz. The continuous stereo vision can be time correlated to megapixel high definition snapshots. This proof of concept has been fabricated as a fourlayer PCB (Printed Circuit Board) suitable for use in education and research for low cost high efficiency field monitoring applications that need multispectral and three dimensional imaging capabilities. Initial testing is in progress and includes field testing in ports, potential test flights in un-manned aerial systems, and future planned missions to image harsh environments in the arctic including volcanic plumes, ice formation, and arctic marine life.

  11. High-Performance Compute Infrastructure in Astronomy: 2020 Is Only Months Away

    Berriman, B.; Deelman, E.; Juve, G.; Rynge, M.; Vöckler, J. S.

    2012-09-01

    By 2020, astronomy will be awash with as much as 60 PB of public data. Full scientific exploitation of such massive volumes of data will require high-performance computing on server farms co-located with the data. Development of this computing model will be a community-wide enterprise that has profound cultural and technical implications. Astronomers must be prepared to develop environment-agnostic applications that support parallel processing. The community must investigate the applicability and cost-benefit of emerging technologies such as cloud computing to astronomy, and must engage the Computer Science community to develop science-driven cyberinfrastructure such as workflow schedulers and optimizers. We report here the results of collaborations between a science center, IPAC, and a Computer Science research institute, ISI. These collaborations may be considered pathfinders in developing a high-performance compute infrastructure in astronomy. These collaborations investigated two exemplar large-scale science-driver workflow applications: 1) Calculation of an infrared atlas of the Galactic Plane at 18 different wavelengths by placing data from multiple surveys on a common plate scale and co-registering all the pixels; 2) Calculation of an atlas of periodicities present in the public Kepler data sets, which currently contain 380,000 light curves. These products have been generated with two workflow applications, written in C for performance and designed to support parallel processing on multiple environments and platforms, but with different compute resource needs: the Montage image mosaic engine is I/O-bound, and the NASA Star and Exoplanet Database periodogram code is CPU-bound. Our presentation will report cost and performance metrics and lessons-learned for continuing development. Applicability of Cloud Computing: Commercial Cloud providers generally charge for all operations, including processing, transfer of input and output data, and for storage of data

  12. A Framework for Debugging Geoscience Projects in a High Performance Computing Environment

    Baxter, C.; Matott, L.

    2012-12-01

    High performance computing (HPC) infrastructure has become ubiquitous in today's world with the emergence of commercial cloud computing and academic supercomputing centers. Teams of geoscientists, hydrologists and engineers can take advantage of this infrastructure to undertake large research projects - for example, linking one or more site-specific environmental models with soft computing algorithms, such as heuristic global search procedures, to perform parameter estimation and predictive uncertainty analysis, and/or design least-cost remediation systems. However, the size, complexity and distributed nature of these projects can make identifying failures in the associated numerical experiments using conventional ad-hoc approaches both time- consuming and ineffective. To address these problems a multi-tiered debugging framework has been developed. The framework allows for quickly isolating and remedying a number of potential experimental failures, including: failures in the HPC scheduler; bugs in the soft computing code; bugs in the modeling code; and permissions and access control errors. The utility of the framework is demonstrated via application to a series of over 200,000 numerical experiments involving a suite of 5 heuristic global search algorithms and 15 mathematical test functions serving as cheap analogues for the simulation-based optimization of pump-and-treat subsurface remediation systems.

  13. High-performance computing on GPUs for resistivity logging of oil and gas wells

    Glinskikh, V.; Dudaev, A.; Nechaev, O.; Surodina, I.

    2017-10-01

    We developed and implemented into software an algorithm for high-performance simulation of electrical logs from oil and gas wells using high-performance heterogeneous computing. The numerical solution of the 2D forward problem is based on the finite-element method and the Cholesky decomposition for solving a system of linear algebraic equations (SLAE). Software implementations of the algorithm used the NVIDIA CUDA technology and computing libraries are made, allowing us to perform decomposition of SLAE and find its solution on central processor unit (CPU) and graphics processor unit (GPU). The calculation time is analyzed depending on the matrix size and number of its non-zero elements. We estimated the computing speed on CPU and GPU, including high-performance heterogeneous CPU-GPU computing. Using the developed algorithm, we simulated resistivity data in realistic models.

  14. Transportation Research & Analysis Computing Center

    Federal Laboratory Consortium — The technical objectives of the TRACC project included the establishment of a high performance computing center for use by USDOT research teams, including those from...

  15. Soft Computing Techniques for the Protein Folding Problem on High Performance Computing Architectures.

    Llanes, Antonio; Muñoz, Andrés; Bueno-Crespo, Andrés; García-Valverde, Teresa; Sánchez, Antonia; Arcas-Túnez, Francisco; Pérez-Sánchez, Horacio; Cecilia, José M

    2016-01-01

    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.

  16. Passive and Active Monitoring on a High Performance Research Network

    Matthews, Warren

    2001-01-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10 12 ). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data

  17. Passive and Active Monitoring on a High Performance Research Network.

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.

  18. Performance management of high performance computing for medical image processing in Amazon Web Services

    Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha

    2016-03-01

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical- Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for- use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  19. Performance Management of High Performance Computing for Medical Image Processing in Amazon Web Services.

    Bao, Shunxing; Damon, Stephen M; Landman, Bennett A; Gokhale, Aniruddha

    2016-02-27

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  20. Analysis and Modeling of Social In uence in High Performance Computing Workloads

    Zheng, Shuai

    2011-06-01

    High Performance Computing (HPC) is becoming a common tool in many research areas. Social influence (e.g., project collaboration) among increasing users of HPC systems creates bursty behavior in underlying workloads. This bursty behavior is increasingly common with the advent of grid computing and cloud computing. Mining the user bursty behavior is important for HPC workloads prediction and scheduling, which has direct impact on overall HPC computing performance. A representative work in this area is the Mixed User Group Model (MUGM), which clusters users according to the resource demand features of their submissions, such as duration time and parallelism. However, MUGM has some difficulties when implemented in real-world system. First, representing user behaviors by the features of their resource demand is usually difficult. Second, these features are not always available. Third, measuring the similarities among users is not a well-defined problem. In this work, we propose a Social Influence Model (SIM) to identify, analyze, and quantify the level of social influence across HPC users. The advantage of the SIM model is that it finds HPC communities by analyzing user job submission time, thereby avoiding the difficulties of MUGM. An offline algorithm and a fast-converging, computationally-efficient online learning algorithm for identifying social groups are proposed. Both offline and online algorithms are applied on several HPC and grid workloads, including Grid 5000, EGEE 2005 and 2007, and KAUST Supercomputing Lab (KSL) BGP data. From the experimental results, we show the existence of a social graph, which is characterized by a pattern of dominant users and followers. In order to evaluate the effectiveness of identified user groups, we show the pattern discovered by the offline algorithm follows a power-law distribution, which is consistent with those observed in mainstream social networks. We finally conclude the thesis and discuss future directions of our work.

  1. High Performance Computing Facility Operational Assessment, CY 2011 Oak Ridge Leadership Computing Facility

    Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Bland, Arthur S Buddy [ORNL; Boudwin, Kathlyn J. [ORNL; Hack, James J [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL; Hudson, Douglas L [ORNL

    2012-02-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Users reported more than 670 publications this year arising from their use of OLCF resources. Of these we report the 300 in this review that are consistent with guidance provided. Scientific achievements by OLCF users cut across all range scales from atomic to molecular to large-scale structures. At the atomic scale, researchers discovered that the anomalously long half-life of Carbon-14 can be explained by calculating, for the first time, the very complex three-body interactions between all the neutrons and protons in the nucleus. At the molecular scale, researchers combined experimental results from LBL's light source and simulations on Jaguar to discover how DNA replication continues past a damaged site so a mutation can be repaired later. Other researchers combined experimental results from ORNL's Spallation Neutron Source and simulations on Jaguar to reveal the molecular structure of ligno-cellulosic material used in bioethanol production. This year, Jaguar has been used to do billion-cell CFD calculations to develop shock wave compression turbo machinery as a means to meet DOE goals for reducing carbon sequestration costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from designers. Even a 1% improvement in turbine design can save the nation

  2. High Performance Numerical Computing for High Energy Physics: A New Challenge for Big Data Science

    Pop, Florin

    2014-01-01

    Modern physics is based on both theoretical analysis and experimental validation. Complex scenarios like subatomic dimensions, high energy, and lower absolute temperature are frontiers for many theoretical models. Simulation with stable numerical methods represents an excellent instrument for high accuracy analysis, experimental validation, and visualization. High performance computing support offers possibility to make simulations at large scale, in parallel, but the volume of data generated by these experiments creates a new challenge for Big Data Science. This paper presents existing computational methods for high energy physics (HEP) analyzed from two perspectives: numerical methods and high performance computing. The computational methods presented are Monte Carlo methods and simulations of HEP processes, Markovian Monte Carlo, unfolding methods in particle physics, kernel estimation in HEP, and Random Matrix Theory used in analysis of particles spectrum. All of these methods produce data-intensive applications, which introduce new challenges and requirements for ICT systems architecture, programming paradigms, and storage capabilities.

  3. Towards Portable Large-Scale Image Processing with High-Performance Computing.

    Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A

    2018-05-03

    High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software

  4. Accelerated Synchrotron X-ray Diffraction Data Analysis on a Heterogeneous High Performance Computing System

    Qin, J; Bauer, M A, E-mail: qin.jinhui@gmail.com, E-mail: bauer@uwo.ca [Computer Science Department, University of Western Ontario, London, ON N6A 5B7 (Canada)

    2010-11-01

    The analysis of synchrotron X-ray Diffraction (XRD) data has been used by scientists and engineers to understand and predict properties of materials. However, the large volume of XRD image data and the intensive computations involved in the data analysis makes it hard for researchers to quickly reach any conclusions about the images from an experiment when using conventional XRD data analysis software. Synchrotron time is valuable and delays in XRD data analysis can impact decisions about subsequent experiments or about materials that they are investigating. In order to improve the data analysis performance, ideally to achieve near real time data analysis during an XRD experiment, we designed and implemented software for accelerated XRD data analysis. The software has been developed for a heterogeneous high performance computing (HPC) system, comprised of IBM PowerXCell 8i processors and Intel quad-core Xeon processors. This paper describes the software and reports on the improved performance. The results indicate that it is possible for XRD data to be analyzed at the rate it is being produced.

  5. Accelerated Synchrotron X-ray Diffraction Data Analysis on a Heterogeneous High Performance Computing System

    Qin, J; Bauer, M A

    2010-01-01

    The analysis of synchrotron X-ray Diffraction (XRD) data has been used by scientists and engineers to understand and predict properties of materials. However, the large volume of XRD image data and the intensive computations involved in the data analysis makes it hard for researchers to quickly reach any conclusions about the images from an experiment when using conventional XRD data analysis software. Synchrotron time is valuable and delays in XRD data analysis can impact decisions about subsequent experiments or about materials that they are investigating. In order to improve the data analysis performance, ideally to achieve near real time data analysis during an XRD experiment, we designed and implemented software for accelerated XRD data analysis. The software has been developed for a heterogeneous high performance computing (HPC) system, comprised of IBM PowerXCell 8i processors and Intel quad-core Xeon processors. This paper describes the software and reports on the improved performance. The results indicate that it is possible for XRD data to be analyzed at the rate it is being produced.

  6. Development of high performance scientific components for interoperability of computing packages

    Gulabani, Teena Pratap [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achieved by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.

  7. Applying Machine Learning and High Performance Computing to Water Quality Assessment and Prediction

    Ruijian Zhang

    2017-12-01

    Full Text Available Water quality assessment and prediction is a more and more important issue. Traditional ways either take lots of time or they can only do assessments. In this research, by applying machine learning algorithm to a long period time of water attributes’ data; we can generate a decision tree so that it can predict the future day’s water quality in an easy and efficient way. The idea is to combine the traditional ways and the computer algorithms together. Using machine learning algorithms, the assessment of water quality will be far more efficient, and by generating the decision tree, the prediction will be quite accurate. The drawback of the machine learning modeling is that the execution takes quite long time, especially when we employ a better accuracy but more time-consuming algorithm in clustering. Therefore, we applied the high performance computing (HPC System to deal with this problem. Up to now, the pilot experiments have achieved very promising preliminary results. The visualized water quality assessment and prediction obtained from this project would be published in an interactive website so that the public and the environmental managers could use the information for their decision making.

  8. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.; Feng, Jinyong; Gouws, Andre; Li, Mengnan; Bolotnov, Igor A.

    2018-04-01

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent research progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.

  9. InfoMall: An Innovative Strategy for High-Performance Computing and Communications Applications Development.

    Mills, Kim; Fox, Geoffrey

    1994-01-01

    Describes the InfoMall, a program led by the Northeast Parallel Architectures Center (NPAC) at Syracuse University (New York). The InfoMall features a partnership of approximately 24 organizations offering linked programs in High Performance Computing and Communications (HPCC) technology integration, software development, marketing, education and…

  10. High-Performance Computing in Neuroscience for Data-Driven Discovery, Integration, and Dissemination

    Bouchard, Kristofer E.

    2016-01-01

    A lack of coherent plans to analyze, manage, and understand data threatens the various opportunities offered by new neuro-technologies. High-performance computing will allow exploratory analysis of massive datasets stored in standardized formats, hosted in open repositories, and integrated with simulations.

  11. Requirements for high performance computing for lattice QCD. Report of the ECFA working panel

    Jegerlehner, F.; Kenway, R.D.; Martinelli, G.; Michael, C.; Pene, O.; Petersson, B.; Petronzio, R.; Sachrajda, C.T.; Schilling, K.

    2000-01-01

    This report, prepared at the request of the European Committee for Future Accelerators (ECFA), contains an assessment of the High Performance Computing resources which will be required in coming years by European physicists working in Lattice Field Theory and a review of the scientific opportunities which these resources would open. (orig.)

  12. The high performance cluster computing system for BES offline data analysis

    Sun Yongzhao; Xu Dong; Zhang Shaoqiang; Yang Ting

    2004-01-01

    A high performance cluster computing system (EPCfarm) is introduced, which used for BES offline data analysis. The setup and the characteristics of the hardware and software of EPCfarm are described. The PBS, a queue management package, and the performance of EPCfarm is presented also. (authors)

  13. High-performance computing for structural mechanics and earthquake/tsunami engineering

    Hori, Muneo; Ohsaki, Makoto

    2016-01-01

    Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe.  To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows ...

  14. Tackling some of the most intricate geophysical challenges via high-performance computing

    Khosronejad, A.

    2016-12-01

    Recently, world has been witnessing significant enhancements in computing power of supercomputers. Computer clusters in conjunction with the advanced mathematical algorithms has set the stage for developing and applying powerful numerical tools to tackle some of the most intricate geophysical challenges that today`s engineers face. One such challenge is to understand how turbulent flows, in real-world settings, interact with (a) rigid and/or mobile complex bed bathymetry of waterways and sea-beds in the coastal areas; (b) objects with complex geometry that are fully or partially immersed; and (c) free-surface of waterways and water surface waves in the coastal area. This understanding is especially important because the turbulent flows in real-world environments are often bounded by geometrically complex boundaries, which dynamically deform and give rise to multi-scale and multi-physics transport phenomena, and characterized by multi-lateral interactions among various phases (e.g. air/water/sediment phases). Herein, I present some of the multi-scale and multi-physics geophysical fluid mechanics processes that I have attempted to study using an in-house high-performance computational model, the so-called VFS-Geophysics. More specifically, I will present the simulation results of turbulence/sediment/solute/turbine interactions in real-world settings. Parts of the simulations I present are performed to gain scientific insights into the processes such as sand wave formation (A. Khosronejad, and F. Sotiropoulos, (2014), Numerical simulation of sand waves in a turbulent open channel flow, Journal of Fluid Mechanics, 753:150-216), while others are carried out to predict the effects of climate change and large flood events on societal infrastructures ( A. Khosronejad, et al., (2016), Large eddy simulation of turbulence and solute transport in a forested headwater stream, Journal of Geophysical Research:, doi: 10.1002/2014JF003423).

  15. A Lightweight, High-performance I/O Management Package for Data-intensive Computing

    Wang, Jun

    2011-06-22

    Our group has been working with ANL collaborators on the topic bridging the gap between parallel file system and local file system during the course of this project period. We visited Argonne National Lab -- Dr. Robert Ross's group for one week in the past summer 2007. We looked over our current project progress and planned the activities for the incoming years 2008-09. The PI met Dr. Robert Ross several times such as HEC FSIO workshop 08, SC08 and SC10. We explored the opportunities to develop a production system by leveraging our current prototype to (SOGP+PVFS) a new PVFS version. We delivered SOGP+PVFS codes to ANL PVFS2 group in 2008.We also talked about exploring a potential project on developing new parallel programming models and runtime systems for data-intensive scalable computing (DISC). The methodology is to evolve MPI towards DISC by incorporating some functions of Google MapReduce parallel programming model. More recently, we are together exploring how to leverage existing works to perform (1) coordination/aggregation of local I/O operations prior to movement over the WAN, (2) efficient bulk data movement over the WAN, (3) latency hiding techniques for latency-intensive operations. Since 2009, we start applying Hadoop/MapReduce to some HEC applications with LANL scientists John Bent and Salman Habib. Another on-going work is to improve checkpoint performance at I/O forwarding Layer for the Road Runner super computer with James Nuetz and Gary Gridder at LANL. Two senior undergraduates from our research group did summer internships about high-performance file and storage system projects in LANL since 2008 for consecutive three years. Both of them are now pursuing Ph.D. degree in our group and will be 4th year in the PhD program in Fall 2011 and go to LANL to advance two above-mentioned works during this winter break. Since 2009, we have been collaborating with several computer scientists (Gary Grider, John bent, Parks Fields, James Nunez, Hsing

  16. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing.

    David K Brown

    Full Text Available Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS, a workflow management system and web interface for high performance computing (HPC. JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS.

  17. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing.

    Brown, David K; Penkler, David L; Musyoka, Thommas M; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS.

  18. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing

    Brown, David K.; Penkler, David L.; Musyoka, Thommas M.; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS. PMID:26280450

  19. High performance computing system in the framework of the Higgs boson studies

    Belyaev, Nikita; The ATLAS collaboration

    2017-01-01

    The Higgs boson physics is one of the most important and promising fields of study in modern High Energy Physics. To perform precision measurements of the Higgs boson properties, the use of fast and efficient instruments of Monte Carlo event simulation is required. Due to the increasing amount of data and to the growing complexity of the simulation software tools, the computing resources currently available for Monte Carlo simulation on the LHC GRID are not sufficient. One of the possibilities to address this shortfall of computing resources is the usage of institutes computer clusters, commercial computing resources and supercomputers. In this paper, a brief description of the Higgs boson physics, the Monte-Carlo generation and event simulation techniques are presented. A description of modern high performance computing systems and tests of their performance are also discussed. These studies have been performed on the Worldwide LHC Computing Grid and Kurchatov Institute Data Processing Center, including Tier...

  20. High Performance Computing Facility Operational Assessment, FY 2011 Oak Ridge Leadership Computing Facility

    Baker, Ann E [ORNL; Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL

    2011-08-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.5 billion core hours in calendar year (CY) 2010 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Scientific achievements by OLCF users range from collaboration with university experimentalists to produce a working supercapacitor that uses atom-thick sheets of carbon materials to finely determining the resolution requirements for simulations of coal gasifiers and their components, thus laying the foundation for development of commercial-scale gasifiers. OLCF users are pushing the boundaries with software applications sustaining more than one petaflop of performance in the quest to illuminate the fundamental nature of electronic devices. Other teams of researchers are working to resolve predictive capabilities of climate models, to refine and validate genome sequencing, and to explore the most fundamental materials in nature - quarks and gluons - and their unique properties. Details of these scientific endeavors - not possible without access to leadership-class computing resources - are detailed in Section 4 of this report and in the INCITE in Review. Effective operations of the OLCF play a key role in the scientific missions and accomplishments of its users. This Operational Assessment Report (OAR) will delineate the policies, procedures, and innovations implemented by the OLCF to continue delivering a petaflop-scale resource for cutting-edge research. The 2010 operational assessment of the OLCF yielded recommendations that have been addressed (Reference Section 1) and

  1. Leveraging High Performance Computing for Managing Large and Evolving Data Collections

    Ritu Arora

    2014-10-01

    Full Text Available The process of developing a digital collection in the context of a research project often involves a pipeline pattern during which data growth, data types, and data authenticity need to be assessed iteratively in relation to the different research steps and in the interest of archiving. Throughout a project’s lifecycle curators organize newly generated data while cleaning and integrating legacy data when it exists, and deciding what data will be preserved for the long term. Although these actions should be part of a well-oiled data management workflow, there are practical challenges in doing so if the collection is very large and heterogeneous, or is accessed by several researchers contemporaneously. There is a need for data management solutions that can help curators with efficient and on-demand analyses of their collection so that they remain well-informed about its evolving characteristics. In this paper, we describe our efforts towards developing a workflow to leverage open science High Performance Computing (HPC resources for routinely and efficiently conducting data management tasks on large collections. We demonstrate that HPC resources and techniques can significantly reduce the time for accomplishing critical data management tasks, and enable a dynamic archiving throughout the research process. We use a large archaeological data collection with a long and complex formation history as our test case. We share our experiences in adopting open science HPC resources for large-scale data management, which entails understanding usage of the open source HPC environment and training users. These experiences can be generalized to meet the needs of other data curators working with large collections.

  2. National cyber defense high performance computing and analysis : concepts, planning and roadmap.

    Hamlet, Jason R.; Keliiaa, Curtis M.

    2010-09-01

    There is a national cyber dilemma that threatens the very fabric of government, commercial and private use operations worldwide. Much is written about 'what' the problem is, and though the basis for this paper is an assessment of the problem space, we target the 'how' solution space of the wide-area national information infrastructure through the advancement of science, technology, evaluation and analysis with actionable results intended to produce a more secure national information infrastructure and a comprehensive national cyber defense capability. This cybersecurity High Performance Computing (HPC) analysis concepts, planning and roadmap activity was conducted as an assessment of cybersecurity analysis as a fertile area of research and investment for high value cybersecurity wide-area solutions. This report and a related SAND2010-4765 Assessment of Current Cybersecurity Practices in the Public Domain: Cyber Indications and Warnings Domain report are intended to provoke discussion throughout a broad audience about developing a cohesive HPC centric solution to wide-area cybersecurity problems.

  3. DDT: A Research Tool for Automatic Data Distribution in High Performance Fortran

    Eduard AyguadÉ

    1997-01-01

    Full Text Available This article describes the main features and implementation of our automatic data distribution research tool. The tool (DDT accepts programs written in Fortran 77 and generates High Performance Fortran (HPF directives to map arrays onto the memories of the processors and parallelize loops, and executable statements to remap these arrays. DDT works by identifying a set of computational phases (procedures and loops. The algorithm builds a search space of candidate solutions for these phases which is explored looking for the combination that minimizes the overall cost; this cost includes data movement cost and computation cost. The movement cost reflects the cost of accessing remote data during the execution of a phase and the remapping costs that have to be paid in order to execute the phase with the selected mapping. The computation cost includes the cost of executing a phase in parallel according to the selected mapping and the owner computes rule. The tool supports interprocedural analysis and uses control flow information to identify how phases are sequenced during the execution of the application.

  4. Solving Problems in Various Domains by Hybrid Models of High Performance Computations

    Yurii Rogozhin

    2014-03-01

    Full Text Available This work presents a hybrid model of high performance computations. The model is based on membrane system (P~system where some membranes may contain quantum device that is triggered by the data entering the membrane. This model is supposed to take advantages of both biomolecular and quantum paradigms and to overcome some of their inherent limitations. The proposed approach is demonstrated through two selected problems: SAT, and image retrieving.

  5. High-performance computing on the Intel Xeon Phi how to fully exploit MIC architectures

    Wang, Endong; Shen, Bo; Zhang, Guangyong; Lu, Xiaowei; Wu, Qing; Wang, Yajuan

    2014-01-01

    The aim of this book is to explain to high-performance computing (HPC) developers how to utilize the Intel® Xeon Phi™ series products efficiently. To that end, it introduces some computing grammar, programming technology and optimization methods for using many-integrated-core (MIC) platforms and also offers tips and tricks for actual use, based on the authors' first-hand optimization experience.The material is organized in three sections. The first section, "Basics of MIC", introduces the fundamentals of MIC architecture and programming, including the specific Intel MIC programming environment

  6. Cloud object store for archive storage of high performance computing data using decoupling middleware

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2015-06-30

    Cloud object storage is enabled for archived data, such as checkpoints and results, of high performance computing applications using a middleware process. A plurality of archived files, such as checkpoint files and results, generated by a plurality of processes in a parallel computing system are stored by obtaining the plurality of archived files from the parallel computing system; converting the plurality of archived files to objects using a log structured file system middleware process; and providing the objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.

  7. Cloud object store for checkpoints of high performance computing applications using decoupling middleware

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2016-04-19

    Cloud object storage is enabled for checkpoints of high performance computing applications using a middleware process. A plurality of files, such as checkpoint files, generated by a plurality of processes in a parallel computing system are stored by obtaining said plurality of files from said parallel computing system; converting said plurality of files to objects using a log structured file system middleware process; and providing said objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.

  8. Computational Fluid Dynamics (CFD) Computations With Zonal Navier-Stokes Flow Solver (ZNSFLOW) Common High Performance Computing Scalable Software Initiative (CHSSI) Software

    Edge, Harris

    1999-01-01

    ...), computational fluid dynamics (CFD) 6 project. Under the project, a proven zonal Navier-Stokes solver was rewritten for scalable parallel performance on both shared memory and distributed memory high performance computers...

  9. Can We Build a Truly High Performance Computer Which is Flexible and Transparent?

    Rojas, Jhonathan Prieto

    2013-09-10

    State-of-the art computers need high performance transistors, which consume ultra-low power resulting in longer battery lifetime. Billions of transistors are integrated neatly using matured silicon fabrication process to maintain the performance per cost advantage. In that context, low-cost mono-crystalline bulk silicon (100) based high performance transistors are considered as the heart of today\\'s computers. One limitation is silicon\\'s rigidity and brittleness. Here we show a generic batch process to convert high performance silicon electronics into flexible and semi-transparent one while retaining its performance, process compatibility, integration density and cost. We demonstrate high-k/metal gate stack based p-type metal oxide semiconductor field effect transistors on 4 inch silicon fabric released from bulk silicon (100) wafers with sub-threshold swing of 80 mV dec(-1) and on/off ratio of near 10(4) within 10% device uniformity with a minimum bending radius of 5 mm and an average transmittance of similar to 7% in the visible spectrum.

  10. On the impact of quantum computing technology on future developments in high-performance scientific computing

    Möller, M.; Vuik, C.

    2017-01-01

    Quantum computing technologies have become a hot topic in academia and industry receiving much attention and financial support from all sides. Building a quantum computer that can be used practically is in itself an outstanding challenge that has become the ‘new race to the moon’. Next to

  11. A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing.

    James, Conrad D.; Schiess, Adrian B.; Howell, Jamie; Baca, Michael J.; Partridge, L. Donald; Finnegan, Patrick Sean; Wolfley, Steven L.; Dagel, Daryl James; Spahn, Olga Blum; Harper, Jason C.; Pohl, Kenneth Roy; Mickel, Patrick R.; Lohn, Andrew; Marinella, Matthew

    2013-10-01

    The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we will instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.

