WorldWideScience

Sample records for high-molecular-weight fractions polymerization

  1. Radiation polymerization of acrylamide with super-high molecular weight in inverse emulsion

    International Nuclear Information System (INIS)

    Ye Qiang; Ge Xuewu; Xu Xiangling; Zhang Zhicheng

    1998-01-01

    The inverse emulsion polymerization of acrylamide has been studied with γ-ray initiation. Polyacrylamide with super high molecular weight over ten million (11 x 10 6 ), which is very important in application as flocculant, is obtained. In this work, some methods are taken to enhance the molecular weight as follows: (1) In order to prepare soluble polyacrylamide with super high molecular weight, the better conditions are: the emulsifier content is about 2% and the monomer concentration is about 20%∼24% in the composition of monomer emulsion, and the absorbed dose is about 500∼600 Gy. (2) Initiating with high dose rate and polymerizing with low dose rate can not only enhance the molecular weight of product, but also curtail the polymerizing time. (3) Stopping radiation when the conversion gets to about 10% and post-polymerizing outside the radiation source until the conversion gets to 82% can obtain polyacrylamide with super high molecular weight, and shorten the irradiation time as well

  2. Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes.

    Science.gov (United States)

    Mayer, Ulrich F J; Gilroy, Joe B; O'Hare, Dermot; Manners, Ian

    2009-08-05

    Water-soluble, high-molecular-weight polycobaltocenium polyelectrolytes have been prepared by ring-opening polymerization (ROP) techniques. Anionic polymerization of a strained 19-electron dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium chloride resulted in the formation of oligomers with up to nine repeat units. Thermal ROP of dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium nitrate resulted in the formation of high-molecular-weight polycobaltocenium nitrate, a redox-active cobalt-containing polyelectrolyte.

  3. Modeling of molecular weight and molecular weight distribution in slurry polymerization of propylene by Ziegler-Natta catalysts

    International Nuclear Information System (INIS)

    Khorasani, R.; Pourmahdian, S.

    2007-01-01

    The Precise prediction of polypropylene synthesized by heterogeneous Ziegler-Natta catalysts needs good knowledge of parameters affecting on polymerization. molecular weight and molecular weight distribution are among important characteristics of a polymer determining physical-mechanical properties. broadening of molecular weight distribution is an important and well known characteristic of polypropylene synthesized by heterogeneous Ziegler-Natta catalysts, So it is important to understand the origin of broad molecular weight. Two main factors in broadening molecular weight, namely mass transfer resistances and multiplicity of active sites, are discussed in this paper and a model including these factors is presented. Then we calculate molecular weight and molecular weight distribution by the model and compare our results with

  4. molecular weight control of a batch suspension polymerization reactor

    International Nuclear Information System (INIS)

    Shahrokhi, M.; Fanaei, M. A.

    2002-01-01

    This paper concerns molecular weight control of a batch polymerization reactor where suspension polymerization of methyl methylacrylate (MMA) takes place. For this purpose, a cascade control structure with two control loops has been selected. The slave loop is used for temperature control using on-line temperature measurements, and the master loop controls the average molecular weights based on its estimated values. Two different control algorithms namely proportional-integral (PI) controller and globally linearizing controller (GLC) have been used for temperature control. An estimator, which has the structure of an extended Kalman filter(EKF), is used for estimating monomer conversion and average molecular weights of polymer using reactor temperature measurements. The performance of proposed control algorithm is evaluated through simulation and experimental studies. The results indicate that a constant average molecular weight cannot be achieved in case of strong gel effect. However, the polydispersity of product will be lower in comparison to isothermal operation. It is also shown that in case of mo dek mismatch, the performance of cascade control is superior compared to the case where only reactor temperature is controlled based on desired temperature trajectory obtained through cascade strategy

  5. Mechanochemical Ring-Opening Polymerization of Lactide: Liquid-Assisted Grinding for the Green Synthesis of Poly(lactic acid) with High Molecular Weight.

    Science.gov (United States)

    Ohn, Nuri; Shin, Jihoon; Kim, Sung Sik; Kim, Jeung Gon

    2017-09-22

    Mechanochemical polymerization of lactide is carried out by using ball milling. Mechanical energy from collisions between the balls and the vessel efficiently promotes an organic-base-mediated metal- and solvent-free solid-state polymerization. Investigation of the parameters of the ball-milling synthesis revealed that the degree of lactide ring-opening polymerization could be modulated by the ball-milling time, vibration frequency, mass of the ball media, and liquid-assisted grinding. Liquid-assisted grinding was found to be an especially important factor for achieving a high degree of mechanochemical polymerization. Although polymer-chain scission from the strong collision energy prevented mechanical-force-driven high-molecular-weight polymer synthesis, the addition of only a small amount of liquid enabled sufficient energy dissipation and poly(lactic acid) was thereby obtained with a molecular weight of over 1×10 5  g mol -1 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Emulsifier-free emulsion polymerization of tetrafluoroethylene by radiation. IV. Effects of additives on Polymer molecular weight

    International Nuclear Information System (INIS)

    Watanabe, T.; Suwa, T.; Okamoto, J.; Machi, S.

    1979-01-01

    Poly(tetrafluoroethylene)(PTFE) of high molecular weight, 4.5 x 10 7 , was incidentally obtained at earlier study of an emulsifier-free emulsion polymerization of tetrafluoroethylene by radiation. In order to clarify this phenomenon, the effects of additives, in particular radical scavengers, on the molecular weight of PTFE and its polymerization behavior were studied. It was found that the molecular weight of PTFE is increased by the addition of hydroquinone, benzoquinone, α-pinene, dl-limonene, and ethylenediamine but is decreased by oxygen and triethylamine. A PTFE latex with molecular weight higher than 2 x 10 7 was obtained in the presence of hydroquinone. It is concluded that additives such as hydroquinone and benzaquinone, which rapidly scavenge the primary radicals (OH, H, and e/sub aq/ - ) in the aqueous phase but not the growing polymer radicals in PTFE particles, are most effective in increasing the molecular weight

  7. Molecular weights distribution and temperature effects in the styrene polymerization initiated with gamma rays

    International Nuclear Information System (INIS)

    Burillo, G.; Martinez, R.

    1979-01-01

    The polymerization of styrene irradiated in a 60 CO source to 18 0 C temperature and to 70 0 C temperature was studied, in order to reduce the irradiation time raising the polymerization rate and looking for a highest molecular weight. The radiation doses used were from 0.2 to 33.26 Mrad, at the rate of 56 rad/sec, the percent of polymerization and the molecular weight formed were determined, the results indicate one highest molecular weight of 132,700 when the radiation dose of 20 Mrad and the temperature of 20 0 C were used, and one of 395,000 when the irradiation is carried out to 70 0 C. (author)

  8. Surfactant-Free RAFT Emulsion Polymerization of Styrene Using Thermoresponsive macroRAFT Agents: Towards Smart Well-Defined Block Copolymers with High Molecular Weights

    Directory of Open Access Journals (Sweden)

    Steffen Eggers

    2017-12-01

    Full Text Available The combination of reversible addition–fragmentation chain transfer (RAFT and emulsion polymerization has recently attracted much attention as a synthetic tool for high-molecular-weight block copolymers and their micellar nano-objects. Up to recently, though, the use of thermoresponsive polymers as both macroRAFT agents and latex stabilizers was impossible in aqueous media due to their hydrophobicity at the usually high polymerization temperatures. In this work, we present a straightforward surfactant-free RAFT emulsion polymerization to obtain thermoresponsive styrenic block copolymers with molecular weights of around 100 kDa and their well-defined latexes. The stability of the aqueous latexes is achieved by adding 20 vol % of the cosolvent 1,4-dioxane (DOX, increasing the phase transition temperature (PTT of the used thermoresponsive poly(N-acryloylpyrrolidine (PAPy macroRAFT agents above the polymerization temperature. Furthermore, this cosolvent approach is combined with the use of poly(N,N-dimethylacrylamide-block-poly(N-acryloylpiperidine-co-N-acryloylpyrrolidine (PDMA-b-P(APi-co-APy as the macroRAFT agent owning a short stabilizing PDMA end block and a widely adjustable PTT of the P(APi-co-APy block in between 4 and 47 °C. The temperature-induced collapse of the latter under emulsion polymerization conditions leads to the formation of RAFT nanoreactors, which allows for a very fast chain growth of the polystyrene (PS block. In dynamic light scattering (DLS, as well as cryo-transmission electron microscopy (cryoTEM, moreover, all created latexes indeed reveal a high (temperature stability and a reversible collapse of the thermoresponsive coronal block upon heating. Hence, this paper pioneers a versatile way towards amphiphilic thermoresponsive high-molecular-weight block copolymers and their nano-objects with tailored corona switchability.

  9. Fabrication, Physicochemical Characterization, and Performance Evaluation of Biodegradable Polymeric Microneedle Patch System for Enhanced Transcutaneous Flux of High Molecular Weight Therapeutics.

    Science.gov (United States)

    Shah, Viral; Choudhury, Bijaya Krushna

    2017-11-01

    A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.

  10. Determination of the Molecular Weight of Low-Molecular-Weight Heparins by Using High-Pressure Size Exclusion Chromatography on Line with a Triple Detector Array and Conventional Methods

    Directory of Open Access Journals (Sweden)

    Antonella Bisio

    2015-03-01

    Full Text Available The evaluation of weight average molecular weight (Mw and molecular weight distribution represents one of the most controversial aspects concerning the characterization of low molecular weight heparins (LMWHs. As the most commonly used method for the measurement of such parameters is high performance size exclusion chromatography (HP-SEC, the soundness of results mainly depends on the appropriate calibration of the chromatographic columns used. With the aim of meeting the requirement of proper Mw standards for LMWHs, in the present work the determination of molecular weight parameters (Mw and Mn by HP-SEC combined with a triple detector array (TDA was performed. The HP-SEC/TDA technique permits the evaluation of polymeric samples by exploiting the combined and simultaneous action of three on-line detectors: light scattering detectors (LALLS/RALLS; refractometer and viscometer. Three commercial LMWH samples, enoxaparin, tinzaparin and dalteparin, a γ-ray depolymerized heparin (γ-Hep and its chromatographic fractions, and a synthetic pentasaccharide were analysed by HP-SEC/TDA. The same samples were analysed also with a conventional HP-SEC method employing refractive index (RI and UV detectors and two different chromatographic column set, silica gel and polymeric gel columns. In both chromatographic systems, two different calibration curves were built up by using (i γ-Hep chromatographic fractions and the corresponding Mw parameters obtained via HP-SEC/TDA; (ii the whole γ-Hep preparation with broad Mw dispersion and the corresponding cumulative distribution function calculated via HP-SEC/TDA. In addition, also a chromatographic column calibration according to European Pharmacopoeia indication was built up. By comparing all the obtained results, some important differences among Mw and size distribution values of the three LMWHs were found with the five different calibration methods and with HP-SEC/TDA method. In particular, the detection of

  11. Molecular weight control in emulsion polymerization by catalytic chain transfer : a reaction engineering approach

    NARCIS (Netherlands)

    Smeets, N.M.B.; Meda, U.S.; Heuts, J.P.A.; Keurentjes, J.T.F.; Herk, van A.M.; Meuldijk, J.

    2007-01-01

    For the application of catalytic chain transfer in (mini)emulsion polymerization, catalyst partitioning and deactivation are key parameters that govern the actual catalyst concentration at the locus of polymerization and consequently the final molecular weight distribution. A global model, based on

  12. RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers.

    Science.gov (United States)

    Cunningham, Victoria J; Derry, Matthew J; Fielding, Lee A; Musa, Osama M; Armes, Steven P

    2016-06-28

    RAFT solution polymerization of N -(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA 63 -PNMEP x diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in M n with increasing PNMEP DP. A gradual increase in M w / M n was also observed when targeting higher DPs. However, this problem could be minimized ( M w / M n RAFT aqueous dispersion polymerization of NMEP was approximately four times faster than the RAFT solution polymerization of NMEP in ethanol when targeting the same DP in each case. This is perhaps surprising because both 1 H NMR and SAXS studies indicate that the core-forming PNMEP chains remain relatively solvated at 70 °C in the latter formulation. Moreover, dissolution of the initial PGMA 63 -PNMEP x particles occurs on cooling from 70 to 20 °C as the PNMEP block passes through its LCST. Hence this RAFT aqueous dispersion polymerization formulation offers an efficient route to a high molecular weight water-soluble polymer in a rather convenient low-viscosity form. Finally, the relatively expensive PGMA macro-CTA was replaced with a poly(methacrylic acid) (PMAA) macro-CTA. High conversions were also achieved for PMAA 85 -PNMEP x diblock copolymers prepared via RAFT aqueous dispersion polymerization for x ≤ 4000. Again, better control was achieved when

  13. Radiation degradation of molasses pigment. 2. Molecular weight fraction

    International Nuclear Information System (INIS)

    Sawai, Teruko; Sekiguchi, Masayuki; Tanabe, Hiroko

    1996-01-01

    Water demand in Tokyo has increased rapidly. Because of the scarcity of water sources within the city, Tokyo is dependent on water from other prefectures. Recycling of municipal effluent is an effective means of coping with water shortage in Tokyo. We have studied the radiation treatment of waste water for recycling. The degradation of molasses pigments in waste water from yeast factory by radiation was investigated. The dialyzed molasses pigments and non-dialyzed samples in waste waters were compared in chromaticity, UV absorption, color different and COD. The dialysis and fractionation by permeable membrane were carried out with Seamless Cellulose tubing (Union Carbide Corporation) and spectra/Por membrane (Spectrum Medical Industries INC.) The TOC values decreased and the dark brown color faded with increasing dose. The high molecular weight components of molasses pigment were degraded to lower molecular weight substances and decomposed to carbon dioxide. The relationships between the value of chromaticity/TOC and molecular weight of molasses pigments were obtained by radiation. (author)

  14. Three-site mechanism and molecular weight: Time dependency in liquid propylene batch polymerization using a MgCl2-supported Ziegler-Natta catalyst

    NARCIS (Netherlands)

    Shimizu, Fumihiko; Pater, J.T.M.; Weickert, G.

    2001-01-01

    This article demonstrates that the molecular weight of propylene homopolymer decreases with time, and that the molecular weight distribution (MWD) narrows when a highly active MgCl2-supported catalyst is used in a liquid pool polymerization at constant H2 concentration and temperature. To track the

  15. Ultra-Fast RAFT-HDA Click Conjugation: An Efficient Route to High Molecular Weight Block Copolymers.

    Science.gov (United States)

    Inglis, Andrew J; Stenzel, Martina H; Barner-Kowollik, Christopher

    2009-11-02

    The use of the reversible addition fragmentation chain transfer-hetero Diels-Alder (RAFT-HDA) click reaction for the modular construction of block copolymers is extended to the generation of high molecular weight materials. Cyclopentadienyl end-functionalized polystyrene (PS-Cp) prepared via both atom transfer radical polymerization (ATRP) and the RAFT process are conjugated to poly(isobornyl acrylate) (PiBoA) (also prepared via RAFT polymerization) to achieve well-defined block copolymers with molecular weights ranging from 34 000 to over 100 000 g · mol(-1) and with small polydispersities (PDI HDA click chemistry can provide access to high molecular weight block copolymers in a simple and straight-forward fashion. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy.

    Science.gov (United States)

    Iqbal, Samina; Marchetti, Roberta; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio

    2017-10-01

    Low molecular weight fractions were derived from native high molecular weight dextran produced by Leuconostoc mesenteroides KIBGE-IB26. Structural characterization of native and low molecular weight fractions obtained after acidic and enzymatic hydrolysis was done using FTIR and NMR spectroscopy. The molecular weight was estimated using Diffusion Ordered NMR spectroscopy. Native dextran (892kDa) is composed of α-(1→6) glycosidic linkage along with α-(1→3) branching. Major proportion of 528kDa dextran was obtained after prolong enzymatic hydrolysis however, an effective acidic treatment at pH-1.4 up to 02 and 04h of exposure resulted in the formation of 77kDa and 57kDa, respectively. The increment in pH from 1.4 to 1.8 lowered the hydrolysis efficiency and resulted in the formation of 270kDa dextran fraction. The results suggest that derived low molecular weight water soluble fractions can be utilized as a drug delivery carrier along with multiple application relating pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Oxidative polymerization of lignins by laccase in water-acetone mixture.

    Science.gov (United States)

    Fiţigău, Ionița Firuța; Peter, Francisc; Boeriu, Carmen Gabriela

    2013-01-01

    The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and (31)P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.

  18. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sekiguchi, Masayuki [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2010-06-15

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 gamma-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  19. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Sekiguchi, Masayuki

    2010-01-01

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 γ-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  20. Effect of Molecular Weight and Molar Ratio of Dextran on Self-Assembly of Dextran Stearate Polymeric Micelles as Nanocarriers for Etoposide

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2012-01-01

    Full Text Available Amphiphilic polymer surfactants are composed of hydrophilic and hydrophobic polymers and are widely used in targeted drug delivery. The purpose of this study was the evaluation of the effect of molecular weight and molar ratio of dextran on physicochemical properties of dextran stearate polymeric micelles. Dextran stearate was synthesized by acylation of dextran with stearoyl chloride. Etoposide loaded polymeric micelles were prepared by dialysis method. The resulting micelles were evaluated for particle size, zeta potential, critical micelle concentration (CMC, drug loading capacity, and release efficiency. Cytotoxicity and cellular uptake of micelles were studied in CT-26 colorectal carcinoma cell line. Molecular weight and molar ratio of dextran-stearate were impressive on zeta potential, CMC, drug loading capacity, and release efficiency. Unlike polymer molecular weight, molar ratio of stearate had a significant effect on cytotoxicity and particle size of etoposide loaded micelles. Although molecular weight of dextran had no significant effect on cytotoxicity of micelles on CT-26 cells, it had drastic attributes for stability of polymeric micelles. Consequently, both variables of molecular weight of dextran and molar ratio of stearate should be taken into account to have a stable and effective micelle of dextran-stearate.

  1. Possible hypoglycemic effect of Aloe vera L. high molecular weight fractions on type 2 diabetic patients

    Science.gov (United States)

    Yagi, Akira; Hegazy, Sahar; Kabbash, Amal; Wahab, Engy Abd-El

    2009-01-01

    Aloe vera L. high molecular weight fractions (AHM) containing less than 10 ppm of barbaloin and polysaccharide (MW: 1000 kDa) with glycoprotein, verectin (MW: 29 kDa), were prepared by patented hyper-dry system in combination of freeze–dry technique with microwave and far infrared radiation. AHM produced significant decrease in blood glucose level sustained for 6 weeks of the start of the study. Significant decrease in triglycerides was only observed 4 weeks after treatment and continued thereafter. No deterious effects on kidney and liver functions were apparent. Treatment of diabetic patients with AHM may relief vascular complications probably via activation of immunosystem. PMID:23964163

  2. The Effects of Reaction Variables on Solution Polymerization of Vinyl Acetate and Molecular Weight of Poly(vinyl alcohol Using Taguchi Experimental Design

    Directory of Open Access Journals (Sweden)

    M.H. Navarchian

    2009-12-01

    Full Text Available Poly(vinyl acetate is synthesized via solution polymerization, and then it is converted to poly(vinyl alcohol by alkaline alcoholysis. The aim of the work study was to investigate statistically the  influence of reaction variables in vinyl acetate polymerization, the conversion of this monomer to polymer, degree of branching of acetyl group in poly(vinyl acetate, as well as the molecular weight of poly(vinyl alcohol, using Taguchi experimental design approach. The reaction variables were polymerization time, molar ratio of initiator to monomer, and volume ratio of monomer to solvent. The statistical analysis of variance of the results revealed that all factors have significantly influenced the conversion and degree of branching. Volume ratio of monomer to solvent is the only factor affecting the molecular weight of poly(vinyl alcohol, and has the greatest influence on all responses. By increasing this ratio, the conversion, degree of branching of acetyl group in poly(vinyl acetate, and molecular weight of poly(vinyl alcohol were increased.

  3. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Xiao Y

    2015-02-01

    Full Text Available Yunbin Xiao,1,* Zuan Tao Lin,2,* Yanmei Chen,1 He Wang,1 Ya Li Deng,2 D Elizabeth Le,3 Jianguo Bin,1 Meiyu Li,1 Yulin Liao,1 Yili Liu,1 Gangbiao Jiang,2 Jianping Bin1 1State Key Laboratory of Organ Failure Research, Division of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou, People’s Republic of China; 3Cardiovascular Division, Oregon Health and Science University, Portland, OR, USA *These authors contributed equally to this work Abstract: Magnetic resonance imaging (MRI contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. Keywords: superparamagnetic

  4. Virus Infection Triggers MAVS Polymers of Distinct Molecular Weight

    Directory of Open Access Journals (Sweden)

    Natalia Zamorano Cuervo

    2018-01-01

    Full Text Available The mitochondrial antiviral signaling (MAVS adaptor protein is a central signaling hub required for cells to mount an antiviral response following virus sensing by retinoic acid-inducible gene I (RIG-I-like receptors. MAVS localizes in the membrane of mitochondria and peroxisomes and in mitochondrial-associated endoplasmic reticulum membranes. Structural and functional studies have revealed that MAVS activity relies on the formation of functional high molecular weight prion-like aggregates. The formation of protein aggregates typically relies on a dynamic transition between oligomerization and aggregation states. The existence of intermediate state(s of MAVS polymers, other than aggregates, has not yet been documented. Here, we used a combination of non-reducing SDS-PAGE and semi-denaturing detergent agarose gel electrophoresis (SDD-AGE to resolve whole cell extract preparations to distinguish MAVS polymerization states. While SDD-AGE analysis of whole cell extracts revealed the formation of previously described high molecular weight prion-like aggregates upon constitutively active RIG-I ectopic expression and virus infection, non-reducing SDS-PAGE allowed us to demonstrate the induction of lower molecular weight oligomers. Cleavage of MAVS using the NS3/4A protease revealed that anchoring to intracellular membranes is required for the appropriate polymerization into active high molecular weight aggregates. Altogether, our data suggest that RIG-I-dependent MAVS activation involves the coexistence of MAVS polymers with distinct molecular weights.

  5. Molecular weights and molecular weight distributions of irradiated cellulose fibers by gel permeation chromatography

    International Nuclear Information System (INIS)

    Kusama, Y.; Kageyama, E.; Shimada, M.; Nakamura, Y.

    1976-01-01

    Radiation degradation of cellulose fibers was investigated by gel permeation chromatography (GPC). Scoured cotton of Mexican variety (cellulose I), Polynosic rayon (cellulose II), and their microcrystalline celluloses obtained by hydrolysis of the original fibers were irradiated by Co-60 γ-rays under vacuum or humid conditions. The irradiated samples were then nitrated under nondegradative conditions. The molecular weights and molecular weight distributions were measured by GPC using tetrahydrofuran as solvent. The relationship between molecular weight and elution count was obtained with cellulose trinitrate standards fractionated by preparative GPC. The degree of polymerization of the fibers decreased with increasing irradiation dose, but their microcrystalline celluloses were only slightly degraded by irradiation, especially in microcrystalline cellulose from cellulose I. Degradation of the fibers irradiated under humid conditions was less than that irradiated under vacuum. It was found that the G-values for main-chain scission for the irradiated cellulose I, cellulose II, microcrystalline cellulose I, and microcrystalline cellulose II were 2.8, 2.9, less than 1, and 2.9, respectively, but the G-value for main-chain scission for the irradiated cellulose II was increased to 11.2 at irradiation doses above 3 Mrad. Consequently, it is inferred that cellulose molecules in the amorphous regions are degraded more readily, and the well-aligned molecules in crystalline regions are not as easily degraded by irradiation

  6. Synthesis and reforming of high molecular-weigth compounds by the utilization of radiation

    International Nuclear Information System (INIS)

    Machi, Sueo

    1976-01-01

    Radiation effects on the synthesis are reforming of high molecular-weight compounds are reviewed. The report is divided into four main parts. The first part deals with the characteristics of the radiation processing. The reaction can be started in a wide range of temperature including very low temperature. Catalysts are unnecessary. The reaction velocity is fast, and the reaction in solid phase can be started uniformly. And the quality of products is well controllable. The second part deals with the synthesis of high molecular-weight compounds by radiation polymerization. Radical polymerization and ionizing polymerization, gas phase and liquid phase polymerization, the polymerization and copolymerization of fluorine-containing monomers, and solid phase polymerization and low temperature polymerization are included in this part. Attention is directed to the continuous production system for the radiation polymerization of ethylene developed by Japan Atomic Energy Research Institute. The third part deals with the reforming of high molecular-weight compounds by radiation graft polymerization. The combination of backbone polymers and monomers for reforming plastics and fibers, the membranes for reverse osmosis, porous membranes, and ion exchange membranes are included. The fourth part deals with the reforming of high molecular-weight compounds by the cross-linking. Polyethylene, PVC, ethyl acrylate copolymer and the like are included. (Iwakiri, K.)

  7. Convenient preparation of high molecular weight poly(dimethylsiloxane using thermally latent NHC-catalysis: a structure-activity correlation

    Directory of Open Access Journals (Sweden)

    Stefan Naumann

    2015-11-01

    Full Text Available The polymerization of octamethylcyclotetrasiloxane (D4 is investigated using several five-, six- and seven-membered N-heterocyclic carbenes (NHCs. The catalysts are delivered in situ from thermally susceptible CO2 adducts. It is demonstrated that the polymerization can be triggered from a latent state by mild heating, using the highly nucleophilic 1,3,4,5-tetramethylimidazol-2-ylidene as organocatalyst. This way, high molecular weight PDMS is prepared (up to >400 000 g/mol, 1.6 ÐM 95%, using low catalyst loadings (0.2–0.1 mol %. Furthermore, the results suggest that a nucleophilic, zwitterionic mechanism is in operation, in preference to purely anionic polymerization.

  8. Effects of Molecular Iodine and 4-tert-Butylcatechol Radical Inhibitor on the Radical Polymerization of Styrene

    Directory of Open Access Journals (Sweden)

    Mojtaba Bozorg

    2017-05-01

    Full Text Available The presence of molecular iodine was studied in relation the molecular weight and molecular weight distribution of polystyrene, produced by radical poly merization. Radical polymerization of styrene initiated by 2,2׳-azobisisobutyronitrile (AIBN was performed at 70°C in the presence of molecular iodine. The synthesized polymers were characterized by gel permeation chromatography (GPC and proton- nuclear magnetic resonance (1H NMR techniques. The results of these reactions including conversion data, number-average molecular weight and molecular weight distribution were compared with those obtained for styrene radical polymerization initiated by AIBN at the same temperature in the absence of molecular iodine. It was found that the presence of iodine had a profound effect on the molecular weight and its distribution in the produced polystyrene. This was attributed to the ability of iodine to control the polymerization of styrene initiated by AIBN via reverse iodine transfer polymerization (RITP mechanism. The polymer produced by this method had a molecular weight of 10600 g/mol with a molecular weight polydispersity index of 1.3. Due to the importance of induction period in reverse iodine transfer radical polymerization, increasing the temperature to 120°C during the induction period resulted in shorter induction periods and the produced species led to better control of the molecular weight. Also, due to the role of iodine molecules as a radical inhibitor, the presence of a secondary radical inhibitor, i.e. 4-tert-butylcatechol, along with the iodine was investigated in radical polymerization of polystyrene initiated by AIBN. It was observed that the secondary radical inhibitor prevented the consumption of the iodine molecules by the radicals produced from decomposition of the AIBN initiator; therefore, alkyl halides were not produced during the induction period.

  9. Ultrahigh Molecular Weight Linear Block Copolymers: Rapid Access by Reversible-Deactivation Radical Polymerization and Self- Assembly into Large Domain Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mapas, Jose Kenneth D.; Thomay, Tim; Cartwright, Alexander N.; Ilavsky, Jan; Rzayev, Javid

    2016-05-05

    Block copolymer (BCP) derived periodic nanostructures with domain sizes larger than 150 nm present a versatile platform for the fabrication of photonic materials. So far, the access to such materials has been limited to highly synthetically involved protocols. Herein, we report a simple, “user-friendly” method for the preparation of ultrahigh molecular weight linear poly(solketal methacrylate-b-styrene) block copolymers by a combination of Cu-wire-mediated ATRP and RAFT polymerizations. The synthesized copolymers with molecular weights up to 1.6 million g/mol and moderate dispersities readily assemble into highly ordered cylindrical or lamella microstructures with domain sizes as large as 292 nm, as determined by ultra-small-angle x-ray scattering and scanning electron microscopy analyses. Solvent cast films of the synthesized block copolymers exhibit stop bands in the visible spectrum correlated to their domain spacings. The described method opens new avenues for facilitated fabrication and the advancement of fundamental understanding of BCP-derived photonic nanomaterials for a variety of applications.

  10. Steroidogenic activity of high molecular weight forms of ACTH

    International Nuclear Information System (INIS)

    Gasson, J.C.

    1979-01-01

    The relative steroidogenic potencies of high molecular weight forms of adrenocorticotropic hormone (ACTH) were investigated using in vitro bioassays. In order to prepare pools of separated pro-ACTH/endorphin, ACTH biosynthetic intermediate and glycosylated ACTH (1-39), the protein present in serum-free tissue culture medium obtained from cultured AtT-20/D-16v mouse pituitary tumor cells was concentrated and fractionated by gel filtration. Based on sodium dodecyl sulfate polyacrylamide gel electrophoresis, over 97% of the immunoactive ACTH in each pool had the appropriate molecular weight. Suspensions of isolated rat and guinea pig adrenal cortical cells were prepared by enzymatic dissociation and mechanical dispersion. Cells were incubated in complete tissue culture medium overnight then used in a 2 hour steroid production assay. Synthetic hACTH(1-39) was used as a bioassay and immunoassay standard. The amounts of pro-ACTH/endorphin, ACTH biosynthetic intermediate and glycosylated ACTH(1-39) bioassayed were estimated by ACTH(17-24) radioimmunoassay. All three high molecular weight forms of ACTH were capable of stimulating the same maximal level of steroidogenesis, by both isolated rat and guinea pig adrenal cells, as hACTH(1-39). Glycosylated ACTH(1-39) was equipotent with hACTH(1-39); pro-ACTH/endorphin and ACTH biosynthetic intermediate were two orders of magnitude less potent than hACTH(1-39) in both bioassay systems

  11. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  12. Highly active self-immobilized FI-Zr catalysts in a PCP framework for ethylene polymerization.

    Science.gov (United States)

    Li, He; Xu, Bo; He, Jianghao; Liu, Xiaoming; Gao, Wei; Mu, Ying

    2015-12-04

    A series of zirconium-based porous coordination polymers (PCPs) containing FI catalysts in the frameworks have been developed and studied as catalysts for ethylene polymerization. These PCPs exhibit good catalytic activities and long life times, producing polyethylenes with high molecular weights and bimodal molecular weight distribution in the form of particles.

  13. Solid-State Polymerization of Poly(Ethylene Furanoate Biobased Polyester, II: An Efficient and Facile Method to Synthesize High Molecular Weight Polyester Appropriate for Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Nejib Kasmi

    2018-04-01

    Full Text Available The goal of this study was to synthesize, through a facile strategy, high molecular weight poly(ethylene furanoate (PEF, which could be applicable in food packaging applications. The efficient method to generate PEF with high molecular weight consists of carrying out a first solid-state polycondensation under vacuum for 6 h reaction time at 205 °C for the resulting polymer from two-step melt polycondensation process, which is catalyzed by tetrabutyl titanate (TBT. A remelting step was thereafter applied for 15 min at 250 °C for the obtained polyester. Thus, the PEF sample was ground into powder, and was then crystallized for 6 h at 170 °C. This polyester is then submitted to a second solid-state polycondensation (SSP carried out at different reaction times (1, 2, 3.5, and 5 h and temperatures 190, 200, and 205 °C, under vacuum. Ultimately, a significant increase in intrinsic viscosity is observed with only 5 h reaction time at 205 °C during the second SSP being needed to obtain very high molecular weight PEF polymer greater than 1 dL/g, which sufficient for manufacturing purposes. Intrinsic viscosity (IV, carboxyl end-group content (–COOH, and thermal properties, via differential scanning calorimetry (DSC, were measured for all resultant polyesters. Thanks to the post-polymerization process, DSC results showed that the melting temperatures of the prepared PEF samples were steadily enhanced in an obvious way as a function of reaction time and temperature increase. It was revealed, as was expected for all SSP samples, that the intrinsic viscosity and the average molecular weight of PEF polyester increased with increasing SSP time and temperature, whereas the number of carboxyl end-group concentration was decreased. A simple kinetic model was also developed and used to predict the time evolution of polyesters IV, as well as the carboxyl and hydroxyl end-groups of PEF during the SSP.

  14. Radiodegradation process in PVDF with different molecular weight

    International Nuclear Information System (INIS)

    Silva, L.; Batista, A.S.M.; Nascimento, J.P.; Furtado, C.A.; Faria, L.O.

    2017-01-01

    Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer with several industrial applications due to its mechanical, ferroelectric and biocompatibility properties. Due to the particularity of some of its applications this polymer is exposed to high energy radiation, for example in the aerospace industry and with biomaterial, in sterilization processes. In this sense it is of interest studies that evaluate the radiodegradation of this material, as a way to predict its mechanical behavior after processes of exposure to gamma radiation. In this study the radioresistance of PVDF with different molecular weights is evaluated, considering that large molecular chains can provide greater resistance than smaller chains. Method: PVDF samples with different molecular weights were produced by the solvent dilution process. They were irradiated with gamma doses of 100, 300, 500, 1000 and 2000 kGy with a source of cobalt in the Laboratório de Irradiação Gama (LIG) of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN). FTIR, UV-Vis, DSC and XRD analyzes were used to evaluate the induced radiodegradation processes immediately after irradiation and one month later. Results: The FTIR and UV-Vis analyzes showed formation of unsaturations in the polymer chains. The DSC technique showed a drop in the crystalline fraction of the polymer confirmed by the XRD technique. Conclusion: Post-irradiation sample evaluations are discussed in terms of the effect of high energy ionizing radiation on polymeric mate-rials for industrial and biomedical use for safety in quality assurance and performance in service. (author)

  15. Radiodegradation process in PVDF with different molecular weight

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.; Batista, A.S.M., E-mail: adriananuclear@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Nascimento, J.P.; Furtado, C.A.; Faria, L.O. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer with several industrial applications due to its mechanical, ferroelectric and biocompatibility properties. Due to the particularity of some of its applications this polymer is exposed to high energy radiation, for example in the aerospace industry and with biomaterial, in sterilization processes. In this sense it is of interest studies that evaluate the radiodegradation of this material, as a way to predict its mechanical behavior after processes of exposure to gamma radiation. In this study the radioresistance of PVDF with different molecular weights is evaluated, considering that large molecular chains can provide greater resistance than smaller chains. Method: PVDF samples with different molecular weights were produced by the solvent dilution process. They were irradiated with gamma doses of 100, 300, 500, 1000 and 2000 kGy with a source of cobalt in the Laboratório de Irradiação Gama (LIG) of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN). FTIR, UV-Vis, DSC and XRD analyzes were used to evaluate the induced radiodegradation processes immediately after irradiation and one month later. Results: The FTIR and UV-Vis analyzes showed formation of unsaturations in the polymer chains. The DSC technique showed a drop in the crystalline fraction of the polymer confirmed by the XRD technique. Conclusion: Post-irradiation sample evaluations are discussed in terms of the effect of high energy ionizing radiation on polymeric mate-rials for industrial and biomedical use for safety in quality assurance and performance in service. (author)

  16. Low molecular weight compounds as effective dispersing agents in the formation of colloidal silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Jun; Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp; Abe, Takao [Shinshu University, Faculty of Textile Science and Technology (Japan)

    2013-03-15

    A convenient method to synthesize uniform, well-dispersed colloidal silver nanoparticles is described. Aldonic acid or {alpha}-hydroxy acid compounds of low molecular weight are used instead of polymeric compounds as dispersing agents to prepare silver nanoparticles. The size, conformation, and electrical conductivity of the silver nanoparticles, and the effect and function of the dispersing agents are investigated in detail. Using these low molecular weight compounds as dispersing agents, silver nanoparticles with a diameter of 10 nm or less and high electrical conductivity can be obtained. In addition, this procedure allows silver nanoparticles to be sintered at 150 Degree-Sign C, which is lower than that required for silver nanoparticle formulation using polymeric compounds (200 Degree-Sign C). The silver nanoparticles produced by this process can be used to prepare various inks and to manufacture electronic circuits. It is found that low molecular weight compounds are more effective dispersing agents than polymeric compounds in the formation of silver nanoparticles.

  17. Low-molecular weight fractions of Japanese soy sauce act as a RAGE antagonist via inhibition of RAGE trafficking to lipid rafts.

    Science.gov (United States)

    Munesue, Seiichi; Yamamoto, Yasuhiko; Urushihara, Ryouta; Inomata, Kouhei; Saito, Hidehito; Motoyoshi, So; Watanabe, Takuo; Yonekura, Hideto; Yamamoto, Hiroshi

    2013-12-01

    Advanced glycation end-products (AGE) have been implicated in aging and the pathogenesis of diabetic complications, inflammation, Alzheimer's disease, and cancer. AGE engage the cell surface receptor for AGE (RAGE), which in turn elicits intracellular signaling, leading to activation of NF-κB to cause deterioration of tissue homeostasis. AGE are not only formed within our bodies but are also derived from foods, endowing them with flavor. In the present study, we assessed the agonistic/antagonistic effects of food-derived AGE on RAGE signaling in a reporter assay system and found that low-molecular weight AGE can antagonize the action of AGE-BSA. Foods tested were Japanese soy sauce, coffee, cola, and red wine, all of which showed fluorescence characteristics of AGE. Soy sauce and coffee contained N(ε)-carboxymethyl-lysine (CML). Soy sauce, coffee, and red wine inhibited the RAGE ligand-induced activation of NF-κB, whereas cola had no effect on the ligand induction of NF-κB. The liquids were then fractionated into high-molecular weight (HMW) fractions and low-molecular weight (LMW) fractions. Soy sauce-, coffee-, and red wine-derived LMW fractions consistently inhibited the RAGE ligand induction of NF-κB, whereas the HMW fractions of these foods activated RAGE signaling. Using the LMW fraction of soy sauce as a model food-derived RAGE antagonist, we performed a plate-binding assay and found that the soy sauce LMW fractions competitively inhibited AGE-RAGE association. Further, this fraction significantly reduced AGE-dependent monocyte chemoattractant protein-1 (MCP-1) secretion from murine peritoneal macrophages. The LMF from soy sauce suppressed the AGE-induced RAGE trafficking to lipid rafts. These results indicate that small components in some, if not all, foods antagonize RAGE signaling and could exhibit beneficial effects on RAGE-related diseases.

  18. Molecular weight distribution of Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, P J; Manolakis, E; Ternan, M

    1985-03-01

    A sample of whole Athabasca bitumen has been fractionated by preparative g.p.c. The weights of the fractions have been determined and their molecular weights measured by several methods. In contras to previously published data, consistent results were obtained using different solvents (THF, benzene/water) and using different techniques (v.p.o., f.p.d. and g.c.-m.s.). This has resulted in a accurate definition of the molecular weight distribution of Athabasca bitumen.

  19. Pentafluorosulfanyl Substituents in Polymerization Catalysis.

    Science.gov (United States)

    Kenyon, Philip; Mecking, Stefan

    2017-10-04

    Highly electron-withdrawing pentafluorosulfanyl groups were probed as substituents in an organometallic catalyst. In Ni(II) salicylaldiminato complexes as an example case, these highly electron-withdrawing substituents allow for polymerization of ethylene to higher molecular weights with reduced branching due to significant reductions in β-hydrogen elimination. Combined with the excellent functional group tolerance of neutral Ni(II) complexes, this suppression of β-hydrogen elimination allows for the direct polymerization of ethylene in water to nanocrystal dispersions of disentangled, ultrahigh-molecular-weight linear polyethylene.

  20. The impact of treatment density and molecular weight for fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Haak, Christina S; Bhayana, Brijesh; Farinelli, William A

    2012-01-01

    Ablative fractional lasers (AFXL) facilitate uptake of topically applied drugs by creating narrow open micro-channels into the skin, but there is limited information on optimal laser settings for delivery of specific molecules. The objective of this study was to investigate the impact of laser...... treatment density (% of skin occupied by channels) and molecular weight (MW) for fractional CO(2) laser-assisted drug delivery. AFXL substantially increased intra- and transcutaneous delivery of polyethylene glycols (PEGs) in a MW range from 240 to 4300 Da (Nuclear Magnetic Resonance, p...

  1. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L. Proteins and Protein Fractionations

    Directory of Open Access Journals (Sweden)

    Xiaoying Mao

    2014-01-01

    Full Text Available As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE showed that the isoelectric point was mainly in the range of 4.8–6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  2. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    Science.gov (United States)

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  3. Molecular weight distribution of electron and γ-ray irradiated PEEK measured by very high temperature GPC

    International Nuclear Information System (INIS)

    Nakahara, H.

    1996-01-01

    Poly(ether ether ketone)(PEEK) films were irradiated with electron beam in air and in helium. Gel fractions of the PEEK samples were determined as the ratio of the weight of insoluble fraction/total weigh by extracting the samples with 1-chloronaphthalene (1-CN) at 260degC. While unirradiated PEEK samples were dissolved in 1-CN completely, PEEK samples highly (10 - 50 MGy) irradiated in air were almost insoluble in the solvent. The weight-average molecular weight M w of soluble fractions of the samples were measured by very high temperature gel permeation chromatography (VHTGPC): it was found that the M w decreases with increasing dose. On the other hand, PEEK samples irradiated in helium gave gel fractions at lower doses (0 - 5 MGy) than in air. The PEEK films were also irradiated with 60 Co γ-rays in the dose range, i.e. from 0 to 5 MGy. The γ-irradiated PEEK samples were completely dissolved in 1-CN at 260degC. Their M w measured by VHTGPC decreases with increasing dose. (author)

  4. Surface properties of poly(acrylonitrile) (PAN) precipitation polymerized in supercritical CO2 and the influence of the molecular weight.

    Science.gov (United States)

    Shen, Qing; Gu, Qing-Feng; Hu, Jian-Feng; Teng, Xin-Rong; Zhu, Yun-Feng

    2003-11-15

    In this paper, the surface properties, e.g., the total surface free energy and the related Lifshitz-van der Waals and Lewis acid-base components, of polyacrylonitrile (PAN) precipitation polymerized in supercritical CO(2) have been characterized. Moreover, the influence of molecular weight varying has been also investigated. Results show that the surface properties of PAN resulting from supercritical CO(2) are different from those obtained by the conventional method. Of these data, one important finding is that the supercritical CO(2) PAN seems to decrease the surface free energy with the increased molecular weight. Based on previous recorded NMR spectra of this PAN and especially compared to commercial PAN, such phenomena are discussed and ascribed to an increase of the H-bonds and a reduction of the isotacticity in the supercritical CO(2) condition for PAN.

  5. Synthesis and properties of ionic polyurethane dispersions: influence of polyol molecular weight

    International Nuclear Information System (INIS)

    Valipour Ebrahimi, M.; Barikani, M.; Mohammad Seyed Mohaghegh, S.

    2006-01-01

    A series of water dispersible polyurethanes containing carboxylate anion as the hydrophilic pendant group were prepared from toluene diisocyanate (TDI), 1,4- butanediol (1,4-BDO), dimethylol propionic acid and different molecular weight of polytetramethylene glycol . IR Spectroscopy was used to check the end of polymerization reaction and characterization of polymer. The effect of polytetramethylene glycol molecular weight was studied on the particle size distribution, contact angle, and mechanical and thermal properties of the emulsion-cast films. Average particle size of prepared polyurethane emulsions decreases with increasing the polytetramethylene glycol molecular weight. Tensile strength and hardness decrease and elongation-at-break and contact angle increase with increase of the polytetramethylene glycol molecular weight. Thermal property and thermal stability are also effected by variation of polytetramethylene glycol molecular weight. The thermal stability increases with increasing polytetramethylene glycol molecular weight. Glass transition temperature (T g ) moved toward the lower temperatures by increasing molecular weight of the polyol. Decrease in T g and tensile properties are interpreted in terms of the decrease in hard segments and the increase in chain flexibility and phase separation in high molecular weight polytetramethylene glycol based polyurethane

  6. Proton transport properties of poly(aspartic acid) with different average molecular weights

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@kuchem.kyoto-u.ac.j [Department of Mechanical Systems and Design, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Imai, Yuzuru [Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Matsui, Jun [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Ogawa, Tomoyuki [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Miyashita, Tokuji [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2011-04-15

    Research highlights: Seven polymers with different average molecular weights were synthesized. The proton conductivity depended on the number-average degree of polymerization. The difference of the proton conductivities was more than one order of magnitude. The number-average molecular weight contributed to the stability of the polymer. - Abstract: We synthesized seven partially protonated poly(aspartic acids)/sodium polyaspartates (P-Asp) with different average molecular weights to study their proton transport properties. The number-average degree of polymerization (DP) for each P-Asp was 30 (P-Asp30), 115 (P-Asp115), 140 (P-Asp140), 160 (P-Asp160), 185 (P-Asp185), 205 (P-Asp205), and 250 (P-Asp250). The proton conductivity depended on the number-average DP. The maximum and minimum proton conductivities under a relative humidity of 70% and 298 K were 1.7 . 10{sup -3} S cm{sup -1} (P-Asp140) and 4.6 . 10{sup -4} S cm{sup -1} (P-Asp250), respectively. Differential thermogravimetric analysis (TG-DTA) was carried out for each P-Asp. The results were classified into two categories. One exhibited two endothermic peaks between t = (270 and 300) {sup o}C, the other exhibited only one peak. The P-Asp group with two endothermic peaks exhibited high proton conductivity. The high proton conductivity is related to the stability of the polymer. The number-average molecular weight also contributed to the stability of the polymer.

  7. Development of radiation-resisting high molecular-weight materials

    International Nuclear Information System (INIS)

    Nakagawa, Tsutomu

    1976-01-01

    The excellent radiation-resisting polyvinyl chloride developed at the opportunity of the research on the relationships between the protection of living body and the polymer-technological protection from radiation is reviewed. The report is divided into four main parts, namely 1) the change in the molecular arrangement of market-available, high molecular-weight materials by gamma-ray irradiation, 2) the protection of high molecular-weight materials from radiation, 3) the relationships between the biological radiation-protective substances and the change to radiation-resisting property of synthesized high molecular-weight substances, and 4) the development of the radiation-resisting high molecular-weight materials as metal-collecting agents. Attention is paid to the polyvinyl chloride having N-methyl-dithio-carbamate radical (PMD), synthesized by the author et. al., that has excellent radiation-resisting property. PMD has some possibility to form thiol- and amino-radicals necessary to protect living things from radiation. It is believed that the protection effects of N-methyl-dithio-carbamate radical are caused by the relatively stable S radical produced by the energy transfer. PMD film is suitable for the irradiation of foods, because it hardly changes the permeability of oxygen and carbon dioxide. PMD produces mercaptide or chelate. A new metal-collecting agent (PSDC) having reactivity with the metallic ions with radiation-resisting property was developed, which is derived from polyvinyl chloride and sodium N-methyl-N-carboxy-methyl-dithio-carbamate. (Iwakiri, K.)

  8. Effect of various solvents on the viscosity-average molecular weight of poly (vinyl acetate)

    International Nuclear Information System (INIS)

    Rehman, W.U.; But, M.A.; Chughtai, A.; Jamil, T.; Sattar, A.

    2006-01-01

    Solution polymerization of Vinyl Acetate was carried out in various solvents (benzene, toluene, ethyl acetate, acetonitrile). Dilute solution viscometry was used to determine the viscosity-average molecular weight of the resulting Poly (Vinyl Acetate) (PV Ac) in each case. The viscosity-average molecular weight (M,J of PVAc was found to increase in the order benzene < toluene < ethyl acetate < acetonitrile, It was concluded that under the same reaction conditions (polymerization time, initiator quantity, solvent/monomer ratio, temperature), acetonitrile served as the best solvent for solution. polymerization of Vinyl Acetate monomer. (author)

  9. Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate.

    Science.gov (United States)

    He, Di; Guan, Xiaohong; Ma, Jun; Yu, Min

    2009-11-01

    The effects of humic acid (HA) and its different nominal molecular weight (NMW) fractions on the phenol oxidation by permanganate were studied. Phenol oxidation by permanganate was enhanced by the presence of HA at pH 4-8, while slightly inhibited at pH 9-10. The effects of HA on phenol oxidation by permanganate were dependent on HA concentration and permanganate/phenol molar ratios. The high NMW fractions of HA enhanced phenol oxidation by permanganate at pH 7 more significantly than the low fractions of HA. The apparent second-order rate constants of phenol oxidation by permanganate in the presence of HA correlated well with their specific ultraviolet absorption (SUVA) at 254 nm and specific violet absorption (SVA) at 465 or 665 nm. High positive correlation coefficients (R(2) > 0.72) implied that pi-electrons of HA strongly influenced the reactivity of phenol towards permanganate oxidation which agreed well with the information provided by fluorescence spectroscopy. The FTIR analysis indicated that the HA fractions rich in aliphatic character, polysaccharide-like substances, and the amount of carboxylate groups had less effect on phenol oxidation by permanganate. The negative correlation between the rate constants of phenol oxidation by permanganate and O/C ratios suggested that the oxidation of phenol increased with a decrease in the content of oxygen-containing functional groups.

  10. Analysis of co-eluted isomers of high-molecular weight polycyclic aromatic hydrocarbons in high performance liquid chromatography fractions via solid-phase nanoextraction and time-resolved Shpol'skii spectroscopy.

