WorldWideScience

Sample records for high-oxidation state actinide

  1. Relationships among oxidation-reduction and acid-base properties of the actinides in high oxidation states

    International Nuclear Information System (INIS)

    Morss, L.R.

    1992-01-01

    The first chemical identification of plutonium, its subsequent isolation on the macroscopic scale, and more recent chemical separation schemes were achieved by taking advantage of the differences among the oxidation states of uranium, neptunium, and plutonium. Many acid-base properties modify the relative stabilities of oxidation states of the actinides. In the solid state, strongly basic compounds such as Cs 2 O yield complex oxides with oxidation states of Np(VII), Pu(VI), and Am(VI) whereas more acidic compounds such as CsF yield complex fluorides with lower oxidation states. In aqueous solution, high basicity and strongly covalent complexes favor high oxidation states. In nonaqueous solvent systems, high acidity generally favors low oxidation states. This paper elucidates and attempts to interpret the effects of these acid-base properties in a systematic fashion

  2. Stabilization of actinides and lanthanides in unusually high oxidation states

    International Nuclear Information System (INIS)

    Eller, P.G.; Penneman, R.A.

    1986-01-01

    Chemical environments can be chosen which stabilize actinides and lanthanides in unusually high or low oxidation states and in unusual coordination. In many cases, one can rationalize the observed species as resulting from strong charge/size influences provided by specific sites in host lattices (e.g., Tb(IV) in BaTbO 3 or Am(IV) in polytungstate anions). In other cases, the unusual species can be considered from an acid-base viewpoint (e.g., U(III) in AsF 5 /HF solution or Pu(VII) in Li 5 PuO 6 ). In still other cases, an interplay of steric and redox effects can lead to interesting comparisons (e.g., instability of double fluoride salts of Pu(V) and Pu(VI) relative to U, Np, and Am analogues). Generalized ways to rationalize compounds containing actinides and lanthanides in unusual valences (particularly high valences), including the above and numerous other examples, will form the focus of this paper. Recently developed methods for synthesizing high valent f-element fluorides using superoxidizers and superacids at low temperatures will also be described. 65 refs., 8 figs., 9 tabs

  3. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    International Nuclear Information System (INIS)

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean-Francois; Ams, David; Richmann, M.K.; Khaing, H.; Swanson, J.S.

    2010-01-01

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.

  4. General regularity of the oxidation potential variations and high oxidation states in the second half of the actinide series

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Vokhmin, V.G.; Ionova, G.V.; Pershina, V.G.

    1984-01-01

    Oxidation potentials (OP) PHI(4/3), PHI(5/3), PHI(6/3), PHI(5/4) and PHI(6/5) are calculated for the members of the actinide series. A semiemperic relation combining OP with explicit terms for ground level energies of actinide ions in Russell-Saunders approximation as well as known values of formal OP relative to the normal hydrogen electrode potential are used as an extrapolation function. It is shown that an increase of PHI(4/3) OP which occurs after Bsub(k) explains a low stability of the oxidation state 4 in solutions for actinides of the second half of the series. PHI(5/3) and PHI(5/4) OP in the section starting with Cm have the minimum at Cf. PHI(6/3) OP for Cm, Bk, Cf and Es are practically the same but for Cm, Bk and Es they are smaller than PHI(5/3) OP. A principle possibility of Bk(6), Cf(6) and Es(6) preparation is shown

  5. Actinide oxide photodiode and nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Milan; Usov, Igor

    2017-12-05

    Photodiodes and nuclear batteries may utilize actinide oxides, such a uranium oxide. An actinide oxide photodiode may include a first actinide oxide layer and a second actinide oxide layer deposited on the first actinide oxide layer. The first actinide oxide layer may be n-doped or p-doped. The second actinide oxide layer may be p-doped when the first actinide oxide layer is n-doped, and the second actinide oxide layer may be n-doped when the first actinide oxide layer is p-doped. The first actinide oxide layer and the second actinide oxide layer may form a p/n junction therebetween. Photodiodes including actinide oxides are better light absorbers, can be used in thinner films, and are more thermally stable than silicon, germanium, and gallium arsenide.

  6. Phase Behavior and Equations of State of the Actinide Oxides

    Science.gov (United States)

    Chidester, B.; Pardo, O. S.; Panero, W. R.; Fischer, R. A.; Thompson, E. C.; Heinz, D. L.; Prescher, C.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    The distribution of the long-lived heat-producing actinide elements U and Th in the deep Earth has important implications for the dynamics of the mantle and possibly the energy budget of Earth's core. The low shear velocities of the Large Low-Shear Velocity Provinces (LLSVPs) on the core-mantle boundary suggests that these regions are at least partially molten and may contain concentrated amounts of the radioactive elements, as well as other large cations such as the rare Earth elements. As such, by exploring the phase behavior of actinide-bearing minerals at extreme conditions, some insight into the mineralogy, formation, and geochemical and geodynamical effects of these regions can be gained. We have performed in situ high-pressure, high-temperature synchrotron X-ray diffraction experiments and calculations on two actinide oxide materials, UO2 and ThO2, to determine their phase behavior at the extreme conditions of the lower mantle. Experiments on ThO2 reached 60 GPa and 2500 K, and experiments on UO2 reached 95 GPa and 2500 K. We find that ThO2 exists in the fluorite-type structure to 20 GPa at high temperatures, at which point it transforms to the high-pressure cotunnite-type structure and remains thus up to 60 GPa. At room temperature, an anomalous expansion of the fluorite structure is observed prior to the transition, and may signal anion sub-lattice disorder. Similarly, UO2 exists in the fluorite-type structure at ambient conditions and up to 28 GPa at high temperatures. Above these pressures, we have observed a previously unidentified phase of UO2 with a tetragonal structure as the lower-temperature phase and the cotunnite-type phase at higher temperatures. Above 78 GPa, UO2 undergoes another transition or possible dissociation into two separate oxide phases. These phase diagrams suggest that the actinides could exist as oxides in solid solution with other analogous phases (e.g. ZrO2) in the cotunnite-type structure throughout much of Earth's lower mantle.

  7. Selective extraction of actinides from high level liquid wastes. Study of the possibilities offered by the Redox properties of actinides

    International Nuclear Information System (INIS)

    Adnet, J.M.

    1991-07-01

    Partitioning of high level liquid wastes coming from nuclear fuel reprocessing by the PUREX process, consists in the elimination of minor actinides (Np, Am, and traces of Pu and U). Among the possible processes, the selective extraction of actinides with oxidation states higher than three is studied. First part of this work deals with a preliminary step; the elimination of the ruthenium from fission products solutions using the electrovolatilization of the RuO4 compound. The second part of this work concerns the complexation and oxidation reactions of the elements U, Np, Pu and Am in presence of a compound belonging to the insaturated polyanions family: the potassium phosphotungstate. For actinide ions with oxidation state (IV) complexed with phosphotungstate anion the extraction mechanism by dioctylamine was studied and the use of a chromatographic extraction technic permitted successful separations between tetravalents actinides and trivalents actinides. Finally, in accordance with the obtained results, the basis of a separation scheme for the management of fission products solutions is proposed

  8. A first principles investigation of the electronic structure of actinide oxides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Zdzislawa

    2010-01-01

    The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations using the selfinteraction corrected local spin-density approximation. Our study reveals a strong link between preferred oxidation number...... and degree of localization. The ionic nature of the actinide oxides emerges from the fact that those oxides where the ground state is calculated to be metallic do not exist in nature, as the corresponding delocalized f-states favour the accommodation of additional O atoms into the crystal lattice....

  9. Process for obtaining sintered conglomerates with a high density of rare earth oxides and actinides

    International Nuclear Information System (INIS)

    Pasto, A.E.

    1974-01-01

    The invention concerns a method to produce agglomerates of actinide and rare earth oxides possessing a cubic-monoclinic transformation in order to obtain high densities close to the theoretical density, and the articles produced by the method. The process is based on the use of a rare earth or actinide oxide, in particular Eu 2 O 3 , with a cubic-monoclinic phase transformation, the oxide being sintered by hot compression at a temperature 50 deg C to 100 deg C above the transformation temperature. The sintered agglomerates obtained can have a purity of at least 99.9% and a density of practically 100%. These agglomerates are suitable in particular for the formation of nuclear reactor control rods [fr

  10. Electrochemical reduction of actinides oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.

    2011-01-01

    Reactive metals are currently produced from their oxide by multiple steps reduction techniques. A one step route from the oxide to the metal has been suggested for metallic titanium production by electrolysis in high temperature molten chloride salts. In the so-called FFC process, titanium oxide is electrochemically reduced at the cathode, generating O 2- ions, which are converted on a graphite anode into carbon oxide or dioxide. After this process, the spent salt can in principle be reused for several batches which is particularly attractive for a nuclear application in terms of waste minimization. In this work, the electrochemical reduction process of cerium oxide (IV) is studied in CaCl 2 and CaCl 2 -KCl melts to understand the oxide reduction mechanism. Cerium is used as a chemical analogue of actinides. Electrolysis on 10 grams of cerium oxide are made to find optimal conditions for the conversion of actinides oxides into metals. The scale-up to hundred grams of oxide is also discussed. (author) [fr

  11. Actinide removal from molten salts by chemical oxidation and salt distillation

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, J.A.; Garcia, E.; Dole, V.R. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed.

  12. Actinide removal from molten salts by chemical oxidation and salt distillation

    International Nuclear Information System (INIS)

    McNeese, James A.; Garcia, Eduardo; Dole, Vonda R.; Griego, Walter J.

    1995-01-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed

  13. Comparison of the thermodynamic properties and high temperature chemical behavior of lanthanide and actinide oxides

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Rauh, E.G.

    1977-01-01

    The thermodynamic properties of the lanthanide and actinide oxides are examined, compared, and associated with a variety of high temperature chemical behavior. Trends are cited resulting from a number of thermodynamic and spectroscopic correlations involving solid phases, species in aqueous solution, and molecules and ions in the vapor phase. Inadequacies in the data and alternative approaches are discussed. The characterization of nonstoichiometric phases stable only at high temperatures is related to a network of heterogeneous and homogeneous equilibria. A broad perspective of similarity and dissimilarity between the lanthanides and actinides emerges and forms the basis of the projected needs for further study

  14. Quantum Chemical Calculations and Experimental Investigations of Molecular Actinide Oxides

    NARCIS (Netherlands)

    Kovács, Attila; Konings, Rudy J. M.; Gibson, John K.; Infante, Ivan; Gagliardi, Laura

    2015-01-01

    The available experimental and theoretical information on gaseous actinide oxides covering both the neutral and the ionic species are reviewed. The ground-state electronic structures of the oxides of An = Th-Cm have been obtained by the well-tested SOCASPT2 method, and therefore they are very likely

  15. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  16. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  17. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    Science.gov (United States)

    2014-03-27

    actinide oxides . The work described here is an attempt to characterize the quality of crystals using positron annihilation spectroscopy (PALS). The...Upadhyaya, R. V. Muraleedharan, B. D. Sharma and K. G. Prasad, " Positron lifetime studies on thorium oxide powders," Philosohical Magazine A, vol. 45... crystals . A strong foundation for actinide PALS studies was laid, but further work is required to build a more effective system. Positron Spectroscopy

  18. Actinide speciation in the environment

    International Nuclear Information System (INIS)

    Choppin, G.R.

    2007-01-01

    Nuclear test explosions and nuclear reactor wastes and accidents have released large amounts of radioactivity into the environment. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides are introduced into the aquatic system. Chemical speciation, oxidation state, redox reactions, and sorption characteristics are necessary in predicting solubility of the different actinides, their migration behaviors and their potential effects on marine biota. The most significant of these variables is the oxidation state of the metal ion as the simultaneous presence of more than one oxidation state for some actinides in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters, are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is much more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK sp ≥56) but which can be present in the pentavalent form in aqautic phases as colloidal material. The solubility of hexavalent UO 2 2+ in sea water is relatively high due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(OH)(CO 3 ) is the limiting species for the solubility of Am(III) in sea water. Thorium(IV) is present as Th(OH) 4 , in colloidal form. The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in natural waters which must be considered in assessing the environmental behavior of actinides. Much is understood about sorption of actinides on surfaces, the mode of migration of actinides in such waters and the potential effects of these radioactive species on marine biota, but much more understanding of the behavior of the actinides in the environment is

  19. Hydrothermal decomposition of actinide(IV oxalates: a new aqueous route towards reactive actinide oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Walter Olaf

    2016-01-01

    Full Text Available The hydrothermal decomposition of actinide(IV oxalates (An= Th, U, Pu at temperatures between 95 and 250 °C is shown to lead to the production of highly crystalline, reactive actinide oxide nanocrystals (NCs. This aqueous process proved to be quantitative, reproducible and fast (depending on temperature. The NCs obtained were characterised by X-ray diffraction and TEM showing their size to be smaller than 15 nm. Attempts to extend this general approach towards transition metal or lanthanide oxalates failed in the 95–250 °C temperature range. The hydrothermal decomposition of actinide oxalates is therefore a clean, flexible and powerful approach towards NCs of AnO2 with possible scale-up potential.

  20. Gyromagnetic factors for high spin states in the actinides

    International Nuclear Information System (INIS)

    Ring, P.

    1984-01-01

    The cranked Hartree-Fock-Bogoliubov theory was used for a systematic investigation of gyromagnetic factors in the yrast states of even-even actinide nuclei. The theory used was the most simplified version with fixed deformation and gap parameters, that is, so-called rotating shell model. The gyromagnetic factor g and the contribution gsub(p) and gsub(n) were obtained for a large number of nuclei in the actinide region. The aligned angular momenta for protons and for neutrons are shown in the same actinide region. The general behaviour of g-factor was able to be understood in terms of simple rules: (i) For fixed proton number, neutron alignment becomes more difficult with increasing the neutron number, and vice versa. (ii) A sudden neutron alignment was observed for N=140 and N=146, and a sudden proton alignment was also observed for Z=94. The alignment between these critical numbers was smooth. The pattern obtained for the values of the aligned angular momentum was clearly reflected to the g-factor, and it provided an excellent tool to study the structure of level in the high spin region. (Asami, T.)

  1. Subsurface interactions of actinide species and microorganisms. Implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Rittmann, B.E.; Reed, D.T.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, the way how bioremediation controls the fate of actinides is assessed. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. The way how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility is described. Why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions is explained. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. Development of mathematical models that link microbiological and geochemical reactions is described. Throughout, the key research needs are identified. (author)

  2. Actinide science. Fundamental and environmental aspects

    International Nuclear Information System (INIS)

    Choppin, Gregory R.

    2005-01-01

    Nuclear test explosions and reactor wastes have deposited an estimated 16x10 15 Bq of plutonium into the world's aquatic systems. However, plutonium concentration in open ocean waters is orders of magnitude less, indicating that most of the plutonium is quite insolvable in marine waters and has been incorporated into sediments. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides were introduced into the aquatic system. Actinide solubility depends on such factors as pH(hydrolysis), E H (oxidation state), reaction with complexants (e.g. carbonate, phosphate, humic acid, etc.) sorption to surfaces of minerals and/or colloids, etc., in the water. The most significant of these variables is the oxidation sate of the metal ion. The simultaneous presence of more than one oxidation state for some actinides (e.g. plutonium) in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation but can undergo reduction to the Pu(IV) oxidation state with its different elemental behavior. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK SP - 56). The net solubility of hexavalent UO 2 2+ in sea water is also limited by hydrolysis; however, it has a relatively high concentration due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(CO) 3 (OH), is the limiting species for the solubility of Am(III) in sea water. Thorium is found exclusively as the tetravalent species and its solubility is limited by the formation of quite insoluble Th(OH) 4 . The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in

  3. Actinides

    International Nuclear Information System (INIS)

    Martinot, L.; Fuger, J.

    1985-01-01

    The oxidation behavior of the actinides is explained on the basis of their electronic structure. The actinide elements, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and laurencium are included. For all except the last three elements, the points of discussion are oxidation states, Gibbs energies and potentials, and potential diagram for the element in acid solution; and thermodynamic properties of these same elements are tabulated. References are cited following discussion of each element with a total of 97 references being cited. 13 tables

  4. Research in actinide chemistry

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH - , CO 3 2- , PO 4 3- , humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements

  5. Research on Actinides in Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Park, Yong Joon; Cho, Young Hwan

    2010-04-01

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  6. Research on Actinides in Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyu Seok; Park, Yong Joon; Cho, Young Hwan

    2010-04-15

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  7. Systematic thermodynamic properties of actinide metal-oxygen systems at high temperatures: Emphasis on lower valence states

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Chandrasekharaiah, M.S.

    1975-01-01

    The thermodynamic data for the actinide metals and oxides (thorium to curium ) have been assessed, examined for consistency, and compared with the lanthanides. Correlations relating the enthalpies of formation of the solid oxides with the corresponding aquo ions make possible the estimation of the thermodynamic properties of AmO 2 (s) and Am 2 O 3 (s) which are in accordance with vaporization data. The known thermodynamic properties of the substoichiometric dioxides MOsub(2-x)(s) at high temperatures demonstrate the relative stabilities of valence states less than 4+ and lead to the examination of stability requirements for the sesquioxides M 2 O 3 (s) and the monoxides MO(s). Sequential trends in the gaseous metals, monoxides and dioxides are examined, compared, and contrasted with the lanthanides. (author)

  8. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, whi...

  9. Actinide oxides synthesis in molten chloride. Structural studies and reaction mechanisms

    International Nuclear Information System (INIS)

    Vigier, J.F.

    2012-01-01

    Pyrochemical processes are studied as potential alternatives to hydrochemical processes for spent nuclear fuel treatment. The CEA pyrochemical process led to a molten LiCl-CaCl 2 (30-70% mol) salt at 700 C with solubilized actinides at the oxidation state (III). The study developed in this thesis concerns actinide oxides synthesis in this media for nuclear fuel re-fabrication. This synthesis was done by wet argon sparging. First, this conversion method is described for neodymium (III) and cerium (III) co-conversion. The conversion rates are around 99.9%. The obtained powders contain mixed oxychloride Ce 1-x Nd x OCl as main component, with a small amount of mixed oxide Ce 1-x Nd x O 2-0,5x for the high cerium ratio. A second oxychloride CeIV(Nd 0.7 Ce 0.3 ) III O 3 Cl is obtained in specific conditions and in very low quantity. The structure of this oxychloride is described in this study. The partially oxidative property of the conversion method induces the oxidation of a part of cerium (III) to oxidation state (IV). In the case of uranium (III) conversion by wet argon sparging, all the uranium is oxidized and give the oxide UO 2 as single compound. The conversion rate for this element is over 99.9% in the molten chloride, but significant amount of uranium is lost by volatilization during the conversion. The study shows the oxygen sensitivity of uranium during the conversion, inducing oxidation over the oxidation state (IV), and giving UO 2+x or uranate CaUO 4 . As a consequence, oxygen led to calcium pollution in the precipitate. Finally, the U(III) and Pu(III) co-conversion study shows the highest precipitation sensitivity of uranium (III) in comparison with plutonium (III), responsible of a successive conversion of the two elements, giving an oxide mixture of UO 2 et PuO 2 with quantitative conversion rate. Surprisingly, the conversion of Pu(III) in the same conditions led to a mixture of PuO 2 and PuOCl, characteristic of a partial oxidation from Pu (III) to Pu

  10. 3 and 4 oxidation state element solubilities in borosilicate glasses. Implement to actinides in nuclear glasses

    International Nuclear Information System (INIS)

    Cachia, J.N.

    2005-12-01

    In order to ensure optimal radionuclides containment, the knowledge of the actinide loading limits in nuclear waste glasses and also the comprehension of the solubilization mechanisms of these elements are essential. A first part of this manuscript deals with the study of the differences in solubility of the tri and tetravalent elements (actinides and surrogates) particularly in function of the melting temperature. The results obtained indicate that trivalent elements (La, Gd, Nd, Am, Cm) exhibit a higher solubility than tetravalent elements (Hf, Th, Pu). Consequently, it was planned to reduce plutonium at the oxidation state (III), the later being essentially tetravalent in borosilicate glasses. An innovating reduction process of multi-valent elements (cerium, plutonium) using silicon nitride has been developed in a second part of this work. Reduced plutonium-bearing glasses synthesized by Si 3 N 4 addition made it possible to double the plutonium solubility from 2 to 4 wt% at 1200 deg C. A structural approach to investigate the differences between tri and tetravalent elements was finally undertaken. These investigations were carried out by X-rays Absorption Spectroscopy (EXAFS) and NMR. Trivalent rare earth and actinide elements seem to behave as network modifiers while tetravalent elements rather present true intermediaries' behaviour. (author)

  11. Actinide metal processing

    International Nuclear Information System (INIS)

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  12. The effect of high pressures on actinide metals

    International Nuclear Information System (INIS)

    Benedict, U.

    1987-01-01

    The solid state properties of the actinides are controlled by the dualism of the localized and itinerant (delocalized) configuration of the 5f electrons. This dualism allows to define two main subgroups. At ambient pressures the first subgroup, of elements with atomic number 91 to 94, is characterized by 5f electrons in an itinerant state and the second subgroup, atomic number 95 to 98, by 5f electrons in a localized state. The latter means that these electrons have well defined energy levels and do not contribute to the metallic bond. The other two subgroups consist of thorium, as a subgroup of its own because its 5f levels are practically unoccupied in the ground state configuration, and of the five heaviest elements with atomic number 99 to 103. The most remarkable effect of pressure on the actinide metals is that due to closer contact between the lattice atoms, localized 5f electrons can become itinerant, hybridise with the conduction electrons and participate in the metallic bond. In this chapter the high-pressure structural behaviour of actinide metals is reviewed. Section 3 gives an introduction into the techniques of generating and measuring pressure and of determining various physical properties of the actinides under pressure and describes a few high-pressure devices and methods. Sections 4 to 7 treat the high-pressure results for each subgroup separately. In section 8 the results of the preceding sections are brought together in a graphical representation which consists of interconnecting binary phase diagrams of neighbouring actinide metals. 155 refs.; 14 figs.; 7 tabs. (H.W.)

  13. Extraction chromatogrpahy of actinides, ch. 7

    International Nuclear Information System (INIS)

    Mueller, W.

    1975-01-01

    This review on extraction chromatography of actinides emphasizes the important usage of neutral (Tributylphosphate), basic (substituted ammonium salts), and acidic (HDEHP) extractants, and their application to separations of actinides in the di-to hexavalent oxidation state. Furthermore, the actinide extraction by ketones, ethers, alcohols and β-diketones is discussed

  14. Removal of actinide elements from high level radioactive waste by trialkylphosphine oxide (TRPO)

    International Nuclear Information System (INIS)

    Song Chongli; Yang Dazhu; He Longhai; Xu Jingming; Zhu Yongjun

    1992-03-01

    The modified TRPO process for removing actinide elements from synthetic solution, which was taken from reprocessing of power reactor nuclear fuel, was verified by cascade experiment. Neptunium valence was adjusted in the process for improving neptunium removing efficiency. At 1 mol/L concentration of HNO 3 of feed solution and after a few stages of extraction with 30% t=TRPO kerosene, over 99.9% of Am, Pu, Np and U could be removed from HAW (high level radioactive waste) solution. The stripping of actinides loaded in TRPO are accomplished by high concentration nitric acid, oxalic acid and sodium carbonate instead of amino carboxylic complexing agents used in previous process. The actinides stripped were divided into three groups, which are Am + RE, Np + Pu, and U, and the cross contamination between them is small. Behaviours of F.P. elements are divided into three types which are not extracted, little extracted and extracted elements. The extracted elements are rare earth and Pd, Zr and Mo which are co-extracted with actinides. The separation factor between actinides and other two types of F.P.elements will increase if more scrubbing sections are added in the process. The relative concentration profile of actinide elements and Tc in various stages as well as the distribution of actinides and F.P. elements in the process stream solutions are also presented

  15. Application of chemical structure and bonding of actinide oxide materials for forensic science

    International Nuclear Information System (INIS)

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO 2 (An: U, Pu) to form non-stoichiometric species described as AnO 2+x . Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  16. Application of chemical structure and bonding of actinide oxide materials for forensic science

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Marianne Perry [Los Alamos National Laboratory

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  17. Simulations of the Thermodynamic and Diffusion Properties of Actinide Oxide Fuel Materials

    International Nuclear Information System (INIS)

    Becker, Udo

    2013-01-01

    Spent nuclear fuel from commercial reactors is comprised of 95-99 percent UO 2 and 1-5 percent fission products and transuranic elements. Certain actinides and fission products are of particular interest in terms of fuel stability, which affects reprocessing and waste materials. The transuranics found in spent nuclear fuels are Np, Pu, Am, and Cm, some of which have long half- lives (e.g., 2.1 million years for 237 Np). These actinides can be separated and recycled into new fuel matrices, thereby reducing the nuclear waste inventory. Oxides of these actinides are isostructural with UO 2 , and are expected to form solid solutions. This project will use computational techniques to conduct a comprehensive study on thermodynamic properties of actinide-oxide solid solutions. The goals of this project are to: Determine the temperature-dependent mixing properties of actinide-oxide fuels; Validate computational methods by comparing results with experimental results; Expand research scope to complex (ternary and quaternary) mixed actinide oxide fuels. After deriving phase diagrams and the stability of solid solutions as a function of temperature and pressure, the project team will determine whether potential phase separations or ordered phases can actually occur by studying diffusion of cations and the kinetics of potential phase separations or ordered phases. In addition, the team will investigate the diffusion of fission product gases that can also have a significant influence on fuel stability. Once the system has been established for binary solid solutions of Th, U, Np, and Pu oxides, the methodology can be quickly applied to new compositions that apply to ternaries and quaternaries, higher actinides (Am, Cm), burnable poisons (B, Gd, Hf), and fission products (Cs, Sr, Tc) to improve reactivity

  18. Research on the actinide chemistry in Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyseok; Park, Yong Joon; Cho, Young Hwan; and others

    2012-04-15

    Fundamental technique to measure chemical behaviors and properties of lanthanide and actinide in radioactive waste is necessary for the development of pryochemical process. First stage, the electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipments, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media. In the second stage, measurement system for physical properties at pyrochemical process such as viscosity, melting point and conductivity is established, and property database at different compositions of lanthanide and actinide is collected. And, both interactions between elements and properties with different potential are measured at binary composition of actinide-lanthanide in molten salt using electrochemical/spectroscopic integrated measurement system.

  19. The actinides

    International Nuclear Information System (INIS)

    Bagnall, K.W.

    1987-01-01

    This chapter of coordination compound chemistry is devoted to the actinides and starts with a general survey. Most of the chapter relates to thorium and uranium but protactinium, neptunium and plutonium are included. There are sections on nitrogen, phosphorus, sulfur, selenium, tellurium and halogen ligands of the metals in their +3, +4, +5 and +6 oxidation states and of the transplutonium elements in their +2, +3, +4, and +5 oxidation states. (UK)

  20. 1981 Annual Status Report. Plutonium fuels and actinide programme

    International Nuclear Information System (INIS)

    1981-01-01

    In this 1981 report the work carried out by the European Institute for Transuranium elements is reviewed. Main topics are: operation limits of plutonium fuels: swelling of advanced fuels, oxide fuel transients, equation of state of nuclear materials; actinide cycle safety: formation of actinides (FACT), safe handling of plutonium fuel (SHAPE), aspects of the head-end processing of carbide fuel (RECARB); actinide research: crystal chemistry, solid state studies, applied actinide research

  1. Solid-state actinide acid phosphites from phosphorous acid melts

    International Nuclear Information System (INIS)

    Oh, George N.; Burns, Peter C.

    2014-01-01

    The reaction of UO 3 and H 3 PO 3 at 100 °C and subsequent reaction with dimethylformamide (DMF) produces crystals of the compound (NH 2 (CH 3 ) 2 )[UO 2 (HPO 2 OH)(HPO 3 )]. This compound crystallizes in space group P2 1 /n and consists of layers of uranyl pentagonal bipyramids that share equatorial vertices with phosphite units, separated by dimethylammonium. In contrast, the reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup. Subsequent dilution in solvents and use of standard solution-state methods results in the crystallization of two polymorphs of the actinide acid phosphites An(HPO 2 OH) 4 (An=U, Th) and of the mixed acid phosphite–phosphite U(HPO 3 )(HPO 2 OH) 2 (H 2 O)·2(H 2 O). α- and β-An(HPO 2 OH) 4 crystallize in space groups C2/c and P2 1 /n, respectively, and comprise a three-dimensional network of An 4+ cations in square antiprismatic coordination corner-sharing with protonated phosphite units, whereas U(HPO 3 )(HPO 2 OH) 2 (H 2 O) 2 ·(H 2 O) crystallizes in a layered structure in space group Pbca that is composed of An 4+ cations in square antiprismatic coordination corner-sharing with protonated phosphites and water ligands. We discuss our findings in using solid inorganic reagents to produce a solution-workable precursor from which solid-state compounds can be crystallized. - Graphical abstract: Reaction of UO 3 and H 3 PO 3 at 100 °C and subsequent reaction with DMF produces crystals of (NH 2 (CH 3 ) 2 )[UO 2 (HPO 2 OH)(HPO 3 )] with a layered structure. Reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup and further solution-state reactions result in the crystallization of the actinide acid phosphites An(HPO 2 OH) 4 (An=U, Th), with a three-dimensional network structure, and the mixed acid phosphite–phosphite U(HPO 3 )(HPO 2 OH) 2 (H 2 O) 2 ·(H 2 O) with a layered structure. - Highlights: • U(VI), U(IV) and Th(IV) phosphites were synthesized by solution-state

  2. Separation and preconcentration of actinides from acidic media by extraction chromatography

    International Nuclear Information System (INIS)

    Horwitz, E. Philip; Chiarizia, Renato; Dietz, Mark L.; Diamond, Herbert; Nelson, Donald M.

    1993-01-01

    A systematic examination of the effect of nitric and hydrochloric acid concentrations and of macro levels of selected elements on the sorption of actinide ions by a novel extraction chromatographic resin comprised of a solution of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide in tri-n-butyl phosphate supported on an inert polymeric substrate is described. Actinide sorption is demonstrated to be most efficient at high (>1 M) nitric acid concentrations, although tetra- and hexavalent actinides are strongly retained even from dilute (e.g., 0.05 M) nitric acid solutions. Macro concentrations of several common anions (e.g., PO 4 3- and SO 4 2- ) or complexing agents (e.g., oxalic acid) are shown not to adversely affect the sorption of trivalent actinides, while reducing the sorption of tetravalents. Such effects, together with oxidation state adjustments, are shown to provide a basis for the sequential elution of individual actinides and for actinide isolation from environmental and biological matrices

  3. Partitioning of actinides from high level waste of PUREX origin using octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-based supported liquid membrane

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dudwadkar, N.L.; Chitnis, R.R.; Mathur, J.N.

    1999-01-01

    The present studies deal with the application of the supported liquid membrane (SLM) technique for partitioning of actinides from high level waste of PUREX origin. The process uses a solution of octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO) in n-dodecane as a carrier with a polytetrafluoroethylene support and a mixture of citric acid, formic acid, and hydrazine hydrate as the receiving phase. The studies involve the investigation of such parameters as carrier concentration in SLM, acidity of the feed, and the feed composition. The studies indicated good transport of actinides like neptunium, americium, and plutonium across the membrane from nitric acid medium. A high concentration of uranium in the feed retards the transport of americium, suggesting the need for prior removal of uranium from the waste. The separation of actinides from uranium-lean simulated samples as well as actual high level waste has been found to be feasible using the above technique

  4. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  5. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  6. Investigation on leaching of actinide oxides into supercritical fluids

    International Nuclear Information System (INIS)

    Shafikov, D.N.; Kamachev, V.A.; Babain, V.A.; Murzin, A.A.; Shadrin, A.Yu.; Podojnitsin, S.V.

    2006-01-01

    The extraction of actinide oxides into solutions of the TBP-HNO 3 complex in supercritical (SC) CO 2 was investigated. Experiments on the extraction of the TBP-HNO 3 complex into SC CO 2 were first conducted. It was found that a constant concentration of TBP in SC CO 2 of 13.5-14.8 % vol. can be attained using a constant molar ratio of [HNO 3 ]:[TBP] about 2.5 : 1. Joint leaching of uranium, plutonium and neptunium from mixtures of actinide oxides with solutions of TBP-HNO 3 in SC CO 2 was found feasible. If the leaching of uranium is about 95 %, its purification coefficients from major gamma-emitting radionuclides (Cs and Sr) exceed 100, while the purification coefficients of uranium from rare earth elements are 10-20

  7. Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa_{5}

    Directory of Open Access Journals (Sweden)

    Tanmoy Das

    2012-11-01

    Full Text Available We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa_{5} that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV and high (approximately 1 eV binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.

  8. Oxidation potentials, Gibbs energies, enthalpies and entropies of actinide ions in aqueous solutions

    International Nuclear Information System (INIS)

    1977-01-01

    The values of the Gibbs energy, enthalpy, and entropy of different actinide ions, thermodynamic characteristics of the processes of hydration of these ions, and the presently known ionization potentials of actinides are given. The enthalpy and entropy components of the oxidation potentials of actinide elements are considered. The curves of the dependence of the Gibbs energy of ion formation on the atomic number of the element and the Frost diagrams are analyzed. The diagram proposed by Frost represents the graphical dependence of the Gibbs energy of hydrated ions on the degree of oxidation of the element. Using the Frost diagram it is easy to establish whether a given ion is stable to disproportioning

  9. Successive change regularity of actinide properties with atomic number

    International Nuclear Information System (INIS)

    Yang Xuexian

    1990-08-01

    The development and achievements on chemistry of actinide elements are summarised. The relations of properties of actinides to their electronic configurations of valence electronic shells are discussed. Some anomalies of solid properties, the radius contraction, the stable state effect of f 7n -orbits (n = 0, 1, 2) and the tetrad effect of oxidation states, etc., with atomic number (Z) are described. 31 figures appended show directly the successive change regularity of actinide properties with Z

  10. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes

    Science.gov (United States)

    Gregson, Matthew; Lu, Erli; Mills, David P.; Tuna, Floriana; McInnes, Eric J. L.; Hennig, Christoph; Scheinost, Andreas C.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Kerridge, Andrew; Liddle, Stephen T.

    2017-02-01

    Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal-ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inverse-trans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C=M=C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle.

  11. Extraction chromatography of actinides

    International Nuclear Information System (INIS)

    Muller, W.

    1978-01-01

    Extraction chromatography of actinides in the oxidation state from 2 to 6 is reviewed. Data on using neutral (tbp), basic (substituted ammonium salts) and acidic [di-(2-ethylhexyl)-phosphoric acid (D2EHPA)] extracting agents ketones, esters, alcohols and β-diketones in this method are given. Using the example of actinide separation using D2EHPA, discussed are factors influencing the efficiency of their chromatography separation (nature and particle size of the carrier materials, extracting agents amount on the carrier, temperature and elution rate)

  12. High temperature vaporization/decomposition studies of lanthanide and actinide fluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1987-01-01

    Binary fluorides of the lanthanide and actinide elements comprise a fundamental class of compounds. The authors' investigations of their basic high temperature vaporization and/or decomposition behavior are aimed at elucidating more fully the thermal properties of selected tri- and tetrafluorides and extending such investigations to fluorides which have not been studied previously. Depending on the particular system and the specific experimental conditions, the authors' measurements can provide such information as the enthalpy associated with a congruent vaporization process and/or the relative stabilities of fluorides containing a lanthanide/actinide element in different oxidation states. The authors are also studying the congruent vaporization of selected lanthanide trifluorides with particular emphasis on two areas. The first concerns the variation in the enthalpies of sublimation of the trifluorides across the lanthanide series. Although this variation is rather small (δ5 kcal where ΔH/sub subl/ is approximately 100 kcal), it is larger than observed for other lanthanide trihalides and is unusually irregular. To examine this reported variation more closely, they are attempting to measure relative vapor pressures/enthalpies of vaporization by studying mixtures of two or more lanthanide trifluorides by the technique discussed above

  13. In-beam studies of high-spin states of actinide nuclei

    International Nuclear Information System (INIS)

    Stoyer, M.A.; California Univ., Berkeley, CA

    1990-01-01

    High-spin states in the actinides have been studied using Coulomb- excitation, inelastic excitation reactions, and one-neutron transfer reactions. Experimental data are presented for states in 232 U, 233 U, 234 U, 235 U, 238 Pu and 239 Pu from a variety of reactions. Energy levels, moments-of-inertia, aligned angular momentum, Routhians, gamma-ray intensities, and cross-sections are presented for most cases. Additional spectroscopic information (magnetic moments, M 1 /E 2 mixing ratios, and g-factors) is presented for 233 U. One- and two-neutron transfer reaction mechanisms and the possibility of band crossings (backbending) are discussed. A discussion of odd-A band fitting and Cranking calculations is presented to aid in the interpretation of rotational energy levels and alignment. In addition, several theoretical calculations of rotational populations for inelastic excitation and neutron transfer are compared to the data. Intratheory comparisons between the Sudden Approximation, Semi-Classical, and Alder-Winther-DeBoer methods are made. In connection with the theory development, the possible signature for the nuclear SQUID effect is discussed. 98 refs., 61 figs., 21 tabs

  14. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  15. Actinides and environmental interfaces: striving for molecular-level understanding

    International Nuclear Information System (INIS)

    Heino Nitsche

    2005-01-01

    enhanced second harmonic generation can probe the electronic (UV-vis region) structure of metal species adsorbed at a surface or interface. Infrared-visible sum frequency generation spectroscopy probes the infrared vibrational spectrum of molecules adsorbed at the interface. SHG/SFG studies will greatly assist with understanding reactivity at interfaces of oxides and soil organic matter with heavy metals and radionuclides/actinides. Time-resolved Laser-fluorescence spectroscopy (TRLFS) is a highly sensitive tool for actinides that absorb light and de-excite by fluorescence emission, e.g., U(VI) and Cm(III), to probe changes in actinide speciation and coordination environment in solution. This method can also be used to differentiate whether adsorbed species form surface complexes or surface precipitates. Recently, it was shown that the intense synchrotron radiation can change the oxidation states of redox-sensitive actinide samples which may cause erroneous results, and low temperature measurements are now used to alleviate this shortcoming. X-ray Absorption Fine Structure (XAFS) Spectroscopy is composed of two component spectroscopies, X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) which provide element specific oxidation state and local structure information, respectively. EXAFS (Extended X-ray Absorption Fine Structure Spectroscopy) provides information on the chemical environment of particular actinide, in particular bond lengths and the number of neighboring atoms. Combining both methods, detailed knowledge of the different processes resulting from the interaction of the selected actinides with environmental interfaces can be gained. XANES and EXAFS measurements and TRLFS studies to obtain molecular-level mechanistic details of actinide interaction with common environmental solutions and interfaces will be presented together with first SHG/SFG characterization results of model systems for environmental interfaces

  16. Actinide partitioning from high level liquid waste using the Diamex process

    International Nuclear Information System (INIS)

    Madic, C.; Blanc, P.; Condamines, N.; Baron, P.; Berthon, L.; Nicol, C.; Pozo, C.; Lecomte, M.; Philippe, M.; Masson, M.; Hequet, C.

    1994-01-01

    The removal of long-lived radionuclides, which belong to the so-called minor actinides elements, neptunium, americium and curium, from the high level nuclear wastes separated during the reprocessing of the irradiated nuclear fuels in order to transmute them into short-lived nuclides, can substantially decrease the potential hazards associated with the management of these nuclear wastes. In order to separate minor actinides from high-level liquid wastes (HLLW), a liquid-liquid extraction process was considered, based on the use of diamide molecules, which display the property of being totally burnable, thus they do not generate secondary solid wastes. The main extracting properties of dimethyldibutyltetradecylmalonamide (DMDBTDMA), the diamide selected for the development of the DIAMEX process, are briefly described in this paper. Hot tests of the DIAMEX process (using DMDBTDMA) related to the treatment of an mixed oxide fuels (MOX) type HLLW, were successfully performed. The minor actinide decontamination factors of the HLLW obtained were encouraging. The main results of these tests are presented and discussed in this paper. (authors). 9 refs., 2 figs., 7 tabs

  17. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    International Nuclear Information System (INIS)

    Clark, David L.; Fedosseev, Alexander M.

    2001-01-01

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier

  18. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  19. Quantum-chemical consideration of extermal valent forms of actinides

    International Nuclear Information System (INIS)

    Ionova, G.V.; Pershina, V.G.; Spitsyn, V.I.

    1982-01-01

    Stability of valent forms of actinides that has not yet studied experimentally, is considered within the framework of quantum-chemical considerations. Oxidizing potentials E 0 for actinide elements are determined theoretically. A dependence of the definite valent state stability on relativistic effect is shown. A conclusion is made that oxidizing potential E 0 (4-5) for americium should be higher than E 0 (4-5) for plutonium. A relatively small oxidizing potential E 0 (4-5) for curium speaks about principle possibility of production of five-valent curium in solution, though it is less stable than the six-valent one. Oxidizing potential corresponding to transition of three-valent californium into the four-valent state should be less than the value adopted in literature. A relatively small oxidizing potential of californium E 0 (4-5) speaks about possible existence of five-valent californium in solution

  20. The Thermodynamic Properties of the f-Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Konings, Rudy J. M., E-mail: rudy.konings@ec.europa.eu; Beneš, Ondrej; Kovács, Attila; Manara, Dario; Sedmidubský, David [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Gorokhov, Lev; Iorish, Vladimir S.; Yungman, Vladimir; Shenyavskaya, E.; Osina, E. [Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2 Izhorskaya Street, Moscow 125412 (Russian Federation)

    2014-03-15

    A comprehensive review of the thermodynamic properties of the oxide compounds of the lanthanide and actinide elements is presented. The available literature data for the solid, liquid, and gaseous state have been analysed and recommended values are presented. In case experimental data are missing, estimates have been made based on the trends in the two series, which are extensively discussed.

  1. Investigation of waste form materials suitable for immobilizing actinide elements in high-level waste

    International Nuclear Information System (INIS)

    Hayakawa, Issei; Kamizono, Hiroshi

    1992-07-01

    The microstructure of waste form materials suitable for immobilizing actinide elements can be classified into the following two categories. (1) Actinide elements are immobilized in an crystallized matrix after the formation of solid solution or compounds. (2) Actinide elements are immobilized in a durable material by encapsulation. Based on crystal chemistry, durability data, phase diagrams, compositions of natural minerals, eleven oxide compounds and one non-oxide compound are pointed out to be new candidates included in category (1). The other survey on material compositions, manufacturing conditions and feasibility shows that SiC, glassy carbon, ZrO 2 , Ti-O-Si-C ceramics are preferable matrix materials included in category (2). Polymers and fine powders are suitable as starting materials for the encapsulation of actinide elements because of their excellent sinterability. (author) 50 refs

  2. Applicability of molten salt oxidation to the destruction of actinide-contaminated wastes

    International Nuclear Information System (INIS)

    West, M.H.; Garcia, E.; Griego, W.J.; Court, D.B.; Rodriguez, L.

    1992-01-01

    A 1989 ban on incineration in the state of New Mexico caused cessation of actinide-contaminated cheesecloth, paper, and wood incineration within the Plutonium Facility (TA-55) at Los Alamos National Laboratory. Subsequently, plastic wipes were substituted for cheesecloth in the cleaning of glovebox interiors. However, waste minimization is not achieved by these measures since the wipes are discarded as Waste Isolation Pilot Plant certifiable wastes. After the ban was instituted, thermal decomposition of cheesecloth under argon at elevated temperature was examined and found satisfactory although scale of operation and speed were inferior to incineration. In 1991, the ban on incineration was lifted in New Mexico but Alamos has not chosen to pursue renewal of incineration at the Plutonium Facility. This paper reports that Los Alamos is looking from alternatives to incineration and thermal decomposition which are compatible with molten salt processing technology, historically a strength in actinide research at the Laboratory. Also, the technology must significantly reduce the volume of the waste upon treatment, i.e. waste minimization. Molten salt oxidation (MSO) has the promise of such a technology

  3. Study of actinide paramagnetism in solution

    International Nuclear Information System (INIS)

    Autillo, Matthieu

    2015-01-01

    The physiochemical properties of actinide (An) solutions are still difficult to explain, particularly the behavioral differences between An(III) and Ln(III). The study of actinide paramagnetic behavior may be a 'simple' method to analyze the electronic properties of actinide elements and to obtain information on the ligand-actinide interaction. The objective of this PhD thesis is to understand the paramagnetic properties of these elements by magnetic susceptibility measurements and chemical shift studies. Studies on actinide electronic properties at various oxidation states in solution were carried out by magnetic susceptibility measurements in solution according to the Evans method. Unlike Ln(III) elements, there is no specific theory describing the magnetic properties of these ions in solution. To obtain accurate data, the influence of experimental measurement technique and radioactivity of these elements was analyzed. Then, to describe the electronic structure of their low energy states, the experimental results were complemented with quantum chemical calculations from which the influence of the ligand field was studied. Finally, these interpretations were applied to better understand the variations in the magnetic properties of actinide cations in chloride and nitrate media. Information about ligand-actinide interactions may be determined from an NMR chemical shift study of actinide complexes. Indeed, modifications induced by a paramagnetic complex can be separated into two components. The first component, a Fermi contact contribution (δ_c) is related to the degree of covalency in coordination bonds with the actinide ions and the second, a dipolar contribution (δ_p_c) is related to the structure of the complex. The paramagnetic induced shift can be used only if we can isolate these two terms. To achieve this study on actinide elements, we chose to work with the complexes of dipicolinic acid (DPA). Firstly, to characterize the geometrical parameters, a

  4. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2010-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  5. Remarkably High Stability of Late Actinide Dioxide Cations: Extending Chemistry to Pentavalent Berkelium and Californium.

    Science.gov (United States)

    Dau, Phuong D; Vasiliu, Monica; Peterson, Kirk A; Dixon, David A; Gibson, John K

    2017-12-06

    Actinyl chemistry is extended beyond Cm to BkO 2 + and CfO 2 + through transfer of an O atom from NO 2 to BkO + or CfO + , establishing a surprisingly high lower limit of 73 kcal mol -1 for the dissociation energies, D[O-(BkO + )] and D[O-(CfO + )]. CCSD(T) computations are in accord with the observed reactions, and characterize the newly observed dioxide ions as linear pentavalent actinyls; these being the first Bk and Cf species with oxidation states above IV. Computations of actinide dioxide cations AnO 2 + for An=Pa to Lr reveal an unexpected minimum for D[O-(CmO + )]. For CmO 2 + , and AnO 2 + beyond EsO 2 + , the most stable structure has side-on bonded η 2 -(O 2 ), as An III peroxides for An=Cm and Lr, and as An II superoxides for An=Fm, Md, and No. It is predicted that the most stable structure of EsO 2 + is linear [O=Es V =O] + , einsteinyl, and that FmO 2 + and MdO 2 + , like CmO 2 + , also have actinyl(V) structures as local energy minima. The results expand actinide oxidation state chemistry, the realm of the distinctive actinyl moiety, and the non-periodic character towards the end of the periodic table. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  7. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  8. Adsorption of actinides by chelating agents containing benzene rings, fixed on charcoal

    International Nuclear Information System (INIS)

    Valentini Ganzerli, M.T.; Crespi Caramella, V.; Maggi, L.

    1999-01-01

    The focus of this paper is on the analysis of the actinides in the hydrosphere to study their environmental dispersion. The 8-hydroxyquinoline family and the benzohydroxamic acid have a complexing ability towards the actinides, even if in different oxidation states. Taking advantage of this ability, their salts with some organic acids or bases were prepared. In this way compounds were obtained easily incorporated into active charcoal. Only a small amount of the prepared adsorber may be equilibrated with large sample volumes. Subsequently it can be recovered by filtration. The adsorbed ions may be then re-dissolved with a small volume of the appropriate eluting solution. The 8-hydroxy-quinolines and the 8-hydroxyquinoline produced salts with the benzilic acid. These compounds similarly behave and show wide adsorption coefficients for solutions of pH higher than 3. The adsorption takes place by means of the formation of a complex of the actinide ion with the hydroxyquinoline moiety and also with the benzilic anion. Provided that the active extracting agent is not dissolved in a medium but fixed into a solid phase, the whole adsorption process may be regarded as a solvent extraction reaction. The benzohydroxamic acid was treated with the diphenylamine or with the tribenzylamine to obtain salts, later adsorbed into the charcoal. The adsorption of actinide ions seems to take place by means of a precipitation mechanism of the actinide ions with the hydroxamate ions for solution of pH higher than 3.5. Also in this case high values were obtained for the distribution coefficients. The actinide ions act similarly in the +4 or +6 oxidation state towards the prepared adsorber series. Therefore, it is possible to use only one adsorber to concentrate all actinides. Methods of analysis of actinides in the environment may be suitably set up and the concentration step based on these new prepared adsorber may improve the whole procedure. (authors)

  9. PRODUCTION OF ACTINIDE METAL

    Science.gov (United States)

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  10. 3 and 4 oxidation state element solubilities in borosilicate glasses. Implement to actinides in nuclear glasses; Solubilite des elements aux degres d'oxydation (3) et (4) dans les verres de borosilicate. Application aux actinides dans les verres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cachia, J.N

    2005-12-15

    In order to ensure optimal radionuclides containment, the knowledge of the actinide loading limits in nuclear waste glasses and also the comprehension of the solubilization mechanisms of these elements are essential. A first part of this manuscript deals with the study of the differences in solubility of the tri and tetravalent elements (actinides and surrogates) particularly in function of the melting temperature. The results obtained indicate that trivalent elements (La, Gd, Nd, Am, Cm) exhibit a higher solubility than tetravalent elements (Hf, Th, Pu). Consequently, it was planned to reduce plutonium at the oxidation state (III), the later being essentially tetravalent in borosilicate glasses. An innovating reduction process of multi-valent elements (cerium, plutonium) using silicon nitride has been developed in a second part of this work. Reduced plutonium-bearing glasses synthesized by Si{sub 3}N{sub 4} addition made it possible to double the plutonium solubility from 2 to 4 wt% at 1200 deg C. A structural approach to investigate the differences between tri and tetravalent elements was finally undertaken. These investigations were carried out by X-rays Absorption Spectroscopy (EXAFS) and NMR. Trivalent rare earth and actinide elements seem to behave as network modifiers while tetravalent elements rather present true intermediaries' behaviour. (author)

  11. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2012-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  12. Separation of lanthanides (III) and actinides (III) by calixarenes containing acetamide-phosphine oxides functions

    International Nuclear Information System (INIS)

    Garcia Carrera, A.; Dozol, J.F.; Rouquette, H.

    2001-01-01

    The carbamoyl methyl phosphine oxide CMPO is the well known extractant of the TRUEX process for extraction of actinides from highly salted acidic wastes. In the framework of an European research contract coordinated by CEA/DDCC. V. Boehmer (Mainz, Germany) synthesized calix(4)arenes bearing CMPO moieties either on the wide rim, or on the narrow rim. Some of these calixarenes used at a concentration 10 -3 M are more efficient than CMPO used at a two hundred fifty fold higher concentration. Moreover, calixarene skeleton leads to a strong selectivity among lanthanides, this selectivity is much less obvious for CMPO. Selectivity order is reversed according to whether CMPO unit is borne by the wide rim or the narrow rim. The most efficient calixarenes allow actinides to be separated from most of the lanthanides except the lightest ones. (authors)

  13. Application of powerful oxidizers in the synthesis of new high-oxidation state actinide and related species

    International Nuclear Information System (INIS)

    Yeh, S.M.