  12. High performance statistical computing with parallel R: applications to biology and climate modelling

    Samatova, Nagiza F; Branstetter, Marcia; Ganguly, Auroop R; Hettich, Robert; Khan, Shiraj; Kora, Guruprasad; Li, Jiangtian; Ma, Xiaosong; Pan, Chongle; Shoshani, Arie; Yoginath, Srikanth

    2006-01-01

    Ultrascale computing and high-throughput experimental technologies have enabled the production of scientific data about complex natural phenomena. With this opportunity, comes a new problem - the massive quantities of data so produced. Answers to fundamental questions about the nature of those phenomena remain largely hidden in the produced data. The goal of this work is to provide a scalable high performance statistical data analysis framework to help scientists perform interactive analyses of these raw data to extract knowledge. Towards this goal we have been developing an open source parallel statistical analysis package, called Parallel R, that lets scientists employ a wide range of statistical analysis routines on high performance shared and distributed memory architectures without having to deal with the intricacies of parallelizing these routines

  13. LIAR -- A computer program for the modeling and simulation of high performance linacs

    Assmann, R.; Adolphsen, C.; Bane, K.; Emma, P.; Raubenheimer, T.; Siemann, R.; Thompson, K.; Zimmermann, F.

    1997-04-01

    The computer program LIAR (LInear Accelerator Research Code) is a numerical modeling and simulation tool for high performance linacs. Amongst others, it addresses the needs of state-of-the-art linear colliders where low emittance, high-intensity beams must be accelerated to energies in the 0.05-1 TeV range. LIAR is designed to be used for a variety of different projects. LIAR allows the study of single- and multi-particle beam dynamics in linear accelerators. It calculates emittance dilutions due to wakefield deflections, linear and non-linear dispersion and chromatic effects in the presence of multiple accelerator imperfections. Both single-bunch and multi-bunch beams can be simulated. Several basic and advanced optimization schemes are implemented. Present limitations arise from the incomplete treatment of bending magnets and sextupoles. A major objective of the LIAR project is to provide an open programming platform for the accelerator physics community. Due to its design, LIAR allows straight-forward access to its internal FORTRAN data structures. The program can easily be extended and its interactive command language ensures maximum ease of use. Presently, versions of LIAR are compiled for UNIX and MS Windows operating systems. An interface for the graphical visualization of results is provided. Scientific graphs can be saved in the PS and EPS file formats. In addition a Mathematica interface has been developed. LIAR now contains more than 40,000 lines of source code in more than 130 subroutines. This report describes the theoretical basis of the program, provides a reference for existing features and explains how to add further commands. The LIAR home page and the ONLINE version of this manual can be accessed under: http://www.slac.stanford.edu/grp/arb/rwa/liar.htm

  14. How to build a high-performance compute cluster for the Grid

    Reinefeld, A

    2001-01-01

    The success of large-scale multi-national projects like the forthcoming analysis of the LHC particle collision data at CERN relies to a great extent on the ability to efficiently utilize computing and data-storage resources at geographically distributed sites. Currently, much effort is spent on the design of Grid management software (Datagrid, Globus, etc.), while the effective integration of computing nodes has been largely neglected up to now. This is the focus of our work. We present a framework for a high- performance cluster that can be used as a reliable computing node in the Grid. We outline the cluster architecture, the management of distributed data and the seamless integration of the cluster into the Grid environment. (11 refs).

  15. Integrated State Estimation and Contingency Analysis Software Implementation using High Performance Computing Techniques

    Chen, Yousu; Glaesemann, Kurt R.; Rice, Mark J.; Huang, Zhenyu

    2015-12-31

    Power system simulation tools are traditionally developed in sequential mode and codes are optimized for single core computing only. However, the increasing complexity in the power grid models requires more intensive computation. The traditional simulation tools will soon not be able to meet the grid operation requirements. Therefore, power system simulation tools need to evolve accordingly to provide faster and better results for grid operations. This paper presents an integrated state estimation and contingency analysis software implementation using high performance computing techniques. The software is able to solve large size state estimation problems within one second and achieve a near-linear speedup of 9,800 with 10,000 cores for contingency analysis application. The performance evaluation is presented to show its effectiveness.

  16. SCEAPI: A unified Restful Web API for High-Performance Computing

    Rongqiang, Cao; Haili, Xiao; Shasha, Lu; Yining, Zhao; Xiaoning, Wang; Xuebin, Chi

    2017-10-01

    The development of scientific computing is increasingly moving to collaborative web and mobile applications. All these applications need high-quality programming interface for accessing heterogeneous computing resources consisting of clusters, grid computing or cloud computing. In this paper, we introduce our high-performance computing environment that integrates computing resources from 16 HPC centers across China. Then we present a bundle of web services called SCEAPI and describe how it can be used to access HPC resources with HTTP or HTTPs protocols. We discuss SCEAPI from several aspects including architecture, implementation and security, and address specific challenges in designing compatible interfaces and protecting sensitive data. We describe the functions of SCEAPI including authentication, file transfer and job management for creating, submitting and monitoring, and how to use SCEAPI in an easy-to-use way. Finally, we discuss how to exploit more HPC resources quickly for the ATLAS experiment by implementing the custom ARC compute element based on SCEAPI, and our work shows that SCEAPI is an easy-to-use and effective solution to extend opportunistic HPC resources.

  17. FY 2000 Blue Book: High Performance Computing and Communications: Information Technology Frontiers for a New Millennium

    Networking and Information Technology Research and Development, Executive Office of the President — As we near the dawn of a new millennium, advances made possible by computing, information, and communications research and development R and D ? once barely...

  18. FY 1994 Blue Book: High Performance Computing and Communications: Toward a National Information Infrastructure

    Networking and Information Technology Research and Development, Executive Office of the President — government and industry that advanced computer and telecommunications technologies could provide huge benefits throughout the research community and the entire U.S....

  19. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY

    FENG, H.; JONES, K.W.; MCGUIGAN, M.; SMITH, G.J.; SPILETIC, J.

    2001-01-01

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data

  20. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.

    FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

    2001-10-12

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

  1. High performance simulation for the Silva project using the tera computer

    Bergeaud, V.; La Hargue, J.P.; Mougery, F. [CS Communication and Systemes, 92 - Clamart (France); Boulet, M.; Scheurer, B. [CEA Bruyeres-le-Chatel, 91 - Bruyeres-le-Chatel (France); Le Fur, J.F.; Comte, M.; Benisti, D.; Lamare, J. de; Petit, A. [CEA Saclay, 91 - Gif sur Yvette (France)

    2003-07-01

    In the context of the SILVA Project (Atomic Vapor Laser Isotope Separation), numerical simulation of the plant scale propagation of laser beams through uranium vapour was a great challenge. The PRODIGE code has been developed to achieve this goal. Here we focus on the task of achieving high performance simulation on the TERA computer. We describe the main issues for optimizing the parallelization of the PRODIGE code on TERA. Thus, we discuss advantages and drawbacks of the implemented diagonal parallelization scheme. As a consequence, it has been found fruitful to fit out the code in three aspects: memory allocation, MPI communications and interconnection network bandwidth usage. We stress out the interest of MPI/IO in this context and the benefit obtained for production computations on TERA. Finally, we shall illustrate our developments. We indicate some performance measurements reflecting the good parallelization properties of PRODIGE on the TERA computer. The code is currently used for demonstrating the feasibility of the laser propagation at a plant enrichment level and for preparing the 2003 Menphis experiment. We conclude by emphasizing the contribution of high performance TERA simulation to the project. (authors)

  2. High performance simulation for the Silva project using the tera computer

    Bergeaud, V.; La Hargue, J.P.; Mougery, F.; Boulet, M.; Scheurer, B.; Le Fur, J.F.; Comte, M.; Benisti, D.; Lamare, J. de; Petit, A.

    2003-01-01

    In the context of the SILVA Project (Atomic Vapor Laser Isotope Separation), numerical simulation of the plant scale propagation of laser beams through uranium vapour was a great challenge. The PRODIGE code has been developed to achieve this goal. Here we focus on the task of achieving high performance simulation on the TERA computer. We describe the main issues for optimizing the parallelization of the PRODIGE code on TERA. Thus, we discuss advantages and drawbacks of the implemented diagonal parallelization scheme. As a consequence, it has been found fruitful to fit out the code in three aspects: memory allocation, MPI communications and interconnection network bandwidth usage. We stress out the interest of MPI/IO in this context and the benefit obtained for production computations on TERA. Finally, we shall illustrate our developments. We indicate some performance measurements reflecting the good parallelization properties of PRODIGE on the TERA computer. The code is currently used for demonstrating the feasibility of the laser propagation at a plant enrichment level and for preparing the 2003 Menphis experiment. We conclude by emphasizing the contribution of high performance TERA simulation to the project. (authors)

  3. DEISA2: supporting and developing a European high-performance computing ecosystem

    Lederer, H

    2008-01-01

    The DEISA Consortium has deployed and operated the Distributed European Infrastructure for Supercomputing Applications. Through the EU FP7 DEISA2 project (funded for three years as of May 2008), the consortium is continuing to support and enhance the distributed high-performance computing infrastructure and its activities and services relevant for applications enabling, operation, and technologies, as these are indispensable for the effective support of computational sciences for high-performance computing (HPC). The service-provisioning model will be extended from one that supports single projects to one supporting virtual European communities. Collaborative activities will also be carried out with new European and other international initiatives. Of strategic importance is cooperation with the PRACE project, which is preparing for the installation of a limited number of leadership-class Tier-0 supercomputers in Europe. The key role and aim of DEISA will be to deliver a turnkey operational solution for a persistent European HPC ecosystem that will integrate national Tier-1 centers and the new Tier-0 centers

  4. Commercialization issues and funding opportunities for high-performance optoelectronic computing modules

    Hessenbruch, John M.; Guilfoyle, Peter S.

    1997-01-01

    Low power, optoelectronic integrated circuits are being developed for high speed switching and data processing applications. These high performance optoelectronic computing modules consist of three primary components: vertical cavity surface emitting lasers, diffractive optical interconnect elements, and detector/amplifier/laser driver arrays. Following the design and fabrication of an HPOC module prototype, selected commercial funding sources will be evaluated to support a product development stage. These include the formation of a strategic alliance with one or more microprocessor or telecommunications vendors, and/or equity investment from one or more venture capital firms.

  5. Failure detection in high-performance clusters and computers using chaotic map computations

    Rao, Nageswara S.

    2015-09-01

    A programmable media includes a processing unit capable of independent operation in a machine that is capable of executing 10.sup.18 floating point operations per second. The processing unit is in communication with a memory element and an interconnect that couples computing nodes. The programmable media includes a logical unit configured to execute arithmetic functions, comparative functions, and/or logical functions. The processing unit is configured to detect computing component failures, memory element failures and/or interconnect failures by executing programming threads that generate one or more chaotic map trajectories. The central processing unit or graphical processing unit is configured to detect a computing component failure, memory element failure and/or an interconnect failure through an automated comparison of signal trajectories generated by the chaotic maps.

  6. The Preliminary Research for Implementation of Improved DTC Scheme of High Performance PMSM Drives

    Tole Sutikno

    2008-12-01

    Full Text Available The direct torque control (DTC is one of control approache that is used commonly in PMSM control system. This method supports a very quick and precise torque response. However, the DTC method is not perfect and has some disadvantages. Many researchers have been proposed to modify the basic DTC scheme for PMSM drive. All this contributions allow performance to be improved, but at the same time they lead to more complex schemes. Furthermore, the PMSM drive control systems are usually based on microcontroller and DSP. Some researchers also have been used DSP and FPGA together to develop DTC for AC drives. These allow improving the performance, but they will increase cost. For the reason above, this paper proposed a new DTC scheme to apply only based on FPGA. The preliminary research showed that the proposed DTC sheme can reduce torque and flux ripples significantly. Therefore, this paper also recomend to realize proposed DTC scheme based on FPGA in order to support to execute very fast computation.The implementation is hoped that it will very potential to replace not only the induction motor but also the DC servo motor in a number of industrial process, commercial, domestic and modern military applications of high-performance drive.

  7. Challenges and opportunities of modeling plasma–surface interactions in tungsten using high-performance computing

    Wirth, Brian D., E-mail: bdwirth@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Nuclear Science and Engineering Directorate, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hammond, K.D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA (United States); Maroudas, D. [University of Massachusetts, Amherst, Amherst, MA 01003 (United States)

    2015-08-15

    The performance of plasma facing components (PFCs) is critical for ITER and future magnetic fusion reactors. The ITER divertor will be tungsten, which is the primary candidate material for future reactors. Recent experiments involving tungsten exposure to low-energy helium plasmas reveal significant surface modification, including the growth of nanometer-scale tendrils of “fuzz” and formation of nanometer-sized bubbles in the near-surface region. The large span of spatial and temporal scales governing plasma surface interactions are among the challenges to modeling divertor performance. Fortunately, recent innovations in computational modeling, increasingly powerful high-performance computers, and improved experimental characterization tools provide a path toward self-consistent, experimentally validated models of PFC and divertor performance. Recent advances in understanding tungsten–helium interactions are reviewed, including such processes as helium clustering, which serve as nuclei for gas bubbles; and trap mutation, dislocation loop punching and bubble bursting; which together initiate surface morphological modification.

  8. Use of high performance computing to examine the effectiveness of aquifer remediation

    Tompson, A.F.B.; Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Fogwell, T.W.; Loosmore, G.A.

    1994-06-01

    Large-scale simulation of fluid flow and chemical migration is being used to study the effectiveness of pump-and-treat restoration of a contaminated, saturated aquifer. A three-element approach focusing on geostatistical representations of heterogeneous aquifers, high-performance computing strategies for simulating flow, migration, and reaction processes in large three-dimensional systems, and highly-resolved simulations of flow and chemical migration in porous formations will be discussed. Results from a preliminary application of this approach to examine pumping behavior at a real, heterogeneous field site will be presented. Future activities will emphasize parallel computations in larger, dynamic, and nonlinear (two-phase) flow problems as well as improved interpretive methods for defining detailed material property distributions

  9. Analysis and modeling of social influence in high performance computing workloads

    Zheng, Shuai

    2011-01-01

    Social influence among users (e.g., collaboration on a project) creates bursty behavior in the underlying high performance computing (HPC) workloads. Using representative HPC and cluster workload logs, this paper identifies, analyzes, and quantifies the level of social influence across HPC users. We show the existence of a social graph that is characterized by a pattern of dominant users and followers. This pattern also follows a power-law distribution, which is consistent with those observed in mainstream social networks. Given its potential impact on HPC workloads prediction and scheduling, we propose a fast-converging, computationally-efficient online learning algorithm for identifying social groups. Extensive evaluation shows that our online algorithm can (1) quickly identify the social relationships by using a small portion of incoming jobs and (2) can efficiently track group evolution over time. © 2011 Springer-Verlag.

  10. Parallel Backprojection: A Case Study in High-Performance Reconfigurable Computing

    Cordes Ben

    2009-01-01

    Full Text Available High-performance reconfigurable computing (HPRC is a novel approach to provide large-scale computing power to modern scientific applications. Using both general-purpose processors and FPGAs allows application designers to exploit fine-grained and coarse-grained parallelism, achieving high degrees of speedup. One scientific application that benefits from this technique is backprojection, an image formation algorithm that can be used as part of a synthetic aperture radar (SAR processing system. We present an implementation of backprojection for SAR on an HPRC system. Using simulated data taken at a variety of ranges, our implementation runs over 200 times faster than a similar software program, with an overall application speedup better than 50x. The backprojection application is easily parallelizable, achieving near-linear speedup when run on multiple nodes of a clustered HPRC system. The results presented can be applied to other systems and other algorithms with similar characteristics.

  11. Parallel Backprojection: A Case Study in High-Performance Reconfigurable Computing

    2009-03-01

    Full Text Available High-performance reconfigurable computing (HPRC is a novel approach to provide large-scale computing power to modern scientific applications. Using both general-purpose processors and FPGAs allows application designers to exploit fine-grained and coarse-grained parallelism, achieving high degrees of speedup. One scientific application that benefits from this technique is backprojection, an image formation algorithm that can be used as part of a synthetic aperture radar (SAR processing system. We present an implementation of backprojection for SAR on an HPRC system. Using simulated data taken at a variety of ranges, our implementation runs over 200 times faster than a similar software program, with an overall application speedup better than 50x. The backprojection application is easily parallelizable, achieving near-linear speedup when run on multiple nodes of a clustered HPRC system. The results presented can be applied to other systems and other algorithms with similar characteristics.

  12. Challenges and opportunities of modeling plasma–surface interactions in tungsten using high-performance computing

    Wirth, Brian D.; Hammond, K.D.; Krasheninnikov, S.I.; Maroudas, D.

    2015-01-01

    The performance of plasma facing components (PFCs) is critical for ITER and future magnetic fusion reactors. The ITER divertor will be tungsten, which is the primary candidate material for future reactors. Recent experiments involving tungsten exposure to low-energy helium plasmas reveal significant surface modification, including the growth of nanometer-scale tendrils of “fuzz” and formation of nanometer-sized bubbles in the near-surface region. The large span of spatial and temporal scales governing plasma surface interactions are among the challenges to modeling divertor performance. Fortunately, recent innovations in computational modeling, increasingly powerful high-performance computers, and improved experimental characterization tools provide a path toward self-consistent, experimentally validated models of PFC and divertor performance. Recent advances in understanding tungsten–helium interactions are reviewed, including such processes as helium clustering, which serve as nuclei for gas bubbles; and trap mutation, dislocation loop punching and bubble bursting; which together initiate surface morphological modification

  13. 9th International Workshop on Parallel Tools for High Performance Computing

    Hilbrich, Tobias; Niethammer, Christoph; Gracia, José; Nagel, Wolfgang; Resch, Michael

    2016-01-01

    High Performance Computing (HPC) remains a driver that offers huge potentials and benefits for science and society. However, a profound understanding of the computational matters and specialized software is needed to arrive at effective and efficient simulations. Dedicated software tools are important parts of the HPC software landscape, and support application developers. Even though a tool is by definition not a part of an application, but rather a supplemental piece of software, it can make a fundamental difference during the development of an application. Such tools aid application developers in the context of debugging, performance analysis, and code optimization, and therefore make a major contribution to the development of robust and efficient parallel software. This book introduces a selection of the tools presented and discussed at the 9th International Parallel Tools Workshop held in Dresden, Germany, September 2-3, 2015, which offered an established forum for discussing the latest advances in paral...

  14. The computer program LIAR for the simulation and modeling of high performance linacs

    Assmann, R.; Adolphsen, C.; Bane, K.; Emma, P.; Raubenheimer, T.O.; Siemann, R.; Thompson, K.; Zimmermann, F.

    1997-07-01

    High performance linear accelerators are the central components of the proposed next generation of linear colliders. They must provide acceleration of up to 750 GeV per beam while maintaining small normalized emittances. Standard simulation programs, mainly developed for storage rings, did not meet the specific requirements for high performance linacs with high bunch charges and strong wakefields. The authors present the program. LIAR (LInear Accelerator Research code) that includes single and multi-bunch wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. LIAR has been applied to and checked against the existing Stanford Linear Collider (SLC), the linacs of the proposed Next Linear Collider (NLC) and the proposed Linac Coherent Light Source (LCLS) at SLAC. Its modular structure allows easy extension for different purposes. The program is available for UNIX workstations and Windows PC's

  15. Acceleration of FDTD mode solver by high-performance computing techniques.

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  16. Using high performance interconnects in a distributed computing and mass storage environment

    Ernst, M.

    1994-01-01

    Detector Collaborations of the HERA Experiments typically involve more than 500 physicists from a few dozen institutes. These physicists require access to large amounts of data in a fully transparent manner. Important issues include Distributed Mass Storage Management Systems in a Distributed and Heterogeneous Computing Environment. At the very center of a distributed system, including tens of CPUs and network attached mass storage peripherals are the communication links. Today scientists are witnessing an integration of computing and communication technology with the open-quote network close-quote becoming the computer. This contribution reports on a centrally operated computing facility for the HERA Experiments at DESY, including Symmetric Multiprocessor Machines (84 Processors), presently more than 400 GByte of magnetic disk and 40 TB of automoted tape storage, tied together by a HIPPI open-quote network close-quote. Focussing on the High Performance Interconnect technology, details will be provided about the HIPPI based open-quote Backplane close-quote configured around a 20 Gigabit/s Multi Media Router and the performance and efficiency of the related computer interfaces

  17. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  18. Accessible high performance computing solutions for near real-time image processing for time critical applications

    Bielski, Conrad; Lemoine, Guido; Syryczynski, Jacek

    2009-09-01

    High Performance Computing (HPC) hardware solutions such as grid computing and General Processing on a Graphics Processing Unit (GPGPU) are now accessible to users with general computing needs. Grid computing infrastructures in the form of computing clusters or blades are becoming common place and GPGPU solutions that leverage the processing power of the video card are quickly being integrated into personal workstations. Our interest in these HPC technologies stems from the need to produce near real-time maps from a combination of pre- and post-event satellite imagery in support of post-disaster management. Faster processing provides a twofold gain in this situation: 1. critical information can be provided faster and 2. more elaborate automated processing can be performed prior to providing the critical information. In our particular case, we test the use of the PANTEX index which is based on analysis of image textural measures extracted using anisotropic, rotation-invariant GLCM statistics. The use of this index, applied in a moving window, has been shown to successfully identify built-up areas in remotely sensed imagery. Built-up index image masks are important input to the structuring of damage assessment interpretation because they help optimise the workload. The performance of computing the PANTEX workflow is compared on two different HPC hardware architectures: (1) a blade server with 4 blades, each having dual quad-core CPUs and (2) a CUDA enabled GPU workstation. The reference platform is a dual CPU-quad core workstation and the PANTEX workflow total computing time is measured. Furthermore, as part of a qualitative evaluation, the differences in setting up and configuring various hardware solutions and the related software coding effort is presented.

  19. Application of High Performance Computing to Earthquake Hazard and Disaster Estimation in Urban Area

    Muneo Hori

    2018-02-01

    Full Text Available Integrated earthquake simulation (IES is a seamless simulation of analyzing all processes of earthquake hazard and disaster. There are two difficulties in carrying out IES, namely, the requirement of large-scale computation and the requirement of numerous analysis models for structures in an urban area, and they are solved by taking advantage of high performance computing (HPC and by developing a system of automated model construction. HPC is a key element in developing IES, as it needs to analyze wave propagation and amplification processes in an underground structure; a model of high fidelity for the underground structure exceeds a degree-of-freedom larger than 100 billion. Examples of IES for Tokyo Metropolis are presented; the numerical computation is made by using K computer, the supercomputer of Japan. The estimation of earthquake hazard and disaster for a given earthquake scenario is made by the ground motion simulation and the urban area seismic response simulation, respectively, for the target area of 10,000 m × 10,000 m.

  20. Enabling the ATLAS Experiment at the LHC for High Performance Computing

    AUTHOR|(CDS)2091107; Ereditato, Antonio

    In this thesis, I studied the feasibility of running computer data analysis programs from the Worldwide LHC Computing Grid, in particular large-scale simulations of the ATLAS experiment at the CERN LHC, on current general purpose High Performance Computing (HPC) systems. An approach for integrating HPC systems into the Grid is proposed, which has been implemented and tested on the „Todi” HPC machine at the Swiss National Supercomputing Centre (CSCS). Over the course of the test, more than 500000 CPU-hours of processing time have been provided to ATLAS, which is roughly equivalent to the combined computing power of the two ATLAS clusters at the University of Bern. This showed that current HPC systems can be used to efficiently run large-scale simulations of the ATLAS detector and of the detected physics processes. As a first conclusion of my work, one can argue that, in perspective, running large-scale tasks on a few large machines might be more cost-effective than running on relatively small dedicated com...

  1. High-performance computational fluid dynamics: a custom-code approach

    Fannon, James; Náraigh, Lennon Ó; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain

    2016-01-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier–Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing. (paper)

  2. High-performance computational fluid dynamics: a custom-code approach

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  3. Topic 14+16: High-performance and scientific applications and extreme-scale computing (Introduction)

    Downes, Turlough P.; Roller, Sabine P.; Seitsonen, Ari Paavo; Valcke, Sophie; Keyes, David E.; Sawley, Marie Christine; Schulthess, Thomas C.; Shalf, John M.

    2013-01-01

    and algorithms to address the varied, complex and increasing challenges of modern research throughout both the "hard" and "soft" sciences. This necessitates being able to use large numbers of compute nodes, many of which are equipped with accelerators

  4. High performance parallel computing of flows in complex geometries: II. Applications

    Gourdain, N; Gicquel, L; Staffelbach, G; Vermorel, O; Duchaine, F; Boussuge, J-F; Poinsot, T

    2009-01-01

    Present regulations in terms of pollutant emissions, noise and economical constraints, require new approaches and designs in the fields of energy supply and transportation. It is now well established that the next breakthrough will come from a better understanding of unsteady flow effects and by considering the entire system and not only isolated components. However, these aspects are still not well taken into account by the numerical approaches or understood whatever the design stage considered. The main challenge is essentially due to the computational requirements inferred by such complex systems if it is to be simulated by use of supercomputers. This paper shows how new challenges can be addressed by using parallel computing platforms for distinct elements of a more complex systems as encountered in aeronautical applications. Based on numerical simulations performed with modern aerodynamic and reactive flow solvers, this work underlines the interest of high-performance computing for solving flow in complex industrial configurations such as aircrafts, combustion chambers and turbomachines. Performance indicators related to parallel computing efficiency are presented, showing that establishing fair criterions is a difficult task for complex industrial applications. Examples of numerical simulations performed in industrial systems are also described with a particular interest for the computational time and the potential design improvements obtained with high-fidelity and multi-physics computing methods. These simulations use either unsteady Reynolds-averaged Navier-Stokes methods or large eddy simulation and deal with turbulent unsteady flows, such as coupled flow phenomena (thermo-acoustic instabilities, buffet, etc). Some examples of the difficulties with grid generation and data analysis are also presented when dealing with these complex industrial applications.

  5. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics.

    Ayres, Daniel L; Darling, Aaron; Zwickl, Derrick J; Beerli, Peter; Holder, Mark T; Lewis, Paul O; Huelsenbeck, John P; Ronquist, Fredrik; Swofford, David L; Cummings, Michael P; Rambaut, Andrew; Suchard, Marc A

    2012-01-01

    Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.

  6. The Overall Research Results of Prestressed I-beams Made of Ultra-high Performance Concrete

    Tej, P.; Kolísko, J.; Kněž, P.; Čech, J.

    2017-09-01

    The design process of short-term and long-term loading of prestressed I-beams made of ultra-high performance concrete (UHPC) and the overall research results are presented in this article. The prestressed I-beams are intended and designed to replace steel HEB beams mainly in the construction of railway bridges with fully concreted height of the beams. These types of structures have the advantage of a low construction height. The prestressed I-beams were made of UHPC with dispersed steel fibres and are reinforced by prestressing cables in the bottom flange. Two specimens of 9 m span, three specimens of 7 m span and two specimens of 12 m span were made for the short-term loading. For the purpose of the long-term loading, two specimens of 12 m span were made and subsequently loaded for 450 days. All specimens were tested in four-point bending tests in the laboratory. The article presents also comparison of results of the experiments with computer simulations.

  7. Secure Enclaves: An Isolation-centric Approach for Creating Secure High Performance Computing Environments

    Aderholdt, Ferrol [Tennessee Technological Univ., Cookeville, TN (United States); Caldwell, Blake A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hicks, Susan Elaine [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koch, Scott M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Naughton, III, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pelfrey, Daniel S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R [Tennessee Technological Univ., Cookeville, TN (United States); Scott, Stephen L [Tennessee Technological Univ., Cookeville, TN (United States); Shipman, Galen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sorrillo, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data at various security levels but in so doing are often enclaved at the highest security posture. This approach places significant restrictions on the users of the system even when processing data at a lower security level and exposes data at higher levels of confidentiality to a much broader population than otherwise necessary. The traditional approach of isolation, while effective in establishing security enclaves poses significant challenges for the use of shared infrastructure in HPC environments. This report details current state-of-the-art in virtualization, reconfigurable network enclaving via Software Defined Networking (SDN), and storage architectures and bridging techniques for creating secure enclaves in HPC environments.