    Science.gov (United States)

    Wilson, Walter B; Campiglia, Andres D

    2011-09-28

    We present an accurate method for the determination of isomers of high-molecular weight polycyclic aromatic hydrocarbons co-eluted in HPLC fractions. The feasibility of this approach is demonstrated with two isomers of molecular weight 302 with identical mass fragmentation patterns, namely dibenzo[a,i]pyrene and naphtho[2,3-a]pyrene. Qualitative and quantitative analysis is carried out via laser-excited time-resolved Shpol'skii spectroscopy at liquid helium temperature. Unambiguous identification of co-eluted isomers is based on their characteristic 4.2 K line-narrowed spectra in n-octane as well as their fluorescence lifetimes. Pre-concentration of HPLC fractions prior to spectroscopic analysis is performed with the aid of gold nanoparticles via an environmentally friendly procedure. In addition to the two co-eluted isomers, the analytical figures of merit of the entire procedure were evaluated with dibenzo[a,l]pyrene, dibenzo[a,h]pyrene and dibenzo[a,e]pyrene. The analytical recoveries from drinking water samples varied between 98.2±5.5 (dibenzo[a,l]pyrene) and 102.7±3.2% (dibenzo[a,i]pyrene). The limits of detection ranged from 51.1 ng L(-1) (naphtho[2,3-a]pyrene) to 154 ng L(-1) (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its HPLC compatibility makes this approach an attractive alternative for the analysis of co-eluted isomers with identical mass spectra. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Emulsion polymerization with high energy radiation

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1992-01-01

    High energy radiation, particularly that of cobalt-60 or caesium-137 gamma-rays, provides in principle an ideal initiator for emulsion polymerization. The high free radical yields from the radiolysis of the aqueous phase combined with the high kinetic chain lengths associated with emulsion polymerization lead to a highly effective utilization of the radiation. There are other important advantages compared with the use of chemical initiators such as potassium persulfate. These are outlined in the chapter, together with some attendant disadvantages. Radiation-induced initiation is temperature independent, and low temperature polymerizations can be conducted with ease. Monomers that mainly terminate their growing chains by chain transfer to monomer give higher molecular weights at lower temperatures. Industrially, vinyl acetate is an important example of such a monomer, and it has been studied using radiation initiation. Both laboratory and pilot plant studies have been carried out and reported. The results are summarized in this chapter. Styrene is the classical example of a material that under a number of conditions closely obeys the so-called ideal Smith-Ewart kinetics. It has been found that under similar conditions but substituting radiation for potassium persulfate as the initiator, ideal kinetics were closely followed. Most of the conventional and some non-standard vinyl and diene monomers have been studied to some extent with radiation-initiated polymerizations in emulsion. To conserve space however, this chapter presents and discusses the results obtained only with styrene and vinyl acetate, both in laboratory and pilot plant investigations. Other monomers and special situations are referenced either directly or to the other available reviews. (orig.)

  12. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers. Alt...

  13. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 kDa w...

  14. Western blotting of high and low molecular weight proteins using heat.

    Science.gov (United States)

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    A method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 °C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7 % (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5 % gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5 % gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  15. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents.

    Science.gov (United States)

    Renkecz, Tibor; László, Krisztina; Horváth, Viola

    2012-06-01

    There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N₂ porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 µm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm⁻²  hr⁻¹  bar⁻¹. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    Science.gov (United States)

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  17. Synthesis and properties of aqueous polyurethane dispersions: Influence of molecular weight of polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Mumtaz, Fatima; Zuber, Mohammad; Zia, Khalid Mahmood [Government College University, Faisalabad (Pakistan); Jamil, Tahir [University of the Punjab, Lahore (Pakistan); Hussain, Rizwan [National Engineering and Scientific Commission (NESCOM), Islamabad (Pakistan)

    2013-12-15

    Aqueous polyurethane dispersions (PUDs) have recently emerged as important alternatives to their solvent-based counterparts for various applications due to increasing health and environmental awareness. A series of aqueous polyurethane dispersions containing carboxylate anion as hydrophilic pendant groups were synthesized through step growth polymerization reaction using hexamethylene diisocyanate (HDI), 1,4-butanediol (1,4-BDO), dimethylol propionic acid (DMPA) and polyethylene glycol (PEG) of different molecular weight. Effect of PEG molecular weight was investigated on molecular structure, contact angle measurement, and physical and adhesive properties of PU emulsions. Fourier transform infrared spectroscopy (FT-IR) was used to check the completion of polymerization reaction. Contact angle measurement indicated that the hydrophilicity of polymer increases by increasing molecular weight of PEG with a corresponding decrease in contact angle. Results of T-peel test showed a decrease in peel strength by increasing molecular weight of PEG. Moreover, solid contents%, drying time and storage stability suggested fast drying properties and greater stability of aqueous PU dispersions.

  18. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  19. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation

    Czech Academy of Sciences Publication Activity Database

    Michelland, S.; Bourgoin-Voillard, S.; Cunin, V.; Tollance, A.; Bertolino, P.; Šlais, Karel; Seve, M.

    2017-01-01

    Roč. 38, č. 16 (2017), s. 2034-2041 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : iTRAQ labeling * low- molecular -weight color pI markers * peptides OFFGEL fractionation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  20. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation

    Czech Academy of Sciences Publication Activity Database

    Michelland, S.; Bourgoin-Voillard, S.; Cunin, V.; Tollance, A.; Bertolino, P.; Šlais, Karel; Seve, M.

    2017-01-01

    Roč. 38, č. 16 (2017), s. 2034-2041 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : iTRAQ labeling * low-molecular-weight color pI markers * peptides OFFGEL fractionation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  1. Growth response of microorganisms to different molecular fractions of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Polman, J.K.; Breckenridge, C.R.; Dugan, P.R.; Quigley, D.R.

    1990-01-01

    Our research is primarily concerned with isolating and characterizing microbes which are able to dissimilate coal and convert it to other useful chemicals. This quarter, general growth responses of microorganisms cultivated in the presence of different molecular weight fractions of lignite coal were examined. Aerobic and anaerobic environmental samples from a variety of ecological niches were used as inocula. Growth of the microorganisms in these samples on the following types of media was tested: COAL medium, containing alkali-solubilized whole coal; THFI medium, containing the alkali-solubilized, tetrahydrofuran-insoluble, macromolecular portion of whole coal; THFS medium, containing the THF-soluble, low molecular weight portion of whole coal; and CON medium, void of any coal constituent. Overall results indicated that the presence of the THF-soluble, low molecular weight coal fraction enhanced the growth yield and the variety of aerobic microorganisms compared to the other coal fractions or the control medium. Conversely, anaerobic microbes grew best on media which contained the macromolecular fraction. 12 refs., 5 tabs.

  2. In situ polymerization of monomers for polyphenylquinoxaline/graphite

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1973-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  3. Characterization of high molecular weight cadmium species in contaminated vegetable food

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K.; Kastenholz, B. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Chemie und Dynamik der Geosphaere 7: Angewandte Physikalische Chemie; Ji, G. [Bonn Univ. (Germany). Lehrstuhl fuer Lebensmittelwissenschaft und Lebensmittelchemie

    2000-10-01

    Spinach and radish grown from seeds were each contaminated with 4 different amounts of cadmium. After a cell breakdown of the eatable parts and centrifugation of the resulting homogenates all supernatants (cytosols) were separated by gel permeation chromatography (GPC). The size-range of the GPC method used was about 20-8000 kDa for globular proteins. The high molecular weight (HMW-Cd-SP, 150-700 kDa) and the low molecular weight Cd species (LMW-Cd-SP, < 150 kDa) in all plant cytosols eluted at about the same retention volume by GPC. The most important Cd binding form in the cytosols of all plants was found to be HMW-Cd-SP. The Cd elution maxima were detected in the range of about 200 kDa. The Cd determinations were performed with ET-AAS by means of matrix modifier. By incubating chosen cytosols with a proteinase before the GPC it was verified that the HMW-Cd-SP in both vegetables are Cd proteins. The molar proportions protein/Cd were about 2-6 in the respective GPC fractions of the HMW-Cd-SP of the highest contaminated plants. The GPC fractions of the HMW-Cd-SP of spinach and radish were further separated by a preparative, native and continuous polyacrylamide gel electrophoresis (PAGE) method. At pH 8 the species were negatively charged, had only a small UV-absorption at 280 nm and showed a very similar elution behavior in all analyzed cytosols. Therefore, we suppose that the HMW-Cd-SP of these two different vegetable foodstuffs have a very similar chemical structure. (orig.)

  4. High Molecular Weight Melanoidins from Coffee Brew

    NARCIS (Netherlands)

    Bekedam, E.K.; Schols, H.A.; Boekel, van T.; Smit, G.

    2006-01-01

    The composition of high molecular weight (HMw) coffee melanoidin populations, obtained after ethanol precipitation, was studied. The specific extinction coefficient (Kmix) at 280, 325, 405 nm, sugar composition, phenolic group content, nitrogen content, amino acid composition, and non-protein

  5. Effects of condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid on in vitro methane production and rumen fermentation.

    Science.gov (United States)

    Saminathan, Mookiah; Sieo, Chin Chin; Abdullah, Norhani; Wong, Clemente Michael Vui Ling; Ho, Yin Wan

    2015-10-01

    Molecular weights (MWs) and their chemical structures are the primary factors determining the influence of condensed tannins (CTs) on animal nutrition and methane (CH4 ) production in ruminants. In this study the MWs of five CT fractions from Leucaena leucocephala hybrid-Rendang (LLR) were determined and the CT fractions were investigated for their effects on CH4 production and rumen fermentation. The number-average molecular weight (Mn ) of fraction F1 (1265.8 Da), which was eluted first, was the highest, followed by those of fractions F2 (1028.6 Da), F3 (652.2 Da), F4 (562.2 Da) and F5 (469.6 Da). The total gas (mL g(-1) dry matter (DM)) and CH4 production decreased significantly (P fractions, but there were no significant (P > 0.05) differences between the CT fractions and control on DM degradation. However, the in vitro N disappearance decreased significantly (P fraction F1 (highest MW) compared with the control and other fractions (F2-F5). The inclusion of CT fraction F1 also significantly decreased (P fraction F1 but not by the control and other fractions (F2-F5). The CT fractions of different MWs from LLR could affect rumen fermentation and CH4 production, and the impact was more pronounced for the CT fraction with a higher MW. © 2014 Society of Chemical Industry.

  6. Rheological Link Between Polymer Melts with a High Molecular Weight Tail and Enhanced Formation of Shish-Kebabs

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Shen, Bo; Kornfield, Julie A.

    2017-01-01

    Presence of an ultra high molecular weight (UHMw) fraction in flowingpolymer melts is known to facilitate formation of oriented crystalline structures significantly. The UHMw fraction manifests itself as a minor tail in the molar mass distribution and is hardly detectable in the canonical...... a clear increase in extensional stress that is directly correlated with the crystalline orientation of the quenched samples. Extensional rheology, particularly, in combination with linear creep measurements, thus, enables the conformational evolution of the UHMw-tail to be studied and linked...

  7. Fructans from Agave tequilana with a Lower Degree of Polymerization Prevent Weight Gain, Hyperglycemia and Liver Steatosis in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Márquez-Aguirre, A L; Camacho-Ruíz, R M; Gutiérrez-Mercado, Y K; Padilla-Camberos, E; González-Ávila, M; Gálvez-Gastélum, F J; Díaz-Martínez, N E; Ortuño-Sahagún, D

    2016-12-01

    Fructans from agave have received specific attention because of their highly branched fructan content. We have previously reported that the degree of polymerization (dp) influences their biological activity. Therefore, the aim of this study was to investigate the effect of unfractionated and fractionated fructans (higher and lower dps) from Agave tequilana in high-fat diet-induced (HFD) obese mice. Fructans with a lower dp (HFD+ScF) decreased weight gain by 30 %, body fat mass by 51 %, hyperglycemia by 25 % and liver steatosis by 40 %. Interestingly, unfractionated fructans (HFD+F) decreased glucose and triglycerides (TG), whereas fractionated fructans with a higher dp (HFD+LcF) decreased TG but not glucose; in contrast, HFD+ScF decreased glucose but not TG. Our findings suggest that both higher and lower dp agave fructans have complementary effects in metabolic disorders related to obesity. These findings may contribute to the development of improved food supplements with a specific ratio combination of fructans with different dps.

  8. High-order fractional partial differential equation transform for molecular surface construction.

    Science.gov (United States)

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model

  9. In situ polymerization of monomers for polyphenylquinoxaline/graphite fiber composites

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1974-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  10. Gamma radiation-initiated polymerization of styrene at high pressure. II. Chain termination

    International Nuclear Information System (INIS)

    Moore, P.W.; Clouston, J.G.; Chaplin, R.P.

    1981-01-01

    The pressure dependence of the termination rate constant k/sub t/ for the free radical polymerization of monomers such as styrene is a function of polymer chain length, chain stiffness, and monomer viscosity, all of which influence the rate of segmental diffusion of an active radical chain end out of the coiled polymer chain to a position in which it can react with a proximate radical. Although k/sub t/ is not sensitive to changes in chain length, the large increase in molecular weight is responsible for a significant reduction in k/sub t/ at high pressures. For most of the common vinyl polymers, which exhibit some degree of chain stiffness, k/sub t/is inversely proportional to a fractional power of the monomer viscosity because it depends in part on the resistance of chain segments to movement and in part on the influence of viscosity in controlling diffusion of the chain ends. The fractional exponent appears to increase with pressure and this is interpreted as evidence that the polymer chains become more flexible in a more viscous solvent. Because the fractional exponent is higher for more flexible chains, the value of the activation volume for chain termination is an indication of the degree of flexibility of the polymer chains, provided that the monomer is a good solvent for the polymer and that chain transfer is negligible

  11. Aromatic polymers of increased resistance to flow and molecular weight obtained by irradiation

    International Nuclear Information System (INIS)

    Staniland, P.A.; Jarrett, G.

    1976-01-01

    Aromatic polymers of increased resistance to flow and increased molecular weight are obtained by irradiation using β rays or gamma rays at temperatures up to 400 0 C of an aromatic polymer whose molecular chains comprise benzenoid groups and bivalent linking groups, and where irradiation is gamma rays by heating subsequent to irradiation at 200 0 C to 400 0 C. The polymeric materials having increased molecular weight are useful for coating non-cooking surfaces of cookware

  12. Molecular weight and its distribution of tetrafluoroethylene and propylene copolymer

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro; Yamaguchi, Koichi.

    1978-04-01

    In comparison of molecular structure of tetrafluoroethylene and propylene copolymer produced by radiation and chemical initiators respectively, both were fractionated by elution method and fine structure was examined. For the fractionated sample by radiation, the relation between molecular weight anti Mn and intrinsic viscosity ( eta] is ( eta] = 3.97 x 10 -4 anti Mnsup(0.630) The result is not in agreement with that of the unfractionated sample by radiation, and similar to those of samples by chemical initiators. There is no difference, however, in the elution method of GPC between both these copolymers; the elution behavior agrees with that of standard polystyrene. Long chain branching thus exists little in the copolymer of tetrafluoroethylene and propylene. To reveal the relations between reaction conditions and molecular weight and its distribution of the copolymer produced by flow apparatus, the molecular weight distribution was measured by GPC. The method of analysis could evaluate molecular weight distribution changing constantly. (auth.)

  13. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics

    International Nuclear Information System (INIS)

    Mahara, Y.; Kubota, T.; Wakayama, R.; Nakano-Ohta, T.; Nakamura, T.

    2007-01-01

    We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of 3 , 1-10 x 10 3 , 10-100 x 10 3 , and > 100 x 10 3 . The organic matter source was land plants, based on the carbon isotope ratios (δ 13 C/ 12 C). The organic matter in surface water originated from presently growing land plants, based on 14 C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter ( 3 ) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment

  14. Radiation induced emulsion polymerization

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1990-01-01

    High energy radiation is particularly favored for the initiation of emulsion polymerization. The yield of free radicals, for example, from the radiolysis of the aqueous phase, is high; G(radical) values of 5-7. In addition, the rather special kinetics associated with emulsion polymerization lead, in general, to very large kinetic chain lengths, even with 'non-ideal' monomers such as vinyl acetate. Together, high polymerization rates at low doses become possible. There are some important advantages of radiation polymerization compared with chemical initiators, such as potassium persulfate. Perhaps the most important among them is the temperature independence of the initiation step. This makes low temperature polymerization very accessible. With monomers such as vinyl acetate, where chain termination to monomer is predominant, low temperatures lead to often highly desirable higher molecular weights. With styrene, the classical ideally behaved monomer, there are the advantages such as, for example, the feasibility of using cationic monomers. These and some attendant disadvantages are discussed in detail, including pilot plant studies

  15. Characterization and quantitation of low and high molecular weight phenolic compounds in apple seeds.

    Science.gov (United States)

    Fromm, Matthias; Bayha, Sandra; Carle, Reinhold; Kammerer, Dietmar R

    2012-02-08

    The phenolic constituents of seeds of 12 different apple cultivars were fractionated by sequential extraction with aqueous acetone (30:70, v/v) and ethyl acetate after hexane extraction of the lipids. Low molecular weight phenolic compounds were individually quantitated by RP-HPLC-DAD. The contents of extractable and nonextractable procyanidins were determined by applying RP-HPLC following thiolysis and n-butanol/HCl hydrolysis, respectively. As expected, the results revealed marked differences of the ethyl acetate extracts, aqueous acetone extracts, and insoluble residues with regard to contents and mean degrees of polymerization of procyanidins. Total phenolic contents in the defatted apple seed residues ranged between 18.4 and 99.8 mg/g. Phloridzin was the most abundant phenolic compound, representing 79-92% of monomeric polyphenols. Yields of phenolic compounds significantly differed among the cultivars under study, with seeds of cider apples generally being richer in phloridzin and catechins than seeds of dessert apple cultivars. This is the first study presenting comprehensive data on the contents of phenolic compounds in apple seeds comprising extractable and nonextractable procyanidins. Furthermore, the present work points out a strategy for the sustainable and complete exploitation of apple seeds as valuable agro-industrial byproducts, in particular as a rich source of phloridzin and antioxidant flavanols.

  16. Synthesis of High cis-Polybutadiene in Styrene Solution with Neodymium-Based Catalysts: Towards the Preparation of HIPS and ABS via In Situ Bulk Polymerization

    Directory of Open Access Journals (Sweden)

    Ramón Díaz de León

    2016-01-01

    Full Text Available In a first step, 1,3-butadiene was selectively polymerized at 60°C in styrene as solvent using NdV3/DIBAH/EASC as the catalyst system. The catalyst system activation process, the addition order of monomers and catalyst components, and the molar ratios [Al]/[Nd] and [Cl]/[Nd] were studied. The catalyst system allowed the selective 1,3-butadiene polymerization, reaching conversions between 57.5 and 88.1% with low polystyrene contents in the order of 6.3 to 15.4%. Molecular weights ranging from 39,000 to 150,000 g/mol were obtained, while cis-1,4 content was found in the interval of 94.4 to 96.4%. On the other hand, the glass transition temperatures of synthesized materials were established in the range of −101.9 to −107.4°C, explained by the presence of polystyrene segments in the polybutadiene chains; in the same sense, the polybutadienes did not show the typical melting endotherm of high cis-polybutadienes. In a second step, the resulting styrene/high cis-1,4 polybutadiene solutions were used to synthesize ABS (adding a fraction of acrylonitrile monomer and HIPS via in situ bulk polymerizations and the results were discussed in terms of morphological development, molecular parameters, dynamical mechanical behavior, and mechanical properties.

  17. Activation of vanadium-based Ziegler-Natta catalysts by halocarbons for ethylene polymerization: results and mechanism

    International Nuclear Information System (INIS)

    Deffieux, A.; Amorin, C.; Fontanille, M.; Adisson, E.; Bujadoux, K.

    1994-01-01

    The reactions for the low productivity of the heterogeneous and homogenous V-based catalysts in the synthesis of LLDPE were discussed and some routes of improving their activity and stability were proposed. Ethylene polymerizations were performed in the isododecane solutions at 160 C and under constant ethylene pressure of 5 bars. One Ti-based catalytic system (TiCl 3 - 0.3 AlCl 3 ) and two V-based systems (TiCl 3 - 0.3 AlCl 3 and VCl 4 ) were investigated. The main reason of activity loss is a rapid reduction of V 4+ and V 3+ to inactive V 2+ form. AlR 3 cocatalysts are also involved in the deactivation process. The effect of addition to the system of various alkyl halides (a.o. of CCl 4 , CH 3 Cl 3 , CF 3 CCCl 3 , CHCl 3 , CHBr 3 , CH 2 Cl 2 , CH 2 BrCl and CH 2 Br 2 ) on the yield of polyethylene was investigated. The alkyl halides act as efficient activators for the heterogeneous and homogeneous vanadium catalysts in the high temperature ethylene polymerization and its copolymerization with 1-hexane. The effect of the presence of CHCl 3 on the short chain branching and the molecular weight distribution (GPC) of these copolymers was also investigated. Halocarbons do not act as chain transfer agents. The peak molecular weight remains almost unchanged but a narrowing of molecular weight distribution is observed due to the suppression of the amount of high-molecular-weight fraction in polymer. (author). 4 refs, 3 figs, 2 tabs

  18. Polymerization of Methyl Methacrylate with Samarocene Complex Supported on Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Samarocene complex was supported on a series of mesoporous silica with various pore sizes. Polymerization of methyl methacrylate (MMA) by these catalysts provide highly syndiotactic PMMAs with higher molecular weights compared with those obtained by solution polymerization with homogeneous catalyst system.

  19. Effects of ionizing radiation on the properties of ultra-high molecular weight polyethylene (PE-UHMW)

    International Nuclear Information System (INIS)

    Kurth, M.

    1990-01-01

    Ultra high molecular weight polyethylene (PE-UHMW) is used in most artificial joint replacement devices. Prior to implantation in biological environment, radiatin sterilization by 60 Co or electron beam is common. It is well known that polyethylene exposed to ionizing radiation of any sort undergo physical changes due to chain scission and/or crosslinking. PE-UHMW sheets, 8 mm thick, were either 60 Co or electron beam irradiated, in the range of 10-150 kGy under air or nitrogen atmoshere. The crystallinity of the irradiated samples increases with the irradiation dose. The chain scission/crosslinking events ratio determine the network structure and the sol/gel ratio. The latter was found to depend on irradiation dose, radiation atmosphere and sample thickness. Moreover 60 Co-irradiation is about 5 times more effective in forming PE-UHMW gel than electron-irradiation. Besides the degree of crosslinking, the molecular weight distribution is the main determinant of the structural properties of PE-UHMW. Low molecular weight fractions were also found. Using a dose of 30 kGy ( 60 Co in air), the average molecular weight of the soluble part after extraction decreased from originally 2.3 million g/mol to 170.000 g/mol, corresponding to a factor of about 10. These changes in molecular weight have a strong influence on the mechanical properties of PE-UHMW. Crosslinking slightly increases the yield strength, while the elongation at break decreases. Long-term compressive creep is reduced if the material is irradiated. Obviously, increased crystallinity after oxidative chain scission affects a higher deformation resistance. Radiation crosslinked structures cause a significant increase in abrasion resistance. The above described structural changes occur even upon irradiation of very low doses as used during sterilization. This study will enable to reduce the radiation sterilization damage and thus to gain long term stability of PE-UHMW medical devices. (orig./BBR)

  20. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation.

    Science.gov (United States)

    Michelland, Sylvie; Bourgoin-Voillard, Sandrine; Cunin, Valérie; Tollance, Axel; Bertolino, Pascal; Slais, Karel; Seve, Michel

    2017-08-01

    High-throughput mass spectrometry-based proteomic analysis requires peptide fractionation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low-molecular-weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24-wells device encompassing the pH range 3-10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI-TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on-line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom-up proteomic approach with or without iTRAQ labeling. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Living atom transfer radical polymerization of 4-acetoxystyrene

    DEFF Research Database (Denmark)

    Gao, Bo; Chen, Xianyi; Ivan, Bela

    1997-01-01

    Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene (1), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with a,a'-dibromoxylene(2)/CuBr/2,2-bipyridine(bpy) as initi......Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene (1), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with a,a'-dibromoxylene(2)/CuBr/2,2-bipyridine......(bpy) as initiating system. A linear (M) over bar(n), versus monomer conversion plot was found in good accordance with the theoretical line, indicating 100% initiating efficiency. The polymerization is first order in respect to monomer up to about 70% monomer conversion. Deviations from linearity at higher conversion...

  2. Analysis of polymeric phenolics in red wines using different techniques combined with gel permeation chromatography fractionation.

    Science.gov (United States)

    Guadalupe, Zenaida; Soldevilla, Alberto; Sáenz-Navajas, María-Pilar; Ayestarán, Belén

    2006-04-21

    A multiple-step analytical method was developed to improve the analysis of polymeric phenolics in red wines. With a common initial step based on the fractionation of wine phenolics by gel permeation chromatography (GPC), different analytical techniques were used: high-performance liquid chromatography-diode array detection (HPLC-DAD), HPLC-mass spectrometry (MS), capillary zone electrophoresis (CZE) and spectrophotometry. This method proved to be valid for analyzing different families of phenolic compounds, such as monomeric phenolics and their derivatives, polymeric pigments and proanthocyanidins. The analytical characteristics of fractionation by GPC were studied and the method was fully validated, yielding satisfactory statistical results. GPC fractionation substantially improved the analysis of polymeric pigments by CZE, in terms of response, repeatability and reproducibility. It also represented an improvement in the traditional vanillin assay used for proanthocyanidin (PA) quantification. Astringent proanthocyanidins were also analyzed using a simple combined method that allowed these compounds, for which only general indexes were available, to be quantified.

  3. Study on irradiated polymerization of acrylonitrile by NMR

    International Nuclear Information System (INIS)

    Zhao Xin; Lin Hao

    1999-01-01

    Sup 13 C CP/MAS spectra and nuclear Overhauser effects (NOE) at room temperature have been measured for acrylonitrile (AN) in homophase irradiated polymerization. With the increase of radiation dose the chemical shift of cracking peaks and NOE are variation. This implies that the polymerized mechanism of AN were changed with the variation of irradiated doses and dose rate. There is the stronger affinity electron group (-CN) in acrylonitrile monomer. It may be polymerized by various ways and mechanism and be gained the polymer of difference structures and molecular weight of polyacrylonitrile (PAN). Starmicarbon and Starker obtained higher molecular weight of polyacrylonitrile by peroxysulfate-pyrosulfite in oxidation-reduction system. The superhigh molecular weight of PAN was synthesized chemically according to the method of Wu et. al. by suspension polymerization. In this paper we discussed that the relative concentrations of steric dyads and triads in the chain structure in PAN and the irradiation polymerized mechanism of acrylonitrile monomer in room temperature by different dose and dose rate

  4. High Molecular Weight Polymers in the New Chemicals Program

    Science.gov (United States)

    There are three categories or types of High Molecular Weight (HMW, 10,000 daltons) polymers typically reviewed by the New Chemicals Program: Soluble, insoluble, and water absorbing. Each of the three types are treated differently.

  5. Low Molecular Weight pDMAEMA-block-pHEMA Block-Copolymers Synthesized via RAFT-Polymerization: Potential Non-Viral Gene Delivery Agents?

    Directory of Open Access Journals (Sweden)

    Thomas Kissel

    2011-03-01

    Full Text Available The aim of this study was to investigate non-viral pDNA carriers based on diblock-copolymers consisting of poly(2-(dimethyl aminoethyl methacrylate (pDMAEMA and poly(2-hydroxyethyl methacrylate (pHEMA. Specifically the block-lengths and molecular weights were varied to determine the minimal requirements for transfection. Such vectors should allow better transfection at acceptable toxicity levels and the entire diblock-copolymer should be suitable for renal clearance. For this purpose, a library of linear poly(2-(dimethyl aminoethyl methacrylate-block-poly(2-hydroxyl methacrylate (pDMAEMA-block-pHEMA copolymers was synthesized via RAFT (reversible addition-fragmentation chain transfer polymerization in a molecular weight (Mw range of 17–35.7 kDa and analyzed using 1H and 13C NMR (nuclear magnetic resonance, ATR (attenuated total reflectance, GPC (gel permeation chromatography and DSC (differential scanning calorimetry. Copolymers possessing short pDMAEMA-polycation chains were 1.4–9.7 times less toxic in vitro than polyethylenimine (PEI 25 kDa, and complexed DNA into polyplexes of 100–170 nm, favorable for cellular uptake. The DNA-binding affinity and polyplex stability against competing polyanions was comparable with PEI 25 kDa. The zeta-potential of polyplexes of pDMAEMA-grafted copolymers remained positive (+15–30 mV. In comparison with earlier reported low molecular weight homo pDMAEMA vectors, these diblock-copolymers showed enhanced transfection efficacy under in vitro conditions due to their lower cytotoxicity, efficient cellular uptake and DNA packaging. The homo pDMAEMA115 (18.3 kDa self-assembled with DNA into small positively charged polyplexes, but was not able to transfect cells. The grafting of 6 and 57 repeating units of pHEMA (0.8 and 7.4 kDa to pDMAEMA115 increased the transfection efficacy significantly, implying a crucial impact of pHEMA on vector-cell interactions. The intracellular trafficking, in vivo transfection

  6. Elevated levels of high-molecular-weight adiponectin in type 1 diabetes

    DEFF Research Database (Denmark)

    Leth, H.; Andersen, K.K.; Frystyk, J.

    2008-01-01

    BACKGROUND: Several studies have shown that type 1 diabetic patients have elevated total levels of the adipocyte-derived adipocytokine adiponectin. However, adiponectin circulates in three different subforms, and the high-molecular-weight (HMW) subform is believed to be the primary biologically...... active form. The effects of the medium-molecular-weight (MMW) subform and the low-molecular-weight (LMW) subform are still unresolved. PURPOSE: The objective of the study was to investigate the distribution of the three molecular subforms of adiponectin in well-characterized groups of type 1 diabetics...... with varying degrees of nephropathy as well as in healthy control subjects. STUDY POPULATION: Two hundred seven individuals were included: 58 type 1 diabetics with normoalbuminuria, 46 with microalbuminuria, 46 with macroalbuminuria, and 57 matched controls. METHODS: The HMW, MMW, and LMW subforms were...

  7. Monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for simultaneous separation of low- and high-molecular-weight compounds.

    Science.gov (United States)

    Greiderer, Andreas; Ligon, S Clark; Huck, Christian W; Bonn, Günther K

    2009-08-01

    Monolithic poly(1,2-bis(p-vinylphenyl)ethane (BVPE)) capillary columns were prepared by thermally initiated free radical polymerisation of 1,2-bis(p-vinylphenyl)ethane in the presence of inert diluents (porogens) and alpha,alpha'-azoisobutyronitrile (AIBN) as initiator. Polymerisations were accomplished in 200 microm ID fused silica capillaries at 65 degrees C and for 60 min. Mercury intrusion porosimetry measurements of the polymeric RP support showed a broad bimodal pore-size-distribution of mesopores and small macropores in the range of 5-400 nm and flow-channels in the mum range. N(2)-adsorption (BET) analysis resulted in a tremendous enhancement of surface area (101 m(2)/g) of BVPE stationary phases compared to typical organic monoliths (approximately 20 m(2)/g), indicating the presence of a considerable amount of mesopores. Consequently, the adequate proportion of both meso- and (small) macropores allowed the rapid and high-resolution separation of low-molecular-weight compounds as well as biomolecules on the same monolithic support. At the same time, the high fraction of flow-channels provided enhanced column permeability. The chromatographic performance of poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for the separation of biomolecules (proteins, oligonucleotides) and small molecules (alkyl benzenes, phenols, phenons) are demonstrated in this article. Additionally, pressure drop versus flow rate measurements of novel poly(1,2-bis(p-vinylphenyl)ethane) capillary columns confirmed high mechanical robustness, low swelling in organic solvents and high permeability. Due to the simplicity of monolith fabrication, comprehensive studies of the retention and separation behaviour of monolithic BVPE columns resulted in high run-to-run and batch-to-batch reproducibilities. All these attributes prove the excellent applicability of monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for micro-HPLC towards a huge range of analytes of different

  8. Determination of trace elements in GPC fractions of oil-sand asphaltenes by INAA

    International Nuclear Information System (INIS)

    Jacobs, F.S.; Bachelor, F.W.; Filby, R.H.

    1984-01-01

    Asphaltene samples precipitated from Athabasca and Cold Lake oil-sand bitumens were separated into 12 fractions of varying molecular weight by preparative gel permeation chromatography (GPC). Each fraction was then analyzed by analytical GPC and visible spectrometry. Concentrations of As, Ce, Co, Cr, Eu, Ga, Hf, Hg, La, Ni, Sb, Sc, Se, Sm, Tb, Th, U, V, Zn, and Zr in the fractions were determined by neutron activation analysis. Molecular weights of the Athabasca fractions are generally higher than the corresponding Cold Lake fractions. Between 58% and 90% of the metal contents occur in the high molecular weight fractions of both asphaltenes. Except for V and Cr, which show biomodel distributions, all the elements have decreasing concentrations as the molecular weight of the fraction decreases. High molecular weight fractions, constituting about 55% of the whole asphaltenes, contain nonporphyrin bound vanadium compounds. It is estimated that 27% and 31% of V present in Athabasca and Cold Lake asphaltenes respectively occur as porphyrin type compounds, including vanadyl prophyrins released from the asphaltene micelle during the separation and vanadyl porphyrins bearing high-molecular-weight substituents

  9. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  10. Nasal Delivery of High Molecular Weight Drugs

    Directory of Open Access Journals (Sweden)

    Erdal Cevher

    2009-09-01

    Full Text Available Nasal drug delivery may be used for either local or systemic effects. Low molecular weight drugs with are rapidly absorbed through nasal mucosa. The main reasons for this are the high permeability, fairly wide absorption area, porous and thin endothelial basement membrane of the nasal epithelium. Despite the many advantages of the nasal route, limitations such as the high molecular weight (HMW of drugs may impede drug absorption through the nasal mucosa. Recent studies have focused particularly on the nasal application of HMW therapeutic agents such as peptide-protein drugs and vaccines intended for systemic effects. Due to their hydrophilic structure, the nasal bioavailability of peptide and protein drugs is normally less than 1%. Besides their weak mucosal membrane permeability and enzymatic degradation in nasal mucosa, these drugs are rapidly cleared from the nasal cavity after administration because of mucociliary clearance. There are many approaches for increasing the residence time of drug formulations in the nasal cavity resulting in enhanced drug absorption. In this review article, nasal route and transport mechanisms across the nasal mucosa will be briefly presented. In the second part, current studies regarding the nasal application of macromolecular drugs and vaccines with nanoand micro-particulate carrier systems will be summarised.

  11. Hemorrhagic shock and surgical stress alter distribution of labile zinc within high- and low-molecular-weight plasma fractions.

    Science.gov (United States)

    Kelly, Edward; Mathew, Jeff; Kohler, Jonathan E; Blass, Amy L; Soybel, And David I

    2012-08-01

    Zinc ions (Zn) are essential for tissue repair following injury or stress. We hypothesize that during such stresses Zn is redistributed to labile pools in plasma components. Here we tested this hypothesis using a novel assay to monitor labile Zn in plasma in hemorrhagic shock. Adult rats in the shock group (S group) underwent hemorrhage and resuscitation. Blood samples were drawn at baseline and at 1, 4, and 24 h. The surgical control group (SC group) was anesthetized and instrumented, but not bled. Albumin, total Zn, and labile Zn levels were assayed in plasma. Binding capacity for Zn was assessed in high- and low-molecular-weight pools. Significant decreases in total Zn were observed by 24 h, in both S and SC groups. Albumin levels were significantly reduced in the S group at 1 and 4 h but restored at 24 h; significant changes were not observed in other groups. In whole plasma, labile Zn levels were stable initially in the S and SC groups, but declined at 24 h. In the high-molecular-weight pool, marked and significant impairment of binding was noted throughout all time periods following the shock period in the S group. Such changes were observed in the SC group of less intensity and duration. These experiments suggest that shock alters affinity of plasma proteins for Zn, promoting delivery to peripheral tissues during periods of increased Zn utilization.

  12. Relationship between Oversulfation and Conformation of Low and High Molecular Weight Fucoidans and Evaluation of Their in Vitro Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Myoung Lae Cho

    2010-12-01

    Full Text Available Low and high molecular weight fucoidans (F5-30K and F>30K were chemically modified through the addition of sulfate groups, and the effect of oversulfation on the in vitro anticancer activity was investigated. After the addition of sulfate groups, a considerable increase of 35.5 to 56.8% was observed in the sulfate content of the F5-30K fraction, while the sulfate content of the F>30K fraction increased to a lesser extent (from 31.7 to 41.2%. Significant differences in anticancer activity were observed between the oversulfated F5–30K and F>30K fractions, with activities of 37.3–68.0% and 20.6–35.8%, respectively. This variation in the anticancer activity of oversulfated fucoidan derivatives was likely due to differences in their sulfate content. The results suggest that the molecular conformation of these molecules is closely related to the extent of sulfation in the fucan backbones and that the sulfates are preferably substituted when the fucoidan polymers are in a loose molecular conformation.

  13. Anionic Polymerization of Styrene and 1,3-Butadiene in the Presence of Phosphazene Superbases

    KAUST Repository

    Ntetsikas, Konstantinos

    2017-10-23

    The anionic polymerization of styrene and 1,3-butadiene in the presence of phosphazene bases (t-BuP4, t-BuP2 and t-BuP1), in benzene at room temperature, was studied. When t-BuP1 was used, the polymerization proceeded in a controlled manner, whereas the obtained homopolymers exhibited the desired molecular weights and narrow polydispersity (Ð < 1.05). In the case of t-BuP2, homopolymers with higher than the theoretical molecular weights and relatively low polydispersity were obtained. On the other hand, in the presence of t-BuP4, the polymerization of styrene was uncontrolled due to the high reactivity of the formed carbanion. The kinetic studies from the polymerization of both monomers showed that the reaction rate follows the order of [t-BuP4]/[sec-BuLi] >>> [t-BuP2]/[sec-BuLi] >> [t-BuP1]/[sec-BuLi] > sec-BuLi. Furthermore, the addition of t-BuP2 and t-BuP1 prior the polymerization of 1,3-butadiene allowed the synthesis of polybutadiene with a high 1,2-microstructure (~45 wt %), due to the delocalization of the negative charge. Finally, the one pot synthesis of well-defined polyester-based copolymers [PS-b-PCL and PS-b-PLLA, PS: Polystyrene, PCL: Poly(ε-caprolactone) and PLLA: Poly(L-lactide)], with predictable molecular weights and a narrow molecular weight distribution (Ð < 1.2), was achieved by sequential copolymerization in the presence of t-BuP2 and t-BuP1.

  14. Oriented polymers obtained by UV polymerization of oriented low-molecular-weight species

    NARCIS (Netherlands)

    Broer, D.J.; Mol, G.N.; Bowden, M.J.; Turner, S.R.

    1987-01-01

    Anisotropic polymer filaments could be produced by in-situ photopolymerization of oriented acrylate monomers. Ordering of the monomers was achieved by an elongational flow prior to the polymerization process. The produced polymers showed a high elastic modulus and a low thermal expansion coefficient

  15. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions

    DEFF Research Database (Denmark)

    Farvin Habebullah, Sabeena; Andersen, Lisa Lystbæk; Otte, Jeanette

    2016-01-01

    This study aimed to characterise peptide fractions (>5 kDa, 3–5 kDa and fractions were dominated by Ala, Gly, Glu and Ser. The total amino acid composition had high proportions of Lys, Ala...... and Glu. The 3–5 kDa and fractions were further fractionated by size exclusion chromatography. All sub-fractions showed high Fe2+ chelating activity. The DPPH radical-scavenging activity of the 3–5 kDa fraction was exerted mainly by one sub-fraction dominated by peptides with masses below 600 Da....... The DPPH radical-scavenging activity of the fraction was exerted by sub-fractions with low molecular weight. The highest reducing power was found in a sub-fraction containing peptides rich in Arg, Tyr and Phe. Both free amino acids and low molecular weight peptides thus seemed to contribute...

  16. Polymerization of methyl methacrylate by diphenylamido bis (methylcyclopentadienyl) ytterbium complex

    Institute of Scientific and Technical Information of China (English)

    WANG, Yao-Rong(王耀荣); SHEN, Qi(沈琪); MA, Jia-Le(马家乐); ZHAO, Qun(赵群)

    2000-01-01

    Methyl methacrylate (MMA) was effectively polymerized by diphenylamido bis(methyicyclopentadienyl) ytterbium complex (MeCp)2YbNPh2(THF). Tne reaction can be carried out over a range of polymerization temperature from - 40℃ to 40℃ and gives the polyMMA with high molecular weights.The initiation mechanism was demonstrated by diphenylamidoterminated methyl methacrylate oligomer.

  17. Mechanisms of radiation - chemical conversion of high-paraffinic crude oil

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Zaikina, R.F.; Silverman, J.

    2002-01-01

    Complete text of publication follows. Regularities of radiation-thermal cracking (RTC) are studied in high-paraffinic oil. Irradiation of oil samples by 2 MeV electrons was performed using a special facility assembled at the electron accelerator ELU-4. The following characteristic RTC features were observed in oil with high contents of heavy paraffins: low level of isomerization in light RTC fractions; very high polymerization rate and low olefin contents in RTC products; relatively low yields of light fractions at low irradiation dose rates; increase in the molecular weight of the gasoline fraction as the irradiation dose rate grows. Similar intense polymerization of RTC products was observed in our experiments with such wastes of oil extraction as asphalt-pitch-paraffin sediments (APPS). Theoretically this feedstock contains great reserves of hydrogen, and, therefore, has high potential yields of light fractions. However, in this case RTC was accompanied by intense reactions of polymerization and chemical adsorption that limited the maximum yields of light RTC products to 40% in our experiments. A specific feature of APPS radiation-induced destruction is formation of the big amount of a reactive paraffinic residue. As a result of interaction with the polymerizing residue the light liquid fractions were completely absorbed and the heavy residue got denser and solidified after several days of exposure at room temperature. RTC regularities in heavy paraffinic oil differ from those observed both in highly viscous petroleum feedstock and light paraffin oils. We attribute these observations to the behavior of heavy alkyl radicals that initiate polymerization and isomerization in heavy paraffin fractions

  18. Synthesis and Evaluation of Molecularly Imprinted Polymeric Microspheres for Chloramphenicol by Aqueous Suspension Polymerization as a High Performance Liquid Chromatography Stationary Phase

    International Nuclear Information System (INIS)

    Zhang, Yan; Lei, Jiandu

    2013-01-01

    Molecularly imprinted microsphere for chloramphenicol (CAP) with high adsorption capacity and excellent selectivity is prepared by aqueous suspension polymerization, in which chloramphenicol is used as template molecule and ethyl acetate as porogen. The CAP-imprinted microspheres are used as high performance liquid chromatography (HPLC) stationary phase and packed into stainless steel column (150 mm Χ 4.6 mm i. d.) for selective separation of chloramphenicol. HPLC analysis suggests that chloramphenicol can be distinguished from not only its structural analogs but also other broad-spectrum antibiotic such as erythromycin and tetracycline. In addition, the binding experiments of CAP-imprinted microspheres are carried out in ethanol/water (1:4, V:V), the results indicate that the maximum apparent static binding capacity of molecularly imprinted microspheres is up to 66.64 mg g -1 according to scatchard model

  19. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    Science.gov (United States)

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin

    2013-01-01

    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  20. Loss of high-molecular-weight cytokeratin antigenicity in prostate tissue obtained by transurethral resections

    DEFF Research Database (Denmark)

    Multhaupt, H A; Fessler, J N; Warhol, M J

    2000-01-01

    could be restored in these specimens by antigen retrieval in a low pH citrate buffer using a microwave heat technique. Keratin staining in needle biopsies and total prostatectomies was unaffected. CONCLUSION: In summary, our results indicate the technique of transurethral resection results in a specific......OBJECTIVE: Staining of prostatic basal cells for the expression of high-molecular-weight cytokeratin has been suggested as a way of distinguishing benign from malignant prostate glands. We evaluated the utility of high-molecular-weight cytokeratin in the diagnosis of malignancy in prostate...... specimens obtained in various ways. DESIGN: Prostate tissues obtained from needle biopsies, transurethral resections, and total prostatectomies were immunostained with monoclonal antibody 34betaE12, an antibody directed against high-molecular-weight cytokeratins. RESULTS: Antiserum to high...

  1. High molecular weight poly(L-lactide) and poly(ethylene oxide) blends : Thermal characterization and physical properties

    NARCIS (Netherlands)

    Nijenhuis, AJ; Colstee, E; Grijpma, DW; Pennings, AJ

    1996-01-01

    The miscibility of high molecular weight poly(L-lactide) (PLLA) with high molecular weight poly(ethylene oxide) (PEG) was studied by differential scanning calorimetry. Ail blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were

  2. Prebiotic Potential of Agave angustifolia Haw Fructans with Different Degrees of Polymerization

    Directory of Open Access Journals (Sweden)

    José Rodolfo Velázquez-Martínez

    2014-08-01

    Full Text Available Inulin-type fructans are the most studied prebiotic compounds because of their broad range of health benefits. In particular, plants of the Agave genus are rich in fructans. Agave-derived fructans have a branched structure with both β-(2→1 and β-(2→6 linked fructosyl chains attached to the sucrose start unit with a degree of polymerization (DP of up to 80 fructose units. The objective of this work was to assess the prebiotic potential of three Agave angustifolia Haw fructan fractions (AFF with different degrees of polymerization. The three fructan fractions were extracted from the agave stem by lixiviation and then purified by ultrafiltration and ion exchange chromatography: AFF1, AFF2 and AFF3 with high (3–60 fructose units, medium (2–40 and low (2–22 DP, respectively. The fructan profile was determined with high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD, which confirmed a branched fructan structure. Structural elucidation was performed by Fourier Transform Infra-Red Spectroscopy. The AFF spectrum shows characteristic fructan bands. The prebiotic effect of these fractions was assessed in vitro through fermentation by Bifidobacterium and Lactobacillus strains. Four growth patterns were observed. Some bacteria did not grow with any of the AFF, while other strains grew with only AFF3. Some bacteria grew according to the molecular weight of the AFF and some grew indistinctly with the three fructan fractions.

  3. New method to access hyperbranched polymers with uniform structure via one-pot polymerization of inimer in microemulsion.

    Science.gov (United States)

    Min, Ke; Gao, Haifeng

    2012-09-26

    A facile approach is presented for successful synthesis of hyperbranched polymers with high molecular weight and uniform structure by a one-pot polymerization of an inimer in a microemulsion. The segregated space in the microemulsion confined the inimer polymerization and particularly the polymer-polymer reaction within discrete nanoparticles. At the end of polymerization, each nanoparticle contained one hyperbranched polymer that had thousands of inimer units and low polydispersity. The hyperbranched polymers were used as multifunctional macroinitiators for synthesis of "hyper-star" polymers. When a degradable inimer was applied, the hyper-stars showed fast degradation into linear polymer chains with low molecular weight.

  4. Solid-State Polymerization of Poly(ethylene furanoate Biobased Polyester, I: Effect of Catalyst Type on Molecular Weight Increase

    Directory of Open Access Journals (Sweden)

    Nejib Kasmi

    2017-11-01

    Full Text Available In this work, we report the synthesis of poly(ethylene furanoate (PEF, catalyzed by three different catalysts, namely, titanium (IV isopropoxide (TIS, tetrabutyltitanate (TBT, and dibutyltin (IV oxide (DBTO, via the two-stage melt polycondensation method. Solid-state polymerization (SSP was conducted at different reaction times (1, 2, 3.5, and 5 h and temperatures 190, 200, and 205 °C, under vacuum. The resultant polymers were analyzed according to their intrinsic viscosity (IV, end groups (–COOH, and thermal properties, via differential scanning calorimetry. DSC results showed that the post polymerization process was favorable to enhance the melting point of the prepared PEF samples. As was expected, the intrinsic viscosity and the average molecular weight of PEF increased with the SSP time and temperature, whereas the number of carboxyl end-groups was decreased. A simple kinetic model was also developed and used to predict the time evolution of polymers IV, as well as the carboxyl and hydroxyl content of PEF during the SSP. From both the experimental measurements and the theoretical simulation results it was proved that the presence of the TIS catalyst resulted in higher transesterification kinetic rate constants and higher reaction rates. The activation energies were not much affected by the presence of different catalysts. Finally, using DBTO as a catalyst, the polyesters produced have higher crystallinity, and as a consequence, higher number of inactive carboxyl and hydroxyl groups.

  5. Size-exclusion chromatography (HPLC-SEC) technique optimization by simplex method to estimate molecular weight distribution of agave fructans.

    Science.gov (United States)

    Moreno-Vilet, Lorena; Bostyn, Stéphane; Flores-Montaño, Jose-Luis; Camacho-Ruiz, Rosa-María

    2017-12-15

    Agave fructans are increasingly important in food industry and nutrition sciences as a potential ingredient of functional food, thus practical analysis tools to characterize them are needed. In view of the importance of the molecular weight on the functional properties of agave fructans, this study has the purpose to optimize a method to determine their molecular weight distribution by HPLC-SEC for industrial application. The optimization was carried out using a simplex method. The optimum conditions obtained were at column temperature of 61.7°C using tri-distilled water without salt, adjusted pH of 5.4 and a flow rate of 0.36mL/min. The exclusion range is from 1 to 49 of polymerization degree (180-7966Da). This proposed method represents an accurate and fast alternative to standard methods involving multiple-detection or hydrolysis of fructans. The industrial applications of this technique might be for quality control, study of fractionation processes and determination of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Black Tea High-Molecular-Weight Polyphenol-Rich Fraction Promotes Hypertrophy during Functional Overload in Mice

    Directory of Open Access Journals (Sweden)

    Yuki Aoki

    2017-03-01

    Full Text Available Mitochondria activation factor (MAF is a high-molecular-weight polyphenol extracted from black tea that stimulates training-induced 5′ adenosine monophosphate-activated protein kinase (AMPK activation and improves endurance capacity. Originally, MAF was purified from black tea using butanol and acetone, making it unsuitable for food preparation. Hence, we extracted a MAF-rich sample “E80” from black tea, using ethanol and water only. Here, we examined the effects of E80 on resistance training. Eight-week old C57BL/6 mice were fed with a normal diet or a diet containing 0.5% E80 for 4, 7 and 14 days under conditions of functional overload. It was found that E80 administration promoted overload-induced hypertrophy and induced phosphorylation of the Akt/mammalian target of rapamycin (mTOR pathway proteins, such as Akt, P70 ribosomal protein S6 kinase (p70S6K, and S6 in the plantaris muscle. Therefore, functional overload and E80 administration accelerated mTOR signaling and increased protein synthesis in the muscle, thereby inducing hypertrophy.

  7. Fractional, biodegradable and spectral characteristics of extracted and fractionated sludge extracellular polymeric substances.

    Science.gov (United States)

    Wei, Liang-Liang; Wang, Kun; Zhao, Qing-Liang; Jiang, Jun-Qiu; Kong, Xiang-Juan; Lee, Duu-Jong

    2012-09-15

    Correlation between fractional, biodegradable and spectral characteristics of sludge extracellular polymeric substances (EPS) by different protocols has not been well established. This work extracted sludge EPS using alkaline extractants (NH₄OH and formaldehyde + NaOH) and physical protocols (ultrasonication, heating at 80 °C or cation exchange resin (CER)) and then fractionated the extracts using XAD-8/XAD-4 resins. The alkaline extractants yielded more sludge EPS than the physical protocols. However, the physical protocols extracted principally the hydrophilic components which were readily biodegradable by microorganisms. The alkaline extractants dissolved additional humic-like substances from sludge solids which were refractory in nature. Different extraction protocols preferably extracted EPS with distinct fractional, biodegradable and spectral characteristics which could be applied in specific usages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Conformational and Structural Properties of High Functionality Dendrimer-like Star Polymers Synthesized from Living Polymerization Techniques; TOPICAL

    International Nuclear Information System (INIS)

    Pople, John A.