    1984-11-01

    The fluorinating and oxide scavenging ability of XeF 6 have been studied by bringing XeF 6 into interaction with oxide-fluoride compounds of the third-transition-series elements (W, Re and Os) and uranium, in their highest oxidation states. A + MOF 5 - and A + M 2 O 2 F 9 - (A = K or Cs, M = W or U) were converted to A + MF 7 - by XeF 6 , but the rhenium and osmium compounds, K + ReO 2 F 4 - and XeF 5 + OsO 3 F 3 - , resisted interaction with XeF 6 . Strong interactions between XeF 2 or KrF 2 and the solvent have been observed for their solutions in anhydrous HF. Both XeF 2 and KrF 2 are seen to be effective in breaking up the polymeric (HF)/sub n/ chains. Only weak interactions occur between cations and anions of KrF + AuF 6 - and Kr 2 F 3 + AuF 6 - in HF. The AuF 6 - anions are slightly distorted from O/sub h/ symmetry. Kr 2 F 3 + cations in HF have the same dissymmetric V-shape which occurs in crystalline salts. A low-temperature orthorhombic form, β-ReF 6 + SbF 6 - , a high-temperature rhombohedral form, α-ReF 6 + SbF 6 - , and a ReF 6 + AuF 6 - have been prepared. These compounds possess only kinetic stability at ambient temperature and at approx. 20 0 C are best represented as ReF 6 + ReF 7 MF 6 - MF 5 . Thermochemical energy evaluations indicate that the ionization potential of ReF 6 is 261 kcal mole -1 and that the fluoride-ion affinity of ReF 6 + is -214 kcal mole -1 . This is more exothermal than the corresponding process for IF 6 + (-208 kcal mole -1 ). In contrast, ReOF 5 is shown to be a better fluoro-base than IOF 5 and also is a better base than ReF 7 . ReOF 4 + MF 6 - (M = Sb, Au and As) salts are of higher thermal stability than their ReF 6 + MF 6 - analogues

  14. Mechanisms for the reduction of actinide ions by Geobacter sulfurreducens

    International Nuclear Information System (INIS)

    Renshaw, J.C.; Livens, F.R.; May, I.; Lloyd, J.R.

    2005-01-01

    Full text of publication follows: Three of the most problematic radioactive contaminants are the actinide elements uranium, neptunium and plutonium. All three pose considerable long-term environmental risks. The most stable environmental oxidation states of uranium and neptunium are VI and V, respectively, as the di-oxo cations [UO 2 ] 2+ and [NpO 2 ] + ; both are highly soluble and so are relatively mobile and biologically available in the environment. In similar conditions, plutonium mainly exists as Pu(IV), which forms a highly insoluble hydrous oxide, although is also environmentally stable in the more soluble III, V and VI oxidation states. The bio-reduction of U(VI) by anaerobic subsurface microorganisms has been the focus of much recent interest. Both Fe(III)- and sulfate-reducing bacteria have been shown to reduce soluble [U VI O 2 ] 2+ to insoluble U IV O 2 , with c-type cytochromes involved in electron transfer to the actinide. Such transformations offer a strategy for the bio-remediation of uranium contaminated groundwater and a potential mechanism for the bio-deposition of uranium ores. The mechanism of U(VI). reduction has important implications for the potential microbial reduction of transuranic elements with environmentally stable lower oxidation states. Reduction of mobile 237 Np(V) to Np(IV) and subsequent precipitation may be advantageous whilst remobilization of immobile Pu(IV) as more soluble Pu(III) species could have important environmental implications. Conversely, selective reduction might allow targeting of particular radionuclide species. The model anaerobic bacterium Geobacter sulfurreducens is typical of those found in contaminated subsurface environments and has been shown to reduce soluble [U VI O 2 ] 2+ to insoluble U IV O 2 . In the course of this study we use X-ray absorption spectroscopy (XAS) to show that G. sulfurreducens reduces U(VI) by a one-electron reduction, forming an unstable [UO 2 ] + species which subsequently

  15. Recent progress in actinide and lanthanide solvent extraction

    International Nuclear Information System (INIS)

    Musikas, C.; Hubert, H.; Benjelloun, N.; Vitorge, P.; Bonnin, M.; Forchioni, A.; Chachaty, C.

    1983-04-01

    Work in progress on actinide solvent extraction is briefly reviewed in this paper. 1 H and 31 P NMR are used to elucidate several fundamental unsolved problems concerning organophosphorous extractants often used in actinides extraction: determination of site of dialkylthiophosphate protonation and addition of basic phosphine oxide to dibutylthiophosphoric acid dimer. Extraction of Am III and Eu from high radioactivity level wastes by tetrasubsituted methylene diamides is investigated. Trivalent actinide-lanthanide group are separated by solvent extraction using soft donor ligand complexes which are more stable. The synergism of dinonylnaphtalene sulfonic acid (HDNNS) associated with several neutral donors like TBP, TOPO, amides are examined in the trivalent and tetravalent actinide extraction

  16. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  17. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    The disposition of actinide elements released from high-level waste glasses into a tuff groundwater in laboratory tests at 90 degrees C at various glass surface area/leachant volume ratios (S/V) between dissolved, suspended, and sorbed fractions has been measured. While the maximum release of actinides is controlled by the corrosion rate of the glass matrix, their solubility and sorption behavior affects the amounts present in potentially mobile phases. Actinide solubilities are affected by the solution pH and the presence of complexants released from the glass, such as sulfate, phosphate, and chloride, radiolytic products, such as nitrate and nitrite, and carbonate. Sorption onto inorganic colloids formed during lass corrosion may increase the amounts of actinides in solution, although subsequent sedimentation of these colloids under static conditions leads to a significant reduction in the amount of actinides in solution. The solution chemistry and observed actinide behavior depend on the S/V of the test. Tests at high S/V lead to higher pH values, greater complexant concentrations, and generate colloids more quickly than tests at low S/V. The S/V also affects the rate of glass corrosion

  18. Minor Actinide Separations Using Ion Exchangers Or Ionic Liquids

    International Nuclear Information System (INIS)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-01-01

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  19. f-state luminescence of lanthanide and actinide ions in solution

    International Nuclear Information System (INIS)

    Beitz, J.V.

    1993-01-01

    Detailed studies of the luminescence of aquated Am 3+ are presented in the context of prior lanthanide and actinide ion work. The luminescing state of aquated Am 3+ is confirmed to be 5 D l based on observed emission and excitation spectra. The luminescence lifetime of Am 3+ in H 2 O solution is (22 ± 3) ns and (155 ± 4) ns in D 2 O solution at 295 K. Judd-Ofelt transition intensity theory qualitatively describes the observed Am 3+ relative integrated fluorescence intensities. Recent luminescence studies on complexed trivalent f-element ions in solution are reviewed as to the similarities and differences between lanthanide ion 4f state and actinide ion 5f state properties

  20. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  1. Coprecipitation of aluminium with hydroxides of tetra-, penta- and hexavalent actinides

    International Nuclear Information System (INIS)

    Yusov, A.B.; Budantseva, N.A.; Anan'ev, A.V.; Fedoseev, A.M.

    2000-01-01

    By the methods of IR spectroscopy and powder x-ray diffractometry precipitates formed in alkaline medium by actinide (4, 5, 6) in the presence of aluminium are studied. It is shown that in studied conditions formation of actinide aluminates not occurs. In the same time in the process of precipitation interaction of aluminium hydroxocomplexes with U(6) and Th(4) ions probably takes place. Hypothesis is expressed that possibility of aluminium hydroxocomplexes interaction with actinides in different oxidation state is depended on peculiarities of hydrolytic behaviour of the lasts [ru

  2. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  3. Nuclear fuel cycle-oriented actinides separation in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; He, Xihong; Wang, Jianchen [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    In the last decades, the separation of actinides was widely and continuously studied in China. A few kinds of salt-free reductants to adjust Pu and Np valences have been investigated. N,N-dimethylhydroxylamine is a good reductant with high reduction rate constants for the co-reduction of Pu(IV) and Np(VI), and monomethylhydrazine is a simple compound for the individual reduction of Np(VI). Advanced PUREX based on Organic Reductants (APOR) was proposed. Trialkylphosphine oxide (TRPO) with a single functional group was found to possess strong affinity to tri-, tetra- and hexa-valent actinides. TRPO process has been first explored in China for actinides partitioning from high level waste and the good partitioning performance was demonstrated by the hot test. High extraction selectivity for trivalent actinides over lanthanides by dialkyldithiophosphinic acids was originally found in China. A separation process based on purified Cyanex 301 for the separation of Am from lanthanides was presented and successfully tested in a battery of miniature centrifugal contactors. (orig.)

  4. Method of isolation of traces of americium by using the +6 oxidation state properties

    International Nuclear Information System (INIS)

    Kwinta, Jean; Michel, Jean-Jacques

    1969-05-01

    The authors present a method to separate traces of americium from a solution containing fission products and actinides. This method comprises the following steps: firstly, the oxidation of americium at the +6 state by ammonium persulfate and carrying over of actinides and III and IV lanthanides by lanthanum fluoride; secondly, the reduction by hydrazine of the oxidized americium and carrying over of the reduced americium by lutetium fluoride; and thirdly, the americium-lutetium separation by selective extractions either with di 2 ethyl hexyl phosphoric acid, or by fractionated elution on an anionic resin column by a mixture of nitric acid and methanol [fr

  5. Transmutation of minor actinide using BWR fueled mixed oxide

    International Nuclear Information System (INIS)

    Susilo, Jati

    2000-01-01

    Nuclear spent fuel recycle has a strategic importance in the aspect of nuclear fuel economy and prevention of its spread-out. One among other application of recycle is to produce mixed oxide fuel (Mo) namely mixed Plutonium and uranium oxide. As for decreasing the burden of nuclear high level waste (HLW) treatment, transmutation of minor actinide (MA) that has very long half life will be carried out by conversion technique in nuclear reactor. The purpose of this study was to know influence of transition fuel cell regarding the percent weight of transmutation MA in the BWR fueled MOX. Calculation of cell BWR was used SRAC computer code, with assume that the reactor in equilibrium. The percent weight of transmutation MA to be optimum by increasing the discharge burn-up of nuclear fuel, raising ratio of moderator to fuel volume (Vm/Vf), and loading MA with percent weight about 3%-6% and also reducing amount of percent weight Pu in MOX fuel. For mixed fuel standard reactor, reactivity value were obtained between about -50pcm ∼ -230pcm for void coefficient and -1.8pcm ∼ -2.6pcm for fuel temperature coefficient

  6. Actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Paul L. [Geochem Australia, Kiama, NSW (Australia); Ekberg, Christian [Chalmers Univ. of Technology, Goeteborg (Sweden). Nuclear Chemistry/Industrial Materials Recycling

    2016-07-01

    All isotopes of actinium are radioactive and exist in aqueous solution only in the trivalent state. There have been very few studies on the hydrolytic reactions of actinium(III). The hydrolysis reactions for uranium would only be important in alkaline pH conditions. Thermodynamic parameters for the hydrolysis species of uranium(VI) and its oxide and hydroxide phases can be determined from the stability and solubility constants. The hydrolytic behaviour of neptunium(VI) is quite similar to that of uranium(VI). The solubility constant of NpO{sub 2}OH(am) has been reported a number of times for both zero ionic strength and in fixed ionic strength media. Americium can form four oxidation states in aqueous solution, namely trivalent, tetravalent, pentavalent and hexavalent. Desire, Hussonnois and Guillaumont determined stability constants for the species AmOH{sup 2+} for the actinides, plutonium(III), americium(III), curium(III), berkelium(III) and californium(III) using a solvent extraction technique.

  7. Actinide metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    All isotopes of actinium are radioactive and exist in aqueous solution only in the trivalent state. There have been very few studies on the hydrolytic reactions of actinium(III). The hydrolysis reactions for uranium would only be important in alkaline pH conditions. Thermodynamic parameters for the hydrolysis species of uranium(VI) and its oxide and hydroxide phases can be determined from the stability and solubility constants. The hydrolytic behaviour of neptunium(VI) is quite similar to that of uranium(VI). The solubility constant of NpO 2 OH(am) has been reported a number of times for both zero ionic strength and in fixed ionic strength media. Americium can form four oxidation states in aqueous solution, namely trivalent, tetravalent, pentavalent and hexavalent. Desire, Hussonnois and Guillaumont determined stability constants for the species AmOH 2+ for the actinides, plutonium(III), americium(III), curium(III), berkelium(III) and californium(III) using a solvent extraction technique.

  8. The electronic structure of the lanthanides and actinides, a comparison

    International Nuclear Information System (INIS)

    Edelstein, N.M.

    1998-01-01

    Full text: Optical spectra of the two f-element series (the lanthanides and actinides) are comparable in many respects. For the trivalent ions isolated in single crystals, both series exhibit rich, narrow line spectra. These data can be analysed in terms of a parametric model based on a free-ion Hamiltonian plus the addition of a crystal field Hamiltonian. For most systems the agreement between the calculated and experimental energy levels is quite good. In the actinide series there appears to be a correlation between the magnitude of the crystal field and the inadequacy of the fits. The early actinides exhibit multiple oxidation states for which there is no precedent in the lanthanide series. The parametric model mentioned earlier has been utilized for some tetravalent actinide systems with reasonably good results. A selective survey of results describing the similarities and differences of various lanthanide and actinide systems will be given

  9. Thermochemical and thermophysical properties of minor actinide compounds

    International Nuclear Information System (INIS)

    Minato, Kazuo; Takano, Masahide; Otobe, Haruyoshi; Nishi, Tsuyoshi; Akabori, Mitsuo; Arai, Yasuo

    2009-01-01

    Burning or transmutation of minor actinides (MA: Np, Am, Cm) that are classified as the high-level radioactive waste in the current nuclear fuel cycle is an option for the advanced nuclear fuel cycle. Although the thermochemical and thermophysical properties of minor actinide compounds are essential for the design of MA-bearing fuels and analysis of their behavior, the experimental data on minor actinide compounds are limited. To support the research and development of the MA-bearing fuels, the property measurements were carried out on minor actinide nitrides and oxides. The lattice parameters and their thermal expansions were measured by high-temperature X-ray diffractometry. The specific heat capacities were measured by drop calorimetry and the thermal diffusivities by laser-flash method. The thermal conductivities were determined by the specific heat capacities, thermal diffusivities and densities. The oxygen potentials were measured by electromotive force method.

  10. Actinides-1981

    International Nuclear Information System (INIS)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  11. Actinides-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  12. Review of the sorption of actinides on natural minerals

    International Nuclear Information System (INIS)

    Beall, G.W.

    1981-01-01

    Over the past few years, a large body of data concerning sorption of actinides on geologic media has been built in connection with high-level-waste disposal. The primary aim of the work has been to allow predictions of the migration behavior of these radionuclides in the case of a breach of the repository that allowed groundwater flow through the repository. As a result of this work, some new backfill materials specifically tailored for the actinides have also been designed. Several major mechanisms of sorption that appear to dominate the sorption of actinides have emerged from these studies. These mechanisms can be divided into solution reactions dominated by hydrolysis, chemisorption reactions, and oxidation-reduction reactions. Each of these mechanisms will be discussed in detail, with experimental examples. Surprisingly, one mechanism, cation exchange, does not play an important role; why it fails to operate in any significant way in the environmental pH region will be discussed. The implications of the sorption mechanisms for waste forms and backfill materials will be discussed in detail. These discussions will center primarily around the valence state of the actinide in various waste forms and the effect of various anions on leachability from waste forms and backfill materials

  13. Higher Americium Oxidation State Research Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Goff, George S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shehee, Thomas C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hobbs, David T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-18

    The partitioning of hexavalent Am from dissolved nuclear fuel requires the ability to efficiently oxidize Am(III) to Am(VI) and to maintain that oxidation state for a length of time sufficient to perform the separation. Several oxidants have been, or are being developed. Chemical oxidants include Ag-catalyzed ozone, Ag-catalyzed peroxydisulfate, Cu(III) periodate, and sodium bismuthate. Hexavalent americium has also now successfully been prepared by electrolysis, using functionalized electrodes. So-called auto-reduction rates of Am(VI) are sufficiently slow to allow for separations. However, for separations based on solvent extraction or ion exchange using organic resins, the high valence state must be maintained under the reducing conditions of the organic phase contact, and a holding oxidant is probably necessary. Until now, only Cu(III) periodate and sodium bismuthate oxidation have been successfully combined with solvent extraction separations. Bismuthate oxidation provided the higher DAm, since it acts as its own holding oxidant, and a successful hot test using centrifugal contactors was performed. For the other oxidants, Ag-catalyzed peroxydisulfate will not oxidize americium in nitric acid concentrations above 0.3 M, and it is not being further investigated. Peroxydisulfate in the absence of Ag catalysis is being used to prepare Am(V) in ion exchange work, discussed below. Preliminary work with Ag-catalyzed ozone has been unsuccessful for extractions of Am(VI) from 6.5 M HNO3, and only one attempt at extraction, also from 6.5 M HNO3, using the electrolytic oxidation has been attempted. However, this high acid concentration was based on the highest Am extraction efficiency using the bismuthate oxidant; which is only sparingly soluble, and thus the oxidation yield is based on bismuthate solubility. Lower acid concentrations may be sufficient with alternative oxidants and work with Ag-ozone, Cu(III) and electrolysis is on-going. Two non

  14. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  15. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  16. Reversible optical sensor for the analysis of actinides in solution

    International Nuclear Information System (INIS)

    Lesage, B.; Picard, S.; Serein-Spirau, F.; Lereporte, J.P.

    2007-01-01

    In this work is presented a concept of reversible optical sensor for actinides. It is composed of a p doped conducing polymer support and of an anion complexing the actinides. The chosen conducing polymer is the thiophene-2,5-di-alkoxy-benzene whose solubility and conductivity are perfectly known. The actinides selective ligand is a lacunar poly-oxo-metallate such as P 2 W 17 O 61 10- or SiW 11 O 39 8- which are strong anionic complexing agents of actinides at the oxidation state (IV) even in a very acid medium. The sensor is prepared by spin coating of the composite mixture 'polymer + ligand' on a conducing glass electrode and then tested towards its optical and electrochemical answer in presence of uranium (IV). The absorption change due to the formation of cations complexes by poly-oxo-metallate reveals the presence of uranium (IV). After the measurement, the sensor is regenerated by anodic polarization of the support and oxidation of the uranium (IV) into uranium (VI) which weakly interacts with the poly-oxo-metallate and is then released in solution. (O.M.)

  17. Moessbauer effect studies with actinides

    International Nuclear Information System (INIS)

    Stone, J.A.

    1966-01-01

    Moessbauer resonance studies in the actinide elements offer a new technique for measuring solid-state properties to a region of the periodic chart where such information is relatively sparse. It is well known that the actinides, the elements with atomic numbers from 90 to 103, form a transition series due to filling of the 5f electron shell, analogous to the rare-earth series in which the 4f shell is filled. Like the rare earths, the actinide metals and compounds are expected to exhibit a variety of interesting magnetic properties, but, unlike the rare earths, there have been few studies of the magnetic behaviour of actinides, and these properties are largely unknown. The chemical properties of the actinides have been studied somewhat more extensively, and, in contrast to the rare earths, form a multiplicity of stable valence states, especially in the lighter members of the series. It is just these properties, magnetic and chemical, for which the Moessbauer effect is a valuable probe, sensitive to the magnetic and electric environment of an atom. The rare-earth series has been a particularly fruitful region in terms of the number of elements which have been shown to exhibit the Moessbauer effect, and for this reason the exploitation of the Moessbauer effect to yield new solid-state and chemical information on the rare earths is a highly active field of research today. There is every reason to believe that the actinides can be similarly studied by the Moessbauer effect. 43 refs, 6 figs, 4 tabs

  18. Chemical aspects of actinides in the geosphere: towards a rational nuclear materials management

    International Nuclear Information System (INIS)

    Allen, P; Sylwester, E

    2001-01-01

    A complete understanding of actinide interactions in the geosphere is paramount for developing a rational Nuclear and Environmental Materials Management Policy. One of the key challenges towards understanding the fate and transport of actinides is determining their speciation (i.e., oxidation state and structure). Since an element's speciation directly dictates physical properties such as toxicity and solubility, this information is critical for evaluating and controlling the evolution of an actinide element through the environment. Specific areas within nuclear and environmental management programs where speciation is important are (1) waste processing and separations; (2) wasteform materials for long-term disposition; and (3) aqueous geochemistry. The goal of this project was to develop Actinide X-ray Absorption Spectroscopy ( U S ) as a core capability at LLNL and integrate it with existing facilities, providing a multi-technique approach to actinide speciation. XAS is an element-specific structural probe which determines the oxidation state and structure for most atoms. XAS can be more incisive than other spectroscopies because it originates from an atomic process and the information is always attainable, regardless of an element's speciation. Despite the utility, XAS is relatively complex due to the need for synchrotron radiation and significant expertise with data acquisition and analysis. The coupling of these technical hurdles with the safe handling of actinides at a general user synchrotron facility such as the Stanford Synchrotron Radiation Facility (SSRL) make such experiments even more difficult. As a result, XAS has been underutilized by programs that could benefit by its application. We achieved our project goals by implementing key state-of-the-art Actinide XAS instrumentation at SSRL (Ge detector and remote positioning equipment), and by determining the chemical speciation of actinides (Th, U, and Np) in aqueous solutions, wasteform cements, and

  19. Fundamental aspects of actinide-zirconium pyrochlore oxides: Systematic comparison of the Pu, Am, Cm, Bk and Cf systems

    International Nuclear Information System (INIS)

    Haire, R.G.; Raison, P.E.

    2000-01-01

    Zirconium- and hafnium-based oxide materials have gained attraction for various nuclear applications. These materials have features in common with one of the early, well-publicized inorganic ceramics for immobilizing nuclear waste. Our interests have addressed the fundamental structural and chemical properties of these oxide systems. We pursued both the crystal chemical constraints of the oxide matrices, as well as the importance of the chemistry of the f-elements. By incorporating five actinide elements in our studies, we were able to compare systematically the materials science of these materials with the fundamental chemistry and electronic configurations of these actinides employed. It is expected that this basic information will be useful technologically in the realm of tailor-made materials for different applications

  20. Physical chemistry and modelling of the sintering of actinide oxides

    International Nuclear Information System (INIS)

    Lechelle, Jacques

    2013-01-01

    This report gives a synthesis of the work I have carried out or to which I have numerically contributed to from 1996 up to 2012 in the Department of Plutonium Uranium and minor Actinides in Cadarache CEA Center. Their main goal is the study and the modeling of the sintering process of nuclear fuels which is the unifying thread of this document. Both in order to take into account the physical and chemical features of the actinide bearing oxide material and in order to combine the different transport phenomena leading to sintering, a sub-granular scale model is under development. Extension to a varying chemical composition as well as exchanges with the gaseous phase are foreseen. A simulation on a larger scale (pellet scale) is ongoing in the framework of a PhD thesis. Validation means have been tested with (U,Pu)O 2 material on the scale of the pellet (Small Angle Neutron Diffusion), on the scale of powder granules (X-Ray High Resolution Micro-Tomography) and with CeO 2 at the 'Institut de Chimie Separative' in Marcoule on a single crystal scale (Environmental Scanning Electron Microscope). The required microstructure homogeneity for nuclear fuels has led to a campaign of experimental studies about the role of Cr 2 O 3 as a sintering aid. Whole of these studies improve our understanding of fuel sintering and hence leads to an improved mastering of this process. (author) [fr

  1. High flux transmutation of fission products and actinides

    International Nuclear Information System (INIS)

    Gerasimov, A.; Kiselev, G.; Myrtsymova, L.

    2001-01-01

    Long-lived fission products and minor actinides accumulated in spent nuclear fuel of power reactors comprise the major part of high level radwaste. Their incineration is important from the point of view of radwaste management. Transmutation of these nuclides by means of neutron irradiation can be performed either in conventional nuclear reactors, or in specialized transmutation reactors, or in ADS facilities with subcritical reactor and neutron source with application of proton accelerator. Different types of transmutation nuclear facilities can be used in order to insure optimal incineration conditions for radwaste. The choice of facility type for optimal transmutation should be based on the fundamental data in the physics of nuclide transformations. Transmutation of minor actinides leads to the increase of radiotoxicity during irradiation. It takes significant time compared to the lifetime of reactor facility to achieve equilibrium without effective transmutation. High flux nuclear facilities allow to minimize these draw-backs of conventional facilities with both thermal and fast neutron spectrum. They provide fast approach to equilibrium and low level of equilibrium mass and radiotoxicity of transmuted actinides. High flux facilities are advantageous also for transmutation of long-lived fission products as they provide short incineration time

  2. Actinide and Xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D.L.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  3. Actinide and xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  4. Actinide and Xenon reactivity effects in ATW high flux systems

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-10-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.

  5. New strategy for minor actinides partitioning preliminary results on the electrovolatilization of ruthenium and on the stabilization of Am(IV) in nitric acid with phosphotunsgstate ligand

    International Nuclear Information System (INIS)

    Adnet, J.M.; Madic, C.

    1989-01-01

    On problems related to the long term storage in deep geological repositories of high active wastes (H.A.W.) is due to the presence of minor actinide isotopes. Thus after the decay of the fission products (≅ 300 years) the toxicity of these H.A.W. is mainly due to the minor actinides. One solution is based on actinide partitioning followed by transmutation into fission products with short half-lives. A simpler processes than those developed previously, can be based on the possible oxidation of minor actinides to the + IV or + VI oxidation states and their selective extraction. The first step to study is the elimination of the ruthenium (whose presence would be detrimental to oxidize minor actinides) which can be done by electrovolatilization of Ru on the RuO 4 form. The rate of electrovolatilization can be increased by the use of the following electronic mediators, AgI/AgII(1); CeIII/Ce(2), and CoII/CoIII(3), the efficiency of which decreases in the order: 1 > 2 > 3. The effectiveness of that process has been proven when treating real H.A.W solution produced during the study of the reprocessing of a MOX fuel irradiated to as burn-up of 52 GWd/t in a LWR: complete Ru removal was obtained. The second part of the study concerns the electrochemical oxidation of AmIII in nitric acid solutions in the presence of a strong complexing agent: P 2 W 17 O 61 K 10 (P.W.).Total americium oxidation to AmIV can be obtained in nitric acid solution with a concentration up to 8 M. No particular drawback was induced by the presence of an amount of lanthanide III (NdIII) in 6 fold excess vs P.W. The stability of AmIV was studied. The other actinides will be present in these solutions, after the electrochemical oxidation step, in the + VI or+ IV oxidation states, thus a selective extraction (vs fission products) could be performed. A possible way to extract actinide IV/P.W complexes is to use dodecylamine nitrate as extractant

  6. Sigma Team for Advanced Actinide Recycle FY2015 Accomplishments and Directions

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    The Sigma Team for Minor Actinide Recycle (STAAR) has made notable progress in FY 2015 toward the overarching goal to develop more efficient separation methods for actinides in support of the United States Department of Energy (USDOE) objective of sustainable fuel cycles. Research in STAAR has been emphasizing the separation of americium and other minor actinides (MAs) to enable closed nuclear fuel recycle options, mainly within the paradigm of aqueous reprocessing of used oxide nuclear fuel dissolved in nitric acid. Its major scientific challenge concerns achieving selectivity for trivalent actinides vs lanthanides. Not only is this challenge yielding to research advances, but technology concepts such as ALSEP (Actinide Lanthanide Separation) are maturing toward demonstration readiness. Efforts are organized in five task areas: 1) combining bifunctional neutral extractants with an acidic extractant to form a single process solvent, developing a process flowsheet, and demonstrating it at bench scale; 2) oxidation of Am(III) to Am(VI) and subsequent separation with other multivalent actinides; 3) developing an effective soft-donor solvent system for An(III) selective extraction using mixed N,O-donor or all-N donor extractants such as triazinyl pyridine compounds; 4) testing of inorganic and hybrid-type ion exchange materials for MA separations; and 5) computer-aided molecular design to identify altogether new extractants and complexants and theory-based experimental data interpretation. Within these tasks, two strategies are employed, one involving oxidation of americium to its pentavalent or hexavalent state and one that seeks to selectively complex trivalent americium either in the aqueous phase or the solvent phase. Solvent extraction represents the primary separation method employed, though ion exchange and crystallization play an important role. Highlights of accomplishments include: Confirmation of the first-ever electrolytic oxidation of Am(III) in a

  7. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  8. Actinide separation chemistry in nuclear waste streams and materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  9. Interaction of actinides with natural microporous materials: a review

    International Nuclear Information System (INIS)

    Misaelides, P.; Godelitsas, A.

    1998-01-01

    Natural microporous materials include several types of minerals such as zeolites, clay minerals, micas, iron- and manganese-oxides/hydroxides/oxyhydroxides present in various geological environments and soil formations. The transport of the actinide elements in the environment is mainly performed through aquatic pathways (streams, rivers, underground waters) and their mobility is strongly related to the interaction of their dissolved species with geological materials and especially with the highly sorptive microporous minerals. The existing studies mainly concern the sorption of Th, U, Np, Pu and Am from aqueous media by clay minerals and zeolites as well as the determination of the corresponding chemical processes taking place at the mineral-water interface. The investigation techniques also include advanced spectroscopic methods such as Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS), Rutherford Backscattered Spectroscopy (RBS), X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. These techniques significantly contribute to the characterization of the reacted mineral surfaces and to the explanation of the structural and compositional characteristics of the sorbed actinide species. Theoretical models regarding the aqueous chemistry and speciation of the actinides have also been developed aiming the elucidation of the complex actinide sorption mechanisms. Finally, this contribution also includes some recently obtained data concerning the interaction of actinides with todorokite (a naturally occurring microporous manganese-oxide of technological importance) and granitic micas (biotite) correlated with the nuclear waste disposal in geological formations

  10. Review of the treatment of actinides-bearing radioactive wastes

    International Nuclear Information System (INIS)

    Krause, H.

    1983-01-01

    Actinides bearing wastes are produced above all in the course of irradiated nuclear fuel reprocessing and during fabrication of mixed oxide fuel elements. Particular attention in research and development work must be paid to this type of waste, mainly on account of its longevity. In practical application, the specific character of the actinides bearing wastes has been largely recognized. Nevertheless, definitions and methods of treatment generally accepted worldwide are still missing today. This has no bearing as yet on present day treatment of radioactive wastes. But by the time of application of the breeder technology at the latest a special treatment concept should be available which complies with the high actinide contents and short precooling periods of the wastes

  11. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  12. Research in actinide chemistry. Progress report, March 1, 1980-February 28, 1981

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1981-01-01

    Visible spectroscopy, NMR ( 1 H 1 , 6 C 13 , 57 La 139 ) spectroscopy, potentiometry, and calorimetry were used in lanthanide studies which have allowed much more thorough interpretation of actinide tracer studies. In the last several years, the studies were expanded to include actinides in the IV, V and VI oxidation states. Part of the research during this time was directed to investigation of actinide interaction with naturally occurring polyelectrolytes such as humic and fulvic acids. Since redox reactions seemingly occur in some of these interactions, a study of plutonium and neptunium redox behavior in the presence of organic complexing agents was started. Preliminary data are given for reduction of Np(VI) by various organic acids

  13. Use of plutonium and minor actinides as fuel in high temperature pebble bed reactors for waste minimization

    International Nuclear Information System (INIS)

    Meier, Astrid; Bernnat, Wolfgang; Lohnert, Guenther

    2009-01-01

    Energy production by nuclear fission gives rise to longlived radionuclides, such as plutonium and americium. The ''PuMA'' (Plutonium and Minor Actinides Waste Management) research project within the 6th Framework Program of the European Union serves to minimize waste arisings and transmute plutonium and minor actinides from spent LWR fuel elements by means of modular high-temperature reactors (HTR). Coating the fuel, which consists of kernels approx. 250 μm in radius and surrounded by graphite as the moderator material, allows very high operating and accident temperatures and very high burnups. One point examined is whether the inherent safety characteristics known for uranium oxide also exist for (PuO 2 + MAO 2 ) fuel. On the basis of a reference reactor similar to the South African PBMR-400, various loading strategies at maximum burnup are considered with a view to the inherent safety of the HTR. (orig.)

  14. Electrochemical and spectroscopic studies of some less stable oxidation states of selected lanthanide and actinide elements

    International Nuclear Information System (INIS)

    Hobart, D.E.

    1981-06-01

    Simultaneous observation of electrochemical and spectroscopic properties (spectroelectrochemistry) at optically transparent electrodes (OTE's) was used to study some less stable oxidation states of selected lanthanide and actinide elements. Cyclic voltammetry at microelectrodes was used in conjunction with spectroelectrochemistry for the study of redox couples. Additional analytical techniques were used. The formal reduction potential (E 0 ') values of the M(III)/M(II) redox couples in 1 M KCl at pH 6 were -0.34 +- 0.01 V for Eu, -1.18 +- 0.01 V for Yb, and -1.50 +- 0.01 V for Sm. Spectropotentiostatic determination of E 0 ' for the Eu(III)/Eu(II) redox couple yielded a value of -0.391 +- 0.005 V. Spectropotentiostatic measurement of the Ce(IV)/Ce(III) redox couple in concentrated carbonate solution gave E 0 ' equal to 0.051 +- 0.005 V, which is about 1.7 V less positive than the E 0 ' value in noncomplexing solution. This same difference in potential was observed for the E 0 ' values of the Pr(IV)/Pr(III) and Tb(IV)/Tb(III) redox couples in carbonate solution, and thus Pr(IV) and Tb(IV) were stabilized in this medium. The U(VI)/U(V)/U(IV) and U(IV)/U(III) redox couples were studied in 1 M KCl at OTE's. Spectropotentiostatic measurement of the Np(VI)/Np(V) redox couple in 1 M HClO 4 gave an E 0 ' value of 1.140 +- 0.005 V. An E 0 ' value of 0.46 +- 0.01 V for the Np(VII)/Np(VI) couple was found by voltammetry. Oxidation of Am(III) was studied in concentrated carbonate solution, and a reversible cyclic voltammogram for the Am(IV)/Am(III) couple yielded E 0 ' = 0.92 +- 0.01 V in this medium; this value was used to estimate the standard reduction potential (E 0 ) of the couple as 2.62 +- 0.01 V. Attempts to oxidize Cm(III) in concentrated carbonate solution were not successful which suggests that the predicted E 0 value for the Cm(IV)/Cm(III) redox couple may be in error

  15. Investigations on synthesis, coordination behaviour and actinide recovery of unexplored phosphine oxides

    International Nuclear Information System (INIS)

    Veerashekhar Goud, E.; Pavankumar, B.B.; Das, Dhrubajyothi

    2016-01-01

    The search for the development of an optimum extractant for effective separation of a particular metal from a mixture is an active field of research in both chemistry and chemical engineering. These extractants find extensive application in extractive metallurgy and in nuclear fuel cycle (for the separation of actinides from other fission products). In the case of the latter, solvent extraction and ion exchange are two widely employed separation techniques. In this connection, the present paper reports synthesis and structural characterization of various new phosphine oxide derivatives. The coordination behavior of these ligands is studied with some selected lanthanides and actinides shows the proposed structures of La(III) and Th(IV) metal complexes. The purity and structural characterization of the ligands and their corresponding metal complexes are analyzed by various analytical and spectroscopic techniques. Additionally, we have applied Density functional theory (DFT) calculations to understand the electronic structure of some metal complexes formed during the extraction process. (author)

  16. Study of Thorium Phosphate Diphosphate (TPD) formation in nitric medium for the decontamination of high activity actinides bearing effluents

    International Nuclear Information System (INIS)

    Rousselle, Jerome

    2004-01-01

    Considering several activities in the nuclear industry and research, several low-level liquids wastes (LLLW) containing actinides in nitric medium must be decontaminated before being released in the environment. These liquid wastes mainly contain significant amounts of uranium(VI), neptunium(V) and plutonium(IV). In this work, two chemical ways were studied to decontaminate LLLW then to incorporate simultaneously uranium, neptunium and plutonium in the Thorium Phosphate Diphosphate (TPD). Both ways started from a nitric solution containing thorium and the actinides considered, present at their lower stable oxidation state. The first way consisted in the initial precipitation of actinide and thorium mixed oxalate. After drying the mixture containing the powder and phosphoric acid under dried argon, a poly-phase system was obtained. It was mainly composed by a thorium-actinide oxalate-phosphate. This mixture was transformed into a TPDAn solid solution (An = U, Np and/or Pu) by heating treatment at 1200 deg. C under inert atmosphere. The second way consisted in the precipitation of a precursor of TPD, identified as the Thorium Phosphate Hydrogen Phosphate loaded with the actinides considered. The gel initially formed by mixing concentrated phosphoric acid solution with the nitric actinide solution was heated at 90 - 160 deg. C in a closed PTFE container for several weeks. It led to the TPDAn solid solutions after heating at 1100 deg. C in air or under inert argon. The efficiency of both processes was evaluated through the determination of the decontamination for each actinide considered. Considering the encouraging results obtained for both kinds of processes, some complementary studies are now required before performing the effective decontamination of real Low-Level Liquid Waste using one of the methods proposed. (author) [fr

  17. Structural organization and spectroscopy of peptide-actinide(IV) complexes

    International Nuclear Information System (INIS)

    Dahou, S.

    2010-01-01

    The contamination of living organisms by actinide elements is at the origin of both radiological and chemical toxicity that may lead to severe dysfunction. Most of the data available on the actinide interaction with biological systems are macroscopic physiological measurements and are lacking a molecular description of the systems. Because of the intricacy of these systems, classical biochemical methods are difficult to implement. Our strategy consisted in designing simplified biomimetic peptides, and describing the corresponding intramolecular interactions with actinides. A carboxylic pentapeptide of the form DDPDD has been at the starting point of this work in order to further assess the influence of the peptide sequence on the topology of the complexes.To do so, various linear (Asp/Ala permutations, peptoids) and cyclic analogues have been synthesized. Furthermore, in order to include the hydroxamic function (with a high affinity for Fe(III)) in the peptide, both desferrioxamine and acetohydroxamic acid have been investigated. However because of difficulties in synthesis, we have not been able to test these peptides. Three actinide cations have been considered at oxidation state +IV (Th, Np, Pu) and compared to Fe(III), often considered as a biological surrogate of Pu(IV). The spatial arrangement of the peptide around the cation has been probed by spectrophotometry and X-ray Absorption Spectroscopy. The spectroscopic data and EXAFS data adjustment lead us to rationalize the topology of the complexes as a function of the peptide sequence: mix hydroxy polynuclear species for linear and cyclic peptides, mononuclear for the desferrioxamine complexes. Furthermore, significant differences have appeared between Fe(III) and actinide(IV), related to differences of reactivity in aqueous medium. (author)

  18. The effect of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1992-01-01

    The near field of the proposed UK repository for ILW/LLW will contain containers of conditioned waste in contact with a cementious backfill. It will contain significant quantities of iron and steel, Magnox and Zircaloy. Colloids deriving from their corrosion products may possess significant sorption capacity for radioelements. If the colloids are mobile in the groundwater flow, they could act as a significant vector for activity transport into the far field. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium has been studied under chemical conditions representing the transition from the near field to the far field. Desorption R d values of ≥ 5 x 10 6 ml g -1 were measured for both actinides on these oxides and hydroxides when actinide sorption took place under the near-field conditions and desorption took place under the far-field conditions. Desorption of the actinides occurred slowly from the colloids under far-field conditions when the colloids had low loadings of actinide and more quickly at high loadings of actinide. Desorbed actinide was lost to the walls of the experimental vessel. (author)

  19. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  20. Hydrothermal processing of actinide contaminated organic wastes

    International Nuclear Information System (INIS)

    Worl, A.; Buelow, S.J.; Le, L.A.; Padilla, D.D.; Roberts, J.H.

    1997-01-01

    Hydrothermal oxidation is an innovative process for the destruction of organic wastes, that occurs above the critical temperature and pressure of water. The process provides high destruction and removal efficiencies for a wide variety of organic and hazardous substances. For aqueous/organic mixtures, organic materials, and pure organic liquids hydrothermal processing removes most of the organic and nitrate components (>99.999%) and facilitates the collection and separation of the actinides. We have designed, built and tested a hydrothermal processing unit for the removal of the organic and hazardous substances from actinide contaminated liquids and solids. Here we present results for the organic generated at the Los Alamos National Laboratory Plutonium Facility

  1. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  2. Effect of pressure on f-electron delocalization and oxidation in actinide dioxides

    Energy Technology Data Exchange (ETDEWEB)

    Petit, L., E-mail: leon.petit@stfc.ac.uk [Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Szotek, Z.; Temmerman, W.M. [Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Stocks, G.M. [Materials Science and Technology Division and Center for Defect Physics, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Svane, A. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2014-08-01

    Using first principles calculations, we have investigated f-electron delocalization and oxidation in the actinide dioxides under pressure. Whilst UO{sub 2} is found on the verge of an insulator to metal transition at the equilibrium volume, increasingly larger pressures are required to delocalize f-electrons in NpO{sub 2}, PuO{sub 2}, and AmO{sub 2}, respectively 49, 112, and 191 GPa. Compared to this broad range of pressures, the experimentally observed structural transitions, in all four dioxides, occur between 30 and 40 GPa, which leads us to conclude that the associated volume collapse is not due to f-electron delocalization. In contrast, oxidation of the dioxides is found to be linked to the degree of f-electron localization, but it emerges that for naturally occurring pressures (<10 GPa), higher oxides only exist for UO{sub 2}.

  3. JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Jay M. [Los Alamos National Laboratory; Lopez, Jacquelyn C. [Los Alamos National Laboratory; Wayne, David M. [Los Alamos National Laboratory; Schulte, Louis D. [Los Alamos National Laboratory; Finstad, Casey C. [Los Alamos National Laboratory; Stroud, Mary Ann [Los Alamos National Laboratory; Mulford, Roberta Nancy [Los Alamos National Laboratory; MacDonald, John M. [Los Alamos National Laboratory; Turner, Cameron J. [Los Alamos National Laboratory; Lee, Sonya M. [Los Alamos National Laboratory

    2012-07-05

    The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in a world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.

  4. Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides

    International Nuclear Information System (INIS)

    Gordon, S.; Sullivan, J.C.; Ross, A.B.

    1986-01-01

    Rate constants have been critically compiled for reactions of ions of the actinides Am, Cf, Cm, Np, Pu, Th, and U, as well as the element Tc, in different oxidation states with various chemical species in aqueous solution. The reactants include products of the radiolysis of water (hydrated electrons, hydrogen atoms, hydroxyl radicals, hydrogen peroxide) and transient species derived from other solutes (e.g., carbonate radical). The data are useful in the estimation of migration properties of actinides, which are relevant to waste management studies

  5. Actinide chemistry in the far field

    International Nuclear Information System (INIS)

    Livens, F.R.; Morris, K.; Parkman, R.; Moyes, L.

    1996-01-01

    The environmental chemistry of the actinides is complicated due both to the extensive redox and coordination chemistry of the elements and also to the complexity of the reactive phases encountered in natural environments. In the far field, interactions with reactive surfaces, coatings and colloidal particles will play a crucial role in controlling actinide mobility. By virtue of both their abundance and reactivity; clays and other layer aluminosilicate minerals, hydrous oxides and organic matter (humic substances) are all identified as having the potential to react with actinide ions and some possible modes of interaction are described, together with experimental evidence for their occurrence. (author)

  6. Synthesis and Evaluation of new Polyfunctional Molecules for Group Actinide Extraction

    International Nuclear Information System (INIS)

    Marie, C.

    2009-10-01

    The aim of this project is to design new extracting molecules for spent nuclear fuel reprocessing. In order to minimize the long-term residual radiotoxicity of the waste, the GANEX process is an option based on homogeneous recycling of actinides. All actinides (U, Np, Pu, Am, Cm), present in a highly acidic aqueous solution, would be extracted together and separated from fission products (especially from lanthanides) using liquid-liquid extraction. In this context, twenty new bi-topic ligands constituted of a nitrogen poly-aromatic unit functionalized by amide groups were synthesized. Liquid-liquid extraction tests with these ligands dissolved alone in the organic phase show that N, N, N', N'-tetra-alkyl-6, 6''(2, 2':6', 2''-terpyridine)-diamides are able to selectively extract actinides at different oxidation states (Np(V et VI), U(VI), Pu(IV), Am(III), Cm(III)) from an aqueous solution 3M HNO 3 . Nevertheless, actinides(III) are poorly extracted. According to crystallographic structures of complexes with Nd(III) and U(VI) determined by X-rays diffraction, these ligands are penta-dentate. In solution (methanol), complexes stoichiometries (1:1) of Nd(III), U(VI) and Pu(IV) were determined by electro-spray ionization mass spectrometry. Stability constants, evaluated by UV-visible spectrophotometry in MeOH/H 2 O solutions, confirm the selectivity of ligands toward actinides(III) with respect to lanthanides(III). Associate to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author)

  7. Transmutation of LWR waste actinides in thermal reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-01-01

    Recycle of actinides to a reactor for transmutation to fission products is being considered as a possible means of waste disposal. Actinide transmutation calculations were made for two irradiation options in a thermal (LWR) reactor. The cases considered were: all actinides recycled in regular uranium fuel assemblies, and transuranic actinides recycled in separate mixed oxide (MOX) assemblies. When all actinides were recycled in a uranium lattice, a reduction of 62% in the transuranic inventory was achieved after 10 recycles, compared to the inventory accumulated without recycle. When the transuranics from 2 regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after 5 recycles

  8. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than /sup 233/U, /sup 235/U, and /sup 239/Pu that have an odd number of neutrons in the nucleus; S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River

  9. Molecular and electronic structure of actinide hexa-cyanoferrates; Structure moleculaire et electronique des hexacyanoferrates d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Bonhoure, I

    2001-07-01

    The goal of this work is to improve our knowledge on the actinide-ligand bond properties. To this end, the hexacyanoferrate entities have been used as pre-organized ligand. We have synthesized, using mild chemistry, the following series of complexes: An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Th, U, Np, Pu); Am{sup III}[Fe{sup III}(CN){sub 6}].xH{sub 2}O; Pu {sup III}[Co{sup III}(CN){sub 6}].xH{sub 2}O and K(H?)An{sup III}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Pu, Am). The metal oxidation states have been obtained thanks to the {nu}{sub CN}, stretching vibration and to the actinide L{sub III} absorption edge studies. As Prussian Blue, the An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Np, Pu) are class II of Robin and Day compounds. X-ray Diffraction has shown besides that these complexes crystallize in the P6{sub 3}/m space group, as the isomorphic LaKFe(CN){sub 6}.4H{sub 2}O complex used as structural model. The EXAFS oscillations at the iron K edge and at the An L{sub III} edge allowed to determine the An-N, An-O, Fe-C and Fe-N distances. The display of the multiple scattering paths for both edges explains the actinide contribution absence at the iron edge, whereas the iron signature is present at the actinide edge. We have shown that the actinide coordination sphere in actinides hexa-cyanoferrates is comparable to the one of lanthanides. However, the actinides typical behavior towards the lanthanides is brought to the fore by the An{sup IV} versus Ln{sup III} ions presence in this family of complexes. Contrarily to the 4f electrons, the 5f electrons influence the electronic properties of the compounds of this family. However, the gap between the An-N and Ln-N distances towards the corresponding metals ionic radii do not show any covalence bond evolution between the actinide and lanthanide series. (author)

  10. Process analytical chemistry applied to actinide waste streams

    International Nuclear Information System (INIS)

    Day, R.S.

    1994-01-01

    The Department of Energy is being called upon to clean up it's legacy of waste from the nuclear complex generated during the cold war period. Los Alamos National Laboratory is actively involved in waste minimization and waste stream polishing activities associated with this clean up. The Advanced Testing Line for Actinide Separations (ATLAS) at Los Alamos serves as a developmental test bed for integrating flow sheet development of nitric acid waste streams with process analytical chemistry and process control techniques. The wastes require processing in glove boxes because of the radioactive components, thus adding to the difficulties of making analytical measurements. Process analytical chemistry methods provide real-time chemical analysis in support of existing waste stream operations and enhances the development of new waste stream polishing initiatives. The instrumentation and methods being developed on ATLAS are designed to supply near-real time analyses on virtually all of the chemical parameters found in nitric acid processing of actinide waste. These measurements supply information on important processing parameters including actinide oxidation states, free acid concentration, interfering anions and metal impurities

  11. Bagheera: A new experimental facility at Cea / Valduc for actinides studies under high dynamic loading

    International Nuclear Information System (INIS)

    Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.

    2006-01-01

    This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for 'Hopkinson And High Speed Experiments Glove Box'. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single 10 m long, 3 m high and 1.5 m large glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). A unique highly automated system drives all devices. The overall architecture of the facility takes into account the useful ability to carry out symmetrical and reverse experiments with the gas gun, that is actinide to actinide impact and actinide to inert material impact. Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications

  12. Synthesis and evaluation structure/extracting and complexing properties of new bi-topic ligands for group actinides extraction

    International Nuclear Information System (INIS)

    Bisson, J.

    2011-01-01

    The aim of this project is to design and study new extractants for spent nuclear fuel reprocessing. To decrease the long-term radiotoxicity of the waste, the GANEX process is an option to homogeneously recycle actinides. All actinides (U, Np, Pu, Am, Cm) would be extracted together from a highly acidic media and separated from fission products (especially from lanthanides). In this context, fourteen new bi-topic ligands constituted of a nitrogen poly-aromatic unit from the dipyridyl-phenanthroline and dipyridyl-1,3,5-triazine families and functionalized by amid groups were synthesized. Extraction studies performed with some of these ligands confirmed their interest to selectively separate actinides at different oxidation states from an aqueous solution 3M HNO 3 . To determine the influence of ligands structure on cation complexation, a study in a homogenous media (MeOH/H 2 O) has been carried out. Electro-spray ionization mass spectrometry have been used to characterize the complexes stoichiometries formed with several cations (Eu 3+ , Nd 3+ , Am 3+ , Pu 4+ and NpO 2 + ). Stability constants, evaluated by UV-Visible spectrophotometry, confirm the selectivity of these ligands toward actinides. Lanthanides and actinides complexes have also been characterized in the solid state by infra-red spectroscopy and X-Ray diffraction. Associated to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author) [fr

  13. Solubilities of Actinide Oxides in the KURT Groundwater

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Baik, Min Hoon; Choi, Jong Won

    2009-12-01

    For the estimation of solubilities of actinides in a deep underground condition, The solubilities of UO 2 , ThO 2 , NpO 2 and Am(OH) 3 in the KURT ground water have been measured under various redox conditions, and their solubilities and aqueous species in the same conditions as the experimental solutions were also calculated by using a geochemical code. Then these results were compared with each other as well as with literature results. For the calculation of solubility of a radionuclide, the thermodynamic data of the radionuclide complex from OECD/NEA, Nagra/PSI, KAERI, JAEA, SKB and recent literatures were collected and compared. Additionally, the methods for the correction of ionic strength and temperature of the solution were described in this report. The analysis techniques and recent research for measurement of species of actinides were also introduced. The concentrations of U, Th and Np dissolved were less than 10 -7 mol/L under Eh≤-0.2 of reducing condition from experiment and calculation, and the solubility of PuO 2 (cr) was estimated as lower than that of UO 2 (cr) by 1 ∼ 2 orders. However if amount of carbonate ion in the ground water increased, the concentration of tetra-valance actinides at pH 8 ∼ 11 would be greatly increased. The 1x10 -6 mol/L of americium might be a little conservative value in KURT groundwater. While carbonate or hydroxo-carbonatec complexes were presumed to be the dominant aqueous species in -0.2 ∼ -0.3 V of Eh and weakly alkaline solution, hydroxo complexes are dominant in strong reducing and high pH solution

  14. Some activities in the United States concerning the physics aspects of actinide waste recycling

    International Nuclear Information System (INIS)

    Raman, S.