  8. A C++11 implementation of arbitrary-rank tensors for high-performance computing

    Aragón, Alejandro M.

    2014-11-01

    This article discusses an efficient implementation of tensors of arbitrary rank by using some of the idioms introduced by the recently published C++ ISO Standard (C++11). With the aims at providing a basic building block for high-performance computing, a single Array class template is carefully crafted, from which vectors, matrices, and even higher-order tensors can be created. An expression template facility is also built around the array class template to provide convenient mathematical syntax. As a result, by using templates, an extra high-level layer is added to the C++ language when dealing with algebraic objects and their operations, without compromising performance. The implementation is tested running on both CPU and GPU.

  9. Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology

    Goodwin, Bruce

    2015-03-01

    This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.

  10. 7th International Workshop on Parallel Tools for High Performance Computing

    Gracia, José; Nagel, Wolfgang; Resch, Michael

    2014-01-01

    Current advances in High Performance Computing (HPC) increasingly impact efficient software development workflows. Programmers for HPC applications need to consider trends such as increased core counts, multiple levels of parallelism, reduced memory per core, and I/O system challenges in order to derive well performing and highly scalable codes. At the same time, the increasing complexity adds further sources of program defects. While novel programming paradigms and advanced system libraries provide solutions for some of these challenges, appropriate supporting tools are indispensable. Such tools aid application developers in debugging, performance analysis, or code optimization and therefore make a major contribution to the development of robust and efficient parallel software. This book introduces a selection of the tools presented and discussed at the 7th International Parallel Tools Workshop, held in Dresden, Germany, September 3-4, 2013.  

  11. Exploring Infiniband Hardware Virtualization in OpenNebula towards Efficient High-Performance Computing

    Pais Pitta de Lacerda Ruivo, Tiago [IIT, Chicago; Bernabeu Altayo, Gerard [Fermilab; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Kim, Hyun-Woo [Fermilab; Noh, Seo-Young [KISTI, Daejeon; Raicu, Ioan [IIT, Chicago

    2014-11-11

    has been widely accepted that software virtualization has a big negative impact on high-performance computing (HPC) application performance. This work explores the potential use of Infiniband hardware virtualization in an OpenNebula cloud towards the efficient support of MPI-based workloads. We have implemented, deployed, and tested an Infiniband network on the FermiCloud private Infrastructure-as-a-Service (IaaS) cloud. To avoid software virtualization towards minimizing the virtualization overhead, we employed a technique called Single Root Input/Output Virtualization (SRIOV). Our solution spanned modifications to the Linux’s Hypervisor as well as the OpenNebula manager. We evaluated the performance of the hardware virtualization on up to 56 virtual machines connected by up to 8 DDR Infiniband network links, with micro-benchmarks (latency and bandwidth) as well as w a MPI-intensive application (the HPL Linpack benchmark).

  12. Matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2013-11-05

    Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.

  13. Homemade Buckeye-Pi: A Learning Many-Node Platform for High-Performance Parallel Computing

    Amooie, M. A.; Moortgat, J.

    2017-12-01

    We report on the "Buckeye-Pi" cluster, the supercomputer developed in The Ohio State University School of Earth Sciences from 128 inexpensive Raspberry Pi (RPi) 3 Model B single-board computers. Each RPi is equipped with fast Quad Core 1.2GHz ARMv8 64bit processor, 1GB of RAM, and 32GB microSD card for local storage. Therefore, the cluster has a total RAM of 128GB that is distributed on the individual nodes and a flash capacity of 4TB with 512 processors, while it benefits from low power consumption, easy portability, and low total cost. The cluster uses the Message Passing Interface protocol to manage the communications between each node. These features render our platform the most powerful RPi supercomputer to date and suitable for educational applications in high-performance-computing (HPC) and handling of large datasets. In particular, we use the Buckeye-Pi to implement optimized parallel codes in our in-house simulator for subsurface media flows with the goal of achieving a massively-parallelized scalable code. We present benchmarking results for the computational performance across various number of RPi nodes. We believe our project could inspire scientists and students to consider the proposed unconventional cluster architecture as a mainstream and a feasible learning platform for challenging engineering and scientific problems.

  14. Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.

    Trudgian, David C; Mirzaei, Hamid

    2012-12-07

    We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.

  15. High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations

    Pieper, Andreas [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Kreutzer, Moritz [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Galgon, Martin [Bergische Universität Wuppertal (Germany); Fehske, Holger [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Hager, Georg [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Lang, Bruno [Bergische Universität Wuppertal (Germany); Wellein, Gerhard [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)

    2016-11-15

    We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need for matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.

  16. High performance parallel computing of flows in complex geometries: I. Methods

    Gourdain, N; Gicquel, L; Montagnac, M; Vermorel, O; Staffelbach, G; Garcia, M; Boussuge, J-F; Gazaix, M; Poinsot, T

    2009-01-01

    Efficient numerical tools coupled with high-performance computers, have become a key element of the design process in the fields of energy supply and transportation. However flow phenomena that occur in complex systems such as gas turbines and aircrafts are still not understood mainly because of the models that are needed. In fact, most computational fluid dynamics (CFD) predictions as found today in industry focus on a reduced or simplified version of the real system (such as a periodic sector) and are usually solved with a steady-state assumption. This paper shows how to overcome such barriers and how such a new challenge can be addressed by developing flow solvers running on high-end computing platforms, using thousands of computing cores. Parallel strategies used by modern flow solvers are discussed with particular emphases on mesh-partitioning, load balancing and communication. Two examples are used to illustrate these concepts: a multi-block structured code and an unstructured code. Parallel computing strategies used with both flow solvers are detailed and compared. This comparison indicates that mesh-partitioning and load balancing are more straightforward with unstructured grids than with multi-block structured meshes. However, the mesh-partitioning stage can be challenging for unstructured grids, mainly due to memory limitations of the newly developed massively parallel architectures. Finally, detailed investigations show that the impact of mesh-partitioning on the numerical CFD solutions, due to rounding errors and block splitting, may be of importance and should be accurately addressed before qualifying massively parallel CFD tools for a routine industrial use.

  17. Improving the Eco-Efficiency of High Performance Computing Clusters Using EECluster

    Alberto Cocaña-Fernández

    2016-03-01

    Full Text Available As data and supercomputing centres increase their performance to improve service quality and target more ambitious challenges every day, their carbon footprint also continues to grow, and has already reached the magnitude of the aviation industry. Also, high power consumptions are building up to a remarkable bottleneck for the expansion of these infrastructures in economic terms due to the unavailability of sufficient energy sources. A substantial part of the problem is caused by current energy consumptions of High Performance Computing (HPC clusters. To alleviate this situation, we present in this work EECluster, a tool that integrates with multiple open-source Resource Management Systems to significantly reduce the carbon footprint of clusters by improving their energy efficiency. EECluster implements a dynamic power management mechanism based on Computational Intelligence techniques by learning a set of rules through multi-criteria evolutionary algorithms. This approach enables cluster operators to find the optimal balance between a reduction in the cluster energy consumptions, service quality, and number of reconfigurations. Experimental studies using both synthetic and actual workloads from a real world cluster support the adoption of this tool to reduce the carbon footprint of HPC clusters.

  18. Peer-to-peer computing for secure high performance data copying

    Hanushevsky, A.; Trunov, A.; Cottrell, L.

    2001-01-01

    The BaBar Copy Program (bbcp) is an excellent representative of peer-to-peer (P2P) computing. It is also a pioneering application of its type in the P2P arena. Built upon the foundation of its predecessor, Secure Fast Copy (sfcp), bbcp incorporates significant improvements performance and usability. As with sfcp, bbcp uses ssh for authentication; providing an elegant and simple working model--if you can ssh to a location, you can copy files to or from that location. To fully support this notion, bbcp transparently supports 3rd party copy operations. The program also incorporates several mechanism to deal with firewall security; the bane of P2P computing. To achieve high performance in a wide area network, bbcp allows a user to independently specify, the number of parallel network streams, tcp window size, and the file I/O blocking factor. Using these parameters, data is pipelined from source to target to provide a uniform traffic pattern that maximizes router efficiency. For improved recoverability, bbcp also keeps track of copy operations so that an operation can be restarted from the point of failure at a later time; minimizing the amount of network traffic in the event of a copy failure. Here, the authors present the bbcp architecture, it's various features, and the reasons for their inclusion

  19. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    Ganguly, S.; Kumar, U.; Nemani, R. R.; Kalia, S.; Michaelis, A.

    2017-12-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS - national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91% was achieved, which is a 6% improvement in unmixing based classification relative to per-pixel based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  20. Peer-to-Peer Computing for Secure High Performance Data Copying

    2002-01-01

    The BaBar Copy Program (bbcp) is an excellent representative of peer-to-peer (P2P) computing. It is also a pioneering application of its type in the P2P arena. Built upon the foundation of its predecessor, Secure Fast Copy (sfcp), bbcp incorporates significant improvements performance and usability. As with sfcp, bbcp uses ssh for authentication; providing an elegant and simple working model -- if you can ssh to a location, you can copy files to or from that location. To fully support this notion, bbcp transparently supports 3rd party copy operations. The program also incorporates several mechanism to deal with firewall security; the bane of P2P computing. To achieve high performance in a wide area network, bbcp allows a user to independently specify, the number of parallel network streams, tcp window size, and the file I/O blocking factor. Using these parameters, data is pipelined from source to target to provide a uniform traffic pattern that maximizes router efficiency. For improved recoverability, bbcp also keeps track of copy operations so that an operation can be restarted from the point of failure at a later time; minimizing the amount of network traffic in the event of a copy failure. Here, we preset the bbcp architecture, it's various features, and the reasons for their inclusion

  1. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    Desai, Ajit; Pettit, Chris; Poirel, Dominique; Sarkar, Abhijit

    2017-01-01

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolution in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.

  2. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique

    Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan

    2015-10-01

    In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.

  3. Towards the development of run times leveraging virtualization for high performance computing

    Diakhate, F.

    2010-12-01

    In recent years, there has been a growing interest in using virtualization to improve the efficiency of data centers. This success is rooted in virtualization's excellent fault tolerance and isolation properties, in the overall flexibility it brings, and in its ability to exploit multi-core architectures efficiently. These characteristics also make virtualization an ideal candidate to tackle issues found in new compute cluster architectures. However, in spite of recent improvements in virtualization technology, overheads in the execution of parallel applications remain, which prevent its use in the field of high performance computing. In this thesis, we propose a virtual device dedicated to message passing between virtual machines, so as to improve the performance of parallel applications executed in a cluster of virtual machines. We also introduce a set of techniques facilitating the deployment of virtualized parallel applications. These functionalities have been implemented as part of a runtime system which allows to benefit from virtualization's properties in a way that is as transparent as possible to the user while minimizing performance overheads. (author)

  4. Confabulation Based Real-time Anomaly Detection for Wide-area Surveillance Using Heterogeneous High Performance Computing Architecture

    2015-06-01

    CONFABULATION BASED REAL-TIME ANOMALY DETECTION FOR WIDE-AREA SURVEILLANCE USING HETEROGENEOUS HIGH PERFORMANCE COMPUTING ARCHITECTURE SYRACUSE...DETECTION FOR WIDE-AREA SURVEILLANCE USING HETEROGENEOUS HIGH PERFORMANCE COMPUTING ARCHITECTURE 5a. CONTRACT NUMBER FA8750-12-1-0251 5b. GRANT...processors including graphic processor units (GPUs) and Intel Xeon Phi processors. Experimental results showed significant speedups, which can enable

  5. The Convergence of High Performance Computing and Large Scale Data Analytics

    Duffy, D.; Bowen, M. K.; Thompson, J. H.; Yang, C. P.; Hu, F.; Wills, B.

    2015-12-01

    As the combinations of remote sensing observations and model outputs have grown, scientists are increasingly burdened with both the necessity and complexity of large-scale data analysis. Scientists are increasingly applying traditional high performance computing (HPC) solutions to solve their "Big Data" problems. While this approach has the benefit of limiting data movement, the HPC system is not optimized to run analytics, which can create problems that permeate throughout the HPC environment. To solve these issues and to alleviate some of the strain on the HPC environment, the NASA Center for Climate Simulation (NCCS) has created the Advanced Data Analytics Platform (ADAPT), which combines both HPC and cloud technologies to create an agile system designed for analytics. Large, commonly used data sets are stored in this system in a write once/read many file system, such as Landsat, MODIS, MERRA, and NGA. High performance virtual machines are deployed and scaled according to the individual scientist's requirements specifically for data analysis. On the software side, the NCCS and GMU are working with emerging commercial technologies and applying them to structured, binary scientific data in order to expose the data in new ways. Native NetCDF data is being stored within a Hadoop Distributed File System (HDFS) enabling storage-proximal processing through MapReduce while continuing to provide accessibility of the data to traditional applications. Once the data is stored within HDFS, an additional indexing scheme is built on top of the data and placed into a relational database. This spatiotemporal index enables extremely fast mappings of queries to data locations to dramatically speed up analytics. These are some of the first steps toward a single unified platform that optimizes for both HPC and large-scale data analysis, and this presentation will elucidate the resulting and necessary exascale architectures required for future systems.

  6. A performance model for the communication in fast multipole methods on high-performance computing platforms

    Ibeid, Huda

    2016-03-04

    Exascale systems are predicted to have approximately 1 billion cores, assuming gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. The fast multipole method (FMM) was originally developed for accelerating N-body problems in astrophysics and molecular dynamics but has recently been extended to a wider range of problems. Its high arithmetic intensity combined with its linear complexity and asynchronous communication patterns make it a promising algorithm for exascale systems. In this paper, we discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on internode communication. We focus on the communication part only; the efficiency of the computational kernels are beyond the scope of the present study. We develop a performance model that considers the communication patterns of the FMM and observe a good match between our model and the actual communication time on four high-performance computing (HPC) systems, when latency, bandwidth, network topology, and multicore penalties are all taken into account. To our knowledge, this is the first formal characterization of internode communication in FMM that validates the model against actual measurements of communication time. The ultimate communication model is predictive in an absolute sense; however, on complex systems, this objective is often out of reach or of a difficulty out of proportion to its benefit when there exists a simpler model that is inexpensive and sufficient to guide coding decisions leading to improved scaling. The current model provides such guidance.

  7. The Use of High Performance Computing (HPC) to Strengthen the Development of Army Systems

    2011-11-01

    changes in what the warfighter wants – in the middle of an acquisition cycle such changes create havoc in terms of delays, recycling of the research...A little bit later the first personal computers (PCs) came on the market, mostly as curiosities . The operating systems were either ms-dos or cp/m

  8. Department of Defense High Performance Computing Modernization Program. 2008 Annual Report

    2009-04-01

    Environment, Doug Post and the CREATE Team (K. Hill, D. van Veldhuizen , G. Zelinski, AFRL; S. Arevalo, T. Blacker, D. Fisher, P. Genalis, A. Harris, M...RF Antenna Group, David van Veldhuizen Computational Research and Engineering Acquisition Tools and Environments (CREATE), David Fisher and

  9. High-Performance Computer Modeling of the Cosmos-Iridium Collision

    Olivier, S; Cook, K; Fasenfest, B; Jefferson, D; Jiang, M; Leek, J; Levatin, J; Nikolaev, S; Pertica, A; Phillion, D; Springer, K; De Vries, W

    2009-08-28

    This paper describes the application of a new, integrated modeling and simulation framework, encompassing the space situational awareness (SSA) enterprise, to the recent Cosmos-Iridium collision. This framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel, high-performance computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the application of this framework to the recent collision of the Cosmos and Iridium satellites, including (1) detailed hydrodynamic modeling of the satellite collision and resulting debris generation, (2) orbital propagation of the simulated debris and analysis of the increased risk to other satellites (3) calculation of the radar and optical signatures of the simulated debris and modeling of debris detection with space surveillance radar and optical systems (4) determination of simulated debris orbits from modeled space surveillance observations and analysis of the resulting orbital accuracy, (5) comparison of these modeling and simulation results with Space Surveillance Network observations. We will also discuss the use of this integrated modeling and simulation framework to analyze the risks and consequences of future satellite collisions and to assess strategies for mitigating or avoiding future incidents, including the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.

  10. Analysis of Application Power and Schedule Composition in a High Performance Computing Environment

    Elmore, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gruchalla, Kenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Phillips, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Purkayastha, Avi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wunder, Nick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-05

    As the capacity of high performance computing (HPC) systems continues to grow, small changes in energy management have the potential to produce significant energy savings. In this paper, we employ an extensive informatics system for aggregating and analyzing real-time performance and power use data to evaluate energy footprints of jobs running in an HPC data center. We look at the effects of algorithmic choices for a given job on the resulting energy footprints, and analyze application-specific power consumption, and summarize average power use in the aggregate. All of these views reveal meaningful power variance between classes of applications as well as chosen methods for a given job. Using these data, we discuss energy-aware cost-saving strategies based on reordering the HPC job schedule. Using historical job and power data, we present a hypothetical job schedule reordering that: (1) reduces the facility's peak power draw and (2) manages power in conjunction with a large-scale photovoltaic array. Lastly, we leverage this data to understand the practical limits on predicting key power use metrics at the time of submission.

  11. Performance Analysis of Ivshmem for High-Performance Computing in Virtual Machines

    Ivanovic, Pavle; Richter, Harald

    2018-01-01

    High-Performance computing (HPC) is rarely accomplished via virtual machines (VMs). In this paper, we present a remake of ivshmem which can change this. Ivshmem was a shared memory (SHM) between virtual machines on the same server, with SHM-access synchronization included, until about 5 years ago when newer versions of Linux and its virtualization library libvirt evolved. We restored that SHM-access synchronization feature because it is indispensable for HPC and made ivshmem runnable with contemporary versions of Linux, libvirt, KVM, QEMU and especially MPICH, which is an implementation of MPI - the standard HPC communication library. Additionally, MPICH was transparently modified by us to get ivshmem included, resulting in a three to ten times performance improvement compared to TCP/IP. Furthermore, we have transparently replaced MPI_PUT, a single-side MPICH communication mechanism, by an own MPI_PUT wrapper. As a result, our ivshmem even surpasses non-virtualized SHM data transfers for block lengths greater than 512 KBytes, showing the benefits of virtualization. All improvements were possible without using SR-IOV.

  12. A parallel calibration utility for WRF-Hydro on high performance computers

    Wang, J.; Wang, C.; Kotamarthi, V. R.

    2017-12-01

    A successful modeling of complex hydrological processes comprises establishing an integrated hydrological model which simulates the hydrological processes in each water regime, calibrates and validates the model performance based on observation data, and estimates the uncertainties from different sources especially those associated with parameters. Such a model system requires large computing resources and often have to be run on High Performance Computers (HPC). The recently developed WRF-Hydro modeling system provides a significant advancement in the capability to simulate regional water cycles more completely. The WRF-Hydro model has a large range of parameters such as those in the input table files — GENPARM.TBL, SOILPARM.TBL and CHANPARM.TBL — and several distributed scaling factors such as OVROUGHRTFAC. These parameters affect the behavior and outputs of the model and thus may need to be calibrated against the observations in order to obtain a good modeling performance. Having a parameter calibration tool specifically for automate calibration and uncertainty estimates of WRF-Hydro model can provide significant convenience for the modeling community. In this study, we developed a customized tool using the parallel version of the model-independent parameter estimation and uncertainty analysis tool, PEST, to enabled it to run on HPC with PBS and SLURM workload manager and job scheduler. We also developed a series of PEST input file templates that are specifically for WRF-Hydro model calibration and uncertainty analysis. Here we will present a flood case study occurred in April 2013 over Midwest. The sensitivity and uncertainties are analyzed using the customized PEST tool we developed.

  13. Development of a Computational Steering Framework for High Performance Computing Environments on Blue Gene/P Systems

    Danani, Bob K.

    2012-07-01

    Computational steering has revolutionized the traditional workflow in high performance computing (HPC) applications. The standard workflow that consists of preparation of an application’s input, running of a simulation, and visualization of simulation results in a post-processing step is now transformed into a real-time interactive workflow that significantly reduces development and testing time. Computational steering provides the capability to direct or re-direct the progress of a simulation application at run-time. It allows modification of application-defined control parameters at run-time using various user-steering applications. In this project, we propose a computational steering framework for HPC environments that provides an innovative solution and easy-to-use platform, which allows users to connect and interact with running application(s) in real-time. This framework uses RealityGrid as the underlying steering library and adds several enhancements to the library to enable steering support for Blue Gene systems. Included in the scope of this project is the development of a scalable and efficient steering relay server that supports many-to-many connectivity between multiple steered applications and multiple steering clients. Steered applications can range from intermediate simulation and physical modeling applications to complex computational fluid dynamics (CFD) applications or advanced visualization applications. The Blue Gene supercomputer presents special challenges for remote access because the compute nodes reside on private networks. This thesis presents an implemented solution and demonstrates it on representative applications. Thorough implementation details and application enablement steps are also presented in this thesis to encourage direct usage of this framework.

  14. Harnessing the Department of Energy’s High-Performance Computing Expertise to Strengthen the U.S. Chemical Enterprise

    Dixon, David A.; Dupuis, Michel; Garrett, Bruce C.; Neaton, Jeffrey B.; Plata, Charity; Tarr, Matthew A.; Tomb, Jean-Francois; Golab, Joseph T.

    2012-01-17

    High-performance computing (HPC) is one area where the DOE has developed extensive expertise and capability. However, this expertise currently is not properly shared with or used by the private sector to speed product development, enable industry to move rapidly into new areas, and improve product quality. Such use would lead to substantial competitive advantages in global markets and yield important economic returns for the United States. To stimulate the dissemination of DOE's HPC expertise, the Council for Chemical Research (CCR) and the DOE jointly held a workshop on this topic. Four important energy topic areas were chosen as the focus of the meeting: Biomass/Bioenergy, Catalytic Materials, Energy Storage, and Photovoltaics. Academic, industrial, and government experts in these topic areas participated in the workshop to identify industry needs, evaluate the current state of expertise, offer proposed actions and strategies, and forecast the expected benefits of implementing those strategies.

  15. High-performance floating-point image computing workstation for medical applications

    Mills, Karl S.; Wong, Gilman K.; Kim, Yongmin

    1990-07-01

    The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with needs similar to (or more stringent than) those of the military, industrial and scientific communities. However, most image processing and graphics systems available for use in medical imaging today are either expensive, specialized, or in most cases both. High performance imaging and graphics workstations which can provide real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the application of digital image computing techniques in many different areas. This paper describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT computer, and its applications as a medical imaging workstation. Medical imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS), in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer. The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color palettes may be used for each of four 2K x 2K x 8-bit image frames. Three of these image frames can be used simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1: 1 aspect ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is implemented on an add-in board occupying a single slot in the NeXT computer. Up to three boards may be added to the NeXT for multiple display capability (e

  16. High performance communication by people with paralysis using an intracortical brain-computer interface

    Pandarinath, Chethan; Nuyujukian, Paul; Blabe, Christine H; Sorice, Brittany L; Saab, Jad; Willett, Francis R; Hochberg, Leigh R

    2017-01-01

    Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O’Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4–4.2) and information throughput (by a factor of 2.2–4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function. Clinical Trial No: NCT00912041 DOI: http://dx.doi.org/10.7554/eLife.18554.001 PMID:28220753

  17. High performance computation of landscape genomic models including local indicators of spatial association.

    Stucki, S; Orozco-terWengel, P; Forester, B R; Duruz, S; Colli, L; Masembe, C; Negrini, R; Landguth, E; Jones, M R; Bruford, M W; Taberlet, P; Joost, S

    2017-09-01

    With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an F ST outlier method (FDIST approach in arlequin) and compare their results. samβada - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  18. LIAR: A COMPUTER PROGRAM FOR THE SIMULATION AND MODELING OF HIGH PERFORMANCE LINACS

    Adolphsen, Chris

    2003-01-01

    The computer program LIAR (''LInear Accelerator Research code'') is a numerical simulation and tracking program for linear colliders. The LIAR project was started at SLAC in August 1995 in order to provide a computing and simulation tool that specifically addresses the needs of high energy linear colliders. LIAR is designed to be used for a variety of different linear accelerators. It has been applied for and checked against the existing Stanford Linear Collider (SLC) as well as the linacs of the proposed Next Linear Collider (NLC) and the proposed Linac Coherent Light Source (LCLS). The program includes wakefield effects, a 4D coupled beam description, specific optimization algorithms and other advanced features. We describe the most important concepts and highlights of the program. After having presented the LIAR program at the LINAC96 and the PAC97 conferences, we do now introduce it to the European particle accelerator community

  19. SCinet Architecture: Featured at the International Conference for High Performance Computing,Networking, Storage and Analysis 2016

    Lyonnais, Marc; Smith, Matt; Mace, Kate P.

    2017-02-06

    SCinet is the purpose-built network that operates during the International Conference for High Performance Computing,Networking, Storage and Analysis (Super Computing or SC). Created each year for the conference, SCinet brings to life a high-capacity network that supports applications and experiments that are a hallmark of the SC conference. The network links the convention center to research and commercial networks around the world. This resource serves as a platform for exhibitors to demonstrate the advanced computing resources of their home institutions and elsewhere by supporting a wide variety of applications. Volunteers from academia, government and industry work together to design and deliver the SCinet infrastructure. Industry vendors and carriers donate millions of dollars in equipment and services needed to build and support the local and wide area networks. Planning begins more than a year in advance of each SC conference and culminates in a high intensity installation in the days leading up to the conference. The SCinet architecture for SC16 illustrates a dramatic increase in participation from the vendor community, particularly those that focus on network equipment. Software-Defined Networking (SDN) and Data Center Networking (DCN) are present in nearly all aspects of the design.

  20. Applying Machine Learning and High Performance Computing to Water Quality Assessment and Prediction

    Ruijian Zhang; Deren Li

    2017-01-01

    Water quality assessment and prediction is a more and more important issue. Traditional ways either take lots of time or they can only do assessments. In this research, by applying machine learning algorithm to a long period time of water attributes’ data; we can generate a decision tree so that it can predict the future day’s water quality in an easy and efficient way. The idea is to combine the traditional ways and the computer algorithms together. Using machine learning algorithms, the ass...

  1. SAME4HPC: A Promising Approach in Building a Scalable and Mobile Environment for High-Performance Computing

    Karthik, Rajasekar [ORNL

    2014-01-01

    In this paper, an architecture for building Scalable And Mobile Environment For High-Performance Computing with spatial capabilities called SAME4HPC is described using cutting-edge technologies and standards such as Node.js, HTML5, ECMAScript 6, and PostgreSQL 9.4. Mobile devices are increasingly becoming powerful enough to run high-performance apps. At the same time, there exist a significant number of low-end and older devices that rely heavily on the server or the cloud infrastructure to do the heavy lifting. Our architecture aims to support both of these types of devices to provide high-performance and rich user experience. A cloud infrastructure consisting of OpenStack with Ubuntu, GeoServer, and high-performance JavaScript frameworks are some of the key open-source and industry standard practices that has been adopted in this architecture.