    2001-01-01

    The design, synthesis and solution properties of dendritic-linear hybrid macromolecules is described. The synthetic strategy employs living ring-opening polymerization in combination with selective and quantitative organic transformations for the preparation of new molecular architectures similar to classical star polymers and dendrimers. The polymers were constructed from high molecular weight poly(e-caprolactone) initiated from the surface hydroxyl groups of dendrimers derived from bis(hydroxymethyl) propionic acid (bis-MPA) in the presence of stannous 2-ethyl hexanoate (Sn(Oct)2). In this way, star and hyperstar poly(e-caprolactones) were elaborated depending on the generation of dendrimer employed. The ROP from these hydroxy groups was found to be a facile process leading to controlled molecular weight, low dispersity products (Mw/Mn) and lt; 1.15. In addition to the use of dendrimers as building blocks to star polymers, functional dendrons derived from bis-MPA were attached to chain ends of the star polymers, yielding structures that closely resemble that of the most advanced dendrimers. Measurements of the solution properties (hydrodynamic volume vs. molecular weight) on the dendritic-linear hybrids show a deviation from linearity, with a lower than expected hydrodynamic volume, analogous to the solution properties of dendrimers of high generation number. The onset of the deviation begins with the polymers initiated from the second generation dendrimer of bis-MPA and becomes more exaggerated with the higher generations. It was found that polymerization amplifies the nonlinear solution behavior of dendrimers. Small angle neutron scattering (SANS) measurements revealed that the radius of gyration scaled with arm functionality (f) as f 2/3, in accordance with the Daoud-Cotton model for many arm star polymer

  9. Characterization of oxidized tannins: comparison of depolymerization methods, asymmetric flow field-flow fractionation and small-angle X-ray scattering.

    Science.gov (United States)

    Vernhet, Aude; Dubascoux, Stéphane; Cabane, Bernard; Fulcrand, Hélène; Dubreucq, Eric; Poncet-Legrand, Céline

    2011-09-01

    Condensed tannins are a major class of plant polyphenols. They play an important part in the colour and taste of foods and beverages. Due to their chemical reactivity, tannins are not stable once extracted from plants. A number of chemical reactions can take place, leading to structural changes of the native structures to give so-called derived tannins and pigments. This paper compares results obtained on native and oxidized tannins with different techniques: depolymerization followed by high-performance liquid chromatography analysis, small-angle X-ray scattering (SAXS) and asymmetric flow field-flow fractionation (AF4). Upon oxidation, new macromolecules were formed. Thioglycolysis experiments showed no evidence of molecular weight increase, but thioglycolysis yields drastically decreased. When oxidation was performed at high concentration (e.g., 10 g L(-1)), the weight average degree of polymerization determined from SAXS increased, whereas it remained stable when oxidation was done at low concentration (0.1 g L(-1)), indicating that the reaction was intramolecular, yet the conformations were different. Differences in terms of solubility were observed; ethanol being a better solvent than water. We also separated soluble and non-water-soluble species of a much oxidized fraction. Thioglycolysis showed no big differences between the two fractions, whereas SAXS and AF4 showed that insoluble macromolecules have a weight average molecular weight ten times higher than the soluble ones.

  10. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation. © 2015 SETAC.

  11. Use of electroporation for high-molecular-weight DNA-mediated gene transfer.

    Science.gov (United States)

    Jastreboff, M M; Ito, E; Bertino, J R; Narayanan, R

    1987-08-01

    Electroporation was used to introduce high-molecular-weight DNA into murine hematopoietic cells and NIH3T3 cells. CCRF-CEM cells were stably transfected with SV2NEO plasmid and the genomic DNA from G-418-resistant clones (greater than 65 kb) was introduced into mouse bone marrow and NIH3T3 cells by electroporation. NEO sequences and expression were detected in the hematopoietic tissues of lethally irradiated mice, with 24% of individual spleen colonies expressing NEO. The frequency of genomic DNA transfer into NIH3T3 cells was 0.25 X 10(-3). Electroporation thus offers a powerful mode of gene transfer not only of cloned genes but also of high-molecular-weight DNA into cells.

  12. Radiation-induced emulsion polymerization of tetrafluoroethylene

    International Nuclear Information System (INIS)

    Suwa, Takeshi

    1979-10-01

    The radiation-induced emulsifier-free emulsion polymerization of tetrafluoroethylene (TFE) has been studied at initial pressure 2 - 25 kg/cm 2 and temperature 30 0 - 110 0 C for dose rate 0.57 x 10 4 - 3.0 x 10 4 rad/hr. Polytetrafluoroethylene (PTFE), a hydrophobic polymer, forms as a stable latex in the absence of an emulsifier. Stability of the latex is governed by the dose rate/TFE pressure ratio; it increases with sufficient TFE monomer. PTFE particles produced in this polymerization system are stable due to the carboxyl end groups and adsorption of OH - and HF on the particles. PTFE latex of molecular weight higher than 2 x 10 7 is obtained by addition of a radical scavenger such as hydroquinone. The molecular weight of PTFE can be measured from the heat of crystallization conveniently with high reliability, which was found in the course of study on the melting and crystallization behavior. (author)

  13. Fractionation and characterization of saccharides and lignin components in wood prehydrolysis liquor from dissolving pulp production.

    Science.gov (United States)

    Wang, Zhaojiang; Wang, Xiaojun; Jiang, Jungang; Fu, Yingjuan; Qin, Menghua

    2015-08-01

    Saccharides and lignin components in prehydrolysis liquor (PHL) from kraft-based dissolving pulp production was characterized after being fractionated using membrane filtration. The results showed that the membrane filtration provided a method for organics fractionation with considerable recovery rate, but exhibited some disadvantages. Besides the limited ability in purifying oligosaccharides (OS) due to the overlaps of molecular weight distribution with lignin components, the membrane filtration could not improve the homogeneity of OS as indicated by the analysis of chemical compositions and the degree of polymerization (DP), which may be ascribed to the linear conformation of OS. The characterization of lignin components indicated a great potential for polymer industry because of the remarkable content of phenolic hydroxyl groups (PhOH), especially for low molecular weight (LMW) fraction. It was concluded the organics in PHL provided streams of value-added chemicals. However, the practical significance thereof can be realized and maximized only when they are successfully and completely fractionated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. 60Co γ-irradiation induced polymerization of methyl methacrylate in imidazolium ionic liquids

    International Nuclear Information System (INIS)

    Qi Mingying; Wu Gongzhong; Liu Yaodong; Chen Shimou; Sha Maolin

    2006-01-01

    Room temperature ionic liquids (RTILs), as a class of novel environmental benign 'green solvents', have been used as reaction media for various polymerizations due to their unique properties of non-volatility, high polarity, ease of recycling and chirality. In radiation polymerization, the energetic photons or electrons result in the formation of solvated electron and radical ions in ionic liquids, which initiate polymerization of monomers without any chemical initiator. In this work, effects of gamma ray irradiation on pure ionic liquid [bmim][PF 6 ] was investigated in detail in a dose range of 5-400 kGy. The ionic liquids were quite stable under low dose irradiations, but underwent notable radiolysis with high doses. With the irradiated [bmim][PF 6 ], the UV-Vis absorbance increased and the fluorescence intensity decreased with increasing doses. Raman spectra proved that gamma radiation induced significant chemical scission of n-butyl group (e.g. C-H and C-C scission), along with damages to the [PF6] - anion. In cooled samples of the irradiated [bmim][PF 6 ] we found two coexist crystal structures, which had suffered a continuous destruction under high dose irradiation. After ensuring stability of the ionic liquids to low dose irradiation, radiation polymerization of methyl methacrylate (MMA) in ionic liquids and IL/organic solutions was performed. By adding the ionic liquids, the monomer conversion and molecular weight (Mw) of the polymer increased significant. Mw of PMMA in neat ionic liquid increased by about 60 times, from 3 x 10 4 with pure organic solvent to about 2 x 10 6 . Molecular weight of the polymer increased with the IL fraction in the IL/organic solutions, and it was dependent on ionic liquids and solvents used, too. It was also found that the polymer obtained in the existence of IL showed multi-modal broadened molecular weight distribution (MWD). A reasonable explanation is the inhomogeneous nature of the ionic liquid in micron scale and the

  15. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry.

    Science.gov (United States)

    Cheon, Dong Huey; Nam, Eun Ji; Park, Kyu Hyung; Woo, Se Joon; Lee, Hye Jin; Kim, Hee Cheol; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2016-01-04

    While human plasma serves as a great source for disease diagnosis, low-molecular-weight (LMW) proteome (mass spectrometry to analyze the LMW proteoforms present in four types of human plasma samples pooled from three healthy controls (HCs) without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. The LMW proteoforms were first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC 3.0. As a result, a total of 442 LMW proteins and cleaved products, including those with post-translational modifications and single amino acid variations, were identified. From additional comparative analysis of plasma samples without immunoaffinity depletion between HCs and colorectal cancer (CRC) patients via top-down approach, tens of LMW proteoforms, including platelet factor 4, were found to show >1.5-fold changes between the plasma samples of HCs and CRC patients, and six of the LMW proteins were verified by Western blot analysis.

  16. High molecular weight DNA assembly in vivo for synthetic biology applications.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  17. The competing effects of microbially derived polymeric and low molecular-weight substances on the dispersibility of CeO2 nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Yuriko; Ochiai, Asumi; Kawamoto, Keisuke; Takeda, Ayaka; Ichiyoshi, Kenta; Ohnuki, Toshihiko; Hochella, Michael F.; Utsunomiya, Satoshi

    2018-02-26

    To understand the competing effects of the components in extracellular substances (ES), polymeric substances (PS) and low-molecular-weight small substances (SS) <1 kDa derived from microorganisms, on the colloidal stability of cerium dioxide nanoparticles (CeNPs), we investigated their adsorption to sparingly soluble CeNPs at room temperature at pH 6.0. The ES was extracted from the fungus S. cerevisiae. The polypeptides and phosphates in all components preferentially adsorbed onto the CeNPs. The zeta potentials of ES + CeNPs, PS + CeNPs, and SS + CeNPs overlapped on the plot of PS itself, indicating the surface charge of the polymeric substances controls the zeta potentials. The sizes of the CeNP aggregates, 100–1300 nm, were constrained by the zeta potentials. The steric barrier derived from the polymers, even in SS, enhanced the CeNP dispersibility at pH 1.5–10. Consequently, the PS and SS had similar effects on modifying the CeNP surfaces. The adsorption of ES, which contains PS + SS, can suppress the aggregation of CeNPs over a wider pH range than that for PS only. The present study addresses the non-negligible effects of small-sized molecules derived from microbial activity on the migration of CeNP in aquatic environments, especially where bacterial consortia prevail.

  18. The adhesive properties of chlorinated ultra-high molecular weight polyethylene

    NARCIS (Netherlands)

    Menting, H.N.A.M.; Voets, P.E.L.; Lemstra, P.J.

    1995-01-01

    Ultra-high molecular weight polyethylene (UHMW-PE) is well known for its abrasion and chemical resistance. Recently we developed a new application for UHMW-PE as a liner in elastomeric hoses. It was found that the adhesion between UHMW-PE and elastomers such as ethylene-propylene-diene monomer

  19. An approach for characterization and lumping of plus fractions of heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, I.; Hamouda, A.A. [Stavanger Univ., Stavanger (Norway)

    2008-10-15

    The constituents of hydrocarbons can be classified as either well-defined components or undefined petroleum fractions. This paper presented a newly developed method for characterizing plus fractions of heavy oil, which is particularly important for fluids with high molecular weight and high density. Characterization of plus fractions typically consists of 3 parts, notably splitting the fraction into a certain number of components groups called single carbon number (SCN); estimating the physico-chemical properties of the SCN; and lumping the generated SCN. SCN groups contain hundreds of isomers/components with the same number of carbon atoms. A unique molecular weight cannot be assigned for each SCN group because of the uncertainty of the isomers/components present. Therefore, this work focused on finding a new approach to characterize the undetermined fraction by first splitting the carbon number fraction into a representative number of SCN and then calculating their mole fraction and molecular weight. The method was based on the relationships between three parameter gamma distribution (TPG), experimental mole fraction, molecular weight and SCN data obtained from literature and industry. The method was applied to 5 different heavy oil sample fluids which all showed a left skewed distribution of the mole fraction as a function of carbon number. The predicted molecular weight was found to be close to the generalized molecular weight associated with carbon number, but it differed from one sample to another. 19 refs., 11 tabs., 15 figs.

  20. High molecular weight polysaccharide that binds and inhibits virus

    Science.gov (United States)

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  1. High molecular weight polysaccharide that binds and inhibits virus

    Energy Technology Data Exchange (ETDEWEB)

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    2017-07-18

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  2. The Morphology of Emulsion Polymerized Latex Particles

    Science.gov (United States)

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  3. SYNTHESIS AND CHARACTERIZATION OF NEW STABILIZERS WITH OPTIMAL MOLECULAR WEIGHT

    Institute of Scientific and Technical Information of China (English)

    Jiang-qing Pan

    2001-01-01

    Over 2 × l08 tons of polymers are produced every year, and a large portion of polymers faces the degradation problem. There are many effective methods to protect polymers against degradation and the addition of stabilizers to polymer remains the most convenient and effective way of enhancing polymer life and performance. In this article, a series of effective stabilizers with optimal molecular weight (MW), including common, monomeric and polymeric stabilizers (antioxidant and light stabilizer) were synthesized using isocyanation, controlled isocyanation, hydrosilylation, epoxide addition, macroreaction of stabilizing functional compounds and polymerization of monomeric stabilizers. The sructure and performance of these new stabilizers were characterized by using IR, NMR, MS, UV-spectra, XPS and elemental analysis. The current development of stabilizer synthesis was also reviewed.``

  4. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    Science.gov (United States)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  5. Gamma Radiation-Induced Template Polymerization Technique

    International Nuclear Information System (INIS)

    Siyam, T.

    2005-01-01

    Gamma radiation induced copolymerization of acrylamide sodiumacrylate (AM-AANa) in the presence and absence of the polymer additive was studied at low monomer concentration(1.4M/l). The results showed that the exponents of the dose rate for the polymerization rate was found to be 1.3 and 1.4 in the absence and in the presence of the polymer additive respectively. The molecular weight of the formed polymer increased by addition of the polymer to the system. In the presence of the polymer the comonomers polymerize on the added polymer. In the absence of the added polymer the comonomers polymerize according to the copolymerization process at the initial stage of the copolymerization. While at high conversion the residual comonomers polymerize on the formed macromolecular chains of the produced polymer. These studies showed that the copolymerization in the presence of added polymer is completely template copolymerization while in the absence of the polymer the copolymerization process is only template process with a high conversion

  6. Application of radiation grafting techniques to prepare the high molecular weight water-soluble polymer

    International Nuclear Information System (INIS)

    Le Hai; Nguyen Quoc Hien; Nguyen Tan Man; Truong Thi Hanh; Le Huu Tu; Tran Thi Tam; Pham Thi Sam; Pham Anh Tuan; Le Dinh Lang

    2003-01-01

    The results of the study on the preparation of the high molecular weight water-soluble polymers by radiation grafting and their properties is presented as follows: 1/ by radiation grafting, the molecular weight of PVA was increased 20 times and PAM was increased only 3 times; 2/ the thermal and medium stability of poly(vinyl alcohol) grafted with acrylamide was obviously improved. (LH)

  7. Effects of proteins on absorption by the rat of iron from polymeric and low-molecular-weight iron species

    International Nuclear Information System (INIS)

    Berner, L.; Miller, D.

    1986-01-01

    To examine effects of proteins on Fe absorption from polymeric ferric hydroxides (polys) or low-molecular-weight complexes (LMW Fe), 2 studies were conducted. First, anemic rats were given 59 Fe-labeled polys or LMW Fe in the presence and absence of pepsin-digested soy protein isolate, casein, and BSA. The doses were introduced into ligated duodenal segments for 1 hr. Uptake into the carcass of 59 Fe from polys was doubled in the presence of BSA (7.8 vs 16.1%, p 59 Fe from LMW Fe was 7X greater than from polys; BSA and casein had no effect but soy depressed Fe uptake by almost 50% (57.4 vs 35.5%, p < .05). The second experiment repeated the first except that the proteins were not pepsin-digested and the doses were given by gastric intubation. All Fe, whether from polys or LMW Fe, was highly available (although in vitro digestions reveal that polys are not depolymerized to a large degree under simulated stomach conditions). Soy depressed Fe uptake from both sources (92.9 vs. 81.6%, LMW Fe and 85.4 vs 73.7%, polys) while casein and BSA had no effect. These results show: (1) BSA can depolymerize polys in the rat duodenum, thus enhancing absorption; (2) soy isolate generally depressed Fe uptake; and (3) the rat stomach appears to have an exceptional capacity for equalizing Fe sources

  8. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter

    2013-01-01

    The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for

  9. Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry.

    Science.gov (United States)

    Remucal, Christina K; Cory, Rose M; Sander, Michael; McNeill, Kristopher

    2012-09-04

    Suwannee River fulvic acid (SRFA) was dialyzed through a 100-500 molecular weight cutoff dialysis membrane, and the dialysate and retentate were analyzed by UV-visible absorption and high-resolution Orbitrap mass spectrometry (MS). A significant fraction (36% based on dissolved organic carbon) of SRFA passed through the dialysis membrane. The fraction of SRFA in the dialysate had a different UV-visible absorption spectrum and was enriched in low molecular weight molecules with a more aliphatic composition relative to the initial SRFA solution. Comparison of the SRFA spectra collected by Orbitrap MS and Fourier transform ion cyclotron resonance MS (FT-ICR MS) demonstrated that the mass accuracy of the Orbitrap MS is sufficient for determination of unique molecular formulas of compounds with masses masses detected by Orbitrap MS were found in the 100-200 Da mass range. Many of these low molecular masses corresponded to molecular formulas of previously identified compounds in organic matter, lignin, and plants, and the use of the standard addition method provided an upper concentration estimate of selected target compounds in SRFA. Collectively, these results provide evidence that SRFA contains low molecular weight components that are present individually or in loosely bound assemblies.

  10. Experimental study of living free radical polymerization using trifunctional initiator and polymerization mediated by nitroxide

    International Nuclear Information System (INIS)

    Galhardo, Eduardo; Lona, Liliane M.F.

    2009-01-01

    Controlled free radical polymerization or living free radical polymerization has received increasing attention as a technique for the production of polymers with microstructure highly controlled. In particular, narrow molecular weight distributions are obtained with polydispersity very close to one. In this research it was investigate the controlled polymerization mediated by nitroxide, using a cyclic trifunctional peroxide. As long as we know, there are only publications in literature dealing with NMRP using mono- and bi-functional initiators. It was believed that the trifunctional peroxide can increase the rate of polymerization, since more free radicals are generated, if compared with initiators with lower functionality. Furthermore, the fact of the initiator be cyclic means that branches are not generated in the chains, which theoretically prevents an increase in polydispersity of the polymer. The effect of the dissociation constant of the trifunctional initiator in the velocity of the reaction was analyzed. (author)

  11. Correlation between the estimated molecular weight and the immunological properties of 125I-TSH

    International Nuclear Information System (INIS)

    Quiroga, S.E.; Ciscato, V.A.; Barmasch, M.; Kurcbart, H.; Veira de Giacomini, S.; Altschuler, N.; Caro, R.A.

    1976-09-01

    Thyrotropic Stimulating Hormone (TSH) was radioiodinated by the Chloramine T method in order to be used in radioimmu-noassay procedures. It was purified by gel filtration and each fraction of the eluate was analyzed in order to determine which one had the most suitable behaviour for that use. The molecular weight of each fraction was estimated, as well as its immunological reactivity and its non-specific binding. The 125 I-TSH fraction with better properties was the closest to the molecular weight of the native hormone, which is found at the posterior shoulder of the main proteic peak of the elution pattern. (author) [es

  12. Investigation of Galactosylated Low Molecular Weight Chitosan ...

    African Journals Online (AJOL)

    was coupled with low molecular weight chitosan (LMWC) using carbodiimide chemistry. .... High molecular weight chitosan (minimum 85% ..... membrane permeability of drug and mutual repulsion ... coating thickness and the lower solubility of.

  13. Equal channel angular extrusion of ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reinitz, Steven D., E-mail: Steven.D.Reinitz.TH@Dartmouth.edu; Engler, Alexander J.; Carlson, Evan M.; Van Citters, Douglas W.

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications. - Highlights: • A new processing method for ultra-high molecular weight polyethylene is introduced. • The process produces a highly entangled polyethylene material. • Entanglements are hypothesized to enhance the wear resistance of polyethylene. • This process eliminates the trade-off between mechanical and wear properties.

  14. Thermal characterization of Ag and Ag + N ion implanted ultra-high molecular weight polyethylene (UHMWPE)

    Science.gov (United States)

    Sokullu Urkac, E.; Oztarhan, A.; Tihminlioglu, F.; Kaya, N.; Ila, D.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.; Ezdesir, A.; Tek, Z.

    2007-08-01

    Most of total hip joints are composed of ultra-high molecular weight polyethylene (UHMWPE). However, as ultra-high molecular weight polyethylene is too stable in a body, wear debris may accumulate and cause biological response such as bone absorption and loosening of prosthesis. In this study, ultra-high molecular weight polyethylene samples were Ag and Ag + N hybrid ion implanted by using MEVVA ion implantation technique to improve its surface properties. Samples were implanted with a fluence of 1017 ion/cm2 and extraction voltage of 30 kV. Implanted and unimplanted samples were investigated by thermo-gravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), optical microscopy (OM) and contact Angle measurement. Thermal characterization results showed that the ion bombardment induced an increase in the % crystallinity, onset and termination degradation temperatures of UHMWPE.

  15. Effect of the different chain transfer agents on molecular weight and optical properties of poly(methyl methacrylate)

    Science.gov (United States)

    Çetinkaya, Onur; Demirci, Gökhan; Mergo, Paweł

    2017-08-01

    Investigation of molecular weight and optical properties of poly(methyl metacrylate) (PMMA) polymerized in house with different chain transfer agents was studied. Isopropyl alcohol (IPA), n-butyl mercaptan (nBMC) and pentamethyl disilane (PMDS) were used as chain transfer agents. The molecular weight (Mw) of PMMA samples were measured by Ostwald viscometer. Mw of bulk polymer samples were decreased with increase the concentration of chain transfer agents (CTA). Since reactivity of used CTAs is not same, molecular weights of samples which were produced with different type of CTA but same concentration of CTA was varied. Higher concentration of n-BMC showed higher scattering. Transmission of samples could not be correlated with different concentration of CTA. Refractive index of samples was not affected by concentration of CTA nevertheless higher molecular weight of CTA showed higher refractive index.

  16. Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection

    Science.gov (United States)

    Cho, Sunghun; Lee, Jun Seop; Jun, Jaemoon; Kim, Sung Gun; Jang, Jyongsik

    2014-11-01

    This work describes the fabrication of poly(4-styrenesulfonic acid)-doped polyaniline/graphene (PSS-doped PANI/graphene) nanocomposites and their use as sensing elements for hydrogen sulfide (H2S) detection. PSS with a weight-average molecular weight (Mw) of 1.96 × 106 was synthesized using low-temperature free-radical polymerization. The PSS was used as both a doping agent and a binding agent for the polymerization of aniline monomers in a biphasic system (water-chloroform) at -50 °C. The high Mw of PSS resulted in relatively large particle sizes and smooth surfaces of the PSS-doped PANI. These physical characteristics, in turn, resulted in low interparticle resistance and high conductivity. In addition, the PSS allowed homogeneous dispersion of reduced graphene sheets through electrostatic repulsion. The prepared PSS-doped PANI/graphene solutions showed good compatibility with flexible poly(ethylene terephthalate) (PET) substrates, making them suitable for flexible sensor electrodes. Changes in the charge-transport properties, such as protonation level, conjugation length, crystalline structure, and charge-transfer resistance, of the electrode materials were the main factors influencing the electrical and sensor performance of the PSS-doped PANI-based electrodes. PSS-doped PANI/graphene composites containing 30 wt% graphene showed the highest conductivity (168.4 S cm-1) and the lowest minimum detection level (MDL) for H2S gas (1 ppm). This result is consistent with the observed improvements in charge transport in the electrode materials via strong π-π stacking interactions between the PANI and the graphene sheets.This work describes the fabrication of poly(4-styrenesulfonic acid)-doped polyaniline/graphene (PSS-doped PANI/graphene) nanocomposites and their use as sensing elements for hydrogen sulfide (H2S) detection. PSS with a weight-average molecular weight (Mw) of 1.96 × 106 was synthesized using low-temperature free-radical polymerization. The PSS was

  17. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Adler Charles

    2009-07-01

    Full Text Available Abstract Correction to Nural H, He P, Beach T, Sue L, Xia W, Shen Y. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients Molecular Neurodegeneration 2009, 4:23.

  18. Analysis of A-Type and B-Type Highly Polymeric Proanthocyanidins and Their Biological Activities as Nutraceuticals

    Directory of Open Access Journals (Sweden)

    Kazushige Yokota

    2013-01-01

    Full Text Available Proanthocyanidins have a series of heteroflavan-3-ols, (+-catechin/(−-epicatechin units, which are linked through a single B-type linkage and a doubly linked A-type linkage. Recently, we have performed the structural characterization of seed shells of the Japanese horse chestnut and fruits of blueberry and cranberry. The molecular sizes of them were higher in the order of blueberry > cranberry > seed shells of the Japanese horse chestnut between the respective fractions. For the analysis of terminal and extension units in those proanthocyanidins, the isolated fractions were subjected to the thiolytic cleavage of the B-type linkages using 1-dodecanethiol, and the resulting degradation products were identified by ultraperformance liquid chromatography coupled with electrospray-ionization mass spectrometry. These analyses provided fast and good resolution of the degradation products and revealed higher proportions of A-type linkages compared with B-type linkages in both isolated fractions in the order of the seed shells > cranberry > blueberry. Moreover, the isolated fractions with higher molecular sizes and those more abundant in the proportions of A-type linkages were found to be more effective in the inhibition of pancreatic lipase activity. The results suggest that A-type highly polymeric proanthocyanidins are promising for the attenuation of lipid digestion as dietary supplements.

  19. Size exclusion chromatography with online ICP-MS enables molecular weight fractionation of dissolved phosphorus species in water samples.

    Science.gov (United States)

    Venkatesan, Arjun K; Gan, Wenhui; Ashani, Harsh; Herckes, Pierre; Westerhoff, Paul

    2018-04-15

    Phosphorus (P) is an important and often limiting element in terrestrial and aquatic ecosystem. A lack of understanding of its distribution and structures in the environment limits the design of effective P mitigation and recovery approaches. Here we developed a robust method employing size exclusion chromatography (SEC) coupled to an ICP-MS to determine the molecular weight (MW) distribution of P in environmental samples. The most abundant fraction of P varied widely in different environmental samples: (i) orthophosphate was the dominant fraction (93-100%) in one lake, two aerosols and DOC isolate samples, (ii) species of 400-600 Da range were abundant (74-100%) in two surface waters, and (iii) species of 150-350 Da range were abundant in wastewater effluents. SEC-DOC of the aqueous samples using a similar SEC column showed overlapping peaks for the 400-600 Da species in two surface waters, and for >20 kDa species in the effluents, suggesting that these fractions are likely associated with organic matter. The MW resolution and performance of SEC-ICP-MS agreed well with the time integrated results obtained using conventional ultrafiltration method. Results show that SEC in combination with ICP-MS and DOC has the potential to be a powerful and easy-to-use method in identifying unknown fractions of P in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Thermal characterization of Ag and Ag + N ion implanted ultra-high molecular weight polyethylene (UHMWPE)

    Energy Technology Data Exchange (ETDEWEB)

    Sokullu Urkac, E. [Department of Materials Science, Izmir High Technology Institute, Gulbahcekoyu Urla, Izmir (Turkey)]. E-mail: emelsu@gmail.com; Oztarhan, A. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Tihminlioglu, F. [Department of Chemical Engineering, Izmir High Technology Institute, Gulbahcekoyu Urla, Izmir (Turkey); Kaya, N. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Ila, D. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Muntele, C. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Budak, S. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Oks, E. [H C Electronics Institute, Tomsk (Russian Federation); Nikolaev, A. [H C Electronics Institute, Tomsk (Russian Federation); Ezdesir, A. [R and D Department, PETKIM Holding A.S., Aliaga, Izmir 35801 (Turkey); Tek, Z. [Department of Physics, Celal Bayar University, Manisa (Turkey)

    2007-08-15

    Most of total hip joints are composed of ultra-high molecular weight polyethylene (UHMWPE ). However, as ultra-high molecular weight polyethylene is too stable in a body, wear debris may accumulate and cause biological response such as bone absorption and loosening of prosthesis. In this study, ultra-high molecular weight polyethylene samples were Ag and Ag + N hybrid ion implanted by using MEVVA ion implantation technique to improve its surface properties. Samples were implanted with a fluence of 10{sup 17} ion/cm{sup 2} and extraction voltage of 30 kV. Implanted and unimplanted samples were investigated by thermo-gravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), optical microscopy (OM) and contact Angle measurement. Thermal characterization results showed that the ion bombardment induced an increase in the % crystallinity, onset and termination degradation temperatures of UHMWPE.

  1. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    Directory of Open Access Journals (Sweden)

    Natalie Heffernan

    2015-01-01

    Full Text Available Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis. Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs. These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  2. The effect of gamma irradiation and shelf aging in air on the oxidation of ultra-high molecular weight polyethylene

    International Nuclear Information System (INIS)

    Al-Ma'adeed, M.A.; Al-Qaradawi, I.Y.; Madi, N.; Al-Thani, N.J.

    2006-01-01

    This study has investigated the effect of shelf aging, for up to one year in air, on the properties of gamma-irradiated ultra-high molecular weight polyethylene (UHMWPE). A variety of techniques were used to characterize the properties of treated samples. Differential scanning calorimetery (DSC) was used to characterize the morphology. The extent of cross-linking in a polymer network was detected by swelling measurements. The durometer hardness test was used to measure the relative hardness of this material, and changes in density were also measured. Results from all these measurements were combined to explain the changes in the microstructure of the aged, irradiated UHMWPE. This study shows that crystallinity is increased with radiation dose and with aging due to chain scission, which leads to a reduction in the molecular weight of the material. This allows the chains to rearrange to form crystalline regions. Positron annihilation lifetime spectroscopy confirms these conclusions. Fractional free volumes have been deduced from lifetime parameters, which correlate with the data obtained by the other techniques

  3. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.

    Directory of Open Access Journals (Sweden)

    Lingsheng Chen

    Full Text Available The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2 from 10 μL serum. Among them, 559 (n = 2 proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.

  4. Radiation-induced controlled polymerization of acrylic acid by RAFT and RAFT-MADIX methods in protic solvents

    Science.gov (United States)

    Sütekin, S. Duygu; Güven, Olgun

    2018-01-01

    The kinetic investigation of one-pot synthesis of poly(acrylic acid) (PAA) prepared via gamma radiation induced controlled polymerization was reported. PAA homopolymers were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization in the presence of trithiocarbonate-based chain transfer agent (CTA) 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) and also by Reversible Addition-Fragmentation/Macromolecular Design by Inter-change of Xanthates (RAFT/MADIX) polymerization in the presence of a xanthate based CTA O-ethyl-S-(1-methoxycarbonyl) ethyl dithiocarbonate (RA1). The polymerizations were performed at room temperature by the virtue of ionizing radiation. Protic solvents were used for the RAFT polymerization of AA considering environmental profits. The linear first-order kinetic plot, close control of molecular weight by the monomer/CTA molar ratio supported that the polymerization proceeds in a living fashion. The linear increase in molecular weight with conversion monitored by Size Exclusion Chromatography (SEC) is another proof of controlling of polymerization. [Monomer]/[RAFT] ratio and conversion was controlled to obtain PAA in the molecular weight range of 6900-35,800 with narrow molecular weight distributions. Reaction kinetics and effect of the amount of RAFT agent were investigated in detail. Between two different types of CTA, trithiocarbonate based DDMAT was found to be more efficient in terms of low dispersity (Đ) and linear first-order kinetic behavior for the radiation induced controlled synthesis of PAA homopolymers.

  5. Modeling of lipase catalyzed ring-opening polymerization of epsilon-caprolactone.

    Science.gov (United States)

    Sivalingam, G; Madras, Giridhar

    2004-01-01

    Enzymatic ring-opening polymerization of epsilon-caprolactone by various lipases was investigated in toluene at various temperatures. The determination of molecular weight and structural identification was carried out with gel permeation chromatography and proton NMR, respectively. Among the various lipases employed, an immobilized lipase from Candida antartica B (Novozym 435) showed the highest catalytic activity. The polymerization of epsilon-caprolactone by Novozym 435 showed an optimal temperature of 65 degrees C and an optimum toluene content of 50/50 v/v of toluene and epsilon-caprolactone. As lipases can degrade polyesters, a maximum in the molecular weight with time was obtained due to the competition of ring opening polymerization and degradation by specific chain end scission. The optimum temperature, toluene content, and the variation of molecular weight with time are consistent with earlier observations. A comprehensive model based on continuous distribution kinetics was developed to model these phenomena. The model accounts for simultaneous polymerization, degradation and enzyme deactivation and provides a technique to determine the rate coefficients for these processes. The dependence of these rate coefficients with temperature and monomer concentration is also discussed.

  6. Bonding and compressibility in molecular and polymeric phases of solid CO2

    International Nuclear Information System (INIS)

    Gracia, L; Marques, M; Beltran, A; Pendas, A Martin; Recio, J M

    2004-01-01

    We present the results of a theoretical study of the response of molecular CO 2 -I and CO 2 -III, and polymeric CO 2 -V polymorphs to hydrostatic pressure. Total energy calculations and geometry optimizations have been performed under the local density functional approximation combining a pseudopotential and planewave scheme as implemented in the VASP code. Using the atoms in molecules theory, the network of inter- and intra-molecular chemical bonds of the different phases are rigorously characterized in terms of the values of the electron density and the Laplacian at the bond critical points. The chemical graph of a hypothetical orthorhombic structure displays bonding features that are associated with a precursor geometry of polymeric carbon four-fold coordinated phases. In addition, the bulk compressibility is decomposed into atomic and molecular contributions with the aim of providing a better understanding of the reasons that explain the emergence of low compressible polymorphs at high pressures

  7. Molecular Mobility of n-Ethylene Glycol Dimethacrylate Glass Formers Upon Free Radical Polymerization

    Science.gov (United States)

    Plaza, Maria Teresa Viciosa

    When a liquid upon cooling avoids crystallization, it enters the supercooled state. If the temperature continues to decrease, the consequent increase of viscosity is reflected in the molecular mobility in such a way that the characteristic relaxation times of cooperative motions become of the same order of the experimentally accessible timescales. Further cooling finally transforms the highly viscous liquid into a glass, in which only local motions are allowed. The monomers n-ethylene glycol dimethacrylate (n-EGDMA) for n =1 to 4, that constitutes the object of this study, easily circumvent crystallization, being good candidates to study the molecular mobility in both supercooled and glassy states. Dielectric Relaxation Spectroscopy (DRS) was the technique chosen to obtain detailed information about their molecular mobility (Chapters 1 and 2). The first part of this work consisted in the dielectric characterization of the relaxation processes present above and below the glass transition temperature (Tg), which shifts to higher values with the molecular weight ( Mw), result confirmed by Differential Scanning Calorimetry (DSC). While the cooperative alpha-process associated to the glass transition, and the secondary beta process, depend on Mw, the other found secondary process, gamma, seems to be independent from this factor (Chapter 3). In the next Chapters different strategies were carried out in order to clarify the mechanisms in the origin of these two secondary relaxations (beta and gamma), and to learn about its respective relation with the main a relaxation. Monitoring the real time isothermal free radical polymerization of TrEGDMA by Temperature Modulated Differential Scanning Calorimetry (TMDSC), carried out at temperatures below the gamma T of the final polymer network, we shown among others two important features: i) the vitrification of the polymer in formation leads to relatively low degrees of conversion, and ii) the unreacted monomer is expelled from

  8. Solvent extraction of cerium (III) with high molecular weight amines

    International Nuclear Information System (INIS)

    Chatterjee, A.; Basu, S.

    1992-01-01

    The use of high molecular weight amines in the extraction of cerium (III) as EDTA complex from neutral aqueous medium is reported. The extraction condition was optimised from the study of effects of several variables like concentration of amine and EDTA pH nature of diluents etc. The method has been applied for the determination of cerium in few mineral samples. (author). 7 refs., 5 tabs

  9. Control of molecular weight distribution in synthesis of poly(2-hydroxyethyl methacrylate) using ultrasonic irradiation.

    Science.gov (United States)

    Kubo, Masaki; Kondo, Takayuki; Matsui, Hideki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2018-01-01

    Poly(2-hydroxyethyl methacrylate) (PHEMA) was synthesized using ultrasonic irradiation without any chemical initiator. The effect of the ultrasonic power intensity on the time course of the conversion to polymer, the number average molecular weight, and the polydispersity were investigated in order to synthesize a polymer with a low molecular weight distribution (i.e., low polydispersity). The conversion to polymer increased with time. A higher ultrasonic power intensity resulted in a faster reaction rate. The number average molecular weight increased during the early stage of the reaction and then gradually decreased with time. A higher ultrasonic intensity resulted in a faster degradation rate of the polymer. The polydispersity decreased with time. This was because the degradation rate of a polymer with a higher molecular weight was faster than that of a polymer with a lower molecular weight. A polydispersity below 1.3 was obtained under ultrasonic irradiation. By changing the ultrasonic power intensity during the reaction, the number average molecular weight can be controlled while maintaining low polydispersity. When the ultrasonic irradiation was halted, the reactions stopped and the number average molecular weight and polydispersity did not change. On the basis of the experimental results, a kinetic model for synthesis of PHEMA under ultrasonic irradiation was constructed considering both polymerization and polymer degradation. The kinetic model was in good agreement with the experimental results for the time courses of the conversion to polymer, the number average molecular weight, and the polydispersity for various ultrasonic power intensities. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Polyethers for biomedical applications. Polymerization of propylene oxide by organozinc/organotin catalysts

    NARCIS (Netherlands)

    Bots, Jan Gert; van der Does, L.; Bantjes, Adriaan; Broersma, Jaap

    1987-01-01

    The polymerization of propylene oxide to obtain a high-molecular-weight polymer with an atactic structure required for the application as artificial blood vessels was investigated using combinations of organozinc and organotin compounds as catalyst. The composition of the most active catalyst,

  11. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.

    Science.gov (United States)

    Radzinski, Scott C; Foster, Jeffrey C; Matson, John B

    2016-04-01

    Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Properties of wine polymeric pigments formed from anthocyanin and tannins differing in size distribution and subunit composition.

    Science.gov (United States)

    Bindon, Keren; Kassara, Stella; Hayasaka, Yoji; Schulkin, Alex; Smith, Paul

    2014-11-26

    To explore the effect of tannin composition on pigment formation, model ferments of purified 3-O-monoglucoside anthocyanins (ACN) were conducted either alone or in the presence of two different tannins. Tannins were isolated from grape seeds (Sd) or skins (Sk) following exhaustive extraction in 70% v/v acetone. The Sd and Sk tannin fractions had a mean degree of polymerization of 5.2 and 25.6, respectively. The Sd fraction was highly galloylated, at 22%, but galloylation was Wine color and polymeric pigment were highest in the treatment containing ACN+Sd and similar in the ACN+Sk and ACN treatments. The same trend between treatments was observed for total and polymeric nonbleachable pigments. Only minor changes in tannin subunit composition were found following ACN incorporation, but the size distribution of polymeric pigments determined by gel permeation chromatography decreased, in particular for the ACN+Sk treatment. Color incorporation in the higher molecular mass range was lower for ACN+Sk wines than for ACN+Sd wines. Compositional differences between the two tannin fractions may therefore limit the incorporation of ACNs in the colored form. The results suggest that in the ACN+Sk and ACN treatments, the formation of lower molecular mass oligomeric pigments was favored. In polymeric pigments derived from ACNs, the presence of ethyl- and vinyl-linked ACNs to the level of trimers was identified using mass spectrometry.

  13. Polymerization of allyl alcohol by radiation to obtain microencapsulated structure

    International Nuclear Information System (INIS)

    Usanmaz, A.; Saricilar, S.

    1989-01-01

    Allyl alcohol was polymerized by radiation under various conditions. The limiting conversions were about 30 % in bulk, 35 % when containing 0.03 mole fraction AlCl 3 and 50 % when water was contained at 27 % (v/v). Irradiation was done with Co-60 gamma rays at room temperature and under vacuum. The presence of oxygen did not cause any change in the reaction rate. Molecular weights were determined by viscosity and cryoscopic methods. K and α values were found to be 3.57 x 10 -4 and 0.62 for solutions in methanol at 25degC. The polymers up to about 10 % conversion were viscous liquids having microcapsular structures: at high conversions, they became hard and glassy. The microencapsulated structures were also retained in solutions in methanol, acetone, and isopropyl alcohol. The samples were insoluble in water, benzene, and toluence. (author)

  14. Synthesis of Well-defined Amphiphilic Block Copolymers by Organotellurium-Mediated Living Radical Polymerization (TERP).

    Science.gov (United States)

    Kumar, Santosh; Changez, Mohammad; Murthy, C N; Yamago, Shigeru; Lee, Jae-Suk

    2011-10-04

    Low-molecular weight amphiphilic diblock copolymers, polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), and (P2VP-b-PS) with different block ratios were synthesized for the first time via organotellurium-mediated living radical polymerization (TERP). For both the homo- and block copolymerizations, good agreement between the theoretical, and experimental molecular weights was found with nearly 100% yield in every case. The molecular weight distribution for all the samples ranged between 1.10 and 1.24, which is well below the theoretical lower limit of 1.50 for a conventional free radical polymerization. Furthermore, a very simple approach to producing highly dense arrays of titania nanoparticles (TiO2 ) is presented using a site-selective reaction of titanium tetraisopropoxide within the P2VP domains of micellar film of P2VP-b-PS in toluene through the sol-gel method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. AN ALTERNATIVE ROUTE TO PRODUCE STANDARDS FOR GEL PERMEATION CHROMATOGRAPHY USING NITROXIDE MEDIATED POLYMERIZATION

    Directory of Open Access Journals (Sweden)

    C. P. R. Malere

    Full Text Available Abstract All over the world standards for Gel Permeation Chromatography (GPC are produced using ionic polymerization. Standards are commercialized in a broad range of molecular weight and their dispersity (Ð must be lower than 1.1. This work proposes the synthesis of polystyrene standards using Nitroxide Mediated Polymerization (NMP, an alternative technique to produce controlled polymers that is much more robust when compared to ionic polymerization. Standards with different ranges of molecular weights were obtained, all of them with very narrow molecular weight distribution (MWD and dispersity (Ð lower than 1.10. In order to do that, several combinations of different initiators were tested. Advanced GPC Triple Detector was used to obtain important properties, such as absolute number and weight average molecular weights, dispersity and intrinsic viscosity. The analytical method used in the characterization of the samples was in-house validated in terms of linearity, accuracy, precision, repeatability and robustness. The validation study demonstrated the quality of the measurements and ensured that the information obtained for a given analyte by the GPC technique is reliable.

  16. Polysaccharides and their depolymerized fragments from Costaria costata: Molecular weight and sulfation-dependent anticoagulant and FGF/FGFR signal activating activities.

    Science.gov (United States)

    Hou, Ningning; Zhang, Meng; Xu, Yingjie; Sun, Zhongmin; Wang, Jing; Zhang, Lijuan; Zhang, Quanbin

    2017-12-01

    Crude polysaccharides from Costaria costata were extracted by hot water and further fractionated by anion exchange chromatography into three polysaccharide fractions. Three low molecular weight fragments were then prepared by degradation of the polysaccharides with hydrogen peroxide and ascorbic acid. The structural features of the polysaccharides and their low molecular weight fragments were elucidated for the first time based on the HGPC, FT-IR, NMR, MS, monosaccharide composition, and other chemical analyses. Their anticoagulant and FGF-1, -2, -7, -8, -9, -10/FGFR1c signaling activation activities in BaF3 cells were also examined. Our studies showed that the polysaccharides were sulfated at different positions of galactose and fucose residues. The APTT-, PT- and TT-based anticoagulant assay results indicated that a high molecular weight and a higher degree of sulfation were essential for their anticoagulant activities. In contrast, not only the polysaccharides but also the depolymerized fragments showed significant FGF/FGFR signal activating activities in a FGF-, molecular weight-, and sulfation-dependent manner. The results presented in current study demonstrated the potential use of the polysaccharides and their fragments as anticoagulants and FGF signal regulators. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Association of radionuclides with different molecular size fractions in soil solution: implications for plant uptake

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Shaw, S.; Salbu, B.

    1993-01-01

    The feasibility of using hollow fibre ultrafiltration to determine the molecular size distribution of radionuclides in soil solution was investigated. The physical and chemical composition of soil plays a vital role in determining radionuclide uptake by plant roots. Soil solution samples were extracted from loam, peat and sand soils that had been artificially contaminated with 137 Cs, 90 Sr, 239 Pu and 241 Am six years previously as part of a five-year lysimeter study on radionuclide uptake to crops. Ultrafiltration of soil solution was performed using hollow fibre cartridges with a nominal molecular weight cut off of 3 and 10 kD. The association of 137 Cs, 90 Sr, 239 Pu and 241 Am with different molecular size fractions of the soil solution is discussed in terms of radionuclide bioavailability to cabbage grown in the same three soils. 137 Cs and 90 Sr were present in low molecular weight forms and as such were mobile in soil and potentially available for uptake by the cabbage. In contrast, a large proportion (61-87%) of the 239 Pu and 241 Am were associated with colloidal and high molecular weight material and therefore less available for uptake by plant roots. The contribution from low molecular weight species of 239 Pu and 241 Am to the total activity in soil solution decreased in the order loam ≥ peat ≥ sand. Association of radionuclides with low molecular weight species of less than 3 kD did not, however, automatically imply availability to plants. (author)

  18. High-speed organocatalytic polymerization of a renewable methylene butyrolactone by a phosphazene superbase

    KAUST Repository

    Schmitt, Meghan L.; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene You Xian

    2014-01-01

    The organic phosphazene superbase, 1-tert-butyl-4,4,4-tris(dimethylamino)- 2,2-bis[tris(dimethylamino)phosphoranylid-enamino]-2λ5, 4λ5-catenadi(phosphazene) (t-Bu-P4), is found to directly initiate high-speed polymerization of the biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL), in contrast to other polymerization systems using t-Bu-P4 which typically require addition of an organic acid or a nucleophile as a co-initiating component. This MMBL polymerization by t-Bu-P4 alone is extremely rapid; even with a low t-Bu-P4 loading of 0.1 mol% or 0.02 mol%, quantitative monomer conversion is achieved in 20 s or 1 min, respectively, affording medium to high molecular weight PMMBL bioplastics in a catalytic fashion. The combined experimental and theoretical/computational studies have yielded mechanisms of chain initiation through abstraction of a proton from a monomer by t-Bu-P 4, essentially barrier-less chain propagation through rapid conjugate addition of the enolate anion stabilized by the nano-size cation [t-Bu-P 4H]+ to the monomer, and chain termination through chain transfer to the monomer which generates a saturated termination chain end and the [t-Bu-P4H]+-stabilized anionic active species that starts a new chain. This journal is © the Partner Organisations 2014.

  19. Chemical modification of high molecular weight polyethylene through gamma radiation for biomaterials applications

    International Nuclear Information System (INIS)

    Raposo, Matheus P.; Rocha, Marisa C.G.

    2015-01-01

    Ultra high molecular weight polyethylene has been used in the medical field due to its high mechanical properties compared to the other polymers. Its main application is in the development of orthopedic implants, which requires high resistance to abrasion. One of the most used methods is the introduction of crosslinks in the polymer through gamma irradiation. In order to prevent oxidation reactions, studies have been developed using tacoferol (vitamin E) as an antioxidant for the material. The ascorbic acid (vitamin C), however, has been appointed as a viable alternative for vitamin E. In this work, a high molecular weight polyethylene grade (HMWPE) and polyethylene samples formulated with vitamin C were submitted to gamma radiation. Thermodynamic-mechanical methods and gel content determinations were used to characterize the samples obtained. The sample containing 1% of vitamin C and irradiated with 50 KGy of gamma radiation presented the highest content of crosslinks. (author)

  20. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Bert Lagrain

    Full Text Available The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS, the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC, and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%, the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and

  1. Pulsed NMR studies of crosslinking and entanglements in high molecular weight linear polydimethylsiloxanes

    International Nuclear Information System (INIS)

    Folland, R.; Charlesby, A.

    1977-01-01

    Pulsed NMR studies of proton spin relaxation are used to investigate both radiation-induced cross linking and entanglements in three high molecular weight linear polydimethylsiloxanes (Msub(w) = 26,000, 63,000 and 110,000). Particular emphasis is placed on the spin-spin relaxation since this is determined by the slower relative translational motions of the polymer chains and hence profoundly affected by the presence of intermolecular couplings such as crosslinks or entanglements. The spin-lattice relaxation times, T 1 , are determined by the fast anisotropic chain rotations and are rather insensitive to such intermolecular couplings. The spin-spin relaxation in these materials is represented by a double exponential decay involving two time constants, Tsub(2S) and Tsub(2L). The shorter component, Tsub(2S), is attributed to network material, which may be either of a dynamic form arising from temporary entanglements or of a permanent nature due to crosslinks. The concentration of entanglements depends on the initial molecular weight of the sample whereas the concentration of crosslinks is a function of the radiation dose. The longer component, Tsub(2L), is attributed to the non-network molecules. On the time scale of the NMR measurements the entanglements are shown to act in the same way as crosslinks. The variation of the relative proportions of network and non-network material with dose is shown to be accounted for by using standard gelation theory when allowance is made for the initial effective crosslink density due to entanglements. The analysis provides a value for the average molecular weight per entanglement point of 27,000 +- 1000 which is consistent with the critical molecular weight for entanglements of 29,000. The dependences of Tsub(2S) and Tsub(2L) on dose and molecular weight are also discussed in terms of the molecular motion. (author)

  2. Low Molecular Weight Z-Tetraol Boundary Lubricant Films in Hard Disk Drives

    Directory of Open Access Journals (Sweden)

    R. J. Waltman

    2012-01-01

    Full Text Available Lower molecular weight Z-Tetraol films exhibit increased mechanical spacing in the slider-disk interface due to a lower z-profile. An increased resistance to lubricant disturbance on the disk surface (e.g., lube moguls with decreasing film thickness is attributed to an increasing contribution from the polar component of the disjoining pressure. Evaporative loss at temperatures typically encountered in a hard-disk drive also increases with decreasing molecular weight but is strongly dependent on the initial bonded fraction.