    1975-01-01

    Reactor types being considered in the United States for the purpose of actinide waste recycling are discussed briefly. The reactor types include thermal reactors operating on the 3.3 percent 235 U-- 238 U and the 233 U-- 232 Th fuel cycles, liquid metal fast breeder reactors, reactors fueled entirely by actinide wastes, gaseous fuel reactors, and fusion reactors. Cross section measurements in progress or planned toward providing basic data for testing the recycle concept are also discussed

  15. Preparation of minor actinides targets or blankets by the means of Ionic Exchange Resin

    Energy Technology Data Exchange (ETDEWEB)

    Picart, S.; Mokhtari, H.; Ramiere, I.; Jobelin, I. [CEA, Nuclear Energy Division, RadioChemistry and Process Department, Actinides Chemistry Laboratory, BP17171, Bagnols-sur-Ceze, 30207 (France)

    2009-06-15

    The objective of our R and D work is the elaboration by the use of ionic exchange resin of minor actinide precursors for target or blanket dedicated to their transmutation in sodium fast reactor. From the beginning, the resin process called WAR (acronym of Weak Acid Resin) was developed in the 70's at the ORNL for the making of uranium carbide kernels for the high temperature gas reactor [1] [2]. By now, our aim is to extend this concept to the manufacturing of minor actinides oxide mixed with uranium oxides [3]. More precisely, this process can be divided in two major steps: the loading of the resin and the thermal treatment of the fully loaded resin driving either to oxide or carbide phases depending on the gas atmosphere. The difficulty stems from the preparation of the loading solutions which must fulfill precise conditions of pH in presence of actinides cations prone to hydrolysis. Furthermore, the proportions of uranium and minor actinides in solutions must be adjusted to fit the right ratio in the solid. The study presented here will then focus on the experiments and tests which enable us to optimize the fixing of minor actinides on ionic exchange resin and their carbonization in oxide. [1] G. W. Weber, R. L. Beatty et V. J. Tennery, Nuclear Technology, 35, 217-226, (1977), 'Processing and composition control of weak-acid-resin derived fuel microspheres'. [2] K. J. Notz, P. A. Haas, J. H. Shaffer, Radiochimica Acta, 25, 153-160, (1978). 'The preparation of HTGR Fissile Fuel Kernels by Uranium Loading of Ion Exchange Resin'. [3] S. Picart, H. Mokhtari, I. Ramiere, 'Plutonium Futures, The Science 2008', 7-11 july 2008, Dijon, France. 'Modelling of the ionic Exchange between a weak acid resin in its ammonium form and a minor actinide'. (authors)

  16. Stability constants of the fluoride complexes of actinides in aqueous solution and their correlation with fundamental properties

    International Nuclear Information System (INIS)

    Chaudhuri, N.K.; Sawant, R.M.

    1997-09-01

    Stability constants of the fluoride complexes of the actinides in different oxidation states measured by potentiometric method using fluoride ion selective electrode have been presented. Procedure and precautions required to overcome certain difficulties particular to actinide ions have been discussed. Literature data from various sources have been compiled. In order to have a reasonable comparison the stability constant (β 1 ) values obtained in diverse ionic strength media are converted to thermodynamic stability constant, β 1 0 , using Davies equation (a modification of Debye-Huckel equation). A correlation of the β 1 0 values with the fundamental properties of the actinide ions using various models available in the literature has been attempted. A semiempirical relation recently developed by Brown, Sylva and Ellis (BSE equation) appears to be most suitable. Using the values of ionic radii and best available values of the stability constants of a large number of metal ions from recent compilations a comparative study of the various models or relations available in the literature has been tried. For metal ions in general, the best correlation is obtained with the BSE equation. In an attempt to accommodate the unusual trend in the stability constants of the tetravalent actinides a modification in a parameter of the BSE equation has been proposed. Good agreement between the theoretically calculated and experimentally determined values for actinides in different oxidation states is then obtained in most of the cases. (author)

  17. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  18. Theoretical Studies of the Electronic Structure of the Compounds of the Actinide Elements

    International Nuclear Information System (INIS)

    Kaltsoyannis, Nikolas; Hay, P.J.; Li, Jun; Blaudeau, Jean-Philippe; Bursten, Bruce E.

    2006-01-01

    In this chapter, we will present an overview of the theoretical and computational developments that have increased our understanding of the electronic structure of actinide-containing molecules and ions. The application of modern electronic structure methodologies to actinide systems remains one of the great challenges in quantum chemistry; indeed, as will be discussed below, there is no other portion of the periodic table that leads to the confluence of complexity with respect to the calculation of ground- and excited-state energies, bonding descriptions, and molecular properties. But there is also no place in the periodic table in which effective computational modeling of electronic structure can be more useful. The difficulties in creating, isolating, and handling many of the actinide elements provide an opportunity for computational chemistry to be an unusually important partner in developing the chemistry of these elements. The importance of actinide electronic structure begins with the earliest studies of uranium chemistry and predates the discovery of quantum mechanics. The fluorescence of uranyl compounds was observed as early as 1833, a presage of the development of actinometry as a tool for measuring photochemical quantum yields. Interest in nuclear fuels has stimulated tremendous interest in understanding the properties, including electronic properties, of small actinide-containing molecules and ions, especially the oxides and halides of uranium and plutonium. The synthesis of uranocene in 1968 led to the flurry of activity in the organometallic chemistry of the actinides that continues today. Actinide organometallics (or organoactinides) are nearly always molecular systems and are often volatile, which makes them amenable to an arsenal of experimental probes of molecular and electronic structure (Marks and Fischer, 1979). Theoretical and computational studies of the electronic structure of actinide systems have developed in concert with the experimental

  19. Some activities in the United States concerning the physics aspects of actinide waste recycling

    International Nuclear Information System (INIS)

    Raman, S.

    1976-01-01

    This review paper briefly discusses the reactor types being considered in the United States for the purpose of actinide waste recycling. The reactor types include thermal reactors operating on the 3.3% 235 U- 238 U and the 233 U- 232 Th fuel cycles, liquid metal fast breeder reactors, reactors fueled entirely by actinide wastes, gaseous fuel reactors and fusion reactors. This paper also discusses cross section measurements in progress or planned toward providing basic data for testing the recycle concept. (author)

  20. High-pressure synthesis and characterization of new actinide borates, AnB4O8 (An=Th, U).

    Science.gov (United States)

    Hinteregger, Ernst; Hofer, Thomas S; Heymann, Gunter; Perfler, Lukas; Kraus, Florian; Huppertz, Hubert

    2013-11-18

    New actinide borates ThB4O8 and UB4O8 were synthesized under high-pressure, high-temperature conditions (5.5 GPa/1100 °C for thorium borate, 10.5 GPa/1100 °C for the isotypic uranium borate) in a Walker-type multianvil apparatus from their corresponding actinide oxide and boron oxide. The crystal structure was determined on basis of single-crystal X-ray diffraction data that were collected at room temperature. Both compounds crystallized in the monoclinic space group C2/c (Z=4). Lattice parameters for ThB4O8: a=1611.3(3), b=419.86(8), c=730.6(2) pm; β=114.70(3)°; V=449.0(2) Å(3); R1=0.0255, wR2=0.0653 (all data). Lattice parameters for UB4O8: a=1589.7(3), b=422.14(8), c=723.4(2) pm; β=114.13(3)°; V=443.1(2) Å(3); R1=0.0227, wR2=0.0372 (all data). The new AnB4O8 (An=Th, U) structure type is constructed from corner-sharing BO4 tetrahedra, which form layers in the bc plane. One of the four independent oxygen atoms is threefold-coordinated. The actinide cations are located between the boron-oxygen layers. In addition to Raman spectroscopic investigations, DFT calculations were performed to support the assignment of the vibrational bands. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This isan open access article under the terms of the Creative Commons AttributionLicense, which permits use, distribution and reproduction in any medium,provided the original work is properly cited.

  1. Build-up and decay of fuel actinides in the fuel cycle of nuclear reactors

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Kikuchi, Yasuyuki; Shindo, Ryuichi; Yoshida, Hiroyuki; Yasukawa, Shigeru

    1976-05-01

    For boiling water reactors, pressurized light-water reactors, pressure-tube-type heavy water reactors, high-temperature gas-cooled reactors, and sodium-cooled fast breeder reactors, uranium fueled and mixed-oxide fueled, each of 1000 MWe, the following have been studied: (1) quantities of plutonium and other fuel actinides built up in the reactor, (2) cooling behaviors of activities of plutonium and other fuel actinides in the spent fuels, and (3) activities of plutonium and other fuel actinides in the high-level reprocessing wastes as a function of storage time. The neutron cross section and decay data of respective actinide nuclides are presented, with their evaluations. For effective utilization of the uranium resources and easy reprocessing and high-level waste management, a thermal reactor must be fueled with uranium; the plutonium produced in a thermal reactor should be used in a fast reactor; and the plutonium produced in the blanket of a fast reactor is more appropriate for a fast reactor than that from a thermal reactor. (auth.)

  2. Limitations of actinide recycle and waste disposal consequences

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Raedt, C. de

    1994-01-01

    The paper emphasizes the impact of Light Water Reactor - Mixed Oxides introduction on the subsequent actinide management and fate of reprocessed and depleted uranium. The spent fuel from LWR-MOX contains in principle 75% of the initially produced plutonium. This new source term has to be considered together with the minor actinides from the conventional reprocessing. Subsequent LWR-MOX reprocessing in the first step in a very long term Pu + minor actinides management. Recycling of Pu + minor actinides in fast reactors to significantly reduce the Pu and minor actinides inventory (e.g. a factor of 10) is a very slow process which requires the development and operation of a large park of actinide burner reactors during an extended period of time. The overall feasibility of the P and T option will greatly depend on the massive introduction during the next century of fast neutron reactors as a replacement to the present LWR generation of nuclear power plants. (authors). 11 refs., 6 tabs., 2 figs

  3. Studies of thermal-hydraulics and plant systems for actinide burning fast reactor concept

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Misumi, Masahiro; Izaki, Makoto; Koike, Hiroyuki; Tanaka, Ryokichi

    1984-01-01

    As one of the methods to dispose long life actinide nuclides, the actinide burning fast reactor using only actinide wastes as the fuel has been proposed. Kawasaki Heavy Industries Ltd. carried out the conceptual examination on the ABFR cooled with helium gas, cooperating with Japan Atomic Energy Research Institute, and its feasibility and problems were clarified. In this report, the setting-up of various fundamental dimensions by the parameter survey of the thermal and flowing performance of the core, the examination of the thermal and flowing characteristics of the core based on the detailed power distribution, and the examination of the plant system centering around the main cooling system are outlined. The fuel is composed of actinide oxide and diluent MgO. The diluent is used for obtaining proper excess reactivity, and MgO has been taken up also in foreign countries, considering the compatibility with actinide oxide, the easiness of reprocessing and manufacture. The fuel element is of pin type, and actinide oxide and MgO pellets are in a SUS 316 cladding tube. This ABFR can treat the wastes from ten 1000 MWe power reactors, and has the power output of about 1000 MWt. (Kako, I.)

  4. Investigation of the complexation and the migration of actinides and non-radioactive substances with humic acids under geogenic conditions. Complexation of humic acids with actinides in the oxidation state IV Th, U, Np

    International Nuclear Information System (INIS)

    Sachs, S.; Schmeide, K.; Brendler, V.; Krepelova, A.; Mibus, J.; Geipel, G.; Heise, K.H.; Bernhard, G.

    2004-03-01

    Objective of this project was the study of basic interaction and migration processes of actinides in the environment in presence of humic acids (HA). To obtain more basic knowledge on these interaction processes synthetic HA with specific functional properties as well as 14 C-labeled HA were synthesized and applied in comparison to the natural HA Aldrich. One focus of the work was on the synthesis of HA with distinct redox functionalities. The obtained synthetic products that are characterized by significantly higher Fe(III) redox capacities than Aldrich HA were applied to study the redox properties of HA and the redox stability of U(VI) humate complexes. It was confirmed that phenolic OH groups play an important role for the redox properties of HA. However, the results indicate that there are also other processes than the single oxidation of phenolic OH groups and/or other functional groups contributing to the redox behavior of HA. A first direct-spectroscopic proof for the reduction of U(VI) by synthetic HA with distinct redox functionality was obtained. The complexation behavior of synthetic and natural HA with actinides (Th, Np, Pu) was studied. Structural parameters of Pu(III), Th(IV), Np(IV) and Np(V) humates were determined by X-ray absorption spectroscopy (XAS). The results show that carboxylate groups dominate the interaction between HA and actinide ions. These are predominant monodentately bound. The influence of phenolic OH groups on the Np(V) complexation by HA was studied with modified HA (blocked phenolic OH groups). The blocking of phenolic OH groups induces a decrease of the number of maximal available complexing sites of HA, whereas complex stability constant and Np(V) near-neighbor surrounding are not affected. The effects of HA on the sorption and migration behavior of actinides was studied in batch and column experiments. Th(IV) sorption onto quartz and Np(V) sorption onto granite and its mineral constituents are affected by the pH value and the

  5. Handbook on the physics and chemistry of the actinides. V. 3

    International Nuclear Information System (INIS)

    Freeman, A.J.; Keller, C.

    1985-01-01

    It is the purpose of the Handbook to describe in detail the present understanding of the actinides by means of comprehensive, critical, broad and up to date reviews covering both physics and chemistry of these exotic elements. Volume 3 is the first of two volumes to cover the more chemical, physico-chemical, structural and environmental aspects of the actinide elements. Leading scientists from Europe, USA and P.R. China present critical reviews on important aspects of the behaviour of this radioactive group of elements. In contrast to most other elements radioactivity has, to a degree, a profound influence on the chemical behaviour of the actinides. The unusual behaviour of the 5f-elements - delocalization of the electrons for the light actinides versus localization for the heavier ones - makes them an outstanding tool for the scientist, which can be seen by the variety of oxidation states ranging from +1 to +7. Special laboratory techniques must be developed to deal with the problem of the transcurium elements only being available in small amounts (nanograms to micrograms) or only in the tracer scale. Special emphasis is also placed on the fate of actinides released in the environment, e.g. their reaction to carbonate and organic complexing agents in aquatic systems. In contrast to volumes 1 and 2 which deal mainly with the less radioactive actinides, this volume and the forthcoming volume 4 cover all actinides, in particular those which can be prepared in weighable quantities (up to fermium, element 100). refs.; figs.; tabs

  6. Partitioning of actinides from high active waste solution of Purex origin counter-current extraction studies using TBP and CMPO

    International Nuclear Information System (INIS)

    Chitnis, R.R.; Dhami, P.S.; Gopalkrishnan, V.; Wattal, P.K.; Ramanujam, A.; Murali, M.S.; Mathur, J.N.; Bauri, A.K.; Chattopadhyay, S.

    2000-10-01

    A solvent extraction scheme has been formulated for the partitioning of actinides from Purex high level waste (HLW). The scheme is based on the results of earlier studies carried out with simulated waste solutions. In the present studies, the scheme was tested with high active waste (HAW) solution generated during the reprocessing of spent fuel from research reactors using laboratory scale mixer-settlers. The proposed process involved two-step extraction using tri-n-butyl phosphate (TBP) and octyl (phenyl)-N,N-diisobutylcarbamolylmethylphosphine oxide (CMPO). In the first step, uranium, neptunium and plutonium were removed from the waste using TBP as extractant. The minor actinides left in the raffinate were extracted using a mixture of CMPO and TBP in the second step. The results showed complete extraction of actinides from the waste solution. Plutonium and neptunium extracted in TBP, were stripped together using a mixture of hydrogen peroxide and ascorbic acid in 2 M nitric acid medium, leaving uranium in the organic phase. Uranium can later be stripped using dilute nitric acid. Actinides extracted in CMPO-TBP phase were stripped using a mixture of formic acid, hydrazine, hydrate and citric acid. The stripping was quantitative in both the stripping runs. An additional extraction step for the preferential recovery of uranium, neptunium and plutonium from the waste solution using TBP is a modification over the conventional Truex process. Selective stripping of neptunium and plutonium from large quantities of uranium. The extraction of uranium using TBP eliminates the possibility of third phase and undesired loading of CMPO-TBP in the following step. Use of citrate-containing strippant allows the recovery of actinides from loaded CMPO-TBP mixture without causing any reflux of the actinides during stripping. The process has been developed with due consideration to minimising the generation of secondary wastes. The proposed strippants are effective even in presence of

  7. Synthesis and structural characterisation of mixed An(IV)-An(III) actinide oxalates used as precursors for dedicated fuel or target

    International Nuclear Information System (INIS)

    Tamain, Christelle; Grandjean, Stephane; Arab Chapelet, Benedicte; Abraham, Francis

    2010-01-01

    Oxalic co-conversion process plays an important role by producing mixed-actinide compounds used as starting materials as they are particularly suitable precursors of actinide oxide solid solutions. In these oxalate compounds, a mixed crystallographic site which accommodates both elements in spite of their different oxidation states has been established. The charge compensation is ensured by monovalent cations present in the acidic solution. This communication reviews the various mixed-actinide oxalates obtained by crystallization from acidic solution. First, crystallographic structures determined by X-ray diffraction from single crystals are described. Then completing data obtained by powder X-ray diffraction are presented on various systems. The different supramolecular arrangements underline the complexity of An(IV)-An(III)/Ln(III) oxalate system and the need to pursue studies on single crystals. (authors)

  8. Heterogeneous all actinide recycling in LWR all actinide cycle closure concept

    International Nuclear Information System (INIS)

    Tondinelli, Luciano

    1980-01-01

    A project for the elimination of transuranium elements (Waste Actinides, WA) by neutron transmutation is developed in a commercial BWR with U-Pu (Fuel Actinides, FA) recycle. The project is based on the All Actinide Cycle Closure concept: 1) closure of the 'back end' of the fuel cycle, U-Pu coprocessing, 2) waste actinide disposal by neutron transmutation. The reactor core consists of Pu-island fuel assemblies containing WAs in target pins. Two parallel reprocessing lines for FAs and WAs are provided. Mass balance, hazard measure, spontaneous activity during 10 recycles are calculated. Conclusions are: the reduction in All Actinide inventory achieved by Heterogeneous All Actinide Recycling is on the order of 83% after 10 recycles. The U235 enrichment needed for a constant end of cycle reactivity decreases for increasing number of recycles after the 4th recycle. A diffusion-burnup calculation of the pin power peak factors in the fuel assembly shows that design limits can be satisfied. A strong effort should be devoted to the solution of the problems related to high values of spontaneous emission by the target pins

  9. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  10. Valence instabilities as a source of actinide system inconsistencies

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1979-01-01

    Light actinide elements alone, and in some of their alloys, may exist as a static or dynamic mixture of two configurations. Such a state can explain both a resistivity maximum and lack of magnetic order observed in so many actinide materials, and still be compatible with the existence of f-electrons in narrow bands. Impurity elements may stabilize slightly different intermediate valence states in U, Np, and Pu, thus contributing to inconsistencies in published results. The physical property behavior of mixed-valence, rare-earth compounds is very much like that observed in development of antiphase (martensitic) structures. Martensitic transformations in U, Np, and Pu, from high-temperature b. c. c. to alpha phase, may be a way of ordering an alloy-like metal of mixed or intermediate valence. The relative stability of each phase structure may depend upon its electron-valence ratio. A Hubbard model for electron correlations in a narrow energy band has been invoked in most recent theories for explaining light actinide behavior. Such a model may also be applicable to crystal symmetry changes in martensitic transformations in actinides

  11. Recovery actinide values

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Delphin, W.H.; Mason, G.W.

    1979-01-01

    A process is described for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of di-hexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate solution of tetramethylammonium hydrogen oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid. (author)

  12. Response of actinides to flux changes in high-flux systems

    International Nuclear Information System (INIS)

    Sailor, W.C.

    1993-01-01

    When discussing the transmutation of actinides in accelerator-based transmutation of waste (ATW) systems, there has been some concern about the dynamics of the actinides under high transient fluxes. For a pure neptunium feed, it has been estimated that the 238 Np/ 237 Np ratio increase due to an increasing flux may lead to an unstable, positive reactivity growth. In this analysis, a perturbation method is used to calculate the response of the entire set of actinides in a general way that allows for more species than just neptunium. The time response of the system can be calculated; i.e., a plot of fuel composition and reactivity versus time after a change in flux can be made. The effects of fission products can also be included. The procedure is extremely accurate on short time scales (∼ 1000 s) for the flux levels we contemplate. Calculational results indicate that the reactivity insertions are always smaller than previously estimated

  13. Aqueous electrochemical mechanisms in actinide residue processing. 1998 annual progress report

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Burns, C.J.; Morris, D.E.; Smith, W.H.

    1998-01-01

    'New and/or improved solutions to the stabilization and volume reduction of nuclear materials processing residues are urgently needed. Mediated electrochemical oxidation/reduction (MEO/R) processes are one such approach for incinerator ash, combustibles, and other solid residues. However, questions remain concerning the mechanisms of these processes, and how they might be optimized. In addition, further research is merited to extend their range of applicability. Recent advances in the study of heterogeneous electron transfer in solid substrates have opened the door for the re-examination of electron transfer processes associated with redox mediated actinide dissolution. The authors develop a deeper understanding of the thermodynamic and mechanistic aspects of heterogeneous electron transfer that lie at the heart of these MEO/R processes. They will also develop and test new approaches based on the results of these fundamental studies using actual residue materials. Key aspects of this proposal include: (1) determination of the potential windows for oxidation/reduction of colloidal actinide oxides and actinide-bearing oxide and organic substrates and the e transfer kinetic parameters that govern the current--overpotential characteristics; (2) development of adaptations of mediation schemes and application of co-mediation reagents for oxidative and reductive dissolution based on complexation of the surface-bound or solid-phase actinides and/or the dissolved redox mediator;and (3) execution of bench-scale tests of new MEO/R schemes on actual residue materials.'

  14. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  15. Actinides and fission products partitioning from high level liquid waste

    International Nuclear Information System (INIS)

    Yamaura, Mitiko

    1999-01-01

    The presence of small amount of mixed actinides and long-lived heat generators fission products as 137 Cs and 90 Sr are the major problems for safety handling and disposal of high level nuclear wastes. In this work, actinides and fission products partitioning process, as an alternative process for waste treatment is proposed. First of all, ammonium phosphotungstate (PWA), a selective inorganic exchanger for cesium separation was chosen and a new procedure for synthesizing PWA into the organic resin was developed. An strong anionic resin loaded with tungstate or phosphotungstate anion enables the precipitation of PWA directly in the resinous structure by adding the ammonium nitrate in acid medium (R-PWA). Parameters as W/P ratio, pH, reactants, temperature and aging were studied. The R-PWA obtained by using phosphotungstate solution prepared with W/P=9.6, 9 hours digestion time at 94-106 deg C and 4 to 5 months aging time showed the best capacity for cesium retention. On the other hand, Sr separation was performed by technique of extraction chromatography, using DH18C6 impregnated on XAD7 resin as stationary phase. Sr is selectively extracted from acid solution and >99% was recovered from loaded column using distilled water as eluent. Concerning to actinides separations, two extraction chromatographic columns were used. In the first one, TBP(XAD7) column, U and Pu were extracted and its separations were carried-out using HNO 3 and hydroxylamine nitrate + HNO 3 as eluent. In the second one, CMP0-TBP(XAD7) column, the actinides were retained on the column and the separations were done by using (NH 4 ) 2 C 2 O 4 , DTPA, HNO 3 and HCl as eluent. The behavior of some fission products were also verified in both columns. Based on the obtained data, actinides and fission products Cs and Sr partitioning process, using TBP(XAD7) and CMP0-TBP(XAD7) columns for actinides separation, R-PWA column for cesium retention and DH18C6(XAD7) column for Sr isolation was performed

  16. Characterization of high level waste for minor actinides by chemical separation and alpha spectrometry

    International Nuclear Information System (INIS)

    Murali, M.S.; Bhattacharayya, A.; Kar, A.S.; Tomar, B.S.; Manchanda, V.K.

    2010-01-01

    Quantification of minor actinides present in of High Level Waste (HLW) solutions originating from the power reactors is important in view of management of radioactive wastes and actinide partitioning. Several methods such as ICP-MS, X-ray fluorescence methods, ICP-AES, alpha spectrometry are used in characterizing such types of wastes. As alpha spectrometry is simple and reliable, this technique has been used for the estimation of minor actinides after devising steps of separation for estimating Np and Pu present in HLW solutions of PHWR origin. Using a wealth of knowledge appropriate to the solution chemistry of actinides, the task of separation, though appears easy, it is challenging job for a radiochemist handling high-dose HLW samples, for obtaining clean alpha peaks for Np and Pu. This paper reports on the successful attempt made to quantify 241 Am, 244 Cm, Pu (239 mainly) and 237 Np present in HLW-PHWR obtained from PREFRE, Tarapur

  17. Removal of actinides from high-level wastes generated in the reprocessing of commercial fuels

    International Nuclear Information System (INIS)

    Bond, W.D.; Leuze, R.E.

    1975-09-01

    Progress is reported on a technical feasibility study of removing the very long-lived actinides (uranium, neptunium, plutonium, americium, and curium) from high-level wastes generated in the commercial reprocessing of spent nuclear fuels. The study was directed primarily at wastes from the reprocessing of light water reactor (LWR) fuels and specifically to developing satisfactory methods for reducing the actinide content of these wastes to values that would make 1000-year-decayed waste comparable in radiological toxicity to natural uranium ore deposits. Although studies are not complete, results thus far indicate the most promising concept for actinide removal includes both improved recovery of actinides in conventional fuel reprocessing and secondary processing of the high-level wastes. Secondary processing will be necessary for the removal of americium and curium and perhaps some residual plutonium. Laboratory-scale studies of separations methods that appear most promising are reported and conceptual flowsheets are discussed. (U.S.)

  18. Characterization Of Actinides In Simulated Alkaline Tank Waste Sludges And Leachates

    International Nuclear Information System (INIS)

    Nash, Kenneth L.

    2008-01-01

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  19. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  20. Solubility of actinides and surrogates in nuclear glasses

    International Nuclear Information System (INIS)

    Lopez, Ch.

    2003-01-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO 2 at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  1. Evaluation of the alveolar macrophage role in the pulmonary distribution of actinide oxides

    International Nuclear Information System (INIS)

    Guezingar-Liebard, Florence

    1999-01-01

    Actinide oxide inhalation is potentially a risk during the fuel fabrication process in the electronuclear industry. These particles can induce pulmonary lesions. The alveolar macrophage play an important role in the particle sequestration and transport but the actinide toxicity towards these cells is not well known. The aim of this work was to characterize the evolution of particle localisation in lungs after inhalation and to evaluate the role of macrophages in the lesion histo-genesis. We have used of a solid track detector to visualise alpha dose distribution within lung tissue. After 237 NpO 2 , MOX or PuO 2 inhalation by rats, different kinetics of clearance were observed for the sub-pleural and peri-bronchial areas compared to the others alveolar areas. For initial lung burdens that alter the lung clearance, particle aggregates were observed. Their kinetic and localisation vary depending on the aerosol, for a same global dose delivered to the lungs. This could be due to the different specific alpha activities of the particles and to the particle number deposited in the lung to obtain a similar burden but it could be also due to a chemical toxicity of neptunium higher than that of the others actinides. The flow cytometry methods developed allow us to measure apoptosis, phagocytosis and free radicals generation. After addition of soluble uranium to the culture medium, similar results were obtained using either alveolar macrophages extracted from rats or a macrophage cell line. This work confirms that alveolar macrophages are involved in the aggregate formation which induces heterogeneous dose distribution within the different lung tissues. (author) [fr

  2. Actinide speciation bound to hydrous ferric oxide colloids in the near-field conditions of the waste pond at 'Mayak' facility (Russia)

    International Nuclear Information System (INIS)

    Kalmykov, St.; Khasanova, A.; Kriventsov, V.; Teterin, Y.; Novikov, A.

    2007-01-01

    Full text of publication follows: 'Mayak' facility is a nuclear waste and spent nuclear fuel reprocessing plant located in Ural Mountains, Russia. The opened pond, Karachay Lake, was used for several decades for the discharge of low- and intermediate level waste solutions containing fission products and traces of actinides. Due to high salt concentration and high density of waste solutions, they are penetrating into the groundwater system that is represented by oxic Eh conditions. The speciation of actinides in groundwater samples collected close to Karachay Lake was studied by successive micro- and ultra-filtrations with subsequent SEM, TEM, nano-SIMS, membrane extraction and other techniques. It was established that U and Np were found in soluble fraction (pass through 10 kD ultra-filter) in the form of their bi- and tri-carbonate complexes that was supported by chemical thermodynamic calculations. In contrast, Pu and Am were bound to nano-colloids 10 kD - 50 nm in size. The SEM and TEM data indicate the presence of variety of different colloidal particles which relative concentration decrease in the row: hydrous ferric oxides (HFO) >> clays ≅ calcite > rutile ≅ hematite ≅ barite ≅ MnO 2 > monazite > other phases. The SIMS with submicron resolution (Cameca nanoSIMS-50) was used to study local concentration of actinides. According to the obtained data among different colloids detected in the sample actinides were preferentially bound to HFO and MnO 2 while other phases did not sorb actinides. In order to determine actinide speciation bound to HFO colloids XPS and An L 3 edge XAFS measurements were done at Siberian Synchrotron Radiation Centre. The storage ring VEPP-3 with electron beam energy of 2 GeV and an average stored current of 80 mA was used as the source of radiation. Since the concentration of actinides in actual samples was too low for XAFS, the samples for measurements were prepared by contacting about 10 -5 M solutions of Np(V) and Pu(V) with

  3. Recent development in computational actinide chemistry

    International Nuclear Information System (INIS)

    Li Jun

    2008-01-01

    Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first-principle theory and computational modeling. Actinide compounds are challenging to computational chemistry because of their complicated electron correlation effects and relativistic effects, including spin-orbit coupling effects. There have been significant developments in theoretical studies on actinide compounds in the past several years. The theoretical capabilities coupled with new experimental characterization techniques now offer a powerful combination for unraveling the complexities of actinide chemistry. In this talk, we will provide an overview of our own research in this field, with particular emphasis on applications of relativistic density functional and ab initio quantum chemical methods to the geometries, electronic structures, spectroscopy and excited-state properties of small actinide molecules such as CUO and UO 2 and some large actinide compounds relevant to separation and environment science. The performance of various density functional approaches and wavefunction theory-based electron correlation methods will be compared. The results of computational modeling on the vibrational, electronic, and NMR spectra of actinide compounds will be briefly discussed as well [1-4]. We will show that progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry. (authors)

  4. High resolution X-ray emission spectroscopy: An advanced tool for actinide research

    Science.gov (United States)

    Vitova, T.; Brendebach, B.; Dardenne, K.; Denecke, M. A.; Lebid, A.; Löble, M.; Rothe, J.; Batuk, O. N.; Hormes, J.; Liu, D.; Breher, F.; Geckeis, H.

    2010-03-01

    High resolution X-ray emission spectroscopy (HRXES) is becoming increasingly important for our understanding of electronic and coordination structures. The combination of such information with development of quantum theoretical tools will advance our capability for predicting reactivity and physical behavior especially of 5f elements. HRXES can be used to remove lifetime broadening by registering the partial fluorescence yield emitted by the sample (i.e., recording a windowed signal from the energy dispersed fluorescence emission while varying incident photon energy), thereby yielding highly resolved X-ray absorption fine structure (XAFS) spectra. Such spectra often display resonant features not observed in conventional XAFS. The spectrometer set-up can also be used for a wide range of other experiments, for example, resonant inelastic X-ray scattering (RIXS), where bulk electron configuration information in solids, liquids and gases is obtained. Valence-selective XAFS studies, where the local structure of a selected element's valence state present in a mixture of valence states can be obtained, as well as site-selective XAFS studies, where the coordination structure of a metal bound to selected elements can be differentiated from that of all the other ligating atoms. A HRXES spectrometer has been constructed and is presently being commissioned for use at the INE-Beamline for actinide research at the synchrotron source ANKA at FZK. We present the spectrometer's compact, modular design, optimized for attaining a wide range of energies, and first test measurement results. Examples from HRXES studies of lanthanides, actinides counter parts, are also shown.

  5. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    Energy Technology Data Exchange (ETDEWEB)

    Cassayre, L., E-mail: cassayre@chimie.ups-tlse.fr [Laboratoire de Genie Chimique (LGC), Departement Procedes Electrochimiques, CNRS-UMR 5503, Universite de Toulouse III - Paul Sabatier, 31062 Toulouse (France); Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany)

    2011-07-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl{sub 3}. A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl{sub 3} alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl{sub 2}/UAl{sub 3} molar ratio, providing complete chlorination of the alloy without formation of volatile UCl{sub 5} and UCl{sub 6}. The results showed high efficient chlorination at a temperature of 150 deg. C.

  6. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    International Nuclear Information System (INIS)

    Cassayre, L.; Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P.

    2011-01-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl 3 . A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl 3 alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl 2 /UAl 3 molar ratio, providing complete chlorination of the alloy without formation of volatile UCl 5 and UCl 6 . The results showed high efficient chlorination at a temperature of 150 deg. C.

  7. Interactions of Microbes found at Aespoe Underground Lab with Actinides such as Curium, Plutonium and Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Moll, H.; Merroun, M.; Geipel, G.; Rossberg, A.; Hennig, C.; Selenska-Pobell , S.; Bernhard, G. [Forschungszentrum Dresden-Rossendorf e.V., Inst. fuer Radioc hemie, 01314 Dresden (Germany)]. e-mail: h.moll@fzd.de; Stumpf, Th. [Forschungszentru m Karlsruhe, Inst. fuer Nukleare Entsorgung, 76021 Karlsruhe (Germany)

    2007-06-15

    Sulfate-reducing bacteria (SRB) frequently occur in the deep granitic rock aquifers at the Aespoe Hard Rock Laboratory (Aespoe HRL), Sweden. The new SRB strain Desulfovibrio aespoeensis could be isolated. Results describing the basic interaction mechanisms of uranium, curium, and plutonium with cells of D. aespoeensis DSM 10631T will be presented. The interaction experiments with the actinides showed that the cells are able to remove all three actinides from the surrounding solution. The amount of removed actinide and the interaction mechanism varied among the different actinides. The main U(VI) removal occurred after the first 24 h. The contact time, pH and [U(VI)]initial influence the U removal efficiency. The presence of uranium caused a damaging of the cell membranes. TEM revealed an accumulation of U inside the bacterial cell. D. aespoeensis are able to form U(IV). A complex interaction mechanism takes place consisting of biosorption, bioreduction and bioaccumulation. In the case of {sup 242}Pu, solvent extractions, UV-vis- and XANES spectroscopy were used to determine the speciation of the Pu oxidation states. In the first step, the Pu(VI) and Pu(IV)-polymers are bound to the biomass. Solvent extractions showed that 97 % of the initially present Pu(VI) is reduced to Pu(V) due to the activity of the cells within the first 24 h. Most of the formed Pu(V) dissolves from the cell envelope back to the aqueous solution due to the weak complexing properties of this plutonium oxidation state. In the case of curium at a much lower metal concentration of 3x10{sup -7} M, a pure biosorption of Cm(III) on the cell envelope forming an inner-sphere surface complex most likely with organic phosphate groups was detected. To summarize, the strength of the interaction of D. aespoeensis with the selected actinides at pH 5 and actinide concentrations = 10 mg/L ([Cm] 0.07 mg/L) follows the pattern: Cm > U > Pu >> Np.

  8. Preliminary investigation of actinide and xenon reactivity effects in accelerator transmutation of waste high-flux systems

    International Nuclear Information System (INIS)

    Olson, K.R.; Henderson, D.L.

    1995-01-01

    The possibility of an unstable positive reactivity growth in an accelerator transmutation of waste (ATW)-type high-flux system is investigated. While it has always been clear that xenon is an important actor in the reactivity response of a system to flux changes, it has been suggested that in very high thermal flux transuranic burning systems, a positive, unstable reactivity growth could be caused by the actinides alone. Initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately. The maximum change in reactivity after a flux change caused by the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or startup. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response caused by the actinides. The capabilities and applications of both the current actinide model and the xenon model are discussed. Finally, the need for a complete dynamic model for the high-flux fluid-fueled ATW system is addressed

  9. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Mukaiyama, Takehiko; Takano, Hideki; Ogawa, Toru; Osakabe, Masahiro.

    1989-07-01

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  10. 33rd Actinide Separations Conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  11. 33rd Actinide Separations Conference

    International Nuclear Information System (INIS)

    McDonald, L.M.; Wilk, P.A.

    2009-01-01

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  12. Health and environmental risk-related impacts of actinide burning on high-level waste disposal

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1992-05-01

    The potential health and environmental risk-related impacts of actinide burning for high-level waste disposal were evaluated. Actinide burning, also called waste partitioning-transmutation, is an advanced method for radioactive waste management based on the idea of destroying the most toxic components in the waste. It consists of two steps: (1) selective removal of the most toxic radionuclides from high-level/spent fuel waste and (2) conversion of those radionuclides into less toxic radioactive materials and/or stable elements. Risk, as used in this report, is defined as the probability of a failure times its consequence. Actinide burning has two potential health and environmental impacts on waste management. Risks and the magnitude of high-consequence repository failure scenarios are decreased by inventory reduction of the long-term radioactivity in the repository. (What does not exist cannot create risk or uncertainty.) Risk may also be reduced by the changes in the waste characteristics, resulting from selection of waste forms after processing, that are superior to spent fuel and which lower the potential of transport of radionuclides from waste form to accessible environment. There are no negative health or environmental impacts to the repository from actinide burning; however, there may be such impacts elsewhere in the fuel cycle

  13. Synthesis and structural characterization of actinide oxalate compounds

    International Nuclear Information System (INIS)

    Tamain, C.

    2011-01-01

    Oxalic acid is a well-known reagent to recover actinides thanks to the very low solubility of An(IV) and An(III) oxalate compounds in acidic solution. Therefore, considering mixed-oxide fuel or considering minor actinides incorporation in ceramic fuel materials for transmutation, oxalic co-conversion is convenient to synthesize mixed oxalate compounds, precursors of oxide solid solutions. As the existing oxalate single crystal syntheses are not adaptable to the actinide-oxalate chemistry or to their manipulation constrains in gloves box, several original crystal growth methods were developed. They were first validate and optimized on lanthanides and uranium before the application to transuranium elements. The advanced investigations allow to better understand the syntheses and to define optimized chemical conditions to promote crystal growth. These new crystal growth methods were then applied to a large number of mixed An1(IV)-An2(III) or An1(IV)-An2(IV) systems and lead to the formation of the first original mixed An1(IV)-An2(III) and An1(IV)-An2(IV) oxalate single crystals. Finally thanks to the first thorough structural characterizations of these compounds, single crystal X-ray diffraction, EXAFS or micro-RAMAN, the particularly weak oxalate-actinide compounds structural database is enriched, which is essential for future studied nuclear fuel cycles. (author) [fr

  14. Incineration of actinide targets in a pressurized water reactor spin project

    International Nuclear Information System (INIS)

    Puill, A.; Bergeron, J.

    1993-01-01

    The ability of Pressurized Water Reactors (PWR) with uranium fuel to limit the inventory growth of minor actinides (237 neptunium, and americium) produced by the French nuclear powerplants is studied. Targets containing an actinide oxide mixed to an inert matrix are loaded in some reactors. After being irradiated along with the fuel, the target is specially reprocessed. The remaining actinide and the plutonium which is produced, added to fresh actinide, are recycled in new targets. The radiotoxicity balance, with and without incineration, is examined considering that only the losses coming from the target reprocessing treated as waste. A scenario arbitrarily based on 18 years of operation results in a reduction of the radiotoxicity of the waste by a factor between 10 and 20, depending on the actinide considered. 6 refs., 6 figs., 6 tabs

  15. Nonaqueous method for dissolving lanthanide and actinide metals

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1975-01-01

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol

  16. Burn of actinides in MOX fuel cells

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2017-09-01

    The spent fuel from nuclear reactors is stored temporarily in dry repositories in many countries of the world. However, the main problem of spent fuel, which is its high radio-toxicity in the long term, is not solved. A new strategy is required to close the nuclear fuel cycle and for the sustain ability of nuclear power generation, this strategy could be the recycling of plutonium to obtain more energy and recycle the actinides generated during the irradiation of the fuel to transmute them in less radioactive radionuclides. In this work we evaluate the quantities of actinides generated in different fuels and the quantities of actinides that are generated after their recycling in a thermal reactor. First, we make a reference calculation with a regular enriched uranium fuel, and then is changed to a MOX fuel, varying the plutonium concentrations and determining the quantities of actinides generated. Finally, different amounts of actinides are introduced into a new fuel and the amount of actinides generated at the end of the fuel burn is calculated, in order to determine the reduction of minor actinides obtained. The results show that if the concentration of plutonium in the fuel is high, then the production of minor actinides is also high. The calculations were made using the cell code CASMO-4 and the results obtained are shown in section 6 of this work. (Author)

  17. A literature review of actinide-carbonate mineral interactions

    International Nuclear Information System (INIS)

    Stout, D.L.

    1993-10-01

    Chemical retardation of actinides in groundwater systems is a potentially important mechanism for assessing the performance of the Waste Isolation Pilot Plant (WIPP), a facility intended to demonstrate safe disposal of transuranic waste. Rigorous estimation of chemical retardation during transport through the Culebra Dolomite, a water-bearing unit overlying the WIPP, requires a mechanistic understanding of chemical reactions between dissolved elements and mineral surfaces. This report represents a first step toward this goal by examining the literature for pertinent experimental studies of actinide-carbonate interactions. A summary of existing models is given, along with the types of experiments on which these models are based. Articles pertaining to research into actinide interactions with carbonate minerals are summarized. Select articles involving trace element-carbonate mineral interactions are also reviewed and may serve as templates for future research. A bibliography of related articles is included. Americium(III), and its nonradioactive analog neodymium(III), partition strongly from aqueous solutions into carbonate minerals. Recent thermodynamic, kinetic, and surface studies show that Nd is preferentially removed from solution, forming a Nd-Ca carbonate solid solution. Neptunium(V) is rapidly removed from solution by carbonates. Plutonium incorporation into carbonates is complicated by multiple oxidation states. Little research has been done on the radium(H) and thorium(IV) carbonate systems. Removal of uranyl ion from solution by calcite is limited to monolayer surface coverage

  18. Actinide Solubility and Speciation in the WIPP [PowerPoint

    International Nuclear Information System (INIS)

    Reed, Donald T.

    2015-01-01

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  19. Actinide Solubility and Speciation in the WIPP [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  20. Use of high gradient magnetic separation for actinide application

    International Nuclear Information System (INIS)

    Avens, L.R.; Worl, L.A.; Padilla, D.D.

    1996-01-01

    Decontamination of materials such as soils or waste water that contain radioactive isotopes, heavy metals, or hazardous components is a subject of great interest. Magnetic separation is a physical separation process that segregates materials on the basis of magnetic susceptibility. Because the process relies on physical properties, separations can be achieved while producing a minimum of secondary waste. Most traditional physical separation processes effectively treat particles larger than 70 microns. In many situations, the radioactive contaminants are found concentrated in the fine particle size fraction of less than 20 microns. For effective decontamination of the fine particle size fraction most current operations resort to chemical dissolution methods for treatment. High gradient magnetic separation (HGMS) is able to effectively treat particles from 90 to ∼0.1 micron in diameter. The technology is currently used on the 60 ton per hour scale in the kaolin clay industry. When the field gradient is of sufficiently high intensity, paramagnetic particles can be physically captured and separated from extraneous nonmagnetic material. Because all actinide compounds are paramagnetic, magnetic separation of actinide containing mixtures is feasible. The advent of reliable superconducting magnets also makes magnetic separation of weakly paramagnetic species attractive. HGMS work at Los Alamos National Laboratory (LANL) is being developed for soil remediation, waste water treatment and treatment of actinide chemical processing residues. LANL and Lockheed Environmental Systems and Technologies Company (LESAT) have worked on a co-operative research and development agreement (CRADA) to develop HGMS for radioactive soil decontamination. The program is designed to transfer HGMS from the laboratory and other industries for the commercial treatment of radioactive contaminated materials. 9 refs., 2 figs., 2 tabs

  1. Preparation of minor actinides targets or blankets by means of ionic exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Picart, S.; Mokhtari, H.; Jobelin, I. [CEA Marcoule, Nucl Energy Div, RadioChem and Proc Dept, Actinides Chem and Convers, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    The conversion of minor actinides to fuel starting materials for transmutation in a closed nuclear cycle is a big challenge for the next decades and the development of Gen(IV) nuclear systems. Conversion routes are numerous, but one needs to prove that they can be adapted to handle minor actinides. One of them is called the resin process and is particularly attractive because it stands for a 'dustless' process as it produces microspheres of oxide or carbide after thermal treatment of the loaded resin. The study presented herein focuses on the experiments and tests which enable us to optimize the fixation of minor actinides onto ionic exchange resin and their carbonization into oxide type materials. (authors)

  2. Preparation of minor actinides targets or blankets by means of ionic exchange resin

    International Nuclear Information System (INIS)

    Picart, S; Mokhtari, H; Jobelin, I; Ramiere, I

    2010-01-01

    The conversion of minor actinides to fuel starting materials for transmutation in a closed nuclear cycle is a big challenge for the next decades and the development of Gen(IV) nuclear systems. Conversion routes are numerous, but one needs to prove that they can be adapted to handle minor actinides. One of them is called the resin process and is particularly attractive because it stands for a 'dustless' process as it produces microspheres of oxide or carbide after thermal treatment of the loaded resin. The study presented herein focuses on the experiments and tests which enable us to optimize the fixation of minor actinides onto ionic exchange resin and their carbonization into oxide type materials.

  3. Characterization of actinide physics specimens for the US/UK joint experiment in the Dounreay Prototype Fast Reactor

    International Nuclear Information System (INIS)

    Walker, R.L.; Botts, J.L.; Cooper, J.H.; Adair, H.L.; Bigelow, J.E.; Raman, S.

    1983-10-01

    The United States and the United Kingdom are engaged in a joint research program in which samples of the higher actinides are irradiated in the Dounreay Prototype Fast Reactor in Scotland. The purpose of the porogram is (1) to study the materials behavior of selected higher actinide fuels and (2) to determine the integral cross sections of a wide variety of the higher actinide isotopes. Samples of the actinides are incorporated in fuel pins inserted in the core. For the fuel study, the actinides selected are 241 Am and 244 Cm in the form of Am 2 O 3 , Cm 2 O 3 , and Am 6 Cm(RE) 7 O 21 , where (RE) represents a mixture of lanthanides. For the cross-section determinations, the samples are milligram quantities of actinide oxides of 248 Cm, 246 Cm, 244 Cm, 243 Cm, 243 Am, 241 Am, 244 Pu, 242 Pu, 241 Pu, 240 Pu, 239 Pu, 238 Pu, 237 Np, 238 U, 236 U, 235 U, 234 U, 233 U, 232 Th, 230 Th, and 231 Pa encapsulated in vanadium. Coincident with the irradiations, neutron flux and energy spectral measurements are made with vanadium-encapsulated dosimeter materials located within the same fuel pins

  4. Review of actinide decorporation with chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/CETAMA), 30 - Marcoule (France); Amekraz, B.; Moulin, Ch. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR), 91 - Gif sur Yvette (France); Moulin, V. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares (DEN/DDIN/MR), 91 - Gif Sur Yvette (France); Taran, F. [CEA Saclay (DSV/DBJC/SMMCB), 91 - Gif-sur-Yvette (France); Bailly, Th.; Burgada, R. [Centre National de la Recherche Scientifique (CNRS/LCSB/UMR 7033), 93 - Bobigny (France); Henge-Napoli, M.H. [CEA Valrho, Site de Marcoule (INSTN), 30 (France); Jeanson, A.; Den Auwer, Ch.; Bonin, L.; Moisy, Ph. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/SCPS), 30 - Marcoule (France)

    2007-10-15

    In case of accidental release of radionuclides in a nuclear facility or in the environment, internal contamination (inhalation, ingestion or wound) with actinides represents a severe health risk to human beings. It is therefore important to provide effective chelation therapy or decorporation to reduce acute radiation damage, chemical toxicity, and late radiation effects. Speciation governs bioavailability and toxicity of elements and it is a prerequisite tool for the design and success of new ligands or chelating agents. The purpose of this review is to present the state-of-the-art of actinide decorporation within biological media, to recall briefly actinide metabolism, to list the basic constraints of actinide-ligand for development, to describe main tools developed and used for decorporation studies, to review mainly the chelating agents tested for actinides, and finally to conclude on the future trends in this field. (authors)

  5. Actinide recycle

    Energy Technology Data Exchange (ETDEWEB)

    Till, C; Chang, Y [Argonne National Laboratory, Argonne, IL (United States)

    1990-07-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository.

  6. Actinide recycle

    International Nuclear Information System (INIS)

    Till, C.; Chang, Y.

    1990-01-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  7. Actinide solubility in deep groundwaters - estimates for upper limits based on chemical equilibrium calculations

    International Nuclear Information System (INIS)

    Schweingruber, M.

    1983-12-01

    A chemical equilibrium model is used to estimate maximum upper concentration limits for some actinides (Th, U, Np, Pu, Am) in groundwaters. Eh/pH diagrams for solubility isopleths, dominant dissolved species and limiting solids are constructed for fixed parameter sets including temperature, thermodynamic database, ionic strength and total concentrations of most important inorganic ligands (carbonate, fluoride, phosphate, sulphate, chloride). In order to assess conservative conditions, a reference water is defined with high ligand content and ionic strength, but without competing cations. In addition, actinide oxides and hydroxides are the only solid phases considered. Recommendations for 'safe' upper actinide solubility limits for deep groundwaters are derived from such diagrams, based on the predicted Eh/pH domain. The model results are validated as far as the scarce experimental data permit. (Auth.)