  2. Infrastructure for Multiphysics Software Integration in High Performance Computing-Aided Science and Engineering

    Campbell, Michael T. [Illinois Rocstar LLC, Champaign, IL (United States); Safdari, Masoud [Illinois Rocstar LLC, Champaign, IL (United States); Kress, Jessica E. [Illinois Rocstar LLC, Champaign, IL (United States); Anderson, Michael J. [Illinois Rocstar LLC, Champaign, IL (United States); Horvath, Samantha [Illinois Rocstar LLC, Champaign, IL (United States); Brandyberry, Mark D. [Illinois Rocstar LLC, Champaign, IL (United States); Kim, Woohyun [Illinois Rocstar LLC, Champaign, IL (United States); Sarwal, Neil [Illinois Rocstar LLC, Champaign, IL (United States); Weisberg, Brian [Illinois Rocstar LLC, Champaign, IL (United States)

    2016-10-15

    The project described in this report constructed and exercised an innovative multiphysics coupling toolkit called the Illinois Rocstar MultiPhysics Application Coupling Toolkit (IMPACT). IMPACT is an open source, flexible, natively parallel infrastructure for coupling multiple uniphysics simulation codes into multiphysics computational systems. IMPACT works with codes written in several high-performance-computing (HPC) programming languages, and is designed from the beginning for HPC multiphysics code development. It is designed to be minimally invasive to the individual physics codes being integrated, and has few requirements on those physics codes for integration. The goal of IMPACT is to provide the support needed to enable coupling existing tools together in unique and innovative ways to produce powerful new multiphysics technologies without extensive modification and rewrite of the physics packages being integrated. There are three major outcomes from this project: 1) construction, testing, application, and open-source release of the IMPACT infrastructure, 2) production of example open-source multiphysics tools using IMPACT, and 3) identification and engagement of interested organizations in the tools and applications resulting from the project. This last outcome represents the incipient development of a user community and application echosystem being built using IMPACT. Multiphysics coupling standardization can only come from organizations working together to define needs and processes that span the space of necessary multiphysics outcomes, which Illinois Rocstar plans to continue driving toward. The IMPACT system, including source code, documentation, and test problems are all now available through the public gitHUB.org system to anyone interested in multiphysics code coupling. Many of the basic documents explaining use and architecture of IMPACT are also attached as appendices to this document. Online HTML documentation is available through the gitHUB site

  3. ArrayBridge: Interweaving declarative array processing with high-performance computing

    Xing, Haoyuan [The Ohio State Univ., Columbus, OH (United States); Floratos, Sofoklis [The Ohio State Univ., Columbus, OH (United States); Blanas, Spyros [The Ohio State Univ., Columbus, OH (United States); Byna, Suren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prabhat, Prabhat [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Kesheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Paul [Paradigm4, Inc., Waltham, MA (United States)

    2017-05-04

    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aims to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.

  4. Exploiting Data Intensive Applications on High Performance Computers to Unlock Australia's Landsat Archive

    Purss, Matthew; Lewis, Adam; Edberg, Roger; Ip, Alex; Sixsmith, Joshua; Frankish, Glenn; Chan, Tai; Evans, Ben; Hurst, Lachlan

    2013-04-01

    Australia's Earth Observation Program has downlinked and archived satellite data acquired under the NASA Landsat mission for the Australian Government since the establishment of the Australian Landsat Station in 1979. Geoscience Australia maintains this archive and produces image products to aid the delivery of government policy objectives. Due to the labor intensive nature of processing of this data there have been few national-scale datasets created to date. To compile any Earth Observation product the historical approach has been to select the required subset of data and process "scene by scene" on an as-needed basis. As data volumes have increased over time, and the demand for the processed data has also grown, it has become increasingly difficult to rapidly produce these products and achieve satisfactory policy outcomes using these historic processing methods. The result is that we have been "drowning in a sea of uncalibrated data" and scientists, policy makers and the public have not been able to realize the full potential of the Australian Landsat Archive and its value is therefore significantly diminished. To overcome this critical issue, the Australian Space Research Program has funded the "Unlocking the Landsat Archive" (ULA) Project from April 2011 to June 2013 to improve the access and utilization of Australia's archive of Landsat data. The ULA Project is a public-private consortium led by Lockheed Martin Australia (LMA) and involving Geoscience Australia (GA), the Victorian Partnership for Advanced Computing (VPAC), the National Computational Infrastructure (NCI) at the Australian National University (ANU) and the Cooperative Research Centre for Spatial Information (CRC-SI). The outputs from the ULA project will become a fundamental component of Australia's eResearch infrastructure, with the Australian Landsat Archive hosted on the NCI and made openly available under a creative commons license. NCI provides access to researchers through significant HPC

  5. High performance computing and quantum trajectory method in CPU and GPU systems

    Wiśniewska, Joanna; Sawerwain, Marek; Leoński, Wiesław

    2015-01-01

    Nowadays, a dynamic progress in computational techniques allows for development of various methods, which offer significant speed-up of computations, especially those related to the problems of quantum optics and quantum computing. In this work, we propose computational solutions which re-implement the quantum trajectory method (QTM) algorithm in modern parallel computation environments in which multi-core CPUs and modern many-core GPUs can be used. In consequence, new computational routines are developed in more effective way than those applied in other commonly used packages, such as Quantum Optics Toolbox (QOT) for Matlab or QuTIP for Python

  6. The NCI High Performance Computing (HPC) and High Performance Data (HPD) Platform to Support the Analysis of Petascale Environmental Data Collections

    Evans, B. J. K.; Pugh, T.; Wyborn, L. A.; Porter, D.; Allen, C.; Smillie, J.; Antony, J.; Trenham, C.; Evans, B. J.; Beckett, D.; Erwin, T.; King, E.; Hodge, J.; Woodcock, R.; Fraser, R.; Lescinsky, D. T.

    2014-12-01

    The National Computational Infrastructure (NCI) has co-located a priority set of national data assets within a HPC research platform. This powerful in-situ computational platform has been created to help serve and analyse the massive amounts of data across the spectrum of environmental collections - in particular the climate, observational data and geoscientific domains. This paper examines the infrastructure, innovation and opportunity for this significant research platform. NCI currently manages nationally significant data collections (10+ PB) categorised as 1) earth system sciences, climate and weather model data assets and products, 2) earth and marine observations and products, 3) geosciences, 4) terrestrial ecosystem, 5) water management and hydrology, and 6) astronomy, social science and biosciences. The data is largely sourced from the NCI partners (who include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. By co-locating these large valuable data assets, new opportunities have arisen by harmonising the data collections, making a powerful transdisciplinary research platformThe data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. New scientific software, cloud-scale techniques, server-side visualisation and data services have been harnessed and integrated into the platform, so that analysis is performed seamlessly across the traditional boundaries of the underlying data domains. Characterisation of the techniques along with performance profiling ensures scalability of each software component, all of which can either be enhanced or replaced through future improvements. A Development-to-Operations (DevOps) framework has also been implemented to manage the scale of the software complexity alone. This ensures that

  7. WinSCP for Windows File Transfers | High-Performance Computing | NREL

    WinSCP for Windows File Transfers WinSCP for Windows File Transfers WinSCP for can used to securely transfer files between your local computer running Microsoft Windows and a remote computer running Linux

  8. Energy Efficiency Evaluation and Benchmarking of AFRL’s Condor High Performance Computer

    2011-08-01

    PlayStation 3 nodes executing the HPL benchmark. When idle, the two PS3s consume 188.49 W on average. At peak HPL performance, the nodes draw an average of...AUG 2011 2. REPORT TYPE CONFERENCE PAPER (Post Print) 3. DATES COVERED (From - To) JAN 2011 – JUN 2011 4 . TITLE AND SUBTITLE ENERGY EFFICIENCY...the High Performance LINPACK (HPL) benchmark while also measuring the energy consumed to achieve such performance. Supercomputers are ranked by

  9. A high-performance data acquisition system for computer-based multichannel analyzer

    Zhou Xinzhi; Bai Rongsheng; Wen Liangbi; Huang Yanwen

    1996-01-01

    A high-performance data acquisition system applied in the multichannel analyzer is designed with single-chip microcomputer system. The paper proposes the principle and the method of realizing the simultaneous data acquisition, the data pre-processing, and the fast bidirectional data transfer by means of direct memory access based on dual-port RAM as well. The measurement for dead or live time of ADC system can also be implemented efficiently by using it

  10. Research and Application of New Type of High Performance Titanium Alloy

    ZHU Zhishou

    2016-06-01

    Full Text Available With the continuous extension of the application quantity and range for titanium alloy in the fields of national aviation, space, weaponry, marine and chemical industry, etc., even more critical requirements to the comprehensive mechanical properties, low cost and process technological properties of titanium alloy have been raised. Through the alloying based on the microstructure parameters design, and the comprehensive strengthening and toughening technologies of fine grain strengthening, phase transformation and process control of high toughening, the new type of high performance titanium alloy which has good comprehensive properties of high strength and toughness, anti-fatigue, failure resistance and anti-impact has been researched and manufactured. The new titanium alloy has extended the application quantity and application level in the high end field, realized the industrial upgrading and reforming, and met the application requirements of next generation equipment.

  11. A simple, high performance Thomson scattering diagnostic for high temperature plasma research

    Hartog, D.J.D.; Cekic, M.

    1994-02-01

    This Thomson scattering diagnostic is used to measure the electron temperature and density of the plasma in the MST reversed-field pinch, a magnetic confinement fusion research device. This diagnostic system is unique for its type in that it combines high performance with simple design and low cost components. In the design of this instrument, careful attention was given to the suppression of stray laser line light with simple and effective beam dumps, viewing dumps, aperatures, and a holographic edge filter. This allows the use of a single grating monochromator for dispersion of the Thomson scattered spectrum onto the microchannel plate detector. Alignment and calibration procedures for the laser beam delivery system, the scattered light collection system, and the spectrometer and detector are described. A sample Thomson scattered spectrum illustrates typical data

  12. Exploring Subpixel Learning Algorithms for Estimating Global Land Cover Fractions from Satellite Data Using High Performance Computing

    Uttam Kumar

    2017-10-01

    Full Text Available Land cover (LC refers to the physical and biological cover present over the Earth’s surface in terms of the natural environment such as vegetation, water, bare soil, etc. Most LC features occur at finer spatial scales compared to the resolution of primary remote sensing satellites. Therefore, observed data are a mixture of spectral signatures of two or more LC features resulting in mixed pixels. One solution to the mixed pixel problem is the use of subpixel learning algorithms to disintegrate the pixel spectrum into its constituent spectra. Despite the popularity and existing research conducted on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared the performance of several subpixel learning algorithms based on least squares, sparse regression, signal–subspace and geometrical methods. Analysis of the results obtained through computer-simulated and Landsat data indicated that fully constrained least squares (FCLS outperformed the other techniques. Further, FCLS was used to unmix global Web-Enabled Landsat Data to obtain abundances of substrate (S, vegetation (V and dark object (D classes. Due to the sheer nature of data and computational needs, we leveraged the NASA Earth Exchange (NEX high-performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into four classes, namely forest, farmland, water and urban areas (in conjunction with nighttime lights data over California, USA using a random forest classifier. Validation of these LC maps with the National Land Cover Database 2011 products and North American Forest Dynamics static forest map shows a 6% improvement in unmixing-based classification relative to per-pixel classification. As such, abundance maps continue to offer a useful alternative to high-spatial-resolution classified maps for forest inventory analysis, multi

  13. Unified, Cross-Platform, Open-Source Library Package for High-Performance Computing

    Kozacik, Stephen [EM Photonics, Inc., Newark, DE (United States)

    2017-05-15

    Compute power is continually increasing, but this increased performance is largely found in sophisticated computing devices and supercomputer resources that are difficult to use, resulting in under-utilization. We developed a unified set of programming tools that will allow users to take full advantage of the new technology by allowing them to work at a level abstracted away from the platform specifics, encouraging the use of modern computing systems, including government-funded supercomputer facilities.

  14. FLASHRAD: A 3D Rad Hard Memory Module For High Performance Space Computers, Phase I

    National Aeronautics and Space Administration — The computing capabilities of onboard spacecraft are a major limiting factor for accomplishing many classes of future missions. Although technology development...

  15. Very High-Performance Embedded Computing Will Allow Ambitious Space Science Investigation

    Pignol, Michel

    2005-01-01

    .... developed on radiation tolerant technologies. Unfortunately, the microprocessors today available on such technologies have the computing throughput which was available about 10 years ago on the commercial market...

  16. Simulation and high performance computing-Building a predictive capability for fusion

    Strand, P.I.; Coelho, R.; Coster, D.; Eriksson, L.-G.; Imbeaux, F.; Guillerminet, Bernard

    2010-01-01

    The Integrated Tokamak Modelling Task Force (ITM-TF) is developing an infrastructure where the validation needs, as being formulated in terms of multi-device data access and detailed physics comparisons aiming for inclusion of synthetic diagnostics in the simulation chain, are key components. As the activity and the modelling tools are aimed for general use, although focused on ITER plasmas, a device independent approach to data transport and a standardized approach to data management (data structures, naming, and access) is being developed in order to allow cross-validation between different fusion devices using a single toolset. Extensive work has already gone into, and is continuing to go into, the development of standardized descriptions of the data (Consistent Physical Objects). The longer term aim is a complete simulation platform which is expected to last and be extended in different ways for the coming 30 years. The technical underpinning is therefore of vital importance. In particular the platform needs to be extensible and open-ended to be able to take full advantage of not only today's most advanced technologies but also be able to marshal future developments. As a full level comprehensive prediction of ITER physics rapidly becomes expensive in terms of computing resources, the simulation framework needs to be able to use both grid and HPC computing facilities. Hence data access and code coupling technologies are required to be available for a heterogeneous, possibly distributed, environment. The developments in this area are pursued in a separate project-EUFORIA (EU Fusion for ITER Applications) which is providing about 15 professional person year (ppy) per annum from 14 different institutes. The range and size of the activity is not only technically challenging but is providing some unique management challenges in that a large and geographically distributed team (a truly pan-European set of researchers) need to be coordinated on a fairly detailed

  17. Computing in Research.

    Ashenhurst, Robert L.

    The introduction and diffusion of automatic computing facilities during the 1960's is reviewed; it is described as a time when research strategies in a broad variety of disciplines changed to take advantage of the newfound power provided by the computer. Several types of typical problems encountered by researchers who adopted the new technologies,…

  18. VLab: A Science Gateway for Distributed First Principles Calculations in Heterogeneous High Performance Computing Systems

    da Silveira, Pedro Rodrigo Castro

    2014-01-01

    This thesis describes the development and deployment of a cyberinfrastructure for distributed high-throughput computations of materials properties at high pressures and/or temperatures--the Virtual Laboratory for Earth and Planetary Materials--VLab. VLab was developed to leverage the aggregated computational power of grid systems to solve…

  19. High performance computing system in the framework of the Higgs boson studies

    Belyaev, Nikita; The ATLAS collaboration; Velikhov, Vasily; Konoplich, Rostislav

    2017-01-01

    The Higgs boson physics is one of the most important and promising fields of study in the modern high energy physics. It is important to notice, that GRID computing resources become strictly limited due to increasing amount of statistics, required for physics analyses and unprecedented LHC performance. One of the possibilities to address the shortfall of computing resources is the usage of computer institutes' clusters, commercial computing resources and supercomputers. To perform precision measurements of the Higgs boson properties in these realities, it is also highly required to have effective instruments to simulate kinematic distributions of signal events. In this talk we give a brief description of the modern distribution reconstruction method called Morphing and perform few efficiency tests to demonstrate its potential. These studies have been performed on the WLCG and Kurchatov Institute’s Data Processing Center, including Tier-1 GRID site and supercomputer as well. We also analyze the CPU efficienc...

  20. A parametric study on characteristics for nuclear design of high-performance research reactor

    Joe, D. G.; Lee, C. S.; Lee, B. C.; Seo, C. G.; Chae, H. T.; Park, C.

    2003-01-01

    A conceptual design of advanced research reactor with high neutron performance has been performed at KAERI based on design and operation experience obtained from HANARO. In this study, nuclear characteristics of design parameters such as various types of fuel assemblies, structural materials of core and fuel assembly, and the number of absorber rods were analyzed. Among rod, plate and tube type fuel assemblies considered, tube type assembly seems to be preferable as a high performance research reactor fuel because of high thermal margin and neutron flux in reflector. Aluminium block as a structural material of core was shown to be superior to flow tube due to higher reactivity and thermal flux in reflector. The stiffener to fix plates in th fuel assembly had the no impact on fast flux in central trap. The reduction of thermal flux in reflector caused by the stiffener was about 7%. If the control absorber rods of 4 mm thickness were chosen, it would be possible to operate the reactor with fresh fuel assemblies from the initial core

  1. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Packet-Level Analysis

    2015-09-01

    individual fragments using the hash-based method. In general, fragments 6 appear in order and relatively close to each other in the file. A fragment...data product derived from the data model is shown in Fig. 5, a Google Earth12 Keyhole Markup Language (KML) file. This product includes aggregate...System BLOb binary large object FPGA field-programmable gate array HPC high-performance computing IP Internet Protocol KML Keyhole Markup Language

  2. Coordinated Fault-Tolerance for High-Performance Computing Final Project Report

    Panda, Dhabaleswar Kumar [The Ohio State University; Beckman, Pete

    2011-07-28

    With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system through fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental implementations on top of

  3. Implementation of the Principal Component Analysis onto High-Performance Computer Facilities for Hyperspectral Dimensionality Reduction: Results and Comparisons

    Ernestina Martel

    2018-06-01

    Full Text Available Dimensionality reduction represents a critical preprocessing step in order to increase the efficiency and the performance of many hyperspectral imaging algorithms. However, dimensionality reduction algorithms, such as the Principal Component Analysis (PCA, suffer from their computationally demanding nature, becoming advisable for their implementation onto high-performance computer architectures for applications under strict latency constraints. This work presents the implementation of the PCA algorithm onto two different high-performance devices, namely, an NVIDIA Graphics Processing Unit (GPU and a Kalray manycore, uncovering a highly valuable set of tips and tricks in order to take full advantage of the inherent parallelism of these high-performance computing platforms, and hence, reducing the time that is required to process a given hyperspectral image. Moreover, the achieved results obtained with different hyperspectral images have been compared with the ones that were obtained with a field programmable gate array (FPGA-based implementation of the PCA algorithm that has been recently published, providing, for the first time in the literature, a comprehensive analysis in order to highlight the pros and cons of each option.

  4. Implementation of the Two-Point Angular Correlation Function on a High-Performance Reconfigurable Computer

    Volodymyr V. Kindratenko

    2009-01-01

    Full Text Available We present a parallel implementation of an algorithm for calculating the two-point angular correlation function as applied in the field of computational cosmology. The algorithm has been specifically developed for a reconfigurable computer. Our implementation utilizes a microprocessor and two reconfigurable processors on a dual-MAP SRC-6 system. The two reconfigurable processors are used as two application-specific co-processors. Two independent computational kernels are simultaneously executed on the reconfigurable processors while data pre-fetching from disk and initial data pre-processing are executed on the microprocessor. The overall end-to-end algorithm execution speedup achieved by this implementation is over 90× as compared to a sequential implementation of the algorithm executed on a single 2.8 GHz Intel Xeon microprocessor.

  5. Computer-Aided Chemical Product Design Framework: Design of High Performance and Environmentally Friendly Refrigerants

    Cignitti, Stefano; Zhang, Lei; Gani, Rafiqul

    properties and needs should carefully be selected for a given heat pump cycle to ensure that an optimum refrigerant is found? How can cycle performance and environmental criteria be integrated at the product design stage and not in post-design analysis? Computer-aided product design methods enable...... the possibility of designing novel molecules, mixtures and blends, such as refrigerants through a systematic framework (Cignitti et al., 2015; Yunus et al., 2014). In this presentation a computer-aided framework is presented for chemical product design through mathematical optimization. Here, molecules, mixtures...... and blends, are systematically designed through a decomposition based solution method. Given a problem definition, computer-aided molecular design (CAMD) problem is defined, which is formulated into a mixed integer nonlinear program (MINLP). The decomposed solution method then sequentially divides the MINLP...

  6. A Protocol for Provably Secure Authentication of a Tiny Entity to a High Performance Computing One

    Siniša Tomović

    2016-01-01

    Full Text Available The problem of developing authentication protocols dedicated to a specific scenario where an entity with limited computational capabilities should prove the identity to a computationally powerful Verifier is addressed. An authentication protocol suitable for the considered scenario which jointly employs the learning parity with noise (LPN problem and a paradigm of random selection is proposed. It is shown that the proposed protocol is secure against active attacking scenarios and so called GRS man-in-the-middle (MIM attacking scenarios. In comparison with the related previously reported authentication protocols the proposed one provides reduction of the implementation complexity and at least the same level of the cryptographic security.

  7. High-performance secure multi-party computation for data mining applications

    Bogdanov, Dan; Niitsoo, Margus; Toft, Tomas

    2012-01-01

    Secure multi-party computation (MPC) is a technique well suited for privacy-preserving data mining. Even with the recent progress in two-party computation techniques such as fully homomorphic encryption, general MPC remains relevant as it has shown promising performance metrics in real...... operations such as multiplication and comparison. Secondly, the confidential processing of financial data requires the use of more complex primitives, including a secure division operation. This paper describes new protocols in the Sharemind model for secure multiplication, share conversion, equality, bit...

  8. A High Performance Computing Framework for Physics-based Modeling and Simulation of Military Ground Vehicles

    2011-03-25

    cluster. The co-processing idea is the enabler of the heterogeneous computing concept advertised recently as the paradigm capable of delivering exascale ...Petascale to Exascale : Extending Intel’s HPC Commitment: http://download.intel.com/pressroom/archive/reference/ISC_2010_Skaugen_keynote.pdf in

  9. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    Hadjidoukas, P. E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.

    2015-03-01

    We present Π4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.

  10. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    Hadjidoukas, P.E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.

    2015-01-01

    We present Π4U, 1 an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow

  11. Achieving high performance in numerical computations on RISC workstations and parallel systems

    Goedecker, S. [Max-Planck Inst. for Solid State Research, Stuttgart (Germany); Hoisie, A. [Los Alamos National Lab., NM (United States)

    1997-08-20

    The nominal peak speeds of both serial and parallel computers is raising rapidly. At the same time however it is becoming increasingly difficult to get out a significant fraction of this high peak speed from modern computer architectures. In this tutorial the authors give the scientists and engineers involved in numerically demanding calculations and simulations the necessary basic knowledge to write reasonably efficient programs. The basic principles are rather simple and the possible rewards large. Writing a program by taking into account optimization techniques related to the computer architecture can significantly speedup your program, often by factors of 10--100. As such, optimizing a program can for instance be a much better solution than buying a faster computer. If a few basic optimization principles are applied during program development, the additional time needed for obtaining an efficient program is practically negligible. In-depth optimization is usually only needed for a few subroutines or kernels and the effort involved is therefore also acceptable.

  12. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    Hadjidoukas, P.E.; Angelikopoulos, P. [Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 (Switzerland); Papadimitriou, C. [Department of Mechanical Engineering, University of Thessaly, GR-38334 Volos (Greece); Koumoutsakos, P., E-mail: petros@ethz.ch [Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 (Switzerland)

    2015-03-01

    We present Π4U,{sup 1} an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.

  13. High Performance Parallel Processing Project: Industrial computing initiative. Progress reports for fiscal year 1995

    Koniges, A.

    1996-02-09

    This project is a package of 11 individual CRADA`s plus hardware. This innovative project established a three-year multi-party collaboration that is significantly accelerating the availability of commercial massively parallel processing computing software technology to U.S. government, academic, and industrial end-users. This report contains individual presentations from nine principal investigators along with overall program information.

  14. A high performance computing framework for physics-based modeling and simulation of military ground vehicles

    Negrut, Dan; Lamb, David; Gorsich, David

    2011-06-01

    This paper describes a software infrastructure made up of tools and libraries designed to assist developers in implementing computational dynamics applications running on heterogeneous and distributed computing environments. Together, these tools and libraries compose a so called Heterogeneous Computing Template (HCT). The heterogeneous and distributed computing hardware infrastructure is assumed herein to be made up of a combination of CPUs and Graphics Processing Units (GPUs). The computational dynamics applications targeted to execute on such a hardware topology include many-body dynamics, smoothed-particle hydrodynamics (SPH) fluid simulation, and fluid-solid interaction analysis. The underlying theme of the solution approach embraced by HCT is that of partitioning the domain of interest into a number of subdomains that are each managed by a separate core/accelerator (CPU/GPU) pair. Five components at the core of HCT enable the envisioned distributed computing approach to large-scale dynamical system simulation: (a) the ability to partition the problem according to the one-to-one mapping; i.e., spatial subdivision, discussed above (pre-processing); (b) a protocol for passing data between any two co-processors; (c) algorithms for element proximity computation; and (d) the ability to carry out post-processing in a distributed fashion. In this contribution the components (a) and (b) of the HCT are demonstrated via the example of the Discrete Element Method (DEM) for rigid body dynamics with friction and contact. The collision detection task required in frictional-contact dynamics (task (c) above), is shown to benefit on the GPU of a two order of magnitude gain in efficiency when compared to traditional sequential implementations. Note: Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not imply its endorsement, recommendation, or favoring by the United States Army. The views and

  15. Research in computer science

    Ortega, J. M.

    1986-01-01

    Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.

  16. High-performance parallel computing in the classroom using the public goods game as an example

    Perc, Matjaž

    2017-07-01

    The use of computers in statistical physics is common because the sheer number of equations that describe the behaviour of an entire system particle by particle often makes it impossible to solve them exactly. Monte Carlo methods form a particularly important class of numerical methods for solving problems in statistical physics. Although these methods are simple in principle, their proper use requires a good command of statistical mechanics, as well as considerable computational resources. The aim of this paper is to demonstrate how the usage of widely accessible graphics cards on personal computers can elevate the computing power in Monte Carlo simulations by orders of magnitude, thus allowing live classroom demonstration of phenomena that would otherwise be out of reach. As an example, we use the public goods game on a square lattice where two strategies compete for common resources in a social dilemma situation. We show that the second-order phase transition to an absorbing phase in the system belongs to the directed percolation universality class, and we compare the time needed to arrive at this result by means of the main processor and by means of a suitable graphics card. Parallel computing on graphics processing units has been developed actively during the last decade, to the point where today the learning curve for entry is anything but steep for those familiar with programming. The subject is thus ripe for inclusion in graduate and advanced undergraduate curricula, and we hope that this paper will facilitate this process in the realm of physics education. To that end, we provide a documented source code for an easy reproduction of presented results and for further development of Monte Carlo simulations of similar systems.

  17. Medipix3 array high performance read-out board for synchrotron research

    Tartoni, N.; Horswell, I. C.; Marchal, J.; Gimenez, E. N.; Fearn, R. D.; Silfhout, R. G. van

    2010-01-01

    The Medipix3 ASIC is one of the most advanced chip that is presently available to build photon counting area detectors. The capabilities of the chip include adjacent pixels charge summing circuitry to sort out the distortion due to charge sharing, simultaneous counting and read-out that enables frames to be acquired without dead time, the colour mode of operation that enables up to eight energy bands to be acquired. In order to fully exploit the capabilities of the Medipix3 chip in synchrotron research, a high performance electronic board capable of driving large arrays of chips is necessary. We propose a parallel read-out board of Medipix3 chip arrays with a scalable architecture that allows driving the Medipix3 chip in all of its modes of operation. The board functions include the control of the chip arrays, data formatting and data compression, the management of the communications with the data storage devices, and operation in various trigger modes. In addition to this the board will have some 'intelligence' embedded. This will add some very important features to the final detector such as pattern recognition, capability of variable frame duration as a function of the photon flux, feedback to other equipment and real time calculations of data relevant to experiments such as the autocorrelation function.