  3. High-Performance n-Channel Organic Transistors Using High-Molecular-Weight Electron-Deficient Copolymers and Amine-Tailed Self-Assembled Monolayers.

    Science.gov (United States)

    Wang, Yang; Hasegawa, Tsukasa; Matsumoto, Hidetoshi; Mori, Takehiko; Michinobu, Tsuyoshi

    2018-03-01

    While high-performance p-type semiconducting polymers are widely reported, their n-type counterparts are still rare in terms of quantity and quality. Here, an improved Stille polymerization protocol using chlorobenzene as the solvent and palladium(0)/copper(I) as the catalyst is developed to synthesize high-quality n-type polymers with number-average molecular weight up to 10 5 g mol -1 . Furthermore, by sp 2 -nitrogen atoms (sp 2 -N) substitution, three new n-type polymers, namely, pBTTz, pPPT, and pSNT, are synthesized, and the effect of different sp 2 -N substitution positions on the device performances is studied for the first time. It is found that the incorporation of sp 2 -N into the acceptor units rather than the donor units results in superior crystalline microstructures and higher electron mobilities. Furthermore, an amine-tailed self-assembled monolayer (SAM) is smoothly formed on a Si/SiO 2 substrate by a simple spin-coating technique, which can facilitate the accumulation of electrons and lead to more perfect unipolar n-type transistor performances. Therefore, a remarkably high unipolar electron mobility up to 5.35 cm 2 V -1 s -1 with a low threshold voltage (≈1 V) and high on/off current ratio of ≈10 7 is demonstrated for the pSNT-based devices, which are among the highest values for unipolar n-type semiconducting polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ring-Expansion/Contraction Radical Crossover Reactions of Cyclic Alkoxyamines: A Mechanism for Ring Expansion-Controlled Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Atsushi Narumi

    2018-06-01

    Full Text Available Macrocyclic polymers present an important class of macromolecules, displaying the reduced radius of gyration or impossibility to entangle. A rare approach for their synthesis is the ring expansion-controlled radical “vinyl” polymerization, starting from a cyclic alkoxyamine. We here describe ring-expansion radical crossover reactions of cyclic alkoxyamines which run in parallel to chain-propagation reactions in the polymerization system. The radical crossover reactions extensively occurred at 105–125 °C, eventually producing high molecular weight polymers with multiple inherent dynamic covalent bonds (NOC bonds. A subsequent ring-contraction radical crossover reaction and the second ring-expansion radical crossover reaction are also described. The major products for the respective three stages were shown to possess cyclic morphologies by the molecular weight profiles and the residual ratios for the NOC bonds (φ in %. In particular, the high φ values ranging from ca. 80% to 98% were achieved for this cyclic alkoxyamine system. This result verifies the high availability of this system as a tool demonstrating the ring-expansion “vinyl” polymerization that allows them to produce macrocyclic polymers via a one-step vinyl polymerization.

  5. About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations

    Directory of Open Access Journals (Sweden)

    Hatice Mutlu

    2010-12-01

    Full Text Available We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS.

  6. Controlled radical polymerization of an acrylamide containing L-alanine moiety via ATRP.

    Science.gov (United States)

    Rafiee, Zahra

    2016-02-01

    Homopolymerization of an optically active acrylamide having an amino acid moiety in the side chain, N-acryloyl-L-alanine (AAla) was carried out via atom transfer radical polymerization (ATRP) at room temperature using 2-hydroxyethyl-2'-methyl-2'-bromopropionate (HMB) or sodium-4-(bromomethyl)benzoate (SBB) as initiator in pure water, methanol/water mixture and pure methanol solvents. The polymerization reaction resulted in the optically active biocompatible amino acid-based homopolymer in good yield with narrow molecular weight distribution. The number average molecular weight increased with conversion and polydispersity was low. The structure and molecular weight of synthesized polymer were characterized by (1)H NMR, FT-IR spectroscopic techniques and size-exclusion chromatography.

  7. Neural Network Models for Free Radical Polymerization of Methyl Methacrylate

    International Nuclear Information System (INIS)

    Curteanu, S.; Leon, F.; Galea, D.

    2003-01-01

    In this paper, a neural network modeling of the batch bulk methyl methacrylate polymerization is performed. To obtain conversion, number and weight average molecular weights, three neural networks were built. Each was a multilayer perception with one or two hidden layers. The choice of network topology, i.e. the number of hidden layers and the number of neurons in these layers, was based on achieving a compromise between precision and complexity. Thus, it was intended to have an error as small as possible at the end of back-propagation training phases, while using a network with reduced complexity. The performances of the networks were evaluated by comparing network predictions with training data, validation data (which were not uses for training), and with the results of a mechanistic model. The accurate predictions of neural networks for monomer conversion, number average molecular weight and weight average molecular weight proves that this modeling methodology gives a good representation and generalization of the batch bulk methyl methacrylate polymerization. (author)

  8. Fractional-Fourier-domain weighted Wigner distribution

    NARCIS (Netherlands)

    Stankovic, L.; Alieva, T.; Bastiaans, M.J.

    2001-01-01

    A fractional-Fourier-domain realization of the weighted Wigner distribution (or S-method), producing auto-terms close to the ones in the Wigner distribution itself, but with reduced cross-terms, is presented. The computational cost of this fractional-domain realization is the same as the

  9. Removal of high-molecular weight polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Ulrich Vasconcelos

    2011-01-01

    Full Text Available Alternatives for the removal of high-molecular weight polycyclic aromatic hydrocarbons (HWM-PAH from soil were tested by adding fertilizer or glycerol, as well as the combination of both. Experiments were carried out for 60 days in reactors containing a HWM-PAH-contaminated soil (8030 μg kg-1, accompanied by pH monitoring, humidity control and quantification of total heterotrophic bacteria and total fungus. Fertilizer addition removed 41.6% of HWM-PAH. Fertilizer and glycerol in combination removed 46.2%. When glycerol was added individually, degradation reached 50.4%. Glycerol also promoted the increase of degradation rate during the first 30 days suggesting the HMW-PAH removal occurred through cometabolic pathways.

  10. Size and shape of soil humic acids estimated by viscosity and molecular weight.

    Science.gov (United States)

    Kawahigashi, Masayuki; Sumida, Hiroaki; Yamamoto, Kazuhiko

    2005-04-15

    Ultrafiltration fractions of three soil humic acids were characterized by viscometry and high performance size-exclusion chromatography (HPSEC) in order to estimate shapes and hydrodynamic sizes. Intrinsic viscosities under given solute/solvent/temperature conditions were obtained by extrapolating the concentration dependence of reduced viscosities to zero concentration. Molecular mass (weight average molecular weight (M (w)) and number average molecular weight (M (n))) and hydrodynamic radius (R(H)) were determined by HPSEC using pullulan as calibrant. Values of M (w) and M (n) ranged from 15 to 118 x 10(3) and from 9 to 50 x 10(3) (g mol(-1)), respectively. Polydispersity, as indicated by M (w)/M (n), increased with increasing filter size from 1.5 to 2.4. The hydrodynamic radii (R(H)) ranged between 2.2 and 6.4 nm. For each humic acid, M (w) and [eta] were related. Mark-Houwink coefficients calculated on the basis of the M (w)-[eta] relationships suggested restricted flexible chains for two of the humic acids and a branched structure for the third humic acid. Those structures probably behave as hydrated sphere colloids in a good solvent. Hydrodynamic radii of fractions calculated from [eta] using Einstein's equation, which is applicable to hydrated sphere colloids, ranged from 2.2 to 7.1 nm. These dimensions are fit to the size of nanospaces on and between clay minerals and micropores in soil particle aggregates. On the other hand, the good agreement of R(H) values obtained by applying Einstein's equation with those directly determined by HPSEC suggests that pullulan is a suitable calibrant for estimation of molecular mass and size of humic acids by HPSEC.

  11. The influence of temperature on the polymerization of ethyl cyanoacrylate from the vapor phase

    Energy Technology Data Exchange (ETDEWEB)

    Dadmun, Mark D [ORNL; Algaier, Dana [University of Tennessee, Knoxville (UTK); Baskaran, Durairaj [University of Tennessee, Knoxville (UTK)

    2011-01-01

    The polymerization of ethyl cyanoacrylate fumes from surface bound initiators is an important step in many novel and mature technologies. Understanding the effect of temperature on the rate of poly(ethyl cyanoacrylate) (PECA) growth and its molecular weight during its polymerization from the vapor phase from surface bound initiators provides insight into the important mechanistic aspects that impact the polymerizations success. In these studies, it is shown that the amount of PECA formed during the polymerization of ECA from a latent fingerprint increases with decreasing temperature, while the polymer molecular weight varies little. This is interpreted to be the result of the loosening of the ion pair that initiates the polymer chain growth and resides on the end of the growing polymer chain with decreasing temperature. Comparison of temperature effects and counter-ion studies show that in both cases loosening the ion pair results in the formation of more polymer with similar molecular weight, verifying this interpretation. These results further suggest that lowering the temperature may be an effective method to optimize anionic vapor phase polymerizations, including the improvement of the quality of aged latent prints and preliminary results are presented that substantiate this prediction.

  12. Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C. P.; Lam, Y. C., E-mail: myclam@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 (Singapore); BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Han, J. [BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-15

    Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO) and another immiscible fluid (silicone oil). A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxation times. The flows were shown to be chaotic through the computation of their correlation dimension (D{sub 2}) and the largest Lyapunov exponent (λ{sub 1}), with D{sub 2} being fractional and λ{sub 1} being positive. Contour maps of D{sub 2} and λ{sub 1} of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D{sub 2} and λ{sub 1} maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.

  13. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux-vomica extract powder.

    Science.gov (United States)

    Nakamura, Yukari; Matsunaga, Hisami; Haginaka, Jun

    2016-04-01

    Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux-vomica extract powder. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Reversible, high molecular weight palladium and platinum coordination polymers based on phosphorus ligands

    NARCIS (Netherlands)

    Paulusse, J.M.J.; Huijbers, J.P.J.; Sijbesma, R.P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  15. Reversible, High Molecular Weight Palladium and Platinum Coordination Polymers Based on Phosphorus Ligands

    NARCIS (Netherlands)

    Paulusse, Jos Marie Johannes; Huijbers, Jeroen P.J.; Sijbesma, Rint P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  16. Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)-clay nanocomposite

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed; Webber, Andrew

    2004-01-01

    Polymer nanocomposite gel electrolytes consisting of high molecular weight poly(methyl methacrylate) PMMA-clay nanocomposite, ethylene carbonate (EC)/propylene carbonate (PC) as plasticizer, and LiClO 4 electrolyte are reported. Montmorillonite clay was ion exchanged with a zwitterionic surfactant (octadecyl dimethyl betaine) and dispersed in methyl methacrylate, which was then polymerized to synthesize PMMA-clay nanocomposites. The nanocomposite was dissolved in a mixture of EC/PC with LiClO 4 , heated and pressed to obtain polymer gel electrolyte. X-ray diffraction (XRD) of the gels indicated intercalated clay structure with d-spacings of 2.85 and 1.40 nm. In the gel containing plasticizer, the clay galleries shrink suggesting intercalation rather than partial exfoliation observed in the PMMA-clay nanocomposite. Ionic conductivity varied slightly and exhibited a maximum value of 8 x 10 -4 S/cm at clay content of 1.5 wt.%. The activation energy was determined by modeling the conductivity with a Vogel-Tamman-Fulcher expression. The clay layers are primarily trapped inside the polymer matrix. Consequently, the polymer does not interact significantly with LiClO 4 electrolyte as shown by FTIR. The presence of the clay increased the glass transition temperature (Tg) of the gel as determined by differential scanning calorimetry. The PMMA nanocomposite gel electrolyte shows a stable lithium interfacial resistance over time, which is a key factor for use in electrochemical applications

  17. High Performance Shape Memory Polyurethane Synthesized with High Molecular Weight Polyol as the Soft Segment

    Directory of Open Access Journals (Sweden)

    Manzoor Ahmad

    2012-05-01

    Full Text Available Shape memory polyurethanes (SMPUs are typically synthesized using polyols of low molecular weight (MW~2,000 g/mol as it is believed that the high density of cross-links in these low molecular weight polyols are essential for high mechanical strength and good shape memory effect. In this study, polyethylene glycol (PEG-6000 with MW ~6000 g/mol as the soft segment and diisocyanate as the hard segment were used to synthesize SMPUs, and the results were compared with the SMPUs with polycaprolactone PCL-2000. The study revealed that although the PEG-6000-based SMPUs have lower maximum elongations at break (425% and recovery stresses than those of PCL-based SMPUs, they have much better recovery ratios (up to 98% and shape fixity (up to 95%, hence better shape memory effect. Furthermore, PEG-based SMPUs showed a much shorter actuation time of < 10 s for up to 90% shape recovery compared to typical actuation times of tens of seconds to a few minutes for common SMPUs, demonstrated their great potential for applications in microsystems and other engineering components.

  18. Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeongho; Lee, Minho; Jeon, Hyeon Yeol; Min, Byong Hun; Kim, Jeong Ho [Univ. of Suwon, Hwaseong (Korea, Republic of); Lee, Young Chul [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2016-02-15

    Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites.

  19. Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization

    International Nuclear Information System (INIS)

    Kim, Yeongho; Lee, Minho; Jeon, Hyeon Yeol; Min, Byong Hun; Kim, Jeong Ho; Lee, Young Chul

    2016-01-01

    Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites

  20. A 7-d exercise program increases high-molecular weight adiponectin in obese adults

    DEFF Research Database (Denmark)

    Kelly, Karen R; Blaszczak, Alecia; Haus, Jacob M

    2012-01-01

    High-molecular weight (HMW) adiponectin is the biologically active form of adiponectin and is related to enhanced insulin sensitivity and metabolic function. Previously, we found that 7 d of exercise improves insulin sensitivity in obese subjects; however, whether short-term exercise training...

  1. Synthesis, Characterization and Application of A Novel Carbon Bridged Half-metallocene Chromium Catalyst for Methyl Methacrylate Polymerization

    Institute of Scientific and Technical Information of China (English)

    CHENG Zhengzai; GONG Kai; WANG Yang; ZHOU Xue; ZHANG Weixing; LI Yin; SUN Junquan; LI Wenbing

    2014-01-01

    A new carbon bridged cyclopentadienyl chromium complex of the type [(C5H4)C(CH3)2 CH2(C5H4N)]CrCl2 was prepared by treatment of CrCl3•(THF)3 in THF solution with the lithium salt of ligand containing cyclopentadienyl and pyridyl groups. The chromium complex was characterized by 1H NMR and elemental analysis(EA), and the crystal structure was determined by X-ray diffraction analysis. Activated by Al(i-Bu)3, the chromium complex displayed a very high activity for methyl methacrylate (MMA) polymerization. After 24 hours,more than 95.5%MMA was converted to polymethyl methacrylate (PMMA) with a viscosity average molecular weight (Wη) of 416000 g•mol-1 at 60℃for MMA/Al(i-Bu)3/chromium catalyst molar ratio of up to 2000:20:1. Effects of temperature, molar ratios of MMA/catalyst and catalyst/cocatalyst on the polymerization have been studied. The high conversion of MMA and high molecular weight of PMMA with narrow molecular weight distribution is caused by the unique stable active site formed by the new chromium complex and aluminum cocatalyst.

  2. A Green Platform for Preparation of the Well-Defined Polyacrylonitrile: 60Co γ-ray Irradiation-Initiated RAFT Polymerization at Room Temperature

    Directory of Open Access Journals (Sweden)

    Shuangshuang Zhang

    2017-01-01

    Full Text Available 60Co γ-ray irradiation-initiated reversible addition–fragmentation chain transfer (RAFT polymerization at room temperature with 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN as the chain transfer agent was first applied to acrylonitrile (AN polymerization, providing a “green” platform for preparing polyacrylonitrile (PAN-based carbon fibers using an environment-friendly energy source. Various effects of dose rate, molar ratio of the monomer to the chain transfer agent, monomer concentration and reaction time on the AN polymerization behaviors were performed to improve the controllability of molecular the weight and molecular weight distribution of the obtained PAN. The feature of the controlled polymerization was proven by the first-order kinetics, linear increase of the molecular weight with the monomer conversion and a successful chain-extension experiment. The molecular weight and molecular weight distribution of PAN were characterized by size exclusion chromatography (SEC. 1H NMR and Matrix assisted laser desorption ionization/time of flight mass spectra (MALDI-TOF-MS confirmed the chain-end functionality of PAN, which also was supported by the successful chain-extension experiments of original PANs with acrylonitrile and styrene as the second monomers respectively.

  3. Radiation-induced heterogeneous polymerization of acrylamide in acetone and acetone--water mixtures

    International Nuclear Information System (INIS)

    Wada, T.; Sekiya, H.; Machi, S.

    1975-01-01

    The effects of temperature, dose rate, and monomer concentration on the heterogeneous polymerization of acrylamide in acetone--water mixtures have been studied. Heterogeneous polymerization takes place in mixtures containing less than 60 vol-percent water. The polymerization is steady in acetone and nonsteady in mixtures containing 10 to 50 vol-percent water. The average rate of polymerization is highest in mixtures with about 20 vol-percent water. Polymer molecular weight increases with the increasing water content in the range 0 to 10 vol-percent and does not change in the range of 30 to 70 vol-percent water. For the polymerization in acetone and an acetone-water 60/40 mixture, the activation energies are 2.3 and -1.8 kcal/mole, the dose rate exponents of rate are 0.78 and 0.52, and the monomer concentration exponents of rate are 0.5 and 1.6, respectively. The polymer molecular weight increases with decreasing dose rate, decreasing temperature, and increasing monomer concentration. These results are discussed in connection with the mechanism of heterogeneous polymerization and the solvent effect

  4. Gas phase polymerization of propylene. Reaction kinetics and molecular weight distribution

    NARCIS (Netherlands)

    Meier, G.B.; Weickert, G.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    Gas-phase polymerizations have been executed at different temperatures, pressures, and hydrogen concentrations using Me2Si[Ind]2ZrCl2 / methylaluminoxane / SiO2(Pennsylvania Quarts) as a catalyst. The reaction rate curves have been described by a kinetic model, which takes into account the initially

  5. Synthesis and Ring-Opening Metathesis Polymerization of Second-Generation Dendronized Poly(ether Monomers Initiated by Ruthenium Carbenes

    Directory of Open Access Journals (Sweden)

    Guzmán Pablo E.

    2016-03-01

    Full Text Available The Ring-Opening Metathesis Polymerization (ROMP of second-generation dendronized monomers is described. Using the highly active and fast-initiating third-generation ruthenium complex [(H2IMes(pyr2Cl2RuCHPh], moderate to high molecular weight polymers (430-2230 kDa are efficiently synthesized with low dispersities (Ð = 1.01-1.17. This study highlights the power of the metathesis approach toward polymer synthesis in a context where monomer structure can significantly impede polymerization.

  6. Studies on Rate Enhancement of Polymerization in NMRP

    Institute of Scientific and Technical Information of China (English)

    HUANG Jian-ying; XU Miao-qing; YAN Ming-fa; CHEN Yi-hong; CHU Jia-yan; ZHUANG Jia-ming; DAI Li-zong; ZOU You-si

    2005-01-01

    In NMRP, the polymerization of MMA, the polymerization of St and the copolymerization of MMA with St were distinctly accelerated by the addition of a small amount of MN. The polymerization proceeds in a living fashion as indicated by the increase in molecular weight with the increase of time and conversion and a relatively low polydispersity. It has been found that the addition of MN results in a nearly one hundred times higher rate of the polymerization of MMA, a nearly twenty times higher rate of the polymerization of St and a nearly fifteen times higher rate of the copolymerization of St and MMA.

  7. Synthesis and characterization of an exact comb polyisoprene with three branches having the middle branch twice the molecular weight of the other two identical external branches

    KAUST Repository

    Ratkanthwar, Kedar

    2013-01-01

    An exact comb polyisoprene (PI) with three branches, with the middle branch having twice the molecular weight of the two other identical external branches, was synthesized by using anionic polymerization high vacuum techniques and appropriate chlorosilane chemistry. The synthetic approach involves (a) the selective replacement of the two chlorines of 4-(dichloromethylsilyl) diphenylethylene (DCMSDPE, key molecule) with identical PI chains by titration with PILi, (b) the addition of sec-BuLi to the double bond of DPE followed by the polymerization of isoprene from the newly created anionic site to form a 3-arm living star PI, (c) the selective replacement of the two chlorines of trichloromethylsilane with 3-arm star PI to form an H-shape intermediate, and (d) the replacement of the remaining chlorine of trichloromethylsilane by linear PI chains with double the molecular weight. All intermediate and final products were characterized via size exclusion chromatography, temperature gradient interaction chromatography and 1H-NMR spectroscopy. As expected, due to the inability to control the exact stoichiometry of the linking reactants, the main product (exact comb PI) is contaminated by a few by-products, despite the fact that anionic polymerization is the most efficient way to produce well-defined polymers. © 2013 The Royal Society of Chemistry.

  8. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    International Nuclear Information System (INIS)

    Ramesh, S.; Chai, M.F.

    2007-01-01

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt in the polymer electrolyte complexes

  9. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males.

    Science.gov (United States)

    Fisher, F F M; Trujillo, M E; Hanif, W; Barnett, A H; McTernan, P G; Scherer, P E; Kumar, S

    2005-06-01

    It is well established that total systemic adiponectin is reduced in type 2 diabetic subjects. To date most studies have been concerned with the singular full-length protein or proteolytically cleaved globular domain. It is, however, apparent that the native protein circulates in serum as a lower molecular weight hexamer and as larger multimeric structures of high molecular weight (HMW). In this study we address the clinical significance of each form of the protein with respect to glucose tolerance. Serum was obtained from 34 Indo-Asian male subjects (BMI 26.5+/-3.1; age 52.15+/-10.14 years) who had undertaken a 2-h oral glucose tolerance test. An aliquot of serum was fractionated using velocity sedimentation followed by reducing SDS-PAGE. Western blots were probed for adiponectin, and HMW adiponectin as a percentage of total adiponectin (percentage of higher molecular weight adiponectin [S(A)] index) was calculated from densitometry readings. Total adiponectin was measured using ELISA; leptin, insulin and IL-6 were determined using ELISA. Analysis of the cohort demonstrated that total adiponectin (r = 0.625, p = 0.0001), fasting insulin (r = -0.354, p = 0.040) and age (r = 0.567, p = 0.0001) correlated with S(A). S(A) showed a tighter, inverse correlation with 2-h glucose levels (r = -0.58, p = 0.0003) than total adiponectin (r = -0.38, p = 0.0001). This study demonstrates the importance of the S(A) index as a better determinant of glucose intolerance than measurements of total adiponectin. Our findings suggest that HMW adiponectin is the active form of the protein.

  10. Highly Active and Isospecific Styrene Polymerization Catalyzed by Zirconium Complexes Bearing Aryl-substituted [OSSO]-Type Bis(phenolate Ligands

    Directory of Open Access Journals (Sweden)

    Norio Nakata

    2016-01-01

    Full Text Available [OSSO]-type dibenzyl zirconium(IV complexes 9 and 10 possessing aryl substituents ortho to the phenoxide moieties (ortho substituents, phenyl and 2,6-dimethylphenyl (Dmp were synthesized and characterized. Upon activation with dMAO (dried methylaluminoxane, complex 9 was found to promote highly isospecific styrene polymerizations ([mm] = 97.5%–99% with high molecular weights Mw up to 181,000 g·mmol−1. When the Dmp-substituted pre-catalyst 10/dMAO system was used, the highest activity, over 7700 g·mmol(10−1·h−1, was recorded involving the formation of precisely isospecific polystyrenes of [mm] more than 99%.

  11. Allylthioketone Mediated Free Radical Polymerization of Methacrylates

    Directory of Open Access Journals (Sweden)

    Feng Zhong

    2017-11-01

    Full Text Available By combination of high trapping free radical efficiency of the thioketone and resonance of the allylic radical, a new type of mediating agent, 1,3,3-triphenylprop-2-ene-1-thione (TPPT has been successfully synthesized, and then is used to study controlled free radical polymerization of methacrylates. Very stable TPPT radicals at the end of poly(methyl methacrylate (PMMA are detected in the polymerization of MMA using TPPT and AIBN as the control agent and initiator. The MALDI-TOF MS spectra are used to identify terminal groups of the resultant poly(glycidyl methacrylate (PGMA, and major component of the obtained polymer has the structure, (CH32(CNC-PGMA-C7H9O3. Chain extension reaction tests ascertain formation of the dead polymers during the polymer storage and purification process of the polymers. Owing to very slow fragmentation reaction of the TPPT-terminated polymethacrylate radical and addition reaction of this radical with a primary radical, the growing chain radicals are difficult to be regenerated, leading to an unobvious change of the molecular weight with monomer conversion. The molecular weights of polymers can be controlled by the ratios of monomer/initiator and TPPT/initiator. However, the first order kinetics of the polymerization and the polymers with narrow polydispersity are obtained, and these phenomena are discussed. This study provides useful information on how to design a better controlling agent.

  12. Molecular components and toxicity of the venom of the solitary wasp, Anoplius samariensis

    International Nuclear Information System (INIS)

    Hisada, Miki; Satake, Honoo; Masuda, Katsuyoshi; Aoyama, Masato; Murata, Kazuya; Shinada, Testuro; Iwashita, Takashi; Ohfune, Yasufumi; Nakajima, Terumi

    2005-01-01

    The solitary spider wasp, Anoplius samariensis, is known to exhibit a unique long-term, non-lethal paralysis in spiders that it uses as a food source for its larvae. However, neither detailed venom components nor paralytic compounds have ever been characterized. In this study, we examined the components in the low molecular weight fraction of the venom and the paralytic activity of the high molecular weight fraction. The major low molecular weight components of the venom were identified as γ-aminobutyric acid and glutamic acid by micro-liquid chromatography/electrospray ionization mass spectrometry and nuclear magnetic resonance spectrometry analysis. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass analysis revealed that the A. samariensis venom contained the various proteins with weights of 4-100 kDa. A biological assay using Joro spiders (Nephila clavata) clearly showed that the high molecular weight fraction of the venom prepared by ultrafiltration exerted as potent non-lethal long-term paralysis as the whole venom, whereas the low molecular weight fraction was devoid of any paralytic activity. These results indicated that several venomous proteins in the high molecular weight fraction are responsible for the paralytic activity. Furthermore, we determined the primary structure of one component designated As-fr-19, which was a novel multiple-cysteine peptide with high sequence similarity to several sea anemone and snake toxins including dendrotoxins, rather than any insect toxic peptides identified so far. Taken together, our data showed the unprecedented molecular and toxicological profiles of wasp venoms

  13. Molecularly Imprinted Microrods via Mesophase Polymerization.

    Science.gov (United States)

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  14. Achievement report for fiscal 1998 on research and development of technologies for creating high-performance materials under the industrial and scientific technology research and development project. Control of condensation-based precision structures (High-performance materials for power plant facilities); 1998 nendo dokusoteki kokino zairyo sosei gijutsu no kenkyu kaihatsu (hatsuden shisetsuyo koseinoka zairyo gijutsu kaihatsu) shukugokei seimitsu kozo seigyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The goal is to prepare a base for the development of polymerizing catalysts and precision polymerization processes which will enable the arbitrary control of molecular weight, regularity, branching, and primary structures such as terminal groups, which effort will lead to a remarkable advancement in condensation polymerization and open-ring polymeric material performance. Endeavors are on to fulfill two separate purposes, that is, precision condensation polymerization and controlled open-ring polymerization. In the study of precision condensation polymerization, at issue are basic studies and the development of precision control technologies for arrangement, molecular weight, branching, and matrix condensation polymerization. Also at issue are the development of technologies of position selective oxidization polymerization and precision conjugate high-molecular condensation synthesis. Concerning open-ring control polymerization, precision control technologies will be developed involving branching, molecular weight, crosslinking, arrangement, and the structure of cyclocarbonate open-ring polymerization. Open-ring control polymerization technologies are also under study by use of organic metal complexes. A survey of technological trends is also explained. (NEDO)

  15. Laccase-Catalyzed Synthesis of Low-Molecular-Weight Lignin-Like Oligomers and their Application as UV-Blocking Materials.

    Science.gov (United States)

    Lim, Jieyan; Sana, Barindra; Krishnan, Ranganathan; Seayad, Jayasree; Ghadessy, Farid J; Jana, Satyasankar; Ramalingam, Balamurugan

    2018-02-02

    The laccase-catalyzed oxidative polymerization of monomeric and dimeric lignin model compounds was carried out with oxygen as the oxidant in aqueous medium. The oligomers were characterized by using gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis. Oxidative polymerization led to the formation of oligomeric species with a number-average molecular weight (M n ) that ranged from 700 to 2300 Da with a low polydispersity index. Spectroscopic analysis provided insight into the possible modes of linkages present in the oligomers, and the oligomerization is likely to proceed through the formation of C-C linkages between phenolic aromatic rings. The oligomers were found to show good UV light absorption characteristics with high molar extinction coefficient (5000-38 000 m -1  cm -1 ) in the UV spectral region. The oligomers were blended independently with polyvinyl chloride (PVC) by using solution blending to evaluate the compatibility and UV protection ability of the oligomers. The UV/Vis transmittance spectra of the oligomer-embedded PVC films indicated that these lignin-like oligomers possessed a notable ability to block UV light. In particular, oligomers obtained from vanillyl alcohol and the dimeric lignin model were found to show good photostability in accelerated UV weathering experiments. The UV-blocking characteristics and photostability were finally compared with the commercial low-molecular-weight UV stabilizer 2,4-dihydroxybenzophenone. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers with Various Molecular Weights as Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Dongfang Pei

    2018-02-01

    Full Text Available At present, research on the relationship of comb-like polymer phase change material structures and their heat storage performance is scarce. Therefore, this relationship from both micro and macro perspectives will be studied in this paper. In order to achieve a high phase change enthalpy, ethylene glycol segments were introduced between the vinyl and the alkyl side chains. A series of poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers (PC14EnVEs (n = 1, 2 with various molecular weights were polymerized by living cationic polymerization. The results of PC14E1VE and PC14E2VE showed that the minimum number of carbon atoms required for side-chain crystallization were 7.7 and 7.2, which were lower than that reported in the literature. The phase change enthalpy 89 J/g (for poly(mono ethylene glycol n-tetradecyl ether vinyl ethers and 86 J/g (for poly(hexadecyl acrylate were approximately equal. With the increase of molecular weight, the melting temperature, the melting enthalpy, and the initial thermal decomposition temperature of PC14E1VE changed from 27.0 to 28.0 °C, from 95 to 89 J/g, and from 264 to 287 °C, respectively. When the number average molar mass of PC14EnVEs exceeded 20,000, the enthalpy values remained basically unchanged. The introduction of the ethylene glycol chain was conducive to the crystallization of alkyl side chains.

  17. Simulation of styrene polymerization reactors: kinetic and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    A. S. Almeida

    2008-06-01

    Full Text Available A mathematical model for the free radical polymerization of styrene is developed to predict the steady-state and dynamic behavior of a continuous process. Special emphasis is given for the kinetic and thermodynamic models, where the most sensitive parameters were estimated using data from an industrial plant. The thermodynamic model is based on a cubic equation of state and a mixing rule applied to the low-pressure vapor-liquid equilibrium of polymeric solutions, suitable for modeling the auto-refrigerated polymerization reactors, which use the vaporization rate to remove the reaction heat from the exothermic reactions. The simulation results show the high predictive capability of the proposed model when compared with plant data for conversion, average molecular weights, polydispersity, melt flow index, and thermal properties for different polymer grades.

  18. Ballistic behaviour of ultra-high molecular weight polyethylene: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L.S.; Nascimento, Lucio F.C.; Miguez Suarez, Joao Carlos

    2004-01-01

    The fiber reinforced polymer matrix composites (PMCs) are considered excellent engineering materials. In structural applications, when a high strength-to-weight ratio is fundamental for the design, PMCs are successfully replacing many conventional materials. Since World War II textile materials have been used as ballistic armor. Materials manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials, for personnel protection and armored vehicles. As these have been developed and commercialized more recently, there is not enough information about the action of the ionizing radiation in the ballistic performance of this armor material. In the present work the ballistic behavior of composite plates manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers were evaluated after exposure to gamma radiation. The ballistic tests results were related to the macromolecular modifications induced by the environmental degradation through mechanical (hardness, impact and flexure) and physicochemical (infrared spectroscopy, differential scanning calorimetry and thermal gravimetric analysis) tests. Our results indicate that gamma irradiation induces modifications in the UHMWPE macromolecular chains, altering the mechanical properties of the composite and decreasing, for higher radiation doses, its ballistic performance. These results are presented and discussed. (author)

  19. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaixuan, E-mail: kaixuanxubjtu@yeah.net; Wang, Jun

    2017-02-26

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model. - Highlights: • Two new entropy approaches for estimation of nonlinear complexity are proposed for the financial market. • Effectiveness analysis of proposed methods is presented and their respective features are studied. • Empirical research of proposed analysis on seven world financial market indices. • Numerical simulation of Potts financial dynamics is preformed for nonlinear complexity behaviors.

  20. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    International Nuclear Information System (INIS)

    Xu, Kaixuan; Wang, Jun

    2017-01-01

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model. - Highlights: • Two new entropy approaches for estimation of nonlinear complexity are proposed for the financial market. • Effectiveness analysis of proposed methods is presented and their respective features are studied. • Empirical research of proposed analysis on seven world financial market indices. • Numerical simulation of Potts financial dynamics is preformed for nonlinear complexity behaviors.

  1. Synthesis of polystyrene with high melting temperature through BDE/CuCl catalyzed polymerization

    Institute of Scientific and Technical Information of China (English)

    WAN; Xiaolong

    2001-01-01

    [1]Ewen, J. A., Novel method for plastic production, Science (in Chinese), 1997, 9: 34.[2]Brintzinger, H. H., Fischer, D., Waymouth, R. M. et al., Stereospecific olefin polymerization with chiral metallocene catalysts, Angewandte Chemie International Edition in English, 1995, 34(11): 1143.[3]Matyjaszewski, K., Atom transfer radical polymerization, role of various components and reaction conditions, Polym. Prep., 1997, 38(2): 736.[4]Wang, J. S., Matyjaszewski, K., Controlled/"living" radical polymerization, atom transfer radical polymerization in the presence of transition-metal complex, J. Am. Soc., 1995, 117: 5614.[5]Wang, J. S., Matyjaszewski, K., Controlled/"living" radical polymerization, halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process, Macromolecules, 1995, 28: 7901.[6]Koto, M., Kamigaito, M., Sawamoto, M. et al., Polymerization of methyl methacrylate with the carbon tetrachloride/dichloro-tris(triphenyphosphine) ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possible of living radical polymerization, Macromolecules, 1995, 28: 1721.[7]Ando, T., Kato, M., Living radical polymerization of methyl methacrylate with Ruthenium complex: formation of polymers with controlled molecular weights and very narrow distributions, Macromolecules, 1996, 29: 1070.[8]Granel, C., Dubios, P., Jerome, R. et al., Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(II) complex and different activated alkyl halides, Macromolecules, 1996, 29: 8576.[9]Granel, C., Moineau, G., Lecome, P. et al., (Meth)acrylates pseudo-living radical polymerization in the presence of transition metal complexes: the kharasch reaction revisited, Polym. Prep., 1997, 38(1): 450.[10]Ando, T., Kamigaito, M., Sawamoto, M., Iron(II) chloride complex for living radical polymerization of methyl methacrylate, Macromolecules, 1997, 30: 4507.[11

  2. Synthesis of polyalkylacrylate nanolatexes by microemulsion polymerization method

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2012-12-01

    Full Text Available The paper concerns with the radical polymerization of [octadecyl acrylate (ODA, isooctyl acrylate (iso-OA and α-olefins 1-Octene (n-O]. These microemulsions were stabilized by sodium dodecyl sulfate (SDS and initiated by water-soluble initiator potassium persulfate (KPS. The nanolatex particle sizes were determined by transmission electron microscope (TEM. They were situated between 10 and 100 nm. The microstructures were confirmed by FT-IR and molecular weights determined by Gel permeation chromatography (GPC. The obtained M. wt. were (≈70 × 103, 101 × 103 and 153 × 103 g/mol. The polydispersity, molecular weights, and particle sizes were discussed in the light of micelle formation and shape of the alkyl group via emulsion polymerization.

  3. Micellar polymerization: Computer simulations by dissipative particle dynamics.

    Science.gov (United States)

    Shupanov, Ruslan; Chertovich, Alexander; Kos, Pavel

    2018-07-15

    Nowadays, micellar polymerization is widely used in different fields of industry and research, including modern living polymerization technique. However, this process has many variables and there is no comprehensive model to describe all features. This research presents simulation methodology which describes key properties of such reactions to take a guide through a variety of their modifications. Dissipative particle dynamics is used in addition to Monte Carlo scheme to simulate initiation, propagation, and termination events. Influence of initiation probability and different termination processes on final conversion and molecular-weight distribution are presented. We demonstrate that prolonged initiation leads to increasing in polymer average molecular weight, and surface termination events play major role in conversion limitation, in comparison with recombination. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Microstructural effects in drug release by solid and cellular polymeric dosage forms: A comparative study.

    Science.gov (United States)

    Blaesi, Aron H; Saka, Nannaji

    2017-11-01

    In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug

  5. Kinetic modelling of slurry polymerization of ethylene with a polymer supported Ziegler-Natta catalyst (hydrogen)

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, A.

    1996-12-31

    The kinetics of polymerization of ethylene catalyzed by a polymer supported Ziegler-Natta catalyst were investigated in a semi-batch reactor system. The influences of six polymerization variables were investigated using a central composite design. The variables were monomer partial pressure, catalyst loading, co-catalyst loading, catalyst particle size and hydrogen to monomer ratio. The influence of temperature on rate and polymer properties were investigated. Empirical models were fitted to the experimental data to quantify the effects of the polymerization variables on the rate characteristics and polymer properties. The rate of polymerization exhibited a first order dependency with respect to monomer partial pressure, but a nonlinear relationship with respect to catalyst loading. In the absence of hydrogen, the polymerization rate showed a non-decaying profile at the centre point conditions for the other variables. Catalyst loading and catalyst particle size had a negligible effect on weight-and-number-average molecular weights, while increasing co-catalysts loading lowered the molecular weights, as did increased temperature and hydrogen concentration. refs., figs.

  6. One-Pot Synthesis of Charged Amphiphilic Diblock and Triblock Copolymers Via High-Throughput Cu(0-Mediated Polymerization

    Directory of Open Access Journals (Sweden)

    Lenny Voorhaar

    2017-07-01

    Full Text Available Block copolymers containing functionalized monomers, for example those containing charged groups, can be used for many purposes, one of which is the design of polymeric supramolecular materials based on electrostatic interactions. In this paper the synthesis of diblock copolymers and ABA-triblock copolymers containing poly(n-butyl acrylate as a first or middle block and poly(2-(dimethylaminoethyl acrylate, poly(1-ethoxyethyl acrylate and poly(1-ethoxyethyl-2-carboxyethyl acrylate as second or outer blocks, resulting in block copolymers that can contain positive or negative charges, is reported. The polymerizations were performed and optimized via one-pot sequential monomer addition reactions via Cu(0-mediated polymerization using an automated parallel synthesizer. Different initiators, monomer concentrations and polymerization times were tested. While a bromide-containing initiator led to the best results for most monomers, when polymerizing 2-(dimethylaminoethyl acrylate the use of a chloride-containing initiator was necessary. Due to the slower polymerization using this initiator, a longer polymerization time was needed before addition of the second monomer. Using the optimized conditions, the diblock and triblock copolymers could be synthesized with good control over molecular weight and dispersities around 1.1 were obtained.

  7. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)]. E-mail: ramesh@mail.utar.edu.my; Chai, M.F. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2007-05-15

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt in the polymer electrolyte complexes.

  8. Ionic polymerization of p-methoxystyrene and other styrene derivatives by radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K; Pepper, D C [Trinity Coll., Dublin (Ireland)

    1976-01-01

    Polymerization of p-methoxystyrene by radiation was studied in bulk. Upon drying the monomer, the rate of polymerization, Rsub(p), became greater, changing its dose rate dependence from 0.5 to 1. The molecular weight distribution of the obtained polymers failed to give a bimodal curve; however, the peak molecular weight increased with higher Rsub(p). These kinetic features can be explained by a coexistence of radical and cationic mechanisms, as has been established in styrene, though there remain ambiguities about the effects of additives. Copolymerizations with styrene and 2-chloroethyl vinyl ether also showed a cationic nature for the reaction. A survey of possibilities of ionic polymerization by radiation was also carried out in ten ring-substituted styrene derivatives.

  9. Effect of Inhibitors on Atom Transfer Radical Polymerization of MMA

    Institute of Scientific and Technical Information of China (English)

    张鸿; 徐冬梅; 张可达

    2005-01-01

    Effect of a series of inhibitors as additives on atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with FeCl2/PPh3 as catalyst system was studied, including 2,4,6-trinitrophenol (TNP), 4-methoxyphenol (4-MP), hydroquinone (HQ) and nitrobenzene (NB). It was found that TNP was the only. efficient additive for ATRP among these inhibitors. In the presence of small amounts of TNP, the polymerization proceeded rapidly after induction period to yield the polymers with controlled molecular weights and narrow molecular weight distributions (MWD). The initiating efficiency of the modified catalyst system with TNP was increased. The mechanism was proposed and confirmed by the end group analysis of the polymer.

  10. Fractionation and immunochemical characterization of Prosopis juliflora pollen allergen.

    Science.gov (United States)

    Thakur, I S

    1986-12-01

    Prosopis juliflora pollen grain crude extract gave six different molecular weight fractions varied from 81,000 to 13,000 dalton on Sephadex G-100 gel filtration. The purity of fractions of Prosopis juliflora pollen extract were checked by polyacrylamide gel electrophoresis. The fraction had an molecular weight 20,000 dalton showed four absorption maxima whereas other fractions had single absorption maxima. Allergenic activity and nature of allergens were evaluated by in vitro Radioallergosorbent test and in vivo Passive Cutaneous Anaphylaxis test. All these tests indicated that most allergenic fractions were in the 20,000 molecular weight.

  11. Molecularly thin fluoro-polymeric nanolubricant films: tribology, rheology, morphology, and applications.

    Science.gov (United States)

    Chung, Pil Seung; Jhon, Myung S; Choi, Hyoung Jin

    2016-03-21

    Molecularly thin perfluoropolyether (PFPE) has been used extensively as a high-performance lubricant in various applications and, more importantly, on carbon overcoats to enhance the reliability and lubrication of micro-/nanoelectro-mechanical systems, where the tribological performance caused by its molecular architecture is a critical issue, as are its physical properties and rheological characteristics. This Highlight addresses recent trends in the development of fluoro-polymeric lubricant films with regard to their tribology, rheology, and physio-chemical properties as they relate to heat-assisted magnetic recording. Nanorheology has been employed to examine the dynamic response of nonfunctional and functional PFPEs, while the viscoelastic properties of nanoscale PFPE films and the relaxation processes as a function of molecular structure and end-group functionality were analyzed experimentally; furthermore, the characteristics of binary blends were reported.

  12. High molecular weight hyaluronan mediates the cancer resistance of the naked mole-rat

    Science.gov (United States)

    Tian, Xiao; Azpurua, Jorge; Hine, Christopher; Vaidya, Amita; Myakishev-Rempel, Max; Ablaeva, Julia; Mao, Zhiyong; Nevo, Eviatar; Gorbunova, Vera; Seluanov, Andrei

    2013-01-01

    The naked mole-rat displays exceptional longevity, with a maximum lifespan exceeding 30 years1–3. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole-rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years4,5. In addition to their longevity, naked mole-rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer2,6. Here we identify a mechanism responsible for the naked mole-rat’s cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high molecular weight hyaluronan (HA), which is over five times larger than human or mouse HA. This high molecular weight HA accumulates abundantly in naked mole rat tissues due to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signaling, as the naked mole rat cells have a higher affinity to HA than the mouse or human cells. Perturbation of the signaling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high molecular weight HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, Hyal2, naked mole-rat cells become susceptible to malignant transformation and readily form tumors in mice. We speculate that naked mole-rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species. PMID:23783513

  13. Investigations in the field of solid state polymerization Pt. 38

    International Nuclear Information System (INIS)

    Hardy, Gy.; Cser, F.; Nyitrai, K.; Fedorova, N.

    1980-01-01

    The stuctural and radiation chemical data of vinyl monomers with long chain paraffinic or cholesteric side groups are critically reviewed. Based on their structural and polymerization kinetical characteristics the monomers may be classified into three groups. Oblique layers are favourable for homogeneous topotactic polymerization. This is characterized by a low activation energy and a radiochemical efficiency very similar to that measured in liquid state polymerization. The tilted layers are not favourable for homogeneous topotactic polymerization. Allyl monomers yield polymers with higher molecular weights in the layer structure than in liquid states. (author)

  14. Development of self-assembled molecular structures on polymeric surfaces and their applications as ultrasonically responsive barrier coatings for on-demand, pulsatile drug delivery

    Science.gov (United States)

    Kwok, Connie Sau-Kuen

    Nature in the form of DNA, proteins, and cells has the remarkable ability to interact with its environment by processing biological information through specific molecular recognition at the interface. As such, materials that are capable of triggering an appropriate biological response need to be engineered at the biomaterial surface. Chemically and structurally well-defined self-assembled monolayers (SAMs), biomimetics of the lipid bilayer in cell membranes, have been created and studied mostly on rigid metallic surfaces. This dissertation is motivated by the lack of methods to generate a molecularly designed surface for biomedical polymers and thus provides an enabling technology to engineer a polymeric surface precisely at a molecular and cellular level. To take this innovation one step further, we demonstrated that such self-assembled molecular structure coated on drug-containing polymeric devices could act as a stimulus-responsive barrier for controlled drug delivery. A simple, one-step procedure for generating ordered, crystalline methylene chains on polymeric surfaces via urethane linkages was successfully developed. The self-assemblies and molecular structures of these crystalline methylene chains are comparable to the SAM model surfaces, as evidenced by various surface characterization techniques (XPS, TOF-SIMS, and FTIR-ATR). For the first time, these self-assembled molecular structures are shown to function collectively as an ultrasound-responsive barrier membrane for pulsatile drug delivery, including delivery of low-molecular-weight ciprofloxacin and high-molecular-weight insulin. Encouraging results, based on the insulin-activated deoxyglucose uptakes in adipocytes, indicate that the released insulin remained biologically active. Both chemical and acoustic analyses suggest that the ultrasound-assisted release mechanism is primarily induced by transient cavitation, which causes temporary disruption of the self-assembled overlayer, and thus allows

  15. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo

    Czech Academy of Sciences Publication Activity Database

    Lapčíková, Monika; Šlouf, Miroslav; Dybal, Jiří; Zolotarevova, E.; Entlicher, G.; Pokorný, D.; Gallo, J.; Sosna, A.

    2009-01-01

    Roč. 266, 1-2 (2009), s. 349-355 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra high molecular weight polyethylene * nanometer size wear debris * morphology of wear particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.771, year: 2009

  16. Synthesis of click-reactive HPMA copolymers using RAFT polymerization for drug delivery applications

    DEFF Research Database (Denmark)

    Ebbesen, Morten F; Schaffert, D.H.; Crowley, Michael L

    2013-01-01

    This study describes a versatile strategy combining reversible addition fragmentation transfer (RAFT) polymerization and click chemistry to synthesize well-defined, reactive copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) for drug delivery applications. A novel azide containing monomer N-(3......-azidopropyl)methacrylamide (AzMA) was synthesized and copolymerized with HPMA using RAFT polymerization to provide p(HPMA-co-AzMA) copolymers with high control of molecular weight (∼10–54 kDa) and polydispersity (≤1.06). The utility of the side-chain azide functionality by Cu(I)-catalyzed azide...

  17. FY 1991 Report on the results of the research and development of silicon-based high-molecular-weight materials; 1991 nendo keisokei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The research and development project has been started to establish the basic technologies for molecular designs, synthesis, material production and evaluation of silicon-based high-molecular-weight materials expected to exhibit excellent characteristics, e.g., electro-optical functions, resistance to heat, flame retardance and mechanical properties. The efforts in FY 1991, the first year for the 10-year project, are mainly directed to the surveys on the R and D trends, both domestic and foreign, to clarify the relationship between the structures and functions/properties. The R and D projects followed include the technologies for synthesizing (1) electroconductive silicon-based high-molecular-weight materials, (2) novel silicon-based high-molecular-weight materials capable of drawing circuits, (3) novel, light-emitting silicon-based high-molecular-weight materials and (4) silicon-based opto-electric conversion materials for the electro-optical functional high-molecular-weight materials; and (1) synthesis of high-molecular-weight structural materials of sea island structure, (2) technologies for forming inter-penetrating type structures (IPN), (3) development of composite structural materials of organometallic complex and silicon-based high-molecular-weight material, and (4) development of silicon-based high-molecular-weight materials of ring structure for the high-molecular-weight structural materials. (NEDO)

  18. Graft polymerization of styrene onto starch by simultaneous cobalt-60 irradiation

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1977-01-01

    Starch-g-polystyrene copolymers have been prepared by the simultaneous 60 Co irradiation of starch--styrene mixtures, and copolymers have been characterized with respect to weight per cent polystyrene (% add-on) and also the molecular weight and molecular weight distribution of polystyrene grafts. In a typical polymerization, 4g each of starch and styrene were blended with 1 ml water and 1.5 ml of an organic solvent; the resulting semisolid paste was irradiated to a total dose of 1 Mrad. With ethylene glycol, acetonitrile, ethanol, methanol, acetone, and dimethylformamide as the organic solvent, values for % add-on ranged from 24% to 29%. The highest % add-on (43%) and the highest conversion of styrene to grafted polymer (76%) were obtained when the organic solvent was omitted, and water alone was used. When water was also omitted, polymerization of styrene was negligible; however, graft copolymer was formed in the absence of water when either ethylene glycol or ethanol was added. Attempts were unsuccessful to achieve a % add-on greater than 43% by doubling the amount of styrene in the polymerization recipe. Mixtures of equal weights of starch and styrene are relatively nonviscous, but these mixtures thicken when either water or ethylene glycol is blended in. Reasons for this thickening action and the possible influence of thickening on the graft polymerization reaction were explored

  19. Fiscal 2000 achievement report on the development of polymeric material from renewable resource using biocatalyst; 2000 nendo seitai shokubai wo riyoshita saisei kano shigen kara no kobunshi sozai no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project aims to develop a biocatalyst-assisted synthesizing method for efficiently manufacturing sugar containing polymers and polylactic acids which generate less environmental impact. The ALP-901 derived from actinomycetes operates best with 5% water content, and remains free of hydrolytic effect even when the rate rises to 20%, and catalyzes transesterification only. The esterification activity of bioprase rose remarkably upon addition of water. A polymer with a molecular weight of scores of thousands was obtained in the polymerization of sugar ester monomers. A sugar undecylenate with a double bond at an end was successfully polymerized. The sugar containing polymer exhibited excellent biodegradability. In a reaction of butanediol and lactide, several types of lactic oligomers different in molecular weight were synthesized. The oligomers were caused to react with divinylcarboxylic acid in the presence of an enzyme, and a polymerizable lactic oligomer was obtained. Furthermore, in a reaction between glucose and lactide, several lactic oligomer derivatives were synthesized, different in molecular weight. In a reaction of the derivatives and divinylcarboxylic acid with an enzyme added thereto, a polymerizable lactic oligomer derivative was obtained, which was brought into polymerization in the presence of a radical polymerization initiator for the production of a high molecular weight gel. (NEDO)

  20. Inulin in Medicinal Plants (IV) : Reversed-Phase High-Performance Liquid Chromatography of Inulin after Acetylation : Molecular-Weight Distribution of Inulin in Medicinal Plants

    OpenAIRE

    三野, 芳紀; 筒井, 聡美; 太田, 長世; YOSHIKI, MINO; SATOMI, TSUTSUI; NAGAYO, OTA; 大阪薬科大学; 大阪薬科大学; 大阪薬科大学; Osaka College of Pharmacy; Osaka College of Pharmacy; Osaka College of Pharmacy

    1985-01-01

    Reversed-phase high-performance liquid chromatography coupled with pre-acetylation enabled acculate molecular-weight assay of inulin in medicinal plants to be conducted. The results clearly showed that the molecular-weight distribution of inulin varied depending on the stage of growth: Small molecular weight inulin polymers were detected in large quantity in the earlier growth stage whereas large molecular weight inulin polymers at the flowering and post flowering period.