  8. Photochemical reactions of actinide ions

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi

    1995-01-01

    This paper reviews the results of photochemical studies of actinide ions, which have been performed in our research group for past several years as follows: I) behavior of the excited uranyl(VI) ion; II) photo-reductions of the uranyl ion with organic and inorganic compounds; III) photo-oxidations of uranium(IV) and plutonium(III) in nitric acid solutions. (author)

  9. Dependence of actinide solid state chemistry and physics on the changing role of the 5f-electrons

    International Nuclear Information System (INIS)

    Haire, R.G.

    1992-01-01

    It is well established that the chemistry, physics, and material science of the actinides do not reflect perfectly a series of elements with a regular increase in the number of localized f-electrons (f-orbital occupation). This situation results from the changing role of the 5f-electrons across the series. Therefore, a full understanding of the properties of the individual elements necessitates an understanding of the series as a whole. The changing influence of the f-electrons is reflected in many of the actinide's properties. Systematic comparisons of selected high-temperature and high-pressure behaviors of actinide materials are discussed to demonstrate the variable nature and roles of the f-electrons, as well as their susceptibility to experimental parameters. (author)

  10. Dependence of actinide solid state chemistry and physics on the changing role of the 5f-electrons

    International Nuclear Information System (INIS)

    Haire, R.G.

    1992-01-01

    It is well established that the chemistry, physics, and material science of the actinides do not reflect perfectly a series of elements with a regular increase in the number of localized f-electrons (f-orbital occupation). This situation results from the hanging role of the 5f-electrons across the series. Therefore, a full understanding of the properties of the individual elements necessitates an understanding of the series as a whole. The changing influence of the f-electrons is reflected in many of the actinide's properties. Systematic comparisons of selected high-temperature and high-pressure behaviors of actinide materials are discussed to demonstrate the variable nature and roles of the f-electrons, as well as their susceptibility to experimental parameters

  11. Chelation and stabilization of berkelium in oxidation state +IV

    Science.gov (United States)

    Deblonde, Gauthier J.-P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.; An, Dahlia D.; Illy, Marie-Claire; Ralston, Corie Y.; Brabec, Jiri; de Jong, Wibe A.; Strong, Roland K.; Abergel, Rebecca J.

    2017-09-01

    Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin—a mammalian metal transporter—in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

  12. Advances in Metallic Fuels for High Burnup and Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.; Fielding, R. S.; Mariani, R. D.; Carmack, W. J.

    2016-10-01

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing an annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.

  13. Actinide separation of high-level waste using solvent extractants on magnetic microparticles

    International Nuclear Information System (INIS)

    Nunez, L.; Buchholz, B.A.; Kaminski, M.; Aase, S.B.; Brown, N.R.; Vandegrift, G.F.

    1994-01-01

    Polymeric-coated ferromagnetic particles with an absorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted by tributyl phosphate (TBP) are being evaluated for application in the separation and the recovery of low concentrations of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can be recovered from the waste solution using a magnet. The effectiveness of the extractant-absorbed particles at removing transuranics (TRU) from simulated solutions and various nitric acid solutions was measured by gamma and liquid scintillation counting of plutonium and americium. The HNO 3 concentration range was 0.01 M to 6M. The partition coefficients (K d ) for various actinides at 2M HNO 3 were determined to be between 3,000 and 30,000. These values are larger than those projected for TRU recovery by traditional liquid/liquid extraction. Results from transmission electron microscopy indicated a large dependence of K d on relative magnetite location within the polymer and the polymer surface area. Energy disperse spectroscopy demonstrated homogeneous metal complexation on the polymer surface with no metal clustering. The radiolytic stability of the particles was determined by using 60 Co gamma irradiation under various conditions. The results showed that K d more strongly depends on the nitric acid dissolution rate of the magnetite than the gamma irradiation dose. Results of actinide separation from simulated high-level waste representative of that at various DOE sites are also discussed

  14. Molecular cluster theory of chemical bonding in actinide oxide

    International Nuclear Information System (INIS)

    Ellis, D.E.; Gubanov, V.A.; Rosen, A.

    1978-01-01

    The electronic structure of actinide monoxides AcO and dioxides AcO 2 , where Ac = Th, U, Np, Pu, Am, Cm and Bk has been studied by molecular cluster methods based on the first-principles one-electron local density theory. Molecular orbitals for nearest neighbor clusters AcO 10- 6 and AcO 12- 8 representative of monoxide and dioxide lattices were obtained using non-relativistic spin-restricted and spin-polarized Hartree-Fock-Slater models for the entire series. Fully relativistic Dirac-Slater calculations were performed for ThO, UO and NpO in order to explore magnitude of spin-orbit splittings and level shifts in valence structure. Self-consistent iterations were carried out for NpO, in which the NpO 6 cluster was embedded in the molecular field of the solid. Finally, a ''moment polarized'' model which combines both spin-polarization and relativistic effects in a consistent fashion was applied to the NpO system. Covalent mixing of oxygen 2p and Ac 5f orbitals was found to increase rapidly across the actinide series; metal s,p,d covalency was found to be nearly constant. Mulliken atomic population analysis of cluster eigenvectors shows that free-ion crystal field models are unreliable, except for the light actinides. X-ray photoelectron line shapes have been calculated and are found to compare rather well with experimental data on the dioxides

  15. In-beam study of the rotational states in actinides after alpha-induced nuclear reactions

    International Nuclear Information System (INIS)

    Hardt, K.

    1983-01-01

    In the experiments described in this thesis the ground state rotational bands of a whole series of actinide isotopes has been studied by means of α-induced nuclear reactions. The rotational bands studied in the even isotopes could be identified up to a spin of about 16 (h/2π). With this data it was now possible to establish a broad systematic of the rotational energies up to relatively high angular momenta. Also in the odd isotopes 233 U and 239 Pu it was possible to follow the ground state rotational bands up to higher spins and to compare them with predictions of the rotational model. By means of the (α,α'2n) reaction the nuclei 230 Th and especially 228 Th could by populated. (orig./HSI) [de

  16. Final Project Report for ER15351 ''A Study of New Actinide Zintl Ions Materials''

    International Nuclear Information System (INIS)

    Peter K. Dorhout

    2007-01-01

    The structural chemistry of actinide main-group metal materials provides the fundamental basis for the understanding of structural coordination chemistry and the formation of materials with desired or predicted structural features. The main-group metal building blocks, comprising sulfur-group, phosphorus-group, or silicon-group elements, have shown versatility in oxidation state, coordination, and bonding preferences. These building blocks have allowed us to elucidate a series of structures that are unique to the actinide elements, although we can find structural relationships to transition metal and 4f-element materials. In the past year, we investigated controlled metathesis and self-propagating reactions between actinide metal halides and alkali metal salts of main-group metal chalcogenides such as K-P-S salts. Ternary plutonium thiophosphates have resulted from these reactions at low temperature in sealed ampules. we have also focused efforts to examine reactions of Th, U, and Pu halide salts with other alkali metal salts such as Na-Ge-S and Na-Si-Se and copper chloride to identify if self-propagating reactions may be used as a viable reaction to prepare new actinide materials and we prepared a series of U and Th copper chalcogenide materials. Magnetic measurements continued to be a focus of actinide materials prepared in our laboratory. We also contributed to the XANES work at Los Alamos by preparing materials for study and for comparison with environmental samples

  17. Actinide partitioning-transmutation program final report. IV. Miscellaneous aspects

    International Nuclear Information System (INIS)

    Alexander, C.W.; Croff, A.G.

    1980-09-01

    This report discusses seven aspects of actinide partitioning-transmutation (P-T) which are important in any complete evaluation of this waste treatment option but which do not fall within other major topical areas concerning P-T. The so-called miscellaneous aspects considered are (1) the conceptual design of a shipping cask for highly neutron-active fresh and spent P-T fuels, (2) the possible impacts of P-T on mixed-oxide fuel fabrication, (3) alternatives for handling the existing and to-be-produced spent fuel and/or wastes until implementation of P-T, (4) the decay and dose characteristics of P-T and standard reactor fuels, (5) the implications of P-T on currently existing nuclear policy in the United States, (6) the summary costs of P-T, and (7) methods for comparing the risks, costs, and benefits of P-T

  18. The chemistry of the actinide elements. Volume I

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1986-01-01

    The Chemistry of the Actinide Elements is a comprehensive, contemporary and authoritative exposition of the chemistry and related properties of the 5f series of elements: actinium, thorium, protactinium, uranium and the first eleven. This second edition has been completely restructured and rewritten to incorporate current research in all areas of actinide chemistry and chemical physics. The descriptions of each element include accounts of their history, separation, metallurgy, solid-state chemistry, solution chemistry, thermo-dynamics and kinetics. Additionally, separate chapters on spectroscopy, magnetochemistry, thermodynamics, solids, the metallic state, complex ions and organometallic compounds emphasize the comparative chemistry and unique properties of the actinide series of elements. Comprehensive lists of properties of all actinide compounds and ions in solution are given, and there are special sections on such topics as biochemistry, superconductivity, radioisotope safety, and waste management, as well as discussion of the transactinides and future elements

  19. Partitioning of actinide from simulated high level wastes arising from reprocessing of PHWR fuels: counter current extraction studies using CMPO

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Chitnis, R.R.; Wattal, P.K.; Theyyunni, T.K.; Nair, M.K.T.; Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Rao, M.K.; Mathur, J.N.; Murali, M.S.; Iyer, R.H.; Badheka, L.P.; Banerji, A.

    1994-01-01

    High level wastes (HLW) arising from reprocessing of pressurised heavy water reactor (PHWR) fuels contain actinides like neptunium, americium and cerium which are not extracted in the Purex process. They also contain small quantities of uranium and plutonium in addition to fission products. Removal of these actinides prior to vitrification of HLW can effectively reduce the active surveillance period of final waste form. Counter current studies using indigenously synthesised octyl (phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) were taken up as a follow-up of successful runs with simulated sulphate bearing low acid HLW solutions. The simulated HLW arising from reprocessing of PHWR fuel was prepared based on presumed burnup of 6500 MWd/Te of uranium, 3 years cooling period and 800 litres of waste generation per tonne of fuel reprocessed. The alpha activity of the HLW raffinate after extraction with the CMPO-TBP mixture could be brought down to near background level. (author). 13 refs., 2 tabs., 12 figs

  20. Partitioning of actinide from simulated high level wastes arising from reprocessing of PHWR fuels: counter current extraction studies using CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Deshingkar, D S; Chitnis, R R; Wattal, P K; Theyyunni, T K; Nair, M K.T. [Bhabha Atomic Research Centre, Bombay (India). Process Engineering and Systems Development Div.; Ramanujam, A; Dhami, P S; Gopalakrishnan, V; Rao, M K [Bhabha Atomic Research Centre, Bombay (India). Fuel Reprocessing Group; Mathur, J N; Murali, M S; Iyer, R H [Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.; Badheka, L P; Banerji, A [Bhabha Atomic Research Centre, Bombay (India). Bio-organic Div.

    1994-12-31

    High level wastes (HLW) arising from reprocessing of pressurised heavy water reactor (PHWR) fuels contain actinides like neptunium, americium and cerium which are not extracted in the Purex process. They also contain small quantities of uranium and plutonium in addition to fission products. Removal of these actinides prior to vitrification of HLW can effectively reduce the active surveillance period of final waste form. Counter current studies using indigenously synthesised octyl (phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) were taken up as a follow-up of successful runs with simulated sulphate bearing low acid HLW solutions. The simulated HLW arising from reprocessing of PHWR fuel was prepared based on presumed burnup of 6500 MWd/Te of uranium, 3 years cooling period and 800 litres of waste generation per tonne of fuel reprocessed. The alpha activity of the HLW raffinate after extraction with the CMPO-TBP mixture could be brought down to near background level. (author). 13 refs., 2 tabs., 12 figs.

  1. Synthesis of tetravalent actinide chlorides. Versatile compounds for actinide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Maerz, Juliane [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    Anhydrous actinide tetrachlorides (AnCl{sub 4}) were synthesized under mild conditions to provide versatile compounds for actinide chemistry. They enable a direct access to actinide complexes with organic and inorganic ligands.

  2. Method for the concentration and separation of actinides from biological and environmental samples

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Dietz, M.L.

    1989-01-01

    A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting. 3 figs

  3. Demonstration of innovative partitioning processes for minor actinide recycling from high active waste solutions

    International Nuclear Information System (INIS)

    Modolo, G.; Wilden, A.; Geist, A.; Malmbeck, R.; Taylor, R.

    2014-01-01

    The recycling of the minor actinides (MA) using the Partitioning and Transmutation strategy (P and T) could contribute significantly to reducing the volume of high level waste in a geological repository and to decreasing the waste's longterm hazards originating from the long half-life of the actinides. Several extraction processes have been developed worldwide for the separation and recovery of MA from highly active raffinates (HAR, e.g. the PUREX raffinate). A multi-cycle separation strategy has been developed within the framework of European collaborative projects. The multi-cycle processes, on the one hand, make use of different extractants for every single process. Within the recent FP7 European research project ACSEPT (Actinide reCycling by SEParation and Transmutation), the development of new innovative separation processes with a reduced number of cycles was envisaged. In the so-called 'innovative SANEX' concept, the trivalent actinides and lanthanides are co-extracted from the PUREX raffinate by a DIAMEX like process (e.g. TODGA). Then, the loaded solvent is subjected to several stripping steps. The first one concerns selectively stripping the actinides(III) with selective water-soluble ligands (SO3-Ph-BTB), followed by the subsequent stripping of trivalent lanthanides. A more challenging route studied also within our laboratories is the direct actinide(III) separation from a PUREX-type raffinate using a mixture of CyMe 4 BTBP and TODGA as extractants, the so-called One cycle SANEX process. A new approach, which was also studied within the ACSEPT project, is the GANEX (Grouped ActiNide EXtraction) concept addressing the simultaneous partitioning of all transuranium (TRU) elements for their homogeneous recycling in advanced generation IV reactor systems. Bulk uranium is removed in the GANEX 1st cycle, e.g. using a monoamide extractant and the GANEX 2nd cycle then separates the TRU. A solvent composed of TODGA + DMDOHEMA in kerosene has been shown to

  4. Advanced Extraction Methods for Actinide/Lanthanide Separations

    International Nuclear Information System (INIS)

    Scott, M.J.

    2005-01-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  5. Advanced Extraction Methods for Actinide/Lanthanide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  6. Sorption Speciation of Lanthanides/Actinides on Minerals by TRLFS, EXAFS and DFT Studies: A Review

    Directory of Open Access Journals (Sweden)

    Xiaoli Tan

    2010-11-01

    Full Text Available Lanthanides/actinides sorption speciation on minerals and oxides by means of time resolved laser fluorescence spectroscopy (TRLFS, extended X-ray absorption fine structure spectroscopy (EXAFS and density functional theory (DFT is reviewed in the field of nuclear disposal safety research. The theoretical aspects of the methods are concisely presented. Examples of recent research results of lanthanide/actinide speciation and local atomic structures using TRLFS, EXAFS and DFT are discussed. The interaction of lanthanides/actinides with oxides and minerals as well as their uptake are also of common interest in radionuclide chemistry. Especially the sorption and inclusion of radionuclides into several minerals lead to an improvement in knowledge of minor components in solids. In the solid-liquid interface, the speciation and local atomic structures of Eu(III, Cm(III, U(VI, and Np(IV/VI in several natural and synthetic minerals and oxides are also reviewed and discussed. The review is important to understand the physicochemical behavior of lanthanides/actinides at a molecular level in the natural environment.

  7. Recent advances in the 5f-relevant electronic states and unconventional superconductivity of actinide compounds

    International Nuclear Information System (INIS)

    Haga, Yoshinori; Sakai, Hironori; Kambe, Shinsaku

    2007-01-01

    Recent advances in the understanding of the 5f-relevant electronic states and unconventional superconducting properties are reviewed in actinide compounds of UPd 2 Al 3 . UPt 3 , URu 2 Si 2 , UGe 2 , and PuRhGa 5 . These are based on the experimental results carried out on high-quality single crystal samples, including transuranium compounds, which were grown by using combined techniques. The paring state and the gap structure of these superconductors are discussed, especially for the corresponding Fermi surfaces which were clarified by the de Haas-van Alphen experiment and the energy band calculations. A detailed systematic study using the NQR/NMR spectroscopy reveals the d-wave superconductivity in PuRhGa 5 and the difference of magnetic excitations due to the difference of ground states in U-, Np-, and Pu-based AnTGa 5 (T: transition metal) compounds. (author)

  8. BOA valence bonding with f-character in highly coordinated actinides

    International Nuclear Information System (INIS)

    Carter, F.L.

    1979-01-01

    The addition of f character to bidirectional orbitals enhances their flexibility significantly. The resultant Cf and Gf orbitals are applied to some common high coordinations of the actinides. The valence bond approach implies d and f orbital radial splitting into bonding hybrids and either contracted localized or extended supra-valent d and f orbitals

  9. Design of unique pins for irradiation of higher actinides in a fast reactor

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Birney, K.R.; Weber, E.T.; Adair, H.L.; Quinby, T.C.; Raman, S.; Butler, J.K.; Bateman, B.C.; Swanson, K.M.

    1982-03-01

    The actinides produced by transmutation reactions in nuclear reactor fuels are a significant factor in nuclear fuel burnup, transportation and reprocessing. Irradiation testing is a primary source of data of this type. A segmented pin design was developed which provides for incorporation of multiple specimens of actinide oxides for irradiation in the UK's Prototype Fast Reactor (PFR) at Dounreay Scotland. Results from irradiation of these pins will extend the basic neutronic and material irradiation behavior data for key actinide isotopes

  10. Detailed studies of Minor Actinide transmutation-incineration in high-intensity neutron fluxes

    International Nuclear Information System (INIS)

    Bringer, O.; Al Mahamid, I.; Blandin, C.; Chabod, S.; Chartier, F.; Dupont, E.; Fioni, G.; Isnard, H.; Letourneau, A.; Marie, F.; Mutti, P.; Oriol, L.; Panebianco, S.; Veyssiere, C.

    2006-01-01

    The Mini-INCA project is dedicated to the measurement of incineration-transmutation chains and potentials of minor actinides in high-intensity thermal neutron fluxes. In this context, new types of detectors and methods of analysis have been developed. The 241 Am and 232 Th transmutation-incineration chains have been studied and several capture and fission cross sections measured very precisely, showing some discrepancies with existing data or evaluated data. An impact study was made on different based-like GEN-IV reactors. It underlines the necessity to proceed to precise measurements for a large number of minor-actinides that contribute to these future incineration scenarios. (authors)

  11. Detailed studies of Minor Actinide transmutation-incineration in high-intensity neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Al Mahamid, I. [Lawrence Berkeley National Laboratory, E.H. and S. Div., CA (United States); Blandin, C. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Chabod, S. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Chartier, F. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Dupont, E.; Fioni, G. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Isnard, H. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Letourneau, A.; Marie, F. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Mutti, P. [Institut Laue-Langevin, Grenoble (France); Oriol, L. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Panebianco, S.; Veyssiere, C. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France)

    2006-07-01

    The Mini-INCA project is dedicated to the measurement of incineration-transmutation chains and potentials of minor actinides in high-intensity thermal neutron fluxes. In this context, new types of detectors and methods of analysis have been developed. The {sup 241}Am and {sup 232}Th transmutation-incineration chains have been studied and several capture and fission cross sections measured very precisely, showing some discrepancies with existing data or evaluated data. An impact study was made on different based-like GEN-IV reactors. It underlines the necessity to proceed to precise measurements for a large number of minor-actinides that contribute to these future incineration scenarios. (authors)

  12. Actinide separations by supported liquid membranes

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.; Chiarizia, R.

    1984-01-01

    The work has demonstrated that actinide removal from synthetic waste solutions using both flat-sheet and hollow-fiber SLM's is a feasible chemical process at the laboratory scale level. The process is characterized by the typical features of SLM's processes: very small quantities of extractant required; the potential for operations with high feed/strip volume ratios, resulting in a corresponding concentration factor of the actinides; and simplicity of operation. Major obstacles to the implementation of the SLM technology to the decontamination of liquid nuclear wastes are the probable low resistance of polypropylene supports to high radiation fields, which may prevent the application to high-level nuclear wastes; the unknown lifetime of the SLM; and the high Na content of the separated actinide solution

  13. Report on Ultra-high Resolution Gamma-/X-ray Analysis of Uranium Skull Oxide

    International Nuclear Information System (INIS)

    Friedrich, S.; Velazquez, M.; Drury, O.; Salaymeh, S.

    2009-01-01

    We have utilized the high energy resolution and high peak-to-background ratio of superconducting TES γ-detectors at very low energies for non-destructive analysis of a skull oxide derived from reprocessed nuclear fuel. Specifically, we demonstrate that superconducting detectors can separate and analyze the strong actinide emission lines in the spectral region below 60 keV that are often obscured in γ-measurements with conventional Ge detectors.

  14. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...

  15. Actinide separation by electrorefining

    International Nuclear Information System (INIS)

    Fusselman, S.P.; Gay, R.L.; Grantham, L.F.; Grimmett, D.L.; Roy, J.J.; Inoue, T.; Hijikata, T.; Krueger, C.L.; Storvick, T.S.; Takahashi, N.

    1995-01-01

    TRUMP-S is a pyrochemical process being developed for the recovery of actinides from PUREX wastes. This paper describes development of the electrochemical partitioning step for recovery of actinides in the TRUMP-S process. The objectives are to remove 99 % of each actinide from PUREX wastes, with a product that is > 90 % actinides. Laboratory tests indicate that > 99 % of actinides can be removed in the electrochemical partitioning step. A dynamic (not equilibrium) process model predicts that 90 wt % product actinide content can be achieved through 99 % actinide removal. Accuracy of model simulation results were confirmed in tests with rare earths. (authors)

  16. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  17. Solubility of actinides and surrogates in nuclear glasses; Solubilite des actinides et de leurs simulants dans les verres nucleaires. Limites d'incorporation et comprehension des mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Ch

    2003-07-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO{sub 2} at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  18. Neutron nuclear data evaluation for actinide nucleic

    International Nuclear Information System (INIS)

    Chen Guochang; Yu Baosheng; Duan Junfeng; Ge Zhigang; Cao Wentian; Tang Guoyou; Shi Zhaomin; Zou Yubin

    2010-01-01

    The nuclear data with high accuracy for minor actinides are playing an important role in nuclear technology applications, including reactor design and operation, fuel cycle concepts, estimation of the amount of minor actinides in high burn-up reactors and the minor actinides transmutation. Through describe the class of nuclear data and nuclear date library, and introduce the procedure of neutron nuclear data evaluation. 234 U(n, f) and 237 Np(n, 2n) reaction experimental data evaluation was evaluated. The fission nuclear data are updated and improved. (authors)

  19. Formation of actinides in irradiated HTGR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    dos Santos, A. M.

    1976-03-15

    Actinide nuclide concentrations of 11 spent AVR fuel elements were determined experimentally. The burnup of the spheres varied in the range between 10% and 100% fifa, the Th : U ratio was 5 : 1. The separation procedures for an actinide isolation were tested with highly irradiated ThO/sub 2/. Separation and decontamination factors are presented. Build-up of /sup 232/U was discussed. The AVR breeding rate was ascertained to be 0.5. The hazard potential of high activity waste was calculated. Actinide recovery factors were proposed in order to reduce the hazard potential of the waste by an actinide removal under consideration of the reprocessing technology which is available presently.

  20. Development and testing of metallic fuels with high minor actinide content

    International Nuclear Information System (INIS)

    Meyer, M.K.; Hayes, S.L.; Kennedy, J.R.; Keiser, D.D.; Hilton, B.A.; Frank, S.M.; Kim, Y.-S.; Chang, G.; Ambrosek, R.G.

    2003-01-01

    Metallic alloys are promising candidates for use as fuels for transmutation and in advanced closed nuclear cycles. Metallic alloys have high heavy metal atom density, relatively high thermal conductivity, favorable gas release behavior, and lend themselves to remote recycle processes. Both non-fertile and uranium-bearing metal fuels containing minor actinide are under consideration for use as transmutation fuels by the U.S. Advanced Fuel Cycle (AFC) program, however, little irradiation performance data exists for fuel forms containing significant fractions of minor actinides. The first irradiation tests of non-fertile high-actinide-content fuels are scheduled to begin in early 2003 in the Advanced Test Reactor (ATR). The irradiation test matrix was designed to provide basic information on the irradiation behavior of binary Pu-Zr alloy fuel and the effect of the minor actinides americium and neptunium on alloy fuel behavior, together and separately. Five variants of transuranic containing zirconium-based alloy fuels are included in the AFC-1 irradiation test matrix. These are (in wt.%) Pu-40Zr, Pu-60Zr, Pu-12Am-40Zr, Pu-10Np-40Zr and Pu-10Np-10Am-40Zr. PuN-ZrN based fuels containing Am and Np are also included. All five of the fuel alloys have been fabricated in the form of cylindrical fuel slugs by arc-casting. Short melt times, on the order or 5-20 seconds, prevent the volatilization of significant quantities of americium metal, despite the high melt temperatures characteristic of the arc-melting process. Alloy microstructure have been characterized by x-ray diffraction and scanning electron microscopy. Thermal analysis has also been performed. The AFC-1 irradiation experiment configuration consists of twenty-four sodium bonded fuel specimens sealed in helium filled secondary capsules. The first capsule has a design burnup to 7 at.% 239 Pu; goal peak burnup of the second capsule is ∼18 at%. Capsule assemblies are placed within an aluminum flow-through basket

  1. Study on the leaching behavior of actinides from nuclear fuel debris

    Science.gov (United States)

    Kirishima, Akira; Hirano, Masahiko; Akiyama, Daisuke; Sasaki, Takayuki; Sato, Nobuaki

    2018-04-01

    For the prediction of the leaching behavior of actinides contained in the nuclear fuel debris generated by the Fukushima Daiichi nuclear power plant accident in Japan, simulated fuel debris consisting of a UO2-ZrO2 solid solution doped with 137Cs, 237Np, 236Pu, and 241Am tracers was synthesized and investigated. The synthesis of the debris was carried out by heat treatment at 1200 °C at different oxygen partial pressures, and the samples were subsequently used for leaching tests with Milli-Q water and seawater. The results of the leaching tests indicate that the leaching of actinides depends on the redox conditions under which the debris was generated; for example, debris generated under oxidative conditions releases more actinide nuclides to water than that generated under reductive conditions. Furthermore, we found that, as Zr(IV) increasingly substituted U(IV) in the fluorite crystal structure of the debris, the actinide leaching from the debris decreased. In addition, we found that seawater leached more actinides from the debris than pure water, which seems to be caused by the complexation of actinides by carbonate ions in seawater.

  2. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    A series of static leach tests was conducted using glasses developed for vitrifying tank wastes at the Savannah River Site to monitor the disposition of actinide elements upon corrosion of the glasses. In these tests, glasses produced from SRL 131 and SRL 202 frits were corroded at 90 degrees C in a tuff groundwater. Tests were conducted using crushed glass at different glass surface area-to-solution volume (S/V) ratios to assess the effect of the S/V on the solution chemistry, the corrosion of the glass, and the disposition of actinide elements. Observations regarding the effects of the S/V on the solution chemistry and the corrosion of the glass matrix have been reported previously. This paper highlights the solution analyses performed to assess how the S/V used in a static leach test affects the disposition of actinide elements between fractions that are suspended or dissolved in the solution, and retained by the altered glass or other materials

  3. The Properties of Trilaurylmethylammonium Nitrate as an Extractant for Trivalent Actinides. RCN Report

    International Nuclear Information System (INIS)

    Ooyen, J. van

    1970-03-01

    The concept of the group of the actinide elements as a f-type transition series within the periodic system was first launched by G.T. Seaborg in 1944]. In this transition series the filling up of the 5 f electron shell would cause a close similarity with the lanthanide series. This proved to be a very fruitful hypothesis in the prediction of the properties of the new elements americium and curium that soon were discovered. The new hypothesis necessitated a shift of the accepted ideas concerning the place of the elements thorium, protactinium and uranium in the periodic table. In fact, the chemistry of these elements had never been considered to be so closely parallel to that of the lanthanides. On the contrary, the trend in the stability of the oxidation states had been interpreted to indicate that these elements would belong to group IVA, VA and VIA respectively. It is undeniable that there are marked differences in oxidation states between the lanthanide elements and the first six elements of the actinide series. However, physical and chemical investigations both of the newly discovered elements and the elements actinium to uranium disclosed many resemblances with the lanthanides that had not been noticed before in this group. The actinide elements - and more in particular the transuranium elements - have been the subject of a number of monographs covering the discovery, the synthesis, the systematics, the chemistry, and (or) the nuclear properties of these elements. It is for this reason that the scope of the following sections in this chapter will be limited to a summary of the chemistry in sofar as it is relevant to the investigations described in the following chapters, viz., the properties of the elements in aqueous systems and more in particular in those systems containing nitrate ions

  4. Controlled synthesis of thorium and uranium oxide nano-crystals

    International Nuclear Information System (INIS)

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Gouder, Thomas; Courtois, Eglantine; Kubel, Christian; Meyer, Daniel

    2013-01-01

    Very little is known about the size and shape effects on the properties of actinide compounds. As a consequence, the controlled synthesis of well-defined actinide-based nano-crystals constitutes a fundamental step before studying their corresponding properties. In this paper, we report on the non-aqueous surfactant-assisted synthesis of thorium and uranium oxide nano-crystals. The final characteristics of thorium and uranium oxide nano-crystals can be easily tuned by controlling a few experimental parameters such as the nature of the actinide precursor and the composition of the organic system (e.g., the chemical nature of the surfactants and their relative concentrations). Additionally, the influence of these parameters on the outcome of the synthesis is highly dependent on the nature of the actinide element (thorium versus uranium). By using optimised experimental conditions, monodisperse isotropic uranium oxide nano-crystals with different sizes (4.5 and 10.7 nm) as well as branched nano-crystals (overall size ca. 5 nm), nano-dots (ca. 4 nm) and nano-rods (with ultra-small diameters of 1 nm) of thorium oxide were synthesised. (authors)

  5. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    Science.gov (United States)

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed.

  6. Phoenix type concepts for transmutation of LWR waste minor actinides

    International Nuclear Information System (INIS)

    Segev, M.

    1994-01-01

    A number of variations on the original Phoenix theme were studied. The basic rationale of the Phoenix incinerator is making oxide fuel of the LWR waste minor actinides, loading it in an FFTF-like subcritical core, then bombarding the core with the high current beam accelerated protons to generate considerable energy through spallation and fission reactions. As originally assessed, if the machine is fed with 1600 MeV protons in a 102 mA current, then 8 core modules are driven to transmute the yearly minor actinides waste of 75 1000 MW LWRs into Pu 238 and fission products; in a 2 years cycle the energy extracted is 100000 MW d/T. This performance cannot be substantiated in a rigorous analysis. A calculational consistent methodology, based on a combined execution of the Hermes, NCNP, and Korigen codes, shows, nonetheless that changes in the original Phoenix parameters can upgrade its performance.The original Phoenix contains 26 tons minor actinides in 8 core modules; 1.15 m 3 module is shaped for 40% neutron leakage; with a beam of 102 mA the 8 modules are driven to 100000 MW/T in 10.5 years, burning out the yearly minor actinide waste of 15 LWRs; the operation must be assisted by grid electricity. If the 1.15 m 3 module is shaped to allow only 28% leakage, then a beam of 102 mA will drive the 8 modules to 100000 MW/T in 3.5 years, burning out the yearly minor actinides waste of 45 LWRs. Some net grid electricity will be generated. If 25 tons minor actinides are loaded into 5 modules, each 1.72 m 3 in volume and of 24% leakage, then a 97 mA beam will drive the module to 100000 MW/T in 2.5 years, burning out the yearly minor actinides waste of 70 LWRs. A considerable amount of net grid electricity will be generated. If the lattice is made of metal fuel, and 26 tons minor actinides are loaded into 32 small modules, 0.17 m 3 each, then a 102 mA beam will drive the modules to 100000 MW/T in 2 years, burning out the yearly minor actinides waste of 72 LWRs. A considerable

  7. Room temperature electrodeposition of actinides from ionic solutions

    Science.gov (United States)

    Hatchett, David W.; Czerwinski, Kenneth R.; Droessler, Janelle; Kinyanjui, John

    2017-04-25

    Uranic and transuranic metals and metal oxides are first dissolved in ozone compositions. The resulting solution in ozone can be further dissolved in ionic liquids to form a second solution. The metals in the second solution are then electrochemically deposited from the second solutions as room temperature ionic liquid (RTIL), tri-methyl-n-butyl ammonium n-bis(trifluoromethansulfonylimide) [Me.sub.3N.sup.nBu][TFSI] providing an alternative non-aqueous system for the extraction and reclamation of actinides from reprocessed fuel materials. Deposition of U metal is achieved using TFSI complexes of U(III) and U(IV) containing the anion common to the RTIL. TFSI complexes of uranium were produced to ensure solubility of the species in the ionic liquid. The methods provide a first measure of the thermodynamic properties of U metal deposition using Uranium complexes with different oxidation states from RTIL solution at room temperature.

  8. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms

    International Nuclear Information System (INIS)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandria

    1999-01-01

    The recent arms reduction treaties between the U.S. and Russia have resulted in inventories of plutonium in excess of current defense needs. Storage of this material poses significant, and unnecessary, risks of diversion, especially for Russia whose infrastructure for protecting these materials has been weakened since the collapse of the Soviet Union. Moreover, maintaining and protecting these materials in their current form is costly. The United States has about sixty metric tons of excess plutonium, half of which is high-purity weapon material. This high purity material will be converted into mixed oxide (MOX) fuel for use in nuclear reactors. The less pure excess plutonium does not meet the specifications for MOX fuel and will not be purified to meet the fuel specifications. Instead, it will be immobilized directly in a ceramic. The ceramic will be encased in a high level waste (HLW) glass monolith (i.e., the can-in-canister option) thus making a form that simulates the intrinsic security of spent nuclear fuel. The immobilized product will be placed in a HLW repository. To meet the repository requirements, the product must be shown to be durable for the intended storage time, the host matrix must be stable in the radiation environment, the solubility and leaching characteristics of the plutonium in the host material must be established, and optimum processing parameters must be determined for the entire compositional envelope of feed materials. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste forms proposed as immobilization matrices. However, the relevant thermodynamic data (e.g., enthalpy, entropy, and heat capacity) for the ceramic forms are severely lacking and this information gap directly affects the Energy Department's ability to license the disposal matrices and methods. High-temperature solution

  9. Handbook on the physics and chemistry of rare earths: Volume 19: Lanthanides/Actinides: Physics, 2

    International Nuclear Information System (INIS)

    Gschneidner, Karl A.; Eyring, LeRoy; Choppin, G.R.; Lander, G.H.

    1994-01-01

    This handbook comprises five chapters on the lanthanide and actinide materials. In the first chapter the inelastic neutron scattering behaviors of the lanthanides and actinides are compared. In the next chapter the focus is on neutron scattering by heavy fermion single crystal materials, including metallic materials with a paramagnetic ground state, superconductors, metallic and semiconducting antiferromagnets and nearly insulating paramagnets. In chapter three a comprehensive review of intermediate valence and heavy fermions in a wide variety of lanthanide and actinide compounds is given, ranging from metallic to insulating materials. In chapter four two issues on the high pressure behaviours of anomalous cerium, ytterbium and uranium compounds are dealt with. In the final chapter an extensive review is given the thermodynamic properties of lanthanide and actinide metallic systems

  10. Self-interaction corrected local spin density calculations of actinides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....

  11. The separation and recycling of actinides: a review of the state of the art

    International Nuclear Information System (INIS)

    McKay, H.A.C.; Sowerby, M.G.; Bustraan, M.; Montizaan, J.; Dalen, A. van; Verkerk, B.

    1977-01-01

    The principal objective of this study is to assess the state of the art of separating the actinides and recycling them to reactors. To this end, the literature has been surveyed, discussions have been held at the contractors' laboratories, AERE, Harwell, UK and ECN, Petten, Netherlands, and visits have been paid to the establishments where relevant work is in progress. The study does not include any new experimental work, but a certain amount of computation has been carried out to support it. A programme of installation of reactors within the European Communities was supplied for the purposes of this study. The prospective generating facilities in GW(e) are given. The situation in the various areas of investigation involved is as follows: nuclear physics: favourable; chemical separations: difficult, but probably feasible; nuclear incineration strategies: little studied so far; fuel and fuel elements containing recycled actinides: little development so far

  12. Calculated investigation of actinide transmutation in the BOR-60 reactor

    International Nuclear Information System (INIS)

    Zhemkov, I.Yu.; Ishunina, O.V.; Yakovleva, I.V.

    2000-01-01

    One of the prospective actinide burner reactor type is the fast reactor with a 'hard' spectrum and small breeding factor, which is the BOR-60. The calculated investigations demonstrate that Loading up to 40% of minor-actinides to the BOR-60 reactor did not lead to the considerable change of neutron-physical characteristics. The performed calculations show that the BOR- 60 reactor possesses a high efficiency of the minor-actinide and plutonium bum-up (up to 37 kg/(TW · h)) hat is comparable with properties of the actinide burner-reactors under design. The BOR-60 reactor can provide a homogeneous minor-actinide Loading (minor-actinide addition to the standard fuel) to the core and heterogeneous Loading (as separate assemblies-targets with a high minor-actinide fraction) to the first rows of a radial blanket that allows the optimum usage of the reactor and its characteristics. (authors)

  13. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-01-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ''engineered safety features,'' which, along with the use of high temperature capable materials further enhance its safety characteristics

  14. Interface reactions of actinides on muscovite; Grenzflaechenreaktionen von Actiniden an Muskovit

    Energy Technology Data Exchange (ETDEWEB)

    Hellebrandt, Stefan

    2017-11-06

    adsorbed U was detected at the muscovite interface according to all methods applied, despite the larger concentration of the adsorbate. This difference in the sorption behavior can be explained by the different redox behavior of U and Pu. U will stay mainly in its predominant oxidation state VI, due to its higher stability compared to Pu, while Pu will be present as Pu(VI), but also in a greater extent in its reduced oxidation states. Due to this difference Pu is able to form nanoparticles, whereas this is not the case for U. The third part compares the sorption of trivalent actinides Am(III) and Cm(III) and their homolog Eu(III) on alumino-silicates muscovite (phyllosilicate) and orthoclase (framework silicate). Under acidic conditions all elements adsorb as outer-sphere complexes, while the relative amount of inner-sphere sorption increases with increasing pH. At higher pH a transition from adsorbed aquoions to adsorbed hydrolysis-species and eventually a ternary sorption complex is observed. While TRLFS itself is a strong tool to investigate the speciation of metals in solution or in contact with a mineral surface the complementary use of SXS techniques is able to improve these findings. The results of this work, achieved by using modern methods such as X-ray scattering techniques (CTR/RAXR) and TRLFS, have afforded new insights into the surface reactivity of a wide range of actinides (Th, U, Pu, Am, and Cm) in contact with muscovite and orthoclase. New influence factors could be identified in the influence of the background electrolyte on the sorption behavior, where both cation and anion affect the actinide's retention. The different redox behavior of redox-active actinides like U and Pu also influenced the sorption behavior tremendously, even in contact with the redox-inactive mineral muscovite. The complementary use of surface X-ray diffraction and laser spectroscopic methods was instrumental to enable us to investigate the distribution, occupancy, and

  15. Thermodynamic Properties of Actinides and Actinide Compounds

    Science.gov (United States)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  16. Burning minor actinides in a HTR energy spectrum

    International Nuclear Information System (INIS)

    Pohl, Christoph; Rütten, H. Jochem

    2012-01-01

    Highlights: ► Burn-up analysis for varying plutonium/minor actinide fuel compositions. ► The influence of varying heavy metal fuel element loads is investigated. ► Significant burn-up via radiative capture and subsequently fission is observed. ► Difference observed between fuel element burn-up and total actinide burning rate. - Abstract: The generation of nuclear energy by means of the existing nuclear reactor systems is based mainly on the fission of U-235. But this comes along with the capture of neutrons by the U-238 faction and results in a build-up of plutonium isotopes and minor actinides as neptunium, americium and curium. These actinides are dominant for the long time assessment of the radiological risk of a final disposal therefore a minimization of the long living isotopes is aspired. Burning the actinides in a high temperature helium cooled graphite moderated reactor (HTR) is one of these options. The use of plutonium isotopes to sustain the criticality of the system is intended to avoid on the one hand highly enriched uranium because of international regulations and on the other hand low enriched uranium because of the build up of new actinides from neutron capture in the U-238 fraction. Because initial minor actinide isotopes are typically not fissionable by thermal neutrons the idea is to fission instead the intermediate isotopes generated by the first neutron capture. This paper comprises calculations for plutonium/minor actinides/thorium fuel compositions and their correlated final burn-up for a generic pebble bed HTR based on the reference design of the 400 MW PBMR. In particular the cross sections and the neutron balance of the different minor actinide isotopes in the higher thermal energy spectrum of a HTR will be discussed. For a fuel mixture of plutonium and minor actinides a significant burn-up of these actinides up to 20% can be achieved but at the expense of a higher residual fraction of plutonium in the burned fuel. Combining

  17. Actinide, lanthanide and fission product speciation and electrochemistry in high and low temperature ionic melts

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Anand I.; Kinoshita, Hajime; Koster, Anne L.; May, Iain; Sharrad, Clint A.; Volkovich, Vladimir A.; Fox, O. Danny; Jones, Chris J.; Lewin, Bob G.; Charnock, John M.; Hennig, Christoph

    2004-07-01

    There is currently a great deal of research interest in the development of molten salt technology, both classical high temperature melts and low temperature ionic liquids, for the electrochemical separation of the actinides from spent nuclear fuel. We are interested in gaining a better understanding of actinide and key fission product speciation and electrochemical properties in a range of melts. Our studies in high temperature alkali metal melts (including LiCl and LiCl-KCl and CsCl-NaCl eutectics) have focussed on in-situ species of U, Th, Tc and Ru using X-ray absorption spectroscopy (XAS, both EXAFS and XANES) and electronic absorption spectroscopy (EAS). We report unusual actinide speciation in high temperature melts and an evaluation of the likelihood of Ru or Tc volatilization during plant operation. Our studies in lower temperature melts (ionic liquids) have focussed on salts containing tertiary alkyl group 15 cations and the bis(tri-fluor-methyl)sulfonyl)imide anion, melts which we have shown to have exceptionally wide electrochemical windows. We report Ln, Th, U and Np speciation (XAS, EAS and vibrational spectroscopy) and electrochemistry in these melts and relate the solution studies to crystallographic characterised benchmark species. (authors)

  18. Actinide, lanthanide and fission product speciation and electrochemistry in high and low temperature ionic melts

    International Nuclear Information System (INIS)

    Bhatt, Anand I.; Kinoshita, Hajime; Koster, Anne L.; May, Iain; Sharrad, Clint A.; Volkovich, Vladimir A.; Fox, O. Danny; Jones, Chris J.; Lewin, Bob G.; Charnock, John M.; Hennig, Christoph

    2004-01-01

    There is currently a great deal of research interest in the development of molten salt technology, both classical high temperature melts and low temperature ionic liquids, for the electrochemical separation of the actinides from spent nuclear fuel. We are interested in gaining a better understanding of actinide and key fission product speciation and electrochemical properties in a range of melts. Our studies in high temperature alkali metal melts (including LiCl and LiCl-KCl and CsCl-NaCl eutectics) have focussed on in-situ species of U, Th, Tc and Ru using X-ray absorption spectroscopy (XAS, both EXAFS and XANES) and electronic absorption spectroscopy (EAS). We report unusual actinide speciation in high temperature melts and an evaluation of the likelihood of Ru or Tc volatilization during plant operation. Our studies in lower temperature melts (ionic liquids) have focussed on salts containing tertiary alkyl group 15 cations and the bis(tri-fluor-methyl)sulfonyl)imide anion, melts which we have shown to have exceptionally wide electrochemical windows. We report Ln, Th, U and Np speciation (XAS, EAS and vibrational spectroscopy) and electrochemistry in these melts and relate the solution studies to crystallographic characterised benchmark species. (authors)

  19. Separation of actinides by high-gradient magnetic filtration

    International Nuclear Information System (INIS)

    Bruns, L.E.; Schliebe, M.J.

    1986-01-01

    High-gradient magnetic filtration has been identified as a candidate solid/liquid separation technique for removing actinide particulate from waste streams. Although HGMS is not intended to reduce the activity in the waste stream to below 100 nCi/g, it does offer two significant advantages: (a) selective removal of TRU solids for subsequent secondary processing and (b) reduced operating complications during solvent extraction due to solids accumulation in the interfacial region. Removal of > 95 wt% of the plutonium and americium solids is expected regardless of the solids present and their properties. Verification tests will be performed to validate this assumption

  20. OSMOSE experiment: high minor actinides contents pellets and pins fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, A.; Leorier, C.; Desmouliere, F.; Donnet, L. [Commissariat a l' Energie Atomique, CEA/DEN/VRH/DTEC/SDTC/LEMA, 30207 Bagnols-sur-Ceze cedex (France); Antony, M. [Commissariat a l' Energie Atomique, CEA/DEN/CAD/DER/SPEX/LPE, 13108 St Paul Lez Durance cedex (France); Bernard, D. [Commissariat a l' Energie Atomique, CEA/DEN/ CAD/DER /SPRC/LEPh, 13108 St Paul Lez Durance cedex (France)

    2008-07-01

    The OSMOSE program aims to provide accurate experimental data on integral neutron cross-sections of isotopes (i.e.: Th{sup 232}, U{sup 233}, U{sup 234}, U{sup 235}, U{sup 236}, U{sup 238}, Np{sup 237}, Pu{sup 238}, Pu{sup 239}, Pu{sup 240}, Pu{sup 241}, Pu{sup 242}, Am{sup 241}, Am{sup 243}, Cm{sup 244} and Cm{sup 245}). The study of these nuclides is performed on a large range of neutron spectra corresponding to specific experimental conditions (thermal, epithermal, moderated/fast, and fast spectra). This program will be used to provide guidance to all nuclear data programs in the world. This program has led to an optimized fabrication process for OSMOSE pellets and pins which were fabricated by the LEMA (Actinide based Materials Study Laboratory) in the ATALANTE facility both in glove box and shielded cell. The fabrication process made possible to obtain the required material characteristics including a high density, a good distribution of the isotopes in the uranium oxide matrices. A particular attention was paid to reduce chemical pollution of the samples. The program has been successfully achieved in July 2007 with the fabrication of the last two Cm doped samples. (authors)

  1. ALMR potential for actinide consumption

    International Nuclear Information System (INIS)

    Cockey, C.L.; Thompson, M.L.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. This reactor combines a high degree of passive safety characteristics with a high level of modularity and factory fabrication to achieve attractive economics. The current reference design is a 471 MWt modular reactor fueled with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and for makeup. Actinide transmutation may be accomplished in the ALMR core by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behavior throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. Waste disposal impacts are discussed. (author)

  2. The actinides-a beautiful ending of the Periodic Table

    International Nuclear Information System (INIS)

    Johansson, Boerje; Li, Sa

    2007-01-01

    The 5f elements, actinides, show many properties which have direct correspondence to the 4f transition metals, the lanthanides. The remarkable similarity between the solid state properties of compressed Ce and the actinide metals is pointed out in the present paper. The α-γ transition in Ce is considered as a Mott transition, namely, from delocalized to localized 4f states. An analogous behavior is also found for the actinide series, where the sudden volume increase from Pu to Am can be viewed upon as a Mott transition within the 5f shell as a function of the atomic number Z. On the itinerant side of the Mott transition, the earlier actinides (Pa-Pu) show low symmetry structures at ambient conditions; while across the border, the heavier elements (Am-Cf) present the dhcp structure, an atomic arrangement typical for the trivalent lanthanide elements with localized 4f magnetic moments. The reason for an isostructural Mott transition of the f electron in Ce, as opposed to the much more complicated cases in the actinides, is identified. The strange appearance of the δ-phase (fcc) in the phase diagram of Pu is another consequence of the border line behavior of the 5f electrons. The path leading from δ-Pu to α-Pu is identified

  3. The role of humic acid on the formation of HAS (hydroxy-aluminosilicate) colloid-borne actinides

    Energy Technology Data Exchange (ETDEWEB)

    Priemyshev, A.; Kim, M.A. [Inst. fuer Radiochemie, Technische Universitaet Muenchen, D-85748 Garching (Germany); Breban, D.; Panak, P.J.; Yun, J.I.; Kim, J.I.; Fanghanel, Th. [Inst. fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Mansel, A. [Inst. fuer Interdisziplinaere Isotopenforschung, Georadiochemie, Leipzig, D-04318 Leipzig (Germany)

    2005-07-01

    Full text of publication follows: One of the major unknowns in the process of actinide migration is the formation of their colloid-borne species. Previous studies have been directed to the incorporation of actinides into HAS (hydroxy-aluminosilicate) colloids generated by the nucleation of Si and Al. The present work further pursues the behaviour of actinides at HAS colloid formation but in the presence of humic acid that is known to be an ubiquitous groundwater constituent. The formation and degree of stability of the aluminosilicate binding for the generation of HAS colloids are investigated at first in the absence of actinides. Free and complexed Al resulting from ligand competitions reactions for the complexation of Al with mono-silicic acid, poly-silicic acid and EDTA are monitored spectroscopically by colour reaction. The second part of the study concentrates on the formation and stability of humic colloids using {sup 14}C-labeled humic acid. The activity distribution is ascertained in the ionic, colloidal and precipitated fractions under different conditions of colloid formation, e.g. as a function of pH, time, humic acid and Al concentration. The third part follows the appraisal of appropriate conditions under which stable HAS and humic colloids are formed, and their interaction with actinides, either separately or in competition. Trace actinides of different oxidation states {sup 241}Am(III), {sup 234}Th(IV) and {sup 233}U(VI) are taken for the purpose. HAS colloids generated from poly-silicic acid at neutral pH show EDTA-resistance, whereas HAS colloids formed from mono-silicic acid become EDTA-resistant only by aging (> one month). Humic acid appears to stabilize HAS colloids, unless the loading capacity of humic acid for the Al ion is exceeded. The incorporation of actinides into the colloidal phase is generally enhanced in the presence of humic acid. Synergic effects produce chimeric HAS-humic colloids into which tri-, tetra- and hexavalent actinides

  4. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-03-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

  5. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    International Nuclear Information System (INIS)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-01-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials

  6. Demonstration of pyropartitioning process by using genuine high-level liquid waste. Reductive-extraction of actinide elements from chlorination product

    International Nuclear Information System (INIS)

    Uozumi, Koichi; Iizuka, Masatoshi; Kurata, Masaki; Ougier, Michel; Malmbeck, Rikard; Winckel, Stefaan van

    2009-01-01

    The pyropartitioning process separates the minor actinide elements (MAs) together with uranium and plutonium from the high-level liquid waste generated at the Purex reprocessing of spent LWR fuel and introduces them to metallic fuel cycle. For the demonstration of this technology, a series experiment using 520g of genuine high-level liquid waste was started and the conversion of actinide elements to their chlorides was already demonstrated by denitration and chlorination. In the present study, a reductive extraction experiment in molten salt/liquid cadmium system to recover actinide elements from the chlorination product of the genuine high-level liquid waste was performed. The results of the experiment are as following; 1) By the addition of the cadmium-lithium alloy reductant, almost all of plutonium and MAs in the initial high-level liquid waste were recovered in the cadmium phase. It means no mass loss during denitration, chlorination, and reductive-extraction. 2) The separation factor values of plutonium, MAs, and rare-earth fission product elements versus uranium agreed with the literature values. Therefore, actinide elements will be separated from fission product elements in the actual system. Hence, the pyropartitioning process was successfully demonstrated. (author)

  7. A worldwide perspective on actinide burning

    International Nuclear Information System (INIS)

    Burch, W.D.