  18. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D.; Volz, Kerstin

    2017-01-01

    Highlights: • We present STEMsalabim, a modern implementation of the multislice algorithm for simulation of STEM images. • Our package is highly parallelizable on high-performance computing clusters, combining shared and distributed memory architectures. • With STEMsalabim, computationally and memory expensive STEM image simulations can be carried out within reasonable time. - Abstract: We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

  19. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens

    Oelerich, Jan Oliver, E-mail: jan.oliver.oelerich@physik.uni-marburg.de; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D.; Volz, Kerstin

    2017-06-15

    Highlights: • We present STEMsalabim, a modern implementation of the multislice algorithm for simulation of STEM images. • Our package is highly parallelizable on high-performance computing clusters, combining shared and distributed memory architectures. • With STEMsalabim, computationally and memory expensive STEM image simulations can be carried out within reasonable time. - Abstract: We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

  20. Contributing to the design of run-time systems dedicated to high performance computing

    Perache, M.

    2006-10-01

    In the field of intensive scientific computing, the quest for performance has to face the increasing complexity of parallel architectures. Nowadays, these machines exhibit a deep memory hierarchy which complicates the design of efficient parallel applications. This thesis proposes a programming environment allowing to design efficient parallel programs on top of clusters of multi-processors. It features a programming model centered around collective communications and synchronizations, and provides load balancing facilities. The programming interface, named MPC, provides high level paradigms which are optimized according to the underlying architecture. The environment is fully functional and used within the CEA/DAM (TERANOVA) computing center. The evaluations presented in this document confirm the relevance of our approach. (author)

  1. Open source acceleration of wave optics simulations on energy efficient high-performance computing platforms

    Beck, Jeffrey; Bos, Jeremy P.

    2017-05-01

    We compare several modifications to the open-source wave optics package, WavePy, intended to improve execution time. Specifically, we compare the relative performance of the Intel MKL, a CPU based OpenCV distribution, and GPU-based version. Performance is compared between distributions both on the same compute platform and between a fully-featured computing workstation and the NVIDIA Jetson TX1 platform. Comparisons are drawn in terms of both execution time and power consumption. We have found that substituting the Fast Fourier Transform operation from OpenCV provides a marked improvement on all platforms. In addition, we show that embedded platforms offer some possibility for extensive improvement in terms of efficiency compared to a fully featured workstation.

  2. Heterogeneous Gpu&Cpu Cluster For High Performance Computing In Cryptography

    Michał Marks

    2012-01-01

    Full Text Available This paper addresses issues associated with distributed computing systems andthe application of mixed GPU&CPU technology to data encryption and decryptionalgorithms. We describe a heterogenous cluster HGCC formed by twotypes of nodes: Intel processor with NVIDIA graphics processing unit and AMDprocessor with AMD graphics processing unit (formerly ATI, and a novel softwareframework that hides the heterogeneity of our cluster and provides toolsfor solving complex scientific and engineering problems. Finally, we present theresults of numerical experiments. The considered case study is concerned withparallel implementations of selected cryptanalysis algorithms. The main goal ofthe paper is to show the wide applicability of the GPU&CPU technology tolarge scale computation and data processing.

  3. Quo vadis: Hydrologic inverse analyses using high-performance computing and a D-Wave quantum annealer

    O'Malley, D.; Vesselinov, V. V.

    2017-12-01

    Classical microprocessors have had a dramatic impact on hydrology for decades, due largely to the exponential growth in computing power predicted by Moore's law. However, this growth is not expected to continue indefinitely and has already begun to slow. Quantum computing is an emerging alternative to classical microprocessors. Here, we demonstrated cutting edge inverse model analyses utilizing some of the best available resources in both worlds: high-performance classical computing and a D-Wave quantum annealer. The classical high-performance computing resources are utilized to build an advanced numerical model that assimilates data from O(10^5) observations, including water levels, drawdowns, and contaminant concentrations. The developed model accurately reproduces the hydrologic conditions at a Los Alamos National Laboratory contamination site, and can be leveraged to inform decision-making about site remediation. We demonstrate the use of a D-Wave 2X quantum annealer to solve hydrologic inverse problems. This work can be seen as an early step in quantum-computational hydrology. We compare and contrast our results with an early inverse approach in classical-computational hydrology that is comparable to the approach we use with quantum annealing. Our results show that quantum annealing can be useful for identifying regions of high and low permeability within an aquifer. While the problems we consider are small-scale compared to the problems that can be solved with modern classical computers, they are large compared to the problems that could be solved with early classical CPUs. Further, the binary nature of the high/low permeability problem makes it well-suited to quantum annealing, but challenging for classical computers.

  4. Accelerating ATM Optimization Algorithms Using High Performance Computing Hardware, Phase II

    National Aeronautics and Space Administration — NASA is developing algorithms and methodologies for efficient air-traffic management. Several researchers have adopted an optimization framework for solving problems...

  5. Air Force Science & Technology Issues & Opportunities Regarding High Performance Embedded Computing

    2009-09-23

    price-performance advantage include: large scale simulations of neuromorphic computing models GOTCHA radar video SAR for wide area persistent...the handcuffs were not for me and that the military had so far got … Neuromorphic example: Robust recognition of occluded text Gotcha SAR PCID Image...Architecture 16 cores / chip 10 x 10 stacks / board50 chips / stack EDRAM AFPGA EDRAM AFPGA EDRAM AFPGA EDRAM AFPGA EDRAM AFPGA EDRAM AFPGA EDRAM AFPGA EDRAM

  6. High performance graphics processor based computed tomography reconstruction algorithms for nuclear and other large scale applications.

    Jimenez, Edward S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Orr, Laurel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thompson, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-09-01

    The goal of this work is to develop a fast computed tomography (CT) reconstruction algorithm based on graphics processing units (GPU) that achieves significant improvement over traditional central processing unit (CPU) based implementations. The main challenge in developing a CT algorithm that is capable of handling very large datasets is parallelizing the algorithm in such a way that data transfer does not hinder performance of the reconstruction algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Science and Technology (S&T) community is starting to adopt in many fields where CPU-based computing is the norm. GPGPU programming requires a new approach to algorithm development that utilizes massively multi-threaded environments. Multi-threaded algorithms in general are difficult to optimize since performance bottlenecks occur that are non-existent in single-threaded algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm can be developed; computational times could be improved by a factor of 20. Additionally, cost benefits will be realized as commodity graphics hardware could potentially replace expensive supercomputers and high-end workstations. This project will take advantage of the CUDA programming environment and attempt to parallelize the task in such a way that multiple slices of the reconstruction volume are computed simultaneously. This work will also take advantage of the GPU memory by utilizing asynchronous memory transfers, GPU texture memory, and (when possible) pinned host memory so that the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware interpolators, and varying memory hierarchy) that will allow for additional performance improvements.

  7. High-Throughput Computing on High-Performance Platforms: A Case Study

    Oleynik, D [University of Texas at Arlington; Panitkin, S [Brookhaven National Laboratory (BNL); Matteo, Turilli [Rutgers University; Angius, Alessio [Rutgers University; Oral, H Sarp [ORNL; De, K [University of Texas at Arlington; Klimentov, A [Brookhaven National Laboratory (BNL); Wells, Jack C. [ORNL; Jha, S [Rutgers University

    2017-10-01

    The computing systems used by LHC experiments has historically consisted of the federation of hundreds to thousands of distributed resources, ranging from small to mid-size resource. In spite of the impressive scale of the existing distributed computing solutions, the federation of small to mid-size resources will be insufficient to meet projected future demands. This paper is a case study of how the ATLAS experiment has embraced Titan -- a DOE leadership facility in conjunction with traditional distributed high- throughput computing to reach sustained production scales of approximately 52M core-hours a years. The three main contributions of this paper are: (i) a critical evaluation of design and operational considerations to support the sustained, scalable and production usage of Titan; (ii) a preliminary characterization of a next generation executor for PanDA to support new workloads and advanced execution modes; and (iii) early lessons for how current and future experimental and observational systems can be integrated with production supercomputers and other platforms in a general and extensible manner.

  8. FPGA hardware acceleration for high performance neutron transport computation based on agent methodology - 318

    Shanjie, Xiao; Tatjana, Jevremovic

    2010-01-01

    The accurate, detailed and 3D neutron transport analysis for Gen-IV reactors is still time-consuming regardless of advanced computational hardware available in developed countries. This paper introduces a new concept in addressing the computational time while persevering the detailed and accurate modeling; a specifically designed FPGA co-processor accelerates robust AGENT methodology for complex reactor geometries. For the first time this approach is applied to accelerate the neutronics analysis. The AGENT methodology solves neutron transport equation using the method of characteristics. The AGENT methodology performance was carefully analyzed before the hardware design based on the FPGA co-processor was adopted. The most time-consuming kernel part is then transplanted into the FPGA co-processor. The FPGA co-processor is designed with data flow-driven non von-Neumann architecture and has much higher efficiency than the conventional computer architecture. Details of the FPGA co-processor design are introduced and the design is benchmarked using two different examples. The advanced chip architecture helps the FPGA co-processor obtaining more than 20 times speed up with its working frequency much lower than the CPU frequency. (authors)

  9. An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology.

    Deodhar, Suruchi; Bisset, Keith R; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V

    2014-07-01

    We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity.

  10. Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures

    Brust, Frederick W. [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Punch, Edward F. [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Twombly, Elizabeth Kurth [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Kalyanam, Suresh [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Kennedy, James [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Hattery, Garty R. [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Dodds, Robert H. [Professional Consulting Services, Inc., Lisle, IL (United States); Mach, Justin C [Caterpillar, Peoria, IL (United States); Chalker, Alan [Ohio Supercomputer Center (OSC), Columbus, OH (United States); Nicklas, Jeremy [Ohio Supercomputer Center (OSC), Columbus, OH (United States); Gohar, Basil M [Ohio Supercomputer Center (OSC), Columbus, OH (United States); Hudak, David [Ohio Supercomputer Center (OSC), Columbus, OH (United States)

    2016-12-30

    This report summarizes the final product developed for the US DOE Small Business Innovation Research (SBIR) Phase II grant made to Engineering Mechanics Corporation of Columbus (Emc2) between April 16, 2014 and August 31, 2016 titled ‘Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures’. Many US companies have moved fabrication and production facilities off shore because of cheaper labor costs. A key aspect in bringing these jobs back to the US is the use of technology to render US-made fabrications more cost-efficient overall with higher quality. One significant advantage that has emerged in the US over the last two decades is the use of virtual design for fabrication of small and large structures in weld fabrication industries. Industries that use virtual design and analysis tools have reduced material part size, developed environmentally-friendly fabrication processes, improved product quality and performance, and reduced manufacturing costs. Indeed, Caterpillar Inc. (CAT), one of the partners in this effort, continues to have a large fabrication presence in the US because of the use of weld fabrication modeling to optimize fabrications by controlling weld residual stresses and distortions and improving fatigue, corrosion, and fracture performance. This report describes Emc2’s DOE SBIR Phase II final results to extend an existing, state-of-the-art software code, Virtual Fabrication Technology (VFT®), currently used to design and model large welded structures prior to fabrication - to a broader range of products with widespread applications for small and medium-sized enterprises (SMEs). VFT® helps control distortion, can minimize and/or control residual stresses, control welding microstructure, and pre-determine welding parameters such as weld-sequencing, pre-bending, thermal-tensioning, etc. VFT® uses material properties, consumable properties, etc. as inputs

  11. HPGMG 1.0: A Benchmark for Ranking High Performance Computing Systems

    Adams, Mark; Brown, Jed; Shalf, John; Straalen, Brian Van; Strohmaier, Erich; Williams, Sam

    2014-05-05

    This document provides an overview of the benchmark ? HPGMG ? for ranking large scale general purpose computers for use on the Top500 list [8]. We provide a rationale for the need for a replacement for the current metric HPL, some background of the Top500 list and the challenges of developing such a metric; we discuss our design philosophy and methodology, and an overview of the specification of the benchmark. The primary documentation with maintained details on the specification can be found at hpgmg.org and the Wiki and benchmark code itself can be found in the repository https://bitbucket.org/hpgmg/hpgmg.

  12. 76 FR 36986 - Export Controls for High Performance Computers: Wassenaar Arrangement Agreement Implementation...

    2011-06-24

    ... and export control standards. Croatia is a member of the Australia Group, the Nuclear Suppliers Group..., Exports, Inventions and patents, Research science and technology. 15 CFR Part 740 Administrative practice...

  13. New Developments in Modeling MHD Systems on High Performance Computing Architectures

    Germaschewski, K.; Raeder, J.; Larson, D. J.; Bhattacharjee, A.

    2009-04-01

    Modeling the wide range of time and length scales present even in fluid models of plasmas like MHD and X-MHD (Extended MHD including two fluid effects like Hall term, electron inertia, electron pressure gradient) is challenging even on state-of-the-art supercomputers. In the last years, HPC capacity has continued to grow exponentially, but at the expense of making the computer systems more and more difficult to program in order to get maximum performance. In this paper, we will present a new approach to managing the complexity caused by the need to write efficient codes: Separating the numerical description of the problem, in our case a discretized right hand side (r.h.s.), from the actual implementation of efficiently evaluating it. An automatic code generator is used to describe the r.h.s. in a quasi-symbolic form while leaving the translation into efficient and parallelized code to a computer program itself. We implemented this approach for OpenGGCM (Open General Geospace Circulation Model), a model of the Earth's magnetosphere, which was accelerated by a factor of three on regular x86 architecture and a factor of 25 on the Cell BE architecture (commonly known for its deployment in Sony's PlayStation 3).

  14. Statistical physics of fracture: scientific discovery through high-performance computing

    Kumar, Phani; Nukala, V V; Simunovic, Srdan; Mills, Richard T

    2006-01-01

    The paper presents the state-of-the-art algorithmic developments for simulating the fracture of disordered quasi-brittle materials using discrete lattice systems. Large scale simulations are often required to obtain accurate scaling laws; however, due to computational complexity, the simulations using the traditional algorithms were limited to small system sizes. We have developed two algorithms: a multiple sparse Cholesky downdating scheme for simulating 2D random fuse model systems, and a block-circulant preconditioner for simulating 2D random fuse model systems. Using these algorithms, we were able to simulate fracture of largest ever lattice system sizes (L = 1024 in 2D, and L = 64 in 3D) with extensive statistical sampling. Our recent simulations on 1024 processors of Cray-XT3 and IBM Blue-Gene/L have further enabled us to explore fracture of 3D lattice systems of size L = 200, which is a significant computational achievement. These largest ever numerical simulations have enhanced our understanding of physics of fracture; in particular, we analyze damage localization and its deviation from percolation behavior, scaling laws for damage density, universality of fracture strength distribution, size effect on the mean fracture strength, and finally the scaling of crack surface roughness

  15. ABINIT: Plane-Wave-Based Density-Functional Theory on High Performance Computers

    Torrent, Marc

    2014-03-01

    For several years, a continuous effort has been produced to adapt electronic structure codes based on Density-Functional Theory to the future computing architectures. Among these codes, ABINIT is based on a plane-wave description of the wave functions which allows to treat systems of any kind. Porting such a code on petascale architectures pose difficulties related to the many-body nature of the DFT equations. To improve the performances of ABINIT - especially for what concerns standard LDA/GGA ground-state and response-function calculations - several strategies have been followed: A full multi-level parallelisation MPI scheme has been implemented, exploiting all possible levels and distributing both computation and memory. It allows to increase the number of distributed processes and could not be achieved without a strong restructuring of the code. The core algorithm used to solve the eigen problem (``Locally Optimal Blocked Congugate Gradient''), a Blocked-Davidson-like algorithm, is based on a distribution of processes combining plane-waves and bands. In addition to the distributed memory parallelization, a full hybrid scheme has been implemented, using standard shared-memory directives (openMP/openACC) or porting some comsuming code sections to Graphics Processing Units (GPU). As no simple performance model exists, the complexity of use has been increased; the code efficiency strongly depends on the distribution of processes among the numerous levels. ABINIT is able to predict the performances of several process distributions and automatically choose the most favourable one. On the other hand, a big effort has been carried out to analyse the performances of the code on petascale architectures, showing which sections of codes have to be improved; they all are related to Matrix Algebra (diagonalisation, orthogonalisation). The different strategies employed to improve the code scalability will be described. They are based on an exploration of new diagonalization

  16. Operational mesoscale atmospheric dispersion prediction using high performance parallel computing cluster for emergency response

    Srinivas, C.V.; Venkatesan, R.; Muralidharan, N.V.; Das, Someshwar; Dass, Hari; Eswara Kumar, P.

    2005-08-01

    An operational atmospheric dispersion prediction system is implemented on a cluster super computer for 'Online Emergency Response' for Kalpakkam nuclear site. The numerical system constitutes a parallel version of a nested grid meso-scale meteorological model MM5 coupled to a random walk particle dispersion model FLEXPART. The system provides 48 hour forecast of the local weather and radioactive plume dispersion due to hypothetical air borne releases in a range of 100 km around the site. The parallel code was implemented on different cluster configurations like distributed and shared memory systems. Results of MM5 run time performance for 1-day prediction are reported on all the machines available for testing. A reduction of 5 times in runtime is achieved using 9 dual Xeon nodes (18 physical/36 logical processors) compared to a single node sequential run. Based on the above run time results a cluster computer facility with 9-node Dual Xeon is commissioned at IGCAR for model operation. The run time of a triple nested domain MM5 is about 4 h for 24 h forecast. The system has been operated continuously for a few months and results were ported on the IMSc home page. Initial and periodic boundary condition data for MM5 are provided by NCMRWF, New Delhi. An alternative source is found to be NCEP, USA. These two sources provide the input data to the operational models at different spatial and temporal resolutions and using different assimilation methods. A comparative study on the results of forecast is presented using these two data sources for present operational use. Slight improvement is noticed in rainfall, winds, geopotential heights and the vertical atmospheric structure while using NCEP data probably because of its high spatial and temporal resolution. (author)

  17. Technologies and tools for high-performance distributed computing. Final report

    Karonis, Nicholas T.

    2000-05-01

    In this project we studied the practical use of the MPI message-passing interface in advanced distributed computing environments. We built on the existing software infrastructure provided by the Globus Toolkit{trademark}, the MPICH portable implementation of MPI, and the MPICH-G integration of MPICH with Globus. As a result of this project we have replaced MPICH-G with its successor MPICH-G2, which is also an integration of MPICH with Globus. MPICH-G2 delivers significant improvements in message passing performance when compared to its predecessor MPICH-G and was based on superior software design principles resulting in a software base that was much easier to make the functional extensions and improvements we did. Using Globus services we replaced the default implementation of MPI's collective operations in MPICH-G2 with more efficient multilevel topology-aware collective operations which, in turn, led to the development of a new timing methodology for broadcasts [8]. MPICH-G2 was extended to include client/server functionality from the MPI-2 standard [23] to facilitate remote visualization applications and, through the use of MPI idioms, MPICH-G2 provided application-level control of quality-of-service parameters as well as application-level discovery of underlying Grid-topology information. Finally, MPICH-G2 was successfully used in a number of applications including an award-winning record-setting computation in numerical relativity. In the sections that follow we describe in detail the accomplishments of this project, we present experimental results quantifying the performance improvements, and conclude with a discussion of our applications experiences. This project resulted in a significant increase in the utility of MPICH-G2.

  18. Selecting a Benchmark Suite to Profile High-Performance Computing (HPC) Machines

    2014-11-01

    architectures. Machines now contain central processing units (CPUs), graphics processing units (GPUs), and many integrated core ( MIC ) architecture all...evaluate the feasibility and applicability of a new architecture just released to the market . Researchers are often unsure how available resources will...architectures. Having a suite of programs running on different architectures, such as GPUs, MICs , and CPUs, adds complexity and technical challenges

  19. High-Performance Computing Opportunities and Challenges for Army R&D

    2006-01-01

    vaccines and immune enhancements for expeditionary warfare and home- land security (including gene vaccines, edible vaccines, and radioprotective...key uses for HPC use in biotechnology research stem from the need to • Create movies /simulations of biological processes. Movies are a basic tool of

  20. FY07 NRL DoD High Performance Computing Modernization Program Annual Reports

    2008-09-05

    41 Mark R. Pederson ,1 Tunna Baruah,2 Steven Richardson,3 Rajendre Zope,1 and Reeshemah Allen1 1Naval Research Laboratory, Washington, DC...DC vii Acoustic Propagation in Littoral Sub-Mesoscale Model Environments.....................61 Roger M. Oba,1 Colin Shen,1 Patrick...R ea ct io n ra te , K gm ol e/ m 1 s ec ( l ef t p ic tu re ) 12 Title: Simulations of the Ionosphere and Magnetosphere Author(s): S. P

  1. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations

    Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan

    2018-01-01

    Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.

  2. A high performance, low power computational platform for complex sensing operations in smart cities

    Jiang, Jiming; Claudel, Christian

    2017-01-01

    This paper presents a new wireless platform designed for an integrated traffic/flash flood monitoring system. The sensor platform is built around a 32-bit ARM Cortex M4 microcontroller and a 2.4GHz 802.15.4802.15.4 ISM compliant radio module. It can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. This platform is specifically designed for solar-powered, low bandwidth, high computational performance wireless sensor network applications. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debugging. We illustrate the performance of this wireless sensor platform on complex problems arising in smart cities, such as traffic flow monitoring, machine-learning-based flash flood monitoring or Kalman-filter based vehicle trajectory estimation. All design files have been uploaded and shared in an open science framework, and can be accessed from [1]. The hardware design is under CERN Open Hardware License v1.2.

  3. A high performance, low power computational platform for complex sensing operations in smart cities

    Jiang, Jiming

    2017-02-02

    This paper presents a new wireless platform designed for an integrated traffic/flash flood monitoring system. The sensor platform is built around a 32-bit ARM Cortex M4 microcontroller and a 2.4GHz 802.15.4802.15.4 ISM compliant radio module. It can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. This platform is specifically designed for solar-powered, low bandwidth, high computational performance wireless sensor network applications. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debugging. We illustrate the performance of this wireless sensor platform on complex problems arising in smart cities, such as traffic flow monitoring, machine-learning-based flash flood monitoring or Kalman-filter based vehicle trajectory estimation. All design files have been uploaded and shared in an open science framework, and can be accessed from [1]. The hardware design is under CERN Open Hardware License v1.2.

  4. The Livermore Brain: Massive Deep Learning Networks Enabled by High Performance Computing

    Chen, Barry Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-29

    The proliferation of inexpensive sensor technologies like the ubiquitous digital image sensors has resulted in the collection and sharing of vast amounts of unsorted and unexploited raw data. Companies and governments who are able to collect and make sense of large datasets to help them make better decisions more rapidly will have a competitive advantage in the information era. Machine Learning technologies play a critical role for automating the data understanding process; however, to be maximally effective, useful intermediate representations of the data are required. These representations or “features” are transformations of the raw data into a form where patterns are more easily recognized. Recent breakthroughs in Deep Learning have made it possible to learn these features from large amounts of labeled data. The focus of this project is to develop and extend Deep Learning algorithms for learning features from vast amounts of unlabeled data and to develop the HPC neural network training platform to support the training of massive network models. This LDRD project succeeded in developing new unsupervised feature learning algorithms for images and video and created a scalable neural network training toolkit for HPC. Additionally, this LDRD helped create the world’s largest freely-available image and video dataset supporting open multimedia research and used this dataset for training our deep neural networks. This research helped LLNL capture several work-for-others (WFO) projects, attract new talent, and establish collaborations with leading academic and commercial partners. Finally, this project demonstrated the successful training of the largest unsupervised image neural network using HPC resources and helped establish LLNL leadership at the intersection of Machine Learning and HPC research.

  5. Information Power Grid: Distributed High-Performance Computing and Large-Scale Data Management for Science and Engineering

    Johnston, William E.; Gannon, Dennis; Nitzberg, Bill

    2000-01-01

    We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3

  6. Development of three-dimensional neoclassical transport simulation code with high performance Fortran on a vector-parallel computer

    Satake, Shinsuke; Okamoto, Masao; Nakajima, Noriyoshi; Takamaru, Hisanori

    2005-11-01

    A neoclassical transport simulation code (FORTEC-3D) applicable to three-dimensional configurations has been developed using High Performance Fortran (HPF). Adoption of computing techniques for parallelization and a hybrid simulation model to the δf Monte-Carlo method transport simulation, including non-local transport effects in three-dimensional configurations, makes it possible to simulate the dynamism of global, non-local transport phenomena with a self-consistent radial electric field within a reasonable computation time. In this paper, development of the transport code using HPF is reported. Optimization techniques in order to achieve both high vectorization and parallelization efficiency, adoption of a parallel random number generator, and also benchmark results, are shown. (author)

  7. Optical Computing - Research Trends

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 7. Optical Computing - Research Trends. Debabrata Goswami. General Article Volume 8 Issue 7 July 2003 pp 8-21. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/008/07/0008-0021. Keywords.

  8. Using the Eclipse Parallel Tools Platform to Assist Earth Science Model Development and Optimization on High Performance Computers

    Alameda, J. C.

    2011-12-01

    Development and optimization of computational science models, particularly on high performance computers, and with the advent of ubiquitous multicore processor systems, practically on every system, has been accomplished with basic software tools, typically, command-line based compilers, debuggers, performance tools that have not changed substantially from the days of serial and early vector computers. However, model complexity, including the complexity added by modern message passing libraries such as MPI, and the need for hybrid code models (such as openMP and MPI) to be able to take full advantage of high performance computers with an increasing core count per shared memory node, has made development and optimization of such codes an increasingly arduous task. Additional architectural developments, such as many-core processors, only complicate the situation further. In this paper, we describe how our NSF-funded project, "SI2-SSI: A Productive and Accessible Development Workbench for HPC Applications Using the Eclipse Parallel Tools Platform" (WHPC) seeks to improve the Eclipse Parallel Tools Platform, an environment designed to support scientific code development targeted at a diverse set of high performance computing systems. Our WHPC project to improve Eclipse PTP takes an application-centric view to improve PTP. We are using a set of scientific applications, each with a variety of challenges, and using PTP to drive further improvements to both the scientific application, as well as to understand shortcomings in Eclipse PTP from an application developer perspective, to drive our list of improvements we seek to make. We are also partnering with performance tool providers, to drive higher quality performance tool integration. We have partnered with the Cactus group at Louisiana State University to improve Eclipse's ability to work with computational frameworks and extremely complex build systems, as well as to develop educational materials to incorporate into

  9. Development of a Computational Steering Framework for High Performance Computing Environments on Blue Gene/P Systems

    Danani, Bob K.