  1. Polymer Molecular Architecture As a Tool for Controlling the Rheological Properties of Aqueous Polyacrylamide Solutions for Enhanced Oil Recovery

    NARCIS (Netherlands)

    Wever, Diego A. Z.; Polgar, Lorenzo M.; Stuart, Marc C. A.; Picchioni, Francesco; Broekhuis, Antonius A.

    2013-01-01

    The controlled synthesis of high molecular weight branched polyacrylamide (PAM) has been accomplished by using atomic transfer radical polymerization (ATRP) of acrylamide (AM) in water at room temperature. Halogen-functionalized aliphatic polyketones acted as macroinitiators in the polymerization.

  2. Improving the Application of High Molecular Weight Biotinylated Dextran Amine for Thalamocortical Projection Tracing in the Rat.

    Science.gov (United States)

    Xu, Dongsheng; Cui, Jingjing; Wang, Jia; Zhang, Zhiyun; She, Chen; Bai, Wanzhu

    2018-04-12

    High molecular weight biotinylated dextran amine (BDA) has been used as a highly sensitive neuroanatomical tracer for many decades. Since the quality of its labeling was affected by various factors, here, we provide a refined protocol for the application of high molecular weight BDA for studying optimal neural labeling in the central nervous system. After stereotactic injection of BDA into the ventral posteromedial nucleus (VPM) of the thalamus in the rat through a delicate glass pipette, BDA was stained with fluorescent streptavidin-Alexa (AF) 594 and counterstained with fluorescent Nissl stain AF500/525. On the background of green Nissl staining, the red BDA labeling, including neuronal cell bodies and axonal terminals, was more distinctly demonstrated in the somatosensory cortex. Furthermore, double fluorescent staining for BDA and the calcium-binding protein parvalbumin (PV) was carried out to observe the correlation of BDA labeling and PV-positive interneurons in the cortical target, providing the opportunity to study the local neural circuits and their chemical characteristics. Thus, this refined method is not only suitable for visualizing high quality neural labeling with the high molecular weight BDA through reciprocal neural pathways between the thalamus and cerebral cortex, but also will permit the simultaneous demonstration of other neural markers with fluorescent histochemistry or immunochemistry.

  3. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  4. The biological and immunological properties of fractionated atrial extracts from young and old rats

    International Nuclear Information System (INIS)

    Wilfinger, W.W.; Banks, R.O.; Inscho, E.W.

    1989-01-01

    The present study was undertaken to further evaluate the natriuretic, hypotensive and immunological properties of fractionated and HPLC purified atrial extracts prepared from young and old rats. Acetic acid extracts were prepared and subsequently fractionated by gel permeation chromatography. The high and low molecular weight fractions were collected, lyophilized and assayed. Radioimmunoassay competitive binding curves of the initial and fractionated extracts were parallel to the synthetic ANP 101-126 standard. No differences in parallelism were observed in the natriuretic activity of the initial extracts, the low molecular weight (LMW) fractions from both age groups, the 290 day high molecular weight (HMW) fraction or the synthetic ANP standard. However, the natriuretic activity of the 15 day HMW fraction was significantly attenuated compared to the other treatment groups. The initial 15 day extract was also significantly more hypotensive than the 290 day extract. HMW extracts were subjected to HPLC and the resulting immunoreactive ANP peak was reassayed. Based on SDS-PAGE and immuno blot analysis, the HPLC purified fraction was found to contain only immunoreactive proANP. Subsequent bioassay revealed greater hypotension and reduced natriuretic activity in the 15 day proANP fraction in comparison to a similarly prepared extract from older animals

  5. Improved synthesis with high yield and increased molecular weight of poly(alpha,beta-malic acid) by direct polycondensation.

    Science.gov (United States)

    Kajiyama, Tetsuto; Kobayashi, Hisatoshi; Taguchi, Tetsushi; Kataoka, Kazunori; Tanaka, Junzo

    2004-01-01

    The development of synthetic biodegradable polymers, such as poly(alpha-hydroxy acid), is particularly important for constructing medical devices, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing high molecular weight poly(malic acid) (HMW--PMA) as a biodegradable and bioabsorbable water-soluble polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of l-malic acid, including the reaction times, temperatures, and catalysts. The molecular weight of synthesized alpha,beta-PMA is dependent on both the reaction temperature and time. The optimum reaction condition to obtain alpha,beta-PMA by direct polycondensation using tin(II) chloride as a catalyst was thus determined to be 110 degrees C for 45 h with a molecular weight of 5300. The method for alpha,beta-PMA synthesis established here will facilitate production of alpha,beta-PMA of various molecular weights, which may have a potential utility as biomaterials.

  6. Chitin nanofiber elucidates the elicitor activity of polymeric chitin in plants

    Directory of Open Access Journals (Sweden)

    Mayumi eEgusa

    2015-12-01

    Full Text Available Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1 mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses.

  7. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin

    OpenAIRE

    Zhang,Chunjing; Zhong,Shian; Yang,Zhengpeng

    2008-01-01

    Cellulose acetate-based molecularly imprinted polymeric membranes were prepared using vanillin as template molecule. The microscopic structure of the resultant polymeric membranes was characterized by SEM and FTIR spectroscopy, and the selective binding properties and separation capacity of the membranes for vanillin and o-vanillin were tested with binding experiments and separate experiments, respectively. The results showed that the vanillin-imprinted polymeric membranes displayed higher bi...

  8. Nanoparticles from a controlled polymerization process

    International Nuclear Information System (INIS)

    Tirumala, V.R.; Caneba, G.T.; Dar, Y.; Wang, H.-H.; Mancini, D.C.

    2003-01-01

    Free-radical retrograde precipitation polymerization process in the past has shown excellent control characteristics over reaction rate, molecular weight, and in the entrapment of live radicals for the generation of block copolymers. The same principle has now been extended to study the reaction confinement to a nanoscale region. Nanosized polymer particles have been reported to form from block copolymers, conventional precipitation polymerization methods, or through emulsion polymerization approaches. In this work, we present a new method of generating nanosized polymer particles by polymerizing the monomer in an environment that precipitates the polymer above the lower critical solution temperature. The nanoparticles have been characterized by both tapping-mode atomic force microscopy observations and in situ synchrotron time-resolved small-angle X-ray scattering analysis. The results from both the techniques showed the formation of nanoparticles in the size range of 15-30 nm, directly from the polymerization process.

  9. Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds.

    Science.gov (United States)

    Dziuba, Jerzy; Szerszunowicz, Iwona; Nałęcz, Dorota; Dziuba, Marta

    2014-01-01

    Proteomic analysis is emerging as a highly useful tool in food research, including studies of food allergies. Two-dimensional gel electrophoresis involving isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoresis is the most effective method of separating hundreds or even thousands of proteins. In this study, albumin and globulin tractions of pea seeds cv. Ramrod were subjected to proteomic analysis. Selected potentially alergenic proteins were identified based on their molecular weights and isoelectric points. Pea seeds (Pisum sativum L.) cv. Ramrod harvested over a period of two years (Plant Breeding Station in Piaski-Szelejewo) were used in the experiment. The isolated albumins, globulins and legumin and vicilin fractions of globulins were separated by two-dimensional gel electrophoresis. Proteomic images were analysed in the ImageMaster 2D Platinum program with the use of algorithms from the Melanie application. The relative content, isoelectric points and molecular weights were computed for all identified proteins. Electrophoregrams were analysed by matching spot positions from three independent replications. The proteomes of albumins, globulins and legumin and vicilin fractions of globulins produced up to several hundred spots (proteins). Spots most characteristic of a given fraction were identified by computer analysis and spot matching. The albumin proteome accumulated spots of relatively high intensity over a broad range of pi values of ~4.2-8.1 in 3 molecular weight (MW) ranges: I - high molecular-weight albumins with MW of ~50-110 kDa, II - average molecular-weight albumins with MW of ~20-35 kDa, and III - low molecular-weight albumins with MW of ~13-17 kDa. 2D gel electrophoregrams revealed the presence of 81 characteristic spots, including 24 characteristic of legumin and 14 - of vicilin. Two-dimensional gel electrophoresis proved to be a useful tool for identifying pea proteins. Patterns of spots with similar isoelectric

  10. Single intra-articular injection of high molecular weight hyaluronic acid for hip osteoarthritis.

    Science.gov (United States)

    Rivera, Fabrizio

    2016-03-01

    Intra-articular (IA) injection of hyaluronic acid (HA) into the hip joint appears to be safe and well tolerated but only a small number of randomized clinical trials in humans has been published. The objective of this prospective study was to evaluate the efficacy and safety of a single IA injection of high-molecular-weight (2800 kDa) HA (Coxarthrum) for hip osteoarthritis. All patients received a single IA administration of 2.5 % sodium hyaluronate (75 mg/3 mL) of high molecular weight. Fluoroscopy requires an iodized contrast medium (iopamidol, 1 ml) which highlights the capsule before administering HA. Patients were evaluated before IA injection (T0), after 3 months, after 6 months and after 1 year from injection. Results were evaluated by the Brief Pain Inventory (BPI II), Harris Hip Score and a visual analog scale of pain (pain VAS). All treated patients were considered for statistical analysis. Two hundred seven patients were included at T0. The mean age was 67 years (range 46-81). Regarding BPI severity score, changes in pain between T0 and the three following visits were statistically highly significant (p injection of Coxarthrum is effective from the third month and that the results are stable or continue to improve up to 1 year. IV.

  11. Role of Laccase and Low Molecular Weight Metabolites from Trametes versicolor in Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Diego Moldes

    2012-01-01

    Full Text Available The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.

  12. Detection of high molecular weight proteins by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Mainini, Veronica; Bovo, Giorgio; Chinello, Clizia; Gianazza, Erica; Grasso, Marco; Cattoretti, Giorgio; Magni, Fulvio

    2013-06-01

    MALDI imaging mass spectrometry (IMS) is a unique technology to explore the spatial distribution of biomolecules directly on tissues. It allows the in situ investigation of a large number of small proteins and peptides. Detection of high molecular weight proteins through MALDI IMS still represents an important challenge, as it would allow the direct investigation of the distribution of more proteins involved in biological processes, such as cytokines, enzymes, neuropeptide precursors and receptors. In this work we compare the traditional method performed with sinapinic acid with a comparable protocol using ferulic acid as the matrix. Data show a remarkable increase of signal acquisition in the mass range of 20k to 150k Th. Moreover, we report molecular images of biomolecules above 70k Th, demonstrating the possibility of expanding the application of this technology both in clinical investigations and basic science.

  13. A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment.

    Science.gov (United States)

    Yao, Lan; Yoo, Chang Geun; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J; Yang, Haitao

    2018-01-01

    Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H , respectively). Three different lignin fractions were extracted using ethanol, followed by p -dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively). Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weights for the other two lignin fractions were similar. 31 P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p -hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β- O -4 linkages with small amounts of β-5 and β-β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L 1  >  L 3  >  L 2 for the low recalcitrance poplar and H 1  >  H 2  >  H 3 for the high recalcitrance poplar. Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH adsorption

  14. Novel Zinc-Catalytic Systems for Ring-Opening Polymerization of ε-Caprolactone

    Directory of Open Access Journals (Sweden)

    Karolina Żółtowska

    2015-02-01

    Full Text Available Polycaprolactone (PCL is a biodegradable synthetic polymer that is currently widely used in many pharmaceutical and medical applications. In this paper we describe the coordination ring-opening polymerization of ε-caprolactone in the presence of two newly synthesized catalytic systems: diethylzinc/gallic acid and diethylzinc/propyl gallate. The chemical structures of the obtained PCLs were characterized by 1H- or 13C-NMR, FTIR spectroscopy and MALDI TOF mass spectrometry. The average molecular weight of the resulting polyesters was analysed by gel permeation chromatography and a viscosity method. The effects of temperature, reaction time and type of catalytic system on the polymerization process were examined. Linear PCLs with defined average molecular weight were successfully obtained. Importantly, in some cases the presence of macrocyclic products was not observed during the polymerization process. This study provides an effective method for the synthesis of biodegradable polyesters for medical and pharmaceutical applications due to the fact that gallic acid/propyl gallate are commonly used in the pharmaceutical industry.

  15. Fiscal 1994 technological survey report. Research study on polymer materials by precision polymerization; 1994 nendo seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    In the paradigm that propelled polymer chemistry, there are involved the establishment of polymer concept, engineering plastics, regulation of higher ordered structure, and precision polymerization. The first two produced the polymer chemistry era in the 20th century. The regulation of higher ordered structure and the precision polymerization are the fundamental technologies supporting the polymer chemistry of the 21st century. The precision polymerization is a technology for regulating the stereospecificity, sequential structure, and molecular weight of polymers by regulating atoms and molecules and is referred to the following important techniques to be concrete. In the precision addition polymerization, stereospecific regulation and purification of active site to give living polymers are required while, in the precision condensation polymerization, regulation of condensation probability process to be secondary Marcov chain is necessary, as is the establishment of non-defect condensation condition avoiding high temperature deterioration and the like. In the biomimetic precision polymerization, key issues are the method of incorporating molecular recognition control and sequential structure control by living organs into an industrial process. If the higher ordered structure can be regulated by the precision polymerization, it is possible to obtain numerous high performance/high functional materials such as superconductors. (NEDO)

  16. Effect of weight fraction of different constituent elements on the total ...

    Indian Academy of Sciences (India)

    The mass attenuation coefficients, µm, of biological materials have been ... increasing percentage of constituent elements in high energy region up to 10 MeV. ... Muscle. 72.89. Figure 1. Plot of µm (cm2/g) vs. hydrogen weight fraction at some ...

  17. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  18. KINETICS OF SUSPENDED EMULSION POLYMERIZATION OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Cheng-xi Wang; Zhi-ming Huang; Zhi-xue Weng

    2004-01-01

    The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0 ∝ [I]0.73[S]0.32 and Rp ∝ [I]0.71[S]0.23. The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methyl methacrylate) decreased as the polymerization temperature, [I] and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.

  19. Radiation initiated polymerization of trioxane and stabilization of polyoxymethylene

    International Nuclear Information System (INIS)

    Rao, M.H.; Ramanan, G.; Kunjappu, J.T.; Rao, K.N.

    1990-01-01

    Gamma ray induced polymerization of trioxane from an indigenous source (M/s. Nuchem Plastics, Faridabad) has been investigated by both in-source and post polymerization techniques. Impurity levels in the trioxane samples are determined and compared with those in an imported material. Critical evaluation of the results of its purification by different methods, viz. treatment with molecular sieves, crystallization from solvents and their variations, has been carried out prior to optimising the conditions of polymerization. A novel but simple purification procedure employing benzene as the solvent which is found to form a ternary azeotrope with trioxane and water has been developed. The effect of these purification methods on the polymerization efficiency and their dependence on the molecular weight of the polymer formed are also discussed. Experimental details of polymerizing trioxane in 10 kg scale are also described. To improve upon the thermal stabilty of the polyoxymethylene thus formed, protection of the free hydroxyl end groups (end-capping) has been achieved by an acetylation procedure using acetic anhydride in presence of catalytic amounts of sodium acetate. (author). 11 tabs., 4 figs

  20. Polymerization of acrylamide initiated with Ce(IV- and KMnO4–mercaptosuccinic acid redox systems in acid-aqueous medium

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available By using mercaptosuccinic acid-cerium(IV sulfate and mercaptosuccinic acid-KMnO4 redox systems in acid aqueous medium, the polymerization of acrylamide monomer was performed at room temperatures. Water soluble acrylamide polymers which contain mercaptosuccinic acid end-groups were synthesized. The dependence of polymerization yield and the molecular weight of polymer on the initiator concentration(nMSA=nCe(IV at different acid concentrations, polymerization time, temperature, and concentration of sulfuric acid was investigated. The decrease in the initiator concentration resulted in an increase in the molecular weights but a decrease in the yield. The increase of reaction temperature from 20 to 60°C resulted in an increase in the molecular weights and slight decrease of the yield of polymer. Cerium and manganese ions are reduced to Ce(III and Mn(II ions respectively in polymerization reaction. The existence of Ce(III ion bound to polymer was investigated by UV-visible spectrometry and fluorescence measurements. The amount of Mn(II which is incorporated to the polymer was determined.

  1. Effect of molecular weight distribution on e-beam exposure properties of polystyrene

    International Nuclear Information System (INIS)

    Dey, Ripon Kumar; Cui Bo

    2013-01-01

    Polystyrene is a negative electron beam resist whose exposure properties can be tuned simply by using different molecular weights (Mw). Most previous studies have used monodisperse polystyrene with a polydispersity index (PDI) of less than 1.1 in order to avoid any uncertainties. Here we show that despite the fact that polystyrene’s sensitivity is inversely proportional to its Mw, no noticeable effect of very broad molecular weight distribution on sensitivity, contrast and achievable resolution is observed. It is thus unnecessary to use the costly monodisperse polystyrene for electron beam lithography. Since the polydispersity is unknown for general purpose polystyrene, we simulated a high PDI polystyrene by mixing in a 1:1 weight ratio two polystyrene samples with Mw of 170 and 900 kg mol −1 for the high Mw range, and 2.5 and 13 kg mol −1 for the low Mw range. The exposure property of the mixture resembles that of a monodisperse polystyrene with similar number averaged molecular weight (Mn)-bar, which indicates that it is (Mn)-bar rather than (Mw)-bar (weight averaged molecular weight) that dominates the exposure properties of polystyrene resist. This also implies that polystyrene of a certain molecular weight can be simulated by a mixture of two polystyrenes having different molecular weights. (paper)

  2. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    Science.gov (United States)

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  3. Research and development project in fiscal 1988 for fundamental technologies for next generation industries. Achievement report on research and development on high crystallinity polymeric materials; 1988 nendo kokesshosei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    With an objective to realize structural materials characterized by light weight, high corrosion resistance and easy-to-process performance, research and development has been performed on high crystallinity polymeric materials. This paper summarizes the achievement in fiscal 1988. With regard to monophyletic materials, using thermotropic liquid crystal polyallylate as the object, researches were performed on optimization, polymerization, and elongation fluid orientation processing of the polymer chemical structures. In the polyphyletic materials, discussions were given on aromatic heterocyclic polymers as to the synthesizing process for PIBO expected of higher elasticity rate than with PIBT. Discussions were given on the phase transfer transient film making process for molecular composites for an attempt of enhancing performance of tapes and laminates. With regard to cross-linking materials, forming and improvements were discussed on heat hardening molecular composites of ionic/inorganic hybrid cross-linking polymer, modified ion cross-linking polymer, poly-ion complex, and diacetylene polymer. In addition, researches were performed on the high-density three-dimensional cross-linking process and inter-molecular reinforcement of mono-axially and highly oriented substances to obtain high elasticity forms. (NEDO)

  4. Chitosan oligosaccharides with degree of polymerization 2-6 induces apoptosis in human colon carcinoma HCT116 cells.

    Science.gov (United States)

    Zou, Pan; Yuan, Shoujun; Yang, Xin; Zhai, Xingchen; Wang, Jing

    2018-01-05

    Colon cancer is the third most common cancer, and yet there is a lack of effective therapeutic method with low side effects. Chitosan oligosaccharides (COS) is derived from chitosan after chitin deacetylation, and attracts more interests due to smaller molecular weight and soluble property. Previously, COS, mainly absorbed through intestinal epithelia, has been reported to exhibit many bioactivities, especially its anti-tumor effect. Recent references pay little attention to molecular weight distribution which is crucial for understanding its biological behavior. Here, we studied reducing sugar content and degree of polymerization (DP) of COS. 86.73% reducing sugar exists in COS sample and the content of chitosan fractions with 2-6 is 85.8%. COS suppressed the growth of HCT116 cells in vitro and in vivo, and the inhibition rate of tumor weight in vivo was high up to 58.6%. Moreover, the morphology observation, flow cytometry analysis and mRNA expression were applied to study the apoptosis related mechanism. COS treatment promoted mitosis, late stage apoptosis and S cell cycle arrest in HCT116 cells, and enhanced the mRNA expression of BAK and reduce BCL-2 and BCL-x L . These findings may provide an important clue for clinical applications of COS as anti-tumor drug or pharmaceutic adjuvant in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. RADIOCHEMICAL YIELDS OF GRAFT POLYMERIZATION REACTIONS OF CELLULOSE

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Jr, J C; Blouin, F A

    1963-12-15

    The preparation of radioinduced graft polymers of cotton cellulose, while retaining the fibrous nature and high molecular weight of the cellulose, depended primarily on the radiochemical yields of cellulose reactions and of graft polymerization reactions. Yields of the initial major molecular changes in cellulosic polymer indicated that, in the case of scission of the molecule and carboxyl group formation, chain reactions were not initiated by radiation; however, in the case of carbonyl group formation chain reactions were initiated but quickly terminated. Generally, experimental procedures, used in graft polymerization reactions, were: simultaneous irradiation reactions, that is, application of monomers or solutions of monomers to cellulose or chemically modified celluloses, then irradiation; and post-irradiation reactions, that is, irradiation of cellulose or chemically modified celluloses, then after removal from the field of radiation, contacting the irradiated cellulose with monomer. Some of the most important factors influencing the radiochemical yields of graft polymerization reactions, of styrene and acrylonitrile onto cellulose were: concentration of monomer in treating solution; solvent; ratio of monomer solution to cellulose; prior chemical modification of cellulose; and absence of oxygen, particularly in post-irradiation reactions. Experimental data are presented, and the direct and indirect effects of Co/sup 60/ gamma radiation on these reactions are discussed. (auth)

  6. Acoustic Monitor for Liquid-Solid Slurries Measurements at Low Weight Fractions

    International Nuclear Information System (INIS)

    Tavlarides, L. L.; Sangani, A.; Shcherbakov, A.; Lee, J. S.; Dievendorf, E.

    2003-01-01

    The principal objective of the project is to develop an acoustic probe for determining the weight fraction of particles in a flowing suspension. The suspension can be solid-liquid (S-L) or solid-gas-liquid (S-G-L). The work will include testing the theory of acoustic wave propagation in suspensions and demonstrating the application of the probe by installing it on a flow loop through which a suspension is flowing and determining the particle weight fraction. The signal from the probe must be processed such that the noise arising from the presence of gas bubbles is removed to yield an accurate estimate of the particle weight fraction. Particular attention will be given to testing suspensions with low particle weight fractions since slurries to be transported in nuclear waste processing will have low particle weight fractions. Originally, the probe was to be developed and tested at Syracuse University (SU) then installed and tested at Oak Ridge National Laboratories (ORNL) for surrogate slurries from the Hanford Nuclear site. However, after discussions between SU and ORNL in June 2002 it was agreed that all tests would be conducted at SU

  7. Acoustic Monitor for Liquid-Solid Slurries Measurements at Low Weight Fractions

    International Nuclear Information System (INIS)

    Tavlarides, L. L.; Sangani, A.; Shcherbakov, A.; Lee, J. S.; Dievendorf, E.

    2002-01-01

    The principal objective of the project is to develop an acoustic probe for determining the weight fraction of particles in a flowing suspension. The suspension can be solid-liquid (S-L) or solid-gas-liquid (S-G-L). The work will include testing the theory of acoustic wave propagation in suspensions and demonstrating the application of the probe by installing it on a flow loop through which a suspension is flowing and determining the particle weight fraction. The signal from the probe must be processed such that the noise arising from the presence of gas bubbles is removed to yield an accurate estimate of the particle weight fraction. Particular attention will be given to testing suspensions with low particle weight fractions since slurries to be transported in nuclear waste processing will have low particle weight fractions. Originally, the probe was to be developed and tested at Syracuse University (SU) then installed and tested at Oak Ridge National Laboratories (ORNL) for surrogate slurries from the Hanford Nuclear site. However, after discussions between SU and ORNL in June 2002 it was agreed that all tests would be conducted at SU

  8. In Vivo Biological Evaluation of High Molecular Weight Multifunctional Acid-Degradable Polymeric Drug Carriers with Structurally Different Ketals.

    Science.gov (United States)

    Shenoi, Rajesh A; Abbina, Srinivas; Kizhakkedathu, Jayachandran N

    2016-11-14

    Understanding the influence of degradable chemical moieties on in vivo degradation, tissue distribution, and excretion is critical for the design of novel biodegradable drug carriers. Polyketals have recently emerged as a promising therapeutic delivery platform due to their ability to degrade under mild acidic intracellular compartments and generation of nontoxic degradation products. However, the effect of chemical structure of the ketal groups on the in vivo degradation, biodistribution, and pharmacokinetics of water-soluble ketal-containing polymers has not been explored. In the present work, we synthesized high molecular weight, water-soluble biodegradable hyperbranched polyglycerols (BHPGs) through the incorporation of structurally different ketal groups into the main chain of highly biocompatible polyglycerols. BHPGs showed pH and ketal group structure dependent degradation in buffer solutions. When the polymers were intravenously administered in mice, a strong dependence of in vivo degradation, biodistribution, and clearance on the ketal group structure was observed. All the BHPGs demonstrated degradation and clearance in vivo, with minimal tissue accumulation. Interestingly, an unanticipated degradation behavior of BHPGs with structurally different ketal groups was observed in vivo in comparison to their degradation in buffer solutions. BHPGs with cyclohexyl ketal (CHK) and cyclopentyl ketal (CPK) groups degraded much faster and were cleared from circulation much rapidly, while BHPG with glycerol hydroxy butanone ketal (GHBK) group degraded at a much slower rate and exhibited similar plasma half-life as that of nondegradable HPG. BHPG-GHBK also showed significantly lower tissue accumulation than nondegradable HPG after 30 days of administration. The difference in in vivo degradation may be attributed to the difference in hydrophobic characteristics of different ketal containing polymers, which may change their interaction with proteins and cells in vivo

  9. Silver Nanoparticles Modification of Ultra High Molecular Weight Polyethylene in Non-Aqueous Medium

    OpenAIRE

    V. N. Glushko; L. I. Blokhina; E. E. Anisimova; M. V. Bogdanovskaya; V. I. Kozhukhov; T. A. Cherdyntseva

    2016-01-01

    A series of experiments for obtaining modified with silver nanoparticles ultra-high molecular weight polyethylene (UHMWPE) is done. Optimal precursors are silver trifluoroacetate, silver nitrate and silver methanesulfonate. Three variants of UHMWPE modification is studied: 1) the polyol synthesis, 2) polymer processing silver nanoparticle colloid and 3) reduction of silver salt solution in the UHMWPE polymer matrix. It is found that the last method is optimal. The specific surface of obtained...

  10. THE KINETICS OF METHYL METHACRYLATE POLYMERIZATION INITIATED BY THE VOLATILE PRODUCTS OF A METHYL METHACRYLATE PLASMA

    Institute of Scientific and Technical Information of China (English)

    杨梅林; 马於光; 郑莹光; 沈家骢

    1990-01-01

    It is found that the volatile products of methyl methacrylate plasma can very actively initiate the polymerization of the monomer to produce ultrahigh molecular weight polymers. This polymerization of MMA occurs by a livlng free radical mechanism with instantaneous initiation and monomer transfer.

  11. Extension induced phase separation and crystallization in semidilute solutions of ultra high molecular weight polyethylene

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Imperiali, Luna; Stepanyan, Roman

    2018-01-01

    Abstract We investigate the influence of controlled uniaxial extension on various flow induced phenomena in semidilute solutions of ultra high molecular weight polyethylene (UHMwPE). Concentrations range from 9 w% to 29 w% and the choice of solvent is paraffin oil (PO). The start-up extensional b...

  12. Multi input single output model predictive control of non-linear bio-polymerization process

    Energy Technology Data Exchange (ETDEWEB)

    Arumugasamy, Senthil Kumar; Ahmad, Z. [School of Chemical Engineering, Univerisiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-05-15

    This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.

  13. Influence of the prepolymer molecular weight and free isocyanate content on the rheology of polyurethane modified bitumens

    OpenAIRE

    Carrera Páez, Virginia; Cuadri Vega, Antonio Abad; García Morales, Moisés; Partal López, Pedro

    2014-01-01

    Isocyanate-based modification is lately gaining acceptance as a successful way to give added value to bitumen, a crude oil refining by-product. In order to study the influence of prepolymer type on the rheological properties of the resulting binders, six prepolymers synthesized from polypropylene-glycols (PPG) with varying molecular weight (between 440 and 2425) and different molar excess of a polymeric MDI (4,4’-diphenylmethane diisocyanate) were used. Two modification procedures, either inv...

  14. Exploiting Molecular Weight Distribution Shape to Tune Domain Spacing in Block Copolymer Thin Films.

    Science.gov (United States)

    Gentekos, Dillon T; Jia, Junteng; Tirado, Erika S; Barteau, Katherine P; Smilgies, Detlef-M; DiStasio, Robert A; Fors, Brett P

    2018-04-04

    We report a method for tuning the domain spacing ( D sp ) of self-assembled block copolymer thin films of poly(styrene- block-methyl methacrylate) (PS- b-PMMA) over a large range of lamellar periods. By modifying the molecular weight distribution (MWD) shape (including both the breadth and skew) of the PS block via temporal control of polymer chain initiation in anionic polymerization, we observe increases of up to 41% in D sp for polymers with the same overall molecular weight ( M n ≈ 125 kg mol -1 ) without significantly changing the overall morphology or chemical composition of the final material. In conjunction with our experimental efforts, we have utilized concepts from population statistics and least-squares analysis to develop a model for predicting D sp based on the first three moments of the MWDs. This statistical model reproduces experimental D sp values with high fidelity (with mean absolute errors of 1.2 nm or 1.8%) and provides novel physical insight into the individual and collective roles played by the MWD moments in determining this property of interest. This work demonstrates that both MWD breadth and skew have a profound influence over D sp , thereby providing an experimental and conceptual platform for exploiting MWD shape as a simple and modular handle for fine-tuning D sp in block copolymer thin films.

  15. Early weight changes after birth and serum high-molecular-weight adiponectin level in preterm infants.

    Science.gov (United States)

    Yoshida, Tomohide; Nagasaki, Hiraku; Asato, Yoshihide; Ohta, Takao

    2011-12-01

    Extra-uterine growth retardation (EUGR) is associated with an increased risk for cardiometabolic diseases later in life. The aim of the present study was to examine the relationship between early weight change after birth in preterm infants and adiponectin (adn) multimeric complexes. Subjects included 28 preterm infants born between weeks 24 and 33 of gestation. Serum adn multimeric complexes and the anthropometric parameters were measured in preterm infants at birth and at corrected term. Bodyweight (BW) decreased during the first week of life, with birthweight restored at approximately 19 days after birth. Nineteen of the subjects had EUGR at corrected term. Total (T)-adn, high-molecular-weight (H)-adn, and the ratio of H-adn to T-adn (H/T-adn) were significantly elevated at corrected term than at birth. Postmenstrual age, birthweight, birth length and lowest BW after birth were positively correlated with H-adn and H/T-adn. Weight reduction after birth was negatively correlated with H-adn. Age to restore birthweight was negatively correlated with T-adn, H-adn and H/T-adn. Stepwise multiple regression analysis indicated age to restore birthweight as the major predictor of T-adn and H-adn. Early weight changes after birth may alter serum adn level in preterm infants at corrected term. The appropriate nutritional support in the early postnatal period could reduce the prevalence of EUGR and the future risk for cardiometabolic diseases. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  16. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization

  17. Molecular Weight and Structural Properties of Biodegradable PLA Synthesized with Different Catalysts by Direct Melt Polycondensation

    Directory of Open Access Journals (Sweden)

    Hyung Woo Lee

    2015-09-01

    Full Text Available Production of biodegradable polylactic acid (PLA from biomassbased lactic acid is widely studied for substituting petro-based plastics or polymers. This study investigated PLA production from commercial lactic acid in a batch reactor by applying a direct melt polycondensation method with two kinds of catalyst, γ-aluminium(III oxide (γ-Al2O3 or zinc oxide (ZnO, in reduced pressure. The molecular weight of the synthesized PLA was determined by capillary viscometry and its structural properties were analyzed by functional group analysis using FT-IR. The yields of polymer production with respect to the theoretical conversion were 47% for γ-Al2O3 and 35% for ZnO. However, the PLA from ZnO had a higher molecular weight (150,600 g/mol than that from γ-Al2O3 (81,400 g/mol. The IR spectra of the synthesized PLA from both catalysts using polycondensation show the same behavior of absorption peaks at wave numbers from 4,500 cm-1 to 500 cm-1, whereas the PLA produced by two other polymerization methods – polycondensation and ring opening polymerization –showed a significant difference in % transmittance intensity pattern as well as peak area absorption at a wave number of 3,500 cm-1 as –OH vibration peak and at 1,750 cm-1 as –C=O carbonyl vibrational peak.

  18. Synthesis of indenyllanthanide amides: the effective initiators for polymerization of methyl methacrylate

    Institute of Scientific and Technical Information of China (English)

    赵群; 姚英明; 沈琪

    2000-01-01

    Diisopropylamido bisindenyl lanthanides ( C9H7)2LnN( i-Pr)2(Ln=Gd (1), Y(2), Er (3)) were successfully synthesized in satisfied yield by the reaction of Ln(N(i-Pr)2)3(THF) with indene in 1:2 molar ratio in toluene. All of the complexes exhibit very high catalytic activity in the polymerization of methyl methacrylate. The resulting polymers have narrow molecular weight distributions and syndiotacticity.

  19. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures

    International Nuclear Information System (INIS)

    Boonchan, S.; Britz, M.L.; Stanley, G.A.

    2000-01-01

    This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10,201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO 2 by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization, and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula

  20. Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers

    KAUST Repository

    Himmelberger, Scott

    2014-10-28

    © 2014 American Chemical Society. Model semiconducting polymer blends of well-controlled molecular weight distributions are fabricated and demonstrated to be a simple method to control intermolecular disorder without affecting intramolecular order or degree of aggregation. Mobility measurements exhibit that even small amounts of low molecular weight material are detrimental to charge transport. Trends in charge carrier mobility can be reproduced by a simple analytical model which indicates that carriers have no preference for high or low molecular weight chains and that charge transport is limited by interchain hopping. These results quantify the role of long polymer tie-chains and demonstrate the need for controlled polydispersity for achieving high carrier mobilities.

  1. Determination of low molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography

    Science.gov (United States)

    Fahey, Robert C.; Newton, Gerald L.

    1988-01-01

    Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.

  2. Research and development of basic technologies for next-generation industry. Ultimate evaluation report on research and development of highly crystalline polymeric material; Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Kokesshosei kobunshi zairyo saishu kenkyu kaihatsu hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-05-01

    Basic technologies are developed involving highly crystalline polymeric materials comparable to metals in dynamic property even when used singly. The aim is to expand the application scope of polymeric materials including those designed as structural materials so that their light weight, high resistance to corrosion, and excellent machinability may be utilized in various fields. Target performance includes an elastic modulus under bending force of 100GPa or more in anisotropic materials and 50GPa or more in isotropic materials, a linear expansion coefficient of 5 times 10{sup -5}/degrees C or less, and a thermal deformation temperature of 180 degrees C or more. Tasks faced in relation to film or molded articles of anisotropic materials are the rigid molecular design, molding method including molecular orientation control, and molecular complex technology; and, in isotropic materials, the strengthening of interaction between molecules, establishment of molding methods, and equipping materials with high machinability. After a 10-year/3-phase development endeavors, the initially intended goals are sufficiently achieved. To be mentioned are achievements involving the generation of multidimensionally bound diacetylene polymeric crystals, higher elastic modulus and moldability provided to polyarylate materials, magnetic field orientation, ultrahigh-elasticity layered body, and organic-inorganic ionically bonded complex material, etc. (NEDO)

  3. Purification of a large molecular weight transglutaminase substrate from liver plasma membranes

    International Nuclear Information System (INIS)

    Slife, C.W.; Morris, G.S.; Tyrrell, D.J.

    1986-01-01

    Transglutaminases are enzymes which catalyze the covalent crosslinking of proteins by forming epsilon(γ-glutamyl)lysine isopeptide linkages. In earlier studies, the authors reported that a large molecular weight protein aggregate in rat liver plasma membranes served as a substrate for a plasma membrane-associated transglutaminase. The enzyme specifically incorporated a lysine analog, [ 3 H]putrescine, into a protein complex which remained at the top of an acrylamide gel upon electrophoresis in SDS and reducing agents. The complex has now been isolated by extracting the plasma membranes with detergent (octylglucoside) resuspending the detergent insoluble residues in 6 M guanidine HCl and chromatographing the residue on a 4% agarose column in 6 M guanidine HCl. Most of the radioactivity is found in the void volume fractions from the column. SDS polyacrylamide gel electrophoresis shows that these fractions contain mostly proteins that do not enter the acrylamide gel. Since this purification procedure is essentially the same as that used to isolate a rat hepatocyte adhesion factor from rat liver plasma membranes it is possible that the large molecular weight transglutaminase substrate and the adhesion factor are contained in the same protein aggregate

  4. Polymerization of Various Lignins via Immobilized Myceliophthora thermophila Laccase (MtL

    Directory of Open Access Journals (Sweden)

    Daniela Huber

    2016-08-01

    Full Text Available Enzymatic polymerization of lignin is an environmentally-friendly and sustainable method that is investigated for its potential in opening-up new applications of one of the most abundant biopolymers on our planet. In this work, the laccase from Myceliophthora thermophila was successfully immobilized onto Accurel MP1000 beads (67% of protein bound to the polymeric carrier and the biocatalyzed oxidation of Kraft lignin (KL and lignosulfonate (LS were carried out. Fluorescence intensity determination, phenol content analysis and size exclusion chromatography were performed in order to elucidate the extent of the polymerization reaction. The collected results show an 8.5-fold decrease of the LS samples’ fluorescence intensity after laccase-mediated oxidation and a 12-fold increase of the weight average molecular weight was obtained.

  5. Hemorrhagic Shock and Surgical Stress Alter Distribution of Labile Zinc within High and Low Molecular Weight Plasma Fractions

    Science.gov (United States)

    Kelly, Edward; Mathew, Jeff; Kohler, Jonathan E.; Blass, Amy L.; Soybel, David I.

    2012-01-01

    Zinc ions (Zn2+) are essential for tissue repair following injury or stress. We hypothesize that during such stresses Zn2+ is redistributed to labile pools in plasma components. Here we tested this hypothesis utilizing a novel assay to monitor labile Zn2+ in plasma in hemorrhagic shock. Adult rats in the Shock (S) group underwent hemorrhage and resuscitation. Blood samples were drawn at baseline, 1 hr, 4 hrs and 24 hrs. The Surgical Control (SC) group was anesthetized and instrumented, but not bled. Albumin, total Zn2+, and labile Zn2+ levels were assayed in plasma. Binding capacity for Zn2+ was assessed in high (HMW) and low (LMW) molecular weight pools. Significant decreases in total Zn2+ were observed by 24 hrs, in both S and SC groups. Albumin levels were significantly reduced in the S group at 1 hr and 4 hr but restored at 24 hrs; significant changes were not observed in other groups. In whole plasma, labile Zn2+ levels were stable initially in the S and SC groups, but declined at 24 hrs. In the HMW pool, marked and significant impairment of binding was noted throughout all time periods following the shock period in the S group. Such changes were observed in the SC group of less intensity and duration. These experiments suggest that Shock alters affinity of plasma proteins for Zn2+, promoting delivery to peripheral tissues during periods of increased Zn2+ utilization. PMID:22744307

  6. Radiation-induced in-source polymerization of acrylonitrile in urea canal complex

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Abe, Toshihiko; Kobayashi, Yasushi.

    1975-01-01

    Effect of reaction conditions on the radiation-induced in-source polymerization of acrylonitrile in urea canal complex and the properties of obtained polyacrylonitriles were investigated. The results were discussed in comparison with previously reported of the post-polymerization experiments. 1) Rate of polymerization and viscosity (eta sub(sp)/C) were the highest when the molar ratio of acrylonitrile to urea in canal complex was unity. Similar results were also obtained in the post-polymerization. However, eta sub(sp)/C exhibited different behavior on polymerization time in comparison with post-polymerization. 2) The initial rate (Rsub(p)) of polymerization is proportional to the dose rate (I) at low dose rate, but at high dose rates (above 2x10 5 r/hr) makes Rsub(p) proportional to Isup(0.5). 3) Molecular weight distribution become broader with increasing polymerization time and is broad as compared with those obtained by the post-polymerization. G-value of initiation of polymerization decreased with increasing polymerization time. These value was larger than the that obtained in the post-polymerization. 4) The stereoregularity of the polyacrylonitriles was independent of the molar ratio of acrylonitrile to urea in the canal complex and conversion. 5) The appearance of the polyacrylonitriles observed by the scanning electron microscope changed from curled string to extended one as the polymerization proceed. 6) Infrared spectrum revealed the ketenimine and cyclization structure in the polyacrylonitriles obtained below -100 0 C. The content of these abnormal structures increased with increasing conversion. (auth.)

  7. Topochemical approach to efficiently produce main-chain poly(bile acid)s with high molecular weights.

    Science.gov (United States)

    Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao

    2011-07-21

    Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.

  8. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk.

    Science.gov (United States)

    Cheema, M; Mohan, M S; Campagna, S R; Jurat-Fuentes, J L; Harte, F M

    2015-08-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. High molecular weight hyaluronic acid increases the differentiation potential of the murine chondrocytic ATDC5 cell line.

    Science.gov (United States)

    Sato, Eiichi; Ando, Takashi; Ichikawa, Jiro; Okita, Genki; Sato, Nobutaka; Wako, Masanori; Ohba, Tetsuro; Ochiai, Satoshi; Hagino, Tetsuo; Jacobson, Richard; Haro, Hirotaka

    2014-12-01

    Osteoarthritis (OA) is a group of common, chronic, and painful inflammatory joint diseases. One important finding in OA patients is a remarkable decrease in the molecular weight of hyaluronic acid (HA) in the synovial fluid of affected joints. Therapeutic HA is available to patients in most parts of the world as a viscosupplementation product for the treatment of OA. Previous clinical reports show that high molecular weight HA (HMWHA) more effectively relieves pain than low molecular weight HA (LMWHA). However, the mechanism behind this finding remains unclear. In this study, we investigated whether a LMWHA (Low-0.9 MDa) and two types of HMWHA (High-1.9 MDa and 6 MDa) differentially affected chondroregulatory action. We tested this using ATDC5 cell, a murine chondrocytic cell line widely used in culture systems to study chondrogenic differentiation. We found that HMWHA, especially hylan G-F 20 (High-6 MDa), significantly induced aggrecan and proteoglycan accumulation, nodule formation, and mRNA expression of chondrogenic differentiation markers in a time- and dose-dependent manner. In addition, we showed that HMWHA prevented TNF-α induced inhibition of chondrogenic differentiation, with no effect on cell proliferation or viability. These results reveal that HMWHA significantly promotes chondrogenic differentiation of ATDC5 cells in vitro, and suggest that HMWHA plays a significant chondroregulatory role in vivo. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Radiation processing of polymer emulsion, (4). Radiation-induced emulsion polymerization of methyl methacrylate at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo; Katakai, Akio; Ito, Hiroshi; Hayakawa, Naohiro; Araki, Kunio (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment)

    1983-06-01

    Methyl methacrylate was polymerized in emulsion by Co-60 ..gamma..-rays below 19 deg C in a batch reactor by using sodium lauryl sulfate as emulsifier. The conversion-time curves of the polymerization system showed two rate regions, i.e., a fact conversion rate in early stage, and a much slower rate in latter stage. The change in rate occurred at about 70 % conversion. The molecular weight of product polymer decreased with increasing conversion during the course of polymerization in latter stage, in contrast to the behavior in early stage. The distribution of the monomer in emulsion in latter stage was evaluated by nuclear magnetic resonance technique. The decrease of the molecular weight with conversion is due to the radiation-induced degradation of product polymer accelerated by the monomers absorbed in the polymer particles.

  11. Polymerization of MMA catalyzed by different novel mixed ligand lanthanocene { ( Cp ) ( Cl ) LnSchiff-base (THF) }, ( COT ) Ln(methoxyethylindenyl) (THF)/Al (i-Bu) 3 systems

    Institute of Scientific and Technical Information of China (English)

    YOUSAF, Muhammad; QIAN, Yan-Long; FENG, Zuo-Feng; HUANG, Ji-Ling; SUN, Jun-Quan; PAN, Zhi-Da

    2000-01-01

    This article deals that the rare earth metal complexes along with Al (i-Bu)3 can catalyze the polymerization of methyl methacrylate (MMA) into high molecular weight poly(MMA) along with narrow molecular weight distributions (MWD). A typical example wan mentioned in the case of {Cp(Cl)Sm Schiff-base(THF)} which expresses maximum (conv.%= 55.46 and Mn=354×103) efficiency along with narrow MWD(Mw/Mn<2) at 60°C. The resulting polymer was partially syndiotactic (>60%). The effect of the catalyst, temperature, catalyst/MMA molar ratio, catalyst/Al(i-Bu)3 molar ratio on the polymerization of MMA at 60°C were also investigated.

  12. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  13. Electrophoretic analysis of different human growth hormone preparations:characterization and molecular weight estimation of isohormones and other proteic components

    International Nuclear Information System (INIS)

    Schwarz, I.

    1979-01-01

    Twelve human growth hormone (hGH) preparations were studied on analytical polyacrilamide gel electrophoresis with the purpose of evaluating degree of homogeneity of the extracts, the geometric mean radius (R) sup(-) and the molecular weight (MW) of the protein hormone. A standard curve was used for ten proteins of known molecular weight, where the square root of the retardation coefficient (K sub(R)) was plotted against R sup(-). Five isohormones were identified and defined as charge isomers, based on their different relative free mobility and on their similar R sup(-)(1.81-1.97 nm) and MW (20300-26000 d) values. The heterogeneity of all preparations was due to the presence in general of three isohormones. In five preparations, isohormones B, C 1 and C 2 , were predominant. In recent hGH (IEA) preparations by the method of ROOS, the isohormones C 2 , D and E were identified while in an older one, isohormones E and E 1 were detected. From two to five minor components were found in all samples. Moreover the same type of analysis was carried out on several fractions from protein peaks II and III eluting from Sephadex G 100 purification of three hGH (IEA) extracts. The isohormones start to appear in peak II and their relative concentration is in agreement with the peak III profile read at 280 nm. Practically all secondary components were present in peak II and in most of peak III, showing a type of heterogeneity due to hGH polymeric forms and a relatively small presence of contaminants. (Author) [pt

  14. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides

    KAUST Repository

    Zhao, Junpeng

    2015-02-04

    Organocatalytic ring-opening polymerization (ROP) reactions of three renewable 5-alkyl δ-lactones, namely δ-hexalactone (HL), δ-nonalactone (NL) and δ-decalactone (DL), using diphenyl phosphate (DPP) were investigated. Room temperature, together with a relatively high monomer concentration (≥3 M), was demonstrated to be suitable for achieving a living ROP behavior, a high conversion of the lactone, a controlled molecular weight and a low dispersity of the polyester. HL, containing a 5-methyl substituent, showed a much higher reactivity (polymerization rate) and a slightly higher equilibrium conversion than the compounds with longer alkyl substituents (NL and DL). The effectiveness of DPP-catalyzed ROP of 5-alkyl δ-lactones facilitated the one-pot performance following the t-BuP4-promoted ROP of monosubstituted epoxides. It has been shown in an earlier study that substituted polyethers acted as "slow initiators" for non-substituted lactones. However, efficient initiations were observed in the present study as substituted lactones were polymerized from the substituted polyethers. Therefore, this reinforces the previously developed "catalyst switch" strategy, making it a more versatile tool for the synthesis of well-defined polyether-polyester block copolymers from a large variety of epoxide and lactone monomers. © The Royal Society of Chemistry 2015.

  15. Disappearance of a low molecular weight heparin fraction (CY 216) differs from standard heparin in rabbits

    International Nuclear Information System (INIS)

    Boneu, B.; Buchanan, M.R.; Caranobe, C.; Gabaig, A.M.; Dupouy, D.; Sie, P.; Hirsh, J.