    1991-01-01

    Worldwide interest has been evident over the past few years in reexamining the merits of recovering the actinides from spent light-water reactor (LWR) fuel and transmuting them in fast reactors to reduce hazards in geologic repositories. This paper will summarize some of the recent activities in this field. Several countries are embarked on programs of reprocessing and vitrification of present wastes, from which removal of the actinides is largely precluded. The United States is assessing the ideas related to the fast reactor program and the potential application to defense wastes. 18 refs., 2 figs

  8. Chlorination of UO2, PuO2, and rare-earth oxides using ZrCl4

    International Nuclear Information System (INIS)

    Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake

    2001-01-01

    A new chlorination method using ZrCl 4 , which has a high reactivity with oxygen, has been investigated for more efficient oxide treatment. After actinide oxides are chlorinated and dissolved in a molten salt bath, actinide metals can be selectively collected using the electrorefining process. This process is well suited for pyrochemical reprocessing of metallic fuels. In LiCl-KCI eutectic melts, rare-earth oxides (Y 2 O 3 , La 2 O 3 , CeO 2 , and Nd 2 O 3 ) and actinide oxides (UO 2 and PuO 2 ) were chlorinated by adding ZrCl 4 . As a result, rare-earth and actinide elements were dissolved into the salt as trivalent ions and ZrO 2 was precipitated. When an excess of ZrCI 4 was added, oxides in powder form were completely chlorinated in five hours. It was demonstrated that the ZrCI 4 chlorination method, free from corrosive gas such as chlorine, was very simple and useful. (author)

  9. Equilibrium constants in aqueous lanthanide and actinide chemistry from time-resolved fluorescence spectroscopy: The role of ground and excited state reactions

    International Nuclear Information System (INIS)

    Billard, I.; Luetzenkirchen, K.

    2003-01-01

    Equilibrium constants for aqueous reactions between lanthanide or actinide ions and (in-) organic ligands contain important information for various radiochemical problems, such as nuclear reprocessing or the migration of radioelements in the geosphere. We study the conditions required to determine equilibrium constants by time-resolved fluorescence spectroscopy measurements. Based on a simulation study it is shown that the possibility to determine equilibrium constants depends upon the reaction rates in the photoexcited states of the lanthanide or actinide ions. (orig.)

  10. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    Science.gov (United States)

    Lupinetti, Anthony J [Los Alamos, NM; Garcia, Eduardo [Los Alamos, NM; Abney, Kent D [Los Alamos, NM

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  11. High performance separation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Sivaraman, N.; Vasudeva Rao, P.R.

    2011-01-01

    The major advantage of High Performance Liquid Chromatography (HPLC) is its ability to provide rapid and high performance separations. It is evident from Van Deemter curve for particle size versus resolution that packing materials with particle sizes less than 2 μm provide better resolution for high speed separations and resolving complex mixtures compared to 5 μm based supports. In the recent past, chromatographic support material using monolith has been studied extensively at our laboratory. Monolith column consists of single piece of porous, rigid material containing mesopores and micropores, which provide fast analyte mass transfer. Monolith support provides significantly higher separation efficiency than particle-packed columns. A clear advantage of monolith is that it could be operated at higher flow rates but with lower back pressure. Higher operating flow rate results in higher column permeability, which drastically reduces analysis time and provides high separation efficiency. The above developed fast separation methods were applied to assay the lanthanides and actinides from the dissolver solutions of nuclear reactor fuels

  12. Use of two-phase aqueous systems based on water-soluble polymers in thin-layer and extraction chromatography for recovery and separtion of actinides

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Myasoedov, B.F.

    1995-01-01

    The feasibility has been demonstrated of using two-phase aqueous systems based on water-soluble polymers, polyethylene glycol and dextran sulfate, in thin-layer and extraction chromatography for recovery and separation of actinides. A convenient method has been proposed for continuous recovery of 239 Np from 243 Am, originating from differences in sorption of tri- and pentavalent actinides from sulfate solutions containing potassium phosphotungstate by silica gel impregnated with polyethylene glycol. New plates for thin-layer chromatography using water-soluble polymers have been developed. These plates were used to study behavior of americium in various oxidation states in thin sorbent layers

  13. On the hazard accumulation of actinide waste in a Pu-fueled LMFBR power economy with and without by-product actinide recycling

    International Nuclear Information System (INIS)

    Anselmi, L.; Caruso, K.; Hage, W.; Schmidt, E.

    1979-01-01

    The actinide waste arisings in terms of hazard potential for ingestion and inhalation are given for a Pu-fueled LMFBR Power Economy as function of decay time. The data were assessed for two simplified fuel cycles, one considering the recycling of by-product actinides and the other their complete discharge to the high-level waste. Two durations of nuclear power and several loss fractions of actinides to the waste were considered. The major contributors in form of chemical elements or isotopes to the actinide waste hazard built up during the nuclear power duration were identified for various decay intervals

  14. BAGHEERA: A new experimental facility at CEA / Valduc for actinides studies under high dynamic loading

    Science.gov (United States)

    Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.

    2006-08-01

    This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for “Hopkinson And High Speed Experiments Glove Box”. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications.

  15. State-of-art technology of fuels for burning minor actinides. An OECD/NEA study

    International Nuclear Information System (INIS)

    Ogawa, Toru; Konings, R.J.M.; Pillon, S.; Schram, R.P.C.; Verwerft, M.; Wallenius, J.

    2005-01-01

    At OECD/NEA, Working Party on Scientific Issues in Partitioning and Transmutation was formed for 2000-2004, which studied the status and trends of scientific issues in Partitioning and Transmutation (P and T). The study included the scientific and technical issues of fuels and materials, which are related to dedicated systems for transmutation. This paper summarizes the state-of-art technology of the fuels for burning minor actinides (neptunium, americium and curium). (author)

  16. The effects of actinide separation on the radiological consequences of disposal of high-level radioactive waste on the ocean bed

    International Nuclear Information System (INIS)

    Camplin, W.C.; Grimwood, P.D.; White, I.F.

    1980-01-01

    One option in the management of high-level radioactive wastes is to separate the actinides prior to vitrification and disposal. This option is examined in the context of disposal of high-level wastes on the deep ocean bed. The initial quantity of waste corresponds to the generation of 1000 GW(e)y of nuclear energy, and the actinide-separation process is assumed to remove 99% of all elements of atomic number greater than that of actinium. The models used to describe the dispersion of activity from a single disposal site on the bed of the Atlantic Ocean represent both local dispersion and long-term mixing. Collective doses and doses to individuals are calculated for six potential pathways: ingestion of fish, crustacea, molluscs, plankton and seaweed, and external irradiation from contaminated beach sediments. The period from 400 to 1,000,000 years after disposal is considered. The potential radiological impact from disposal of high-level waste without separation of actinides on the ocean bed arises from the actinides; isotopes of americium, neptunium and plutonium give the highest doses. Actinide separation would reduce these doses in proportion to the effectiveness of the separation process, until doses become determined by fission products rather than actinides: the achievable dose reduction would be a factor of approximately a hundred, or less for certain pathways. This reduction applies only to doses to the public from waste disposal: no account was taken of doses arising from the separation process itself or from the management of the separated actinides. The results of the assessment are contrasted with those of similar studies based on toxicity indices. Major deficiencies are identified in the use of toxicity indices as a basis for decision-making. (author)

  17. Actinide-specific complexing agents: their structural and solution chemistry

    International Nuclear Information System (INIS)

    Raymond, K.N.; Freeman, G.E.; Kappel, M.J.

    1983-07-01

    The synthesis of a series of tetracatecholate ligands designed to be specific for Pu(IV) and other actinide(IV) ions has been achieved. Although these compounds are very effective as in vivo plutonium removal agents, potentiometric and voltammetric data indicate that at neutral pH full complexation of the Pu(IV) ion by all four catecholate groups does not occur. Spectroscopic results indicate that the tetracatecholates, 3,4,3-LICAMS and 3,4,3-LICAMC, complex Am(III). The Am(IV)/(III)-catecholate couple (where catecholate = 3,4,3-LICAMS or 3,4,3-LICAMC) is not observed, but may not be observable due to the large currents associated with ligand oxidation. However, within the potential range where ligand oxidation does not occur, these experiments indicate that the reduction potential of free Am(IV)/(III) is probably greater than or equal to + 2.6 V vs NHE or higher. Proof of the complexation of americium in the trivalent oxidation state by 3,4,3-LICAMS and 3,4,3-LICAMC elimates the possibility of tetracatholates stabilizing Am(IV) in vivo

  18. The effects of actinide separation on the radiological consequences of geologic disposal of high-level waste

    International Nuclear Information System (INIS)

    Hill, M.D.; White, I.F.; Fleishman, A.B.

    1980-01-01

    It has often been suggested that the potential hazard to man from the disposal of high-level radioactive waste could be reduced by removing a substantial fraction of the actinide elements. In this report the effects of actinide separation on the radiological consequences of one of the disposal options currently under consideration, that of burial in deep geologic formations, are examined. The results show that the potential radiological impact of geologic disposal of high-level waste arises from both long-lived fission products and actinides (and their daughter radionuclides). Neither class of radionuclides is of overriding importance and actinide separation would therefore reduce the radiological impact to only a limited extent and over limited periods. There might be a case for attempting to reduce doses from 237 Np. To achieve this it appears to be necessary to separate both neptunium and its precursor element americium. However, there are major uncertainties in the data needed to predict doses from 237 Np; further research is required to resolve these uncertainties. In addition, consideration should be given to alternative methods of reducing the radiological impact of geologic disposal. The conclusions of this assessment differ considerably from those of similar studies based on the concept of toxicity indices. Use of these indices can lead to incorrect allocation of research and development effort. (author)

  19. Actinide science with soft x-ray synchrotron radiation

    International Nuclear Information System (INIS)

    Shuh, D.

    2002-01-01

    Several workshops, some dating back more than fifteen years, recognised both the potential scientific impact and opportunities that would be made available by the capability to investigate actinide materials in the vacuum ultraviolet (VUV)/soft X-ray region of the synchrotron radiation (SR) spectrum. This spectral region revolutionized the approach to surface materials chemistry and physics nearly two decades ego. The actinide science community was unable to capitalize on these SR methodologies for the study of actinide materials until recently because of radiological safety concerns. ,The Advanced Light Source (ALS) at LBNL is a third-generation light source providing state-of-the-art performance in the VUV/soft X-ray region. Along with corresponding improvements in detector and vacuum technology, the ALS has rendered experiments with small amounts of actinide materials possible. In particular, it has been the emergence and development of micro-spectroscopic techniques that have enabled investigations of actinide materials at the ALS. The primary methods for the experimental investigation of actinide materials in the VUV/soft X-ray region are the complementary photoelectron spectroscopies, near-edge X-ray absorption fine structure (NEXAFS) and X-ray emission spectroscopy (XES) techniques. Resonant photo-emission is capable of resolving the 5f electron contributions to actinide bonding and can be used to characterise the electronic structure of actinide materials. This technique is clearly a most important methodology afforded by the tunable SR source. Core level and valence band photoelectron spectroscopies are valuable for the characterisation of the electronic properties of actinide materials, as well as for general analytical purposes. High-resolution core-level photo-emission and resonant photo-emission measurements from the a (monoclinic) and δ (FCC) allotropic phases of plutonium metal have been collected on beam line 7.0 at the ALS and the spectra show

  20. Correlation of retention of lanthanide and actinide complexes with stability constants and their speciation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Viswanathan, K.S.; Ghosh, Suddhasattwa; Srinivasan, T.G.; Vasudeva Rao, P.R. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2013-03-01

    The present study describes a correlation that is developed from retention of lanthanide and actinide complexes with the stability constant. In these studies, an ion-pairing reagent, camphor-10-sulphonic acid (CSA) was used as the modifier and organic acids such as {alpha}-hydroxy isobutyric acid ({alpha}-HIBA), mandelic acid, lactic acid and tartaric acid were used as complexing reagent for elution. From these studies, a correlation has been established between capacity factor of a metal ion, concentration of ion-pairing reagent and complexing agent with the stability constant of metal complex. Based on these studies, it has been shown that the stability constant of lanthanide and actinide complexes can be estimated using a single lanthanide calibrant. Validation of the method was carried out with the complexing agents such as {alpha}-HIBA and lactic acid. It was also demonstrated that data from a single chromatogram can be used for estimation of stability constant at various ionic strengths. These studies also demonstrated that the method can be applied for estimation of stability constant of actinides with a ligand whose value is not reported yet, e.g., ligands of importance in the lanthanide-actinide separations, chelation therapy etc. The chromatographic separation method is fast and the estimation of stability constant can be done in a very short time, which is a significant advantage especially in dealing with radioactive elements. The stability constant data was used to derive speciation data of plutonium in different oxidation states as well as that of americium with {alpha}-HIBA. The elution behavior of actinides such as Pu and Am from reversed phase chromatographic technique could be explained based on these studies. (orig.)

  1. Basic actinide chemistry and physics research in close cooperation with hot laboratories: ACTILAB

    International Nuclear Information System (INIS)

    Minato, K; Konashi, K; Fujii, T; Uehara, A; Nagasaki, S; Ohtori, N; Tokunaga, Y; Kambe, S

    2010-01-01

    Basic research in actinide chemistry and physics is indispensable to maintain sustainable development of innovative nuclear technology. Actinides, especially minor actinides of americium and curium, need to be handled in special facilities with containment and radiation shields. To promote and facilitate actinide research, close cooperation with the facilities and sharing of technical and scientific information must be very important and effective. A three-year-program B asic actinide chemistry and physics research in close cooperation with hot laboratories , ACTILAB, was started to form the basis of sustainable development of innovative nuclear technology. In this program, research on actinide solid-state physics, solution chemistry and solid-liquid interface chemistry is made using four main facilities in Japan in close cooperation with each other, where basic experiments with transuranium elements can be made. The 17 O-NMR measurements were performed on (Pu 0.91 Am 0.09 )O 2 to study the electronic state and the chemical behaviour of Am and Cm ions in electrolyte solutions was studied by distribution experiments.

  2. Band structure studies of actinide systems

    International Nuclear Information System (INIS)

    Koelling, D.D.

    1976-01-01

    The nature of the f-orbitals in an actinide system plays a crucial role in determining the electronic properties. It has long been realized that when the actinide separation is small enough for the f-orbitals to interact directly, the system will exhibit itinerant electron properties: an absence of local moment due to the f-orbitals and sometimes even superconductivity. However, a number of systems with the larger actinide separation that should imply local moment behavior also exhibit intinerant properties. Such systems (URh 3 , UIr 3 , UGe 3 , UC) were examined to learn something about the other f-interactions. A preliminary observation made is that there is apparently a very large and ansiotropic mass enhancement in these systems. There is very good reason to believe that this is not solely due to large electron--electron correlations but to a large electron--phonon interaction as well. These features of the ''non-magnetic'', large actinide separation systems are discussed in light of our results to date. Finally, the results of some recent molecular calculations on actinide hexafluorides are used to illustrate the shielding effects on the intra-atomic Coulomb term U/sub f-f/ which would appear in any attempt to study the formation of local moments. As one becomes interested in materials for which a band structure is no longer an adequate model, this screened U/sub ff/ is the significant parameter and efforts must be made to evaluate it in solid state systems

  3. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    International Nuclear Information System (INIS)

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-01-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented

  4. Short review of high-pressure crystal growth and magnetic and electrical properties of solid-state osmium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Kazunari, E-mail: YAMAURA.Kazunari@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan)

    2016-04-15

    High-pressure crystal growth and synthesis of selected solid-state osmium oxides, many of which are perovskite-related types, are briefly reviewed, and their magnetic and electrical properties are introduced. Crystals of the osmium oxides, including NaOsO{sub 3}, LiOsO{sub 3}, and Na{sub 2}OsO{sub 4}, were successfully grown under high-pressure and high-temperature conditions at 6 GPa in the presence of an appropriate amount of flux in a belt-type apparatus. The unexpected discovery of a magnetic metal–insulator transition in NaOsO{sub 3}, a ferroelectric-like transition in LiOsO{sub 3}, and high-temperature ferrimagnetism driven by a local structural distortion in Ca{sub 2}FeOsO{sub 6} may represent unique features of the osmium oxides. The high-pressure and high-temperature synthesis and crystal growth has played a central role in the development of solid-state osmium oxides and the elucidation of their magnetic and electronic properties toward possible use in multifunctional devices. - Graphical Abstract: Flux-grown crystals of NaOsO{sub 3} under high-pressure and high-temperature conditions in a belt-type apparatus. The crystal shows a magnetically driven metal–insulator transition at a temperature of 410 K. - Highlights: • Short review of high-pressure crystal growth of solid-state osmium oxides. • Wide variety of magnetic properties of solid-state osmium oxides. • Perovskite and related dense structures stabilized at 3–17 GPa.

  5. New developments at the INE-Beamline for actinide research at ANKA

    Science.gov (United States)

    Dardenne, K.; Brendebach, B.; Denecke, M. A.; Liu, X.; Rothe, J.; Vitova, T.

    2009-11-01

    The INE-Beamline for actinide research at the synchrotron source ANKA is operated by the Institut für Nukleare Entsorgung (INE) at the Forschungszentrum Karlsruhe. Experiments on radioactive samples with activities up to 106 times the limit of exemption inside a safe and flexible double containment concept are possible. One great advantage of the beamline is its close proximity to INE's active laboratories with its equipment for manipulation of actinide materials and state-of-the-art spectroscopic, analytical, and microscopic instrumentation. This constellation is unique in Europe. The INE-Beamline is built primarily to serve INE in-house research associated with safe disposal of high level nuclear waste such as actinide speciation or coordination-, redox-, and geo-chemistry of actinides. A wide energy range from around 2.1 keV to 25 keV covering the K-edges from P to Pd and the L3, L2, and L1 edges for actinides from Th to Cm can be used. The INE-Beamline is optimized for X-ray absorption spectroscopy techniques (XANES/EXAFS), but x-ray fluorescence (XRF) analysis and powder diffraction (XRD) are also possible, as well as surface sensitive measurements in grazing incidence geometry (GI-XAFS). Upgrades of instrumentation and extension of experimental capabilities at the INE-Beamline are driven by user needs. Two of the recent upgrades are presented: 1) installation of a microfocus option for spatially resolved studies (μ-XRF, μ-XANES, μ-XRD) and investigations of small volumes (e.g., heterogeneous natural samples and diamond anvil high pressure cells); 2) construction, and commissioning of a high resolution x-ray emission spectrometer (HRXES); 3) availability of an electrochemical cell for investigation of redox sensitive systems.

  6. Combining Raman Microprobe and XPS to Study High Temperature Oxidation of Metals

    International Nuclear Information System (INIS)

    Windisch, Charles F.; Henager, Charles H.; Engelhard, Mark H.; Bennett, Wendy D.

    2011-01-01

    Raman microprobe spectroscopy was applied in studies of high-temperature air oxidation of a ferritic alloy (HT-9) in the absence and presence of zirconia coatings with the objective of evaluating the technique as a way to quickly screen candidate cladding materials and actinide-based mixed oxide fuel mixtures for advanced nuclear reactors. When oxidation was relatively uniform, Raman spectra collected using microscope optics with low spatial resolution were found to be similar to those collected with conventional Raman spectroscopy. These spectra could be used to identify major oxide corrosion products and follow changes in the composition of the oxides due to heating. However, when the oxidation films were comprised of multiple layers of varying composition, or with layers containing metallic phases, techniques with higher depth resolution and sensitivity to zero-valence metals were necessary. The requirements were met by combining Raman microprobe using different optical configurations and x-ray photoelectron spectroscopy.

  7. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  8. Fuels and targets for incineration and transmutation of actinides: the ITU programme

    International Nuclear Information System (INIS)

    Fernandez, A.; Glatz, J.P.; Haas, D.; Konings, R.J.M.; Somers, J.; Toscano, E.; Walker, C.T.; Wegen, D.

    2000-01-01

    The ITU programme for the development of fuels and targets for transmutation of actinides is presented. The fabrication of various types of oxide fuels/targets by dust-free processes is described. Selected results of post-irradiation examinations of irradiation experiments (SUPERFACT, TRABANT-1, EFTTRA-T4) are presented to demonstrate the irradiation behaviour of these fuels/targets. Finally, the future developments at ITU in this field are described, including the new shielded facility (the MA lab) for fabrication of minor actinide fuels. (authors)

  9. Fuels and targets for incineration and transmutation of actinides: the ITU programme

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Glatz, J.P.; Haas, D.; Konings, R.J.M.; Somers, J.; Toscano, E.; Walker, C.T.; Wegen, D. [Eurpean Commission, Joint Research Centre, Institute for Transuranium Elements, Kurlsruhe (Germany)

    2000-07-01

    The ITU programme for the development of fuels and targets for transmutation of actinides is presented. The fabrication of various types of oxide fuels/targets by dust-free processes is described. Selected results of post-irradiation examinations of irradiation experiments (SUPERFACT, TRABANT-1, EFTTRA-T4) are presented to demonstrate the irradiation behaviour of these fuels/targets. Finally, the future developments at ITU in this field are described, including the new shielded facility (the MA lab) for fabrication of minor actinide fuels. (authors)

  10. Setting up a glove box adoptable high temperature furnace for actinide chemistry research

    International Nuclear Information System (INIS)

    Sali, S.K.; Keskar, Meera; Kannan, S.

    2017-01-01

    Thermophysical and thermochemical properties of fuel materials and the compounds formed by the interaction of fuel with fission products and cladding materials are very important for the understanding of fuel behaviour under reactor operation condition. In order to find out various compounds formed during reactor operating condition, number of phase mixtures containing UO_2, ThO_2, PuO_2 and (U, Pu)O_2 with fission products and cladding materials have to be prepared and characterized using XRD, HTXRD, DSC, TG/DTA techniques. For carrying out solid-state reactions, the reaction mixtures have to be heated in different atmospheres between 1000 to 1600°C.Since, actinides are used in these studies, a control atmosphere high temperature furnace inside a glove box with appropriate safety features is indispensable

  11. Protactinium and the intersection of actinide and transition metal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Richard E.; De Sio, Stephanie; Vallet, Valérie

    2018-02-12

    The role of the 5f and 6d orbitals in the chemistry of the actinide elements has been of considerable interest since their discovery and synthesis. Relativistic effects cause the energetics of the 5f and 6d orbitals to change as the actinide series is traversed left to right imparting a rich and complex chemistry. The 5f and 6d atomic states cross in energy at protactinium (Pa), making it a potential intersection between transition metal and actinide chemistries. Herein, we report the synthesis of a Pa-peroxo cluster, A(6)(Pa4O(O-2)(6)F-12) [A = Rb, Cs, (CH3)(4)N], formed in pursuit of an actinide polyoxometalate. Quantum chemical calculations at the density functional theory level demonstrate equal 5f and 6d orbital participation in the chemistry of Pa and increasing 5f orbital participation for the heavier actinides. Periodic changes in orbital character to the bonding in the early actinides highlights the influence of the 5f orbitals in their reactivity and chemical structure.

  12. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  13. A novel dipicolinamide-dicarbollide synergistic solvent system for actinide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Ajay Bhagwan [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Pune Univ. (India). Garware Research Centre; Pathak, Priyanath; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Shinde, Vaishali Sanjay [Pune Univ. (India). Garware Research Centre; Alyapyshev, M.Yu.; Babain, Vasiliy A. [Federal Agency for Atomic Energy, St. Petersburg (Russian Federation). V.G. Khlopin Radium Institute

    2014-09-01

    Solvent extraction studies of several actinide ions such as Am(III), U(VI), Np(IV), Np(VI), Pu(IV) were carried out from nitric acid medium using a synergistic mixture of N,N'-diethyl-N,N'-di(para)fluorophenyl-2,6-dipicolinamide, (DEtD(p)FPhDPA, DPA), and hydrogen dicarbollylcobaltate (H{sup +}CCD{sup -}) dissolved in phenyltrifluoromethylsulphone (PTMS). The effects of different parameters such as aqueous phase acidity (0.01-3 M HNO{sub 3}), oxidation states of metal ions, ligand concentration, nature of diluent and temperature on the extraction behavior of metal ions were studied. The extracted Am(III) species was determined as H{sup +}[Am(DPA){sub 2}(CCD){sub 4}]{sup -} With increasing aqueous phase acidities, the extractability of both Am(III) and Eu(III) was found to decrease. The synergistic mixture showed better extraction in mM concentrations as compared to previously studied dipicolinamides. The thermodynamic studies were performed to calculate heat of extraction reaction and the extraction constants. The proposed synergistic mixture showed good extraction for all the metal ions, though lanthanide actinide separation results are not encouraging. (orig.)

  14. Actinide burning and waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T H [University of California, Berkeley, CA (United States)

    1990-07-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  15. Actinide burning and waste disposal

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1990-01-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  16. Investigations of actinides in the context of final disposal of high-level radioactive waste. Trivalent actinides in aqueous solution

    International Nuclear Information System (INIS)

    Banik, N.L.; Boris Brendebach; Marquardt, Ch.M.

    2014-01-01

    The speciation of redox sensitive trivalent actinides Pu(III), Np(III), and U(III) has been studied in aqueous solution. The redox preparation, stabilization, and speciation of these trivalent actinides in aqueous systems are discussed here. The reductants investigated were rongalite, hydroxylamine hydrochloride, and acetohydroxamic acid and the An(III) species have been characterized by UV-Vis and XANES spectroscopy. The results show that the effectiveness of stabilization decreases generally in the order Pu(III) > Np(III) > U(III) and that the effectiveness of each reducing agent depends on the experimental conditions. More than 80 % of Pu(III) aquo species have been stabilized up to pH 5.5, whereas the Np(III) aquo ion could be stabilized in a pH range 0-2.5, and U(III) aquo ion is sufficiently stable at pH 1.0 and below over time periods suitable for experiments. However, this study gives a basis for the characterisation of the trivalent lighter actinides involved in complexation, sorption, and solid formation reactions in the future. (author)

  17. Actinide distribution in the human skeleton

    International Nuclear Information System (INIS)

    Kathren, R.L.; McInroy, J.F.; Swint, M.J.

    1985-05-01

    Radiochemical analysis of two half skeletons donated to the United States Transuranium Registry, one from an individual with an occupationally incurred deposition of 241 Am and the other with a deposition of 239 Pu, revealed an inverse linear relationship between the concentration of actinide in the bone ash and the fraction of ash. Two distinct relationships were noted, one for the cranium and the other for the remainder of the skeleton. The results suggest that the actinide content of the skeleton as a whole, Q, can be obtained with an uncertainty of +-50% from analysis of a single sample of any bone (except the cranium) by Q = [(830 C/sub sample/)/(0.61 - f/sub sample/)], in which C/sub sample/ refers to the actinide content per g of ash and f/sub sample/ the fraction of ash (i.e., ratio of dry to wet weight) in the sample. 5 figs., 3 tabs

  18. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1984-01-01

    A new process for recovery of plutonium and americium from pyrochemical waste has been demonstrated. It is based on chloride solution anion exchange at low acidity, which eliminates corrosive HCl fumes. Developmental experiments of the process flowsheet concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 = from high chloride-low acid solution. Americium and other metals are washed from the ion exchange column with 1N HNO 3 -4.8M NaCl. The plutonium is recovered, after elution, via hydroxide precipitation, while the americium is recovered via NaHCO 3 precipitation. All filtrates from the process are discardable as low-level contaminated waste. Production-scale experiments are now in progress for MSE residues. Flow sheets for actinide recovery from electrorefining and direct oxide reduction residues are presented and discussed

  19. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1985-05-01

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 2- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO 3 -4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO 3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  20. Actinide partitioning and transmutation program progress report, October 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Tedder, D.W.

    1977-01-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was initiated at the various sites. This work included the development of conceptual material balance flowsheets which define integrated waste systems supporting an LWR fuel reprocessing plant and a mixed (U-Pu) oxide fuel refabrication plant. In addition, waste subsystems were defined for experimental evaluation. Computer analysis of partitioning-transmutation, utilizing an LMFBR for transmutation, was completed for both constant and variable waste actinide generation rates

  1. Investigation of actinides speciation within the presence of ligands of interest for decorporation; Etude de la speciation des actinides vis-a-vis de ligands d'interet pour la decorporation

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, L

    2008-01-15

    Data about the behaviour of actinides in biological media are required in order to investigate their decorporation. Those data are obtained through in vivo experiments and the study of chemical speciation of actinides within the presence of biological constituents. A part of this work consists in the development of a method leading to the determination of the speciation of actinides at the oxidation state +IV within the presence of a complexing species, as well as its structure. The method was applied to two types of ligands: 1) a constituent of blood plasma: the citrate anion. The various complexes formed were investigated and their formation constants were quantified. The coordination mode of the ligand was then clarified through a structural study of the complexes, underlining the role of only one carboxylic site and of the alcohol function. 2) chelating agents used for decorporation. The formation constants of complexes of An(IV) with NTA and DTPA were determined. The coordination number of the metallic cation in those complexes as well as the role of the nitrogen atom were proved. Lastly, the behaviour of Pu(IV) within the presence of LIHOPO was investigated. This chelating agent, more efficient than DTPA in the case of in vivo decorporation of Np, forms very stable complexes with the metallic cation. One of those complexes can be assumed to present a stoichiometry 2:3. (author)

  2. Actinide recycling by pyro process for future nuclear fuel cycle system

    International Nuclear Information System (INIS)

    Inoue, T.

    2001-01-01

    Pyrometallurgical technology is one of the potential devices for the future nuclear fuel cycle. Not only economic advantage but also environmental safety and strong resistance for proliferation are required. So as to satisfy the requirements, actinide recycling applicable to LWR and FBR cycles by pyro-process has been developed over a ten-year period at the CRIEPI. The main technology is electrorefining for U and Pu separation and reductive extraction for TRU separation, which can be applied on oxide fuels through reduction process as well as metal fuels. The application of this technology for separation of TRU in HLLW through chlorination could contribute to the improvement of public acceptance with regard to geologic disposal. The main achievements are summarised as follows: - Elemental technologies such as electrorefining, reductive extraction, injection casting and salt waste treatment and solidification have been successfully developed with lots of experiments. - Fuel dissolution into molten salt and uranium recovery on solid cathode for electrorefining has been demonstrated at an engineering scale facility in Argonne National Laboratory using spent fuels and at the CRIEPI through uranium tests. - Single element tests using actinides showed Li reduction to be technically feasible; the subjects of technical feasibility on multi-element systems and on effective recycle of Li by electrolysis of Li 2 O remain to be addressed. - Concerning the treatment of HLLW for actinide separation, the conversion to chlorides through oxides has also been established through uranium tests. - It is confirmed that more than 99% of TRU nuclides can be recovered from high-level liquid waste by TRU tests. - Through these studies, the process flowsheets for reprocessing of metal and oxide fuels and for partitioning of TRU separation have been established. The subjects to be emphasised for further development are classified into three categories: process development (demonstration

  3. Octupole correlations in positive-parity states of rare-earth and actinide nuclei

    Directory of Open Access Journals (Sweden)

    Spieker M.

    2015-01-01

    Full Text Available In this contribution, further evidence of the importance of multiphonon-octupole excitations to describe experimental data in the rare earths and actinides will be presented. First, new results of a (p, t experiment at the Q3D magnetic spectrograph in Munich will be discussed, which was performed to selectively excite Jπ = 0+ states in 240Pu. spdf interacting boson model (IBM calculations suggest that the previously proposed double-octupole phonon nature of the Jπ = 0+2 state is not in conflict with its strong (p, t population. Second, the framework of the IBM has been adopted for the description of experimental observables related to octupole excitations in the rare earths. Here, the IBM is able to describe the signature splitting for positiveand negative-parity states when multi-dipole and multi-octupole bosons are included. The present study might support the idea of octupole-phonon condensation at intermediate spin (Jπ = 10+ leading to the change in yrast structure observed in 146Nd.

  4. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  5. Rapid and stream-lined methods for analysis of actinides in environmental samples

    International Nuclear Information System (INIS)

    Cooper, E.L.

    2001-01-01

    Full text: 1) Project Summary: A systematic study of separating the actinides from each other in 1 M hydrochloric acid media has been carried out using selective oxidation/reduction processes followed by co-precipitation with neodymium fluoride. We have optimized two such procedures, one with bromate and another with permanganate, for the sequential separation of Am, Pu, Np, and U isotopes. The first procedure involves oxidation of Pu, Np and U to +6 state in 1 M HCI media at 85 deg C with 30% NaBrO 3 and separation from trivalent Am by collecting the latter on the first NdF 3 co- precipitated source. Plutonium is then reduced and converted to +4 oxidation state with 40% NaNO 2 at 85 deg C, while Np and U are kept oxidized with additional bromate in solution at 50-70 deg C, thus separating Pu by collection on a second NdF 3 source. At this stage, Np present in the filtrate is reduced with hydroxylamine hydrochloride and separated from U by collecting on a third source. Subsequently, U is reduced with 30% TiCI 3 and co-precipitated on a final source. The second procedure, which employs KMnO 4 in 1 M HCI media at 60-85 deg C for oxidizing Pu, Np and U, and separating from Am, produces MnO 2 which is collected along with Am on the co-precipitated NdF 3 . This MnO 2 is dissolved on the filter itself with 1 ml of acidified 1.5% H 2 O 2 without any degradation of the α-spectra. After evaporating the filtrate to destroy H 2 O 2 , Pu, Np and U are separated by following steps similar to those in the bromate procedure. The recoveries of the actinides with both procedures are >99%. The decontamination factors are between 10 3 and 10 4 . 2) Summary of Proposed Work for the Next Year: Now that the separation procedure has been developed, we will begin to incorporate it into rapid and steam-lined procedures for samples, such as water, air filters and environmental materials. (author)

  6. Investigation of actinides speciation within the presence of ligands of interest for decorporation

    International Nuclear Information System (INIS)

    Bonin, L.

    2008-01-01

    Data about the behaviour of actinides in biological media are required in order to investigate their decorporation. Those data are obtained through in vivo experiments and the study of chemical speciation of actinides within the presence of biological constituents. A part of this work consists in the development of a method leading to the determination of the speciation of actinides at the oxidation state +IV within the presence of a complexing species, as well as its structure. The method was applied to two types of ligands: 1) a constituent of blood plasma: the citrate anion. The various complexes formed were investigated and their formation constants were quantified. The coordination mode of the ligand was then clarified through a structural study of the complexes, underlining the role of only one carboxylic site and of the alcohol function. 2) chelating agents used for decorporation. The formation constants of complexes of An(IV) with NTA and DTPA were determined. The coordination number of the metallic cation in those complexes as well as the role of the nitrogen atom were proved. Lastly, the behaviour of Pu(IV) within the presence of LIHOPO was investigated. This chelating agent, more efficient than DTPA in the case of in vivo decorporation of Np, forms very stable complexes with the metallic cation. One of those complexes can be assumed to present a stoichiometry 2:3. (author)

  7. Effect of spectral characterization of gaseous fuel reactors on transmutation and burning of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fung, C.; Anghaie, S. [Florida Univ., Wilmington, NC (United States)

    2007-07-01

    Gaseous Core Reactors (GCR) are fueled with stable uranium compounds in a reflected cavity. The spectral characteristics of neutrons in GCR systems could shift from one end of the spectrum to the other end by changing design parameters such as reflector material and thickness, uranium enrichment, and the average operational temperature and pressure. The rate of actinide generation, transmutation, and burnup is highly influenced by the average neutron energy in reactor core. In particular, the production rate and isotopic mix of plutonium are highly dependent on the neutron spectrum in the reactor. Other actinides of primary interest to this work are neptunium-237 and americium-241 due to their pivotal impact on high-level nuclear waste disposal. In all cavity reactors including GCR's, the reflector material and thickness are the most important design parameters in determining the core spectrum. The increase in the gaseous fuel pressure and enrichment results in relative shift of neutron population toward energies greater than 2 eV. Reflector materials considered in this study are beryllium oxide, lithium hydride, lithium deuteride, zirconium carbide, graphite, lead, and tungsten. Results of the study suggest that the beryllium oxide and tungsten reflected GCR systems set the lower (softest) and upper (hardest) limits of neutron spectra, respectively. The inventory of actinides with half-lives greater than 1000 years can be minimized by increasing neutron flux level in the reactor core. The higher the neutron flux, the lower the inventory of these actinides. The majority of the GCR designs maintained a flux level on the order of 10{sup 15} cm{sup -2}*s{sup -1} while the PWR flux is one order of magnitude lower. The inventory of the feeder isotopes to Np{sup 237} including U{sup 237}, Pu{sup 241}, and Am{sup 241} decreases with relative shift of neutron spectrum toward higher energies. This is due to increased resonance absorption in these isotopes due to higher

  8. Proceedings of the symposium Actinides 2006 - Basic Science, Applications and Technology

    International Nuclear Information System (INIS)

    Blobaum, Kerri J.M.; Chandler, Elaine A.; Havela, Ladislav; Maple, M. Brian; Neu, Mary P.

    2007-01-01

    These proceedings from the September 2006 symposium includes papers presented on experimental and modeling work with the intention of broadening understanding of the field of actinide research. Actinides have gained attention recently because of their roles in the threat of nuclear terrorism (e.g., 'dirty bombs') and the use of nuclear power to offset fossil fuel consumption. Actinide science is the study of the elements with atomic numbers in the range of 90 to 103, which includes uranium and plutonium. Beyond the well-known nuclear reactions of these heavy radioactive metals, the large electron clouds with 5f electrons in the outer shell yield fascinating and complex chemistries, crystal structures, and physical properties. Traditionally, actinide research has been divided among three scientific disciplines: chemistry (nuclear chemistry and radiochemistry); physics (condensed matter physics and electronic structure); and materials science (metallurgy). Modern actinide research, however, has become an interdisciplinary blend of these traditional fields, and it also incorporates developing fields such as environmental chemistry and superconductivity. Improved scientific understanding of actinides is needed for development of materials for actinide detection and nuclear fuels, and for safer management of nuclear waste. Recently, there has been a resurgence of actinide science at national laboratories and universities. The current multidisciplinary approach to actinide science lays the groundwork for understanding the connection between the 5f electronic structure and observed chemical reactions and physical properties such as structural phase transformations and novel ground states. This work provides many opportunities for new researchers in actinide science. These proceedings gather 25 selected papers among the 53 presentations given at this symposium

  9. Electrochemical reduction of cerium oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.; Serp, J.; Fouletier, J.

    2011-01-01

    This brief article describes a pyrochemical process that is used by CEA to turn actinide oxides into metal actinides. This process is applied to Cerium oxides (CeO 2 ) that simulate actinide oxides well chemically as cerium belongs to the lanthanide family. The process is in fact an electrolysis of cerium oxide in a bath of molten calcium chloride salt whose temperature is between 800 and 900 Celsius degrees. At those temperatures calcium chloride becomes a ionic liquid (Ca 2+ and Cl - ) that is a good electrical conductor and is particularly well-adapted as solvent to an electrolytic process. The electrolysis current allows the transformation of solvent Ca 2+ ions into metal calcium which, in turn, can reduce cerium oxide into metal cerium through chromatically. Experimental data shows the reduction of up to 90% of 10 g samples of CeO 2 in a 6 hour long electrolysis while the best reduction rate ever known was 80% so far. This result is all the more promising that cerium oxides are more difficult to reduce than actinide oxides from the thermodynamical perspective

  10. Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters

    Science.gov (United States)

    Vlaisavljevich, Bess

    Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.

  11. Rapid determination of actinides in seawater samples

    International Nuclear Information System (INIS)

    Maxwell, S.L.; Culligan, B.K.; Hutchison, J.B.; Utsey, R.C.; McAlister, D.R.

    2014-01-01

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti +3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1-2 weeks and provide chemical yields of ∼30-60 %. This new sample preparation method can be performed in 4-8 h with tracer yields of ∼85-95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort. (author)

  12. Thermodynamic properties of actinide aqueous species relevant to geochemical problems

    International Nuclear Information System (INIS)

    Fuger, J.

    1992-01-01

    The status of our knowledge of the basic thermodynamic properties of the aqueous complexes of the actinides in their different valency states with two environmentally important ligands, namely hydroxide and carbonate is overviewed. Even in the case of uranium which has been the most studied, gaps are found among the relative wealth of trustworthy formation constants, especially for the less stable valence states. The need for substantial improvement of our knowledge in the case of the other actinides, especially transuranium elements, is outlined. The relative scarcity of enthalpy of formation data is also stressed. (orig.)

  13. The thermodynamic functions of gaseous actinide elements

    International Nuclear Information System (INIS)

    Rand, M.H.

    1979-01-01

    The actinide gases have large number of unobserved energy states - up to 3 x 10 6 for Pu(g) - which could contribute to the partition function and its derivatives, from which the thermal functions of these gases are calculated. Existing compilations have simply ignored these levels. By making reasonable assumptions as to the distribution of these energy states, their effect on the functions can be calculated. It is concluded that the existing compilations will be inadequate above approximately 2000K. The effect is particularly marked on the heat capacity. For example, when unobserved levels for Pu(g) are included, the heat capacity of Pu(g) reaches a maximum value of more than 12R at 3200K. Similar considerations will apply to the gaseous actinide ions. (orig.) [de

  14. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  15. Comparative evaluation of DHDECMP [dihexyl-N,N-diethylcarbamoyl-methylphosphonate] and CMPO [octylphenyl-N,N,-diisobutylcarbamoylmethylphosphine oxide] as extractants for recovering actinides from nitric acid waste streams

    International Nuclear Information System (INIS)

    Marsh, S.F.; Yarbro, S.L.

    1988-02-01

    Certain neutral, bifunctional organophosphorous compounds are of special value to the nuclear industry. Dihexyl-N,N-diethylcarbomoylmethylphosphonate (DHDECMP) and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) are highly selective extractants for removing actinide and lanthanide elements from nitric acid. We obtained these two extractants from newly available commercial sources and evaluated them for recovering Am(III), Pu(IV), and U(VI) from nitric acid waste streams of plutonium processing operations. Variables included the extractant (DHSECMP or CMPO), extractant/tributylphosphate ratio, diluent, nitrate concentration, nitrate salt/nitric acid ratio, fluoride concentration, and contact time. Based on these experimental data, we selected DHDECMP as the perferred extractant for this application. 18 refs., 30 figs

  16. Use of fast-spectrum reactors for actinide burning

    International Nuclear Information System (INIS)

    Chang, Yoon I.

    1991-01-01

    Finally, Integral Fast Reactor (IFR) pyroprocessing has been developed only in recent years and it appears to have potential as a relatively uncomplicated, effective actinide recovery process. In fact, actinide recycling occurs naturally in the IFR fuel cycle. Although still very much developmental, the entire IFR fuel cycle will be demonstrated on prototype-scale in conjunction with the EBR-II and its refurbished Fuel Cycle Facility starting in late 1991. A logical extension to this work, therefore, is to establish whether this IFR pyrochemical processing can be applied to extracting actinides from LWR spent fuel. This paper summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 4 figs., 4 tabs

  17. Reduction of minor actinides for recycling in a light water reactor

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2015-09-01

    The aim of actinide transmutation from spent nuclear fuel is the reduction in mass of high-level waste which must be stored in geological repositories and the lifetime of high-level waste; these two achievements will reduce the number of repositories needed, as well as the duration of storage. The present work is directed towards the evaluation of an advanced nuclear fuel cycle in which the minor actinides (Np, Am and Cm) could be recycled to remove most of the radioactive material; a reference of actinides production in standard nuclear fuel of uranium at the end of its burning in a BWR is first established, after a design of fuel rod containing 6% of minor actinides in a matrix of uranium from the enrichment lines is proposed, then 4 fuel rods of standard uranium are replaced by 4 actinides bars to evaluate the production and transmutation of them and finally the minor actinides reduction in the fuel is evaluated. In the development of this work the calculation tool are the codes: Intrepin-3, Casmo-4 and Simulate-3. (Author)

  18. Leaching of actinides from nuclear waste glass: French experience

    International Nuclear Information System (INIS)

    Vernaz, E.Y.; Godon, N.

    1991-01-01

    The activity concentration versus time of a typical LWR glass shows that after 300 years most of the activity is attributable to three actinides (Np, Pu and Am) and to 99 Tc. This activity decreases slowly, and some 50.000 years are necessary before the activity concentration drops to the level of the richest natural ores. This paper reviews the current state of knowledge concerning the kinetics of actinide release from glass subjected to aqueous leaching

  19. The clearance of Pu and Am from the respiratory system of rodents after the inhalation of oxide aerosols of these actinides either alone or in combination with other metals

    International Nuclear Information System (INIS)

    Stather, J.W.; James, A.C.; Brightwell, J.; Rodwell, P.

    1979-01-01

    In this series of studies in rodents the lung clearance and tissue distribution of both plutonium and americium have been measured following their inhalation as mixed actinide oxides either alone or in combination with other metals. The aerosols used were materials to which workers in the nuclear industry may be occupationally exposed or which could be generated in the event of an accident in a reactor core or fuel fabrication plant. The studies showed that, at least for some PuO 2 aerosols, the lung model currently being used by ICRP for estimating tissue doses from inhaled actinides may overestimate, by about a factor of ten, the amount of plutonium translocated to the blood. The presence of oxides of other metals can, however, appreciably influence the clearance of plutonium from the lung. While in some mixtures plutonium dioxide behaves as an insoluble (Class Y) compound and in others as a soluble (Class W) compound, it may also have transportability characteristics between these two extremes. Americium-241 behaves as a soluble (Class W) compound when inhaled as the oxide. However, if it is present in trace quantities in mixed-oxide aerosols its behaviour depends upon that of the materials present in greatest mass. (author)

  20. Review of Integral Experiments for Minor Actinide Management

    International Nuclear Information System (INIS)

    Gil, C.S.; Glinatsis, G.; Hesketh, K.; Iwamoto, O.; Okajima, S.; Tsujimoto, K.; Jacqmin, R.; Khomyakov, Y.; Kochetkov, A.; Kormilitsyn, M.; Palmiotti, G.; Salvatores, M.; Perret, G.; Rineiski, A.; Romanello, V.; Sweet, D.

    2015-01-01

    Spent nuclear fuel contains minor actinides (MAs) such as neptunium, americium and curium, which require careful management. This becomes even more important when mixed oxide (MOX) fuel is being used on a large scale since more MAs will accumulate in the spent fuel. One way to manage these MAs is to transmute them in nuclear reactors, including in light water reactors, fast reactors or accelerator-driven subcritical systems. The transmutation of MAs, however, is not straightforward, as the loading of MAs generally affects physics parameters, such as coolant void, Doppler and burn-up reactivity. This report focuses on nuclear data requirements for minor actinide management, the review of existing integral data and the determination of required experimental work, the identification of bottlenecks and possible solutions, and the recommendation of an action programme for international co-operation. (authors)

  1. Frequency analysis of pulmonary tumors occurrence at the rat after exposure to actinide oxide aerosols. Risk factors identification by comparing NpO2 and PuO2

    International Nuclear Information System (INIS)

    Dudoignon, N.

    2001-07-01

    Inhalation of actinide oxide particles is potentially one route of contamination of workers, which might induce pulmonary tumours due to aerosol generation during nuclear fuel fabrication process. Dose-effect relationships for lung tumour induction have been well established from epidemiological and experimental studies. However, they do not take into account specific parameters of exposure. The aim of this study was to compare cancer incidence among groups of rats exposed either to NpO 2 or to PuO 2 , two actinide oxides with different specific activity, but with similar aerosol granulometry. During the rat life-span, lung tumour development could occur and the individual follow-up allowed the determination of lung dose at death. Although aerosol particle sizes were similar, the mean number of particles per unit of activity was 2400 times higher for NpO 2 as compared to PuO 2 . This range of variation appeared higher than the variation of specific activity (450). Initial distribution of aerosol was then much more homogeneous for neptunium. In the range of initial lung deposits studied, the only physiological changes observed concerned lung clearance and rat life- span after exposure to the highest levels of Np activity. Pathological examination performed at death showed that carcinogenic power of neptunium was 2 to 3 times higher than that of plutonium. Dose-effect relationships appeared linear and when compared to previous studies, showed an increase of lung cancer risk as the specific activity of the inhaled actinide oxide decreases. The range of risk variation can reach a factor of 10, revealing that the consideration of lung dose at death solely might not be sufficient for an accurate estimate of risk and that specific parameters of exposure, such as nature and granulometry of aerosols, should also be taken into account. (author)

  2. Formation of actinides in irradiated HTGR fuel elements

    International Nuclear Information System (INIS)

    Santos, A.M. dos.

    1976-03-01

    Actinide nuclide concentrations of 11 spent AVR fuel elements were determined experimentally. The burnup of the spheres varied in the range between 10% and 100% fifa, the Th : U ratio was 5 : 1. The separation procedures for actinide isolation were tested with highly irradiated ThO 2 . Separation and decontamination factors are presented. Actinide nuclide formation can be described by exponential functions of the type ln msub(nuclide) = A + B x % fifa. The empirical factors A and B were calculated performing a least squares analysis. Build-up of 232 U was discussed. According to the experimental results, 232 U is mainly produced from 230 Th, a certain amount (e.g. about 20% at a 10 5 MWd/t burnup) originated from a (n,2n) reaction of 233 U; a formation from 233 Th by a (n,2n) followed by a (n,γ) reaction was not observed. The AVR breeding rate was ascertained to be 0.5. The hazard potential of high activity waste was calculated. After a 1,000 years' storage time, the elements Pa, Am and Cm will no longer influence the total hazard index. Actinide recovery factors were proposed in order to reduce the hazard potential of the waste by an actinide removal in consideration of the reprocessing technology which is available presently. (orig.) [de

  3. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Ruhter, W.D.; Gunnink, R.