    2012-01-01

    of simulation results in a post-processing step is now transformed into a real-time interactive workflow that significantly reduces development and testing time. Computational steering provides the capability to direct or re-direct the progress of a simulation

  10. Photons, photosynthesis, and high-performance computing: challenges, progress, and promise of modeling metabolism in green algae

    Chang, C H; Graf, P; Alber, D M; Kim, K; Murray, G; Posewitz, M; Seibert, M

    2008-01-01

    The complexity associated with biological metabolism considered at a kinetic level presents a challenge to quantitative modeling. In particular, the relatively sparse knowledge of parameters for enzymes with known kinetic responses is problematic. The possible space of these parameters is of high-dimension, and sampling of such a space typifies a combinatorial explosion of possible dynamic states. However, with sufficient quantitative transcriptomics, proteomics, and metabolomics data at hand, these challenges could be met by high-performance software with sampling, fitting, and optimization capabilities. With this in mind, we present the High-Performance Systems Biology Toolkit HiPer SBTK, an evolving software package to simulate, fit, and optimize metabolite concentrations and fluxes within the space of rate and binding parameters associated with detailed enzyme kinetic models. We present our chosen modeling paradigm for the formulation of metabolic pathway models, the means to address the challenge of representing such models in a precise and persistent fashion using the standardized Systems Biology Markup Language, and our second-generation model of H2-associated Chlamydomonas metabolism. Processing of such models for hierarchically parallelized simulation and optimization, job specification by the user through a GUI interface, software capabilities and initial scaling data, and the mapping of the computation to biological questions is also discussed. Moreover, we present near-term future software and model development goals

  11. Physical modeling and high-performance GPU computing for characterization, interception, and disruption of hazardous near-Earth objects

    Kaplinger, Brian Douglas

    For the past few decades, both the scientific community and the general public have been becoming more aware that the Earth lives in a shooting gallery of small objects. We classify all of these asteroids and comets, known or unknown, that cross Earth's orbit as near-Earth objects (NEOs). A look at our geologic history tells us that NEOs have collided with Earth in the past, and we expect that they will continue to do so. With thousands of known NEOs crossing the orbit of Earth, there has been significant scientific interest in developing the capability to deflect an NEO from an impacting trajectory. This thesis applies the ideas of Smoothed Particle Hydrodynamics (SPH) theory to the NEO disruption problem. A simulation package was designed that allows efficacy simulation to be integrated into the mission planning and design process. This is done by applying ideas in high-performance computing (HPC) on the computer graphics processing unit (GPU). Rather than prove a concept through large standalone simulations on a supercomputer, a highly parallel structure allows for flexible, target dependent questions to be resolved. Built around nonclassified data and analysis, this computer package will allow academic institutions to better tackle the issue of NEO mitigation effectiveness.

  12. ClustalXeed: a GUI-based grid computation version for high performance and terabyte size multiple sequence alignment

    Kim Taeho

    2010-09-01

    Full Text Available Abstract Background There is an increasing demand to assemble and align large-scale biological sequence data sets. The commonly used multiple sequence alignment programs are still limited in their ability to handle very large amounts of sequences because the system lacks a scalable high-performance computing (HPC environment with a greatly extended data storage capacity. Results We designed ClustalXeed, a software system for multiple sequence alignment with incremental improvements over previous versions of the ClustalX and ClustalW-MPI software. The primary advantage of ClustalXeed over other multiple sequence alignment software is its ability to align a large family of protein or nucleic acid sequences. To solve the conventional memory-dependency problem, ClustalXeed uses both physical random access memory (RAM and a distributed file-allocation system for distance matrix construction and pair-align computation. The computation efficiency of disk-storage system was markedly improved by implementing an efficient load-balancing algorithm, called "idle node-seeking task algorithm" (INSTA. The new editing option and the graphical user interface (GUI provide ready access to a parallel-computing environment for users who seek fast and easy alignment of large DNA and protein sequence sets. Conclusions ClustalXeed can now compute a large volume of biological sequence data sets, which were not tractable in any other parallel or single MSA program. The main developments include: 1 the ability to tackle larger sequence alignment problems than possible with previous systems through markedly improved storage-handling capabilities. 2 Implementing an efficient task load-balancing algorithm, INSTA, which improves overall processing times for multiple sequence alignment with input sequences of non-uniform length. 3 Support for both single PC and distributed cluster systems.

  13. Leveraging the Power of High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome Workflow

    Wonczak, Stephan; Thiele, Holger; Nieroda, Lech; Jabbari, Kamel; Borowski, Stefan; Sinha, Vishal; Gunia, Wilfried; Lang, Ulrich; Achter, Viktor; Nürnberg, Peter

    2015-01-01

    Next generation sequencing (NGS) has been a great success and is now a standard method of research in the life sciences. With this technology, dozens of whole genomes or hundreds of exomes can be sequenced in rather short time, producing huge amounts of data. Complex bioinformatics analyses are required to turn these data into scientific findings. In order to run these analyses fast, automated workflows implemented on high performance computers are state of the art. While providing sufficient compute power and storage to meet the NGS data challenge, high performance computing (HPC) systems require special care when utilized for high throughput processing. This is especially true if the HPC system is shared by different users. Here, stability, robustness and maintainability are as important for automated workflows as speed and throughput. To achieve all of these aims, dedicated solutions have to be developed. In this paper, we present the tricks and twists that we utilized in the implementation of our exome data processing workflow. It may serve as a guideline for other high throughput data analysis projects using a similar infrastructure. The code implementing our solutions is provided in the supporting information files. PMID:25942438

  14. High performance computing of density matrix renormalization group method for 2-dimensional model. Parallelization strategy toward peta computing

    Yamada, Susumu; Igarashi, Ryo; Machida, Masahiko; Imamura, Toshiyuki; Okumura, Masahiko; Onishi, Hiroaki

    2010-01-01

    We parallelize the density matrix renormalization group (DMRG) method, which is a ground-state solver for one-dimensional quantum lattice systems. The parallelization allows us to extend the applicable range of the DMRG to n-leg ladders i.e., quasi two-dimension cases. Such an extension is regarded to bring about several breakthroughs in e.g., quantum-physics, chemistry, and nano-engineering. However, the straightforward parallelization requires all-to-all communications between all processes which are unsuitable for multi-core systems, which is a mainstream of current parallel computers. Therefore, we optimize the all-to-all communications by the following two steps. The first one is the elimination of the communications between all processes by only rearranging data distribution with the communication data amount kept. The second one is the avoidance of the communication conflict by rescheduling the calculation and the communication. We evaluate the performance of the DMRG method on multi-core supercomputers and confirm that our two-steps tuning is quite effective. (author)

  15. Research on optimizing components of microfine high-performance composite cementitious materials

    Hu Shuguang; Guan Xuemao; Ding Qingjun

    2002-01-01

    The relationship between material components and mechanical properties was studied in terms of composite material principles and orthogonal experimental design. Moreover, the microstructure of microfine high-performance composite cementitious material (MHPCC) paste was investigated by means of scanning electron microscopy (SEM) methods. The results showed that the composite material consisting of blast furnace slag (BFS), gypsum (G 2 ) and expansive agent (EA) could obviously improve the strength of the cementitious material containing 40% fly ash (FA). Although microfine cement (MC) was merely 45% percent of the MHPCC, the compressive strength of MHPCC paste was higher than that of neat MC paste. BFS played an important role in MHPCC. The optimum-added quantity of BFS was 15%. The needle-shaped ettringite obtained from the EA reacting with Ca(OH) 2 forms a three-dimensional network structure, which not only improved the early strength of MHPCC paste but also increased its late strength. The reason was that the network structure, which was similar to a fiber-reinforced composite, was formed in the late period of hydration with the progress of hydration and the deposition of hydration products into the network structure

  16. Proceedings of the High Performance Embedded Computing Workshop (HPEC 2006) (10th). Held in Lexington, Massachusetts on September 19-21, 2006 (CD-ROM)

    Kepner, Jeremy

    2007-01-01

    ...: 1 CD-ROM; 4 3/4 in.; 78.3 MB. ABSTRACT: The High-Performance Embedded Computing (HPEC) technical committee announced the tenth annual HPEC Workshop held in September 2006 at MIT Lincoln Laboratory in Lexington, MA...

  17. High-performance simulation-based algorithms for an alpine ski racer’s trajectory optimization in heterogeneous computer systems

    Dębski Roman

    2014-09-01

    Full Text Available Effective, simulation-based trajectory optimization algorithms adapted to heterogeneous computers are studied with reference to the problem taken from alpine ski racing (the presented solution is probably the most general one published so far. The key idea behind these algorithms is to use a grid-based discretization scheme to transform the continuous optimization problem into a search problem over a specially constructed finite graph, and then to apply dynamic programming to find an approximation of the global solution. In the analyzed example it is the minimum-time ski line, represented as a piecewise-linear function (a method of elimination of unfeasible solutions is proposed. Serial and parallel versions of the basic optimization algorithm are presented in detail (pseudo-code, time and memory complexity. Possible extensions of the basic algorithm are also described. The implementation of these algorithms is based on OpenCL. The included experimental results show that contemporary heterogeneous computers can be treated as μ-HPC platforms-they offer high performance (the best speedup was equal to 128 while remaining energy and cost efficient (which is crucial in embedded systems, e.g., trajectory planners of autonomous robots. The presented algorithms can be applied to many trajectory optimization problems, including those having a black-box represented performance measure

  18. Optical Computing Research.

    1987-10-30

    1489-1496, 1985. 13. W.T. Welford and R. Winston, The Optics of Nonimaging Concentrators, Academic Press, New York, N.Y., 1978 (see Appendix A). 14. R.H...AD-fIB? Ŗ OPTICAL CONPIITINO RESEAIRCII(U STANFORD UlNIV CA STINFORD / ELECTRONICS LASS J N 0000W4 30 OCT 97 SMAFOSR-TR-S?-1635 RFOSR-96...Force Base ELEMENT NO. NO. NO. NO. Washington, DC 20332-6448 11. TITLE ,Include Security ClaaticaonUNCLASSIFIED 61102F 2305 B4 OPTICAL COMPUTING RESEARCH

  19. A high performance neutron powder diffractometer at 3 MW Triga Mark-II research reactor in Bangladesh

    Kamal, I., E-mail: imtiaz-kamal26@yahoo.com; Yunus, S. M., E-mail: yunussm11@yahoo.com; Datta, T. K., E-mail: tk-datta4@yahoo.com; Zakaria, A. K. M.; Das, A. K.; Aktar, S.; Hossain, S. [Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka (Bangladesh); Berliner, R., E-mail: RB@instrumentationAssociates.com [Instrumentation Associates, Durham, North Carolina (United States); Yelon, W. B., E-mail: yelonwb@hotmail.com [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2016-07-12

    A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with a large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6 mm thickness each. The monochromator design was optimized to provide maximum flux on 3 mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30° (2θ) at each step and covers 120° in 4 steps. When the detector is placed at 1.6 m it subtends 20° at each step and covers 120° in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology

  20. High-performance liquid chromatography electrospray mass spectrometry as a method in proteomic research

    Walcher, W.

    2003-06-01

    During the sequencing of the human genome it became clear, that a lot of human diseases and/or malfunctions don't base on genomic information, but on differences at the protein level. Therefore biochemistry, biology and medicine are faced to various novel problems where new and authentic analysis methods are needed. Miniaturized chromatographic separation methods are frequently the methods of choice for the separation of peptides and proteins, when the amount of sample is limited. Monolithic capillary columns were prepared by copolymerization of styrene and divinylbenzene in the presence of a suitable porogen mixture of 1-decanol and tetrahydrofuran. The synthesized columns enabled the highly efficient separation of peptides and proteins by reversed-phase high-performance liquid chromatography (RP-HPLC) with peak capacities of 80 and more in 10 minutes. By the hyphenation of RP-HPLC to electrospray mass spectrometry (ESI-MS) the potential of the analysis method was even extended. The monolithic column technology was further miniaturized from 200 μm to 100 and 50 μm inner diameters to improve detection limits by RP-HPLC-ESI-MS. After the optimization of the RP-HPLC-ESI-MS method, the ion source and the ion transfer optics of an ion trap mass spectrometer (LCQ classic, Thermofinnigan) have been advanced for protein and peptide analysis. The improved RP-HPLC-ESI-MS system was subsequently applied to the detection of posttranslational protein modifications at the example of the nitration of bovine serum albumin (BSA). The results of the RP-HPLC-ESI-MS analysis were found to be highly reproducible, which enabled the determination of nitration degrees for different tyrosine residues in the protein sequence. Y 1 60, Y 4 96 and Y 3 52 or Y369 were found to be the predominant positions of protein nitration in BSA. At last light harvesting proteins from the photosystem II (PSII) of higher plants have been analyzed by RP-HPLC-ESI-MS and RP-HPLC-ESI-MSMS. Beside the

  1. System Software and Tools for High Performance Computing Environments: A report on the findings of the Pasadena Workshop, April 14--16, 1992

    Sterling, T. [Universities Space Research Association, Washington, DC (United States); Messina, P. [Jet Propulsion Lab., Pasadena, CA (United States); Chen, M. [Yale Univ., New Haven, CT (United States)] [and others

    1993-04-01

    The Pasadena Workshop on System Software and Tools for High Performance Computing Environments was held at the Jet Propulsion Laboratory from April 14 through April 16, 1992. The workshop was sponsored by a number of Federal agencies committed to the advancement of high performance computing (HPC) both as a means to advance their respective missions and as a national resource to enhance American productivity and competitiveness. Over a hundred experts in related fields from industry, academia, and government were invited to participate in this effort to assess the current status of software technology in support of HPC systems. The overall objectives of the workshop were to understand the requirements and current limitations of HPC software technology and to contribute to a basis for establishing new directions in research and development for software technology in HPC environments. This report includes reports written by the participants of the workshop`s seven working groups. Materials presented at the workshop are reproduced in appendices. Additional chapters summarize the findings and analyze their implications for future directions in HPC software technology development.

  2. Research Area 4.1 Nano- and Bio-Electronics: Lester Eastman Conference on High-Performance Devices

    2017-06-02

    significantly lower. Moreover, wells containing MoS2 on the polyimide film had a large amount of cells growing on the material, further indicating high ...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...Research Area 4.1 Nano- and Bio-Electronics: Lester Eastman Conference on High -Performance Devices The 2016 IEEE Lester Eastman Conference of High

  3. Design of a high-performance rotary stratified-charge research aircraft engine

    Jones, C.; Mount, R. E.

    1984-01-01

    The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.

  4. Selection and use of a low enriched fuel in high performance research reactors

    Cerles, J.M.; Schwartz, J.P.

    1978-08-01

    A new nuclear fuel composition for research reactors (Osiris, Siloe) is studied using low enriched (E<20%) uranium oxide. Its utilization leads to modifications in the facilities of these experimental reactors: increase of primary coolant flow, modifications in failed element detection system, handling of materials and storage

  5. Contextualizing Teacher Efficacy in a High-Performing System: A Research Agenda

    Wang, Li-Yi; Li, Jen-Yi; Tan, Liang-See; Lee, Ling

    2017-01-01

    Drawing from Albert Bandura's social cognitive theory, Tschannen-Moran, Woolfolk Hoy and Hoy (1998) proposed an integrated model of teacher efficacy to aid the understanding of this complex construct. This framework, despite its richness and usefulness in framing teacher efficacy research within the education landscape, is barely examined in the…

  6. Complex three dimensional modelling of porous media using high performance computing and multi-scale incompressible approach

    Martin, R.; Orgogozo, L.; Noiriel, C. N.; Guibert, R.; Golfier, F.; Debenest, G.; Quintard, M.

    2013-05-01

    In the context of biofilm growth in porous media, we developed high performance computing tools to study the impact of biofilms on the fluid transport through pores of a solid matrix. Indeed, biofilms are consortia of micro-organisms that are developing in polymeric extracellular substances that are generally located at a fluid-solid interfaces like pore interfaces in a water-saturated porous medium. Several applications of biofilms in porous media are encountered for instance in bio-remediation methods by allowing the dissolution of organic pollutants. Many theoretical studies have been done on the resulting effective properties of these modified media ([1],[2], [3]) but the bio-colonized porous media under consideration are mainly described following simplified theoretical media (stratified media, cubic networks of spheres ...). Therefore, recent experimental advances have provided tomography images of bio-colonized porous media which allow us to observe realistic biofilm micro-structures inside the porous media [4]. To solve closure system of equations related to upscaling procedures in realistic porous media, we solve the velocity field of fluids through pores on complex geometries that are described with a huge number of cells (up to billions). Calculations are made on a realistic 3D sample geometry obtained by X micro-tomography. Cell volumes are coming from a percolation experiment performed to estimate the impact of precipitation processes on the properties of a fluid transport phenomena in porous media [5]. Average permeabilities of the sample are obtained from velocities by using MPI-based high performance computing on up to 1000 processors. Steady state Stokes equations are solved using finite volume approach. Relaxation pre-conditioning is introduced to accelerate the code further. Good weak or strong scaling are reached with results obtained in hours instead of weeks. Factors of accelerations of 20 up to 40 can be reached. Tens of geometries can now be

  7. Computational Approach for Securing Radiology-Diagnostic Data in Connected Health Network using High-Performance GPU-Accelerated AES.

    Adeshina, A M; Hashim, R

    2017-03-01

    Diagnostic radiology is a core and integral part of modern medicine, paving ways for the primary care physicians in the disease diagnoses, treatments and therapy managements. Obviously, all recent standard healthcare procedures have immensely benefitted from the contemporary information technology revolutions, apparently revolutionizing those approaches to acquiring, storing and sharing of diagnostic data for efficient and timely diagnosis of diseases. Connected health network was introduced as an alternative to the ageing traditional concept in healthcare system, improving hospital-physician connectivity and clinical collaborations. Undoubtedly, the modern medicinal approach has drastically improved healthcare but at the expense of high computational cost and possible breach of diagnosis privacy. Consequently, a number of cryptographical techniques are recently being applied to clinical applications, but the challenges of not being able to successfully encrypt both the image and the textual data persist. Furthermore, processing time of encryption-decryption of medical datasets, within a considerable lower computational cost without jeopardizing the required security strength of the encryption algorithm, still remains as an outstanding issue. This study proposes a secured radiology-diagnostic data framework for connected health network using high-performance GPU-accelerated Advanced Encryption Standard. The study was evaluated with radiology image datasets consisting of brain MR and CT datasets obtained from the department of Surgery, University of North Carolina, USA, and the Swedish National Infrastructure for Computing. Sample patients' notes from the University of North Carolina, School of medicine at Chapel Hill were also used to evaluate the framework for its strength in encrypting-decrypting textual data in the form of medical report. Significantly, the framework is not only able to accurately encrypt and decrypt medical image datasets, but it also

  8. Reports on research achievements in developing high-performance industrial furnaces in fiscal 1998 (Research and development of high-performance industrial furnaces). Volume 1; 1998 nendo koseino kogyoro nado ni kansuru kenkyu kaihatsu seika hokokusho. 1

    NONE

    1999-03-01

    From the reports on research achievements in developing high-performance industrial furnaces in fiscal 1998, the report volume 1 was prepared as a research achievement report of each working group, detailing fundamental researches, heating furnaces, and heat treatment furnaces. The fundamental researches have researched combustion evaluating technology, characteristics of the area in the vicinity of a combustor, characteristics of combustion of high-temperature air, heating characteristics of a furnace to investigate effect of local heat absorption, and combustion evaluation. For the heating furnaces, the following subjects were studied: development of an in-furnace combustion model, summary of an experiment for evaluating high-temperature air combustion, furnace height relative to combustion heat transfer characteristics, heat loss minimizing technology, combustion heat transfer characteristics of liquid fuels, optimal operation of the high-temperature air combustion, basic control in heating control, and steel piece heating control. Studies were performed for the heat treatment furnaces on the case of a direct firing furnace in evaluating the heat transfer characteristics, the case of a radiant tube furnace, application of thermal fluid simulation technology, furnace averaging technology, soot reducing technology, control technology, and trial design on a high-performance heat treatment furnace. (NEDO)

  9. Code structure for U-Mo fuel performance analysis in high performance research reactor

    Jeong, Gwan Yoon; Cho, Tae Won; Lee, Chul Min; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A performance analysis modeling applicable to research reactor fuel is being developed with available models describing fuel performance phenomena observed from in-pile tests. We established the calculation algorithm and scheme to best predict fuel performance using radio-thermo-mechanically coupled system to consider fuel swelling, interaction layer growth, pore formation in the fuel meat, and creep fuel deformation and mass relocation, etc. In this paper, we present a general structure of the performance analysis code for typical research reactor fuel and advanced features such as a model to predict fuel failure induced by combination of breakaway swelling and pore growth in the fuel meat. Thermo-mechanical code dedicated to the modeling of U-Mo dispersion fuel plates is being under development in Korea to satisfy a demand for advanced performance analysis and safe assessment of the plates. The major physical phenomena during irradiation are considered in the code such that interaction layer formation by fuel-matrix interdiffusion, fission induced swelling of fuel particle, mass relocation by fission induced stress, and pore formation at the interface between the reaction product and Al matrix.

  10. [The research on the surfacial modification of organic high-performance Kevlar fiber].

    Zheng, Yu-ying; Fu, Ming-lian; Cai, Wei-long; Wang, Can-yao; Wang, Liang-en

    2004-04-01

    In the paper the authors tried to use chemical disposal to bring the activity mass onto the surface of Kevlar fiber with the purpose of surface graft modification. In the paper the authors used the FTIR spectra to discuss the graft of toluene-2, 4-diisocyanate onto Kevlar fiber. The authors studied and analysed the effect of hydrolytic time on the content of -O-H group of the production, and the effect of hydrolyzation and hexyl-lactam steadily disposing on the graft reaction. The result showed that the content of -O-H group increased after hydrolyzation, it's helpful for the graft reaction, and hexyl-lactam steadily disposing made the graf product more stable. Through the research the authors came to the conclusion that by bringing some activity masses onto the fiber surface the authors can improve the interface of fiber/resin effectively.

  11. High temperature and high performance light water cooled reactors operating at supercritical pressure, research and development

    Oka, Y.; Koshizuka, S.; Katsumura, Y.; Yamada, K.; Shiga, S.; Moriya, K.; Yoshida, S.; Takahashi, H.

    2003-01-01

    The concept of supercritical-pressure, once-through coolant cycle nuclear power plant (SCR) was developed at the University of Tokyo. The research and development (R and D) started worldwide. This paper summarized the conceptual design and R and D in Japan. The big advantage of the SCR concept is that the temperatures of major components such as reactor pressure vessel, control rod drive mechanisms, containments, coolant pumps, main steam piping and turbines are within the temperatures of the components of LWR and supercritical fossil fired power plants (FPP) in spite of the high outlet coolant temperature. The experience of these components of LWR and supercritical fossil fired power plants will be fully utilized for SCR. The high temperature, supercritical-pressure light water reactor is the logical evolution of LWR. Boiling evolved from circular boilers, water tube boilers and once-through boilers. It is the reactor version of the once-through boiler. The development from LWR to SCR follows the history of boilers. The goal of the R and D should be the capital cost reduction that cannot be achieved by the improvement of LWR. The reactor can be used for hydrogen production either by catalysis and chemical decomposition of low quality hydrocarbons in supercritical water. The reactor is compatible with tight lattice fast core for breeders due to low outlet coolant density, small coolant flow rate and high head coolant pumps

  12. High performance systems

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  13. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery Using a Probabilistic Learning Framework

    Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Votava, Petr; Roy, Anshuman; Mukhopadhyay, Supratik; Nemani, Ramakrishna

    2015-01-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets, which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  14. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery using a Probabilistic Learning Framework

    Basu, S.; Ganguly, S.; Michaelis, A.; Votava, P.; Roy, A.; Mukhopadhyay, S.; Nemani, R. R.

    2015-12-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  15. Quantum computing for physics research

    Georgeot, B.

    2006-01-01

    Quantum computers hold great promises for the future of computation. In this paper, this new kind of computing device is presented, together with a short survey of the status of research in this field. The principal algorithms are introduced, with an emphasis on the applications of quantum computing to physics. Experimental implementations are also briefly discussed

  16. Research in computer forensics

    Wai, Hor Cheong

    2002-01-01

    Approved for public release; distribution is unlimited Computer Forensics involves the preservation, identification, extraction and documentation of computer evidence stored in the form of magnetically encoded information. With the proliferation of E-commerce initiatives and the increasing criminal activities on the web, this area of study is catching on in the IT industry and among the law enforcement agencies. The objective of the study is to explore the techniques of computer forensics ...

  17. Multidisciplinary Computational Research

    Visbal, Miguel R

    2006-01-01

    The purpose of this work is to develop advanced multidisciplinary numerical simulation capabilities for aerospace vehicles with emphasis on highly accurate, massively parallel computational methods...

  18. The Benefits and Complexities of Operating Geographic Information Systems (GIS) in a High Performance Computing (HPC) Environment

    Shute, J.; Carriere, L.; Duffy, D.; Hoy, E.; Peters, J.; Shen, Y.; Kirschbaum, D.

    2017-12-01

    The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center is building and maintaining an Enterprise GIS capability for its stakeholders, to include NASA scientists, industry partners, and the public. This platform is powered by three GIS subsystems operating in a highly-available, virtualized environment: 1) the Spatial Analytics Platform is the primary NCCS GIS and provides users discoverability of the vast DigitalGlobe/NGA raster assets within the NCCS environment; 2) the Disaster Mapping Platform provides mapping and analytics services to NASA's Disaster Response Group; and 3) the internal (Advanced Data Analytics Platform/ADAPT) enterprise GIS provides users with the full suite of Esri and open source GIS software applications and services. All systems benefit from NCCS's cutting edge infrastructure, to include an InfiniBand network for high speed data transfers; a mixed/heterogeneous environment featuring seamless sharing of information between Linux and Windows subsystems; and in-depth system monitoring and warning systems. Due to its co-location with the NCCS Discover High Performance Computing (HPC) environment and the Advanced Data Analytics Platform (ADAPT), the GIS platform has direct access to several large NCCS datasets including DigitalGlobe/NGA, Landsat, MERRA, and MERRA2. Additionally, the NCCS ArcGIS Desktop Windows virtual machines utilize existing NetCDF and OPeNDAP assets for visualization, modelling, and analysis - thus eliminating the need for data duplication. With the advent of this platform, Earth scientists have full access to vast data repositories and the industry-leading tools required for successful management and analysis of these multi-petabyte, global datasets. The full system architecture and integration with scientific datasets will be presented. Additionally, key applications and scientific analyses will be explained, to include the NASA Global Landslide Catalog (GLC) Reporter crowdsourcing application, the

  19. NASA's computer science research program

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  20. Research Institute for Advanced Computer Science

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  1. Computational chemistry research

    Levin, Eugene

    1987-01-01

    Task 41 is composed of two parts: (1) analysis and design studies related to the Numerical Aerodynamic Simulation (NAS) Extended Operating Configuration (EOC) and (2) computational chemistry. During the first half of 1987, Dr. Levin served as a member of an advanced system planning team to establish the requirements, goals, and principal technical characteristics of the NAS EOC. A paper entitled 'Scaling of Data Communications for an Advanced Supercomputer Network' is included. The high temperature transport properties (such as viscosity, thermal conductivity, etc.) of the major constituents of air (oxygen and nitrogen) were correctly determined. The results of prior ab initio computer solutions of the Schroedinger equation were combined with the best available experimental data to obtain complete interaction potentials for both neutral and ion-atom collision partners. These potentials were then used in a computer program to evaluate the collision cross-sections from which the transport properties could be determined. A paper entitled 'High Temperature Transport Properties of Air' is included.

  2. Research on mechanical and sensoric set-up for high strain rate testing of high performance fibers

    Unger, R.; Schegner, P.; Nocke, A.; Cherif, C.

    2017-10-01

    Within this research project, the tensile behavior of high performance fibers, such as carbon fibers, is investigated under high velocity loads. This contribution (paper) focuses on the clamp set-up of two testing machines. Based on a kinematic model, weight optimized clamps are designed and evaluated. By analyzing the complex dynamic behavior of conventional high velocity testing machines, it has been shown that the impact typically exhibits an elastic characteristic. This leads to barely predictable breaking speeds and will not work at higher speeds when acceleration force exceeds material specifications. Therefore, a plastic impact behavior has to be achieved, even at lower testing speeds. This type of impact behavior at lower speeds can be realized by means of some minor test set-up adaptions.

  3. Towards Constraint-based High Performance Cloud System in the Process of Cloud Computing Adoption in an Organization

    Simalango, Mikael Fernandus; Kang, Mun-Young; Oh, Sangyoon

    2010-01-01

    Cloud computing is penetrating into various domains and environments, from theoretical computer science to economy, from marketing hype to educational curriculum and from R&D lab to enterprise IT infrastructure. Yet, the currently developing state of cloud computing leaves several issues to address and also affects cloud computing adoption by organizations. In this paper, we explain how the transition into the cloud can occur in an organization and describe the mechanism for transforming lega...