    1987-01-01

    In previous studies, we have reported that standard heparin (SH) was cleared by two mechanisms, a saturable mechanism which predominated at low doses (less than 100 anti-factor Xa U/kg) and a non-saturable mechanism which predominated at higher doses, when the first mechanism became saturated. In this study, we examined the importance of these two mechanisms in the disappearance of a low molecular weight heparin fraction (LMWH) (CY 216), by comparing the pharmacokinetics and the pharmacodynamics of a wide range of doses of SH and CY 216 (1.5 to 500 anti-factor Xa U/kg). Pharmacokinetics was measured as the disappearance of 125 I-radiolabelled SH or CY 216. Pharmacodynamics was measured as the disappearance of the anti-factor Xa activity of SH and CY 216. We found that the saturable mechanism contributed little to the disappearance of CY 216 and that it was cleared predominantly by the non-saturable mechanism at all doses tested. Thus, at low doses (less than 100 anti-factor Xa U/kg), SH was cleared more rapidly than CY 216, whereas at higher doses, CY 216 was cleared more rapidly than SH. We conclude that the mechanism of disappearance of LMWH's differ significantly from those of SH, and that this difference may explain the apparent prolonged anticoagulant activity of LMWH's within the therapeutic range doses

  16. Effect of γ-ray irradiation on polystyrene, poly (methyl methacrylate), and their copolymer prepared by cast polymerization

    International Nuclear Information System (INIS)

    Tsukame, Takahiro; Kutsuzawa, Michio; Saitoh, Hideki; Shibasaki, Yoshio

    1998-01-01

    Effect of γ-ray irradiation on polystyrene (PS), poly(methyl methacrylate) (PMMA), and their copolymer prepared by cast polymerization was studied using size exclusion chromatography. The main chemical reactions in irradiated polymers were crosslinking and scission. Conversion of all irradiated samples increased regardless of the concentration of initiator (AIBN) used for cast polymerization. On γ-ray irradiation, the molecular weight of PS increased and its distribution broadened, whereas the molecular weight of PMMA decreased. These phenomena should be attributable to the competitive occurrence of scission and crosslinking in PS by γ-ray irradiation, whereas scission occurred mainly in PMMA. (author)

  17. Application of molecular sieves in the fractionation of lemongrass oil from high-pressure carbon dioxide extraction

    Directory of Open Access Journals (Sweden)

    L. Paviani

    2006-06-01

    Full Text Available The aim of this work was to study the feasibility of simultaneous process of high-pressure extraction and fractionation of lemongrass essential oil using molecular sieves. For this purpose, a high-pressure laboratory-scale extraction unit coupled with a column with four different stationary phases for fractionation: ZSM5 zeolite, MCM-41 mesoporous material, alumina and silica was employed. Additionally, the effect of carbon dioxide extraction variables on the global yield and chemical composition of the essential oil was also studied in a temperature range of 293 to 313 K and a pressure range of 100 to 200 bar. The volatile organic compounds of the extracts were identified by a gas chromatograph coupled with a mass spectrometer detector (GC/MS. The results indicated that the extraction process variables and the stationary phase exerted an effect on both the extraction yield and the chemical composition of the extracts.

  18. Study on radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. II. Radiation-induced polymerization of methyl methacrylate adsorbed on several inorganic substances

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1975-01-01

    The radiation-induced polymerization of methyl methacrylate (MMA) adsorbed on such inorganic substances as silica gel, white carbon, silicic acid anhydride, zeolite, and activated alumina was carried out to compare with the case of styrene. The rate of radiation-induced polymerization adsorbed on inorganic substances was high compared with that of radiation-induced bulk state polymerization, as was the case with styrene. Inorganic substrates which contain aluminum as a component element are more likely to be grafted than those which consist of SiO 2 alone, as with styrene. The molecular weight distribution of unextractable polymer and extractable polymer differs, depending on the type of inorganic substance. Experiments by a preirradiation method were carried out in case of silica gel, white carbon, and silicic acid anhydride. GPC spectra of the polymer obtained were different from those of polymer formed by the simultaneous irradiation method. It appears that all the unextractable polymer is grafted to the inorganic surface with chemical bond

  19. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.

    Science.gov (United States)

    Easter, Quinn T; Blum, Suzanne A

    2017-10-23

    Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Epoxy/anhydride thermosets modified with end-capped star polymers with poly(ethyleneimine cores of different molecular weight and poly(ε–caprolactone arms

    Directory of Open Access Journals (Sweden)

    C. Acebo

    2015-09-01

    Full Text Available Multiarm star polymers, with a hyperbranched poly(ethyleneimine (PEI core and poly(ε-caprolactone (PCL arms end-capped with acetyl groups were synthesized by ring-opening polymerization of ε-caprolactone from PEI cores of different molecular weight. These star polymers were used as toughening agents for epoxy/anhydride thermosets. The curing process was studied by calorimetry, thermomechanical analysis and infrared spectroscopy. The final properties of the resulting materials were determined by thermal and mechanical tests. The addition of the star polymers led to an improvement up to 130% on impact strength and a reduction in the thermal stresses up to 55%. The structure and molecular weight of the modifier used affected the morphology of the resulting materials. Electron microscopy showed phase-separated morphologies with nano-sized fine particles well adhered to the epoxy/anhydride matrix when the higher molecular weight modifier was used.

  1. Dietary factors associated with plasma high molecular weight and total adiponectin levels in apparently healthy women

    NARCIS (Netherlands)

    Yannakoulia, Mary; Yiannakouris, Nikos; Melistas, Labros; Fappa, Evaggelia; Vidra, Nikoletta; Kontogianni, Meropi D; Mantzoros, Christos S

    2008-01-01

    OBJECTIVE: Our aim was to investigate associations between dietary factors and high molecular weight (HMW) as well as total adiponectin in a sample of apparently healthy adult Mediterranean women. DESIGN AND METHODS: Two hundred and twenty women were enrolled in this study. Anthropometric and body

  2. Polymerization kinetics of monomers of importance in biomedicine investigated by γirradiation

    International Nuclear Information System (INIS)

    Bebe, S.; Monteiro, M.J.; Ganachaud, F.; Napper, D.H.; Gilbert, R.G.

    1998-01-01

    Gamma irradiation was used to initiate the polymerization of NIPAM in water below the LCST. Conversion as a function of time was followed with automated tracking dilatometry. The data were used to show that classical kinetics were obeyed. Relaxation experiments (i.e. where the dilatometer is removed from the γ source) then provide reliable values for the reactivity ratio, k i /k p , the ratio of the termination to propagation rate coefficients. It was found at a monomer concentration of 0.442 M, k i k p had a value of 8.1 at 27 deg C . This suggested that either k t was very low, perhaps because the radicals are constrained to some complexation or aggregation mechanism, or k p is extraordinarily high. Pulsed laser polymerizations (in conjunction with size exclusion chromatography, SEC) were performed to obtain accurate k p values for NIPAM in water over a temperature range below the LCST (2 - 27 deg C ). The main difficulty with most functional polymers is obtaining quantitative data from SEC. PNIPAM is no exception to the rule, and meticulous care in molecular weight analysis was necessary. Special insights were developed into sample preparation to obtain accurate molecular weight distributions (MWD). The value k p was found to be high, but not extraordinarily so, and hence the high value of k t must be due to a constrained polymer radical

  3. Low molecular weight salts combined with fluorinated solvents for electrolytes

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W.

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twice less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.

  4. Micellization of symmetric PEP-PEO block copolymers in water molecular weight dependence

    CERN Document Server

    Kaya, H; Allgaier, J; Stellbrink, J; Richter, D

    2002-01-01

    The micellar behaviour of the amphiphilic block copolymer poly-(ethylene-propylene)-poly-(ethylene oxide) (PEP-PEO) in aqueous solution has been studied with small-angle neutron scattering. The polymer was studied over a wide range of molecular weights, always keeping the volume of the blocks equal. The scattering behaviour of the solutions showed that a morphological transition takes place upon lowering the molecular weight. The high molecular weight block copolymers all build spherical, monodisperse micelles with large aggregation numbers. At low molecular weights, however, cylindrical micelles are formed. An interesting intermediate case is represented by the PEP2-PEO2 system, in which a morphological transition occurs upon dilution. (orig.)

  5. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khezri, Khezrollah, E-mail: kh.khezri@ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of); Roghani-Mamaqani, Hossein [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of)

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  6. Microcystin‐LR Detected in a Low Molecular Weight  Fraction from a Crude Extract of Zoanthus sociatus

    Directory of Open Access Journals (Sweden)

    Dany Domínguez‐Pérez

    2017-03-01

    Full Text Available Cnidarian constitutes a great source of bioactive compounds. However, research involving peptides from organisms belonging to the order Zoanthidea has received very little attention, contrasting to the numerous studies of the order Actiniaria, from which hundreds of toxic peptides and proteins have been reported. In this work, we performed a mass spectrometry analysis of a low molecular weight (LMW fraction previously reported as lethal to mice. The low molecular weight (LMW fraction was obtained by gel filtration of a Zoanthus sociatus (order Zoanthidea crude extract with a Sephadex G‐50, and then analyzed by matrix‐assisted laser desorption/ionization time‐of‐flight/time‐of‐flight (MALDI‐TOF/TOF mass spectrometry (MS in positive ion reflector mode from m/z 700 to m/z 4000. Afterwards, some of the most intense and representative MS ions were fragmented by MS/MS with no significant results obtained by Protein Pilot protein identification software and the Mascot algorithm search. However, microcystin masses were detected by mass‐matching against libraries of non‐ribosomal peptide database (NORINE. Subsequent reversed‐phase C18 HPLC (in isocratic elution mode and mass spectrometry analyses corroborated the presence of the cyanotoxin Microcystin‐LR (MC‐LR. To the best of our knowledge, this finding constitutes the first report of MC‐LR in Z. sociatus, and one of the few evidences of such cyanotoxin in cnidarians.

  7. Magnetic Levitation To Characterize the Kinetics of Free-Radical Polymerization.

    Science.gov (United States)

    Ge, Shencheng; Semenov, Sergey N; Nagarkar, Amit A; Milette, Jonathan; Christodouleas, Dionysios C; Yuan, Li; Whitesides, George M

    2017-12-27

    This work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization. MagLev also made it possible to monitor polymerization in the presence of solids (aramid fibers, and carbon fibers, and glass fibers). MagLev offers a new analytical technique to materials and polymer scientists that complements other methods (even those based on density, such as dilatometry), and will be useful in investigating polymerizations, evaluating inhibition of polymerizations, and studying polymerization in the presence of included solid materials (e.g., for composite materials).

  8. Preparation of the low molecular weight serum proteome for mass spectrometry analysis.

    Science.gov (United States)

    Waybright, Timothy J; Chan, King C; Veenstra, Timothy D; Xiao, Zhen

    2013-01-01

    The discovery of viable biomarkers or indicators of disease states is complicated by the inherent complexity of the chosen biological specimen. Every sample, whether it is serum, plasma, urine, tissue, cells, or a host of others, contains thousands of large and small components, each interacting in multiple ways. The need to concentrate on a group of these components to narrow the focus on a potential biomarker candidate becomes, out of necessity, a priority, especially in the search for immune-related low molecular weight serum biomarkers. One such method in the field of proteomics is to divide the sample proteome into groups based on the size of the protein, analyze each group, and mine the data for statistically significant items. This chapter details a portion of this method, concentrating on a method for fractionating and analyzing the low molecular weight proteome of human serum.

  9. Structural modifications of ultra-high molecular weight polyethylene (UHMWPE) processed in attritor type mill

    International Nuclear Information System (INIS)

    Gabriel, Melina C.; Carvalho, Benjamim de M.; Pinheiro, Luis A.; Cintho, Osvaldo M.; Capocchi, Jose D.T.; Kubaski, Evaldo T.

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a polyethylene that has a high melt viscosity, hence its processing becomes very difficult. High-energy mechanical milling provides physical and chemical changes in polymers that have been studied recently. In order to study these changes in UHMWPE, powder of this polymer was mechanical milled in attritor type mill with a ball-to-powder weight ratio of 40:1 for 8 hours, varying the rotation speed: 200, 300, 400, 500 e 600 rpm. The polymer was characterized by scanning electron microscopy (SEM) and xray diffraction (XRD). From the XRD results it was noted that as the rotation speed increased the monoclinic phase also increased up to 500 rpm. For 600 rpm, the amount of monoclinic phase apparently decreased. At this rotation speed, the deformation rate probably increased the process temperature, allowing the monoclinic phase to return to its initial structural orthorhombic form. (author)

  10. FY 1999 research and development of technologies for creating original high-function materials. Development of technologies for functionalized materials for power generating facilities (Report on the R and D results of controlling precise structures of polycondesed systems); 1999 nendo dokusoteki kokino zairyo sosei gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo koseinoka zairyo gijutsu kaihatsu (shukugokei seimitsu kozo seigyo no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research and development project is implemented for the polymerization catalysts and precise polymerization processes which can freely control the primary structures, e.g., molecular weight, regularity, branching and terminal group structures, of the polymers produced by polycondensation and ring-opening polymerization, in order to drastically improve their functions, and the FY 1999 results are reported. The basic studies on the precise polycondensation successfully lead to chemoselective synthesis of polymers by the direct polymerization, and synthesis of polyamides of narrow molecular weight distribution and high-molecular-weight aliphatic polyesters. The other items studied include precisely, regularly sequential polymerization by amine activation, innovative synthesis of polycarbonate, precise control of branching structures, regioselective oxidative coupling polymerization, and matrix polycondensation. The basic studies on the controlled ring-opening polymerization cover cationic ring-opening polymerization behavior of 6-membered thiocarbonate derivative having an ester group, to generalize the polymerization controlled by neighboring group participation. The other items studied include precise control of branching structures, molecular weights, network polymer structures, and polymer unit sequences. (NEDO)

  11. Analysis of the effects of reaction parameters upon the molecular weight of an aromatic poly(hydrazide) through experimental design

    International Nuclear Information System (INIS)

    Gomes, Dominique; Pinto, Jose Carlos; Borges, Cristiano P.; Nunes, Suzana P.

    2001-01-01

    Samples of an aromatic poly(hydrazide) were synthesized through low temperature solution polycondensation reactions. Monomers were characterized by nuclear magnetic resonance (NMR) and thermal analysis. The polymer material was characterized by intrinsic viscosity measurements and by NMR. The thermal behavior of the polymer samples was studied by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of various factors that influence the course of the polymerization reaction, such as concentration of monomer and electrolyte (LiCl) in the reaction medium, purity of the monomers, reaction temperature and reaction time, were investigated. Reaction conditions were then optimized in order to allow the preparation of high molecular weight polymer resins. Values of intrinsic viscosity obtained for the poly(hydrazide) in N-methyl-2-pyrrolidone were as high as 1.51 dL/g. (author)

  12. Effect of electron beam radiation on the structure and mechanical properties of ultra high molecular weight polyethylene fibers

    International Nuclear Information System (INIS)

    Li Shujun; Sun Weijun; Liu Xiuju; Gao Yongzhong; Li Huisheng

    1998-01-01

    Ultra high molecular weight polyethylene fibers have been crosslinked by electron beam. The structure and mechanical properties of them have been investigated in different irradiation atmospheres. The obtained results show that the gel content and crosslinking density increase with the increase of dose, the swelling ratio and average molecular weight of crosslinked net decrease with the increase of dose, the tensile strength and failure elongation decrease with the increase of dose, the tensile modulus increases with the increase of dose. When the samples are irradiated in air, vacuum and acetylene atmospheres, the effect of irradiation in acetylene atmosphere is best

  13. Flexible Polymeric Materials Prepared by Radiation Copolymerization of MMA/ Pyridene in the Presence of Acrylic Acid

    International Nuclear Information System (INIS)

    Hegazy, D.E.

    2014-01-01

    Gamma-irradiation initiated copolymerization of methyl methacrylate (MMA) and pyridine (Py) was carried out at room temperature.To improve the obtained copolymer functionality and molecular weight, acrylic acid (AA) was incorporated into the mixture during irradiation. The samples were characterized by thermal analysis techniques (DSC and TGA), Fourier transform infrared spectroscopy (FTIR) and UV-VIS spectrometry. Molecular weight of the obtained copolymers was determined using gel permeation chromatography (GPC). The variation of refractive index and surface hardness with the molecular weight were also investigated. The results obtained show a decrease in glass transition temperature and the hardness (shore D) of the supporting matrix for P(MMA/Py) copolymers with a pronounced increase of the molecular weight. The addition of PAA into the matrix enhanced the hardness and shifts the glass transition temperature to a little higher temperature with a pronounced decrease in the melting temperature. The obtained materials maintain good structural order and flexibility resulting from the softening effect of pyridine onto MMA matrix. The studies performed made possible the selection of experimental conditions to be adequate for the production of new co polymeric materials with high molecular weight that having good flexibility and transparent properties.

  14. Three Arm Star Homo- And Co-Polymers Via Atom Transfer Radical Polymerization

    International Nuclear Information System (INIS)

    Amin, A.; Sobh, R.A.; Ayoub, M.M.H.

    2005-01-01

    Star homo and co-polymers of some vinyl monomers such as methylmethacrylate, butylmethacrylate and styrene (MMA, BMA, St.) were prepared using N, N, N', N' tetramethylethylenediamine ligand/ CuBr catalytic system via atom transfer radical polymerization (ATRP). Three armed benzene based core was successfully used as initiator. Low polydispersities and regular molecular weight values were obtained in most cases especially at low conversions. MMA and BuMA showed comparable behavior where controlled and true ATRP was observed even at the high conversions. However, styrene monomer recorded irregular high polydispersities at high conversions in spite of the relatively low molecular weight values. 1HNMR confirmed the structures of the resulting polymers. Transmission Electron microscope (TEM) proved the nano-structure of the star polymers. The thermal behavior of the MMA star homo and copolymers was studied. The effect of the star shape on the thermal behavior was very clear with respect to the linear ones

  15. Chemometric Analysis of High Molecular Mass Glutenin Subunits and Image Data of Bread Crumb Structure from Croatian Wheat Cultivars

    OpenAIRE

    Zorica Jurković; Rezica Sudar; Damir Magdić; Daniela Horvat; Želimir Kurtanjek

    2002-01-01

    The aim of this work is to investigate functional relationships among wheat properties, high molecular mass (weight) (HMW) glutenin subunits and bread quality produced from eleven Croatian wheat cultivars by chemometric analysis. HMW glutenin subunits were fractionated by sodium dodecylsulfate polyacrylamid gel electrophoresis (SDS-PAGE) and subsequently analysed by scanning densitometry in order to quantify HMW glutenin fractions. Wheat properties are characterised by four variables: protein...

  16. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing; Tang, Wei; Xia, Ru; Feng, Xiaoshuang; Chen, Peng; Qian, Jiasheng; Song, Changjiang

    2015-01-01

    experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight

  17. Extraction of High Molecular Weight DNA from Fungal Rust Spores for Long Read Sequencing.

    Science.gov (United States)

    Schwessinger, Benjamin; Rathjen, John P

    2017-01-01

    Wheat rust fungi are complex organisms with a complete life cycle that involves two different host plants and five different spore types. During the asexual infection cycle on wheat, rusts produce massive amounts of dikaryotic urediniospores. These spores are dikaryotic (two nuclei) with each nucleus containing one haploid genome. This dikaryotic state is likely to contribute to their evolutionary success, making them some of the major wheat pathogens globally. Despite this, most published wheat rust genomes are highly fragmented and contain very little haplotype-specific sequence information. Current long-read sequencing technologies hold great promise to provide more contiguous and haplotype-phased genome assemblies. Long reads are able to span repetitive regions and phase structural differences between the haplomes. This increased genome resolution enables the identification of complex loci and the study of genome evolution beyond simple nucleotide polymorphisms. Long-read technologies require pure high molecular weight DNA as an input for sequencing. Here, we describe a DNA extraction protocol for rust spores that yields pure double-stranded DNA molecules with molecular weight of >50 kilo-base pairs (kbp). The isolated DNA is of sufficient purity for PacBio long-read sequencing, but may require additional purification for other sequencing technologies such as Nanopore and 10× Genomics.

  18. In situ intercalative polymerization of poly (ε-caprolactone)/ 12-amino lauric acid-modified clay nano composites

    International Nuclear Information System (INIS)

    Reyes, Larry; Monserate, Juvy J.; Sumera, Florentino

    2013-01-01

    Polymer/layered silicate nano composites were prepared by in situ intercalative polymerization method from from ε-caprolactone (ε-CL) and 12-amino lauric acid modified montmorillonite (AMMT). The organo-modified clay was investigated for its capacity to facilitate ring-opening polymerization of ε-caprolactone within its silicate layers. The effect of varying the organo-modified clay loading (5%, 10% and 15% by weight) on the molecular weight of the poly (ε-caprolactone) (PCL) product was assessed by gel-permeation chromatography. The molecular weight of the polymer with different clay loadings ranged from ∼30,000 g/mo to ∼70,000 g/mol, where the 10% loading produced the highest molecular weight. Fourier Transform infrared (FTIR), and 1 H and 13 C Nuclear Magnetic Resonance (NMR) Spectroscopy were conducted to probe the composition of the polymer and the catalytic activity of AMMT to polymerize ε-CL. FTIR analyses showed two medium intensity and narrow CO-O stretching vibrations for the PCL products at around 1240 cm-1 and 1160 cm-1, which are attributed to ester skeletal backbone. 1 HNMR spectroscopic analysis revealed signals at 4.07 ppm and 3.66 ppm which can be attributed to εmethylene of caprolactone and methyl of ending ester group, respectively. The formation of the nano composites were assessed by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), XRD analyses showed a broadening and disappearance of diffraction peak of AMMT in the nana composite which may indicate the formation of the intercalated and partially exfoliated PCVL/AMMT nana composites. TEM observations corroborated the presence of intercalated and exfoliated layers of AMMT after polymerization. The present work demonstrates that AMMT can be used as an alternative g reen catalyst's for the production of biodegradable polymers, where the in situ intercalative polymerization was employed as a direct method of preparing polymer/layered silicates (author)

  19. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  20. The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS

    International Nuclear Information System (INIS)

    Islam, Ananna; Cho, Yunju; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2013-01-01

    Highlights: • Weathered oils from the Hebei Spirit oil spill and photo degraded oils are compared. • We investigate changes of polar species at the molecular level by 15T FT-ICR MS. • Significant reduction of sulfur class compounds in saturates fraction is observed. • The relative abundance of protonated compounds (presumably basic nitrogen compounds) increase after degradation. • Changes of polar compounds occurred by natural and photo degradation are similar. -- Abstract: Two sets of oil samples, one obtained from different weathering stages of the M/V Hebei Spirit oil spill site and the other prepared by an in vitro photo-degradation experiment, were analyzed and compared at the molecular level by atmospheric pressure photo-ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). For a more detailed comparison at the molecular level, the oil samples were separated into saturate, aromatic, resin, and asphaltene (SARA) fractions before MS analysis. Gravimetric analysis of the SARA fractions revealed a decreased weight percentage of the aromatic fraction and an increased resin fraction in both sets of samples. Molecular-level investigations of the SARA fractions showed a significant reduction in the S 1 class in the saturate fraction and increase of S 1 O 1 class compounds with high DBE values in resin fraction. Levels of N 1 and N 1 O 1 class compounds resulting in protonated ions (presumably basic nitrogen compounds) increased after degradation compared to compounds generating molecular ions (presumably non-basic nitrogen compounds). This study revealed changes occurring in heteroatom polar species of crude oils such as sulfur and nitrogen containing compounds that have not been easily detected with conventional GC based techniques

  1. Broadening of molecular weight distribution of polymers synthesized by metallocene-based dual-site catalysts; Alargamento da distribuicao de massa molar de polimeros sintetizados com catalisadores metalocenicos dual-site

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joao H.Z. dos [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica]. E-mail: jhzds@iq.ufrgs.br; Fisch, Adriano G.; Cardozo, Nilo S.M.; Secchi, Argimiro R. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica

    2008-07-01

    The main topics related to the use of dual-site catalysts in the production of polymers with broad molecular weight distribution are reviewed. The polymerization using dual-site catalysts is more economical and allows to produce a higher quality product than other processes, such as polymer blend and multistage reactors. However, the formulation of these catalysts is quite complicated since the same catalyst must produce distinct polymer grades. In addition, the release of patents concerning the combination of metallocenes and new technologies for polymerization shows that polymerization processes using dual-site catalysts are of current industrial interest. (author)

  2. Consumer Product Chemical Weight Fractions from Ingredient Lists

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data and model predictions supporting the manuscript: Isaacs K.K., Phillips K.A., Biryol D., Dionisio K.L., and Price P. Consumer product chemical weight fractions...

  3. Further developments and field deployment of phosphorus functionalized polymeric scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Malcolm J.; Thornton, Alex R.; Wylde, Jonathan J.; Strachan, Catherine J.; Moir, Gordon [Clariant Oil Services, Muttenz (Switzerland); Goulding, John [John Goulding Consultancy, York (United Kingdom)

    2012-07-01

    monomer distribution, it was important to gauge this effect in reservoir analogues. A reservoir rock will act as a large chromatography column, separating out the scale inhibitor according to molecular weight and phosphorus content. That is the larger molecular weights will adhere more strongly than lower molecular weight fractions, whereas polymer chains containing larger phosphorus functionality will adhere to the rock significantly stronger than those without. Thus it is important to understand if there were components containing phosphorus but did not contribute to the inhibition of scale. In order to study these effects the phosphorus functionalized polymers were tested on very clean sandstone core plugs in a core flood rig. Their adsorption/retention characteristics were studied. The scale inhibitor effluent was analyzed by numerous methods and confirmed by inhibition efficiency measurements. Following successful development, one of the phosphorus functionalized polymeric inhibitors was subject to sequential field-trial in a harsh BaSO{sub 4} scaling, highly naturally fractured North Sea carbonate reservoir. As this was the first deployment of this novel technology the scale inhibitor returns and water chemistry were monitored using a number of methods to assess the efficiency of the inhibitor at mitigating the BaSO{sub 4} risk. A number of previous technologies utilizing phosphorus tagging have resulted in false readings due to anomalous phosphorus signals. The results presented in this paper show a step change with the scale inhibitor analysis by both elemental phosphorus (ICP-OES) and polymer methods (cartridge/Hyamine) showing excellent correlation. Indirect analysis of the scale inhibitor performance by elemental Ba{sup 2+} measurement confirmed the results, as there was no drop in Ba{sup 2+} concentration indicating no significant scaling before the re-squeeze operation was conducted. The phosphorus functionalized inhibitor provided superior performance

  4. Ozonation of humic substances: Effects on molecular weight distributions of organic carbon and trihalomethane formation potential

    International Nuclear Information System (INIS)

    Amy, G.L.; Kuo, C.J.; Sierka, R.A.

    1988-01-01

    Four different sources of humic substances were studied to determine the effects of ozonation on molecular weight distributions, based on dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP). Solutions of two soil-derived fulvic acids and a one soil-derived humic acid, as well as dissolved organic matter (DOM) associated with a natural water source were studied. Both gel permeation chromatography (GPC) and ultrafiltration (UF) were employed to define apparent molecular weight (AMW). Applied ozone doses ranged from 2.0 to 2.5 mg O 3 /mg DOC. Overall samples of untreated and ozonated waters, as well as individual molecular weight fractions, were characterized according to DOC, uv absorbance, and THMFP. Ozonation resulted in a significant disappearance of higher AMW material with a corresponding increase in lower AMW material. Although little overall reduction in DOC concentration was observed, significant overall reductions in UV absorbance and THMFP levels were observed

  5. A Simple Thermoplastic Substrate Containing Hierarchical Silica Lamellae for High-Molecular-Weight DNA Extraction.

    Science.gov (United States)

    Zhang, Ye; Zhang, Yi; Burke, Jeffrey M; Gleitsman, Kristin; Friedrich, Sarah M; Liu, Kelvin J; Wang, Tza-Huei

    2016-12-01

    An inexpensive, magnetic thermoplastic nanomaterial is developed utilizing a hierarchical layering of micro- and nanoscale silica lamellae to create a high-surface-area and low-shear substrate capable of capturing vast amounts of ultrahigh-molecular-weight DNA. Extraction is performed via a simple 45 min process and is capable of achieving binding capacities up to 1 000 000 times greater than silica microparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular Formula and Molecular Weight - NBDC NikkajiRDF | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us NBDC NikkajiRDF Molecular Formula and Molecular Weight Data detail Data name Molecular Formula and Molecul...- Description of data contents This RDF data includes molecular formula and molecular weight of chemical sub...ikkajiRDF_MFMW.tar.gz File size: 404 MB Simple search URL - Data acquisition method The data was converted from data of molecul...ar formulas and molecular weights in Basic Information ( http://dbarchive.biosciencedbc.j... Policy | Contact Us Molecular Formula and Molecular Weight - NBDC NikkajiRDF | LSDB Archive ...

  7. Influence of wood extractives in the polymerization of methyl methacrylate by gamma irradiation

    International Nuclear Information System (INIS)

    Burillo de V, G.; Loyola V, V.M.; Albarran S, G.; Candelas, J.

    1975-01-01

    Those materials that can be extracted from pine or oak by ether, ethanol, methyl methacrylate (MMA), or benzene--alcohol all act as inhibitors in the γ polymerization of MMA--wood composites. It was found that preirradiation of either the wood or of the wood--monomer combination reduces or eliminates the inhibitory effect. The most practical industrial solution to this problem is to increase the dose, thereby achieving high molecular polymer in the composite. However, the presence of a maximum in the molecular weight--dose curves means that each wood--monomer pair may have a different optimum dose

  8. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).

  9. Studies on a microbially derived, high molecular weight inhibitor of plasma cholesteryl ester transfer protein

    International Nuclear Information System (INIS)

    Marschke, C.K.; McGee, J.E.; Melchior, G.W.; Castle, C.K.

    1989-01-01

    The authors have isolated an organism which accumulates an inhibitor of Cholesteryl Ester Transfer Protein (CETP). Purification of 100,000-fold was achieved by ammonium sulfate precipitation followed by Hydroxyl Apatite, Agarose AO.5, and Mono Q (Pharmacia) chromatographies. The use of 14 C-labelled protein molecular weight standards followed by SDS-PAGE revealed some proteolytic activity. However, inhibition of the proteases did not affect the inhibitor potency. The inhibitor has an estimated molecular weight of 40 Kd and appears to exist as two forms. One form was eluted from a Mono Q column by 100 mM NaCl while the other was not bound. Our evidence indicated that the bound form was progressively denatured, or proteolyzed, during storage of the fermentation beer, to the unbound form. Importantly though this molecular change did not affect either inhibitory activity or the apparent molecular weight

  10. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination

    KAUST Repository

    Zhang, Yuetao

    2013-11-27

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (ItBu), 1,3- dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by ItBu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, ItBu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10 000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of Mn = 70-85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed. The ItBu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s -1 and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine

  11. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination

    KAUST Repository

    Zhang, Yuetao; Schmitt, Meghan L.; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene You Xian

    2013-01-01

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (ItBu), 1,3- dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by ItBu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, ItBu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10 000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of Mn = 70-85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed. The ItBu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s -1 and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine

  12. Controlled radical polymerization of acrylates by {gamma}-irradiation in the presence of 1,1-diphenylethene

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zongtao [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang Zhicheng [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)]. E-mail: zczhang@ustc.edu.cn

    2005-12-15

    Poly (butyl acrylate) and poly (methyl acrylate) were successfully prepared in the presence of 1,1-diphenylethene (DPE) by {gamma}-irradiation-induced polymerization in both bulk and solution. The influences of polymerization time, amounts of DPE in system on conversion, molecular weight (MW) and its distribution (M{sub w}/M{sub n}) were studied. The results indicate that the polymerization initiated by {gamma}-irradiation in the presence of DPE shows the character of living radical reaction.

  13. Supramolecular Structure and Mechanical Characteristics of Ultrahigh-Molecular-Weight Polyethylene-Inorganic Nanoparticle Nanocomposites

    International Nuclear Information System (INIS)

    Okhlopkova, T. A.; Borisova, R. V.; Nikiforov, L. A.; Spiridonov, A. M.; Okhlopkova, A. A.; Cho, Jin-Ho; Jeong, Dae-Yong

    2016-01-01

    We investigated the mechanical properties and structure of polymeric nanocomposites (PNCs) with anultrahigh-molecular-weight polyethylene (UHMWPE) matrix and aluminum and silicon oxide and nitride nanoparticle (NP) fillers. Mixing with a paddle mixer or by joint mechanical activation in a planetary mill was used for the PNC preparation. Joint mechanical activation afforded PNCs with better mechanical properties than paddle mixing. Scanning electron microscopy suggested that the poorer mechanical properties can be attributed to the disordered regions and imperfect spherulites in the PNC supramolecular structure arising from paddle mixing. The better mechanical properties observed with joint mechanical activation may derive from the uniform NP distribution in the polymer matrix and absence of disordered regions.

  14. Flexible mechanoprosthesis made from woven ultra-high-molecular-weight polyethylene fibres : proof of concept in a chronic sheep model

    NARCIS (Netherlands)

    Basir, Amir; Grobben, Remco B.; Cramer, Maarten Jan; van Herwaarden, Joost A.; Vink, Aryan; Pasterkamp, Gerard; Kluin, Jolanda; Gründeman, Paul F.

    2017-01-01

    OBJECTIVES: Ultra-high-molecular-weight polyethylene (UHMWPE) fibres are flexible, have high tensile strength, and platelet and bacterial adhesion is low. Therefore, UHMWPE may overcome limitations of current mechanical valves and bioprostheses. In this study, the biocompatibility and functionality

  15. Effects of inhaled high-molecular weight hyaluronan in inflammatory airway disease.

    Science.gov (United States)

    Lamas, Adelaida; Marshburn, Jamie; Stober, Vandy P; Donaldson, Scott H; Garantziotis, Stavros

    2016-10-03

    Cystic fibrosis (CF) is a chronic inflammatory disease that is affecting thousands of patients worldwide. Adjuvant anti-inflammatory treatment is an important component of cystic fibrosis treatment, and has shown promise in preserving lung function and prolonging life expectancy. Inhaled high molecular weight hyaluronan (HMW-HA) is reported to improve tolerability of hypertonic saline and thus increase compliance, and has been approved in some European countries for use as an adjunct to hypertonic saline treatment in cystic fibrosis. However, there are theoretical concerns that HMW-HA breakdown products may be pro-inflammatory. In this clinical pilot study we show that sputum cytokines in CF patients receiving HMW-HA are not increased, and therefore HMW-HA does not appear to adversely affect inflammatory status in CF airways.

  16. Pressure-induced polymerization of P(CN){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Huiyang, E-mail: hgou@ciw.edu, E-mail: tstrobel@ciw.edu; Kim, Duck Young; Strobel, Timothy A., E-mail: hgou@ciw.edu, E-mail: tstrobel@ciw.edu [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, DC 20015 (United States); Yonke, Brendan L. [NRC Postdoctoral Associate, Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375 (United States); Epshteyn, Albert [Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375 (United States); Smith, Jesse S. [High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States)

    2015-05-21

    Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN){sub 3}, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder X-ray diffraction measurements taken during compression show that molecular P(CN){sub 3} is highly compressible, with a bulk modulus of 10.0 ± 0.3 GPa, and polymerizes into an amorphous solid above ∼10.0 GPa. Raman and IR spectra, together with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp{sup 2} character, similar to known carbon nitrides, resulting in a novel phosphorous carbon nitride (PCN) polymeric phase, which is recoverable to ambient pressure.

  17. Flexible mechanoprosthesis made from woven ultra-high-molecular-weight polyethylene fibres: proof of concept in a chronic sheep model

    NARCIS (Netherlands)

    Basir, Amir; Grobben, Remco B.; Cramer, Maarten Jan; van Herwaarden, Joost A.; Vink, Aryan; Pasterkamp, Gerard; Kluin, Jolanda; Gründeman, Paul F.

    2017-01-01

    OBJECTIVES: Ultra-high-molecular-weight polyethylene (UHMWPE) fibres are flexible, have high tensile strength, and platelet and bacterial adhesion is low. Therefore, UHMWPE may overcome limitations of current mechanical valves and bioprostheses. In this study, the bio-compatibility and functionality

  18. Direct Determination of Molecular Weight Distribution of Calf-Thymus DNAs and Study of Their Fragmentation under Ultrasonic and Low-Energy IR Irradiations. A Charge Detection Mass Spectrometry Investigation.

    Science.gov (United States)

    Halim, Mohammad A; Bertorelle, Franck; Doussineau, Tristan; Antoine, Rodolphe

    2018-06-09

    Calf-thymus (CT-DNA) is widely used as binding agent. The commercial samples are known to be "highly polymerized DNA" samples. CT-DNA is known to be fragile in particular upon ultrasonic wave irradiation. Degradation products might have dramatic consequence on its bio-sensing activity, and an accurate determination of the molecular weight distribution and stability of commercial samples is highly demanded. We investigated the sensitivity of charge detection mass spectrometry (CDMS), a single-molecule MS method, both with single-pass and ion trap CDMS ("Benner" trap) modes to the determination of the composition and stability (under multiphoton IR irradiation) of calf-thymus DNAs. We also investigated the changes of molecular weight distributions in the course of sonication by irradiating ultrasonic wave to CT-DNA. We report for the first time, the direct molecular weight (MW) distribution of DNA sodium salt from calf-thymus revealing two populations at high (~10 MDa) and low (~3 MDa) molecular weights. We evidence a transition between the high-MW to the low-MW distribution, confirming that the low-MW distribution results from degradation of CT-DNA. Finally, we report also IRMPD experiments carried out on trapped single-stranded linear DNAs from calf-thymus allowing to extract their activation energy for unimolecular dissociation. We show that single-pass CDMS is a direct, efficient and accurate MS-based approach to determine the composition of calf-thymus DNAs. Furthermore, ion trap CDMS allows us to evaluate the stability (both under multiphoton IR irradiation and in the course of sonication by irradiating ultrasonic wave) of calf-thymus DNAs. This article is protected by copyright. All rights reserved.

  19. Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives.

    Science.gov (United States)

    Simula, Alexandre; Anastasaki, Athina; Haddleton, David M

    2016-02-01

    The synthesis of hydrophilic, thermoresponsive, and zwitterionic polymethacrylates is reported by Cu(0)-mediated reversible deactivation radical polymerization in water and/or water/alcohol mixtures. The predisproportionation of [Cu(I) (PMDETA)Cl] in water prior to initiator and monomer addition is exploited to yield well-defined polymethacrylates with full monomer conversions in 30 min. The addition of supplementary halide salts (NaCl) enables the synthesis of various molecular weight poly[poly(ethylene glycol) methyl ether methacrylate] (PEGMA475) (DPn = 10-80, Mn ≈ 10,000-40 000 g mol(-1)) with full monomer conversion and narrow molecular weight distributions attained in all cases (Đ ≈ 1.20-1.30). A bifunctional PEG initiator (average Mn ≈ 1000 g mol(-1)) is utilized for the polymerization of a wide range of methacrylates including 2-dimethylaminoethyl methacrylate, 2-morpholinoethyl methacrylate, [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, and 2-methacryloyloxyethyl phosphorylcholine. Despite the high water content, high end group fidelity is demonstrated by in situ chain extensions and block copolymerizations with PEGMA475 yielding well-defined functional telechelic pentablock copolymers within 2.5 h. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis,Characterization and Application of Benzyl-substituted Cyclopentadienyl lanthanide Complexes as Catalyst Precursors for the Syndiotactic Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    QIAN,Yan-Long(钱延龙); BALA,Muhammad D.; XIE,Xiao-Min(谢小敏); HUANG,Ji-Ling(黄吉玲)

    2004-01-01

    Benzyl-substituted cyclopentadienyl lanthanide complexes were synthesized and characterized by elemental analysis, MS and IR spectroscopy. The analytical data point out the formation of monomeric, unsolvated complexes.In conjunction with Al(Et)3 as co-catalyst, the title complexes are efficient catalysts for the syndiotactic polymerization of methyl methacrylate. For the complex (C6H5CH2C5H4)2YCI, under the optimum polymerization conditions (60 ℃, n(MMA):n(catalyst):n(co-catalyst)= 1000:1:10), a predominantly syndiotactic (rr=66%) polymer of high molecular weight (Mη = 105000) was obtained.

  1. A fluorescent molecular sensor for pH windows in traditional and polymeric biocompatible micelles: comicellization of anionic species to shift and reshape the ON window.

    Science.gov (United States)

    Cavallaro, Gennara; Giammona, Gaetano; Pasotti, Luca; Pallavicini, Piersandro

    2011-09-12

    A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is, either when neutral or charged. Accordingly, it can be confined at any pH value either in traditional (i.e., low-molecular-weight) nonionic surfactant micelles or inside polymeric, biocompatible micellar containers. Relevant for future applications in vivo, thanks to its strong hydrophobicity, no leakage of the molecular sensor is observed from the polymeric biocompatible micelles. Due to the proximity of the pyridine and amine functions in the molecular structure and the poor hydration inside the micelles, the observed pK(a) values are low so that the ON window is positioned at very low pH values. However, the window can be shifted to biologically relevant values by comicellization of anionic species. In particular, in the micelles of the nonionic surfactant TritonX-100, a shift of the ON window to pH 4-6 is obtained by addition of the anionic sodium dodecyl sulphate surfactant, whose negative charge promotes the stability of the protonated forms of the pyridine and amine fragments. In the case of the polymeric micelles, we introduce the use of the amphiphilic polystyrene sulfonate anionic polyelectrolyte, the comicellization of which induces a shift and sharpening of the ON window that is centered at pH 4. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David; Hadjichristidis, Nikolaos

    2015-01-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization

  3. Vinyl acetate polymerization by ionizing radiation

    International Nuclear Information System (INIS)

    Mesquita, Andrea Cercan

    2002-01-01

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60 Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  4. Separation of both fibrous and globular proteins on the basis of molecular weight using high-performance size exclusion chromatography.

    Science.gov (United States)

    Barden, J A

    1983-11-01

    A high-performance size exclusion liquid chromatographic system has been used to separate proteins with different shapes solely on the basis of their molecular weights. After the effects of ionic and hydrophobic interactions with the stationary phase have been overcome, protein elution is normally governed by their effective size in solution. Conditions are described under which proteins, with isoelectric points within the normal operating pH range of the columns, are eluted independent of their Stokes' radii. Even fibrous proteins with axial ratios of 50 elute according to their known molecular weights over the range 2000-2,000,000.

  5. Selection of side-chain carbons in a high-molecular-weight, hydrophobic peptide using solid-state spectral editing methods

    International Nuclear Information System (INIS)

    Kumashiro, Kristin K.; Niemczura, Walter P.; Kim, Minna S.; Sandberg, Lawrence B.

    2000-01-01

    Solid-state spectral editing techniques have been used by others to simplify 13 C CPMAS spectra of small organic molecules, synthetic organic polymers, and coals. One approach utilizes experiments such as cross-polarization-with-polarization-inversion and cross-polarization-with-depolarization to generate subspectra. This work shows that this particular methodology is also applicable to natural-abundance 13 C CPMAS NMR studies of high-molecular-weight biopolymers. The editing experiments are demonstrated first with model peptides and then with α-elastin, a high-molecular-weight peptidyl preparation obtained from the elastic fibers in mammalian tissue. The latter has a predominance of small, nonpolar residues, which is evident in the crowded aliphatic region of typical 13 C CPMAS spectra. Spectral editing is particularly useful for simplifying the aliphatic region of the NMR spectrum of this elastin preparation

  6. A New Initiator Cholesteryl Chloroformate for Cupper-Based Atom Transfer Radical Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    曹健; 楚娟; 张可达

    2004-01-01

    The polymerization of metyl methacrylate (MMA) was studied in detail by use of CuCl/L as a catalyst and cholesteryl chloroformate (CC) as an initiator. It was found that the atom transfer radical polymerization of MMA could proceed when L equals to a multidentate aliphatic amine ligand, N,N,N',N",N"-penta(methyl acrylate)diethylenetriamine (MA5-DETA), and no polymerization was occurred while L=2,2'-bipyridine and 1,10-phenanthroline. The linear proportionality of the molecular weights to the conversions and straight lines observed in ln[M]0/[M] versus time plots indicated that the present polymerization system had the typical controlled polymerization characteristics.

  7. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    Science.gov (United States)

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. A high molecular weight proteoglycan is differentially expressed during development of the mollusc Concholepas concholepas (Mollusca; Gastropoda; Muricidae).

    Science.gov (United States)

    Brandan, E; González, M; Inestrosa, N C; Tremblay, C; Urrea, R

    1992-12-15

    Incorporation of radioactive sulfate to hatched veliger larvae of the gastropod muricid Concholepas concholepas indicated that over 87% of the sulfated macromolecules were found in the detergent insoluble fraction, rich in extracellular matrix (ECM) components. The sulfated material was solubilized with guanidine salt followed by urea dialysis and fractionated by DEAE-Sephacel chromatography. Three sulfated compounds eluting at 0.7, 1.1, and 3.0 M NaCl, called peaks I, II, and III, respectively, were obtained. The sulfated compound present in peak I was degraded by pronase or sodium alkaline treatment to a small sulfated resistant material, suggesting the presence of a proteoglycan (PG). Filtration analysis on Sephacryl S-500 and SDS-PAGE of the intact PG indicates that it has a high molecular weight (360,000 to over 1 x 10(6)). Monoclonal antibodies (mAb) against this PG were produced. The specificity of one mAb, the 6H2, was demonstrated by size chromatography and ELISA analysis. The epitope recognized by this mAb seems to be present in the core protein of the PG. Both the extent of sulfation and the presence of different sulfated species of PGs were evaluated during the development of this mollusc. A twelvefold increase in the incorporation of sulfate to PGs per milligram of protein was found in veliger larvae compared to blastula-glastula stages. This change correlated well with the differential expression of the sulfated PG present in peak I. Biochemical and immunological analysis indicate that high levels of this PG are found in veliger and trocophore larvae in comparison with blastula-gastrula and early juveniles.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Preparation of Ultrahigh Molecular Weight Polyethylene/Graphene Nanocomposite In situ Polymerization via Spherical and Sandwich Structure Graphene/Sio2 Support

    Science.gov (United States)

    Su, Enqi; Gao, Wensheng; Hu, Xinjun; Zhang, Caicai; Zhu, Bochao; Jia, Junji; Huang, Anping; Bai, Yongxiao

    2018-04-01

    Reduced graphene oxide/SiO2 (RGO/SiO2) serving as a novel spherical support for Ziegler-Natta (Z-N) catalyst is reported. The surface and interior of the support has a porous architecture formed by RGO/SiO2 sandwich structure. The sandwich structure is like a brick wall coated with a graphene layer of concreted as skeleton which could withstand external pressures and endow the structure with higher support stabilities. After loading the Z-N catalyst, the active components anchor on the surface and internal pores of the supports. When the ethylene molecules meet the active centers, the molecular chains grow from the surface and internal catalytic sites in a regular and well-organized way. And the process of the nascent molecular chains filled in the sandwich structure polymerization could ensure the graphene disperse uniformly in the polymer matrix. Compared with traditional methods, the porous spherical graphene support of this strategy has far more advantages and could maintain an intrinsic graphene performance in the nanocomposites.

  10. Reverse atom transfer radical polymerization of methyl methacrylate initiated by AIBN/FeCl3/isophthalic acid system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The reverse ATRP of MMA using AIBN/FeCl3/ isophthalic acid as the initiating system was successfully performed. The new initiating system can be used to synthesize PMMA with high molecular weight and narrow polydis- persity index. The polymerization shows 'living'/controlled characteristics. Compared with other initiating system used in reverse ATRP, the easy availability and non-toxicity of isophthalic acid make it very attractive.

  11. Contribution of low molecular weight phenols to bitter taste and mouthfeel properties in red wines.

    Science.gov (United States)

    Gonzalo-Diago, Ana; Dizy, Marta; Fernández-Zurbano, Purificación

    2014-07-01

    The aim of this study was to explore the relationship between low molecular weight compounds present in wines and their sensory contribution. Six young red wines were fractionated by gel permeation chromatography and subsequently each fraction obtained was separated from sugars and acids by solid phase extraction. Wines and both fractions were in-mouth evaluated by a trained sensory panel and UPLC-MS analyses were performed. The lack of ethanol and proanthocyanidins greatly increased the acidity perceived. The elimination of organic acids enabled the description of the samples, which were evaluated as bitter, persistent and slightly astringent. Coutaric acid and quercetin-3-O-rutinoside appear to be relevant astringent compounds in the absence of proanthocyanidins. Bitter taste was highly correlated with the in-mouth persistence. A significant predictive model for bitter taste was built by means of PLSR. Further research must be carried out to validate the sensory contribution of the compounds involved in bitterness and astringency and to verify the sensory interactions observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evaluation of environmental degradation effects in morphology of ultra-high molecular weight polyethylene (UHMWPE) fibers

    International Nuclear Information System (INIS)

    Vivas, Viviane; Zylberberg, Marcel P.; Cardoso, Andre Luis V.; Pereira, Iaci M.; Weber, Ricardo P.; Suarez, Joao C. Miguez

    2015-01-01

    This study aims to evaluate changes in the morphology of ultra-high molecular weight polyethylene fiber (UHMWPE), before and after exposure to environmental agents. Fibers produced by two different manufacturers were analyzed. To characterize the morphology, we used the technique of small angle x-ray scattering (SAXS). The results demonstrate that the original morphology of the fibers was UHMWPE affected by the defects caused by exposure to environmental agents. (author)

  13. Imidazoline and imidazolidine nitroxides as controlling agents in nitroxide-mediated pseudoliving radical polymerization

    Science.gov (United States)

    Edeleva, M. V.; Marque, S. R. A.; Bagryanskaya, E. G.

    2018-04-01

    Controlled, or pseudoliving, radical polymerization provides unique opportunities for the synthesis of structurally diverse polymers with a narrow molecular-weight distribution. These reactions occur under relatively mild conditions with broad tolerance to functional groups in the monomers. The nitroxide-mediated pseudoliving radical polymerization is of particular interest for the synthesis of polymers for biomedical applications. This review briefly describes one of the mechanisms of controlled radical polymerization. The studies dealing with the use of imidazoline and imidazolidine nitroxides as controlling agents for nitroxide-mediated pseudoliving radical polymerization of various monomers are summarized and analyzed. The publications addressing the key steps of the controlled radical polymerization in the presence of imidazoline and imidazolidine nitroxides and new approaches to nitroxide-mediated polymerization based on protonation of both nitroxides and monomers are considered. The bibliography includes 154 references.

  14. Comparative Ebulliometry: a Simple, Reliable Technique for Accurate Measurement of the Number Average Molecular Weight of Macromolecules. Preliminary Studies on Heavy Crude Fractions Ébulliométrie comparative : technique simple et fiable pour déterminer précisément la masse molaire moyenne en nombre des macromolécules. Etudes préliminaires sur des fractions lourdes de bruts

    Directory of Open Access Journals (Sweden)

    Behar E.