    1990-01-01

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  4. Assessment of Partitioning Processes for Transmutation of Actinides

    International Nuclear Information System (INIS)

    2010-04-01

    To obtain public acceptance of future nuclear fuel cycle technology, new and innovative concepts must overcome the present concerns with respect to both environmental compliance and proliferation of fissile materials. Both these concerns can be addressed through the multiple recycling of all transuranic elements (TRUs) in fast neutron reactor. This is only possible through a process known as partitioning and transmutation scheme (P and T) as this scheme is expected to reduce the long term radio-toxicity as well as the radiogenic heat production of the nuclear waste. Proliferation resistance of separated plutonium could further be enhanced by mixing with self-generated minor actinides. In addition, P and T scheme is expected to extend the nuclear fuel resources on earth about 100 times because of the recycle and reuse of fissile actinides. Several Member States are actively pursuing the research in the field of P and T and consequently several IAEA publications have addressed this topic. The present coordinated research project (CRP) focuses on the potentials in minimizing the residual TRU inventories of the discharged nuclear waste and in enhancing the proliferation resistance of the future civil nuclear fuel cycle. Partitioning approaches can be grouped into aqueous- (hydrometallurgical) and pyroprocesses. Several aqueous processes based on sequential separation of actinides from spent nuclear fuel have been developed and tested at pilot plant scale. In view of the proliferation resistance of the intermediate and final products of a P and T scheme, a group separation of all actinides together is preferable. The present CRP has gathered experts from different organisations and institutes actively involved in developing P and T scheme as mentioned in the list of contributors and also taken into consideration the studies underway in France and the UK. The scientific objectives of the CRP are: To minimize the environmental impact of actinides in the waste stream; To

  5. Criteria for achieving actinide reduction goals

    International Nuclear Information System (INIS)

    Liljenzin, J.O.

    1996-01-01

    In order to discuss various criteria for achieving actinide reduction goals, the goals for actinide reduction must be defined themselves. In this context the term actinides is interpreted to mean plutonium and the so called ''minor actinides'' neptunium, americium and curium, but also protactinium. Some possible goals and the reasons behind these will be presented. On the basis of the suggested goals it is possible to analyze various types of devices for production of nuclear energy from uranium or thorium, such as thermal or fast reactors and accelerator driven system, with their associated fuel cycles with regard to their ability to reach the actinide reduction goals. The relation between necessary single cycle burn-up values, fuel cycle processing losses and losses to waste will be defined and discussed. Finally, an attempt is made to arrange the possible systems on order of performance with regard to their potential to reduce the actinide inventory and the actinide losses to wastes. (author). 3 refs, 3 figs, 2 tabs

  6. Partitioning and Transmutation of minor actinides

    International Nuclear Information System (INIS)

    Koch, L.; Wellum, R.

    1991-01-01

    The partitioning of minor actinides from spent fuels and their transmutation into short-lived fission products has been the topic of two dedicated meetings organized jointly by the European Commission and the OECD. The conclusion of the last meeting in 1980, in short, was that partitioning and transmutation of minor actinides, especially in fast reactors, seemed possible. However, the incentive, which would be a reduction of the radiological hazard to the public, was too small if long-lived fission products were not included. Furthermore this meeting showed that minor actinide targets or possible nuclear fuels containing minor actinides for transmutation had not yet been developed. The European Institute for Transuranium Elements took up this task and has carried it out as a small activity for several years. Interests expressed recently by an expert meeting of the OECD/NEA (Paris, 25 April 1989), which was initiated by the proposed Japanese project Omega, led us to the conclusion that the present state of knowledge should be looked at in a workshop environment. Since the Japanese proposal within the project Omega is based on a broader approach we needed this evaluation to assess the relevance of our present activity and wanted to identifiy additional studies which might be needed to cover possible future demands from the public. This workshop was therefore organized, and participants active in the field from EC countries, the USA and Japan were invited

  7. Actinides: why are they important biologically

    International Nuclear Information System (INIS)

    Durbin, P.W.

    1978-01-01

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  8. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    International Nuclear Information System (INIS)

    Soderquist, Chuck Z.; Weaver, Jamie L.

    2015-01-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99m Tc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99 Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH) 3 . The precipitate of Gd(OH) 3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99 Mo and 99m Tc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  9. High and low oxidation states and special bonding situations. An investigation of f-elements, xenon and fluorine by matrix-isolation spectroscopy and quantum-chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Vent-Schmidt, Thomas

    2015-11-30

    During this thesis, the matrix-isolation technique in conjuction with quantum-chemical calculations has been employed in order to synthesize and characterize new compounds. The focus of the study were new species of the actinide and lanthanide series, but the photochemistry of XeO{sub 4} and the polyfluorides were also investigated. Based on the experience of laser ablated uranium and thorium atoms with H{sub 2} and F{sub 2} the reaction of these actinide atoms with HF has been investigated. The main products in these experiments are HThF and HUF which contain an actinide metal in the rather scarce +II oxidation state. In addition, the deuterated compounds have also been prepared and the isotopic shifts support the assignment. The higher hydride fluorides of thorium such as HThF{sub 3}, H{sub 2}ThF{sub 2} and H{sub 3}ThF have also been observed, whereas there is only little evidence for higher uranium hydride fluorides. The different behavior of the two metals under similar reaction conditions has been investigated theoretically. Besides the hydride fluorides, the reaction of the actinide atoms with HF gives also rise to the low valent fluorides and hydrides such as AnH and AnF (An = U, Th). These compounds have already been identified in experiments using fluorine or hydrogen as reagent, but a more reliable assignment can be made in these experiments due to the lower concentration of H or F. In addition, ThF{sub 2} has been observed in these experiments and there is evidence for the unknown difluoride of uranium, which will be addressed in a future paper. Experiments with laser ablated uranium and thorium atoms were extended to the reaction of these metals with H{sub 2}Se. Previous experiments using H{sub 2}O and H{sub 2}S instead of H{sub 2}Se yielded H{sub 2}AnX (An = U, Th; X = O, S) compounds which show evidence for an actinide-chalcogenide multiple bond. The new synthesized species H{sub 2}ThSe and H{sub 2}USe are characterized by their symmetric and

  10. Simultaneous separation and detection of actinides in acidic solutions using an extractive scintillating resin.

    Science.gov (United States)

    Roane, J E; DeVol, T A

    2002-11-01

    An extractive scintillating resin was evaluated for the simultaneous separation and detection of actinides in acidic solutions. The transuranic extractive scintillating (TRU-ES) resin is composed of an inert macroporous polystyrene core impregnated with organic fluors (diphenyloxazole and 1,4-bis-(4-methyl-5-phenyl-2-oxazolyl)benzene) and an extractant (octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide in tributyl phosphate). The TRU-ES resin was packed into FEP Teflon tubing to produce a flow cell (0.2-mL free column volume), which is placed into a scintillation detection system to obtain pulse height spectra and time series data during loading and elution of actinides onto/from the resin. The alpha-particle absolute detection efficiencies ranged from 77% to 96.5%, depending on the alpha energy and quench. In addition to the on-line analyses, off-line analyses of the effluent can be conducted using conventional detection methods. The TRU-ES resin was applied to the quantification of a mixed radionuclide solution and two actual waste samples. The on-line characterization of the mixed radionuclide solution was within 10% of the reported activities whereas the agreement with the waste samples was not as good due to sorption onto the sample container walls and the oxidation state of plutonium. Agreement between the on-line and off-line analyses was within 35% of one another for both waste samples.

  11. High-performance separation and supercritical extraction of lanthanides and actinides

    International Nuclear Information System (INIS)

    Datta, Arpita; Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Extensive studies were carried out at Chemistry Group, IGCAR for the rapid separation of individual lanthanides and actinides using dynamic ion-exchange chromatographic technique. The atom percent fission was determined from the concentrations of the lanthanide fission products, uranium and plutonium contents of dissolver solution. These advantages were exploited to significantly reduce analysis time, liquid waste generation as well as dose to operator. Supercritical fluid extraction (SFE) of actinides from waste matrices was studied in detail at our laboratory using modified supercritical carbon dioxide (Sc-CO 2 ). Complete extraction and recovery of uranium, plutonium and americium from various matrices was achieved using Sc-CO 2 modified with suitable ligands. The technique was demonstrated for the recovery of plutonium from actual waste received from different laboratories. (author)

  12. The effect of actinides on the microstructural development in a metallic high-level nuclear waste form

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D. D., Jr.; Sinkler, W.; Abraham, D. P.; Richardson, J. W., Jr.; McDeavitt, S. M.

    1999-10-25

    Waste forms to contain material residual from an electrometallurgical treatment of spent nuclear fuel have been developed by Argonne National Laboratory. One of these waste forms contains waste stainless steel (SS), fission products that are noble to the process (e.g., Tc, Ru, Pd, Rh), Zr, and actinides. The baseline composition of this metallic waste form is SS-15wt.% Zr. The metallurgy of this baseline alloy has been well characterized. On the other hand, the effects of actinides on the alloy microstructure are not well understood. As a result, SS-Zr alloys with added U, Pu, and/or Np have been cast and then characterized, using scanning electron microscopy, transmission electron microscopy, and neutron diffraction, to investigate the microstructural development in SS-Zr alloys that contain actinides. Actinides were found to congregate non-uniformally in a Zr(Fe,Cr,Ni){sub 2+x} phase. Apparently, the actinides were contained in varying amounts in the different polytypes (C14, C15, and C36) of the Zr(Fe,Cr,Ni){sub 2+x} phase. Heat treatment of an actinide-containing SS-15 wt.% Zr alloy showed the observed microstructure to be stable.

  13. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than 233 U, 235 U, and 239 Pu that have an odd number of neutrons in the nucleus: S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River. The subcritical limits are 201 g for 241 Pu, 13 g for 242 /sup m/Am, 90 g for 243 Cm, 30 g for 245 Cm, 900 g for 247 Cm, 10 g for 249 Cf, and 5 g for 251 Cf. Association of 241 Pu with an equal mass of 240 Pu increases the 241 Pu limit to a value greater than that for pure 239 Pu. Association of 242 /sup m/Am with 241 Am increases the limit for the mixture to that for dry, theoretical density AmO 2 at isotopic concentrations of 242 /sup m/Am less than approx. 6%. Association of 245 Cm with 244 Cm increases the limit according to the formula 30 + 0.3 244 Cm/ 245 Cm up to the limit for dry CmO 2 . A limiting mass of 8.15 kg for plutonium containing at least 67% 238 Pu as oxide was calculated that applies (provided 240 Pu exceeds 241 Pu) with no limit on moderation. 1 figure, 5 tables

  14. Electrorecovery of actinides at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, Michael E [Los Alamos National Laboratory; Oldham, Warren J [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  15. Spin–orbit coupling in actinide cations

    DEFF Research Database (Denmark)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.

    2012-01-01

    The limiting case of Russell–Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin–orbit splitting is large enough to cause a significantly reduced...... spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell....

  16. Fundamental thermodynamics of actinide-bearing mineral waste forms. 1998 annual progress report

    International Nuclear Information System (INIS)

    Ebbinghaus, B.B.; Williamson, M.A.

    1998-01-01

    'The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly, understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpy of formation of actinide substituted zircon, zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stability of these materials. This report summarizes work after eight months of a three year project.'

  17. Denaturing of plutonium by transmutation of minor-actinides for enhancement of proliferation resistance

    International Nuclear Information System (INIS)

    Sagara, Hiroshi; Saito, Masaki; Peryoga, Yoga; Ezoubtchenko, Alexey; Takivayev, Alan

    2005-01-01

    Feasibility study for the plutonium denaturing by utilizing minor-actinide transmutation in light water reactors has been performed. And the intrinsic feature of proliferation resistance of plutonium has been discussed based on IAEA's publication and Kessler's proposal. The analytical results show that not only 238 Pu but also other plutonium isotopes with even-mass-number have very important role for denaturing of plutonium due to their relatively large critical mass and noticeably high spontaneous fission neutron generation. With the change of the minor-actinide doping ratio in U-Pu mix oxide fuel and moderator to fuel ratio, it is found that the reactor-grade plutonium from conventional light water reactors can be denatured to satisfy the proliferation resistance criterion based on the Kessler's proposal but not to be sufficient for the criterion based on IAEA's publication. It has been also confirmed that all the safety coefficients take negative value throughout the irradiation. (author)

  18. Feasibility studies of actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    Beaman, S.L.; Aitken, E.A.

    1976-01-01

    A strategy of actinide burnup in LMFBRs is being investigated as a waste management alternative to long term storage of high level nuclear waste. This strategy is being evaluated because many of the actinides in the waste from spent-fuel reprocessing have half-lives of thousands of years and an alternative to geological storage may be desired. From a radiological viewpoint, the actinides and their daughters dominate the waste hazard for decay times beyond about 400 years. Actinide burnup in LMFBRs may be an attractive alternative to geological storage because the actinides can be effectively transmuted to fission products which have significantly shorter half-lives. Actinide burnup in LMFBRs rather than LWRs is preferred because the ratio of fission reaction rate to capture reaction rate for the actinides is higher in an LMFBR, and an LMFBR is not so sensitive to the addition of the actinide isotopes. An actinide target assembly recycle scheme is evaluated to determine the effects of the actinides on the LMFBR performance, including local power peaking, breeding ratio, and fissile material requirements. Several schemes are evaluated to identify any major problems associated with reprocessing and fabrication of recycle actinide-containing assemblies. The overall efficiency of actinide burnout in LMFBRs is evaluated, and equilibrium cycle conditions are determined. It is concluded that actinide recycle in LMFBRs offers an attractive alternative to long term storage of the actinides, and does not significantly affect the performance of the host LMFBR. Assuming a 0.1 percent or less actinide loss during reprocessing, a 0.1 percent loss of less during fabrication, and proper recycle schemes, virtually all of the actinides produced by a fission reactor economy could be transmuted in fast reactors

  19. Photoionization cross-sections of ground and excited valence levels of actinides

    Directory of Open Access Journals (Sweden)

    Yarzhemsky Victor G.

    2012-01-01

    Full Text Available The photoionization cross-sections of ground and excited atomic states of actinide atoms were calculated by the Dirac-Fock-Slater method for two excitation energies of X-ray radiation (1253.6 eV and 1486.6 eV. These data are required for calculations of intensities of X-ray photoelectron spectra of actinide compound valence bands and interpretation of experimental spectra.

  20. Citrate based ''TALSPEAK'' lanthanide-actinide separation process

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ''geological'' periods of time. The costs of building, maintaining, and operating a ''geological TRU repository'' can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ''TALSPEAK'' process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced

  1. Selective solvent extraction of actinides associated to liquid scintillation measurements

    International Nuclear Information System (INIS)

    Ardois, C.; Musikas, C.

    1997-01-01

    The problems associated to radioactive waste disposal have acquired a special attention due, particularly, to the element instability and, consequently, to their lixiviation and to their peculiarities which are essential in the radioactivity penetration in the food chains; the other important parameters are the produced amounts and the noxiousnesses. New commercial liquid scintillation counters allow rapid α/β measurements. Associated with liquid-liquid extraction techniques, rapid and selective actinide analyses are possible. Among various actinide extractants, such as amines or organophosphorus compounds, we were particularly interested in tri-n-octyl-phosphine oxide (TOPO). Uranium, thorium and americium extractions with (TOPO) in toluene have been investigated. A systematic study of the counting parameters of a PACKARD 2550 TR/AB TM liquid scintillation analyzer is under completion

  2. The NMR probe of high-Tc materials and correlated electron systems

    CERN Document Server

    Walstedt, Russell E

    2018-01-01

    This new edition updates readers in three areas of NMR studies, namely, recent developments in high-Tc materials, heavy fermion systems and actinide oxides are presented.  The NMR probe has yielded a vast array of data for solid state materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. The last two parts of the book are completely new in this edition, while the first part has seen major updates. This edition features the latest developments for high-Tc materials, especially the advances in the area of pseudogap studies are reviewed.  An in depth overview of heavy fermion systems is presented in the second part,  notably Kondo lattices, quantum critical points and unconventional superconductivity are areas of intense research recently and are covered extensively. Finally, valuable information from NMR studies with actinide oxides will be provided. Ongoing analysis and discussion of NMR data have resulted in a wealth o...

  3. Special actinide nuclides: Fuel or waste?

    International Nuclear Information System (INIS)

    Srinivasan, M.; Rao, K.S.; Dingankar, M.V.

    1989-01-01

    The special actinide nuclides such as Np, Cm, etc. which are produced as byproducts during the operation of fission reactors are presently looked upon as 'nuclear waste' and are proposed to be disposed of as part of high level waste in deep geological repositories. The potential hazard posed to future generations over periods of thousands of years by these long lived nuclides has been a persistent source of concern to critics of nuclear power. However, the authors have recently shown that each and every one of the special actinide nuclides is a better nuclear fuel than the isotopes of plutonium. This finding suggests that one does not have to resort to exotic neutron sources for transmuting/incinerating them as proposed by some researchers. Recovery of the special actinide elements from the waste stream and recycling them back into conventional fission reactors would eliminate one of the stigmas attached to nuclear energy

  4. Research needs in metabolism and dosimetry of the actinides

    International Nuclear Information System (INIS)

    Richmond, C.R.

    1978-01-01

    The following topics are discussed: uranium mine and mill tailings; environmental standards; recommendations of NCRP and ICRP; metabolic models and health effects; life-time exposures to actinides and other alpha emitters; high-specific-activity actinide isotopes versus naturally occurring isotopic mixtures of uranium isotopes; adequacy of the n factor; and metabolism and dosimetry;

  5. Theoretical and experimental study of actinide complexes with monoamides and organophosphorus ligands in solution

    International Nuclear Information System (INIS)

    Ribokaite, Kristina

    2013-01-01

    Monoamides and organophosphate are of great interest for the nuclear fuel cycle. Such ligands can selectively extract actinides in liquid-liquid extraction processes. The structure of the extractant (its functional group and its alkyl substituents) has a predominant role in the selective separation of actinides. This thesis concerns the theoretical and experimental studies of model systems in the aim of better understanding of the effect on molecular structures of the complexes. Structures of actinides complexes formed with model ligands in simple media (water or methanol in the presence of nitrate ions) have been characterized. At first, the complexation of uranyl by monoamide and phosphine oxide was studied in water and methanol. Molecular Dynamics simulations and DFT calculations were used to quantify the stability of uranyl complexes with those ligands, and to determine their structural properties. The theoretical results were then compared with experimental results obtained by UV-visible, infrared, Raman and EXAFS on the same chemical systems. The results were used to highlight the greater stability of uranyl complexes with phosphine oxide and monoamides. Further spectroscopic measurements combined with molecular modeling were used to gain a better understanding of the coordination mode of nitrate ion around the uranyl in both water and methanol. Finally, DFT calculations were used to study the influence of the structure of the monoamide or organophosphorus ligand and their interaction with the actinides (IV, VI) including steric effects in the first coordination sphere. (author) [fr

  6. Reanalysis of gastrointestinal absorption factors for plutonium and other actinide elements

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Larsen, R.P.; Toohey, R.E.; Moretti, E.S.; Oldham, R.D.; Spaletto, M.I.; Engel, M.C.

    1981-01-01

    This project studies the gastrointestinal absorption of plutonium and other actinide elements relevant to nuclear power production, at concentrations at or below their respective maximum permissible concentrations (MPC's) in drinking water, using high specific activity isotopes. The gastrointestinal absorption of plutonium is measured in mice, rats, and dogs exposed to plutonium either via drinking water or by gavage. Plutonium concentrations are determined in liver and eviscerated carcass at 6 days (mice and rats) or 4 weeks (dogs). Administered solutions are 1 x 10 -10 M in Pu (the molar concentration at MPC for 239 Pu) and contain one of several high specific activity isotopes ( 237 Pu, 47-day half-life; 236 Pu, 2.8-year half-life; 238 Pu, 86-year half-life). Fasted mice and rats, administered plutonium solutions that are: (1) low in concentration (10- 10 M); and (2) carefully prepared to assure a given oxidation state and to avoid hydrolysis and polymes, and major policy issues. The first HEED for near-term battery energy storage systems (lead/acid, nickel/zinc, and nickel/iron) astention being paid to potential releases of radionuclides at relatively short times after disposal

  7. Separation of actinides and long-lived fission products from high-level radioactive wastes (a review)

    International Nuclear Information System (INIS)

    Kolarik, Z.

    1991-11-01

    The management of high-level radioactive wastes is facilitated, if long-lived and radiotoxic actinides and fission products are separated before the final disposal. Especially important is the separation of americium, curium, plutonium, neptunium, strontium, cesium and technetium. The separated nuclides can be deposited separately from the bulk of the high-level waste, but their transmutation to short-lived nuclides is a muchmore favourable option. This report reviews the chemistry of the separation of actinides and fission products from radioactive wastes. The composition, nature and conditioning of the wastes are described. The main attention is paid to the solvent extraction chemistry of the elements and to the application of solvent extraction in unit operations of potential partitioning processes. Also reviewed is the behaviour of the elements in the ion exchange chromatography, precipitation, electrolysis from aqueous solutions and melts, and the distribution between molten salts and metals. Flowsheets of selected partitioning processes are shown and general aspects of the waste partitioning are shortly discussed. (orig.) [de

  8. Synthesis and characterization of ruthenium fluorides and oxide fluorides with high oxidation states

    International Nuclear Information System (INIS)

    Meublat, L.

    1989-10-01

    The synthesis of ruthenium fluorides and oxide fluorides with high oxidation states was attempted from dioxide RuO 2 and tetroxide RuO 4 . Three fluorinating agents were used: fluorine, chlorine trifluoride and krypton difluoride. The reactions were achieved in anhydrous hydrogen fluoride at room temperature. Thus, the reaction of RuO 4 with CIF 3 enabled us to prepare chloryl hexafluororuthenate (V), CIO 2 + RuF 6 - , a new compound well identified by vibrational spectroscopy (infra-red and Raman), the structure of which was determined. The reaction of KrF 2 with RuO 4 gave the oxide tetrafluoride RuOF 4 , the previously published syntheses and properties of which were not in agreement with each other. This compound was definitely characterized here by chemical analysis, infra-red spectroscopy and X-ray powder diffraction. The product of thermal decomposition (70 0 C) of RuOF 4 is presumably RuF 4 since only oxygen is liberated during this decomposition. At last, the reaction of KrF 2 with RuO 2 probably leads to the formation of the new oxide fluoride RuO 2 F 4 . Indeed, no oxygen is given off during this reaction, the chemical analysis of the red-orange coloured solid residue is almost in agreement with the one proposed and its infra-red absorption spectrum indicates the presence of ruthenium-oxygen and ruthenium-terminal and bridging fluorine bonds [fr

  9. Synthesis and characterization of ruthenium fluorides and oxide fluorides with high oxidation states

    International Nuclear Information System (INIS)

    Meublat, L.

    1989-01-01

    The synthesis of ruthenium fluorides and oxide fluorides with high oxidation states was attempted from dioxide RuO 2 and tetroxide RuO 4 . Three fluorinating agents were used: fluorine, chlorine trifluoride and krypton difluoride. The reactions were achieved in anhydrous hydrogen fluoride at room temperature. Thus, the reaction of RuO 4 with CIF 3 enabled us to prepare chloryl hexafluororuthenate (V), ClO 2 + RuF 6 - , a new compound well idendified by vibrational spectroscopy (infra-red and Raman), the structure of which was determined. The reaction of KrF 2 with RuO 4 gave the oxide tetrafluoride RuOF 4 , the previously published syntheses and properties of which were not in agreement with each other. This compound was definitely characterized here by chemical analysis, infra-red spectroscopy and X-ray powder diffraction. The product of thermal decomposition (70 0 C) of RuOF 4 is presumably RuF 4 since only oxygen is liberated during this decomposition. At last, the reaction of KrF 2 with RuO 2 probably leads to the formation of the new oxide fluoride RuO 2 F 4 . Indeed, no oxygen is given off during this reaction, the chemical analysis of the red-orange coloured solid residue is almost in agreement with the one proposed and its infra-red absorption spectrum indicates the presence of ruthenium-oxygen and ruthenium-terminal and bridging fluorine bonds [fr

  10. Concentration of actinides in the food chain

    International Nuclear Information System (INIS)

    Bulman, R.A.

    1976-06-01

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  11. 1982 Annual Status Report Plutonium Fuels and Actinide Programme

    International Nuclear Information System (INIS)

    Lindner, R.

    1983-01-01

    The programme of the Transuranium Institute has long included work on advanced fuels for fast breeder reactors. Study of the swelling of carbide and nitride fuels is now nearing completion, the retention of fission gases in bubbles of different sizes in the fuel having been quantified as function of burn-up and temperature. An important step forward has been achieved in the studies of the Equation of State of Nuclear Fuels up to 5000 K. Formation of some of the less abundant isotopes in PWR fuel has been determined experimentally. Aerosol formation during the fabrication of plutonium containing fuels, part of the activity Safe Handling of Plutonium Fuel has been studied. Head-End Processing of carbide fuels has continued experiments with high burn up mixed carbides. In the field of actinide research the preparation and characterisation of pure specimens is carried out. Effect of actinides on the properties of waste glasses is investigated

  12. Method for the recovery of actinide elements from nuclear reactor waste

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Delphin, W.H.; Mason, G.W.

    1979-01-01

    A process is described for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of dihexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid

  13. Actinide transmutation using inert matrix fuels versus recycle in a low conversion fast burner reactor

    Energy Technology Data Exchange (ETDEWEB)

    Deinert, M.R.; Schneider, E.A.; Recktenwald, G.; Cady, K.B. [The Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station, C2200, Austin, 78712 (United States)

    2009-06-15

    Reducing the disposal burden of the long lived radioisotopes that are contained within spent uranium oxide fuel is essential for ensuring the sustainability of nuclear power. Because of their non-fertile matrices, inert matrix fuels (IMFs) could allow light-water reactors to achieve a significant burn down of plutonium and minor actinides that are that are currently produced as a byproduct of operating light-water reactors. However, the extent to which this is possible is not yet fully understood. We consider a ZrO{sub 2} based IMF with a high transuranic loading and show that the neutron fluence (and the subsequent fuel residence time required to achieve it) present a practical limit for the achievable actinide burnup. The accumulation of transuranics in spent uranium oxide fuel is a major obstacle for the sustainability of nuclear power. While commercial light-water reactors (LWR's) produce these isotopes, they can be used to transmute them. At present, the only viable option for doing this is to partly fuel reactors with mixed oxide fuel (MOX) made using recycled plutonium. However, because of parasitic neutron capture in the uranium matrix of MOX, considerable plutonium and minor actinides are also bred as the fuel is burned. A better option is to entrain the recycled isotopes in a non-fertile matrix such as ZrO{sub 2}. Inert matrices such as these were originally envisioned for burning plutonium from dismantled nuclear weapons [1]. However, because they achieve a conversion ratio of zero, they have also been considered as a better alternative to MOX [2-6]. Plutonium and minor actinides dominate the long term heat and radiological outputs from spent nuclear fuel. Recent work has shown that that IMFs can be used to reduce these outputs by at least a factor of four, on a per unit of energy generated basis [6]. The degree of reduction is strongly dependent on IMF burnup. In principle, complete transmutation of the transuranics could be achieved though this

  14. An optimization methodology for heterogeneous minor actinides transmutation

    Science.gov (United States)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald

    2018-04-01

    In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.

  15. Probing the chemistry, electronic structure and redox energetics in pentavalent organometallic actinide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Christopher R [Los Alamos National Laboratory; Vaughn, Anthony E [Los Alamos National Laboratory; Morris, David E [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2008-01-01

    Complexes of the early actinides (Th-Pu) have gained considerable prominence in organometallic chemistry as they have been shown to undergo chemistries not observed with their transition- or lanthanide metal counterparts. Further, while bonding in f-element complexes has historically been considered to be ionic, the issue of covalence remains a subject of debate in the area of actinide science, and studies aimed at elucidating key bonding interactions with 5f-orbitals continue to garner attention. Towards this end, our interests have focused on the role that metal oxidation state plays in the structure, reactivity and spectral properties of organouranium complexes. We report our progress in the synthesis of substituted U{sup V}-imido complexes using various routes: (1) Direct oxidation of U{sup IV}-imido complexes with copper(I) salts; (2) Salt metathesis with U{sup V}-imido halides; (3) Protonolysis and insertion of an U{sup V}-imido alkyl or aryl complex with H-N{double_bond}CPh{sub 2} or N{triple_bond}C-Ph, respectively, to form a U{sup V}-imido ketimide complex. Further, we report and compare the crystallographic, electrochemical, spectroscopic and magnetic characterization of the pentavalent uranium (C{sub 5}Me{sub 5}){sub 2}U({double_bond}N-Ar)(Y) series (Y = OTf, SPh, C{triple_bond}C-Ph, NPh{sub 2}, OPh, N{double_bond}CPh{sub 2}) to further interrogate the molecular, electronic, and magnetic structures of this new class of uranium complexes.

  16. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  17. Synthesis and characterization of brannerite wasteforms for the immobilization of mixed oxide fuel residues

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D.J.; Stennett, M.C.; Hyatt, N.C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2016-07-01

    A possible method for the reduction of civil Pu stockpiles is the reuse of Pu in mixed oxide fuel (MOX). During MOX fuel production, residues unsuitable for further recycle will be produced. Due to their high actinide content MOX residues require immobilization within a robust host matrix. Although it is possible to immobilize actinides in vitreous wasteforms; ceramic phases, such as brannerite (UTi{sub 2}O{sub 6}), are attractive due to their high waste loading capacity and relative insolubility. A range of uranium brannerite, formulated Gd{sub x}U{sub 1-x}Ti{sub 2}O{sub 6}, were prepared using a mixed oxide route. Charge compensation of divalent and trivalent cations was expected to occur via the oxidation of U{sup 4+} to higher valence states (U{sup 5+} or U{sup 6+}). Gd{sup 3+} was added to act as a neutron absorber in the final Pu bearing wasteform. X-ray powder diffraction of synthesised specimens found that phase distribution was strongly affected by processing atmosphere (air or Ar). In all cases prototypical brannerite was formed accompanied by different secondary phases dependent on processing atmosphere. Microstructural analysis (SEM) of the sintered samples confirmed the results of the X-ray powder diffraction. The preliminary results presented here indicate that brannerite is a promising host matrix for mixed oxide fuel residues. (authors)

  18. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ghumman, S. S. [Department of Physics, Sant Longowal Institute of Engineering and Technology (Deemed University), Longowal, Sangrur-148106, Punjab, India s-ghumman@yahoo.com (India)

    2015-08-28

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  19. Actinide colloid generation in groundwater. Part 2

    International Nuclear Information System (INIS)

    Kim, J.I.

    1991-01-01

    The progress made in the investigation of actinide colloid generation in groundwater is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudo colloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC Mirage II project, in particular the complexation and colloids research area

  20. Review and needs in actinide chemistry in relation with biological purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E.; Moulin, V.; Bion, L.; Doizi, D.; Moulin, C.; Cote, G.; Madic, C.; Van der Lee, J

    2004-07-01

    In case of accidental release of radionuclides in the environment, actinides could occur and may present an healthy risk for human beings. In order to study their behavior in human organism (metabolism, retention, excretion), it is of prime importance to know solution actinide chemistry, and more particularly thermodynamic constants, which will allow to determine their speciation: speciation governs biological availability and toxicity of elements and is also of great interest for decorporation purposes. In this framework, a CEA working group on speciation has been created in order to share data both on thermodynamic constants and on speciation analytical methods, interesting chemists, environmentalists and biologists. It has been focused, in a first time, on actinides. The purpose of this paper is to present the state of the art on actinide speciation within biological media and to focus on the lack of information in order to orientate future research. (authors)

  1. The cosmic ray actinide charge spectrum derived from a 10 m2 array of solid state nuclear track detectors in Earth orbit

    International Nuclear Information System (INIS)

    Donnelly, J.; Thompson, A.; O'Sullivan, D.; Drury, L.O'C.; Wenzel, K.-P.

    2001-01-01

    The DIAS-ESTEC Ultra Heavy Cosmic Ray Experiment (UHCRE) on the Long Duration Exposure Facility, collected approximately 3000 cosmic ray nuclei with Z>65 in the energy region E>1.5 GeV nucleon -1 during a six year exposure in Earth orbit. The entire accessible collecting area of the solid state nuclear track detector (SSNTD) array has been scanned for actinides, yielding a sample of 30 from an exposure of ∼150 m 2 sr yr. The UHCRE experimental setup is described and the observed charge spectrum presented. The current best value for the cosmic ray actinide relative abundance, (Z>88)/(74≤Z≤87), is reported

  2. Experimental studies of narrow band effects in the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, M.B.

    1976-01-01

    In many actinide metallic systems the f-electrons exhibit band behavior. This is a consequence of direct f-f wave function overlap or hybridization of f-electrons with s-, p-, and d-electrons. The f-bands can be responsible for large electronic densities of states at the Fermi level which may lead to band magnetism of various types. Although the concept of valence instabilities must be approached cautiously especially in the light actinides, it would not be surprising to observe them in the future, especially in Am compounds.

  3. Experimental studies of narrow band effects in the actinides

    International Nuclear Information System (INIS)

    Brodsky, M.B.

    1976-01-01

    In many actinide metallic systems the f-electrons exhibit band behavior. This is a consequence of direct f-f wave function overlap or hybridization of f-electrons with s-, p-, and d-electrons. The f-bands can be responsible for large electronic densities of states at the Fermi level which may lead to band magnetism of various types. Although the concept of valence instabilities must be approached cautiously especially in the light actinides, it would not be surprising to observe them in the future, especially in Am compounds

  4. J-ACTINET activities of training and education for actinide science research

    International Nuclear Information System (INIS)

    Miato, Kazuo; Konashi, Kenji; Yamana, Hajimu; Yamanaka, Shinsuke; Nagasaki, Shinya; Ikeda, Yasuhisa; Sato, Seichi; Arita, Yuji; Idemitsu, Kazuya; Koyama, Tadafumi

    2011-01-01

    Actinide science research is indispensable to maintain sustainable development of innovative nuclear technology, especially advanced fuels, partitioning/reprocessing, and waste management. For actinide science research, special facilities with containment and radiation shields are needed to handle actinide materials since actinide elements are γ-, α- and neutron-emitters. The number of facilities for actinide science research has been decreased, especially in universities, due to the high maintenance cost. J-ACTINET was established in 2008 to promote and facilitate actinide science research in close cooperation with the facilities and to foster many of young scientists and engineers to be actively engaged in the fields of actinide science. The research program was carried out, through which young researchers were expected to learn how to make experiments with advanced experimental tools and to broaden their horizons. The summer schools and computational science school were held to provide students, graduate students, and young researchers with the opportunities to come into contact with actinide science research. In these schools, not only the lectures, but also the practical exercises were made as essential part. The overseas dispatch program was also carried out, where graduate students and young researchers were sent to the international summer schools and conferences. (author)

  5. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations.

  6. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    International Nuclear Information System (INIS)

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations

  7. Synroc tailored waste forms for actinide immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Daniel J.; Vance, Eric R. [Australian Nuclear Science and Technology Organisation, Kirrawee (Australia). ANSTOsynroc, Inst. of Materials Engineering

    2017-07-01

    Since the end of the 1970s, Synroc at the Australian Nuclear Science and Technology Organisation (ANSTO) has evolved from a focus on titanate ceramics directed at PUREX waste to a platform waste treatment technology to fabricate tailored glass-ceramic and ceramic waste forms for different types of actinide, high- and intermediate level wastes. The particular emphasis for Synroc is on wastes which are problematic for glass matrices or existing vitrification process technologies. In particular, nuclear wastes containing actinides, notably plutonium, pose a unique set of requirements for a waste form, which Synroc ceramic and glass-ceramic waste forms can be tailored to meet. Key aspects to waste form design include maximising the waste loading, producing a chemically durable product, maintaining flexibility to accommodate waste variations, a proliferation resistance to prevent theft and diversion, and appropriate process technology to produce waste forms that meet requirements for actinide waste streams. Synroc waste forms incorporate the actinides within mineral phases, producing products which are much more durable in water than baseline borosilicate glasses. Further, Synroc waste forms can incorporate neutron absorbers and {sup 238}U which provide criticality control both during processing and whilst within the repository. Synroc waste forms offer proliferation resistance advantages over baseline borosilicate glasses as it is much more difficult to retrieve the actinide and they can reduce the radiation dose to workers compared to borosilicate glasses. Major research and development into Synroc at ANSTO over the past 40 years has included the development of waste forms for excess weapons plutonium immobilization in collaboration with the US and for impure plutonium residues in collaboration with the UK, as examples. With a waste loading of 40-50 wt.%, Synroc would also be considered a strong candidate as an engineered waste form for used nuclear fuel and highly

  8. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  9. New density functional theory approaches for enabling prediction of chemical and physical properties of plutonium and other actinides.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Ann Elisabet

    2012-01-01

    this functional the Harmonic Oscillator Gas is providing the necessary reference system for the strong correlation and localization occurring in actinides. Preliminary testing shows that the new Hao-Armiento-Mattsson (HAM) functional gives a trend towards improved results for the crystalline copper oxide test system we have chosen. This test system exhibits the same exchange-correlation physics as the actinide systems do, but without the relativistic effects, giving access to a pure testing ground for functionals. During the work important insights have been gained. An example is that currently available functionals, contrary to common belief, make large errors in so called hybridization regions where electrons from different ions interact and form new states. Together with the new understanding of functional issues, the Dirac implementation into the RSPt code will permit us to gain more fundamental understanding, both quantitatively and qualitatively, of materials of importance for Sandia and the rest of the Nuclear Weapons complex.

  10. Some new developments in actinide solvent extraction systems

    International Nuclear Information System (INIS)

    Navratil, J.D.

    1988-01-01

    Consideration is given to application of neutral and acid organophosphoric compounds, adsorbed on various natural and synthetic carriers, in extraction chromatography for separation and isolation of actinides. It is shown that trioctylphosphine oxide (TOPO) on a solid combustible carrier represents the promising material for plutonium extraction. It was established experimentally that polyurethane foam possessed the maximal capacity with respect to TOPO; extractant losses at that after passing of 50 column volumes of nitric acid don't exceed 2 %

  11. Minor Actinide Laboratory at JRC-ITU: Fuel fabrication facility

    International Nuclear Information System (INIS)

    Fernandez, A.; McGinley, J.; Somers, J.

    2008-01-01

    The Minor Actinide Laboratory (MA-lab) of the Institute for Transuranium Elements is a unique facility for the fabrication of fuels and targets containing minor actinides (MA). It is of key importance for research on Partitioning and Transmutation in Europe, as it is one of the only dedicated facilities for the fabrication of MA containing materials, either for property measurements or for the production of test pins for irradiation experiments. In this paper a detailed description of the MA-Lab facility and the fabrication processes developed to fabricate fuels and samples containing high content of minor actinides is given. In addition, experience gained and improvements are also outlined. (authors)

  12. Sol-gel chemistry applied to the synthesis of polymetallic oxides including actinides reactivity and structure from solution to solid state

    International Nuclear Information System (INIS)

    Lemonnier, St.

    2006-02-01

    Minor actinides transmutation is studied at present in order to reduce the radiotoxicity of nuclear waste and the assessment of its technical feasibility requires specific designed materials. When considering americium, yttria stabilized zirconia (Am III YII Zriv)Or x is among the ceramic phases that one which presents the required physico-chemical properties. An innovative synthesis of this mixed oxide by sol-gel process is reported in this manuscript. The main aim of this work is to adjust the reactivity of the different metallic cations in aqueous media using complexing agent, in order to initiate a favourable interaction for a homogeneous elements repartition in the forming solid phase. The originality of the settled synthesis lies on an in-situ formation of a stable and monodisperse nano-particles dispersion in the presence of acetylacetone. The main reaction mechanisms have been identified: the sol stabilisation results from an original interaction between the three compounds (Zrly, trivalent cations and acetylacetone). The sol corresponds to a structured system at the nanometer scale for which zirconium and trivalent cations are homogeneously dispersed, preliminary to the sol-gel transition. Furthermore, preliminary studies were carried out with a view to developing materials. They have demonstrated that numerous innovative and potential applications can be developed by taking advantage of the direct and controlled formation of the sol and by adapting the sol-gel transition. The most illustrating result is the preparation of a sintered pellet with the composition Am0,13Zro,73Yo,0901,89 using this approach. (author)

  13. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals

    Science.gov (United States)

    Garza, Alejandro J.; Sousa Alencar, Ana G.; Scuseria, Gustavo E.

    2015-12-01

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f0 actinyl series (UO22+, NpO23+, PuO24+), the isoelectronic NUN, and thorium (ThO, ThO2+) and nobelium (NoO, NoO2) oxides are studied.

  14. Investigation of the complexation and the migration of actinides and non-radioactive substances with humic acids under geogenic conditions. Complexation of humic acids with actinides in the ocidation state IV Th, U, Np

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, S.; Schmeide, K.; Brendler, V.; Krepelova, A.; Mibus, J.; Geipel, G.; Heise, K.H.; Bernhard, G.

    2004-03-01

    Objective of this project was the study of basic interaction and migration processes of actinides in the environment in presence of humic acids (HA). To obtain more basic knowledge on these interaction processes synthetic HA with specific functional properties as well as {sup 14}C-labeled HA were synthesized and applied in comparison to the natural HA Aldrich. One focus of the work was on the synthesis of HA with distinct redox functionalities. The obtained synthetic products that are characterized by significantly higher Fe(III) redox capacities than Aldrich HA were applied to study the redox properties of HA and the redox stability of U(VI) humate complexes. It was confirmed that phenolic OH groups play an important role for the redox properties of HA. However, the results indicate that there are also other processes than the single oxidation of phenolic OH groups and/or other functional groups contributing to the redox behavior of HA. A first direct-spectroscopic proof for the reduction of U(VI) by synthetic HA with distinct redox functionality was obtained. The complexation behavior of synthetic and natural HA with actinides (Th, Np, Pu) was studied. Structural parameters of Pu(III), Th(IV), Np(IV) and Np(V) humates were determined by X-ray absorption spectroscopy (XAS). The results show that carboxylate groups dominate the interaction between HA and actinide ions. These are predominant monodentately bound. The influence of phenolic OH groups on the Np(V) complexation by HA was studied with modified HA (blocked phenolic OH groups). The blocking of phenolic OH groups induces a decrease of the number of maximal available complexing sites of HA, whereas complex stability constant and Np(V) near-neighbor surrounding are not affected. The effects of HA on the sorption and migration behavior of actinides was studied in batch and column experiments. Th(IV) sorption onto quartz and Np(V) sorption onto granite and its mineral constituents are affected by the pH value

  15. Preliminary design and neutronic analysis of a laser fusion driven actinide waste burning hybrid reactor

    International Nuclear Information System (INIS)

    Berwald, D.H.; Duderstadt, J.J.

    1979-01-01

    The laser fusion driven actinide waste burner (LDAB) system investigated uses partitioned fission power reactor generated actinide wastes dissolved in a molten tin alloy as feed material (or fuel). A novel fuel processing concept based on the high-temperature precipitation of ''actinide--nitrides'' from a liquid tin solution is proposed. This concept will allow for fission product removal to be performed entirely within the device at high burnup. No attempt has been made to optimize this system, but potential performance is impressive. The equilibrium LDAB design consumes 7.6 MT/y of actinide waste. This corresponds to the waste output from 136 light water reactors [1000 MW (electric)]. The mean life of an actinide atom in the LDAB is only 4.5 y; and actinides, once charged to the LDAB, might be reprocessed fewer times during irradiation than in previously proposed systems

  16. Safe actinide disposition in molten salt reactors

    International Nuclear Information System (INIS)

    Gat, U.

    1997-01-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs

  17. Separation of actinide elements by solvent extraction using centrifugal contactors in the NEXT process

    International Nuclear Information System (INIS)

    Nakahara, Masaumi; Sano, Yuichi; Koma, Yoshikazu; Kamiya, Masayoshi; Shibata, Atsuhiro; Koizumi, Tsutomu; Koyama, Tomozo

    2007-01-01

    Using the advanced aqueous reprocessing system named NEXT process, actinides recovery was attempted by both a simplified solvent extraction process using TBP as an extractant for U, Pu and Np co-recovery and the SETFICS process for Am and Cm recovery from the raffinate. In U, Pu and Np co-recovery experiments a single cycle flow sheet was used under high nitric acid concentration in the feed solution or scrubbing solution. High nitric acid concentration in the feed solution aided Np oxidation not only in the feed solution, but also at the extraction section. This oxidation reaction accomplished Np extraction by TBP with U and Pu. Most of Np could be recovered into the product solution. In the SETFICS process, a TRUEX solvent of 0.2 mol/dm 3 CMPO and 1.4 mol/dm 3 TBP in n-dodecane was employed instead of 0.2 mol/dm 3 CMPO and 1.0 mol/dm 3 TBP in n-dodecane in order to increase the loading of metals. Instead of sodium nitrate, hydroxylamine nitrate was applied to this experimental flow sheet in accordance with a 'salt-free' concept. The counter current experiment succeeded with the Am and Cm product. On the high-loading flow sheet, compared with the previous flow sheet, the flow of the aqueous effluents and spent solvent were expected to decrease by about one half. Two solvent extraction experiments for actinides recovery demonstrated the utility of the flow sheet of these processes in the NEXT process. (author)

  18. The cosmic ray actinide charge spectrum derived from a 10 m{sup 2} array of solid state nuclear track detectors in Earth orbit

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J. E-mail: jd@cp.dias.ie; Thompson, A.; O' Sullivan, D.; Drury, L.O' C.; Wenzel, K.-P

    2001-06-01

    The DIAS-ESTEC Ultra Heavy Cosmic Ray Experiment (UHCRE) on the Long Duration Exposure Facility, collected approximately 3000 cosmic ray nuclei with Z>65 in the energy region E>1.5 GeV nucleon{sup -1} during a six year exposure in Earth orbit. The entire accessible collecting area of the solid state nuclear track detector (SSNTD) array has been scanned for actinides, yielding a sample of 30 from an exposure of {approx}150 m{sup 2} sr yr. The UHCRE experimental setup is described and the observed charge spectrum presented. The current best value for the cosmic ray actinide relative abundance, (Z>88)/(74{<=}Z{<=}87), is reported.

  19. The US/UK Actinides Experiment at the Dounreay PFR

    International Nuclear Information System (INIS)

    Raman, S.; Walker, R.L.; Dickens, J.K.; Murphy, B.D.

    1997-01-01

    The United States and the United Kingdom have been engaged in a joint research program in which samples of higher actinides were irradiated in the 600-MW Dounreay Prototype Fast Reactor in Scotland. Analytical results using mass spectrometry and radiometry for actinides and fission products are now available for the samples in Fuel Pins 1 and 2, which were irradiated for 63 full-power days, and for the samples in Fuel Pin 4, which were irradiated for 492 full-power days. Results from these three fuel pins are providing estimates of integral cross sections and fission yields

  20. Studies of Actinides Reduction on Iron Surfaces by Means of Resonant Inelastic X-ray Scattering

    International Nuclear Information System (INIS)

    Kvashnina, K.O.; Butorin, S.M.; Shuh, D.K.; Ollila, K.; Soroka, I.; Guo, J.-H.; Werme, L.; Nordgren, J.

    2006-01-01

    The interaction of actinides with corroded iron surfaces was studied using resonant inelastic x-ray scattering (RIXS) spectroscopy at actinide 5d edges. RIXS profiles, corresponding to the f-f excitations are found to be very sensitive to the chemical states of actinides in different systems. Our results clearly indicate that U(VI) (as soluble uranyl ion) was reduced to U(IV) in the form of relatively insoluble uranium species, indicating that the iron presence significantly affects the mobility of actinides, creating reducing conditions. Also Np(V) and Pu (VI) in the ground water solution were getting reduced by the iron surface to Np(IV) and Pu (IV) respectively. Studying the reduction of actinides compounds will have an important process controlling the environmental behavior. Using RIXS we have shown that actinides, formed by radiolysis of water in the disposal canister, are likely to be reduced on the inset corrosion products and prevent release from the canister

  1. Thermodynamic systematics of oxides of americium, curium, and neighboring elements

    International Nuclear Information System (INIS)

    Morss, L.R.

    1984-01-01

    Recently-obtained calorimetric data on the sesquioxides and dioxides of americium and curium are summarized. These data are combined with other properties of the actinide elements to elucidate the stability relationships among these oxides and to predict the behavior of neighboring actinide oxides. 45 references, 4 figures, 5 tables

  2. Burn of actinides in MOX fuel cells; Quemado de actinidos en celdas de combustible MOX

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The spent fuel from nuclear reactors is stored temporarily in dry repositories in many countries of the world. However, the main problem of spent fuel, which is its high radio-toxicity in the long term, is not solved. A new strategy is required to close the nuclear fuel cycle and for the sustain ability of nuclear power generation, this strategy could be the recycling of plutonium to obtain more energy and recycle the actinides generated during the irradiation of the fuel to transmute them in less radioactive radionuclides. In this work we evaluate the quantities of actinides generated in different fuels and the quantities of actinides that are generated after their recycling in a thermal reactor. First, we make a reference calculation with a regular enriched uranium fuel, and then is changed to a MOX fuel, varying the plutonium concentrations and determining the quantities of actinides generated. Finally, different amounts of actinides are introduced into a new fuel and the amount of actinides generated at the end of the fuel burn is calculated, in order to determine the reduction of minor actinides obtained. The results show that if the concentration of plutonium in the fuel is high, then the production of minor actinides is also high. The calculations were made using the cell code CASMO-4 and the results obtained are shown in section 6 of this work. (Author)

  3. Leaching of irradiated polymers: solution characterization and actinides complexation

    International Nuclear Information System (INIS)

    Fromentin, Elodie

    2017-01-01

    The first aim of this work is to study the degradation of an industrial poly-esterurethane (PURm) by radio-oxidation and then by leaching in an alkaline aqueous solution. The second aim is to measure the complexing power of hydro-soluble degradation products (HDP) with actinides. To reach these goals, PURm was first characterized and then radio-oxidized at room temperature with γ rays up to 10 MGy. Second, it was leached at pH 13.3 at different temperature values. Numerous analytical techniques were employed in order to characterize the HDP which were obtained. Europium(III) was used as an analogue of actinides(III) and the behavior of HDP with europium(III) was analyzed by time-resolved luminescence spectroscopy (TRLS). Whatever the dose received by PURm, adipic acid and butane-1,4-diol are the two main HDP in leachates. The leaching data acquired at 40 and 60 C, on the 1 MGy radio-oxidized PURm, correlate with the model given by Yoon et al. (1997). However, the data at room temperature (22 C in average) are not in agreement with the model. Nevertheless, it seems that the plateau which was reached at long-term leaching is the same whatever the temperature used in this study. The results allow to conclude that the predominant mechanism occurring during the leaching of unirradiated and radio-oxidized PURm in an alkaline medium is the hydrolysis of the soft segments ester groups. The complexation of europium(III) by HDP in alkaline medium was demonstrated. The measurement of the complexing power and the identification of ligands was achieved under certain conditions. (author) [fr

  4. Chemical factors controlling actinide sorption in the environment

    International Nuclear Information System (INIS)

    Beall, G.W.; Allard, B.