  4. Computer supported qualitative research

    Reis, Luís; Sousa, Francislê; Moreira, António; Lamas, David

    2017-01-01

    This book contains an edited selection of the papers accepted for presentation and discussion at the first International Symposium on Qualitative Research (ISQR2016), held in Porto, Portugal, July 12th-14th, 2016. The book and the symposium features the four main application fields Education, Health, Social Sciences and Engineering and Technology and seven main subjects: Rationale and Paradigms of Qualitative Research (theoretical studies, critical reflection about epistemological dimensions, ontological and axiological); Systematization of approaches with Qualitative Studies (literature review, integrating results, aggregation studies, meta -analysis, meta- analysis of qualitative meta- synthesis, meta- ethnography); Qualitative and Mixed Methods Research (emphasis in research processes that build on mixed methodologies but with priority to qualitative approaches); Data Analysis Types (content analysis , discourse analysis , thematic analysis , narrative analysis , etc.); Innovative processes of Qualitative ...

  5. Viscoelastic Waves Simulation in a Blocky Medium with Fluid-Saturated Interlayers Using High-Performance Computing

    Sadovskii, Vladimir; Sadovskaya, Oxana

    2017-04-01

    dissipationless finite difference Ivanov scheme is applied in the interlayers. The parallel program is designed, using the MPI technology. By means of this software, nonlinear wave processes in the case of initial rotation of the central block in a rock mass as well as in the case of concentrated couple stress load, applied at the boundary of a rock mass, are analyzed. Results of computations on the multiprocessor computer systems demonstrate the strong anisotropy of a blocky medium. This work was supported by the Complex Fundamental Research Program no. II.2P "Integration and Development" of Siberian Branch of the Russian Academy of Sciences. References 1. Sadovskii V.M., Sadovskaya O.V. Modeling of Elastic Waves in a Blocky Medium Based on Equations of the Cosserat Continuum // Wave Motion. 2015. V. 52. P. 138-150. 2. Sadovskaya O., Sadovskii V. Mathematical Modeling in Mechanics of Granular Materials. Ser.: Advanced Structured Materials, V. 21. Heidelberg - New York - Dordrecht - London, Springer, 2012. 390 p.

  6. Computer Science Research at Langley

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  7. High performance computing applied to simulation of the flow in pipes; Computacao de alto desempenho aplicada a simulacao de escoamento em dutos

    Cozin, Cristiane; Lueders, Ricardo; Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2008-07-01

    In recent years, computer cluster has emerged as a real alternative to solution of problems which require high performance computing. Consequently, the development of new applications has been driven. Among them, flow simulation represents a real computational burden specially for large systems. This work presents a study of using parallel computing for numerical fluid flow simulation in pipelines. A mathematical flow model is numerically solved. In general, this procedure leads to a tridiagonal system of equations suitable to be solved by a parallel algorithm. In this work, this is accomplished by a parallel odd-oven reduction method found in the literature which is implemented on Fortran programming language. A computational platform composed by twelve processors was used. Many measures of CPU times for different tridiagonal system sizes and number of processors were obtained, highlighting the communication time between processors as an important issue to be considered when evaluating the performance of parallel applications. (author)

  8. Sepsis reconsidered: Identifying novel metrics for behavioral landscape characterization with a high-performance computing implementation of an agent-based model.

    Cockrell, Chase; An, Gary

    2017-10-07

    Sepsis affects nearly 1 million people in the United States per year, has a mortality rate of 28-50% and requires more than $20 billion a year in hospital costs. Over a quarter century of research has not yielded a single reliable diagnostic test or a directed therapeutic agent for sepsis. Central to this insufficiency is the fact that sepsis remains a clinical/physiological diagnosis representing a multitude of molecularly heterogeneous pathological trajectories. Advances in computational capabilities offered by High Performance Computing (HPC) platforms call for an evolution in the investigation of sepsis to attempt to define the boundaries of traditional research (bench, clinical and computational) through the use of computational proxy models. We present a novel investigatory and analytical approach, derived from how HPC resources and simulation are used in the physical sciences, to identify the epistemic boundary conditions of the study of clinical sepsis via the use of a proxy agent-based model of systemic inflammation. Current predictive models for sepsis use correlative methods that are limited by patient heterogeneity and data sparseness. We address this issue by using an HPC version of a system-level validated agent-based model of sepsis, the Innate Immune Response ABM (IIRBM), as a proxy system in order to identify boundary conditions for the possible behavioral space for sepsis. We then apply advanced analysis derived from the study of Random Dynamical Systems (RDS) to identify novel means for characterizing system behavior and providing insight into the tractability of traditional investigatory methods. The behavior space of the IIRABM was examined by simulating over 70 million sepsis patients for up to 90 days in a sweep across the following parameters: cardio-respiratory-metabolic resilience; microbial invasiveness; microbial toxigenesis; and degree of nosocomial exposure. In addition to using established methods for describing parameter space, we

  9. Computer science and operations research

    Balci, Osman

    1992-01-01

    The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat

  10. High-Performance Networking

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  11. WImpiBLAST: web interface for mpiBLAST to help biologists perform large-scale annotation using high performance computing.

    Parichit Sharma

    Full Text Available The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture

  12. WImpiBLAST: web interface for mpiBLAST to help biologists perform large-scale annotation using high performance computing.

    Sharma, Parichit; Mantri, Shrikant S

    2014-01-01

    The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design

  13. Study on High Performance of MPI-Based Parallel FDTD from WorkStation to Super Computer Platform

    Z. L. He

    2012-01-01

    Full Text Available Parallel FDTD method is applied to analyze the electromagnetic problems of the electrically large targets on super computer. It is well known that the more the number of processors the less computing time consumed. Nevertheless, with the same number of processors, computing efficiency is affected by the scheme of the MPI virtual topology. Then, the influence of different virtual topology schemes on parallel performance of parallel FDTD is studied in detail. The general rules are presented on how to obtain the highest efficiency of parallel FDTD algorithm by optimizing MPI virtual topology. To show the validity of the presented method, several numerical results are given in the later part. Various comparisons are made and some useful conclusions are summarized.

  14. Danish High Performance Concretes

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...... concretes, workability, ductility, and confinement problems....

  15. The smallest cells pose the biggest problems: high-performance computing and the analysis of metagenome sequence data

    Edwards, R A

    2008-01-01

    New high-throughput DNA sequencing technologies have revolutionized how scientists study the organisms around us. In particular, microbiology - the study of the smallest, unseen organisms that pervade our lives - has embraced these new techniques to characterize and analyze the cellular constituents and use this information to develop novel tools, techniques, and therapeutics. So-called next-generation DNA sequencing platforms have resulted in huge increases in the amount of raw data that can be rapidly generated. Argonne National Laboratory developed the premier platform for the analysis of this new data (mg-rast) that is used by microbiologists worldwide. This paper uses the accounting from the computational analysis of more than 10,000,000,000 bp of DNA sequence data, describes an analysis of the advanced computational requirements, and suggests the level of analysis that will be essential as microbiologists move to understand how these tiny organisms affect our every day lives. The results from this analysis indicate that data analysis is a linear problem, but that most analyses are held up in queues. With sufficient resources, computations could be completed in a few hours for a typical dataset. These data also suggest execution times that delimit timely completion of computational analyses, and provide bounds for problematic processes

  16. Designing a Scalable Fault Tolerance Model for High Performance Computational Chemistry: A Case Study with Coupled Cluster Perturbative Triples.

    van Dam, Hubertus J J; Vishnu, Abhinav; de Jong, Wibe A

    2011-01-11

    In the past couple of decades, the massive computational power provided by the most modern supercomputers has resulted in simulation of higher-order computational chemistry methods, previously considered intractable. As the system sizes continue to increase, the computational chemistry domain continues to escalate this trend using parallel computing with programming models such as Message Passing Interface (MPI) and Partitioned Global Address Space (PGAS) programming models such as Global Arrays. The ever increasing scale of these supercomputers comes at a cost of reduced Mean Time Between Failures (MTBF), currently on the order of days and projected to be on the order of hours for upcoming extreme scale systems. While traditional disk-based check pointing methods are ubiquitous for storing intermediate solutions, they suffer from high overhead of writing and recovering from checkpoints. In practice, checkpointing itself often brings the system down. Clearly, methods beyond checkpointing are imperative to handling the aggravating issue of reducing MTBF. In this paper, we address this challenge by designing and implementing an efficient fault tolerant version of the Coupled Cluster (CC) method with NWChem, using in-memory data redundancy. We present the challenges associated with our design, including an efficient data storage model, maintenance of at least one consistent data copy, and the recovery process. Our performance evaluation without faults shows that the current design exhibits a small overhead. In the presence of a simulated fault, the proposed design incurs negligible overhead in comparison to the state of the art implementation without faults.

  17. Computational mechanics research at ONR

    Kushner, A.S.

    1986-01-01

    Computational mechanics is not an identified program at the Office of Naval Research (ONR), but rather plays a key role in the Solid Mechanics, Fluid Mechanics, Energy Conversion, and Materials Science programs. The basic philosophy of the Mechanics Division at ONR is to support fundamental research which expands the basis for understanding, predicting, and controlling the behavior of solid and fluid materials and systems at the physical and geometric scales appropriate to the phenomena of interest. It is shown in this paper that a strong commonalty of computational mechanics drivers exists for the forefront research areas in both solid and fluid mechanics

  18. Re-Form: FPGA-Powered True Codesign Flow for High-Performance Computing In The Post-Moore Era

    Cappello, Franck; Yoshii, Kazutomo; Finkel, Hal; Cong, Jason

    2016-11-14

    Multicore scaling will end soon because of practical power limits. Dark silicon is becoming a major issue even more than the end of Moore’s law. In the post-Moore era, the energy efficiency of computing will be a major concern. FPGAs could be a key to maximizing the energy efficiency. In this paper we address severe challenges in the adoption of FPGA in HPC and describe “Re-form,” an FPGA-powered codesign flow.

  19. Refficientlib: an efficient load-rebalanced adaptive mesh refinement algorithm for high-performance computational physics meshes

    Baiges Aznar, Joan; Bayona Roa, Camilo Andrés

    2017-01-01

    No separate or additional fees are collected for access to or distribution of the work. In this paper we present a novel algorithm for adaptive mesh refinement in computational physics meshes in a distributed memory parallel setting. The proposed method is developed for nodally based parallel domain partitions where the nodes of the mesh belong to a single processor, whereas the elements can belong to multiple processors. Some of the main features of the algorithm presented in this paper a...

  20. Molecular simulation workflows as parallel algorithms: the execution engine of Copernicus, a distributed high-performance computing platform.

    Pronk, Sander; Pouya, Iman; Lundborg, Magnus; Rotskoff, Grant; Wesén, Björn; Kasson, Peter M; Lindahl, Erik

    2015-06-09

    Computational chemistry and other simulation fields are critically dependent on computing resources, but few problems scale efficiently to the hundreds of thousands of processors available in current supercomputers-particularly for molecular dynamics. This has turned into a bottleneck as new hardware generations primarily provide more processing units rather than making individual units much faster, which simulation applications are addressing by increasingly focusing on sampling with algorithms such as free-energy perturbation, Markov state modeling, metadynamics, or milestoning. All these rely on combining results from multiple simulations into a single observation. They are potentially powerful approaches that aim to predict experimental observables directly, but this comes at the expense of added complexity in selecting sampling strategies and keeping track of dozens to thousands of simulations and their dependencies. Here, we describe how the distributed execution framework Copernicus allows the expression of such algorithms in generic workflows: dataflow programs. Because dataflow algorithms explicitly state dependencies of each constituent part, algorithms only need to be described on conceptual level, after which the execution is maximally parallel. The fully automated execution facilitates the optimization of these algorithms with adaptive sampling, where undersampled regions are automatically detected and targeted without user intervention. We show how several such algorithms can be formulated for computational chemistry problems, and how they are executed efficiently with many loosely coupled simulations using either distributed or parallel resources with Copernicus.

  1. Hybrid GPU-CPU adaptive precision ray-triangle intersection tests for robust high-performance GPU dosimetry computations

    Perrotte, Lancelot; Bodin, Bruno; Chodorge, Laurent

    2011-01-01

    Before an intervention on a nuclear site, it is essential to study different scenarios to identify the less dangerous one for the operator. Therefore, it is mandatory to dispose of an efficient dosimetry simulation code with accurate results. One classical method in radiation protection is the straight-line attenuation method with build-up factors. In the case of 3D industrial scenes composed of meshes, the computation cost resides in the fast computation of all of the intersections between the rays and the triangles of the scene. Efficient GPU algorithms have already been proposed, that enable dosimetry calculation for a huge scene (800000 rays, 800000 triangles) in a fraction of second. But these algorithms are not robust: because of the rounding caused by floating-point arithmetic, the numerical results of the ray-triangle intersection tests can differ from the expected mathematical results. In worst case scenario, this can lead to a computed dose rate dramatically inferior to the real dose rate to which the operator is exposed. In this paper, we present a hybrid GPU-CPU algorithm to manage adaptive precision floating-point arithmetic. This algorithm allows robust ray-triangle intersection tests, with very small loss of performance (less than 5 % overhead), and without any need for scene-dependent tuning. (author)

  2. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies.

    Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias

    2015-01-01

    Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.

  3. Acquisition of a High Performance Computer Cluster for Materials Research and Education

    2015-04-17

    NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER Form Approved OMB NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 17-04-2015 1-Feb-2014 31-Jan...significantly reduce the time and labour required for materials development. The proposed cluster will also play an important role for education and...the paradigm of materials design based on time-consuming trial-and-error experiments and significantly reduce the time and labour required for

  4. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  5. High performance cloud auditing and applications

    Choi, Baek-Young; Song, Sejun

    2014-01-01

    This book mainly focuses on cloud security and high performance computing for cloud auditing. The book discusses emerging challenges and techniques developed for high performance semantic cloud auditing, and presents the state of the art in cloud auditing, computing and security techniques with focus on technical aspects and feasibility of auditing issues in federated cloud computing environments.   In summer 2011, the United States Air Force Research Laboratory (AFRL) CyberBAT Cloud Security and Auditing Team initiated the exploration of the cloud security challenges and future cloud auditing research directions that are covered in this book. This work was supported by the United States government funds from the Air Force Office of Scientific Research (AFOSR), the AFOSR Summer Faculty Fellowship Program (SFFP), the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP), the National Science Foundation (NSF) and the National Institute of Health (NIH). All chapters were partially suppor...

  6. Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation and Completion of Episodic Information.

    Aimone, James Bradley; Bernard, Michael Lewis; Vineyard, Craig Michael; Verzi, Stephen Joseph.

    2014-10-01

    Adult neurogenesis in the hippocampus region of the brain is a neurobiological process that is believed to contribute to the brain's advanced abilities in complex pattern recognition and cognition. Here, we describe how realistic scale simulations of the neurogenesis process can offer both a unique perspective on the biological relevance of this process and confer computational insights that are suggestive of novel machine learning techniques. First, supercomputer based scaling studies of the neurogenesis process demonstrate how a small fraction of adult-born neurons have a uniquely larger impact in biologically realistic scaled networks. Second, we describe a novel technical approach by which the information content of ensembles of neurons can be estimated. Finally, we illustrate several examples of broader algorithmic impact of neurogenesis, including both extending existing machine learning approaches and novel approaches for intelligent sensing.

  7. Pattern recognition, neural networks, genetic algorithms and high performance computing in nuclear reactor diagnostics. Results and perspectives

    Dzwinel, W.; Pepyolyshev, N.

    1996-01-01

    The main goal of this paper is the presentation of our experience in development of the diagnostic system for the IBR-2 (Russia - Dubna) nuclear reactor. The authors show the principal results of the system modifications to make it work more reliable and much faster. The former needs the adaptation of new techniques of data processing, the latter, implementation of the newest computational facilities. The results of application of the clustering techniques and a method of visualization of the multi-dimensional information directly on the operator display are presented. The experiences with neural nets, used for prediction of the reactor operation, are discussed. The genetic algorithms were also tested, to reduce the quantity of data nd extracting the most informative components of the analyzed spectra. (authors)

  8. High Performance Concrete

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  9. Parallel computing in genomic research: advances and applications

    Ocaña K

    2015-11-01

    Full Text Available Kary Ocaña,1 Daniel de Oliveira2 1National Laboratory of Scientific Computing, Petrópolis, Rio de Janeiro, 2Institute of Computing, Fluminense Federal University, Niterói, Brazil Abstract: Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. Keywords: high-performance computing, genomic research, cloud computing, grid computing, cluster computing, parallel computing

  10. High performance data transfer

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  11. Applied Computational Fluid Dynamics at NASA Ames Research Center

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  12. High performance parallel I/O

    Prabhat

    2014-01-01

    Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har

  13. Research on cloud computing solutions

    Liudvikas Kaklauskas; Vaida Zdanytė

    2015-01-01

    Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, ...

  14. Center for Computing Research Summer Research Proceedings 2015.

    Bradley, Andrew Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-18

    The Center for Computing Research (CCR) at Sandia National Laboratories organizes a summer student program each summer, in coordination with the Computer Science Research Institute (CSRI) and Cyber Engineering Research Institute (CERI).

  15. Tom Tabor, the owner of Tabor Communications, presents Wolfgang von Rüden with the Editors Choice Award of HPCwire, which was awarded to CERN for its commitment to educating the public about high-performance computing.

    Maximilien Brice

    2006-01-01

    Tom Tabor, the owner of Tabor Communications, presents Wolfgang von Rüden with the Editors Choice Award of HPCwire, which was awarded to CERN for its commitment to educating the public about high-performance computing.

  16. Current Capabilities at SNL for the Integration of Small Modular Reactors onto Smart Microgrids Using Sandia's Smart Microgrid Technology High Performance Computing and Advanced Manufacturing.

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Smart grids are a crucial component for enabling the nation’s future energy needs, as part of a modernization effort led by the Department of Energy. Smart grids and smart microgrids are being considered in niche applications, and as part of a comprehensive energy strategy to help manage the nation’s growing energy demands, for critical infrastructures, military installations, small rural communities, and large populations with limited water supplies. As part of a far-reaching strategic initiative, Sandia National Laboratories (SNL) presents herein a unique, three-pronged approach to integrate small modular reactors (SMRs) into microgrids, with the goal of providing economically-competitive, reliable, and secure energy to meet the nation’s needs. SNL’s triad methodology involves an innovative blend of smart microgrid technology, high performance computing (HPC), and advanced manufacturing (AM). In this report, Sandia’s current capabilities in those areas are summarized, as well as paths forward that will enable DOE to achieve its energy goals. In the area of smart grid/microgrid technology, Sandia’s current computational capabilities can model the entire grid, including temporal aspects and cyber security issues. Our tools include system development, integration, testing and evaluation, monitoring, and sustainment.

  17. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  18. Research Computing and Data for Geoscience

    Smith, Preston

    2015-01-01

    This presentation will discuss the data storage and computational resources available for GIS researchers at Purdue. This presentation will discuss the data storage and computational resources available for GIS researchers at Purdue.

  19. [Activities of Research Institute for Advanced Computer Science

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  20. Role of information systems in controlling costs: the electronic medical record (EMR) and the high-performance computing and communications (HPCC) efforts

    Kun, Luis G.

    1994-12-01

    On October 18, 1991, the IEEE-USA produced an entity statement which endorsed the vital importance of the High Performance Computer and Communications Act of 1991 (HPCC) and called for the rapid implementation of all its elements. Efforts are now underway to develop a Computer Based Patient Record (CBPR), the National Information Infrastructure (NII) as part of the HPCC, and the so-called `Patient Card'. Multiple legislative initiatives which address these and related information technology issues are pending in Congress. Clearly, a national information system will greatly affect the way health care delivery is provided to the United States public. Timely and reliable information represents a critical element in any initiative to reform the health care system as well as to protect and improve the health of every person. Appropriately used, information technologies offer a vital means of improving the quality of patient care, increasing access to universal care and lowering overall costs within a national health care program. Health care reform legislation should reflect increased budgetary support and a legal mandate for the creation of a national health care information system by: (1) constructing a National Information Infrastructure; (2) building a Computer Based Patient Record System; (3) bringing the collective resources of our National Laboratories to bear in developing and implementing the NII and CBPR, as well as a security system with which to safeguard the privacy rights of patients and the physician-patient privilege; and (4) utilizing Government (e.g. DOD, DOE) capabilities (technology and human resources) to maximize resource utilization, create new jobs and accelerate technology transfer to address health care issues.

  1. High Performance Proactive Digital Forensics

    Alharbi, Soltan; Traore, Issa; Moa, Belaid; Weber-Jahnke, Jens

    2012-01-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  2. High performance in software development

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  3. SU-E-T-531: Performance Evaluation of Multithreaded Geant4 for Proton Therapy Dose Calculations in a High Performance Computing Facility

    Shin, J; Coss, D; McMurry, J; Farr, J; Faddegon, B

    2014-01-01

    Purpose: To evaluate the efficiency of multithreaded Geant4 (Geant4-MT, version 10.0) for proton Monte Carlo dose calculations using a high performance computing facility. Methods: Geant4-MT was used to calculate 3D dose distributions in 1×1×1 mm3 voxels in a water phantom and patient's head with a 150 MeV proton beam covering approximately 5×5 cm2 in the water phantom. Three timestamps were measured on the fly to separately analyze the required time for initialization (which cannot be parallelized), processing time of individual threads, and completion time. Scalability of averaged processing time per thread was calculated as a function of thread number (1, 100, 150, and 200) for both 1M and 50 M histories. The total memory usage was recorded. Results: Simulations with 50 M histories were fastest with 100 threads, taking approximately 1.3 hours and 6 hours for the water phantom and the CT data, respectively with better than 1.0 % statistical uncertainty. The calculations show 1/N scalability in the event loops for both cases. The gains from parallel calculations started to decrease with 150 threads. The memory usage increases linearly with number of threads. No critical failures were observed during the simulations. Conclusion: Multithreading in Geant4-MT decreased simulation time in proton dose distribution calculations by a factor of 64 and 54 at a near optimal 100 threads for water phantom and patient's data respectively. Further simulations will be done to determine the efficiency at the optimal thread number. Considering the trend of computer architecture development, utilizing Geant4-MT for radiotherapy simulations is an excellent cost-effective alternative for a distributed batch queuing system. However, because the scalability depends highly on simulation details, i.e., the ratio of the processing time of one event versus waiting time to access for the shared event queue, a performance evaluation as described is recommended

  4. High performance homes

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  5. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    Sun, X [University of Texas MD Anderson Cancer Center, Houston, TX (United States); Lou, K [University of Texas MD Anderson Cancer Center, Houston, TX (United States); Rice University, Houston, TX (United States); Deng, Z [Tsinghua University, Beijing (China); Shao, Y

    2014-06-15

    capability for substantially improved imaging and quantification performance for small animal imaging and image-guided radiotherapy applications. This work was supported by a research award RP120326 from Cancer Prevention and Research Institute of Texas.

  6. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    Sun, X; Lou, K; Deng, Z; Shao, Y

    2014-01-01

    for substantially improved imaging and quantification performance for small animal imaging and image-guided radiotherapy applications. This work was supported by a research award RP120326 from Cancer Prevention and Research Institute of Texas

  7. Research on cloud computing solutions

    Liudvikas Kaklauskas

    2015-07-01

    Full Text Available Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, hybrid cloud and community. The most common and well-known deployment model is Public Cloud. A Private Cloud is suited for sensitive data, where the customer is dependent on a certain degree of security.According to the different types of services offered, cloud computing can be considered to consist of three layers (services models: IaaS (infrastructure as a service, PaaS (platform as a service, SaaS (software as a service. Main cloud computing solutions: web applications, data hosting, virtualization, database clusters and terminal services. The advantage of cloud com-puting is the ability to virtualize and share resources among different applications with the objective for better server utilization and without a clustering solution, a service may fail at the moment the server crashes.DOI: 10.15181/csat.v2i2.914

  8. TheClinical Research Tool: a high-performance microdialysis-based system for reliably measuring interstitial fluid glucose concentration.

    Ocvirk, Gregor; Hajnsek, Martin; Gillen, Ralph; Guenther, Arnfried; Hochmuth, Gernot; Kamecke, Ulrike; Koelker, Karl-Heinz; Kraemer, Peter; Obermaier, Karin; Reinheimer, Cornelia; Jendrike, Nina; Freckmann, Guido

    2009-05-01

    A novel microdialysis-based continuous glucose monitoring system, the so-called Clinical Research Tool (CRT), is presented. The CRT was designed exclusively for investigational use to offer high analytical accuracy and reliability. The CRT was built to avoid signal artifacts due to catheter clogging, flow obstruction by air bubbles, and flow variation caused by inconstant pumping. For differentiation between physiological events and system artifacts, the sensor current, counter electrode and polarization voltage, battery voltage, sensor temperature, and flow rate are recorded at a rate of 1 Hz. In vitro characterization with buffered glucose solutions (c(glucose) = 0 - 26 x 10(-3) mol liter(-1)) over 120 h yielded a mean absolute relative error (MARE) of 2.9 +/- 0.9% and a recorded mean flow rate of 330 +/- 48 nl/min with periodic flow rate variation amounting to 24 +/- 7%. The first 120 h in vivo testing was conducted with five type 1 diabetes subjects wearing two systems each. A mean flow rate of 350 +/- 59 nl/min and a periodic variation of 22 +/- 6% were recorded. Utilizing 3 blood glucose measurements per day and a physical lag time of 1980 s, retrospective calibration of the 10 in vivo experiments yielded a MARE value of 12.4 +/- 5.7. Clarke error grid analysis resulted in 81.0%, 16.6%, 0.8%, 1.6%, and 0% in regions A, B, C, D, and E, respectively. The CRT demonstrates exceptional reliability of system operation and very good measurement performance. The ability to differentiate between artifacts and physiological effects suggests the use of the CRT as a reference tool in clinical investigations. 2009 Diabetes Technology Society.

  9. High-Performance Operating Systems

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  10. Activities of the Research Institute for Advanced Computer Science

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  11. Computer graphics and research projects

    Ingtrakul, P.

    1994-01-01

    This report was prepared as an account of scientific visualization tools and application tools for scientists and engineers. It is provided a set of tools to create pictures and to interact with them in natural ways. It applied many techniques of computer graphics and computer animation through a number of full-color presentations as computer animated commercials, 3D computer graphics, dynamic and environmental simulations, scientific modeling and visualization, physically based modelling, and beavioral, skelatal, dynamics, and particle animation. It took in depth at original hardware and limitations of existing PC graphics adapters contain syste m performance, especially with graphics intensive application programs and user interfaces

  12. A Semi-Automated Machine Learning Algorithm for Tree Cover Delineation from 1-m Naip Imagery Using a High Performance Computing Architecture

    Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.

    2014-12-01

    Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.

  13. Computer science research and technology volume 3

    Bauer, Janice P

    2011-01-01

    This book presents leading-edge research from across the globe in the field of computer science research, technology and applications. Each contribution has been carefully selected for inclusion based on the significance of the research to this fast-moving and diverse field. Some topics included are: network topology; agile programming; virtualization; and reconfigurable computing.

  14. High Performance Bulk Thermoelectric Materials

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  15. Hazard-to-Risk: High-Performance Computing Simulations of Large Earthquake Ground Motions and Building Damage in the Near-Fault Region

    Miah, M.; Rodgers, A. J.; McCallen, D.; Petersson, N. A.; Pitarka, A.