    2006-12-01

    Full Text Available This article is divided into two parts. In the first part, the authors present a comparison of the major techniques for the measurement of the molecular weight of macromolecules. The bibliographic results are gathered in several tables. In the second part, a comparative ebulliometer for the measurement of the number average molecular weight (Mn of heavy crude oil fractions is described. The high efficiency of the apparatus is demonstrated with a preliminary study of atmospheric distillation residues and resins. The measurement of molecular weights up to 2000 g/mol is possible in less than 4 hours with an uncertainty of about 2%. Cet article comprend deux parties. Dans la première, les auteurs présentent une comparaison entre les principales techniques de détermination de la masse molaire de macromolécules. Les résultats de l'étude bibliographique sont rassemblés dans plusieurs tableaux. La seconde partie décrit un ébulliomètre comparatif conçu pour la mesure de la masse molaire moyenne en nombre (Mn des fractions lourdes des bruts. Une illustration de l'efficacité de cet appareil est indiquée avec l'étude préliminaire de résidus de distillation atmosphérique et de résines. En particulier, la mesure de masses molaires pouvant atteindre 2000 g/mol est possible en moins de 4 heures avec une incertitude expérimentale de l'ordre de 2 %.

  15. Microwave-assisted McMurry polymerization utilizing low-valent titanium for the synthesis of poly 2,6-[1,5-bis(dodecyloxy)naphthylene vinylene] (PNV)

    DEFF Research Database (Denmark)

    Thomas, Henrik; Stuhr-Hansen, Nicolai; Westerlund, Fredrik

    2009-01-01

    Poly 2,6-[1,5-bis(dodecyloxy)naphthylene vinylene] is synthesized by microwave-assisted McMurry polymerization utilizing low-valent titanium generated from titanium tetrachloride and zinc. The obtained polymer is fluorescent with an average molecular weight of approximately 65,000 g/mol and a pol......Poly 2,6-[1,5-bis(dodecyloxy)naphthylene vinylene] is synthesized by microwave-assisted McMurry polymerization utilizing low-valent titanium generated from titanium tetrachloride and zinc. The obtained polymer is fluorescent with an average molecular weight of approximately 65,000 g...

  16. High pressure size exclusion chromatography (HPSEC) determination of dissolved organic matter molecular weight revisited: Accounting for changes in stationary phases, analytical standards, and isolation methods

    Science.gov (United States)

    McAdams, Brandon C.; Aiken, George R.; McKnight, Diane M.; Arnold, William A.; Chin, Yu-Ping

    2018-01-01

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.

  17. High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods.

    Science.gov (United States)

    McAdams, Brandon C; Aiken, George R; McKnight, Diane M; Arnold, William A; Chin, Yu-Ping

    2018-01-16

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA 280 ) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA 280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA 280 .

  18. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  19. Modeling the Influence of Diffusion-Controlled Reactions and Residual Termination and Deactivation on the Rate and Control of Bulk ATRP at High Conversions

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Rabea

    2015-04-01

    Full Text Available In high-conversion atom transfer radical polymerization (ATRP, all the reactions, such as radical termination, radical deactivation, dormant chain activation, monomer propagation, etc. could become diffusion controlled sooner or later, depending on relative diffusivities of the involved reacting species. These diffusion-controlled reactions directly affect the rate of polymerization and the control of polymer molecular weight. A model is developed to investigate the influence of diffusion-controlled reactions on the high conversion ATRP kinetics. Model simulation reveals that diffusion-controlled termination slightly increases the rate, but it is the diffusion-controlled deactivation that causes auto-acceleration in the rate (“gel effect” and loss of control. At high conversions, radical chains are “trapped” because of high molecular weight. However, radical centers can still migrate through (1 radical deactivation–activation cycles and (2 monomer propagation, which introduce “residual termination” reactions. It is found that the “residual termination” does not have much influence on the polymerization kinetics. The migration of radical centers through propagation can however facilitate catalytic deactivation of radicals, which improves the control of polymer molecular weight to some extent. Dormant chain activation and monomer propagation also become diffusion controlled and finally stop the polymerization when the system approaches its glass state.

  20. Solubilization of poorly soluble photosensitizer hypericin by polymeric micelles and polyethylene glycol.

    Science.gov (United States)

    Búzová, Diana; Kasák, Peter; Miškovský, Pavol; Jancura, Daniel

    2013-06-01

    Hypericin (Hyp) is a promising photosensitizer for photodiagnostic and photodynamic therapy of cancer. However, Hyp has a large conjugated system and in aqueous solutions forms insoluble aggregates which do not possess biological activity. This makes intravenous injection of Hyp problematic and restricts its medical applications. To overcome this problem, Hyp is incorporated into drug delivery systems which can increase its solubility and bioavailability. One of the possibilities is utilization of polymeric micelles. The most used hydrophilic block for preparation of polymeric micelles is polyethylen glycol (PEG). PEG is a polymer which for its lack of immunogenicity, antigenicity and toxicity obtained approval for use in human medicine. In this work we have studied the solubilization of Hyp aggregates in the presence of PEG-PE and PEG-cholesterol micelles. The concentration of polymeric micelles which allows total monomerization of Hyp corresponds to the critical micellar concentration of these micelles (~10(-6) M). We have also investigated the effect of the molecular weight and concentration of PEG on the transition of aggregated Hyp to its monomeric form. PEGs with low molecular weight ( 2000 g/mol efficiently transform Hyp aggregates to the monomeric state of this photosensitizer.

  1. The distribution of 14C-chitosan by different molecular weight in mice

    International Nuclear Information System (INIS)

    Kim, Kwang Yoon; Kim, Young Ho; Bom, Hee Seung; Kim, Ji Yeul; Kim, Hee Kyung; Roh, Young Bok; Nishimura, Yoshikazu

    1998-01-01

    Chitosan is a nontoxic natural chealtor which was made by chitin, and reduced a contamination of radiostrontium in animals. In this experiment, a different molecular weight of C-14 chitosan was intravenously administered to mice, and then the distribution of C-14 chitosan in the body was observed. Male mice (8 to 10 weeks, body weight of 30 to 35g) of ICR strain were used. C-14 chitosan, mice was sacrificed at the 6th hour, 1st, 3rd, 5th, and 7th day. Beta radioactivities in the blood, liver, kidney, liver, muscle, testis, and urine was measured using a liquid scintillation analyzer. Most of the C-14 chitosan was excreted through urine within 6 hours. Biodistribution of C-14 chitosan was similar despite the difference of molecular weight. Higher distributions of radioactivities were found in the liver, kidney, spleen. The relative concentration in tissue increased for the 6 hours and then decreased. In conclusion, most of C-14 chitosan was excreted through urine despite the difference of molecular weight. and, low molecular weight of C-14 chitosan showed higher distribution than high molecular weight of C-14 chitosan in tissues

  2. Isospecific propylene polymerization with in situ generated bis(phenoxy-amine)zirconium and hafnium single site catalysts.

    Science.gov (United States)

    Makio, Haruyuki; Prasad, Aitha Vishwa; Terao, Hiroshi; Saito, Junji; Fujita, Terunori

    2013-07-07

    Bis(phenoxy-imine) Zr and Hf complexes were activated with (i)Bu3Al or (i)Bu2AlH in conjunction with Ph3CB(C6F5)4 and tested as catalysts for propylene polymerization with emphasis on the enantioselectivity of the isospecific species and the single site polymerization characteristics. The isoselective species was identified as the in situ generated bis(phenoxy-amine) complex whose isoselectivity was sensitive to subtle changes in ligand structure. By employing specific substituents at certain key positions the isotacticity reached an extremely high level comparable to high-end commercial isotactic polypropylenes (Tm > 160 °C). Single site polymerization characteristics depended upon the efficiency and selectivity of the in situ imine reduction which is sensitive to the substituent on the imine nitrogen and the reaction conditions. By using (i)Bu2AlH as a reducing agent, quantitative imine reduction can be achieved with a stoichiometric amount of the reducing agent. This lower alkylaluminum loading is beneficial for the catalyst and significantly enhances the polymerization activity and the molecular weight of the resultant polymer.

  3. Glomerular sieving of high molecular weight proteins in proteinuric rats

    International Nuclear Information System (INIS)

    Bertolatus, J.A.; Abuyousef, M.; Hunsicker, L.G.

    1987-01-01

    To characterize the permeability of the glomerular capillary wall to high molecular weight proteins in normal and proteinuric rats, we determined the glomerular sieving coefficients (GSC) of radioiodinated marker proteins of known size and charge by means of a paired label, tissue accumulation method previously validated in this laboratory. In one group of rats (Series A) the GSCs of 125 I-anionic IgG (aIgG-molecular weight [mol wt] 150,000, pI 4.9) and 131 I-neutral IgG (nIgG-pI 7.4 to 7.6) were measured simultaneously. In Series B, the GSC of a second anionic marker, 131 I-human ceruloplasmin (Crp-mol wt 137,000, pI 4.9) was compared to that of 125 I-nIgG. As in the previous report, the labeled proteins were not degraded or deiodinated during the 20 minute clearance period for GSC determination. Within Series A and B, three subgroups of rats were studied: control saline-infused rats, rats made acutely proteinuric by infusion of the polycation hexadimethrine (HDM), and rats with chronic doxorubicin (Adriamycin-Adria) nephrosis. In the control rats, GSCs for the anionic markers aIgG (Series A) or Crp (Series B) were significantly greater than that of nIgG (both series). These large proteins crossed the filtration barrier by a different pathway from that available to smaller neutral molecules the size of albumin, which in our previous study had a much higher GSC than a native, anionic albumin marker. In a third group of control rats only (Series C), the GSCs of native anionic bovine albumin (BSA) and nIgG were compared directly. The GSC of BSA (0.0029) was only slightly larger than the GSC of nIgG (0.0025), indicating that most of the native albumin crosses the glomerular capillary wall via a nonselective pathway similar to that available to nIgG. The results in the control groups are compatible with recently-described heteroporous models of glomerular size selectivity

  4. CFG-7-P3 : potential of aggregate-associated biodegradation of high-molecular-weight hydrocarbon fractions in crude-oil contaminated soils from a northern Canadian site

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.; Snelgrove, J.; Akbari, A.; Ghoshal, S. [McGill Univ., Montreal, PQ (Canada). Dept. of Civil Engineering and Applied Mechanics

    2010-07-01

    Soil aggregation can limit aerobic hydrocarbon biodegradation rates due to the slower intra-pore diffusion of nutrients, oxygen and hydrocarbons. This study investigated the influence of soil aggregation at a pilot-scale biopile of crude oil-contaminated soil shipped from a site in the Northwest Territories. Attempts were made to stimulate indigenous microbial activity of the hydrocarbon-degrading bacteria through soil aeration and nutrient amendments in a tank maintained at 15 degrees C. Results showed that nutrient amendment significantly enhanced aggregation. After 60 days, approximately 50 per cent of the initial total hydrocarbon productivity (TPH) was reduced in both the treated and untreated biopile. However, a TPH analysis of soil aggregate levels showed that the biodegradation of high weight hydrocarbon fractions in macroaggregates was more significantly reduced in the nutrient-amended soils. Results suggested that the soil particles in the macroaggregates were more loosely clustered, and may have supported enhanced hydrocarbon biodegradation.

  5. Precipitation Polymerization of Methyl Methacrylate by AGET ATRP%MMA的电子活化再生原子转移自由基沉淀聚合

    Institute of Scientific and Technical Information of China (English)

    张守成; 陈永平

    2013-01-01

    Precipitation polymerization of methyl methacrylate (MMA) by AGET ATRP, with cuprous chloride (CuCl2 · 2H2O)/ascorbic acid/PMDETA(C9 H23 N3) as catalyst, and initiated by ethyl bromoacetate in ethanol solution, was carried out. Molecular weight and molecular weight distribution were characterized by GPC. The results show that MMA can be rapidly polymerized with high monomer conversioa PMMA with relative narrow molecular weight distribution can be synthesized. Precipitation polymerization of methyl methacrylate (MMA) by AGET ATRP possesses characteristics of controlled/" living" radical polymerization.%以乙醇为溶剂,氯化铜(CuCl2·2H2O)为催化剂,抗坏血酸为还原剂,溴乙酸乙酯为引发剂,PMDETA为配体,进行了甲基丙烯酸甲酯(MMA)的电子活化再生原子转移自由基(AGET ATRP)沉淀聚合,通过GPC和称重法对聚合物进行表征.结果表明,在这种催化体系中甲基丙烯酸甲酯的转化速率较快,甲基丙烯酸甲酯的AGETATRP沉淀聚合得到了较好的实现,获得了分子量分布较窄的聚合物,并且沉淀聚合实现了产物与催化剂的分离.

  6. Polyisoprene Nanoparticles Prepared by Polymerization in Microemulsion

    Directory of Open Access Journals (Sweden)

    Y. Apolinar

    2010-01-01

    Full Text Available Batch polymerization of isoprene was carried out at 25∘C in a normal microemulsion stabilized with sodium dodecyl sulfate and initiated with the redox couple tert-butyl hydroperoxide/tetraethylene-pentamine. Characterization by transmission electronic microscopy showed that polyisoprene nanoparticles with number-average diameter close to 20 nm were obtained. The low molecular weights obtained, as determined by gel permeation chromatography, were probably due to chain scission as inferred from the oxidative ambient at which polymerization was carried out. Microstructure calculated from infrared spectroscopy data indicates that the obtained polyisoprene contains around 80% total 1,4 units, which is in accordance with its glass transition temperature (-60.8∘C determined by differential scanning calorimetry.

  7. High molecular weight of polysaccharides from Hericium erinaceus against amyloid beta-induced neurotoxicity.

    Science.gov (United States)

    Cheng, Jai-Hong; Tsai, Chia-Ling; Lien, Yi-Yang; Lee, Meng-Shiou; Sheu, Shyang-Chwen

    2016-06-07

    Hericium erinaceus (HE) is a well-known mushroom in traditional Chinese food and medicine. HE extracts from the fruiting body and mycelia not only exhibit immunomodulatory, antimutagenic and antitumor activity but also have neuroprotective properties. Here, we purified HE polysaccharides (HEPS), composed of two high molecular weight polysaccharides (1.7 × 10(5) Da and 1.1 × 10(5) Da), and evaluated their protective effects on amyloid beta (Aβ)-induced neurotoxicity in rat pheochromocytoma PC12 cells. HEPS were prepared and purified using a 95 % ethanol extraction method. The components of HEPS were analyzed and the molecular weights of the polysaccharides were determined using high-pressure liquid chromatography (HPLC). The neuroprotective effects of the polysaccharides were evaluated through a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and an MTT assay and by quantifying reactive oxygen species (ROS) and mitochondrial membrane potentials (MMP) of Aβ-induced neurotoxicity in cells. Our results showed that 250 μg/ml HEPS was harmless and promoted cell viability with 1.2 μM Aβ treatment. We observed that the free radical scavenging rate exceeded 90 % when the concentration of HEPS was higher than 1 mg/mL in cells. The HEPS decreased the production of ROS from 80 to 58 % in a dose-dependent manner. Cell pretreatment with 250 μg/mL HEPS significantly reduced Aβ-induced high MMPs from 74 to 51 % and 94 to 62 % at 24 and 48 h, respectively. Finally, 250 μg/mL of HEPS prevented Aβ-induced cell shrinkage and nuclear degradation of PC12 cells. Our results demonstrate that HEPS exhibit antioxidant and neuroprotective effects on Aβ-induced neurotoxicity in neurons.

  8. Facile Synthesis of Well-Defined MDMO-PPV Containing (TriBlock—Copolymers via Controlled Radical Polymerization and CuAAC Conjugation

    Directory of Open Access Journals (Sweden)

    Neomy Zaquen

    2015-02-01

    Full Text Available A systematic investigation into the chain transfer polymerization of the so-called radical precursor polymerization of poly(p-phenylene vinylene (PPV materials is presented. Polymerizations are characterized by systematic variation of chain transfer agent (CTA concentration and reaction temperature. For the chain transfer constant, a negative activation energy of −12.8 kJ·mol−1 was deduced. Good control over molecular weight is achieved for both the sulfinyl and the dithiocarbamate route (DTC. PPVs with molecular weights ranging from thousands to ten thousands g·mol−1 were obtained. To allow for a meaningful analysis of the CTA influence, Mark–Houwink–Kuhn–Sakurada (MHKS parameters were determined for conjugated MDMO-PPV ([2-methoxy-5-(3',7'-dimethyloctyloxy]-1,4-phenylenevinylene to α = 0.809 and k = 0.00002 mL·g−1. Further, high-endgroup fidelity of the CBr4-derived PPVs was proven via chain extension experiments. MDMO-PPV-Br was successfully used as macroinitiator in atom transfer radical polymerization (ATRP with acrylates and styrene. A more polar PPV counterpart was chain extended by an acrylate in single-electron transfer living radical polymerization (SET-LRP. In a last step, copper-catalyzed azide alkyne cycloaddition (CuAAC was used to synthesize block copolymer structures. Direct azidation followed by macromolecular conjugation showed only partial success, while the successive chain extension via ATRP followed by CuAAC afforded triblock copolymers of the poly(p-phenylene vinylene-block-poly(tert-butyl acrylate-block-poly(ethylene glycol (PPV-b-PtBuA-b-PEG.

  9. The effects of polymer molecular weight on filament thinning and drop breakup in microchannels

    International Nuclear Information System (INIS)

    Arratia, P E; Cramer, L-A; Gollub, J P; Durian, D J

    2009-01-01

    We investigate the effects of fluid elasticity on the dynamics of filament thinning and drop breakup processes in a cross-slot microchannel. Elasticity effects are examined using dilute aqueous polymeric solutions of molecular weight (MW) ranging from 1.5x10 3 to 1.8x10 7 . Results for polymeric fluids are compared to those for a viscous Newtonian fluid. The shearing or continuous phase that induces breakup is mineral oil. All fluids possess similar shear-viscosity (∼0.2 Pa s) so that the viscosity ratio between the oil and aqueous phases is close to unity. Measurements of filament thickness as a function of time show different thinning behavior for the different aqueous fluids. For Newtonian fluids, the thinning process shows a single exponential decay of the filament thickness. For low MW fluids (10 3 , 10 4 and 10 5 ), the thinning process also shows a single exponential decay, but with a decay rate that is slower than for the Newtonian fluid. The decay time increases with polymer MW. For high MW (10 6 and 10 7 ) fluids, the initial exponential decay crosses over to a second exponential decay in which elastic stresses are important. We show that the decay rate of the filament thickness in this exponential decay regime can be used to measure the steady extensional viscosity of the fluids. At late times, all fluids cross over to an algebraic decay which is driven mainly by surface tension.

  10. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    International Nuclear Information System (INIS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B.L.; Guha, Sujoy K.

    2010-01-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  11. The ratio of high-molecular weight adiponectin and total adiponectin differs in preterm and term infants.

    Science.gov (United States)

    Yoshida, Tomohide; Nagasaki, Hiraku; Asato, Yoshihide; Ohta, Takao

    2009-05-01

    Adiponectin consists of three subspecies (high-, middle- and low-molecular weight adiponectin). Among these, high-molecular weight adiponectin (H-adn) is suggested to be an active form of this protein. To assess the relationship between H-adn and postnatal growth in preterm infants (PIs), serum H-adn and total adiponectin (T-adn) were measured in 46 PIs at birth and at corrected term, and 26 term infants (TI) at birth. T-adn and H-adn concentrations, and the ratio of H-adn to T-adn (H/T-adn) were significantly greater in TI and PI at corrected term than in PI at birth (p adn and H-adn concentrations in PI at corrected term were similar to those in TI, but H/T-adn in PI at corrected term was less than that in TI (p adn and serum concentrations of T- and H-adn in PI at corrected term were different from those in TI. These data suggest that quality of early postnatal growth in PIs is different from that in normally developed TI. Postnatal growth accompanying adipose tissue similar to TI may be important for PI to prevent future development of cardiovascular disease.

  12. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. High-pressure synthesis of CuBa2Ca3Cu4O10+δ superconductor from precursors prepared by a polymerized complex method

    International Nuclear Information System (INIS)

    Aoba, Tomoya; Bizen, Takeshi; Suzuki, Tsuneo; Nakayama, Tadachika; Suematsu, Hisayuki; Niihara, Koichi; Katsumata, Tetsuhiro; Inaguma, Yoshiyuki

    2011-01-01

    Samples of a CuBa 2 Ca 3 Cu 4 O 10+ δ superconductor were synthesized under a high pressure of 5 GPa at 1100-1200degC for 30 min using precursors produced by solid-state reaction and polymerized complex methods. Compared with the precursors prepared by the solid-state reaction method, the precursors produced by the polymerized complex method have low grain sizes. The superconductive transition temperature of the samples prepared using precursors made by the polymerized complex method was found to be 113 K. The volume fractions of the superconducting phase in the samples prepared using precursors made by the solid-state reaction and polymerized complex methods were 49 and 36%, respectively. From these results, precursors made by the polymerized complex method can be used in the high-pressure synthesis of superconductors similarly to those made by the solid-state reaction method. (author)

  14. Polymethylene-based copolymers by polyhomologation or by its combination with controlled/living and living polymerizations

    KAUST Repository

    Zhang, Hefeng

    2014-01-20

    Polyhomologation, recently developed by Shea, is a borane-initiated living polymerization of ylides leading to linear polymethylenes (C1 polymerization) with controlled molecular weight, low polydispersity, and well-defined structures. In this Review, the copolyhomologation of different ylides as well as the combination of polyhomologation with controlled/living (nitroxide-mediated, atom transfer radical, reversible addition-fragmentation chain-transfer) and living (ring opening, anionic) polymerizations is discussed. Polyhomologation of ylides, in combination with living and controlled/living polymerizations, leads to a plethora novel well-defined polymethylene (polyethylene)-based polymeric materials, which are very important for understanding/improving the behavior of industrial polyethylenes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    Science.gov (United States)

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Living Polycondensation: Synthesis of Well-Defined Aromatic Polyamide-Based Polymeric Materials

    KAUST Repository

    Alyami, Mram Z.

    2016-11-01

    Chain growth condensation polymerization is a powerful tool towards the synthesis of well-defined polyamides. This thesis focuses on one hand, on the synthesis of well-defined aromatic polyamides with different aminoalkyl pendant groups with low polydispersity and controlled molecular weights, and on the other hand, on studying their thermal properties. In the first project, well-defined poly (N-octyl-p-aminobenzoate) and poly (N-butyl-p-aminobenzoate) were synthesized, and for the first time, their thermal properties were studied. In the second project, ethyl4-aminobenzoate, ethyl 4-octyl aminobenzoate and 4-(hydroxymethyl) benzoic acid were used as novel efficient initiators of ε-caprolactone with t-BuP2 as a catalyst. Macroinitiator and Macromonomer of poly (ε-caprolactone) were synthesized with ethyl 4-octyl aminobenzoate and ethyl 4-aminobenzoate as initiators to afford polyamide-block-poly (ε-caprolactone) and polyamide-graft-poly (ε-caprolactone) by chain growth condensation polymerization (CGCP). In the third project, a new study has been done on chain growth condensation polymerization to discover the probability to synthesize new polymers and studied their thermal properties. For this purpose, poly (N-cyclohexyl-p-aminobenzoate) and poly (N-hexyl-p-aminobenzoate) were synthesized with low polydispersity and controlled molecular weights.

  17. Preclinical studies of lymphographic applilcation of 99mTc-dextrans of different molecular weight

    International Nuclear Information System (INIS)

    Lamka, J.; Kvetina, J.; Kafka, P.

    1986-01-01

    In a preclinical investigation on rabbits the distribution was tested of dextrans of two molecular weights (40,000 and 70,000) with regard to their use as a carrier in indirect lymphography. The tests showed that both 99m Tc-dextrans achieve high ratios of lymph/blood levels. It is suggested that for clinical work it is better to use dextran with a molecular weight of 70,000 than that with a molecular weight of 40,000. (author)

  18. Purification of two high molecular weight proteases from rabbit reticulocyte lysate

    International Nuclear Information System (INIS)

    Hough, R.; Pratt, G.; Rechsteiner, M.

    1987-01-01

    The authors have purified two large proteases from rabbit reticulocyte lysate. The enzymes are so similar in their chromatographic behavior that each is the only significant contaminant of the other during the final stages of purification. At pH 7.8, both hydrolyze 125 I-α-casein and 4-methylcoumaryl-7-amide (MCA) derivatives with tyrosine, phenylalanine or arginine at the P 1 position. The larger, ATP-dependent enzyme degrades ubiquitin-lysozyme conjugates, but it does not degrade unmodified lysozyme. Hydrolysis of Suc-Leu-Leu-Val-Tyr-MCA by this enzyme is also stimulated two-fold in the presence of ATP. The protease has a molecular weight of 950,000 based on sedimentation, gel filtration and non-denaturing PAGE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the protease is composed of a number of subunits with molecular masses between 32 and 110 kDa. Densitometric analysis showed equivalent amounts of the two larger chains, and the presence of one copy of each in the native enzyme would be consistent with an M/sub r/ of 950,000. The smaller protease has a molecular weight of 700,000 and is composed of 8 to 10 subunits ranging from 21,000 to 32,000. It cleaves ubiquitin-lysozyme conjugates only slightly, and hydrolysis of conjugates or fluorogenic peptide substrates is not stimulated by ATP. This protease appears similar, if not identical, to the multicatalytic protease complex first purified by Wilk and Orlowski

  19. Sensory and chromatographic evaluations of water soluble fractions from air-dried sausages

    DEFF Research Database (Denmark)

    Henriksen, Anders Peter; Stahnke, Marie Louise Heller

    1997-01-01

    Low molecular weight water soluble compounds were extracted from Danish salami, Italian sausage, and Spanish Chorizo. The extracts were fractionated by gel filtration chromatography revealing peptides with a molecular weight less than 4200 Dalton. Fractions consisting of smaller peptides and free...... amino acids had enhanced savory taste impressions described as mainly bouillon, bitter, sour, salty and plastic with odor notes of boiled potato. Determination of amino acids in the fractions before and after hydrolysis revealed the presence of mainly hydrophilic peptides in all fractions. Partial least...

  20. Silyl Ketene Acetals/B(C6F53 Lewis Pair-Catalyzed Living Group Transfer Polymerization of Renewable Cyclic Acrylic Monomers

    Directory of Open Access Journals (Sweden)

    Lu Hu

    2018-03-01

    Full Text Available This work reveals the silyl ketene acetal (SKA/B(C6F53 Lewis pair-catalyzed room-temperature group transfer polymerization (GTP of polar acrylic monomers, including methyl linear methacrylate (MMA, and the biorenewable cyclic monomers γ-methyl-α-methylene-γ-butyrolactone (MMBL and α-methylene-γ-butyrolactone (MBL as well. The in situ NMR monitored reaction of SKA with B(C6F53 indicated the formation of Frustrated Lewis Pairs (FLPs, although it is sluggish for MMA polymerization, such a FLP system exhibits highly activity and living GTP of MMBL and MBL. Detailed investigations, including the characterization of key reaction intermediates, polymerization kinetics and polymer structures have led to a polymerization mechanism, in which the polymerization is initiated with an intermolecular Michael addition of the ester enolate group of SKA to the vinyl group of B(C6F53-activated monomer, while the silyl group is transferred to the carbonyl group of the B(C6F53-activated monomer to generate the single-monomer-addition species or the active propagating species; the coordinated B(C6F53 is released to the incoming monomer, followed by repeated intermolecular Michael additions in the subsequent propagation cycle. Such neutral SKA analogues are the real active species for the polymerization and are retained in the whole process as confirmed by experimental data and the chain-end analysis by matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS. Moreover, using this method, we have successfully synthesized well-defined PMMBL-b-PMBL, PMMBL-b-PMBL-b-PMMBL and random copolymers with the predicated molecular weights (Mn and narrow molecular weight distribution (MWD.

  1. Effect of Molecular Weight on the Properties of Liquid Epoxidized Natural Rubber Acrylate (LENRA)/ Silica Hybrid Composites

    International Nuclear Information System (INIS)

    Eda Yuhana Ariffin; Azizan Ahmad; Dahlan Mohd; Mahathir Mohamed

    2011-01-01

    This paper reports on the effect of molecular weight on the morphological and mechanical properties of liquid epoxidized natural rubber acrylate (LENRA)/ silica hybrid composites prepared by sol-gel technique. The sol-gel reaction was conducted at different concentration of tetraethyl orthosilicate (TEOS), used as a precursor of silica. TEOS were introduced in 10, 20, 30, 40 and 50 parts per hundred rubber (phr) in the composites. Two different molecular weights of ENR were used to study the effect of molecular weight on the mechanical and morphological properties of the compounds. These compounds were cured by ultraviolet (UV) irradiation. The mechanical properties were studied through pendulum hardness and scratch tests. Higher molecular weight of ENR showed better mechanical properties than lower molecular weight. Transmission electron microscope was used to determine the silica size and to study the distribution and dispersion of the silica particles. High molecular weight showed greater distribution and dispersion of silica particles with diameter of 13 - 256 nm. Morphological and mechanical properties of LENRA/ silica hybrid composites were improved by using high molecular weight of ENR. (author)

  2. High Molecular Weight Isoforms of Growth Hormone In Cells of the Immune System

    Science.gov (United States)

    Weigent, Douglas A.

    2013-01-01

    A substantial body of research exists to support the idea that cells of the immune system produce growth hormone (GH). However, the structure and mechanism of action of lymphocyte-derived GH continues to remain largely unknown. Here we present the results of Western analysis of whole cell extracts showing that different molecular weight isoforms of GH of approximately 100 kDa, 65 kDa, and 48 kDa can be detected in primary mouse cells of the immune system and in the mouse EL4 cell line. The identity of the 65 kDa and 48 kDa isoforms of GH were confirmed by mass spectrometry. The various isoforms were detected in both enriched T and B spleen cell populations. The large molecular weight isoform appears to reside primarily in the cytoplasm whereas the lower molecular weight 65 kDa and 48 kDa isoforms were detected primarily in the nucleus. These results also suggest that GH isoforms are induced by oxidative stress. In EL4 cells overexpressing GH, the expression of luciferase controlled by a promoter containing the antioxidant response element is increased almost three-fold above control. The data suggest that the induction of isoforms of the GH molecule in cells of the immune system may be an important mechanism of adaptation and/or protection of lymphoid cells under conditions of oxidative stress. PMID:21741628

  3. Synthesis and Characterization of Novel Polymethylene-Based 3-Miktoarm Star Copolymers by Combining Polyhomologation with Other Living Polymerizations

    KAUST Repository

    Altaher, Maryam

    2015-01-01

    Polyethylene (PE) is produced in a huge scale globally and has plenty of desirable properties. It is used in coating, packaging, and artificial joint replacements. The growing need for high performance polyethylene led to the development of new catalysts, monomers and polymerizations. The synthesis of polymethylene (equivalent to polyethylene) by living polyhomologation opened the way to well-defined polymethylenes-based polymeric materials with controlled structure, molecular weight and narrow polydispersity. Such model polymers are substantial to study the structure-properties relationships. This research presents a new strategy based on the in situ formation of B-thexyl-silaboracyclic serving as initiating sites for the polyhomologation of dimethylsulfoxonium methylide. Combination with metal-free ring-opening polymerization (ROP) of ɛ-caprolactone (CL) and atom transfer radical polymerization (ATRP) of styrene led to three polymethylene-based 3-miktoarm stars copolymers PCL(PM-OH)2, Br-PCL(PM-OH)2 and PS(PM-OH)2.

  4. Synthesis and Characterization of Novel Polymethylene-Based 3-Miktoarm Star Copolymers by Combining Polyhomologation with Other Living Polymerizations

    KAUST Repository

    Altaher, Maryam

    2015-05-01

    Polyethylene (PE) is produced in a huge scale globally and has plenty of desirable properties. It is used in coating, packaging, and artificial joint replacements. The growing need for high performance polyethylene led to the development of new catalysts, monomers and polymerizations. The synthesis of polymethylene (equivalent to polyethylene) by living polyhomologation opened the way to well-defined polymethylenes-based polymeric materials with controlled structure, molecular weight and narrow polydispersity. Such model polymers are substantial to study the structure-properties relationships. This research presents a new strategy based on the in situ formation of B-thexyl-silaboracyclic serving as initiating sites for the polyhomologation of dimethylsulfoxonium methylide. Combination with metal-free ring-opening polymerization (ROP) of ɛ-caprolactone (CL) and atom transfer radical polymerization (ATRP) of styrene led to three polymethylene-based 3-miktoarm stars copolymers PCL(PM-OH)2, Br-PCL(PM-OH)2 and PS(PM-OH)2.

  5. Urinary high molecular weight matrix metalloproteinases as non-invasive biomarker for detection of bladder cancer

    OpenAIRE

    Mohammed, Mohammed A; Seleim, Manar F; Abdalla, Mohga S; Sharada, Hayat M; Abdel Wahab, Abdel Hady A

    2013-01-01

    Background Matrix Metalloproteinases (MMPs) are key molecules for tumor growth, invasion and metastasis. Over-expression of different MMPs in tumor tissues can disturb the homeostasis and increase the level of various body fluids. Many MMPs including high molecular weights (HMWs) were detected in the urine of prostate and bladder cancer patients. Our aim here is to assess the usefulness of HMW MMPs as non invasive biomarkers in bilharzial bladder cancer in Egyptian patients. Methods The activ...

  6. POLYMERIZATION OF METHYL METHACRYLATE WITH ETHYLENE BRIDGED HETERODINUCLEAR METALLOCENE OF SAMARIUM AND TITANIUM-STUDY ON SYNERGISM AND KINETICS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Comparison of MMA polymerization results with samarocene chloride, titanocene chloride and the title heterodinuclear (Sm-Ti) catalyst, respectively, showed synergism in the Sm-Ligand-Ti system, which ob viously influenced the polymerization behaviors, for example, of yielding higher activity and higher molecular weight polymer. Kinetic studies on polymerization of MMA with ethylene bridged samarocene and titanocene chloride/M(i-Bu) 3 showed that the polymerization rate was first-order on the catalyst concentration, and 1.9- order on the monomer. The overall activation energy measured was 52.8 kJ/mol.

  7. Relationship of molecular weight distribution profile of unreduced gluten protein extracts with quality characteristics of bread.

    Science.gov (United States)

    Chaudhary, Nisha; Dangi, Priya; Khatkar, B S

    2016-11-01

    A statistical correlation was established among the molecular weight distribution patterns of unreduced gluten proteins and physicochemical, rheological and bread-making quality characteristics of wheat varieties. Size exclusion chromatography fractionated the gluten proteins apparently into five peaks. Peak I signified glutenins (30-130kDa), peak II as gliadins (20-55kDa), peak III as very low molecular weight monomeric gliadins (10-28kDa), peak IV and V, collectively, as albumins and globulins (bread loaf volume (r=0.848(∗∗)); however, peak II had negative (r=-0.818(∗∗)) impact. Bread firmness increased with increment in peak II (r=0.625(∗∗)), and decreased with accretion in peak I (r=-0.623(∗∗)). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Polystyrene Microbeads by Dispersion Polymerization: Effect of Solvent on Particle Morphology

    Directory of Open Access Journals (Sweden)

    Lei Jinhua

    2014-01-01

    Full Text Available Polystyrene microspheres (PS were synthesized by dispersion polymerization in ethanol/2-Methoxyethanol (EtOH/EGME blend solvent using styrene (St as monomer, azobisisobutyronitrile (AIBN as initiator, and PVP (polyvinylpyrrolidone K-30 as stabilizer. The typical recipe of dispersion polymerization is as follows: St/Solvent/AIBN/PVP = 10 g/88 g/0.1 g/2 g. The morphology of polystyrene microspheres was characterized by the scanning electron microscopy (SEM and the molecular weights of PS particles were measured by the Ubbelohde viscometer method. The effect of ethanol content in the blend solvent on the morphology and molecular weight of polystyrene was studied. We found that the size of polystyrene microspheres increased and the molecular weight of polystyrene microspheres decreased with the decreasing of the ethanol content in the blend solvent from 100 wt% to 0 wt%. What is more, the size monodispersity of polystyrene microspheres was quite good when the pure ethanol or pure 2-Methoxyethanol was used; however when the blend ethanol/2-Methoxyethanol solvent was used, the polystyrene microspheres became polydisperse. We further found that the monodispersity of polystyrene microspheres can be significantly improved by adding a small amount of water into the blend solvent; the particles became monodisperse when the content of water in the blend solvent was up to 2 wt%.

  9. Polymeric reaction of polymer-monomer system for pressure sensitive adhesives by low energy electron beam

    International Nuclear Information System (INIS)

    Takiguchi, R.; Uryu, T.

    1985-01-01

    Application of low-energy electron beam to non-solvent type pressure sensitive adhesives is investigated. The adhesive properties such as peel strength and holding time (dead-load strength) were closely related to the reaction of acrylate polymer-monomer systems. The reaction behavior is elucidated by combining the measurement of gel fraction, infrared spectrum of gel, and the molecular weight distribution detected by gel permeation chromatography. It was important for the production of pressure sensitive adhesives by electron beam that the adhesive with high peel strength and long holding time is composed of a proper combination of three factors, that is, about 35% gel fraction, 25% monomer units in gel, and 15% graft efficiency by irradiating the polymer-monomer system containing low molecular weight poly (butyl acrylate). (author)

  10. Endogenous Plasma Peptide Detection and Identification in the Rat by a Combination of Fractionation Methods and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Fabrice Bertile

    2007-01-01

    Full Text Available Mass spectrometry-based analyses are essential tools in the field of biomarker research. However, detection and characterization of plasma low abundance and/or low molecular weight peptides is challenged by the presence of highly abundant proteins, salts and lipids. Numerous strategies have already been tested to reduce the complexity of plasma samples. The aim of this study was to enrich the low molecular weight fraction of rat plasma. To this end, we developed and compared simple protocols based on membrane filtration, solid phase extraction, and a combination of both. As assessed by UV absorbance, an albumin depletion 99% was obtained. The multistep fractionation strategy (including reverse phase HPLC allowed detection, in a reproducible manner (CV [1] 30%–35%, of more than 450 peaks below 3000 Da by MALDI-TOF/MS. A MALDI-TOF/MS-determined LOD as low as 1 fmol/μL was obtained, thus allowing nanoLC-Chip/ MS/MS identification of spiked peptides representing ∼10–6% of total proteins, by weight. Signal peptide recovery ranged between 5%–100% according to the spiked peptide considered. Tens of peptide sequence tags from endogenous plasma peptides were also obtained and high confidence identifications of low abundance fibrinopeptide A and B are reported here to show the efficiency of the protocol. It is concluded that the fractionation protocol presented would be of particular interest for future differential (high throughput analyses of the plasma low molecular weight fraction.

  11. The effect of monomer molecular weight on grafting reaction

    International Nuclear Information System (INIS)

    Wu Minghong; Ding Zhongli; Ma Zueteh

    1995-01-01

    In this paper, some condensed ethylene glycol acrylate monomers with different molecular weight being grafted to the PE film by means of pre-irradiation is reported. The effect of molecular weight of monomer on grafting reaction and the hydrophilicity of grafting sample have been discussed. The experimental results show: molar degrees of grafting decreased non-linearly with the increasement of molecular weight of monomer, the grafting reaction of polymer is greater effected by the swelling degree of PE film, the greater the swelling degree of grafting material, the higher the grating degree grafting is, the initial rate of grafting reaction decreased with the increasement of molecular weight of monomer. (author)

  12. Binding of inorganic mercury by subcellular fractions and proteins of rat kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Komsta-Szumska, E; Chmielnicka, J; Piotrowski, J K

    1976-01-01

    Inorganic mercury, administered to rats in a single dose of 0.5 mg Hg/kg is accumulated in the kidneys mainly in the soluble (54 percent) and nuclear (30 percent) fractions, showing decreasing tendency with time. Mitochondrial and microsomal fractions, initially accumulating approximately 11 and 6 percent of total Hg, show a tendency to increase the absolute level of Hg for the first week after administration. In the soluble fraction low-molecular weight, metallothioneinlike proteins are mainly responsible for the accumulation of mercury; in other fractions proteins of higher molecular weight prevail.

  13. The relative importance of competing pathways for the formation of high-molecular-weight peroxides in the ozonolysis of organic aerosol particles

    Directory of Open Access Journals (Sweden)

    M. Mochida

    2006-01-01

    Full Text Available High-molecular-weight (HMW organic compounds are an important component of atmospheric particles, although their origins, possibly including in situ formation pathways, remain incompletely understood. This study investigates the formation of HMW organic peroxides through reactions involving stabilized Criegee intermediates (SCI's. The model system is methyl oleate (MO mixed with dioctyl adipate (DOA and myristic acid (MA in submicron aerosol particles, and Criegee intermediates are formed by the ozonolysis of the double bond in methyl oleate. An aerosol flow tube coupled to a quadrupole aerosol mass spectrometer (AMS is employed to determine the relative importance of different HMW organic peroxides following the ozonolysis of different mixing mole fractions of MO in DOA and MA. Possible peroxide products include secondary ozonides (SOZ's, α-acyloxyalkyl hydroperoxides and α-acyloxyalkyl alkyl peroxides (αAAHP-type compounds, diperoxides, and monoperoxide oligomers. Of these, the AMS data identify two SOZ's as major HMW products in the ozonolysis of pure methyl oleate as well as in an inert matrix of DOA to as low as 0.04 mole fraction MO. In comparison, in mixed particles of MO and MA, αAAHP-type compounds form in high yields for MO mole fractions of 0.5 or less, suggesting that SCI's efficiently attack the carboxylic acid group of myristic acid. The reactions of SCI's with carboxylic acid groups to form αAAHP-type compounds therefore compete with those of SCI's with aldehydes to form SOZ's, provided that both types of functionalities are present at significant concentrations. The results therefore suggest that SCI's in atmospheric particles contribute to the transformation of carboxylic acids and other protic groups into HMW organic peroxides.

  14. N-Chlorosuccinimide (NCS): A Novel Initiator for Atom Transfer Radical Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    WANG,Xia-Yan; CHANG,Li-Qun; ZHOU,Hong; ZHANG,Ke-Da

    2006-01-01

    Atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was achieved, using N-chlorosuccinimide (NCS) as an initiator together with catalytic system CuCl/PMDETA (N,N,N',N',N"-pentamethyldiethyl-enetriamine), CuCl/MA5-DETA (N,N,N',N',N"-penta(methylacrylate)diethylenetriamine), and CuCl/bipy (bipy=2,2'-bipyridyl) respectively. The results indicated that the polymerization possessed typical controlled/living radical polymerization characteristics. The analysis for terminal group of obtained polymer by 1H NMR proved that NCS is an initiator for ATRP. In comparison with NBS, the polymerization rate was slower and the resulted polymer had narrower molecular weight distribution (MWD) when NCS was employed as the initiator.

  15. Radiation chemistry in high pressure paying attention to molecular motion and alignment

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo

    1978-01-01

    Effects of high pressure or radiation-induced cross-linking of synthetic rubbers and polymerization of methacrylates and acrylonitrile (AN) have been studied paying attention to molecular motion and alignment. The following were revealed from radiation-induced crosslinking reaction, pressure-volume-temperature (P-V-T) measurement and chemical relaxation of polymer crosslinked at high pressure: (1) The rate of crosslinking is increased in compression especially in polymers containing double bonds, due to chain reaction through double bonds. (2) Crosslinking points of the polymer with double bonds crosslinked at high pressure are dispersed as cluster. (3) Crosslinking reaction is intimately related with change of the molecular motion in a polymer under pressure. Van't Hoff plots of methacrylates and AN breaked at a pressure depending on the monomer. The pressure giving the breaks depends on length of methacrylate. P-V curves of the polymer-monomer coexistence system as-polymerized exhibit peculiar behavior at the pressure giving the breaks. AN exhibits complicated polymerization behavior at a pressure changing compressibility of the monomer. From above results etc. it is concluded that monomer molecules are aligned in short range at a pressure corresponding to geometrical structure of the monomer molecules. (auth.)

  16. Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene

    Science.gov (United States)

    Hussein, M.

    2018-06-01

    The influence of the mechanical property and morphology of different blend ratio of Butyl rubber (IIR)/high molecular weight polyethylene (PE) by temperature and strain rate are performed. Special attention has been considered to a ductile-brittle transition that is known to occur at around 60 °C. The idea is to explain the unexpected phenomenon of brittleness which directly related to all tensile mechanical properties such as the strength of blends, modulus of elasticity of filled and unfilled IIR-polyethylene blends. In particular, the initial Young's modulus, tensile strength and strain at failure exhibit similar dependency on strain rate and temperature. These quantities lowered and increased with an increment of temperature, whereas the increased with increasing of strain rate. Furthermore, the tensile strength and strain at failure decreases for all temperatures range with the increase of PE content in the blend, except Young's modulus in reverse. The strain rate sensitivity index parameter of the examined polymeric materials is consistent with the micro-mechanisms of deformation and the behavior was well described by an Eyring relationship leading to an activation volume of ∼1 nm3, except for the highest value of unfilled IIR ∼8.45 nm3.

  17. Synthesis of New Silicon-linked Lanthanocene Complexes and Their High Catalytic Activity for Methyl Methacrylate Polymerization with Nanometric Sodium Hydride as Co-catalyst

    Institute of Scientific and Technical Information of China (English)

    谢小敏; 黄吉玲

    2005-01-01

    The synthesis and characterization of four new silicon-linked lanthanocene complexes with pendant phenyl groups on cyclopentadiene were reported. Based on the data of elemental analyses, MS and IR, the complexes were presumed to be unsolvated and dimeric complexes [Me2Si(C5H3CMe2C6H5)2LnC1]2 [Ln=Er (1), Gd (2), Sm (3), Dy (4)]. In conjunction with AlEt3 or sodium hydride as the co-catalyst, these complexes could efficiently catalyze the polymerization of methyl methacrylate (MMA). When the nanometric sodium hydride was used as a co-catalyst, the complexes were highly effective for the polymerization of MMA. At low temperature and in short time, in [MeESi(C5H3CMe2C6H5)2LnC1]2/NaH (nanometric) system, the polymer was obtained in more than 80% yield and the molecular weight was greater than 105. The activity reached that of organolanthanide hydride as a single-component catalyst. In ]MeESi(C5H3CMe2C6H5)2ErC1]2/Nail (nanometric) system, the effects of the molar ratio of MMA/catalyst and catalyst/co-catalyst, and the temperature on polymerization were studied.

  18. How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers?

    Science.gov (United States)

    Rakha, Allah; Aman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance.

  19. How Does the Preparation of Rye Porridge Affect Molecular Weight Distribution of Extractable Dietary Fibers?

    Directory of Open Access Journals (Sweden)

    Roger Andersson

    2011-05-01

    Full Text Available Extractable dietary fiber (DF plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3(1→4-β-D-glucan (β-glucan and arabinoxylan (AX in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016 and AX (P = 0.002 due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance.

  20. Research and development of a technology to create original high-function materials in fiscal 1998 (development of precision structure controlling materials by improving petroleum refining). Report on achievements in research and development of precision catalytic polymerization; 1998 nendo dokusoteki kokino zairyo sosei gijutsu no kenkyu kaihatsu seika hokokusho. Sekiyu seisei kodoka seimitsu kozo seigyo zairyo kaihatsu (seimitsu shokubai jugo no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research and development on precision catalytic polymerization aims at developing polymerizing catalysts that can control arbitrarily the molecular weight and three-dimensional regularity by which rapid enhancement can be expected in performance of additional polymerization type polymers, and the primary structure of terminal groups. Works are being done on two sub-themes of ultimate additional polymerization and orientation catalyst polymerization. The research and development of the ultimate additional polymerization included structural control in polymerization reaction in vinyl chloride, vinylester and acrylic monomers, radical polymerization with precision orientation control, anionic polymerization with precision structural control, and precision polymerization utilizing asymmetric metal porphyrin complexes. In the research and development of the orientation catalyst polymerization, the orientation catalyst polymerization was researched and developed, elementary reaction of metallocene was elucidated, high-performance carrier catalysts were developed, advanced function polymers were synthesized at high precision based on metathesis, and improvement of functions of polyolefin was researched and developed. Surveys and studies were carried out on fundamental technologies common to the above two themes re-commissioned to five universities. (NEDO)

  1. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    Science.gov (United States)

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  2. Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation.

    Science.gov (United States)

    Pu, Yuanyuan; Zou, Qingsong; Hou, Dianzhi; Zhang, Yiping; Chen, Shan

    2017-01-20

    Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R 2 >0.99. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. RAFT-mediated emulsion polymerization of styrene with low reactive xanthate agents : microemulsion-like behavior

    NARCIS (Netherlands)

    Pepels, M.P.F.; Holdsworth, C. I.; Pascual, S; Monteiro, M.J.

    2010-01-01

    Xanthates ([1-(O-ethylxanthyl)ethyl]benzene (CTA1) and [1-(O-trifluoroethylxanthyl)ethyl]benzene (CTA2)) have the capacity to control the molecular weight distribution in emulsion polymerizations to produce very small nanoparticles below 20 nm. We form stable translucent polystyrene latexes using

  4. ANIONIC POLYMERIZATION OF ALKYL METHACRYLATES INITIATED BY nBuCu(NCy2)Li

    Institute of Scientific and Technical Information of China (English)

    Bing-yong Han; Jian-guo Liang; Jian-min Lu; Feng An; Wan-tai Yang

    2009-01-01

    Anionic polymerization of methyl methacrylate (MMA), n-butyl methacrylate (nBMA) and glycidyl methacrylate (GMA) initiated by nBuCu(NCy2)Li (1) in tetrahydrofuran (THF) at -50℃ to -10℃ was investigated. It was found that the polymerization of MMA and nBMA initiated by 1 proceeded quantitatively in THF to afford PMMA and PBMA with polydispersity index 1.15-1.30 and nearly 100% initiator efficiencies at -10℃. The molecular weights increased linearly with the ratio of [monomer]/[1]. However, a post-polymerization experiment carried out on this system revealed a double polymer peak by GPC when fresh monomer was added after an interval of 10 rain. Polymerization of styrene could be initiated by 1, but the initiator efficiency was low.