    1979-01-01

    The solid geologic media and the aqueous phase are of equal importance for the retention of actinides in the environment. The composition of the water is largely determined by the mineralogical composition of the rock that it is in equilibrium with. The chemical form of the actinides and their sorption, are highly dependent on the composition of the water with respect to pH, redox potential, and concentration of anions like carbonate, phosphate, fluoride, and organic acids

  5. Actinides burnup in a sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Pineda A, R.; Martinez C, E.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The burnup of actinides in a nuclear reactor is been proposed as part of an advanced nuclear fuel cycle, this process would close the fuel cycle recycling some of the radioactive material produced in the open nuclear fuel cycle. These actinides are found in the spent nuclear fuel from nuclear power reactors at the end of their burnup in the reactor. Previous studies of actinides recycling in thermal reactors show that would be possible reduce the amounts of actinides at least in 50% of the recycled amounts. in this work, the amounts of actinides that can be burned in a fast reactor is calculated, very interesting results surge from the calculations, first, the amounts of actinides generated by the fuel is higher than for thermal fuel and the composition of the actinides vector is different as in fuel for thermal reactor the main isotope is the {sup 237}Np in the fuel for fast reactor the main isotope is the {sup 241}Am, finally it is concluded that the fast reactor, also generates important amounts of waste. (Author)

  6. Analytical applications of superacid dissolution of actinide and lanthanide substrates

    International Nuclear Information System (INIS)

    Avens, L.R.; Eller, P.G.; Asprey, L.B.; Abney, K.D.; Kinkead, S.A.

    1987-01-01

    The superacid system HF/SbF 5 is extraordinarily effective for total dissolution of actinide and lanthanide ceramic oxides, fluorides, and metals. Optical or gamma spectroscopy can be used directly on the solutions. Evaporation of the HF/SbF 5 solvent under vacuum leaves a residue which is easily dissolved by ordinary mineral acids. The resulting aqueous solutions are readily amenable to conventional analytical methods

  7. Role of d and f orbitals in the geometries of low-valent actinide compounds. Ab initio studies of U(CH3)3, Np(CH3)3, and Pu(CH3)3

    International Nuclear Information System (INIS)

    Ortiz, J.V.; Hay, P.J.; Martin, R.L.

    1992-01-01

    While organoactinide compounds are traditionally characterized by high oxidation states and coordination numbers, the synthesis, chemistry, and electronic properties of low-valent actinide complexes have been receiving greater attention in recent years. Specific examples of complexes in the AnL family are represented by U[N(SiMe 3 ) 2 ] 3 , U[CH(SiMe 3 ) 2 ] 3 , and Np and Pu analogues, for which cases the ligands adopt a pyramidal arrangement around the actinide. In this communication, the authors report the results of one of the first studies of such low-valent complexes to be carried out using ab initio electronic structure techniques. Related molecules include lanthanide species of the form LnX 3 , which also adopt pyramidal geometries and which have been the subject of semi-empirical theoretical investigations. Transition metal MX 3 species, by contrast, can exhibit either planar or pyramidal forms, depending on the nature of the metal and the ligand. 12 refs., 1 fig., 1 tab

  8. Burning actinides in very hard spectrum reactors

    International Nuclear Information System (INIS)

    Robinson, A.H.; Shirley, G.W.; Prichard, A.W.; Trapp, T.J.

    1978-01-01

    The major unresolved problem in the nuclear industry is the ultimate disposition of the waste products of light water reactors. The study demonstrates the feasibility of designing a very hard spectrum actinide burner reactor (ABR). A 1100 MW/sub t/ ABR design fueled entirely with actinides reprocessed from light water reactor (LWR) wastes is proposed as both an ultimate disposal mechanism for actinides and a means of concurrently producing usable power. Actinides from discharged ABR fuel are recycled to the ABR while fission products are routed to a permanent repository. As an integral part of a large energy park, each such ABR would dispose of the waste actinides from 2 LWRs

  9. Templated electrodeposition of Ag7NO11 nanowires with very high oxidation states of silver

    NARCIS (Netherlands)

    Rodijk, E.J.B.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The templated electrodeposition of 200 nm diameter nanowires of the argentic oxynitrate Ag(Ag3O4)2NO3 phase is reported. Their high surface-to-volume ratio and the high average oxidation state of Ag make these wires promising candidates for nanoscale redox processes in which both a high volumetric

  10. Actinide separative chemistry

    International Nuclear Information System (INIS)

    Boullis, B.

    2004-01-01

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  11. Actinides integral measurements on FCA assemblies

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko; Okajima, Shigeaki

    1984-01-01

    Actinide integral measurements were performed on eight assemblies of FCA where neutron energy spectra were shifted systematically from soft to hard in order to evaluate and modify the nuclear cross section data of major actinides. Experimental values on actinide fission rates and sample reactivity worths are compared with the calculated values using JENDL-2 and ENDF/B-V (or IV) data sets. (author)

  12. High-Pressure Reactivity of Kr and F2—Stabilization of Krypton in the +4 Oxidation State

    Directory of Open Access Journals (Sweden)

    Dominik Kurzydłowski

    2017-10-01

    Full Text Available Since the synthesis of the first krypton compound, several other Kr-bearing connections have been obtained. However, in all of them krypton adopts the +2 oxidation state, in contrast to xenon which forms numerous compounds with an oxidation state as high as +8. Motivated by the possibility of thermodynamic stabilization of exotic compounds with the use of high pressure (exceeding 1 GPa = 10 kbar, we present here theoretical investigations into the chemistry of krypton and fluorine at such large compression. In particular we focus on krypton tetrafluoride, KrF4, a molecular crystal in which krypton forms short covalent bonds with neighboring fluorine atoms thus adopting the +4 oxidation state. We find that this hitherto unknown compound can be stabilized at pressures below 50 GPa. Our results indicate also that, at larger compressions, a multitude of other KrmFn fluorides should be stable, among them KrF which exhibits covalent Kr–Kr bonds. Our results set the stage for future high-pressure synthesis of novel krypton compounds.

  13. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    International Nuclear Information System (INIS)

    Sypula, Michal

    2013-01-01

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SF Ln/Am obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as a Zr

  14. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Sypula, Michal

    2013-07-01

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SF{sub Ln/Am} obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as

  15. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  16. Relativistic band-structure calculations for electronic properties of actinide dioxides

    International Nuclear Information System (INIS)

    Maehira, Takahiro; Hotta, Takashi

    2007-01-01

    Energy band structures of actinide dioxides AnO 2 (An=Th, U, Np, and Pu) are investigated by a relativistic linear augmented-plane-wave method with the exchange-correlation potential in a local density approximation (LDA). It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between actinide 5f and oxygen 2p electrons. By focusing on the crystalline electric field states, we point out the problem in the application of the LDA to AnO 2

  17. Preparation of higher-actinide burnup and cross section samples

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.; Quinby, T.C.; Thomas, D.K.; Dailey, J.M.

    1981-01-01

    A joint research program involving the United States and the United Kingdom was instigated about four years ago for the purpose of studying burnup of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of cross sections of a wide variety of higher actinide isotopes was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the burnup and cross section samples. The higher actinide samples chosen for the burnup study were 241 Am and 244 Cm in the forms of Am 2 O 3 , Cm 2 O 3 , and Am 6 Cm(RE) 7 O 21 , where (RE) represents a mixture of lanthanide sesquioxides. It is the purpose of this paper to describe technology development and its application in the preparation of the fuel specimens and the cross section specimens that are being used in this cooperative program

  18. Method for the recovery of actinide elements from nuclear reactor waste

    Science.gov (United States)

    Horwitz, E. Philip; Delphin, Walter H.; Mason, George W.

    1979-01-01

    A process for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of dihexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate solution of tetramethylammonium hydrogen oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid.

  19. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    Pruett, D.J.; Sherrow, S.A.; Toth, L.M.

    1988-01-01

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  20. The Dirac equation in electronic structure calculations: Accurate evaluation of DFT predictions for actinides

    International Nuclear Information System (INIS)

    Wills, John M.; Mattsson, Ann E.

    2012-01-01

    Brooks, Johansson, and Skriver, using the LMTO-ASA method and considerable insight, were able to explain many of the ground state properties of the actinides. In the many years since this work was done, electronic structure calculations of increasing sophistication have been applied to actinide elements and compounds, attempting to quantify the applicability of DFT to actinides and actinide compounds and to try to incorporate other methodologies (i.e. DMFT) into DFT calculations. Through these calculations, the limits of both available density functionals and ad hoc methodologies are starting to become clear. However, it has also become clear that approximations used to incorporate relativity are not adequate to provide rigorous tests of the underlying equations of DFT, not to mention ad hoc additions. In this talk, we describe the result of full-potential LMTO calculations for the elemental actinides, comparing results obtained with a full Dirac basis with those obtained from scalar-relativistic bases, with and without variational spin-orbit. This comparison shows that the scalar relativistic treatment of actinides does not have sufficient accuracy to provide a rigorous test of theory and that variational spin-orbit introduces uncontrolled errors in the results of electronic structure calculations on actinide elements.

  1. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  2. Nuclear transmutation of actinides other than fuel as a radioactive waste management scheme

    International Nuclear Information System (INIS)

    Cecille, L.; Hage, W.; Hettinger, H.; Mannone, F.; Mousty, F.; Schmidt, E.; Sola, A.; Huber, B.; Koch, L.

    1977-01-01

    The bulk of fission products in the high-level waste (HLW) decays to innocuous hazard levels within about 600 years. Actinide waste and a few fission products however represent a potential risk up to some hundreds of thousand of years. An alternative to the disposal of the whole HLW in geological formations is its fractionation, a nuclear transmutation of long-lived isotopes in fission reactors and a geological disposal of the other components. This solution would decrease the potential long-term risks of the geological waste disposal and would also accomodate to the demand of public opinion. The results of studies related to this management scheme are outlined with special reference to areas, where additional effort is required for realistic cost/benefit evaluations. Reactor physics calculations demonstrated the feasibility of actinide incineration in thermal and fast reactors. Obtained transmutation rates are sufficiently high to garantee acceptably small actinide inventories in the reactor in the case of self-generated actinide recycling. It appears that fast breeders could be used as transmutation devices without major additional reactor devlopment work. The thermal power rating of actinide fuel elements and the contribution of actinides and of minor amounts of lanthanide impurities to the neutron economy of the reactor has been evaluated. Sensitivity studies indicated that the results are dependent on the reactor operation mode and on the accuracy of the nuclear data. These calculations permitted the identification of isotopes for which cross section masurements and improved theoretical methods are required. The chemical separation of actinides from the HLW with the envisaged decontamination factors is being studied by solvent extraction and precipitation techniques using waste simulates and samples of high activity waste from European reprocessing plants. Up to now, the obtained results do not yet allow a definitive judgement on the feasibility of actinides

  3. Minor actinide transmutation - a waste management option

    International Nuclear Information System (INIS)

    Koch, L.

    1986-01-01

    The incentive to recycle minor actinides results from the reduction of the long-term α-radiological risk rather than from a better utilization of the uranium resources. Nevertheless, the gain in generated electricity by minor actinide transmutation in a fast breeder reactor can compensate for the costs of their recovery and make-up into fuel elements. Different recycling options of minor actinides are discussed: transmutation in liquid metal fast breeder reactors (LMFBRs) is possible as long as plutonium is not recycled in light water reactors (LWRs). In this case a minor actinide burner with fuel of different composition has to be introduced. The development of appropriate minor actinide fuels and their properties are described. The irradiation experiments underway or planned are summarized. A review of minor actinide partitioning from the PUREX waste stream is given. From the present constraints of LMFBR technology a reduction of the long-term α-radiological risk by a factor of 200 is deduced relative to that from the direct storage of spent LWR fuel. Though the present accumulation of minor actinides is low, nuclear transmutation may be needed when nuclear energy production has grown. (orig.)

  4. DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE

    Energy Technology Data Exchange (ETDEWEB)

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2013-10-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

  5. Preliminary Study for Inventories of Minor Actinides in Thorium Molten Salt Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Wie; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    It has different characteristic with the conventional reactors which use a solid fuel. It can continually supply the fuel by online refueling and reprocessing of minor actinides so that those can be separated and eliminated from the reactor. The MSR maintains steady state except initial stage and the reactor becomes stable. In this research, considering online refueling, bubbling and reprocessing, the basic concept for evaluation of the inventory of minor actinide in the molten salt reactor is driven using the Bateman equation. The simulation results, where REM and MCNP code from CNRS (Centre National de la Recherche Scientifique) applied to the concept equation are analyzed. The analysis of the basic concept was carried out for evaluation of the inventory of the minor actinides in MSR. It was thought that the inventories of the minor actinides should be evaluated by solving the modified Bateman equation due to the MSR characteristic of online refueling, chemical reprocessing and bubbling.

  6. Preliminary Study for Inventories of Minor Actinides in Thorium Molten Salt Reactor

    International Nuclear Information System (INIS)

    Lee, Choong Wie; Kim, Hee Reyoung

    2015-01-01

    It has different characteristic with the conventional reactors which use a solid fuel. It can continually supply the fuel by online refueling and reprocessing of minor actinides so that those can be separated and eliminated from the reactor. The MSR maintains steady state except initial stage and the reactor becomes stable. In this research, considering online refueling, bubbling and reprocessing, the basic concept for evaluation of the inventory of minor actinide in the molten salt reactor is driven using the Bateman equation. The simulation results, where REM and MCNP code from CNRS (Centre National de la Recherche Scientifique) applied to the concept equation are analyzed. The analysis of the basic concept was carried out for evaluation of the inventory of the minor actinides in MSR. It was thought that the inventories of the minor actinides should be evaluated by solving the modified Bateman equation due to the MSR characteristic of online refueling, chemical reprocessing and bubbling

  7. Gas core reactors for actinide transmutation and breeder applications. Annual report

    International Nuclear Information System (INIS)

    Clement, J.D.; Rust, J.H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions

  8. Microbial Transformations of Actinides and Fission Products in Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A. J. [Pohang Univ. Science and Technology, Pohang (Korea, Republic of)

    2011-07-01

    The environmental factors that can affect microbial growth and activity include moisture, temperature, ph, Eh, availability of organic and inorganic nutrients, and radiation. The microbial activity in a specific repository is influenced by the ambient environment of the repository, and the materials to be emplaced. For example, a repository in unsaturated igneous rock formations such as volcanic tuff rocks at Yucca Mountain is generally expected to be oxidizing; a repository in a hydrologically expected to be oxidizing; a repository in a hydrologically saturated zone, especially in sedimentary rocks, could be reducing. Sedimentary rocks contain a certain amount of organic matter, which may stimulate microbial activities and, thus maintain the repository and its surrounding areas at reducing conditions. Although the impacts of microbial activity on high-level nuclear waste and the long-term performance of the repository have not fully investigated, little microbial activity is expected in the near-field because of the radiation, lack of nutrients and the harsh conditions. However in the far-field microbial effects could be significant. Much of our understanding of the microbial effects on radionuclides stems from studies conducted with selected transuranic elements and fission products and limited studies with low-level radioactive wastes. Significant aerobic- and anaerobic-microbial activity is expected to occur in the waste because of the presence of electron donors and acceptors. The actinides initially may be present as soluble- or insoluble-forms but, after disposal, may be converted from one to the other by microorganisms. The direct enzymatic or indirect non-enzymatic actions of microbes could alter the speciation, solubility, and sorption properties of the actinides, thereby increasing or decreasing their concentrations in solution.

  9. Actinides and the environment: what we know and what we need to know

    International Nuclear Information System (INIS)

    Nitsche, H.

    1998-01-01

    In order to design methods for the cleanup of contaminated sites, predict the transport behavior in the environment, perform safety assessment studies to determine the ability of repositories to adequately contain them, and design ways to retard their release and migration rates, it is essential to understand the chemical behavior and forms of actinides under environmental conditions. Excluding gaseous and airborne transport, actinides can migrate in the environment mostly via aqueous media such as groundwater and surface, river, lake and sea water. Models predicting the hydrological transport through the environment require as input an actinide concentration, the true amount that is actually available for transport. It is defined as the actinide source term and not as true solubility, because it may be a combination of dissolved and colloidal material. Three major processes define the actinide source term: (1) solubility, (2) organic interaction, and (3) sorption. They are dependent on each other and each individual process is the result of several sub-processes. Also, colloid formation plays a major role in the actinide source term, and it is common to each of the three main processes. The current state of knowledge of these processes will be discussed and areas will be outlined where additional information is required

  10. Lanthanide - actinide separation: a challenge in the back end of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mohapatra, P.K.

    2015-01-01

    Due to their similar size and chemical state, separation of trivalent lanthanide and actinide ions has always been a challenging topic of research. Of late, the growing concern for the radioactive waste management in the back end of the nuclear fuel cycle has led to the possibility of transmuting the long-lived transuranides in high flux reactors. This necessitates the development of processes for the separation of lanthanides and actinides in acidic/low pH media. In view of the high absorption cross section of few lanthanides, their presence in relatively large proportion (10-100 times) impedes the transmutation process. Processes such as the TRAMEX and TALSPEAK have been used for the separation of lanthanides from trivalent actinides. Of late soft donor ligands containing S and N donor atoms have been used for the selective extraction of trivalent actinide ions. The commercially available S-donor compound, CYANEX 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid) has been used to yield separation factor (S.F.) values in the excess of 6000. Synergistic extraction with N-donor ligands such as 2,2'-bipyridyl and 1,10-phenanthroline have yielded S.F. values close to 40,000. N-donor ligands such as BTP (bis-triazinylpyridine), BTBP (bis-triazinylbipyridyl) and BTPhen (bis-triazinyl-phenanthroline) have been particularly effective from relatively acidic feed conditions. The present lecture will give a brief outline of the separation processes and experimental results of studies carried out using various S and N donor ligands. Use of room temperature ionic liquids for more favorable separations will be highlighted. Liquid membrane separation results for application to back end nuclear fuel cycle will also be discussed. (author)

  11. Crystallo-chemistry of actinide nitrides (U1-yPuy)N and effect of impurities

    International Nuclear Information System (INIS)

    Beauvy, M.; Coulon-Picard, E.; Pelletier, M.

    2004-01-01

    Investigations on actinide nitrides has been done in our Laboratories for Fast Breeder Reactors since the seventies and some properties are reported to show the interest for these fuels. Today, the actinide nitrides are reconsidered as possible fuels for the future fission reactors (GFR and LMFR selected by the international forum Generation IV). The results of new investigations on crystal structure of mixed mono-nitrides (U,Pu)N, and the effects of oxygen and carbon contaminations on this structure are presented. The cubic 'NaCl-fcc' type structure of actinide nitrides AnN with space group O5/h-Fm3m does not respect the 'Vegard law' model for the mixed nitrides (U 1-y Pu y )N. These nitrides are usually considered with strong metallic character associated with partial ionic bonding, but the ionic contribution in the An-N bonding determined in this work is very important and near 41.6% for UN and PuN. From results published on resistivity of mixed nitrides, the data on bonding must be also modified for partial covalence. This is in good agreement with the experimental lattice parameters which are not compatible with dominant metallic bonding. The numbers of bonding electrons in the nitrides (U 1-y Pu y )N are reevaluated and the low values proposed comparatively with those previously published confirm the strong ionic character with high concentration of An 3+ ions. The solubility of oxygen and carbon in actinide nitrides (U 1-y Pu y )N are discussed from measurements on volume concentration of actinide oxide phase, total oxygen and carbon contents, and lattice parameter of nitrides. The oxygen solubility limit in UN is near 1000 ppm, with a lightly higher value of 1200 ppm for the mixed nitride (U 0.8 Pu 0.2 )N. The effects of oxygen or carbon atoms in the lattice of (U 1-y Pu y )N are analysed

  12. Actinides in irradiated graphite of RBMK-1500 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Plukienė, R., E-mail: rita@ar.fi.lt; Plukis, A.; Barkauskas, V.; Gudelis, A.; Gvozdaitė, R.; Duškesas, G.; Remeikis, V.

    2014-10-01

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  13. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    1982-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  14. Quantities of actinides in nuclear reactor fuel cycles

    International Nuclear Information System (INIS)

    Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000 MW reactors of the following types: water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breeder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium, and recycled uranium. The radioactivity levels of plutonium, americium, and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the United States nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium processed in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing and fuel fabrication to eliminate the off-site transport of separated plutonium. (U.S.)

  15. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    International Nuclear Information System (INIS)

    Perkasa, Y. S.; Waris, A.; Kurniadi, R.; Su'ud, Z.

    2014-01-01

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator

  16. Effect of high doses of L-ascorbic acid on the antioxidative/oxidative state in the rats

    DEFF Research Database (Denmark)

    Niemiec, T.; Sawosz, E.; Chwalibog, André

    2005-01-01

    The objective of this study was to determine the effects of mega-doses of vitamin C (0.3, 0.6 and 0.9% of diet) as a dietary supplement for rats on selected indices of the antioxidative/oxidative state in 40 growing Wistar rats (4x10). It was found that L-ascorbic acid and Total Antioxidative State...... (TAS) in plasma did not increase with increasing vitamin C supply. The results indicate that high doses of L-ascorbic acid (0.3 and 0.9 but not 0.6%) increased the concentration of this antioxidant in plasma. Supplementation of vitamin C above 0.3% to the diets had pro-oxidative effects on lipid...... structures, while application of 0.9% promoted oxidative degradation of rat livers....

  17. Actinide nanoparticle research

    International Nuclear Information System (INIS)

    Kalmykov, Stepan N.; Denecke, Melissa A.

    2011-01-01

    This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale. (orig.)

  18. The pressure behaviour of actinides via synchrotron radiation

    International Nuclear Information System (INIS)

    Haire, R.G.; Heathman, S.; Le Bihan, T.; Lindbaum, A.

    2002-01-01

    Various aspects of performing high-pressure studies with radioactive f-elements using synchrotrons as sources of X-rays are discussed. For ultra-high pressures, intense well-focused beams of 10 to 30 microns in diameter and a single wavelength of 0.3 to 0.7 angstrom are desired for angle dispersive diffraction measurements. Special considerations are necessary for the studies of transuranium elements under pressure at synchrotron facilities. Normally, with these actinides the pressure cells are prepared off-site and shipped to the synchrotron for study. Approved containment techniques must be provided to assure there is not a potential for the release of sample material. The goal of these high-pressure studies is to explore the fundamental science occurring as pressure is applied to the actinide samples. One of the primary effects of pressure is to reduce interatomic distances, and the goal is to ascertain the changes in bonding and electronic nature of the system that result as atoms and electronic orbitals are forced closer together. Concepts of the science being pursued with these f-elements are outlined. A brief discussion of the behaviour of americium metal under pressure performed recently at the ESRF is provided as an example of the high-pressure research being performed with synchrotron radiation. Also discussed here is the important role synchrotrons play and the techniques/procedures employed in high-pressure studies with actinides. (authors)

  19. Complexes of actinides with naturally occuring organic substances - Literature survey

    International Nuclear Information System (INIS)

    Olofsson, U.; Allard, B.

    1983-02-01

    Properties of naturally occurring humic and fulvic acids and their formation of actinide complexes are reviewed. Actinides in all the oxdation states III, IV, V and VI would form complexes with many humic and fulvic acids, comparable in strength to the hydroxide and carbonate complexes. Preliminary experiments have shown, that the presence of predominantly humic acid complexes would significantly reduce the sorption of americium on geologic media. This does not, however, necessarily lead to a potentially enhanced mobility under environmental conditions, since humic and fulvic acids carrying trace metals also would be strongly bound to e.g. clayish material. (author)

  20. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    Science.gov (United States)

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-07

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.

  1. Actinides reduction by recycling in a thermal reactor

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Martinez C, E.; Balboa L, H.

    2014-10-01

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  2. Removal of actinides from selected nuclear fuel reprocessing wastes

    International Nuclear Information System (INIS)

    Navratil, J.D.; Thompson, G.H.

    1979-01-01

    The US Department of Energy awarded Oak Ridge National Laboratory a program to develop a cost-risk-benefit analysis of partitioning long-lived nuclides from waste and transmuting them to shorter lived or stable nuclides. Two subtasks of this program were investigated at Rocky Flats. In the first subtask, methods for solubilizing actinides in incinerator ash were tested. Two methods appear to be preferable: reaction with ceric ion in nitric acid or carbonate-nitrate fusion. The ceric-nitric acid system solubilizes 95% of the actinides in ash; this can be increased by 2 to 4% by pretreating ash with sodium hydroxide to solubilize silica. The carbonate-nitrate fusion method solubilizes greater than or equal to 98% of the actinides, but requires sodium hydroxide pretreatment. Two additional disadvantages are that it is a high-temperature process, and that it generates a lot of salt waste. The second subtask comprises removing actinides from salt wastes likely to be produced during reactor fuel fabrication and reprocessing. A preliminary feasibility study of solvent extraction methods has been completed. The use of a two-step solvent extraction system - tributyl phosphate (TBP) followed by extraction with a bidentate organophosphorous extractant (DHDECMP) - appears to be the most efficient for removing actinides from salt waste. The TBP step would remove most of the plutonium and > 99.99% of the uranium. The second step using DHDECMP would remove > 99.91% of the americium and the remaining plutonium (> 99.98%) and other actinides from the acidified salt waste. 8 figures, 11 tables

  3. Removal of actinides from high activity wastes by solvent extraction: outline of the research work at Ispra J.R.C. laboratories

    International Nuclear Information System (INIS)

    Mannone, F.

    1976-07-01

    The development of an advanced waste management alternative such as the actinide nuclear incineration requires an almost quantitative removal of actinides from waste streams. Within the framework of the Ispra JRC Waste Disposal R and D programme, actinide separation studies were directed towards solvent extraction and precipitation methods. To develop a tentative waste partitioning flow-sheet based on solvent extraction, two conceptual process flow-sheet for actinide removal were evaluated on the basis of the currently used actinide recovery processes, i.e. removal after waste adjustment to low-acidity conditions and direct actinide removal from acidic wastes, as they are generated in actual reprocessing plants. No improvements have been devised for actinide recoveries within the conventional Purex reprocessing operations and a currently agreed value has been assumed for neptunium recovery (90%). According to these basic orientations some organic extractants have been selected for testing as promising candidates for waste partitioning and laboratory studies, designed to develop a satisfactory partitioning flow-sheet, have been proposed and described

  4. Light element thermodynamics related to actinide separations

    International Nuclear Information System (INIS)

    Johnson, I.; Johnson, C.E.

    1997-01-01

    The accumulation of waste from the last five decades of nuclear reactor development has resulted in large quantities of materials of very diverse chemical composition. An electrometallurgical (EM) method is being developed to separate the components of the waste into several unique streams suitable for permanent disposal and an actinide stream suitable for retrievable storage. The principal types of nuclear wastes are spent oxide or metallic fuel. Since the EM module requires a metallic feed, and oxygen interferes with its operation, the oxide fuel has to be reduced prior to EM treatment. Further, the wastes contain, in addition to oxygen, other light elements (first- and second-row elements) that may also interfere with the operation of the EM module. The extent that these light elements interfere with the operation of the EM module has been determined by chemical thermodynamic calculations. (orig.)

  5. Actinide cross section data and inertial confinement fusion for long term waste disposal

    International Nuclear Information System (INIS)

    Meldner, H.

    1979-01-01

    Actinide cross section data at thermonuclear neutron energies are needed for the calculation of ICF pellet center burnup of fission reactor waste, viz. 14 MeV neutron fission of the very long-lived actinides that pose storage problems. A major advantage of pellet center burnup is safety: only milligrams of highly toxic and active material need to be present in the fusion chamber, whereas blanket burnup requires the continued presence of tons of actinides in a small volume. The actinide data tables required for Monte Carlo calculations of the burnup of 241 Am and 243 Am are discussed in connection with typical burnup reactor fusion and fission spectra. 2 figures

  6. Potential carcinogenic effects of actinides in the environment

    International Nuclear Information System (INIS)

    Harley, N.H.; Pasternack, B.S.

    1979-01-01

    Inhalation of alpha emitting actinides delivers a dose to critical cancer sites in the human body. These sites are the bronchial epithelium and cells near bone surfaces. Inhalation of the naturally occurring actinides uranium and thorium in resuspended soil in the air results in a continuous exposure for the global population of about 0.1 fCi/m 3 for each of these actinides. The highest dose is from the natural actinide 230 Th. Over 50 yr, the dose to bronchial epithelium is 0.05 mrad and to bone surfaces 0.4 mrad. In the case of accidental environmental contamination (e.g. near a nuclear fuel reprocessing plant) the man-made actinides plutonium, americium and curium could deliver about the same alpha dose to these sites if the soil is contaminated to the same level as the natural actinides (approximately 1 pCi/g). Two nuclear accidents have already produced contamination of about this level. Exposures in this case, however, are to small local populations compared with global exposure for the natural actinides. Significant enhancement of the natural radioactive actinide pollution by combustion of all types of fossil fuel is suspected but not enough data are available to estimate total population doses. (author)

  7. End point control of an actinide precipitation reactor

    International Nuclear Information System (INIS)

    Muske, K.R.

    1997-01-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements

  8. On the suitability of lanthanides as actinide analogs

    International Nuclear Information System (INIS)

    Raymond, Kenneth; Szigethy, Geza

    2008-01-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)

  9. Analysis of evidence for an irreproducible martensite-like behavior in actinide metals and alloys below room temperature

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1976-05-01

    Evidence is presented which suggests that a low-temperature, martensite-like behavior may be quite general in actinide metals and their alloys and compounds. There may be no metastable martensitic embryos in an α-phase structure of high-purity U, Np, and Pu formed by a diffusion-controlled β → α transformation, and thus no evidence for low-temperature phases. The effect of impurity content on observed low-temperature physical properties of these actinides is noted. It is proposed that impurities may be playing several roles. They may permit an electron redistribution in dilute alloys dependent upon the length of holding time. Experimentally determined values for the electronic contribution to heat capacity and the density of states of U, Np, and Pu should thus vary over a considerable range, as has been observed. Variations in interstitial ordering of impurity atoms with processing may yield stacking variants of each basic close-packed actinide metal structure and thus determine the number and structure of low-temperature phase. 46 references

  10. Transmutation of waste actinides in light water reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-04-01

    Actinide recycle and transmutation calculations were made for three irradiation options of a light water reactor (LWR). The cases considered were: all actinides recycled in regular uranium fuel assemblies; transuranic actinides recycled in separate MOX assemblies with 235 U enrichment of uranium; and transuranic actinides recycled in separate MOX assemblies with plutonium enrichment of natural uranium. When all actinides were recycled in a uniform lattice, the transuranic inventory after ten recycles was 38% of the inventory accumulated without recycle. When the transuranics from two regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after five recycles

  11. Chemical compatibility of HLW borosilicate glasses with actinides

    International Nuclear Information System (INIS)

    Walker, C.T.; Scheffler, K.; Riege, U.

    1978-11-01

    During liquid storage of HLLW the formation of actinide enriched sludges is being expected. Also during melting of HLW glasses an increase of top-to-bottom actinide concentrations can take place. Both effects have been studied. Besides, the vitrification of plutonium enriched wastes from Pu fuel element fabrication plants has been investigated with respect to an isolated vitrification process or a combined one with the HLLW. It is shown that the solidification of actinides from HLLW and actinide waste concentrates will set no principal problems. The leaching of actinides has been measured in salt brine at 23 0 C and 115 0 C. (orig.) [de

  12. Separation of actinides and lanthanides from acidic nuclear wastes by supported liquid membranes

    International Nuclear Information System (INIS)

    Danesi, P.R.; Chiarizia, R.; Rickert, P.; Horwitz, E.P.

    1985-01-01

    Supported liquid membranes, SLM, consisting of a solution of 0.25 M octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and 0.75 M tributylphosphate (TBP) in decalin absorbed on thin microporous polypropylene supports, have been studied for their ability to perform selective separations and concentrations of actinide and lanthanide ions from synthetic acidic nuclear wastes. The permeability coefficients of selected actinides (Am, Pu, U, Np) and of some of the other major components of the wastes have been measured using SLMs in flat-sheet and hollow-fiber configurations. The results have shown that with the thin (25 μm) flat-sheet SLMs, using Celgard 2500 as support, the membrane permeation process is mainly controlled by the rate of diffusion through the aqueous boundary layers. With the thicker (430 μm) hollow-fiber SLMs, using Accurel hollow-fibers as support, the membrane permeation process is controlled by the rate of diffusion through both the SLM and the aqueous boundary layers. Hollow-fibers SLMs exhibited lower permeability coefficients and longer life-times. The experiments have shown that the actinides can be very efficiently removed from the synthetic waste solutions to the point that the resulting solution could be considered a non-transuranic waste (less than 100 mCi/g of disposed form). The work has demonstrated that actinide removal from synthetic waste solutions is a feasible chemical process at the laboratory scale level

  13. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  14. European Europart integrated project on actinide partitioning

    International Nuclear Information System (INIS)

    Madic, C.; Hudson, M.J.

    2005-01-01

    This poster presents the objectives of EUROPART, a scientific integrated project between 24 European partners, mostly funded by the European Community within the FP6. EUROPART aims at developing chemical partitioning processes for the so-called minor actinides (MA) contained in nuclear wastes, i.e. from Am to Cf. In the case of dedicated spent fuels or targets, the actinides to be separated also include U, Pu and Np. The techniques considered for the separation of these radionuclides belong to the fields of hydrometallurgy and pyrometallurgy, as in the previous FP5 programs named PARTNEW and PYROREP. The two main axes of research within EUROPART will be: The partitioning of MA (from Am to Cf) from high burn-up UO x fuels and multi-recycled MOx fuels; the partitioning of the whole actinide family for recycling, as an option for advanced dedicated fuel cycles (and in connection with the studies to be performed in the EUROTRANS integrated project). In hydrometallurgy, the research is organised into five Work Packages (WP). Four WP are dedicated to the study of partitioning methods mainly based on the use of solvent extraction methods, one WP is dedicated to the development of actinide co-conversion methods for fuel or target preparation. The research in pyrometallurgy is organized into four WP, listed hereafter: development of actinide partitioning methods, study of the basic chemistry of trans-curium elements in molten salts, study of the conditioning of the wastes, some system studies. Moreover, a strong management team will be concerned not only with the technical and financial issues arising from EUROPART, but also with information, communication and benefits for Europe. Training and education of young researchers will also pertain to the project. EUROPART has also established collaboration with US DOE and Japanese CRIEPI. (authors)

  15. Nuclear fuel activity with minor actinides after their useful life in a BWR

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2016-09-01

    Nuclear fuel used in nuclear power reactors has a life cycle, in which it provides energy, at the end of this cycle is withdrawn from the reactor core. This used fuel is known as spent nuclear fuel, a strong problem with this fuel is that when the fuel was irradiated in a nuclear reactor it leaves with an activity of approximately 1.229 x 10 15 Bq. The aim of the transmutation of actinides from spent nuclear fuel is to reduce the activity of high level waste that must be stored in geological repositories and the lifetime of high level waste; these two achievements would reduce the number of necessary repositories, as well as the duration of storage. The present work is aimed at evaluating the activity of a nuclear fuel in which radioactive actinides could be recycled to remove most of the radioactive material, first establishing a reference of actinides production in the standard nuclear fuel of uranium at end of its burning in a BWR, and a fuel rod design containing 6% of actinides in an uranium matrix from the enrichment tails is proposed, then 4 standard uranium fuel rods are replaced by 4 actinide bars to evaluate the production and transmutation of the same, finally the reduction of actinide activity in the fuel is evaluated. (Author)

  16. New Developments in Actinides Burning with Symbiotic LWR-HTR-GCFR Fuel Cycles

    International Nuclear Information System (INIS)

    Bomboni, Eleonora

    2008-01-01

    The long-term radiotoxicity of the final waste is currently the main drawback of nuclear power production. Particularly, isotopes of Neptunium and Plutonium along with some long-lived fission products are dangerous for more than 100000 years. 96% of spent Light Water Reactor (LWR) fuel consists of actinides, hence it is able to produce a lot of energy by fission if recycled. Goals of Generation IV Initiative are reduction of long-term radiotoxicity of waste to be stored in geological repositories, a better exploitation of nuclear fuel resources and proliferation resistance. Actually, all these issues are intrinsically connected with each other. It is quite clear that these goals can be achieved only by combining different concepts of Gen. IV nuclear cores in a 'symbiotic' way. Light-Water Reactor - (Very) High Temperature Reactor ((V)HTR) - Fast Reactor (FR) symbiotic cycles have good capabilities from the viewpoints mentioned above. Particularly, HTR fuelled by Plutonium oxide is able to reach an ultra-high burn-up and to burn Neptunium and Plutonium effectively. In contrast, not negligible amounts of Americium and Curium build up in this core, although the total mass of Heavy Metals (HM) is reduced. Americium and Curium are characterised by an high radiological hazard as well. Nevertheless, at least Plutonium from HTR (rich in non-fissile nuclides) and, if appropriate, Americium can be used as fuel for Fast Reactors. If necessary, dedicated assemblies for Minor Actinides (MA) burning can be inserted in Fast Reactors cores. This presentation focuses on combining HTR and Gas Cooled Fast Reactor (GCFR) concepts, fuelled by spent LWR fuel and depleted uranium if need be, to obtain a net reduction of total mass and radiotoxicity of final waste. The intrinsic proliferation resistance of this cycle is highlighted as well. Additionally, some hints about possible Curium management strategies are supplied. Besides, a preliminary assessment of different chemical forms of

  17. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  18. Actinide recovery from waste and low-grade sources

    International Nuclear Information System (INIS)

    Navratil, J.D.; Schulz, W.W.

    1982-01-01

    Actinide and nuclear fuel cycle operations generate a variety of process waste streams. New methods are needed to remove and recover actinides. More interest is also being expressed in recovering uranium from oceans, phosphoric acid, and other low grade sources. To meet the need for an up-to-date status report in the area of actinide recovery from waste and low grade sources, these papers were brought together. The papers provide an authoritative, in-depth coverage of an important area of nuclear and industrial and engineering chemistry which cover the following topics: uranium recovery from oceans and phosphoric acid; recovery of actinides from solids and liquid wastes; plutonium scrap recovery technology; and other new developments in actinide recovery processes

  19. Effects on auto-irradiation on the solubility of mineral phases enriched by actinides

    International Nuclear Information System (INIS)

    Prot, T.

    1993-07-01

    The scope of the present work is to investigate possible effects of self-irradiation damage induced by α-decay (α-recoil nucleus and α-particle) on the hydrated layer formed by aqueous corrosion of nuclear glass and on alteration phases of a granitic geological repository (calcium carbonate or iron oxides and oxihydroxide) which would be likely irradiated in the framework of high-level radioactive waste disposal, for sufficient concentration of actinides and age. Our experimental procedure relies on a bombardment with external beams of 1.5 to 1.8 MeV He ions and 200 KeV Pb ions, which respectively simulate the radiation effects of α-particles and of α-recoil nuclei. We have observed in a first step, direct irradiation effects (change of volume and refractive index, chemical modification) by means of optical microscopy, microtopographical analysis (surface profilometer) and R.B.S. and X.P.S. In a second step, corrosion tests were performed in static conditions to observe a possible indirect effect (increase of the hydratation rate, actinide release) on the later evolution as for example, a marked increase in solubility (calcium carbonate case)

  20. A review of the potential for actinide redistribution in CANDU thorium cycle fuels

    International Nuclear Information System (INIS)

    Cameron, D.J.

    1978-02-01

    Actinide redistribution resulting from large radial temperature gradients is an accepted feature of the technology of fast reactor (U,Pu)O 2 fuels. A thorium cycle in CANDU reactors would require the use of oxide fuels with two or more components, raising the question of actinide redistribution in these fuels. The mechanisms proposed to explain redistribution in (U,Pu)O 2 fuels are reviewed, and their relevance to fuels based on ThO 2 is discussed. The fuel primarily considered is (Th,U)O 2 but some reference is made to (Th,Pu)O 2 . At this early stage of thorium fuel cycle technology, it is not possible to consider quantitatively the question of redistribution in specific fuels. However, some guidelines can be presented to indicate to fuel engineers conditions which might result in significant redistribution. It is concluded that redistribution is probably of little concern in high density, CANDU, thorium cycle fuel whose centre temperature is limited to 2350 K. If this centre temperature is exceeded, or if the fuel contains substantial inter-connected porosity, the potential for redistribution is significant and warrants more serious study. (author)

  1. Sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R. [Univ. of California, Berkeley, CA (United States)

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  2. Pyrometallurgical processes for recovery of actinide elements

    International Nuclear Information System (INIS)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository

  3. Pyrometallurgical processes for recovery of actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  4. Nuclear waste forms for actinides

    Science.gov (United States)

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  5. Fusion barrier characteristics of actinides

    Science.gov (United States)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-03-01

    We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6 projectile target combinations. The values produced by the present formula are also compared with experiments. The present pocket formula produces fusion barrier characteristics of actinides with the simple inputs of mass number (A) and atomic number (Z) of projectile-targets.

  6. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38{sup th} JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment.

  7. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    International Nuclear Information System (INIS)

    2008-01-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38 th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  8. Safety Analysis Of Actinide Recycled Fast Power Reactor

    International Nuclear Information System (INIS)

    Taufik, Mohammad

    2001-01-01

    Simulation for safety analysis of actinide recycled fast power reactor has been performed. The objective is to know reactor response about ULOF and ULOF and UTOP simultaneous accident. From parameter result such reactivity feedback, power, temperature, and cooled flow rate can conclusion that reactor have inherent safety system, which can back to new Equilibrium State

  9. Chemistry of the actinide elements. Second edition

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1987-01-01

    This is an exhaustive, updated discourse on the chemistry of Actinides, Volume 1 contains a systematic coverage of the elements Ac, Th, Pa, U, Np, and Pu, which constitutes Part 1 of the work. The characterization of each element is discussed in terms of its nuclear properties, occurrence, preparation, atomic and metallic properties, chemistry of specific compounds, and solution chemistry. The first part of Volume 2 follows the same format as Volume 1 but is confined to the elements Am, Cm, Bk, Cf, and Es, plus a more condensed coverage of the Transeinsteinium elements (Fm, Md, No, Lw, and 104-109). Part 2 of this volume is devoted to a discussion of the actinide elements in general, with a specific focus on electronic spectra, thermodynamic and magnetic properties, the metallic state, structural chemistry, solution kinetics, organometallic chemistry for σ- and π-bonded compounds, and some concluding remarks on the superheavy elements

  10. Minor Actinide Transmutation Physics for Low Conversion Ratio Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Mehdi Asgari; Samuel E. Bays; Benoit Forget; Rodolfo Ferrer

    2007-01-01

    The effects of varying the reprocessing strategy used in the closed cycle of a Sodium Fast Reactor (SNF) prototype are presented in this paper. The isotopic vector from the aqueous separation of transuranic (TRU) elements in Light Water Reactor (LWR) spent nuclear fuel (SNF) is assumed to also vary according to the reprocessing strategy of the closed fuel cycle. The decay heat, gamma energy, and neutron emission of the fuel discharge at equilibrium are found to vary depending on the separation strategy. The SFR core used in this study corresponds to a burner configuration with a conversion ratio of ∼0.5 based on the Super-PRISM design. The reprocessing strategies stemming from the choice of either metal or oxide fuel for the SFR are found to have a large impact on the equilibrium discharge decay heat, gamma energy, and neutron emission. Specifically, metal fuel SFR with pyroprocessing of the discharge produces the largest amount of TRU consumption (166 kg per Effective Full Power Year or EFPY), but also the highest decay heat, gamma energy, and neutron emission. On the other hand, an oxide fuel SFR with PUREX reprocessing minimizes the decay heat and related parameters of interest to a minimum, even when compared to thermal Mixed Oxide (MOX) or Inert Matrix Fuel (IMF) on a per mass basis. On an assembly basis, however, the metal SFR discharge has a lower decay heat than an equivalent oxide SFR assembly for similar minor actinide consumptions (∼160 kg/EFPY.) Another disadvantage in the oxide PUREX reprocessing scenario is that there is no consumption of americium and curium, since PUREX reprocessing separates these minor actinides (MA) and requires them to be disposed of externally

  11. Crystalline matrices for the immobilization of plutonium and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.; Starchenko, V.A.; Vasiliev, V.G. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressing method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.

  12. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  13. Actinide Source Term Program, position paper. Revision 1

    International Nuclear Information System (INIS)

    Novak, C.F.; Papenguth, H.W.; Crafts, C.C.; Dhooge, N.J.

    1994-01-01

    The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA open-quotes expert panelclose quotes model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the open-quotes inventory limitsclose quotes model is the only existing defensible model for the actinide source term. The model effort in progress, open-quotes chemical modeling of mobile actinide concentrationsclose quotes, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the open-quotes Inventory limitsclose quotes model

  14. Insertion compounds of transition-metal and uranium oxides

    International Nuclear Information System (INIS)

    Chippindale, A.M.; Dickens, P.G.; Powell, A.V.

    1991-01-01

    Several transition-metal and actinide oxides, in which the metal occurs in a high oxidation state, have open covalent structures and are capable of incorporating alkali and other electropositive metals under mild conditions to form insertion compounds A x MO n . These are solids which have several features in common: Over a range of compositions, A x MO n exists as one or more stable or metastable phases in which the structure of the parent oxide MO n is largely retained and the insertion element A is accommodated interstitially. Insertion is accompanied by a redox process A=A i . + e - M in which M is reduced and the electronic properties of the parent oxide change to those typical of a mixed-valence compound. The insertion process xA + MO n = A x MO n can be reversed, at least to some extent, by chemical or electrochemical reaction, with retention of structure (topotactic reaction). This review concentrates on methods of synthesis, characterisation, crystal structure and thermochemistry of these insertion compounds. It updates and extends previous work. (author)

  15. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  16. US/UK actinides experiment at the Dounreay PFR. I. Fission products

    International Nuclear Information System (INIS)

    Raman, S.; Murphy, B.D.

    1995-01-01

    The United States and the United Kingdom have been engaged in a joint research program in which samples of higher actinides were irradiated in the 600-MW Dounreay Prototype Fast Reactor in Scotland. Analytical results using mass spectrometry and radiometry for actinides and fission products are now available for the samples in Fuel Pins 1 and 2 which were irradiated for 63 full-power days and for the samples in Fuel Pin 4 which were irradiated for 492 full-power days. Results from these three fuel pins are providing estimates of integral cross sections and fission yields. (authors)

  17. Research for actinides extractants from various wastes

    International Nuclear Information System (INIS)

    Musikas, C.; Cuillerdier, C.; Condamines, N.

    1990-01-01

    This paper is an overview of the actinides solvent extraction research undertaken in Fontenay-aux-Roses. Two kinds of extractants are investigated; those usable for the improvement of the nowadays nuclear fuels reprocessing and those necessary for advanced fuels cycles which include the minor actinides (Np, Am) recovery for a further elimination through nuclear reactions. In the first class the mono and diamides, alternative to the organophosphorus extractants, TBP and polyfunctional phosphonates, showed promising properties. The main results are discussed. For the future efficient extractants for trivalent actinides-lanthanides group separations are suitable. The point about the actinides (III) - lanthanides (III) group separation chemistry and the development of some of these extractants are given

  18. Charged defects during alpha-irradiation of actinide oxides as revealed by Raman and luminescence spectroscopy

    International Nuclear Information System (INIS)

    Mohun, R.; Desgranges, L.; Léchelle, J.; Simon, P.; Guimbretière, G.; Canizarès, A.; Duval, F.; Jegou, C.; Magnin, M.; Clavier, N.; Dacheux, N.; Valot, C.; Vauchy, R.

    2016-01-01

    We have recently evidenced an original Raman signature of alpha irradiation-induced defects in UO 2 . In this study, we aim to determine whether the same signature also exists in different actinide oxides, namely ThO 2 and PuO 2 . Sintered UO 2 and ThO 2 were initially irradiated with 21 MeV He 2+ ions using a cyclotron device and were subjected to an in situ luminescence experiment followed by Raman analysis. In addition, a PuO 2 sample which had accumulated self-irradiation damage due to alpha particles was investigated only by Raman measurement. Results obtained for the initially white ThO 2 showed that a blue color appeared in the irradiated areas as well as luminescence signals during irradiation. However, Raman spectroscopic analysis showed the absence of Raman signature in ThO 2 . In contrast, the irradiated UO 2 and PuO 2 confirmed the presence of the Raman signature but no luminescence peaks were observed. The proposed mechanism involves electronic defects in ThO 2 , while a coupling between electronic defects and phonons is required to explain the Raman spectra for UO 2 and PuO 2 .

  19. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan Balasubramanian

    2009-07-18

    environmental management of high-level nuclear wastes. In collaboration with experimental colleague Prof Hieno Nitsche (Berkeley) and Dr. Pat Allen (Livermore, EXAFS) we have studied the uranyl complexes with silicates and carbonates. It should be stressed that although our computed ionization potential of uranium oxide was in conflict with the existing experimental data at the time, a subsequent gas-phase experimental work by Prof Mike Haven and coworkers published as communication in JACS confirmed our computed result to within 0.1 eV. This provides considerable confidence that the computed results in large basis sets with highly-correlated wave functions have excellent accuracies and they have the capabilities to predict the excited states also with great accuracy. Computations of actinide complexes (Uranyl and plutonyl complexes) are critical to management of high-level nuclear wastes.

  20. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    International Nuclear Information System (INIS)

    Balasubramanian, Krishnan

    2009-01-01

    -level nuclear wastes. In collaboration with experimental colleague Prof Hieno Nitsche (Berkeley) and Dr. Pat Allen (Livermore, EXAFS) we have studied the uranyl complexes with silicates and carbonates. It should be stressed that although our computed ionization potential of uranium oxide was in conflict with the existing experimental data at the time, a subsequent gas-phase experimental work by Prof Mike Haven and coworkers published as communication in JACS confirmed our computed result to within 0.1 eV. This provides considerable confidence that the computed results in large basis sets with highly-correlated wave functions have excellent accuracies and they have the capabilities to predict the excited states also with great accuracy. Computations of actinide complexes (Uranyl and plutonyl complexes) are critical to management of high-level nuclear wastes.

  1. ACTINET - EU network of excellence for actinide sciences

    International Nuclear Information System (INIS)

    Gompper, K.

    2006-01-01

    ACTINET, the Network of Excellence for Actinide Sciences within the 6th EU Framework Program, was launched in March 2004 for an initial period of four years. A number of tools are available in ACTINET to serve the purposes of the project, i.e. stimulate and coordinate actinide research in Europe, promote integration, train young scientists and, in this way, ensure and enhance European competence. The large European actinide laboratories with their unique experimental and analytical equipment are available to scientists from Europe as so-called 'pool facilities' within the framework of joint research projects. Setting up a 'theoretical user lab' has turned out to be a promising way of exploiting the synergies of theory and experiment in various fields of actinide science. Joint research projects are supported within the network, working with actinides being made possible in the pool facilities. Training and instruction are ensured by seminars, workshops, and schools organized annually. In familiarizing young scientists with actinide work, ACTINET exercises training functions and contributes to ensuring and enhancing European competence in the field on the medium and long term. Even after only half of its term, ACTINET is developing into a live network, thus decisively contributing towards promoting, coordinating and integrating European actinide research. As actinides play a key role in the use of nuclear power, this benefits European industries, research centers, operators of nuclear power plants and nuclear facilities as well as licensing and regulatory authorities. (orig.)