    2017-12-01

    We are running high-performance computing (HPC) simulations of ground motions for large (magnitude, M=6.5-7.0) earthquakes in the near-fault region (steel moment frame buildings throughout the near-fault domain. For ground motions, we are using SW4, a fourth order summation-by-parts finite difference time-domain code running on 10,000-100,000's of cores. Earthquake ruptures are generated using the Graves and Pitarka (2017) method. We validated ground motion intensity measurements against Ground Motion Prediction Equations. We considered two events (M=6.5 and 7.0) for vertical strike-slip ruptures with three-dimensional (3D) basin structures, including stochastic heterogeneity. We have also considered M7.0 scenarios for a Hayward Fault rupture scenario which effects the San Francisco Bay Area and northern California using both 1D and 3D earth structure. Dynamic, inelastic response of canonical buildings is computed with the NEVADA, a nonlinear, finite-deformation finite element code. Canonical buildings include 3-, 9-, 20- and 40-story steel moment frame buildings. Damage potential is tracked by the peak inter-story drift (PID) ratio, which measures the maximum displacement between adjacent floors of the building and is strongly correlated with damage. PID ratios greater 1.0 generally indicate non-linear response and permanent deformation of the structure. We also track roof displacement to identify permanent deformation. PID (damage) for a given earthquake scenario (M, slip distribution, hypocenter) is spatially mapped throughout the SW4 domain with 1-2 km resolution. Results show that in the near fault region building damage is correlated with peak ground velocity (PGV), while farther away (> 20 km) it is better correlated with peak ground acceleration (PGA). We also show how simulated ground motions have peaks in the response spectra that shift to longer periods for larger magnitude events and for locations of forward directivity, as has been reported by

  16. High Performance Marine Vessels

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  17. High Performance Macromolecular Material

    Forest, M

    2002-01-01

    .... In essence, most commercial high-performance polymers are processed through fiber spinning, following Nature and spider silk, which is still pound-for-pound the toughest liquid crystalline polymer...

  18. Activity report of Computing Research Center

    1997-07-01

    On April 1997, National Laboratory for High Energy Physics (KEK), Institute of Nuclear Study, University of Tokyo (INS), and Meson Science Laboratory, Faculty of Science, University of Tokyo began to work newly as High Energy Accelerator Research Organization after reconstructing and converting their systems, under aiming at further development of a wide field of accelerator science using a high energy accelerator. In this Research Organization, Applied Research Laboratory is composed of four Centers to execute assistance of research actions common to one of the Research Organization and their relating research and development (R and D) by integrating the present four centers and their relating sections in Tanashi. What is expected for the assistance of research actions is not only its general assistance but also its preparation and R and D of a system required for promotion and future plan of the research. Computer technology is essential to development of the research and can communize for various researches in the Research Organization. On response to such expectation, new Computing Research Center is required for promoting its duty by coworking and cooperating with every researchers at a range from R and D on data analysis of various experiments to computation physics acting under driving powerful computer capacity such as supercomputer and so forth. Here were described on report of works and present state of Data Processing Center of KEK at the first chapter and of the computer room of INS at the second chapter and on future problems for the Computing Research Center. (G.K.)

  19. Young Researchers Advancing Computational Science: Perspectives of the Young Scientists Conference 2015

    Boukhanovsky, A.V.; Ilyin, V.A; Krzhizhanovskaya, V.V.; Athanassoulis, G.A.; Klimentov, A.A.; Sloot, P.M.A.

    2015-01-01

    We present an annual international Young Scientists Conference (YSC) on computational science http://ysc.escience.ifmo.ru/, which brings together renowned experts and young researchers working in high-performance computing, data-driven modeling, and simulation of large-scale complex systems. The

  20. Satellite Remote Sensing of Cropland Characteristics in 30m Resolution: The First North American Continental-Scale Classification on High Performance Computing Platforms

    Massey, Richard

    Cropland characteristics and accurate maps of their spatial distribution are required to develop strategies for global food security by continental-scale assessments and agricultural land use policies. North America is the major producer and exporter of coarse grains, wheat, and other crops. While cropland characteristics such as crop types are available at country-scales in North America, however, at continental-scale cropland products are lacking at fine sufficient resolution such as 30m. Additionally, applications of automated, open, and rapid methods to map cropland characteristics over large areas without the need of ground samples are needed on efficient high performance computing platforms for timely and long-term cropland monitoring. In this study, I developed novel, automated, and open methods to map cropland extent, crop intensity, and crop types in the North American continent using large remote sensing datasets on high-performance computing platforms. First, a novel method was developed in this study to fuse pixel-based classification of continental-scale Landsat data using Random Forest algorithm available on Google Earth Engine cloud computing platform with an object-based classification approach, recursive hierarchical segmentation (RHSeg) to map cropland extent at continental scale. Using the fusion method, a continental-scale cropland extent map for North America at 30m spatial resolution for the nominal year 2010 was produced. In this map, the total cropland area for North America was estimated at 275.2 million hectares (Mha). This map was assessed for accuracy using randomly distributed samples derived from United States Department of Agriculture (USDA) cropland data layer (CDL), Agriculture and Agri-Food Canada (AAFC) annual crop inventory (ACI), Servicio de Informacion Agroalimentaria y Pesquera (SIAP), Mexico's agricultural boundaries, and photo-interpretation of high-resolution imagery. The overall accuracies of the map are 93.4% with a

  1. Graphics supercomputer for computational fluid dynamics research

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  2. Development and Performance of the Modularized, High-performance Computing and Hybrid-architecture Capable GEOS-Chem Chemical Transport Model

    Long, M. S.; Yantosca, R.; Nielsen, J.; Linford, J. C.; Keller, C. A.; Payer Sulprizio, M.; Jacob, D. J.

    2014-12-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been reengineered to serve as a platform for a range of computational atmospheric chemistry science foci and applications. Development included modularization for coupling to general circulation and Earth system models (ESMs) and the adoption of co-processor capable atmospheric chemistry solvers. This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of GEOS-Chem scientific code to permit seamless transition from the GEOS-Chem stand-alone serial CTM to deployment as a coupled ESM module. In this manner, the continual stream of updates contributed by the CTM user community is automatically available for broader applications, which remain state-of-science and directly referenceable to the latest version of the standard GEOS-Chem CTM. These developments are now available as part of the standard version of the GEOS-Chem CTM. The system has been implemented as an atmospheric chemistry module within the NASA GEOS-5 ESM. The coupled GEOS-5/GEOS-Chem system was tested for weak and strong scalability and performance with a tropospheric oxidant-aerosol simulation. Results confirm that the GEOS-Chem chemical operator scales efficiently for any number of processes. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemical operator means that the relative cost goes down with increasing number of processes, making fine-scale resolution simulations possible.

  3. HPDC ´12 : proceedings of the 21st ACM symposium on high-performance parallel and distributed computing, June 18-22, 2012, Delft, The Netherlands

    Epema, D.H.J.; Kielmann, T.; Ripeanu, M.

    2012-01-01

    Welcome to ACM HPDC 2012! This is the twenty-first year of HPDC and we are pleased to report that our community continues to grow in size, quality and reputation. The program consists of three days packed with presentations on the latest developments in high-performance parallel and distributed

  4. High performance conductometry

    Saha, B.

    2000-01-01

    Inexpensive but high performance systems have emerged progressively for basic and applied measurements in physical and analytical chemistry on one hand, and for on-line monitoring and leak detection in plants and facilities on the other. Salient features of the developments will be presented with specific examples

  5. High performance homes

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    . Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  6. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Plutonium Metals, Oxides, and Solutions on the High Performance Computing Platform Moonlight

    Chapman, Bryan Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gough, Sean T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-05

    This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.

  7. Computer research in teaching geometry future bachelors

    Aliya V. Bukusheva

    2017-12-01

    Full Text Available The article is devoted to the study of the problem of usage educational studies and experiments in the geometric education of IT specialists. We consider research method applied in teaching Computer Geometry intending Bachelors studying `Mathematics and Computer Science` 02.03.01. Examples of educational and research geometric problems that require usage of computer means in order to be solved are given. These tasks are considered as variations of educational and research tasks creating problems that demand experiments with dynamic models of mathematic objects in order to be solved.

  8. [Animal experimentation, computer simulation and surgical research].

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  9. High performance polymeric foams

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  10. INL High Performance Building Strategy

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  11. Bringing Advanced Computational Techniques to Energy Research

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  12. Observations of fine-scale transport structure in the upper troposphere from the High-performance Instrumented Airborne Platform for Environmental Research

    Bowman, Kenneth P.; Pan, Laura L.; Campos, Teresa; Gao, Rushan

    2007-09-01

    The Progressive Science Mission in December 2005 was the first research use of the new NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) aircraft. The Stratosphere-Troposphere Analyses of Regional Transport (START) component of the mission was designed to investigate the dynamical and chemical structure of the upper troposphere and lower stratosphere. Flight 5 of the Progressive Science mission was a START flight that sampled near the tropopause in an area between the main jet stream and a large, quasi-stationary, cutoff low. The large-scale flow in this region was characterized by a hyperbolic (saddle) point. In this study the in situ measurements by HIAPER are combined with flow analyses and satellite data to investigate the quasi-isentropic stirring of trace species in the upper troposphere. As expected from theoretical considerations, strong stretching and folding deformation of the flow near the hyperbolic point resulted in rapid filamentation of air masses and sharp gradients of constituents. Calculations of the stirring using operational meteorological analyses from the NCEP Global Forecast System model produced excellent agreement with HIAPER and satellite observations of trace species. Back trajectories indicate that elevated ozone levels in some filaments likely came from a large stratospheric intrusion that occurred upstream in the jet over the north Pacific Ocean. The methods presented here can be used with operational forecasts for future flight planning.

  13. Computer applications in controlled fusion research

    Killeen, J.

    1975-01-01

    The application of computers to controlled thermonuclear research (CTR) is essential. In the near future the use of computers in the numerical modeling of fusion systems should increase substantially. A recent panel has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies is called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. To meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR Laboratories by a communication network. The crucial element needed for success is trained personnel. The number of people with knowledge of plasma science and engineering trained in numerical methods and computer science must be increased substantially in the next few years. Nuclear engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing

  14. Computer applications in controlled fusion research

    Killeen, J.

    1975-02-01

    The role of Nuclear Engineering Education in the application of computers to controlled fusion research can be a very important one. In the near future the use of computers in the numerical modelling of fusion systems should increase substantially. A recent study group has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. In order to meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR laboratories by a communications network. The crucial element that is needed for success is trained personnel. The number of people with knowledge of plasma science and engineering that are trained in numerical methods and computer science is quite small, and must be increased substantially in the next few years. Nuclear Engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing. (U.S.)

  15. SBIR PHASE I FINAL REPORT: Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures

    Brust, Frederick W. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States); Punch, Edward F. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States); Kurth, Elizabeth A. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States); Kennedy, James C. [Engineering Mechanics Corporation of Columbus (Emc2), Columbus, OH (United States)

    2013-12-02

    fabrication costs. VFT currently is tied to a commercial solver which makes it prohibitively expensive for use by SMEs, as there is a significant licensing cost for the solver - over and above for the relatively minimal cost for VFT. Emc2 developed this software code over a number of years in close cooperation with CAT (Peoria, IL), who currently uses this code exclusively for worldwide fabrication, product design and development activities. The use of VFT has allowed CAT to move directly from design to product fabrication and helped eliminate (to a large extent) new product prototyping and subsequent testing. Additionally, CAT has been able to eliminate/reduce costly one-of-a-kind appliances used to reduce distortion effects due to fabrication. In this context, SMEs can realize the same kind of improved product quality and reduced cost through adoption of the adapted version of VFT for design and subsequent manufacture of new products. Emc2's DOE SBIR Phase I effort successfully adapted VFT so that SMEs have access to this sophisticated and proven methodology that is quick, accurate and cost effective and available on-demand to address weld-simulation and fabrication problems prior to manufacture. The open source code, WARP3D, a high performance finite element code mainly used in fracture and damage assessment of structures, was modified so that computational weld problems can be solved efficiently on multiple processors and threads with VFT. The thermal solver for VFT, based on a series of closed form solution approximations, was enhanced for solution on multiple processors greatly increasing overall speed. In addition, the graphical user interface (GUI) has been tailored to integrate these solutions with WARP3D. The GUI is used to define all the weld pass descriptions, number of passes, material properties, consumable properties, weld speed, etc. for the structure to be modeled. The GUI was improved to make it user-friendly for engineers that are not experts in finite

  16. Clojure high performance programming

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  17. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods.

    Schwartz, Mathew; Dixon, Philippe C

    2018-01-01

    The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided

  18. Research Directions for AI in Computer Games

    Fairclough, Chris; Fagan, Michael; Cunningham, Padraig; Mac Namee, Brian

    2001-01-01

    The computer games industry is now bigger than the film industry. Until recently, technology in games was driven by a desire to achieve real-time, photo-realistic graphics. To a large extent, this has now been achieved. As game developers look for new and innovative technologies to drive games development, AI is coming to the fore. This paper will examine how sophisticated AI techniques, such as those being used in mainstream academic research, can be applied to computer games ...

  19. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Transport Protocol (Transmission Control Protocol/User Datagram Protocol [TCP/UDP]) Analysis

    2015-09-01

    the network Mac8 Medium Access Control ( Mac ) (Ethernet) address observed as destination for outgoing packets subsessionid8 Zero-based index of...15. SUBJECT TERMS tactical networks, data reduction, high-performance computing, data analysis, big data 16. SECURITY CLASSIFICATION OF: 17...Integer index of row cts_deid Device (instrument) Identifier where observation took place cts_collpt Collection point or logical observation point on

  20. Computing at the leading edge: Research in the energy sciences

    Mirin, A.A.; Van Dyke, P.T. [eds.

    1994-02-01

    The purpose of this publication is to highlight selected scientific challenges that have been undertaken by the DOE Energy Research community. The high quality of the research reflected in these contributions underscores the growing importance both to the Grand Challenge scientific efforts sponsored by DOE and of the related supporting technologies that the National Energy Research Supercomputer Center (NERSC) and other facilities are able to provide. The continued improvement of the computing resources available to DOE scientists is prerequisite to ensuring their future progress in solving the Grand Challenges. Titles of articles included in this publication include: the numerical tokamak project; static and animated molecular views of a tumorigenic chemical bound to DNA; toward a high-performance climate systems model; modeling molecular processes in the environment; lattice Boltzmann models for flow in porous media; parallel algorithms for modeling superconductors; parallel computing at the Superconducting Super Collider Laboratory; the advanced combustion modeling environment; adaptive methodologies for computational fluid dynamics; lattice simulations of quantum chromodynamics; simulating high-intensity charged-particle beams for the design of high-power accelerators; electronic structure and phase stability of random alloys.

  1. Computing at the leading edge: Research in the energy sciences

    Mirin, A.A.; Van Dyke, P.T.

    1994-01-01

    The purpose of this publication is to highlight selected scientific challenges that have been undertaken by the DOE Energy Research community. The high quality of the research reflected in these contributions underscores the growing importance both to the Grand Challenge scientific efforts sponsored by DOE and of the related supporting technologies that the National Energy Research Supercomputer Center (NERSC) and other facilities are able to provide. The continued improvement of the computing resources available to DOE scientists is prerequisite to ensuring their future progress in solving the Grand Challenges. Titles of articles included in this publication include: the numerical tokamak project; static and animated molecular views of a tumorigenic chemical bound to DNA; toward a high-performance climate systems model; modeling molecular processes in the environment; lattice Boltzmann models for flow in porous media; parallel algorithms for modeling superconductors; parallel computing at the Superconducting Super Collider Laboratory; the advanced combustion modeling environment; adaptive methodologies for computational fluid dynamics; lattice simulations of quantum chromodynamics; simulating high-intensity charged-particle beams for the design of high-power accelerators; electronic structure and phase stability of random alloys

  2. Research achievement report for fiscal 1998 on the development of high-performance industrial furnaces. Research and development of high-performance industrial furnaces and the like (2); 1998 nendo koseino kogyoro no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu (2)

    NONE

    1999-03-01

    Volume 2 named above contains part of research achievement reports and individual research achievement reports. The aluminum melting furnace working group research achievement report covers aluminum melting furnace operating patterns, concentrated impinging flame mode and dispersed impinging flame mode, and honeycomb and ball structures in heat storing bodies. The tubular heater working group report mentions the application of this facility to oil heating furnaces, studies and investigations for the embodiment of real systems using the tubular heater, and tests conducted in a furnace with plural heating tube lines. The individual research achievement reports elaborate on the development of technologies of heat transfer optimization under unsteady conditions in the steel material heating process, research and development of high-efficiency heat transfer technologies, development of heating furnace geometry optimization technologies, research and development of a high-performance controlled atmosphere heat treatment furnace, development of high-efficiency heat transfer technologies in high-temperature jet flame heating, development of heat uniformity improvement technologies for example for the steel material heating process, construction of optimum combustion control technologies for the regenerative burner furnace, research concerning laser-aided measurement in industrial furnaces, etc. (NEDO)

  3. TORCH Computational Reference Kernels - A Testbed for Computer Science Research

    Kaiser, Alex; Williams, Samuel Webb; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David H.; Demmel, James W.; Strohmaier, Erich

    2010-12-02

    For decades, computer scientists have sought guidance on how to evolve architectures, languages, and programming models in order to improve application performance, efficiency, and productivity. Unfortunately, without overarching advice about future directions in these areas, individual guidance is inferred from the existing software/hardware ecosystem, and each discipline often conducts their research independently assuming all other technologies remain fixed. In today's rapidly evolving world of on-chip parallelism, isolated and iterative improvements to performance may miss superior solutions in the same way gradient descent optimization techniques may get stuck in local minima. To combat this, we present TORCH: A Testbed for Optimization ResearCH. These computational reference kernels define the core problems of interest in scientific computing without mandating a specific language, algorithm, programming model, or implementation. To compliment the kernel (problem) definitions, we provide a set of algorithmically-expressed verification tests that can be used to verify a hardware/software co-designed solution produces an acceptable answer. Finally, to provide some illumination as to how researchers have implemented solutions to these problems in the past, we provide a set of reference implementations in C and MATLAB.

  4. A Computational Architecture for Programmable Automation Research

    Taylor, Russell H.; Korein, James U.; Maier, Georg E.; Durfee, Lawrence F.

    1987-03-01

    This short paper describes recent work at the IBM T. J. Watson Research Center directed at developing a highly flexible computational architecture for research on sensor-based programmable automation. The system described here has been designed with a focus on dynamic configurability, layered user inter-faces and incorporation of sensor-based real time operations into new commands. It is these features which distinguish it from earlier work. The system is cur-rently being implemented at IBM for research purposes and internal use and is an outgrowth of programmable automation research which has been ongoing since 1972 [e.g., 1, 2, 3, 4, 5, 6] .

  5. High performance sapphire windows

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  6. High Performance Descriptive Semantic Analysis of Semantic Graph Databases

    Joslyn, Cliff A.; Adolf, Robert D.; al-Saffar, Sinan; Feo, John T.; Haglin, David J.; Mackey, Greg E.; Mizell, David W.

    2011-06-02

    As semantic graph database technology grows to address components ranging from extant large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to understand their inherent semantic structure, whether codified in explicit ontologies or not. Our group is researching novel methods for what we call descriptive semantic analysis of RDF triplestores, to serve purposes of analysis, interpretation, visualization, and optimization. But data size and computational complexity makes it increasingly necessary to bring high performance computational resources to bear on this task. Our research group built a novel high performance hybrid system comprising computational capability for semantic graph database processing utilizing the large multi-threaded architecture of the Cray XMT platform, conventional servers, and large data stores. In this paper we describe that architecture and our methods, and present the results of our analyses of basic properties, connected components, namespace interaction, and typed paths such for the Billion Triple Challenge 2010 dataset.

  7. Architecture, systems research and computational sciences

    2012-01-01

    The Winter 2012 (vol. 14 no. 1) issue of the Nexus Network Journal is dedicated to the theme “Architecture, Systems Research and Computational Sciences”. This is an outgrowth of the session by the same name which took place during the eighth international, interdisciplinary conference “Nexus 2010: Relationships between Architecture and Mathematics, held in Porto, Portugal, in June 2010. Today computer science is an integral part of even strictly historical investigations, such as those concerning the construction of vaults, where the computer is used to survey the existing building, analyse the data and draw the ideal solution. What the papers in this issue make especially evident is that information technology has had an impact at a much deeper level as well: architecture itself can now be considered as a manifestation of information and as a complex system. The issue is completed with other research papers, conference reports and book reviews.

  8. Designing a High Performance Parallel Personal Cluster

    Kapanova, K. G.; Sellier, J. M.

    2016-01-01

    Today, many scientific and engineering areas require high performance computing to perform computationally intensive experiments. For example, many advances in transport phenomena, thermodynamics, material properties, computational chemistry and physics are possible only because of the availability of such large scale computing infrastructures. Yet many challenges are still open. The cost of energy consumption, cooling, competition for resources have been some of the reasons why the scientifi...

  9. Cloud Computing Technologies Facilitate Earth Research

    2015-01-01

    Under a Space Act Agreement, NASA partnered with Seattle-based Amazon Web Services to make the agency's climate and Earth science satellite data publicly available on the company's servers. Users can access the data for free, but they can also pay to use Amazon's computing services to analyze and visualize information using the same software available to NASA researchers.

  10. High Performance Work Systems

    J.P.P.E.F. Boselie (Paul); A. van der Wiele (Ton)

    2002-01-01

    textabstractResearch, summarized and classified in the work of Delery and Doty (1996), Guest (1997), Paauwe and Richardson (1997) and Boselie et al. (2001), suggests significant impact of Human Resources Management (HRM) on the competitive advantage of organizations. The mainstream research on this

  11. Research computing in a distributed cloud environment

    Fransham, K; Agarwal, A; Armstrong, P; Bishop, A; Charbonneau, A; Desmarais, R; Hill, N; Gable, I; Gaudet, S; Goliath, S; Impey, R; Leavett-Brown, C; Ouellete, J; Paterson, M; Pritchet, C; Penfold-Brown, D; Podaima, W; Schade, D; Sobie, R J

    2010-01-01

    The recent increase in availability of Infrastructure-as-a-Service (IaaS) computing clouds provides a new way for researchers to run complex scientific applications. However, using cloud resources for a large number of research jobs requires significant effort and expertise. Furthermore, running jobs on many different clouds presents even more difficulty. In order to make it easy for researchers to deploy scientific applications across many cloud resources, we have developed a virtual machine resource manager (Cloud Scheduler) for distributed compute clouds. In response to a user's job submission to a batch system, the Cloud Scheduler manages the distribution and deployment of user-customized virtual machines across multiple clouds. We describe the motivation for and implementation of a distributed cloud using the Cloud Scheduler that is spread across both commercial and dedicated private sites, and present some early results of scientific data analysis using the system.

  12. Reduction of Used Memory Ensemble Kalman Filtering (RumEnKF): A data assimilation scheme for memory intensive, high performance computing

    Hut, Rolf; Amisigo, Barnabas A.; Steele-Dunne, Susan; van de Giesen, Nick

    2015-12-01

    Reduction of Used Memory Ensemble Kalman Filtering (RumEnKF) is introduced as a variant on the Ensemble Kalman Filter (EnKF). RumEnKF differs from EnKF in that it does not store the entire ensemble, but rather only saves the first two moments of the ensemble distribution. In this way, the number of ensemble members that can be calculated is less dependent on available memory, and mainly on available computing power (CPU). RumEnKF is developed to make optimal use of current generation super computer architecture, where the number of available floating point operations (flops) increases more rapidly than the available memory and where inter-node communication can quickly become a bottleneck. RumEnKF reduces the used memory compared to the EnKF when the number of ensemble members is greater than half the number of state variables. In this paper, three simple models are used (auto-regressive, low dimensional Lorenz and high dimensional Lorenz) to show that RumEnKF performs similarly to the EnKF. Furthermore, it is also shown that increasing the ensemble size has a similar impact on the estimation error from the three algorithms.

  13. A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures

    Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2016-05-01

    In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.

  14. Parallel high-performance grid computing: Capabilities and opportunities of a novel demanding service and business class allowing highest resource efficiency

    F.N. Kepper (Nick); R. Ettig (Ramona); F. Dickmann (Frank); R. Stehr (Rene); F.G. Grosveld (Frank); G. Wedemann (Gero); T.A. Knoch (Tobias)

    2010-01-01

    textabstractEspecially in the life-science and the health-care sectors the huge IT requirements are imminent due to the large and complex systems to be analysed and simulated. Grid infrastructures play here a rapidly increasing role for research, diagnostics, and treatment, since they provide the

  15. A research program in empirical computer science

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  16. HPTA: High-Performance Text Analytics

    Vandierendonck, Hans; Murphy, Karen; Arif, Mahwish; Nikolopoulos, Dimitrios S.

    2017-01-01

    One of the main targets of data analytics is unstructured data, which primarily involves textual data. High-performance processing of textual data is non-trivial. We present the HPTA library for high-performance text analytics. The library helps programmers to map textual data to a dense numeric representation, which can be handled more efficiently. HPTA encapsulates three performance optimizations: (i) efficient memory management for textual data, (ii) parallel computation on associative dat...

  17. SISYPHUS: A high performance seismic inversion factory

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with

  18. Conference on High Performance Software for Nonlinear Optimization

    Murli, Almerico; Pardalos, Panos; Toraldo, Gerardo

    1998-01-01

    This book contains a selection of papers presented at the conference on High Performance Software for Nonlinear Optimization (HPSN097) which was held in Ischia, Italy, in June 1997. The rapid progress of computer technologies, including new parallel architec­ tures, has stimulated a large amount of research devoted to building software environments and defining algorithms able to fully exploit this new computa­ tional power. In some sense, numerical analysis has to conform itself to the new tools. The impact of parallel computing in nonlinear optimization, which had a slow start at the beginning, seems now to increase at a fast rate, and it is reasonable to expect an even greater acceleration in the future. As with the first HPSNO conference, the goal of the HPSN097 conference was to supply a broad overview of the more recent developments and trends in nonlinear optimization, emphasizing the algorithmic and high performance software aspects. Bringing together new computational methodologies with theoretical...

  19. Parallel computing in genomic research: advances and applications.

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.

  20. CERR: A computational environment for radiotherapy research

    Deasy, Joseph O.; Blanco, Angel I.; Clark, Vanessa H.

    2003-01-01

    A software environment is described, called the computational environment for radiotherapy research (CERR, pronounced 'sir'). CERR partially addresses four broad needs in treatment planning research: (a) it provides a convenient and powerful software environment to develop and prototype treatment planning concepts, (b) it serves as a software integration environment to combine treatment planning software written in multiple languages (MATLAB, FORTRAN, C/C++, JAVA, etc.), together with treatment plan information (computed tomography scans, outlined structures, dose distributions, digital films, etc.), (c) it provides the ability to extract treatment plans from disparate planning systems using the widely available AAPM/RTOG archiving mechanism, and (d) it provides a convenient and powerful tool for sharing and reproducing treatment planning research results. The functional components currently being distributed, including source code, include: (1) an import program which converts the widely available AAPM/RTOG treatment planning format into a MATLAB cell-array data object, facilitating manipulation; (2) viewers which display axial, coronal, and sagittal computed tomography images, structure contours, digital films, and isodose lines or dose colorwash, (3) a suite of contouring tools to edit and/or create anatomical structures, (4) dose-volume and dose-surface histogram calculation and display tools, and (5) various predefined commands. CERR allows the user to retrieve any AAPM/RTOG key word information about the treatment plan archive. The code is relatively self-describing, because it relies on MATLAB structure field name definitions based on the AAPM/RTOG standard. New structure field names can be added dynamically or permanently. New components of arbitrary data type can be stored and accessed without disturbing system operation. CERR has been applied to aid research in dose-volume-outcome modeling, Monte Carlo dose calculation, and treatment planning optimization