  2. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  3. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Science.gov (United States)

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  4. Partitioning of Minor Actinides from High Active Raffinates using Bis-Diglycol-amides (BisDGA) as new efficient Extractants

    Energy Technology Data Exchange (ETDEWEB)

    Modolo, G.; Vijgen, H. [Forschungszentrum Juelich GmbH, Institute for Energy Research, Safety Research and Reactor Technology, 52425 Juelich (Germany); Espartero, A.G. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040-Madrid (Spain); Prados, P. [Departamento de Quimica Organica, Facultad de Ciencias, Universidad Autonoma de Madrid - UAM, carretera de Colmenar Viejo km 15.3, 28049-Madrid (Spain); Mendoza, J. de [Departamento de Quimica Organica, Facultad de Ciencias, Universidad Autonoma de Madrid - UAM, carretera de Colmenar Viejo km 15.3, 28049-Madrid (Spain); Institut Catala d' Investigacio Quimica (ICIQ) Av. Paisos Catalans 16, 43007-Tarragona (Spain)

    2008-07-01

    Two new polyamide extractants has been selected, namely UAM-069 and UAM-081, both synthesized at the University of Madrid (UAM), to develop a new separation process. These two ligands are bis-diglycol-amides, consisting of two diglycol-amides moieties grafted on an aromatic platform (UAM-069) or on an aliphatic linker (UAM-081), respectively. The extraction of actinides and fission products was studied from synthetic PUREX raffinate. Actinides(III) and lanthanides(III) are highly extracted from acidities > 1 mol/L HNO{sub 3}. The extraction of Zr, Mo and Pd could be suppressed with complexing agents such as oxalic acid and HEDTA. In the present paper the results of the batch extraction results are presented which serve for the development of a new continuous counter current process to be tested in centrifugal contactors. (authors)

  5. CANDU - a versatile reactor for plutonium disposition or actinide burning

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Gagnon, M.J.N.; Boczar, P.G.; Ellis, R.J.; Verrall, R.A.

    1997-10-01

    High neutron economy, on-line refuelling, and a simple fuel-bundle design result in a high degree of versatility in the use of the CANDU reactor for the disposition of weapons-derived plutonium and for the annihilation of long-lived radioactive actinides, such as plutonium, neptunium, and americium isotopes, created in civilian nuclear power reactors. Inherent safety features are incorporated into the design of the bundles carrying the plutonium and actinide fuels. This approach enables existing CANDU reactors to operate with various plutonium-based fuel cycles without requiring major changes to the current reactor design. (author)

  6. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  7. The INE-Beamline for actinide science at ANKA

    Science.gov (United States)

    Rothe, J.; Butorin, S.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Löble, M.; Metz, V.; Seibert, A.; Steppert, M.; Vitova, T.; Walther, C.; Geckeis, H.

    2012-04-01

    Since its inauguration in 2005, the INE-Beamline for actinide research at the synchrotron source ANKA (KIT North Campus) provides dedicated instrumentation for x-ray spectroscopic characterization of actinide samples and other radioactive materials. R&D work at the beamline focuses on various aspects of nuclear waste disposal within INE's mission to provide the scientific basis for assessing long-term safety of a final nuclear waste repository. The INE-Beamline is accessible for the actinide and radiochemistry community through the ANKA proposal system and the European Union Integrated Infrastructure Initiative ACTINET-I3. Experiments with activities up to 1 × 10+6 times the European exemption limit are feasible within a safe but flexible containment concept. Measurements with monochromatic radiation are performed at photon energies varying between ˜2.1 keV (P K-edge) and ˜25 keV (Pd K-edge), including the lanthanide L-edges and the actinide M- and L3-edges up to Cf. The close proximity of the INE-Beamline to INE controlled area labs offers infrastructure unique in Europe for the spectroscopic and microscopic characterization of actinide samples. The modular beamline design enables sufficient flexibility to adapt sample environments and detection systems to many scientific questions. The well-established bulk techniques x-ray absorption fine structure (XAFS) spectroscopy in transmission and fluorescence mode have been augmented by advanced methods using a microfocused beam, including (confocal) XAFS/x-ray fluorescence detection and a combination of (micro-)XAFS and (micro-)x-ray diffraction. Additional instrumentation for high energy-resolution x-ray emission spectroscopy has been successfully developed and tested.

  8. The INE-Beamline for actinide science at ANKA

    International Nuclear Information System (INIS)

    Rothe, J.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Loeble, M.; Metz, V.; Steppert, M.; Vitova, T.; Geckeis, H.; Butorin, S.; Seibert, A.; Walther, C.

    2012-01-01

    Since its inauguration in 2005, the INE-Beamline for actinide research at the synchrotron source ANKA (KIT North Campus) provides dedicated instrumentation for x-ray spectroscopic characterization of actinide samples and other radioactive materials. R and D work at the beamline focuses on various aspects of nuclear waste disposal within INE's mission to provide the scientific basis for assessing long-term safety of a final nuclear waste repository. The INE-Beamline is accessible for the actinide and radiochemistry community through the ANKA proposal system and the European Union Integrated Infrastructure Initiative ACTINET-I3. Experiments with activities up to 1 x 10 +6 times the European exemption limit are feasible within a safe but flexible containment concept. Measurements with monochromatic radiation are performed at photon energies varying between ∼2.1 keV (P K-edge) and ∼25 keV (Pd K-edge), including the lanthanide L-edges and the actinide M- and L3-edges up to Cf. The close proximity of the INE-Beamline to INE controlled area labs offers infrastructure unique in Europe for the spectroscopic and microscopic characterization of actinide samples. The modular beamline design enables sufficient flexibility to adapt sample environments and detection systems to many scientific questions. The well-established bulk techniques x-ray absorption fine structure (XAFS) spectroscopy in transmission and fluorescence mode have been augmented by advanced methods using a microfocused beam, including (confocal) XAFS/x-ray fluorescence detection and a combination of (micro-)XAFS and (micro-)x-ray diffraction. Additional instrumentation for high energy-resolution x-ray emission spectroscopy has been successfully developed and tested.

  9. Minor actinides transmutation potential: state of art for GEN IV sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Buiron, Laurent

    2015-01-01

    In the frame of the R and D program relative to the 1991 French act on nuclear waste management, fast neutron systems have shown relevant characteristics that meet both requirements on sustainable resources management and waste minimization. They also offer flexibility by mean of burner or breeder configurations allowing mastering plutonium inventory without significant impact on core safety. From the technological point of view, sodium cooled fast reactor are considered in order to achieve mean term industrial deployment. The present document summaries the main results of R and D program on minor actinides transmutation in sodium fast reactor since 2006 following recommendation of the first part of the 1991 French act. Both homogeneous and heterogeneous management achievable performances are presented for 'evolutionary' SFR V2B core as well as low void worth CFV core for industrial scale configurations (1500 MWe). Minor actinides transmutation could be demonstrated in the ASTRID reactor with the following configurations: - a 2%vol Americium content for the homogeneous mode, - a 10%vol Americium content for the heterogeneous mode, without any substantial modification of the main core safety parameters and only limited impacts on the associated fuel cycle (manufacturing issues are not considered here). In order to achieve such goal, a wide range of experimental irradiations driven by transmutation scenarios have to be performed for both homogeneous and heterogeneous minor actinides management. (author) [fr

  10. Methods for separating actinides from reprocessing and refabrication plant wastes

    International Nuclear Information System (INIS)

    Tedder, D.W.; Finney, B.C.; Blomeke, J.O.

    1979-01-01

    Chemical processing flowsheets have been developed to partition actinides from all actinide-bearing LWR fuel reprocessing and refabrication plant wastes. These wastes include high-activity-level liquids, scrap recovery liquors, HEPA filters and incinerator ashes, and chemical salt wastes such as sodium carbonate scrub solutions, detergent cleanup streams, and alkaline off-gas scrubber liquors. The separations processes that were adopted for this study are based on solvent extraction, cation exchange chromatography, and leaching with Ce 4+ -HNO 3 solution

  11. Separations chemistry for actinide elements: Recent developments and historical perspective

    International Nuclear Information System (INIS)

    Nash, K.L.; Choppin, G.R.

    1997-01-01

    With the end of the cold war, the principal mission in actinide separations has changed from production of plutonium to cleanup of the immense volume of moderately radioactive mixed wastes which resulted from fifty years of processing activities. In order to approach the cleanup task from a proper perspective, it is necessary to understand how the wastes were generated. Most of the key separations techniques central to actinide production were developed in the 40's and 50's for the identification and production of actinide elements. Total actinide recovery, lanthanide/actinide separations, and selective partitioning of actinides from inert constituents are currently of primary concern. To respond to the modern world of actinide separations, new techniques are being developed for separations ranging from analytical methods to detect ultra-trace concentrations (for bioassay and environmental monitoring) to large-scale waste treatment procedures. In this report, the history of actinide separations, both the basic science and production aspects, is examined and evaluated in terms of contemporary priorities

  12. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    Science.gov (United States)

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  13. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  14. AMS detection of actinides at high mass separation

    Energy Technology Data Exchange (ETDEWEB)

    Steier, Peter; Lachner, Johannes; Priller, Alfred; Winkler, Stephan; Golser, Robin [University of Vienna, Faculty of Physics, Vienna (Austria); Eigl, Rosmarie [Hiroshima University, Earth and Planetary Systems Science, Hiroshima (Japan); Quinto, Francesca [Institut fuer Nukleare Entsorgung, KIT, Eggenstein-Leopoldshafen (Germany); Sakaguchi, Aya [University of Tsukuba, Center for Research in Isotopes and Environmental Dynamics, Tsukuba (Japan)

    2015-07-01

    AMS is the mass spectrometric method with the highest abundance sensitivity, which is a prerequisite for measurement of the long-lived radioisotope {sup 236}U (t{sub 1/2}=23.4 million years). The most successful application so far is oceanography, since anthropogenic {sup 236}U is present in the world oceans at {sup 236}U:{sup 238}U from 10{sup -11} to 10{sup -8}. We have explored methods to increase the sensitivity and thus to reduce the water volume required to 1 L or less, which significantly reduces the sampling effort. High sensitivity is also necessary to address the expected typical natural isotopic ratios on the order {sup 236}U:{sup 238}U = 10{sup -13}, with potential applications in geology. With a second 90 analyzer magnet and a new Time-of-Flight beam line, VERA is robust against chemical impurities in the background, which e.g. allows measuring Pu isotopes directly in a uranium matrix. This simplifies chemical sample preparation for actinide detection, and may illustrate why AMS reaches lower detection limits than other mass spectrometric methods with nominally higher detection efficiency.

  15. Study of minor actinides transmutation in heavy water cooled tight-pitch lattice

    International Nuclear Information System (INIS)

    Xu Xiaoqin; Shiroya, S.

    2002-01-01

    Minor actinides inhere long half-life and high toxicity. It is an alternative technical pathway and helpful for reducing environmental impact to incinerate minor actinides in spent fuel of nuclear power plants. Because of its high neutron, γ and β emitting rates and heat generation rate, it is necessary to imply more severe control and shielding techniques in the chemical treatment and fabrication. From economic view-point, it is suitable to transmute minor actinides in concentrated way. A technique for MA transmutation by heavy water cooled tight-pitch lattice system is proposed, and calculated with SRAC95 code system. It is shown that tight-pitch heavy water lattice can transmute MA effectively. The accelerator-driven subcritical system is practical for MA transmutation because of its low fraction of effective delay neutrons

  16. Lessons Learned from Characterization, Performance Assessment, and EPA Regulatory Review of the 1996 Actinide Source Term for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Larson, K.W.; Moore, R.C.; Nowak, E.J.; Papenguth, H.W.; Jow, H.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of transuranic waste from defense activities. In 1996, the DOE submitted the Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant (CCA) to the US Environmental Protection Agency (EPA). The CCA included a probabilistic performance assessment (PA) conducted by Sandia National Laboratories to establish compliance with the quantitative release limits defined in 40 CFR 191.13. An experimental program to collect data relevant to the actinide source term began around 1989, which eventually supported the 1996 CCA PA actinide source term model. The actinide source term provided an estimate of mobile dissolved and colloidal Pu, Am, U, Th, and Np concentrations in their stable oxidation states, and accounted for effects of uncertainty in the chemistry of brines in waste disposal areas. The experimental program and the actinide source term included in the CCA PA underwent EPA review lasting more than 1 year. Experiments were initially conducted to develop data relevant to the wide range of potential future conditions in waste disposal areas. Interim, preliminary performance assessments and actinide source term models provided insight allowing refinement of experiments and models. Expert peer review provided additional feedback and confidence in the evolving experimental program. By 1995, the chemical database and PA predictions of WIPP performance were considered reliable enough to support the decision to add an MgO backfill to waste rooms to control chemical conditions and reduce uncertainty in actinide concentrations, especially for Pu and Am. Important lessons learned through the characterization, PA modeling, and regulatory review of the actinide source term are (1) experimental characterization and PA should evolve together, with neither activity completely dominating the other, (2) the understanding of physical processes

  17. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Koenig, Z.M.

    1993-01-01

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  18. Homogeneous Minor Actinide Transmutation in SFR: Neutronic Uncertainties Propagation with Depletion

    International Nuclear Information System (INIS)

    Buiron, L.; Plisson-Rieunier, D.

    2015-01-01

    In the frame of next generation fast reactor design, the minimisation of nuclear waste production is one of the key objectives for current R and D. Among the possibilities studied at CEA, minor actinides multi-recycling is the most promising industrial way achievable in the near-term. Two main management options are considered: - Multi-recycling in a homogeneous way (minor actinides diluted in the driver fuel). If this solution can help achieving high transmutation rates, the negative impact of minor actinides on safety coefficients allows only a small fraction of the total heavy mass to be loaded in the core (∼ few %). - Multi-recycling in heterogeneous way by means of Minor Actinide Bearing Blanket (MABB) located at the core periphery. This solution offers more flexibility than the previous one, allowing a total minor actinides decoupled management from the core fuel. As the impact on feedback coefficient is small larger initial minor actinide mass can be loaded in this configuration. Starting from a breakeven Sodium Fast Reactor designed jointly by CEA, Areva and EdF teams, the so called SFR V2B, transmutation performances have been studied in frame on the French fleet for both options and various specific isotopic management (all minor actinides, americium only, etc.). Using these results, a sensitivity study has been performed to assess neutronic uncertainties (i.e coming from cross section) on mass balance on the most attractive configurations. This work in based on a new implementation of sensitivity on concentration with depletion in the ERANOS code package. Uncertainties on isotopes masses at the end of irradiation using various variance-covariance is discussed. (authors)

  19. Actinide isotopes in the marine environment

    International Nuclear Information System (INIS)

    Holm, E.; Fukai, R.

    1986-01-01

    Studies of actinide isotopes in the environment are important not only from the viewpoint of their radiological effects on human life, but also from the fact that they act as excellent biochemical and geochemical tracers especially in the marine environment. For several of the actinide isotopes there is still a lack of basic data on concentration levels and further investigations on their chemical and physical speciation are required to understand their behaviour in the marine environment. The measured and estimated activity concentration levels of artificial actinides are at present in general a few orders of magnitude lower than those of the natural ones and their concentration factors in biota are relatively low, except in a few species of macroalgae and phytoplankton. The contribution from seafood to total ingestion of actinides by the world population is a few per cent and, therefore, the dose to man from these long-lived radionuclides caused by seafood ingestion is usually low. (orig.)

  20. Actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    Beaman, S.L.

    1979-01-01

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs

  1. High-temperature vacuum distillation separation of plutonium waste salts

    International Nuclear Information System (INIS)

    Garcia, E.

    1996-01-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen

  2. Thin layers in actinide research

    International Nuclear Information System (INIS)

    Gouder, T.

    1998-01-01

    Surface science research at the ITU is focused on the synthesis and surface spectroscopy studies of thin films of actinides and actinide compounds. The surface spectroscopies used are X-ray and ultra violet photoelectron spectroscopy (XPS and UPS, respectively), and Auger electron spectroscopy (AES). Thin films of actinide elements and compounds are prepared by sputter deposition from elemental targets. Alloy films are deposited from corresponding alloy targets and could be used, in principle, as replicates of these targets. However, there are deviations between alloy film and target composition, which depend on the deposition conditions, such as pressure and target voltage. Mastering of these effects may allow us to study stoichiometric film replicates instead of thick bulk compounds. As an example, we discuss the composition of U-Ni films prepared from a UNi 5 target. (orig.)

  3. Effect of the Lithium Oxide Concentration on a Reduction of Lanthanide Oxides

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Jeong, Myeong-Soo; Do, Jae-Bum; Seo, Chung-Seok

    2007-01-01

    The pyrochemical reduction process of spent oxide fuel is one of the options to handle spent PWR fuels in Korea. After spent oxide fuel is converted to a metallic form, fission products will be removed from the resultant uranium and higher actinide metals by an electrorefining process. The chemical behaviors of lanthanide oxides during the pyrochemical process has been extensively studied. It was also reported that about 30 to 50% of several lanthanide oxides were reduced to corresponding metals by an electrolytic reduction process having 1 wt% of a lithium oxide concentration. Korea Atomic Energy Research Institute (KAERI), however, has been used 3 wt% of lithium oxide to increase the applied current of the electrolytic reduction process. Though it was reported that U 3 O 8 was reduced to uranium metal having a high reduction yield at 3 wt% of the Li 2 O concentration, the effect of the lithium oxide concentration on the reduction of lanthanide oxides has not been clarified

  4. Radiochemistry and actinide chemistry

    International Nuclear Information System (INIS)

    Guillaumont, R.; Peneloux, A.

    1989-01-01

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 10 12 , are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  5. Interaction between actinides and protein: the calmodulin

    International Nuclear Information System (INIS)

    Brulfert, Florian

    2016-01-01

    Considering the environmental impact of the Fukushima nuclear accident, it is fundamental to study the mechanisms governing the effects of the released radionuclides on the biosphere and thus identify the molecular processes generating the transport and deposition of actinides, such as neptunium and uranium. However, the information about the microscopic aspect of the interaction between actinides and biological molecules (peptides, proteins...) is scarce. The data being mostly reported from a physiological point of view, the structure of the coordination sites remains largely unknown. These microscopic data are indeed essential for the understanding of the interdependency between structural aspect, function and affinity.The Calmodulin (CaM) (abbreviation for Calcium-Modulated protein), also known for its affinity towards actinides, acts as a metabolic regulator of calcium. This protein is a Ca carrier, which is present ubiquitously in the human body, may also bind other metals such as actinides. Thus, in case of a contamination, actinides that bind to CaM could avoid the protein to perform properly and lead to repercussions on a large range of vital functions.The complexation of Np and U was studied by EXAFS spectroscopy which showed that actinides were incorporated in a calcium coordination site. Once the thermodynamical and structural aspects studied, the impact of the coordination site distortion on the biological efficiency was analyzed. In order to evaluate these consequences, a calorimetric method based on enzyme kinetics was developed. This experiment, which was conducted with both uranium (50 - 500 nM) and neptunium (30 - 250 nM) showed a decrease of the heat produced by the enzymatic reaction with an increasing concentration of actinides in the medium. Our findings showed that the Calmodulin actinide complex works as an enzymatic inhibitor. Furthermore, at higher neptunium (250 nM) and uranium (500 nM) concentration the metals seem to have a poison

  6. Actinide Sciences at ITN - Basic Studies in Chemistry with Potential Interest for Partitioning, Fuel Fabrication and More

    International Nuclear Information System (INIS)

    Almeida, M.; Dias, M.; Goncalves, A.P.; Henriques, M.S.; Lopes, E.B.; Pereira, L.C.J.; Santos, I.C.; Verbovytskyy, Y.; Waerenborgh, J.C.; Branco, J.B.; Carretas, J.M.; Cruz, A.; Ferreira, A.C.; Gasche, T.A.; Leal, J.P.; Lopes, G.; Lourenco, C.; Marcalo, J.; Maria, L.; Monteiro, B.; Mora, E.; Pereira, C.C.L.; Paiva, I.

    2010-01-01

    The current activities in the area of actinide chemistry at ITN, comprising basic research studies in inorganic and organometallic chemistry, catalysis, gas-phase ion chemistry, thermochemistry, and solid state chemistry, are briefly described. Actinide (and lanthanide) chemistry studies at ITN will be pursued connecting basic research with potential applications in nuclear and non-nuclear areas. (authors)

  7. Actinide partitioning-transmutation program final report. I. Overall assessment

    International Nuclear Information System (INIS)

    Croff, A.G.; Blomeke, J.O.; Finney, B.C.

    1980-06-01

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of 99 Tc and 129 I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted

  8. A conceptual study of actinide transmutation system with proton accelerator, (2)

    International Nuclear Information System (INIS)

    Takizuka, T.; Takada, H.; Kanno, I.; Ogawa, T.; Nishida, T.; Kaneko, Y.

    1990-01-01

    This paper describes the thermal hydraulics of the accelerator-driven actinide incineration target system based on power distribution profiles to assess the maximum attainable power. In the case of Na cooling, the reference target operates at a thermal power of 404 MW and a beam current of 18.2 mA. The system transmutes 114 kg actinides per year, which implies that the annual actinide products from about 4.3 units of 3000 MWt pressurized water reactor (PWR) can be incinerated. The Pb-Bi cooled reference target operates at a thermal power of 163 MW and beam current of 5.4 mA. The system transmutes 42 kg actinides annually, and can serve about 1.8 units of PWR. The maximum thermal power can be increased by a factor of about 2 by introducing tungsten pins in the high flux region to flatten the power distribution. The Na cooled tungsten-loaded target operates at a thermal power of 691 MW and beam current of 22.6 mA. The system can serve about 7.6 PWRs. The tungsten-loaded target cooled by Pb-Bi operates at a thermal power of 343 MW at a 9.8 mA beam current. The system can process the actinide from about 3.8 PWRs. (N.K.)

  9. The application of CANDU neutron economy for the annihilation of the minor actinides

    International Nuclear Information System (INIS)

    Dastur, Adi; Gagnon, Nathalie

    1995-01-01

    A strategically indispensable role, comparable to the one of operating with natural uranium, is proposed for CANDU as an incentive to ensure future CANDU sales in an environment where enrichment and reprocessing technology are globally available. Because of their high neutron economy, CANDU reactors can operate with minimal fissile content and consequently at high neutron flux. This is especially so in the absence of uranium, i.e. when transuranic actinides are used as fuel. The low fissile requirement and the on-power refuelling capability of CANDU can be exploited to achieve a once-through cycle for actinide annihilation. This avoids recycling and refabrication costs and provides relatively high annihilation rates. In addition, CANDUs ability to operate without uranium and extract energy from the minor actinides makes it the ultimate resource conserver and gives it a unique role in sustainable energy growth. (author)

  10. Evaluation of thorium based nuclear fuel. Actinide waste

    International Nuclear Information System (INIS)

    Wichers, V.A.

    1995-06-01

    Use of thorium based fuel has recently been proposed as a possible way to reduce the amount of actinide waste from nuclear power. To examine this possibility, burnup calculations were done of five once-through Thorium Heavy Water Reactor (THWR) systems, and three THWR systems with uranium recycle. The natural uranium once-through system was adopted as reference. The studied THWR fuel systems differed in the choice of fissile makeup fuel and exit burnup. The HWR was chosen because of its good neutron economy. Actinide waste production (in mass per GW e a) and radiotoxicity (in ALI per GW e a) for storage times up to 10 6 a were calculated for each system. The study shows that the THWR system with uranium recycle and High Enriched Uranium (U-235) makeup fuel performed best, producing both the lowest amount of plutonium and actinide waste with the lowest radiotoxicity. Relative to the natural uranium in HWR once-through system, radiotoxicity is reduced by a factor varying between 2 and 50 for the full range of storage times up to 10 6 a. (orig.)

  11. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  12. Method for fluorination of actinide fluorides and oxyfluorides using O/sub 2/F/sub 2/

    Science.gov (United States)

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1984-08-01

    The present invention relates generally to methods of fluorination and more particularly to the use of O/sub 2/F/sub 2/ for the preparation of actinide hexafluorides, and for the extraction of deposited actinides and fluorides and oxyfluorides thereof from reaction vessels. The experiments set forth hereinabove demonstrate that the room temperature or below use of O/sub 2/F/sub 2/ will be highly beneficial for the preparation of pure actinide hexafluorides from their respective tetrafluorides without traces of HF being present as occurs using other fluorinating agents: and decontamination of equipment previously exposed to actinides: e.g., walls, feed lines, etc.

  13. Actinide removal from aqueous solution with activated magnetite

    International Nuclear Information System (INIS)

    Kochen, R.L.; Thomas, R.L.

    1987-01-01

    An actinide aqueous waste treatment process using activated magnetite has been developed at Rocky Flats. The use and effectiveness of various magnetites in lowering actinide concentrations in aqueous solution are described. Experiments indicate that magnetite particle size and pretreatment (activation of the magnetite surface with hydroxyl ions greatly influence the effective use of magnetite as an actinide adsorbent. With respect to actinide removal, Ba(OH) 2 -activated magnetite was more effective over a broader pH range than was NaOH-activated magnetite. About 50% less Ba(OH) 2 -activated magnetite was required to lower plutonium concentration from 10 -4 to 10 -8 g/l. 7 refs., 8 tabs

  14. Characterization of the deviation to the ideality of concentrated actinide and lanthanide salt solutions: contribution of the Bimsa theory

    International Nuclear Information System (INIS)

    Ruas, A.

    2006-03-01

    The aim of this work is to describe the mean stoichiometric activity coefficients, osmotic coefficients or water activities of aqueous actinide nitrate salt solutions up to high concentration. These sets of data are required for a better control of the equilibria occurring in liquid-liquid extraction processes. Experimental acquisition of these thermodynamic properties, in the case of some actinide nitrates, is possible and was conducted before.But, many actinide salt solutions cannot be experimentally handled up to high concentration because of unstable oxidation state or very high radioactivity. As a consequence, a suitable predictive theory is necessary for the description of these nitrate salt solutions (such as Am (NO 3 ) 3 , Cm (NO 3 ) 3 ). The BIMSA ('Binding Mean Spherical Approximation') was chosen for this purpose. This theory, unlike other methods, uses a set of microscopic parameters that have some physical meaning, for the description of macroscopic thermodynamic properties (osmotic coefficients, activity coefficients).The following manuscript is divided by 4 chapters, corresponding to 4 articles accepted in the scientific journal 'Journal of Physical Chemistry'. Chapter 1 first reviews the basic thermodynamic concepts before describing the issues involved in acquiring actinides binary data. An approach based on the thermodynamic concept of simple solutions, the notion of fictive binary data, is described. Within this approach, the activity coefficient of an aqueous phase constituent depends on two parameters: the water activity of the system and total concentration of dissolved constituents. As a first application, new fictive binary data of uranyl nitrate are proposed from measurements on the ternary system UO 2 (NO 3 ) 2 /HNO 3 /H 2 O.Chapter 2 gives the main principles of the BIMSA theory. It shows also preliminary promising results obtained when modeling lanthanide(III) salt properties. Then, in chapter 3, two predictive capabilities of the theory

  15. Actinide AMS at DREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Khojasteh, Nasrin B.; Merchel, Silke; Rugel, Georg; Scharf, Andreas; Ziegenruecker, Rene [HZDR, Dresden (Germany); Pavetich, Stefan [HZDR, Dresden (Germany); ANU, Canberra (Australia)

    2016-07-01

    Radionuclides such as {sup 236}U and {sup 239}Pu were introduced into the environment by atmospheric nuclear weapon tests, reactor accidents (Chernobyl, Fukushima), releases from nuclear reprocessing facilities (Sellafield, La Hague), radioactive waste disposal, and accidents with nuclear devices (Palomares, Thule) [1]. Accelerator Mass Spectrometry (AMS) is the most sensitive method to measure these actinides. The DREsden AMS (DREAMS) facility is located at a 6 MV accelerator, which is shared with ion beam analytics and implantation users, preventing major modifications of the accelerator and magnetic analyzers. DREAMS was originally designed for {sup 10}Be, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, and {sup 129}I. To modify the system for actinide AMS, a Time-of-Flight (TOF) beamline at the high-energy side has been installed and performance tests are on-going. Ion beam and detector simulations are carried out to design a moveable ionization chamber. Especially, the detector window and anode dimensions have to be optimized. This ionization chamber will act as an energy detector of the system and its installation is planned as closely as possible to the stop detector of the TOF beamline for highest detection efficiency.

  16. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Koenig, Z.M.

    1993-07-01

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on the authors' experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA 3 as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  17. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    Energy Technology Data Exchange (ETDEWEB)

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  18. A study on the feasibility of minor actinides in BWR

    International Nuclear Information System (INIS)

    Abdul Waris; Budiono

    2008-01-01

    Preliminary study on the feasibility of actinides minor (MA) recycling without mixing them with plutonium in boiling water reactor (BWR) has been carried out. The results show that increasing of fissile MA content in mixed oxide fuel (MOX) and/or reducing void fraction can enlarge the effective multiplication factor at the beginning of cycle, but the reactor still can not obtain its criticality condition. Furthermore, dropping the void fraction results in higher reactivity swing and therefore plummeting the safety factor of the reactor. (author)

  19. Strongly Enhanced Low Energy Alpha-Particle Decay in Heavy Actinide Nuclei and Long-Lived Superdeformed and Hyperdeformed Isomeric States

    CERN Document Server

    Marinov, Amnon; Kolb, D.; Weil, J.L.

    2001-01-01

    Relatively low energy and very enhanced alpha-particle groups have been observed in various actinide fractions produced via secondary reactions in a CERN W target which had been irradiated with 24-GeV protons. In particular, 5.14, 5.27 and 5.53 MeV alpha-particle groups with corresponding half-lives of 3.8(+ -)1.0 y, 625(+ -)84 d and 26(+ -)7 d, have been seen in Bk, Es and Lr-No sources, respectively. The measured energies are a few MeV lower than the known g.s. to g.s. alpha-decays in the corresponding neutron-deficient actinide nuclei. The half-lives are 4 to 7 orders of magnitude shorter than expected from the systematics of alpha-particle decay in this region of nuclei. The deduced evaporation residue cross sections are in the mb region, about 4 orders of magnitude higher than expected. A consistent interpretation of the data is given in terms of production of long-lived isomeric states in the second and third wells of the potential-energy surfaces of the parent nuclei, which decay to the corresponding w...

  20. Recycle of LWR actinides to an IFR

    International Nuclear Information System (INIS)

    Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

    1991-01-01

    Large quantities of actinide elements are present in irradiated light water reactor fuel that is stored throughout the world. Because of the high fission to capture ratio for the transuranium (TRU) elements with the high energy neutrons in metal-fueled integral fast reactors (IFR), that reactor can consume these elements effectively. The stored fuel may represent valuable resource for the expanding application of fast power reactors. In addition, the removal of TRU elements from spent LWR fuel has the potential for increasing the capacity of high level waste facilities by reducing the heat load and may increase the margin of safety in meeting licensing requirement. Argonne National Laboratory is developing a pyrochemical process, which is compatible with the IFR fuel cycle for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. Two pyrochemical processes, that is, salt transport process and blanket processing study, are discussed in this paper. Also the experimental studies are reported. (K.I.)

  1. Atomistic modeling of the solid-state chemistry of actinide materials

    Science.gov (United States)

    Shuller, Lindsay C.

    Materials that incorporate actinides are critical to the nuclear fuel cycle, either as nuclear fuels or nuclear waste forms. In this thesis, I examine four materials: i) ThO2-UO2 solid solutions, ii) binary ThO2-CeO2-ZrO2 solid solutions, iii) Np-doped studtite, iv) Np-doped boltwoodite. Computational methods, particularly density functional theory (DFT) calculations and Monte-Carlo (MC) simulations, are used to determine the energetics and structures of these actinide-bearing materials. The solid-solution behavior of nuclear fuels and nuclear waste forms indicate the thermodynamic stability of the material, which is important for understanding the in-reactor fuel properties and long-term stability of used fuel. The ThxU1-xO2 and ThxCe 1-xO2 binaries are almost completely miscible; however, DeltaGmix reveals a small tendency for the systems to exsolve (e.g., DeltaEexsoln(Th xU1-xO2) = 0.13 kJ/(mol cations) at 750 K). Kinetic hindrances (e.g., interfacial energy) may inhibit exsolution, especially at the low temperatures necessary to stabilize the nanoscale exsolution lamellae observed in the ThxU1-xO2 and Ce xZr1-xO2 binaries. Miscibility in the Zr-bearing binaries is limited. At 1400 °C, only 3.6 and 0.09 mol% ZrO2 is miscible in CeO2 and ThO2, respectively. The incorporation of minor amounts of Np5+,6+ into uranium alteration phases, e.g., studtite [UO2O2 (H2O)4] or boltwoodite [K(UO2)(SiO 3OH)(H2O)1.5] , may limit the mobility of aqueous neptunyl complexes released from oxidized nuclear fuels. Np6+-incorporation into studtite requires less energy than Np5+-incorporation (e.g., with source/sink = Np2O5/UO 3 DeltaEincorp(Np6+) = 0.42 eV and DeltaEincorp(Np5+) = 1.12 eV). In addition, Np6+ is completely miscible in studtite at room temperature with respect to a hypothetical Np6+-studtite. Electronic structure calculations provide insight into Np-bonding in studtite. The Np 5f orbitals are within the band gap of studtite, resulting in the narrowing of the band gap

  2. Geochemistry of actinides. Application to the storage of high level radioactive wastes. Under the supervision of Mr Michel Treuil

    International Nuclear Information System (INIS)

    Bouabdallah, Noureddine; Cunault, Jean-Baptiste; Houtin, Gwenaelle; Leborgne, Francois; Lemaire, Celine; Lemarchand, Damien; Quitte, Ghylaine

    1997-06-01

    This collective research report first addresses the chemistry of actinides with a description of their atomic orbitals and the study of their behaviour in solution. The author addresses several aspects: historical overview on actinides, radioactivity, chemical reactions in aqueous solution, redox chemistry, speciation in solution with respect to water characteristics in deep storage conditions. The second part gathers several studies performed on a natural laboratory (the Oklo site in which nuclear reactions occurred about 2 billions years ago) and reports the modelling of radionuclide transfer within a geological system (the model is applied to the Oklo site). The third part addresses issues related to the nuclear fuel cycle, and the storage modes and materials envisaged and involved regarding the storage of high level radioactive wastes, notably in France

  3. Covalent bonding in heavy metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S.; Nelin, Connie J.; Hrovat, Dave A.; Ilton, Eugene S.

    2017-04-07

    Novel theoretical methods were used to quantify the magnitude and the energetic contributions of 4f/5f-O2p and 5d/6d-O2p interactions to covalent bonding in lanthanide and actinide oxides. Although many analyses have neglected the involvement of the frontier d orbitals, the present study shows that f and d covalency are of comparable importance. Two trends are identified. As is expected, the covalent mixing is larger when the nominal oxidation state is higher. More subtly, the importance of the nf covalent mixing decreases sharply relative to (n+1)d as the nf occupation increases. Atomic properties of the metal cations that drive these trends are identified.

  4. Actinide burning in the integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1993-01-01

    During the past few years, Argonne National Laboratory has been developing the integral fast reactor (IFR), an advanced liquid-metal reactor concept. In the IFR, the inherent properties of liquid-metal cooling are combined with a new metallic fuel and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics, and waste management. A key feature of the IFR concept is its unique pyroprocessing. Pyroprocessing has the potential to radically improve long-term waste management strategies by exploiting the following attributes: 1. Minor actinides accompany plutonium product stream; therefore, actinide recycling occurs naturally. Actinides, the primary source of long-term radiological toxicity, are removed from the waste stream and returned to the reactor for in situ burning, generating useful energy. 2. High-level waste volume from pyroprocessing call be reduced substantially as compared with direct disposal of spent fuel. 3. Decay heat loading in the repository can be reduced by a large factor, especially for the long-term burden. 4. Low-level waste generation is minimal. 5. Troublesome fission products, such as 99 Tc, 129 I, and 14 C, are contained and immobilized. Singly or in combination, the foregoing attributes provide important improvements in long-term waste management in terms of the ease in meeting technical performance requirements (perhaps even the feasibility of demonstrating that technical performance requirements can be met) and perhaps also in ultimate public acceptance. Actinide recycling, if successfully developed, could well help the current repository program by providing an opportunity to enhance capacity utilization and by deferring the need for future repositories. It also represents a viable technical backup option in the event unforeseen difficulties arise in the repository licensing process

  5. Characterization of the deviation to the ideality of concentrated actinide and lanthanide salt solutions: contribution of the Bimsa theory; Caracterisation de l'ecart a l'idealite de solutions concentrees de sels d'actinide et de lanthanide: contribution de la theorie Bimsa

    Energy Technology Data Exchange (ETDEWEB)

    Ruas, A

    2006-03-15

    The aim of this work is to describe the mean stoichiometric activity coefficients, osmotic coefficients or water activities of aqueous actinide nitrate salt solutions up to high concentration. These sets of data are required for a better control of the equilibria occurring in liquid-liquid extraction processes. Experimental acquisition of these thermodynamic properties, in the case of some actinide nitrates, is possible and was conducted before.But, many actinide salt solutions cannot be experimentally handled up to high concentration because of unstable oxidation state or very high radioactivity. As a consequence, a suitable predictive theory is necessary for the description of these nitrate salt solutions (such as Am (NO{sub 3}){sub 3}, Cm (NO{sub 3}){sub 3}). The BIMSA ('Binding Mean Spherical Approximation') was chosen for this purpose. This theory, unlike other methods, uses a set of microscopic parameters that have some physical meaning, for the description of macroscopic thermodynamic properties (osmotic coefficients, activity coefficients).The following manuscript is divided by 4 chapters, corresponding to 4 articles accepted in the scientific journal 'Journal of Physical Chemistry'. Chapter 1 first reviews the basic thermodynamic concepts before describing the issues involved in acquiring actinides binary data. An approach based on the thermodynamic concept of simple solutions, the notion of fictive binary data, is described. Within this approach, the activity coefficient of an aqueous phase constituent depends on two parameters: the water activity of the system and total concentration of dissolved constituents. As a first application, new fictive binary data of uranyl nitrate are proposed from measurements on the ternary system UO{sub 2}(NO{sub 3}){sub 2}/HNO{sub 3}/H{sub 2}O.Chapter 2 gives the main principles of the BIMSA theory. It shows also preliminary promising results obtained when modeling lanthanide(III) salt properties. Then

  6. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  7. Single crystal structures and theoretical calculations of uranium endohedral metallofullerenes (U@C2n , 2n = 74, 82) show cage isomer dependent oxidation states for U.

    Science.gov (United States)

    Cai, Wenting; Morales-Martínez, Roser; Zhang, Xingxing; Najera, Daniel; Romero, Elkin L; Metta-Magaña, Alejandro; Rodríguez-Fortea, Antonio; Fortier, Skye; Chen, Ning; Poblet, Josep M; Echegoyen, Luis

    2017-08-01

    Charge transfer is a general phenomenon observed for all endohedral mono-metallofullerenes. Since the detection of the first endohedral metallofullerene (EMF), La@C 82 , in 1991, it has always been observed that the oxidation state of a given encapsulated metal is always the same, regardless of the cage size. No crystallographic data exist for any early actinide endohedrals and little is known about the oxidation states for the few compounds that have been reported. Here we report the X-ray structures of three uranium metallofullerenes, U@ D 3h -C 74 , U@ C 2 (5)-C 82 and U@ C 2v (9)-C 82 , and provide theoretical evidence for cage isomer dependent charge transfer states for U. Results from DFT calculations show that U@ D 3h -C 74 and U@ C 2 (5)-C 82 have tetravalent electronic configurations corresponding to U 4+ @ D 3h -C 74 4- and U 4+ @ C 2 (5)-C 82 4- . Surprisingly, the isomeric U@ C 2v (9)-C 82 has a trivalent electronic configuration corresponding to U 3+ @ C 2v (9)-C 82 3- . These are the first X-ray crystallographic structures of uranium EMFs and this is first observation of metal oxidation state dependence on carbon cage isomerism for mono-EMFs.

  8. Core Power Limits For A Lead-Bismuth Natural Circulation Actinide Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee; Kim, D.; Todreas, N. E.; Mujid S. Kazimi

    2002-04-01

    The Idaho National Engineering and Environmental Laboratory and Massachusetts Institute of Technology are investigating the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The design being considered here is a pool type reactor that burns actinides and utilizes natural circulation of the primary coolant, a conventional steam power conversion cycle, and a passive decay heat removal system. Thermal-hydraulic evaluations of the actinide burner reactor were performed to determine allowable core power ratings that maintain cladding temperatures below corrosion-established temperature limits during normal operation and following a loss-of-feedwater transient. An economic evaluation was performed to optimize various design parameters by minimizing capital cost. The transient power limit was initially much more restrictive than the steady-state limit. However, enhancements to the reactor vessel auxiliary cooling system for transient decay heat removal resulted in an increased power limit of 1040 MWt, which was close to the steady-state limit. An economic evaluation was performed to estimate the capital cost of the reactor and its sensitivity to the transient power limit. For the 1040 MWt power level, the capital cost estimate was 49 mills per kWhe based on 1999 dollars.

  9. Sorption of Cs, I, and actinides in concrete systems

    International Nuclear Information System (INIS)

    Allard, B.; Eliasson, L.; Andersson, K.

    1984-09-01

    Samples of seven different concretes were prepared (Standard Portland cement of two kinds; sulphate resistant, blast furnace slag, high alumina, fly ash, and silica cements) and the corresponding pore waters were analyzed. Batch-wise distribution studies were performed in the various concrete/pore water systems, as well as for three old concrete samples from a hydro power station dam (more than 60 years old), for the elements Cs, I, Th, U, Np, Pu, and Am at trace concentration levels. Generally the sorption of Cs was low, and somewhat higher for I. All the actinides, including U and Np in their hexa- and pentavalent states, respectively, were strongly sorbed on the cement phase. (Author)

  10. Electronic structure and core-level spectra of light actinide dioxides in the dynamical mean-field theory

    Czech Academy of Sciences Publication Activity Database

    Kolorenč, Jindřich; Shick, Alexander; Lichtenstein, A.I.

    2015-01-01

    Roč. 92, č. 8 (2015), "085125-1"-"085125-10" ISSN 1098-0121 R&D Projects: GA ČR GC15-05872J Institutional support: RVO:68378271 Keywords : electronic-structure calculations * dynamical mean-field theory * Mott insulators * actinides * oxides * photoemission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  11. Actinide recycle potential in the integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. In the IFR pyroprocessing, minor actinides accompany plutonium product stream, and therefore, actinide recycle occurs naturally. The fast neutron spectrum of the IFR makes it an ideal actinide burner, as well. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and potential implications on long-term waste management

  12. Comportement de l’uranium et de ses simulants dans les verres d’aluminosilicates en contact avec des métaux fondus

    OpenAIRE

    Chevreux , Pierrick

    2016-01-01

    This study concerns an innovative process used for conditioning nuclear waste that contain metallic parts contaminated with actinides. High actinides concentrations are expected to be incorporated in the glass melt in contact with the molten metals. Among these metals, aluminum and/or stainless steel impose a strongly reducing environment to the glass melt involving redox reactions. These reactions modify actinides oxidation states and therefore change their solubilities in the glass and coul...

  13. Thermodynamics and Structure of Actinide(IV) Complexes with Nitrilotriacetic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, L.; Guillaumont, D.; Jeanson, A.; Den Auwer, C.; Moisy, Ph. [CEA Marcoule, DEN, DRCP, SCPS, F-30207 Bagnols Sur Ceze (France); Grigoriev, M. [RAS, AN Frumkin Inst Phys Chem and Electrochem, Moscow 119991 (Russian Federation); Berthet, J.C. [CEA Saclay, DSM, IRAMIS, URA 331, Serv Chim Mol, CNRS, F-91191 Gif Sur Yvette (France); Hennig, C.; Scheinost, A. [Forschungszentrum Dresden Rossendorf, Inst Radiochem, D-01314 Dresden (Germany)

    2009-05-15

    Nitrilotriacetic acid, commonly known as NITA (N(CH{sub 2}CO{sub 2}H){sub 3}), can be considered a representative of the polyamino-carboxylic family. The results presented in this paper describe the thermodynamical complexation and structural investigation of An(IV) complexes with NTA in aqueous solution. In the first part, the stability constants of the An(IV) complexes (An = Pu, Np, U, and Th) have been determined by spectrophotometry. In the second part, the coordination spheres of the actinide cation in these complexes have been described using extended X-ray absorption fine structure spectroscopy and compared to the solid-state structure of (Hpy){sub 2}[U(NTA){sub 2}].H{sub 2}O. These data are further compared to quantum chemical calculations, and their evolution across the actinide series is discussed. In particular, an interpretation of the role of the nitrogen atom in the coordination mode is proposed. These results are considered to be model behavior of polyamino-carboxylic ligands such as diethylenetriamine pentaacetic acid, which is nowadays the best candidate for a chelating agent in the framework of actinide decorporation for the human body. (authors)

  14. Complexes of groups 3,4, the lanthanides and the actinides containing neutral phophorus donor ligands

    International Nuclear Information System (INIS)

    Fryzuk, M.D.; Haddad, T.S.; Berg, D.J.

    1990-01-01

    Of relevance to this review are complexes of the early transition elements, in particular groups 3 and 4 and the lanthanides and actinides. In this review the authors have attempted to collect all the data up to the end of 1988 for complexed of groups 3 and 4, the lanthanides and the actinides that contain phosphorus donor ligands. The 1989s have seen a renaissance of the use of phosphine donors for the early d elements (groups 3 and 4) and the f elements. Neutral phosphorus donors are defined as primary (PH 2 R), secondary (PH 2 ) or tertiary phosphines (PR 3 ), including complexes of phosphine, PH 3 . Also reviewed are complexes of PF 3 and phosphites, P(OR) 3 . Specifically excluded are phosphido derivates, PR 2 . The ability of a neutral phosphorus donor to bind the metals of groups 3 and 4, the lanthanides and the actinides is now well established. While there are still no examples of lanthanum or actinium phosphine complexes, such derivatives should be accessible at least for lanthanum. series. However, there is no obvious chemical reason to suggest that such derivatives cannot be generated. The phosphine ligands that appear to generate the most stable phosphine-metal interaction are chelating phosphines such as dmpe, trmpe and trimpsi. In addition, the use of the chelate effect in conjunction with a hard ligand such as the amide in - N(SiMe 2 CH 2 PMe 2 ) 2 , or an alkoxide as found in - OC(BU t ) 2 CH 2 PMe 2 , also appears to be effective in anchoring the phosphine donor to the metal. The majority of low oxidation state derivatives of the group 4 elements are stabilized by phosphine donors in contrast with other parts of the transition series where one finds that classic π-acceptor-type ligands such as CO or RNC are utilized. 233 refs

  15. The radiological impact of actinides discharged to the Irish Sea

    International Nuclear Information System (INIS)

    Hunt, G.J.; Smith, B.D.

    1999-01-01

    This paper describes the radiological effects of releases of actinides to the Irish Sea from Sellafield, the major source. Exposure pathways to man since the commencement of discharges in 1952 are reviewed; the importance of actinides began to increase with increased discharges in the 1970s. With the demise of the porphyra/laverbread pathway due to transport difficulties, the pathway due to fish and shellfish consumption became critical, particularly for actinides through molluscan shellfish. A reassessment on the current basis of effective dose shows that peak exposures to the critical group of about 2 mSv yr -1 were received in the mid-1970s, about 30% of which was due to actinides. Effective doses have since reduced but the relative importance of actinides is greater, due to the interplay of discharges of radionuclides from Sellafield and their behaviour in the environment. Additive doses through sea food due to releases of natural radionuclides from the Marchon phosphate plant at Whitehaven are also considered, although the actinide component from this source has been small. Exposures due to actinides from Sellafield via other pathways are shown to be much lower than those involving sea food. Collective doses are also considered; these peaked at about 300 man-Sv to the European population (including the UK) in 1979, with only a few percent due to actinides. As in the case of critical group doses, the relative importance of actinides has increased in recent years within the decreasing total collective dose. For both critical group and collective doses, therefore, the actinide component needs to be kept under review. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Environmental chemistry of the actinide elements

    International Nuclear Information System (INIS)

    Rao Linfeng

    1986-01-01

    The environmental chemistry of the actinide elements is a new branch of science developing with the application of nuclear energy on a larger and larger scale. Various aspects of the environmental chemistry of the actinide elements are briefly reviewed in this paper, such as its significance in the nuclear waste disposal, its coverage of research fields and possible directions for future study

  17. Analysis of large soil samples for actinides

    Science.gov (United States)

    Maxwell, III; Sherrod, L [Aiken, SC

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  18. Evaluating the efficacy of a minor actinide burner

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Omberg, R.P.; Wootan, D.W.

    1993-06-01

    The efficacy of a minor actinide burner can be evaluated by comparing safety and economic parameters to the support ratio. Minor actinide mass produced per unit time in this number of Light Water Reactors (LWRs) can be burned during the same time period in one burner system. The larger the support ratio for a given set of safety and economic parameters, the better. To illustrate this concept, the support ratio for selected Liquid Metal Reactor (LMR) burner core designs was compared with corresponding coolant void worths, a fundamental safety concern following the Chernobyl accident. Results can be used to evaluate the cost in reduced burning of minor actinides caused by LMR sodium void reduction efforts or to compare with other minor actinide burner systems

  19. Orbitally-driven magnetism in light actinide systems

    International Nuclear Information System (INIS)

    Cooper, B.R.; Los Alamos National Lab.

    1987-01-01

    We are interested in understanding the solid-state behavior characteristic of the transition regime between itinerant (bonding) and localized (correlated ionic) f-electron behavior in light actinide (uranium, neptunium and plutonium) systems. For the light actinides, the degree of f-electron localization is sensitive to chemical environment and varies widely depending on specific compound or alloy. It is important for any meaningful theory to reflect this sensitivity to chemical environment. We have focussed our attention initially on magnetic behavior, since the pertinent orbitally-driven magnetic behavior is both interesting in itself and valuable as a diagnostic tool for the f-electron behavior and sensitivity to chemical environment. The key aspect of the electronic behavior is the hybridization (mixing) of the f electrons with band electrons of other than f atomic parentage. To treat effects of hybridization quantitatively, we transform the physical mixing mathematically to resonant scattering of band electrons off f electrons. Anisotropic magnetic properties provide a way to measure the weighting of resonant scattering channels, and this weighting reflects the sensitivity to chemical environment. (orig.)

  20. About the correlation between electronic configurations of actinide ions and the properties of their compounds

    International Nuclear Information System (INIS)

    Ionova, G.V.; Spytsyn, V.I.

    1979-01-01

    The main purpose of this paper is to show the importance of the reconstruction energies on the actinide properties both in solid state and solutions. As a consequence of the specific dualism localization-delocalization of the 5f and 6d electrons, charge waves can occur in crystal compounds at low temperature. In an extended two-band Hubbard model which takes into account the intra- and inter-site Coulomb interactions as well as the kinetic energy, the criteria for the occurrence of the charge and orbital waves are obtained. Orbital ordering can be accompanied by spin density wave formation. Partial attention is given to the occurrence of supraconductivity, it is proposed that electron pair formation in a mixed valence state is one of the important mechanisms of supraconductivity state formation. The influence of the excitation energy on the stability and geometry is analysed. Estimates of the Cm(IV-V), Cm(V-VI) and Cm(VI-VII) oxidation potentials are given. It is shown that distortion from the linear to the bent structure is possible for AnO 2 + cations