  5. Enzymatic depolymerization of gum tragacanth: bifidogenic potential of low molecular weight oligosaccharides.

    Science.gov (United States)

    Gavlighi, Hassan Ahmadi; Michalak, Malwina; Meyer, Anne S; Mikkelsen, J Dalgaard

    2013-02-13

    Gum tragacanth derived from the plant "goat's horn" (Astragalus sp.) has a long history of use as a stabilizing, viscosity-enhancing agent in food emulsions. The gum contains pectinaceous arabinogalactans and fucose-substituted xylogalacturonans. In this work, gum tragacanth from Astragalus gossypinus was enzymatically depolymerized using Aspergillus niger pectinases (Pectinex BE Color). The enzymatically degraded products were divided into three molecular weight fractions via membrane separation: HAG1 10 kDa. Compositional and linkage analyses showed that these three fractions also varied with respect to composition and structural elements: HAG1 and HAG2 were enriched in arabinose, galactose, and galacturonic acid, but low in fucose and xylose, whereas HAG3 was high in (terminal) xylose, fucose, and 1,4-bonded galacturonic acid, but low in arabinose and galactose content. The growth-stimulating potential of the three enzymatically produced gum tragacanth fractions was evaluated via growth assessment on seven different probiotic strains in single-culture fermentations on Bifidobacterium longum subsp. longum (two strains), B. longum subsp. infantis (three strains), Lactobacillus acidophilus , B. lactis, and on one pathogenic strain of Clostridium perfringens . The fractions HAG1 and HAG2 consistently promoted higher growth of the probiotic strains than HAG3, especially of the three B. longum subsp. infantis strains, and the growth promotion on HAG1 and HAG2 was better than that on galactan (control). HAG3 completely inhibited the growth of the C. perfringens strain. Tragacanth gum is thus a potential source of prebiotic carbohydrates that exert no viscosity effects and which may find use as natural functional food ingredients.

  6. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    International Nuclear Information System (INIS)

    Gilchrist, Elizabeth S.; Nesterenko, Pavel N.; Smith, Norman W.; Barron, Leon P.

    2015-01-01

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks

  7. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Gilchrist, Elizabeth S. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Nesterenko, Pavel N. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart 7001 (Australia); Smith, Norman W. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Barron, Leon P., E-mail: leon.barron@kcl.ac.uk [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom)

    2015-03-20

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks.

  8. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite

    International Nuclear Information System (INIS)

    Sharma, Rajeev Kumar; Agarwal, Meenakshi; Balani, Kantesh

    2016-01-01

    Bacterial infection of implants can be controlled by selective trapping of bacteria, followed with consequent killing by targeted antibacterial agents. Herein, the role of various ZnO morphologies, viz. micro-rods (R), nanoparticles (NP), and micro-disks (D) on antibacterial efficacy of ZnO via release of Zn"2"+ and H_2O_2 is assessed, both as isolated powders and via incorporating them in cytocompatible ultra high molecular weight polyethylene (UHMWPE). Though ZnO is antibacterial, interestingly, all ZnO morphologies elicited a supportive growth of gram-negative bacteria (Escherichia coli) in culture medium (until 28–35 μg/ml). But, all ZnO morphologies did elicit bactericidal effect on gram positive bacteria (Staphylococcus aureus or Staphylococcus epidermidis) both in culture medium (for 0–2.5 μg/ml) or when incorporated (5–20 wt.%) into UHMWPE. The bactericidal mechanisms were quantified for various ZnO morphologies via: (i) H_2O_2 production, (ii) Zn"2"+ release, and (iii) the presence of surface oxygen vacancies. On one hand, where only ZnO(NP) elicited release of H_2O_2 in the absence of light, maximum Zn"2"+ release was elicited by ZnO(D). Interestingly, when ZnO is incorporated as reinforcement (5–20 wt.%), its antibacterial action against E. coli was vividly observed due to selective proliferation of bacteria only on friendly UHMWPE matrix. Hence, luring bacteria on affable UHMWPE surface can be complemented with their targeted killing by ZnO present in composite. - Highlights: • The role of ZnO morphology in affecting bactericidal mechanisms • Quantification of Zn"2"+ release, H_2O_2 production and surface oxygen vacancy defects • Inherent resistance by gram negative bacteria at lower ZnO concentrations • Containment of bacteria on polymeric surface and consequent targeted killing by ZnO

  9. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  10. Low molecular weight procyanidins from grape seeds enhance the impact of 5-Fluorouracil chemotherapy on Caco-2 human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Ker Y Cheah

    Full Text Available OBJECTIVE: Grape seed procyanidins (PC are flavan-3-ol oligomers and polymers known for their biological activity in the gut. Grape seed extract (GSE have been reported to reduce intestinal injury in a rat model of mucositis. We sought to investigate effects of purified PC fractions differing in mean degree of polymerization (mDP combined with 5-Fluorouracil (5-FU chemotherapy on the viability of colon cancer cells (Caco-2. DESIGN: SixPC fractions (F1-F6 were isolated from Cabernet Sauvignon seeds at two ripeness stages: pre-veraison unripe (immature and ripe (mature, utilizing step gradient, low-pressure chromatography on a Sephadex LH-20 resin. Fractions were tested on Caco-2 cells, alone and in combination with 5-FU. Eluted fractions were characterized by phloroglucinolysis and gel permeation chromatography. Cell viability was determined by the 3-(4,5-Dimethylthiazol-2yl-2,5-diphenyl-tetrazolium bromide (MTT assay. RESULTS: All isolated fractions significantly reduced Caco-2 cell viability compared to the control (P<0.05, but F2 and F3 (mDP 2-6 were the most active fractions (immature F2 = 32% mDP 2.4, F3 = 35% mDP 5.8 and mature F2 = 13% mDP 3.6 and F3 = 17% mDP 5.9; percentage of viable cells remaining on Caco-2 cells. When combined with 5-FU, immature fractions F1-F3 enhanced the cell toxicity effects of 5-FU by 27-73% (P<0.05. Mature seed PC fractions (F1-F4 significantly enhanced the toxicity of 5-FU by 60-83% against Caco-2 cells (P<0.05. Moreover, some fractions alone were more potent at decreasing viability in Caco-2 cells (P<0.05; immature fractions = 65-68% and mature fractions = 83-87% compared to 5-FU alone (37%. CONCLUSIONS: PCs of mDP 2-6 (immature F1-F3 and mature F1 and F4not only enhanced the impact of 5-FU in killing Caco-2 cells, but also surpassed standard 5-FU chemotherapy as an anti-cancer agent.The bioactivity of PC is therefore attributed primarily to lower molecular weight PCs.

  11. Polymerization of N-isopropylacrylamide under magnetic levitation

    International Nuclear Information System (INIS)

    Fujiwara, Y; Katsumoto, Y; Ohishi, Y; Koyama, M; Ohno, K; Akita, M; Inoue, K; Tanimoto, Y

    2006-01-01

    A study of an effect of the magnetic levitation on polymerization of N-isopropylacrylamide at room temperature was carried out. The magnetic levitation environment, which is created by strong and upward magnetic force counterbalanced with the downward gravitational force, is multiple environment consisting of both the microgravity and the strong magnetic field which is lacking in a space vehicle orbiting around the earth. In this work, the effect was evaluated from the viewpoint of the number-average molecular weight (M n ) and the polydispersity (the index of the molecular weight distribution) of the synthesized polymer. A small extent (∼10 %) of the effect was observed on both the parameters. When the polymer was synthesized under the magnetic levitation environment, M n increased while the polydispersity decreased as compared with those of the polymer synthesized under the gravity

  12. Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water

    Science.gov (United States)

    Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf

    2018-06-01

    Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.

  13. Relationship between molecular weight, monosaccharide composition and immunobiologic activity of Astragalus polysaccharides.

    Science.gov (United States)

    Jiang, Yiping; Qi, Xiaohui; Gao, Kai; Liu, Wenjun; Li, Na; Cheng, Ningbo; Ding, Gang; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei

    2016-10-01

    Four Astragalus polysaccharides (APS1-APS4) were isolated from the water extract of Radix Astragali and purified through ethanol precipitation with 20 %, 40 %, 60 % and 80 % ethanol, respectively. The total sugar content was measured by sulfuric acid-phenol method. Their molecular weight was determined using high performance gel permeation chromatography (HPGPC) and their monosaccharide composition was analyzed by reversed-phase high performance liquid chromatography (HPLC) after pre-column derivatization. Then the immunobiologic activity of APS was evaluated by the experiment of spleen lymphocytes proliferation in vitro. The data suggested that precipitation by different concentration of ethanol will obtain different molecular weight APS, the higher concentration of ethanol the smaller molecular weight for APS. The molecular weights of four APS were 257.7 kDa, 40.1 kDa, 15.3 kDa and 3.2 kDa. Monosaccharide composition analysis indicated that APS1 consisted of glucose only, and APS2 all consisted of arabinose. APS3 consisted of rhamnose, glucose, galactose and arabinose and APS4 consisted of galactose and arabinose, in a molar ratio of 1:10.76:6.55:12 and 3.02:1. The result of immunobiologic activity assay showed that both APS2 and APS3 can effectively stimulate normal spleen lymphocyte proliferation in vitro. Apart from this, the effect of APS2 also showed dose dependent tendency from 6.25 μg/mL to 800 μg/mL. The result of this research indicated that Astragalus polysaccharides, which consist of arabinose and their molecular weight between 15.2 kDa to 40.1 kDa, neither too high nor too low, had significant immune activity.

  14. Synthesis and characterization of high molecular weight hydrophobically modified polyacrylamide nanolatexes using novel nonionic polymerizable surfactants

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2013-12-01

    Full Text Available In this article, nine hydrophobically modified polyacrylamides (HM-PAM nanolatexes, were synthesized by copolymerizing the acrylamide monomer and novel polymerizable surfactants (surfmers. The reaction was carried out by inverse microemulsion copolymerization technique. The copolymerization was initiated by redox initiators composed of potassium peroxodisulphate and sodium bisulfite. The emulsion was stabilized using mixed tween 85 and span 80 as nonionic emulsifiers. The prepared HM-PAMs were classified into three groups according to the surfmers used in the copolymerization. The chemical structures of the prepared HM-PAMs were confirmed by FT-IR, 1H NMR and 13C NMR. The thermal properties were estimated with the thermal gravimetric analysis (TGA. The size and morphology of the prepared latexes were investigated by the dynamic light scattering (DLS and the High Resolution Transmission Electron Microscope (HRTEM. Finally, the molecular weights of the prepared copolymers were determined by the GPC and the viscosity average molecular weight method. They were situated between 1.58 × 106 and 0.89 × 106.

  15. Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demands

    DEFF Research Database (Denmark)

    Helgesen, Martin; Carlé, Jon Eggert; Benatto, Gisele Alves dos Reis

    2015-01-01

    reaction times down to 10 min afforded PBDTTTz-4 with high molecular weight and a constant quality. The flow method enables full control of the molecular weight via tuning of the flow speed, catalyst loading, and temperature and avoids variation in materials’ quality associated with conventional batch......Continuous flow methods are employed for the controlled polymerization of the roll-to-roll (R2R) compatible polymer PBDTTTz-4 including optimization and upscaling experiments. The polymerization rate and materials’ quality can be increased significantly with the continuous fl ow method where...

  16. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    Science.gov (United States)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous

  17. Novel Alkyd-Type Coating Resins Produced Using Cationic Polymerization [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Bret; Kalita, Harjyoti; Alam, Samim; Jayasooriyamu, Anurad; Fernando, Shashi; Samanata, Satyabrata; Bahr, James; Selvakumar, Sermadurai; Sibi, Mukund; Vold, Jessica; Ulven, Chad

    2014-04-07

    Novel, partially bio-based poly(vinyl ether) copolymers derived from soybean oil and cyclohexyl vinyl ether (CHVE) were produced by cationic polymerization and investigated for application as alkyd-type surface coatings. Compared to conventional alkyd resins, which are produced by high temperature melt condensation polymerization, the poly(vinyl ether)s provide several advantages. These advantages include miler, more energy efficient polymer synthesis, elimination of issues associated with gelation during polymer synthesis, production of polymers with well-defined composition and relatively narrow molecular weight distribution, and elimination of film formation and physical property issues associated with entrained monomers, dimers, trimmers, etc. The results of the studied showed that the thermal, mechanical, and physical properties of the coatings produced from these novel polymers varied considerable as a function of polymer composition and cure temperature. Overall, the results suggest a good potential for these novel copolymers to be used for coatings cured by autoxidation.

  18. Application of living radical polymerization to the synthesis of resist polymers for radiation lithography

    International Nuclear Information System (INIS)

    Shimizu, Takashi; Ichikawa, Tsuneki

    2005-01-01

    Poly(styrene) and poly(methyl acrylate) with benzyl ester of carboxylic acid at the center of the polymer skeletons were synthesized by living radical polymerization for developing a new type of radiation resist with high resistivity to plasma etching and high sensitivity and spatial resolution to ionizing radiations. The initiators were benzyl esters with two functional groups for living radical polymerization on the benzyl and the carboxylic sides. Introduction of benzyl ester to the polymer skeletons changed the polymers from cross-link type to scission type upon γ-irradiation. Irradiation of the polymers resulted in the binary change of the molecular weight, due to dissociative capture of secondary electrons by the benzyl ester, as M n R 1 COOCH(C 6 H 5 )R 2 M n +e - ->M n R 1 COO - + · CH(C 6 H 5 )R 2 M n . The generated polymer fragments were not decomposed by further irradiation, which suggests that the synthesized polymers have high resistivity to plasma etching

  19. Optimization of fractional composition of the excipient in the elastomeric covering for asphalt highways

    Directory of Open Access Journals (Sweden)

    E. M. Nurullaev

    2013-04-01

    Full Text Available The computational method of optimum fractional composition of a dispersible filler of polymeric composite on the basis of three-dimensionally linked elastomer is developed according to non-linear programming. The coefficient of dynamic viscosity of polymeric suspension or the initial module of a viscoelasticity of the join solidification low-molecular rubbers with the final functional groups, filled by many fractional dioxide of silicon are considered as criteria of optimization. Influence of the limiting volume filling on energy of mechanical destruction was investigated. The elastomeric material is offered for use as a covering of asphalt highways in the form of a frost-proof waterproofing layer, which allowing multiply to increase operating properties.

  20. Silica-Polystyrene Nanocomposite Particles Synthesized by Nitroxide-Mediated Polymerization and Their Encapsulation through Miniemulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Bérangère Bailly

    2006-01-01

    Full Text Available Polystyrene (PS chains with molecular weights comprised between 8000 and 64000 g⋅mol-1 and narrow polydispersities were grown from the surface of silica nanoparticles (Aerosil A200 fumed silica and Stöber silica, resp. through nitroxide-mediated polymerization (NMP. Alkoxyamine initiators based on N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide (DEPN and carrying a terminal functional group have been synthesized in situ and grafted to the silica surface. The resulting grafted alkoxyamines have been employed to initiate the growth of polystyrene chains from the inorganic surface. The maximum grafting density of the surface-tethered PS chains was estimated and seemed to be limited by initiator confinement at the interface. Then, the PS-grafted Stöber silica nanoparticles were entrapped inside latex particles via miniemulsion polymerization. Transmission electron microscopy indicated the successful formation of silica-polystyrene core-shell particles.

  1. ULTRAVIOLET ESCAPE FRACTIONS FROM GIANT MOLECULAR CLOUDS DURING EARLY CLUSTER FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Corey; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4M1 (Canada); Klessen, Ralf [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-01-01

    The UV photon escape fraction from molecular clouds is a key parameter for understanding the ionization of the interstellar medium and extragalactic processes such as cosmic reionization. We present the ionizing photon flux and the corresponding photon escape fraction ( f {sub esc}) arising as a consequence of star cluster formation in a turbulent, 10{sup 6} M {sub ⊙} giant molecular cloud, simulated using the code FLASH. We make use of sink particles to represent young, star-forming clusters coupled with a radiative transfer scheme to calculate the emergent UV flux. We find that the ionizing photon flux across the cloud boundary is highly variable in time and space due to the turbulent nature of the intervening gas. The escaping photon fraction remains at ∼5% for the first 2.5 Myr, followed by two pronounced peaks at 3.25 and 3.8 Myr with a maximum f {sub esc} of 30% and 37%, respectively. These peaks are due to the formation of large H ii regions that expand into regions of lower density, some of which reaching the cloud surface. However, these phases are short-lived, and f {sub esc} drops sharply as the H ii regions are quenched by the central cluster passing through high-density material due to the turbulent nature of the cloud. We find an average f {sub esc} of 15% with factor of two variations over 1 Myr timescales. Our results suggest that assuming a single value for f {sub esc} from a molecular cloud is in general a poor approximation, and that the dynamical evolution of the system leads to large temporal variation.

  2. Coarse-grained molecular dynamics simulations of polymerization with forward and backward reactions.

    Science.gov (United States)

    Krajniak, Jakub; Zhang, Zidan; Pandiyan, Sudharsan; Nies, Eric; Samaey, Giovanni

    2018-06-11

    We develop novel parallel algorithms that allow molecular dynamics simulations in which byproduct molecules are created and removed because of the chemical reactions during the molecular dynamics simulation. To prevent large increases in the potential energy, we introduce the byproduct molecules smoothly by changing the non-bonded interactions gradually. To simulate complete equilibrium reactions, we allow the byproduct molecules attack and destroy created bonds. Modeling of such reactions are, for instance, important to study the pore formation due to the presence of e.g. water molecules or development of polymer morphology during the process of splitting off byproduct molecules. Another concept that could be studied is the degradation of polymeric materials, a very important topic in a recycling of polymer waste. We illustrate the method by simulating the polymerization of polyethylene terephthalate (PET) at the coarse-grained level as an example of a polycondensation reaction with water as a byproduct. The algorithms are implemented in a publicly available software package and are easily accessible using a domain-specific language that describes chemical reactions in an input configuration file. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. Synthesis and Characterization of Nanofibrous Polyaniline Thin Film Prepared by Novel Atmospheric Pressure Plasma Polymerization Technique.

    Science.gov (United States)

    Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Tae, Heung-Sik

    2016-01-11

    This work presents a study on the preparation of plasma-polymerized aniline (pPANI) nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ) device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES) techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and gel permeation chromatography (GPC) techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight ( M w ), about 533 kDa with 1.9 polydispersity index (PDI). This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique.

  4. Synthesis and Characterization of Nanofibrous Polyaniline Thin Film Prepared by Novel Atmospheric Pressure Plasma Polymerization Technique

    Directory of Open Access Journals (Sweden)

    Choon-Sang Park

    2016-01-01

    Full Text Available This work presents a study on the preparation of plasma-polymerized aniline (pPANI nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, gas chromatography-mass spectrometry (GC-MS, and gel permeation chromatography (GPC techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight (Mw, about 533 kDa with 1.9 polydispersity index (PDI. This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique.

  5. Studies on radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Omichi, Hideki

    1978-09-01

    Radiation-induced graft polymerization is used extensively to improve physical properties of polymers, but few processes are now commercialized. The reason for this is partly inadequate basic research on the reaction and partly the difficulty in developing the grafting process with large radiation source. Firstly, new techniques are proposed of studying kinetics of the graft polymerization in heterogeneous system. Based on the grafting yield, the molecular weight of graft chains, and the amount of radicals given by ESR and activation analysis, kinetic parameters are obtained and the reaction mechanism of grafting process is discussed. Secondly, the development of grafting process of poly (vinyl chloride)-butadiene is described. By study of the reaction, process design, construction and operation of the pilot plant, and economic analysis of the process, this process with 60 Co gamma ray sources is shown to be industrially promising. (author)

  6. Syntheses and Post-Polymerization Modifications of Well-Defined Styrenic Polymers Containing Three-Membered Heterocyclic Functionalities

    Science.gov (United States)

    McLeod, David Charles

    Macromolecules that contain electrophilic moieties, such as benzyl halides, activated esters, and epoxides, will readily undergo efficient nucleophilic substitution reactions with a wide variety of compounds under mild conditions, and are therefore ideally suited to act as "universal" precursors to functional materials. Epoxide-containing polymers derived from the radical polymerization of commercially-available glycidyl methacrylate are often employed in this role; however, methacrylic polymers suffer from certain limitations as a result of the incorporated ester groups, which are not stabile in the presence of strong nucleophiles, acids, bases, or esterase enzymes. Styrenic polymers that do not contain labile carbonyl moieties are usually the precursors of choice when high chemical stability is desired in the end product, but the production of functional materials from epoxide-containing styrenic polymers is relatively unexplored. In this dissertation, improved methods were developed for synthesizing 4-vinylphenyloxirane (4VPO) and 4-vinylphenyl glycidyl ether (4VPGE), two of the better-known epoxide-containing styrenic monomers, in high-yield and purity. Well-defined, epoxide-containing styrenic polymers with targeted molecular weights, narrow molecular weight distributions, and controlled architectures (specifically, linear and star-shaped homopolymers, as well as linear block copolymers with styrene) were produced from 4VPO and 4VPGE for the first time using reversible-deactivation radical polymerization techniques, such as low-catalyst-concentration atom transfer radical polymerization (LCC ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The robust nature and utility of poly4VPO and poly4VPGE were then demonstrated by the efficient, ring-opening modification of the pendant epoxide groups with a structurally- and functionally-diverse array of alcohols under acidic conditions at ambient temperature. The macromolecular

  7. Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis

    DEFF Research Database (Denmark)

    Pedersen, Morten Løbner; Walsted, Anette; Larsen, Rune

    2008-01-01

    The effect of consumption of Immulina, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis, on adaptive immune responses was investigated by evaluation of changes in leukocyte responsiveness to two foreign recall antigens, Candida albicans (CA) and tetanus...

  8. Synthesis of High-Molecular-Weight Multifunctional Glycerol Polyhydroxyurethanes PHUs

    Directory of Open Access Journals (Sweden)

    Bassam Nohra

    2016-09-01

    Full Text Available Glycerol carbonate acrylate is a 5-membered cyclic carbonate synthesized from glycerol that is used as a chemical coupling agent and has proven highly suitable for use in the synthesis of multifunctional polyhydroxyurethanes (PHUs. The multifunctionality of the structure of PHUs is determined by the density of the carbon-amine groups generated by the Aza-Michael reaction and that of the urethane groups and adjacent primary and secondary hydroxyl groups generated by aminolysis. Glycerol carbonate acrylate is polymerized with polyfunctional mono-, di-, tri, and tetra-amines, by type-AB polyaddition, either in bulk or in solution, through stepwise or one-pot reaction strategies in the absence of added catalysts. These approaches result in the generation of linear, interchain, and crosslinked structures, through the polyaddition of linear and branched amines to the ethylene and cyclic carbonate sites of glycerol carbonate acrylate. The resulting collection of organic molecules gives rise to polyethylene amino ester PHUs with a high molar mass, exceeding 20,000 g·mol−1, with uniform dispersity.

  9. Use of Residual Biomass from the Textile Industry as Carbon Source for Production of a Low-Molecular-Weight Xylanase from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Gilvan Caetano Duarte

    2012-10-01

    Full Text Available Pretreated dirty cotton residue (PDCR from the textile industry was used as an alternative carbon source for the submerged cultivation of Aspergillus oryzae and the production of xylanases. The filtered culture supernatant was fractionated by ultrafiltration followed by three chromatographic steps, which resulted in the isolation of a homogeneous low-molecular-weight xylanase (Xyl-O1 with a mass of 21.5 kDa as determined by sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE co-polymerized with 0.1% oat spelt xylan. Enzyme catalysis was the most efficient at 50 °C and pH 6.0. The Km values (mg·mL−1 for the soluble fraction of oat spelt and birchwood xylans were 10.05 and 3.34, respectively. Xyl-O1 was more stable in the presence of 5,5-dithio-bis-(2-nitrobenzoic acid (DTNB, 1,4-dithiothreitol (DTT, l-cysteine or β-mercaptoethanol, which increased the rate of catalysis by 40%, 14%, 40% or 37%, respectively. The enzyme stability was improved at pH 7.0 in the presence of 20 mM l-cysteine, with the retention of nearly 100% of the activity after 6 h at 50 °C. Xyl-O1 catalyzed the cleavage of internal β-1,4 linkages of the soluble substrates containing d-xylose residues, with a maximum efficiency of 33% for the hydrolysis of birchwood xylan after 12 h of incubation. Identification of the hydrolysis products by high-performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD indicated the predominance of the hydrolysis products X2-X6 during the first 12 h of incubation and the accumulation of higher xylooligomers after the elution of the last xylooligomer standard, xylohexaose.

  10. Polymerization of Phenylacetylene-Based Monodendrons with Alkoxy Peripheral Groups and Oxygen/Nitrogen Permeation Behavior of Their Membranes

    Directory of Open Access Journals (Sweden)

    Takashi Kaneko

    2012-01-01

    Full Text Available Monodendron monomers with alkoxy peripheral groups were synthesized, and the focal point of monodendrons, terminal acetylene, was polymerized with rhodium catalyst to yield corresponding polydendrons with a high molecular weight. The polydendrons were soluble in common organic solvents and readily formed membranes. Oxygen permselectivity was improved in the polydendrons with a space-persistent dendritic crowd. It was found that the well-defined dendritic and rod-like structure of the polydendrons was useful for permselective membrane.

  11. High molecular weight FGF2 isoforms demonstrate canonical receptor-mediated activity and support human embryonic stem cell self-renewal

    Directory of Open Access Journals (Sweden)

    Denis Kole

    2017-05-01

    Full Text Available Basic fibroblast growth factor (FGF2 is a highly pleiotropic member of a large family of growth factors with a broad range of activities, including mitogenesis and angiogenesis (Ornitz et al., 1996; Zhang et al., 2006, and it is known to be essential for maintenance of balance between survival, proliferation, and self-renewal in human pluripotent stem cells (Eiselleova et al., 2009; Zoumaro-Djayoon et al., 2011. A single FGF2 transcript can be translated into five FGF2 protein isoforms, an 18 kDa low molecular weight (LMW isoform and four larger high molecular weight (HMW isoforms (Arese et al., 1999; Arnaud et al., 1999. As they are not generally secreted, high molecular weight (HMW FGF2 isoforms have predominantly been investigated intracellularly; only a very limited number of studies have investigated their activity as extracellular factors. Here we report over-expression, isolation, and biological activity of all recombinant human FGF2 isoforms. We show that HMW FGF2 isoforms can support self-renewal of human embryonic stem cells (hESCs in vitro. Exogenous supplementation with HMW FGF2 isoforms also activates the canonical FGFR/MAPK pathway and induces mitogenic activity in a manner similar to that of the 18 kDa FGF2 isoform. Though all HMW isoforms, when supplemented exogenously, are able to recapitulate LMW FGF2 activity to some degree, it appears that certain isoforms tend to do so more poorly, demonstrating a lesser functional response by several measures. A better understanding of isoform-specific FGF2 effects will lead to a better understanding of developmental and pathological FGF2 signaling.

  12. The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium.

    Science.gov (United States)

    Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad

    2017-01-01

    In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks ( M c ), crosslink density ( M r ), volume interaction parameter ( v 2, s ), Flory Huggins water interaction parameter and diffusion coefficient ( Q ) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM.

  13. Chemical modification of high molecular weight polyethylene through gamma radiation for biomaterials applications; Modificacao quimica de polietileno de alto peso molecular atraves de radiacao gama para aplicacao em biomateriais

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, Matheus P.; Rocha, Marisa C.G., E-mail: matheusmerlim@hotmail.com [Universidade Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico

    2015-07-01

    Ultra high molecular weight polyethylene has been used in the medical field due to its high mechanical properties compared to the other polymers. Its main application is in the development of orthopedic implants, which requires high resistance to abrasion. One of the most used methods is the introduction of crosslinks in the polymer through gamma irradiation. In order to prevent oxidation reactions, studies have been developed using tacoferol (vitamin E) as an antioxidant for the material. The ascorbic acid (vitamin C), however, has been appointed as a viable alternative for vitamin E. In this work, a high molecular weight polyethylene grade (HMWPE) and polyethylene samples formulated with vitamin C were submitted to gamma radiation. Thermodynamic-mechanical methods and gel content determinations were used to characterize the samples obtained. The sample containing 1% of vitamin C and irradiated with 50 KGy of gamma radiation presented the highest content of crosslinks. (author)

  14. Radiation induced polymerization of MMA in imidazolium ionic liquids and their mixed solutions with organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Qi Mingying [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu Guozhong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China)], E-mail: wuguozhong@sinap.ac.cn; Sha Maolin; Liu Yusheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China)

    2008-10-15

    Considerably higher molecular weight (M{sub w}) and multi-modal molecular weight distribution (MWD) of poly(methyl methacrylate) (PMMA) were observed in neat ionic liquids ([bmim][PF{sub 6}] and [bmim][BF{sub 4}]), as well as their mixed solutions with organic solvents, probably due to the high viscosity and inhomogeneity of ionic liquids. FTIR spectra for PMMA showed that a slight amount of ionic liquid remained in the resulting polymer, and DSC measurement indicated the increase of glass transition point of PMMA with increasing of ionic liquid fraction in mixed solutions.

  15. Atrazine Molecular Imprinted Polymers: Comparative Analysis by Far-Infrared and Ultraviolet Induced Polymerization

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2014-01-01

    Full Text Available Atrazine molecular imprinted polymers (MIPs were comparatively synthesized using identical polymer formulation by far-infrared (FIR radiation and ultraviolet (UV-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIPuv possessed specific binding to atrazine compared with their MIPFIR radiation counterparts. Scatchard plot’s of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high- and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF and different selectivity index (SI for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM, Fourier transform infrared absorption (FT-IR, and mercury analyzer (MA. Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE of atrazine from lake water, followed by high performance liquid chromatography (HPLC analysis. Compared with commercial C18 SPE sorbent (86.4%–94.8%, higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%–97.1% and 94.4%–101.9%, for both MIPs, respectively.

  16. Synthesis of Isotactic-block-Syndiotactic Poly(methyl Methacrylate via Stereospecific Living Anionic Polymerizations in Combination with Metal-Halogen Exchange, Halogenation, and Click Reactions

    Directory of Open Access Journals (Sweden)

    Naoya Usuki

    2017-12-01

    Full Text Available Isotactic (it- and syndiotactic (st- poly(methyl methacrylates (PMMAs form unique crystalline stereocomplexes, which are attractive from both fundamental and application viewpoints. This study is directed at the efficient synthesis of it- and st-stereoblock (it-b-st- PMMAs via stereospecific living anionic polymerizations in combination with metal-halogen exchange, halogenation, and click reactions. The azide-capped it-PMMA was prepared by living anionic polymerization of MMA, which was initiated with t-BuMgBr in toluene at –78 °C, and was followed by termination using CCl4 as the halogenating agent in the presence of a strong Lewis base and subsequent azidation with NaN3. The alkyne-capped st-PMMA was obtained by living anionic polymerization of MMA, which was initiated via an in situ metal-halogen exchange reaction between 1,1-diphenylhexyl lithium and an α-bromoester bearing a pendent silyl-protected alkyne group. Finally, copper-catalyzed alkyne-azide cycloaddition (CuAAC between these complimentary pairs of polymers resulted in a high yield of it-b-st-PMMAs, with controlled molecular weights and narrow molecular weight distributions. The stereocomplexation was evaluated in CH3CN and was affected by the block lengths and ratios.

  17. Hyaluronic acid-coated chitosan nanoparticles: molecular weight-dependent effects on morphology and hyaluronic acid presentation.

    Science.gov (United States)

    Almalik, Abdulaziz; Donno, Roberto; Cadman, Christopher J; Cellesi, Francesco; Day, Philip J; Tirelli, Nicola

    2013-12-28

    Chitosan nanoparticles are popular carriers for the delivery of macromolecular payloads, e.g. nucleic acids. In this study, nanoparticles were prepared via complexation with triphosphate (TPP) anions and were successively coated with hyaluronic acid (HA). Key variables of the preparative process (e.g. chitosan and HA molecular weight) were optimised in view of the maximisation of loading with DNA, of the Zeta potential and of the dimensional stability, and the resulting particles showed excellent storage stability. We have focused on the influence of chitosan molecular weight on nanoparticle properties. Larger molecular weight increased their porosity (=decreased cross-link density), and this caused also larger dimensional changes in response to variations in osmotic pressure or upon drying. The dependency of nanoparticle porosity on chitosan molecular weight had a profound effect on the adsorption of HA on the nanoparticles; HA was apparently able to penetrate deeply into the more porous high molecular weight (684 kDa) chitosan nanoparticles, while it formed a corona around those composed of more densely cross-linked low molecular weight (25 kDa) chitosan. Atomic Force Microscopy (AFM) allowed not only to highlight the presence of this corona, but also to estimate its apparent thickness to about 20-30 nm (in a dry state). The different morphology has a significant effect on the way HA is presented to biomolecules, and this has specific relevance in relation to interactions with HA receptors (e.g. CD44) that influence kinetics and mechanism of nanoparticle uptake. Finally, it is worth to mention that chitosan molecular weight did not appear to greatly affect the efficiency of nanoparticle loading with DNA, but significantly influenced its chitosanase-triggered release, with high molecular chitosan nanoparticles seemingly more prone to degradation by this enzyme. © 2013.

  18. From 3D to 2D: A Review of the Molecular Imprinting of Proteins

    OpenAIRE

    Turner, Nicholas W.; Jeans, Christopher W.; Brain, Keith R.; Allender, Christopher J.; Hlady, Vladimir; Britt, David W.

    2006-01-01

    Molecular imprinting is a generic technology that allows for the introduction of sites of specific molecular affinity into otherwise homogeneous polymeric matrices. Commonly this technique has been shown to be effective when targeting small molecules of molecular weight

  19. Ballistic behavior of ultra-high molecular weight polyethylene composite: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L. dos Santos; Nascimento, Lucio F.C.; Suarez, Joao C. Miguez; lucio2002bol.com.br

    2003-01-01

    Since World War II, textile composites have been used as ballistic armor. Ultra-high molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials. As they have been developed and commercialized only recently, there is not enough information about the effect of environmental agents in the ballistic performance of UHMWPE composites. In the present work, was evaluated the ballistic behavior of composite plates manufactured with UHMWPE fibers after exposure to gamma radiation. The ballistic tests results were related to the macromolecular alterations induced by the radiation through mechanical (hardness, impact and flexure) and physicochemical (Ftir/Mir. DSC and TGA) testing. It was observed that irradiation induces changes in the UHMWPE, degrading the ballistic performance of the composite. These results are presented and discussed. (author)

  20. Sustained High Levels of Both Total and High Molecular Weight Adiponectin in Plasma during the Convalescent Phase of Haemorrhagic Fever with Renal Syndrome Are Associated with Disease Severity

    Directory of Open Access Journals (Sweden)

    Kang Tang

    2017-01-01

    Full Text Available Haemorrhagic fever with renal syndrome (HFRS is characterised by an uncontrolled immune response that causes vascular leakage. Adiponectin (APN is an adipocytokine involved in prorevascularisation and immunomodulation. To investigate the possible effects of APN in the pathogenesis of HFRS, total and high molecular weight (HMW APN levels in the plasma of patients with HFRS were quantified using enzyme-linked immunosorbent assay (ELISA. Compared with those in healthy controls, the plasma total and HMW APN levels in patients were elevated to different degrees from the fever onset and remained high at the convalescent phase. Consistent with these results, western blot analysis additionally showed that low molecular weight (LMW, middle molecular weight (MMW, and HMW APN levels were all elevated and contributed to the elevation of the total APN level. Importantly, sustained high levels of total and HMW APN at the convalescent phase were significantly higher in patients with critical disease than those in patients with mild or moderate disease. Moreover, total and HMW APN levels negatively correlated with white blood cell count and positively correlated with platelet count and serum albumin level. These results may provide insights into understanding the roles of total and HMW APN in the pathogenesis of HFRS.

  1. Thermoresponsive Poly(2-oxazoline) Molecular Brushes by Living Ionic Polymerization: Kinetic Investigations of Pendant Chain Grafting and Cloud Point Modulation by Backbone and Side Chain Length Variation

    KAUST Repository

    Zhang, Ning

    2012-04-17

    Molecular brushes of poly(2-oxazoline)s were prepared by living anionic polymerization of 2-iso-propenyl-2-oxazoline to form the backbone and subsequent living cationic ring-opening polymerization of 2-n- or 2-iso-propyl-2-oxazoline for pendant chain grafting. In situ kinetic studies indicate that the initiation efficiency and polymerization rates are independent from the number of initiator functions per initiator molecule. This was attributed to the high efficiency of oxazolinium salt and the stretched conformation of the backbone, which is caused by the electrostatic repulsion of the oxazolinium moieties along the macroinitiator. The resulting molecular brushes showed thermoresponsive properties, that is, having a defined cloud point (CP). The dependence of the CP as a function of backbone and side chain length as well as concentration was studied. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David

    2015-09-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization mechanisms using conventional (various amines) as well as some recently developed initiators (hexamethyldisilazane, N-heterocyclic persistent carbenes, etc.) is presented, and their benefits and drawbacks for preparation of polypeptides with well-defined chain lengths and chain-end functionality are discussed. Recent examples from literature are used to illustrate different possibilities for synthesis of pure polypeptide materials with different molecular architectures bearing various functional groups, which are introduced either by modification of amino acids, before they are transformed into corresponding Ncarboxyanhydrides, or by post-polymerization modifications using protective groups and/or orthogonal functional groups. Different approaches for preparation of polypeptide-based hybrid materials are discussed as well using examples from recent literature. Syntheses of simple block copolymers or copolymers with more complex molecular architectures (graft and star copolymers) as well as modifications of nanoparticles and other surfaces with polypeptides are described.

  3. Rapid Analysis of Apolar Low Molecular Weight Constituents in Wood Using High Pressure Liquid Chromatography with Evaporative Light Scattering Detection

    NARCIS (Netherlands)

    Claassen, F.W.; Haar, van de C.; Beek, van T.A.; Dorado, J.; Martinez-Inigo, M.; Sierra-Alvarez, R.

    2000-01-01

    A new high pressure liquid chromatographic method with evaporative light scattering detection was developed for the qualitative and quantitative analysis of apolar, low molecular weight constituents in wood. The wood extractives were obtained by means of a 6 h Soxhlet extraction with acetone. The

  4. Research and development project in fiscal 1989 for fundamental technologies for next generation industries. Achievement report on research and development on high-crystalline polymeric materials; 1989 nendo kokesshosei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    With an objective to expand applications of polymeric materials having features of light weight, high corrosion resistance, and easy-to-process performance, researches have been performed on fundamental technologies for high-crystalline polymeric materials. This paper summarizes the achievements in fiscal 1989. In monophyletic system materials, thermotropic liquid crystal polyarylate was taken as the object to study optimization of the polymeric chemical structure, and elongation and fluid orientation processing. In the research of polyphyletic materials by means of special dissolution forming, researches were carried out on elastic modules manifestation factors of poly-PIBO, and the relationship between the melting viscosity and the orientation performance of polyazomethine. For molecular composite formed polyphyletic materials, a tape with tensile modulus of elasticity of 142 GPa using aromatic copolyamide as matrix, and laminates with bending modules of elasticity of 110 GPa were obtained. Regarding cross-linking system materials, synthesizing, forming, and improvements were discussed on hybrid cross-linking polymers containing multiple number of cross-linking functional groups. In addition, research was performed on a poly-functional diacetylene based material as a three-dimensional cross-linking material with high elasticity modulus of new conception having covalent linkage. (NEDO)

  5. Plasma polymerized high energy density dielectric films for capacitors

    Science.gov (United States)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  6. Radiation-induced cationic polymerization of limonene oxide, α-pinene oxide, and β-pinene oxide

    International Nuclear Information System (INIS)

    Aikins, J.A.; Williams, F.

    1985-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weights. A high frequency of chain (proton) transfer to monomer is indicated by the fact that the kinetic chain lengths are estimated to be several hundred times larger than the range of DP/sub n/ values (12-4). Structural characterization of the limonene oxide polymer by 1 H and 13 C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the α-pinene and β-pinene oxides show that the opening of the epoxide ring for these monomers is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-di-methyl group in the main chain

  7. Effect of Sulfation and Molecular Weight on Anticoagulant Activity of Dextran.

    Science.gov (United States)

    Drozd, N N; Logvinova, Yu S; Torlopov, M A; Udoratina, E V

    2017-02-01

    Sulfation (to 2.8) of dextrans with molecular weight of 150 and 20 kDa was followed by the appearance of anticoagulant activity that increased with decreasing their molecular weight and did not depend on antithrombin, plasma inhibitor of serine proteases of the blood coagulation system. Antithrombin activity of dextran sulfate with a molecular weight of 20 kDa reached 12.6-15.3 U/mg. Dextran sulfates with molecular weights of 20 and 150 kDa did not potentiate ADP-induced human platelet aggregation.

  8. Properties of crosslinked ultra-high-molecular-weight polyethylene.

    Science.gov (United States)

    Lewis, G

    2001-02-01

    Substantially reducing the rate of generation of wear particles at the surfaces of ultra-high-molecular-weight polyethylene (UHMWPE) orthopedic implant bearing components, in vivo, is widely regarded as one of the most formidable challenges in modern arthroplasty. In the light of this, much research attention has been paid to the myriad of endogenous and exogenous factors that have been postulated to affect this wear rate, one such factor being the polymer itself. In recent years, there has been a resurgence of interest in crosslinking the polymer as a way of improving its properties that are considered relevant to its use for fabricating bearing components. Such properties include wear resistance, fatigue life, and fatigue crack propagation rate. Although a large volume of literature exists on the topic on the impact of crosslinking on the properties of UHMWPE, no critical appraisal of this literature has been published. This is one of the goals of the present article, which emphasizes three aspects. The first is the trade-off between improvement in wear resistance and depreciation in other mechanical and physical properties. The second aspect is the presentation of a method of estimating the optimal value of a crosslinking process variable (such as dose in radiation-induced crosslinking) that takes into account this trade-off. The third aspect is the description of a collection of under- and unexplored research areas in the field of crosslinked UHMWPE, such as the role of starting resin on the properties of the crosslinked polymer, and the in vitro evaluation of the wear rate of crosslinked tibial inserts and other bearing components that, in vivo, are subjected to nearly unidirectional motion.

  9. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost.

    Science.gov (United States)

    Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao

    2018-04-14

    Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Controlled and Efficient Polymerization of Conjugated Polar Alkenes by Lewis Pairs Based on Sterically Hindered Aryloxide-Substituted Alkylaluminum

    Directory of Open Access Journals (Sweden)

    Xiaojun Wang

    2018-02-01

    Full Text Available Reported herein is the development of an effective strategy for controlled and efficient Lewis pair polymerization of conjugated polar alkenes, including methyl methacrylate (MMA, n-butyl methacrylate (nBuMA, and γ-methyl-α-methylene-γ-butyrolactone (γMMBL, by the utilization of sterically encumbered Al(BHT2Me (BHT: 2,6-di-tert-butyl-4-methylphenol as a Lewis acid that shuts down intramolecular backbiting termination. In combination with a selected N-heterocyclic carbene (NHC as a Lewis base, the polymerization of MMA exhibited activity up to 3000 h−1 TOF and an acceptable initiation efficiency of 60.6%, producing polymers with high molecular weight (Mn up to 130 kg/mol and extremely narrow dispersity (Đ = 1.06~1.13. This controlled polymerization with a living characteristic has been evidenced by chain-extension experiments and chain-end analysis, and enabled the synthesis of well-defined diblock copolymers.

  11. Thermal Inactivation Kinetics and Secondary Structure Change of a Low Molecular Weight Halostable Exoglucanase from a Marine Aspergillus niger at High Salinities.

    Science.gov (United States)

    Xue, Dong-Sheng; Liang, Long-Yuan; Lin, Dong-Qiang; Yao, Shan-Jing

    2017-11-01

    Two kinds of exoglucanase were purified from a marine Aspergillus niger. Catalytic ability of halophilic exoglucanase with a lower molecular weight and secondary structure change was analyzed at different salinities. Activity of the low molecular weight exoglucanase in 10% NaCl solution (w/v) was 1.69-fold higher of that in NaCl-free solution. Half-life time in 10% NaCl solution (w/v) was over 1.27-fold longer of that in NaCl-free solution. Free energy change of the low molecular weight exoglucanase denaturation, △G, in 10% NaCl solution (w/v) was 0.54 kJ/mol more than that in NaCl-free solution. Melt point in 10% NaCl solution (w/v), 52.01 °C, was 4.21 °C higher than that in NaCl-free solution, 47.80 °C. K m value, 0.179 mg/ml in 10% NaCl solution (w/v) was less 0.044 mg/ml than that, 0.224 mg/ml, in NaCl-free solution. High salinity made content of α-helix increased. Secondary structure change caused by high salinities improved exoglucanase thermostability and catalysis activity. The halophilic exoglucanase from a marine A. niger was valuable for hydrolyzing cellulose at high salinities.

  12. Radiation-induced polymerization of glass-forming systems. VII. Polymerization in supercooled state under high pressure

    International Nuclear Information System (INIS)

    Kaetsu, I.; Yoshii, F.; Watanabe, Y.

    1978-01-01

    Radiation-induced polymerization of glass-forming monomers such as 2-hydroxyethyl methacrylate and glycidyl methacrylate under high pressure was studied. The glass transition temperature of these monomers was heightened by increased pressure. The temperature dependence of polymerizability showed a characteristic relation, similar to those in supercooled-phase polymerization under normal pressure, that had a maximum at T/sub ν/ which shifted to higher levels of temperature as well as to T/sub g/ under high pressure. Polymerizability in the supercooled state also increased under increased pressure

  13. Preparation, Characterization and Performances of Powdered Polycarboxylate Superplasticizer with Bulk Polymerization

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2014-08-01

    Full Text Available A polycarboxylate superplasticizer (PCE was synthesized in a non-solvent system with bulk polymerization and then was pulverized into powdered form to achieve a rapid transportation and convenient preparation. PCE synthesized by using isopentenyl polyethylene glycol (TPEG or isobutenyl polyethylene glycol (IPEG as a macromonomer exhibited the best fluidities and retaining properties at 80 °C and 75 °C, respectively. Besides, azobisisobutyronitrile (AIBN was suitable as an initiator, and the fumaric acid was suitable as the third monomer. The test results of 1H nuclear magnetic resonance (1H NMR confirmed the occurrences of polymerization, and the measurement results of molecular weight and distribution showed that PCE molecular weight characteristics were in accordance with their fluidity properties in cement paste. The application performances in cement showed that PCEs with the best paste fluidity retentions had the longest final setting time and the shortest setting time interval, and the PCEs with good fluidity properties can obviously delay the hydration process and lower the hydration heat. Accordingly, this is a novel, energy-saving and economical method to prepare powdered PCE in the field of concrete admixtures.

  14. The measurement of the molecular weight of humic acid by ultracentrifugation

    International Nuclear Information System (INIS)

    Gardner, M.P.

    1989-07-01

    This report is concerned with the application of ultracentrifuge methods to the determination of humic acid molecular weights. The work has been undertaken as part of the Co-Co club intercomparison exercise on humic acid characterisation. Knowledge of the molecular weight distribution of humic acid will be an important parameter in assessing the likely physical and chemical behaviour under the near-field environment. Molecular weights of a sample of purified Aldrich humic acid have been obtained by sedimentation velocity and sedimentation equilibrium studies using an analytical ultracentrifuge. The results have shown the material to be polydisperse with a weight average molecular weight in the region 2700 to 4000. (author)

  15. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    International Nuclear Information System (INIS)

    Riveiro, A.; Soto, R.; Val, J. del; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.

    2014-01-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell–material interaction.

  16. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de España 2, 36920 Marín (Spain); Soto, R.; Val, J. del; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J. [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2014-05-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell–material interaction.

  17. The use of microwave tissue fixation to demonstrate the in vivo phosphorylation of an acidic 80,000 molecular weight protein in the rat neocortex following treatment with soman

    International Nuclear Information System (INIS)

    Mobley, P.L.; Gonzalez, N.E.

    1991-01-01

    Studies were conducted to determine if soman, a cholinesterase inhibitor, could activate the protein kinase C system in the rat neocortex. Using microwave radiation for rapid tissue fixation, it was demonstrated that treatment with soman increased 32 P incorporation into an acidic 80,000 molecular weight, heat-stable protein in vivo. Based on relative molecular weight and isoelectric point this protein appears to be identical to a protein identified as a substrate for protein kinase C. Additionally, a protein of the same molecular weight and isoelectric point could be phosphorylated in tissue slices prepared from the neocortex by cholinergic dependent mechanisms. Also, treatment with soman decreased protein kinase C in the soluble fraction of this brain region; however, no corresponding increase was observed in the particulate fraction. These results suggest that soman can activate protein kinase C in vivo, and demonstrate the utility of using microwave tissue fixation to study protein phosphorylation events in vivo

  18. The use of microwave tissue fixation to demonstrate the in vivo phosphorylation of an acidic 80,000 molecular weight protein in the rat neocortex following treatment with soman

    Energy Technology Data Exchange (ETDEWEB)

    Mobley, P.L.; Gonzalez, N.E. (Univ. of Texas Health Science Center, San Antonio (United States))

    1991-01-01

    Studies were conducted to determine if soman, a cholinesterase inhibitor, could activate the protein kinase C system in the rat neocortex. Using microwave radiation for rapid tissue fixation, it was demonstrated that treatment with soman increased {sup 32}P incorporation into an acidic 80,000 molecular weight, heat-stable protein in vivo. Based on relative molecular weight and isoelectric point this protein appears to be identical to a protein identified as a substrate for protein kinase C. Additionally, a protein of the same molecular weight and isoelectric point could be phosphorylated in tissue slices prepared from the neocortex by cholinergic dependent mechanisms. Also, treatment with soman decreased protein kinase C in the soluble fraction of this brain region; however, no corresponding increase was observed in the particulate fraction. These results suggest that soman can activate protein kinase C in vivo, and demonstrate the utility of using microwave tissue fixation to study protein phosphorylation events in vivo.

  19. Graphene nanoribbons synthesized from molecular precursor polymerization on Au(110)

    Energy Technology Data Exchange (ETDEWEB)

    Massimi, Lorenzo; Ourdjini, Oualid; Della Pia, Ada; Mariani, Carlo; Betti, Maria Grazia [Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy); Cavaliere, Emanuele; Gavioli, Luca [i-LAMP & Dipartimento di Matematica e Fisica, Università Cattolica, 25121 Brescia (Italy)

    2015-06-23

    A spectroscopic study of 10,10-dibromo-9,9 bianthracene (DBBA) molecules deposited on the Au(110) surface is presented, by means of ultraviolet and X-ray photoemission, and X-ray absorption spectroscopy. Through a thermally activated procedure, these molecular precursors polymerize and eventually form graphene nanoribbons (GNRs) with atomically controlled shape and width, very important building blocks for several technological applications. The GNRs observed by scanning tunneling microscopy (STM) appear as short segments on top of the gold surface reconstruction, pointing out the delicate balance among surface diffusion and surface corrugation in their synthesis on the Au(110) surface.

  20. Fundamental considerations in the effect of molecular weight on the glass transition of the gelatin/cosolute system.

    Science.gov (United States)

    Jiang, Bin; Kasapis, Stefan; Kontogiorgos, Vassilis

    2012-05-01

    Four molecular fractions of gelatin produced by alkaline hydrolysis of collagen were investigated in the presence of cosolute to record the mechanical properties of the glass transition in high-solid preparations. Dynamic oscillatory and stress relaxation moduli in shear were recorded from 40°C to temperatures as low as -60°C. The small-deformation behavior of these linear polymers was separated by the method of reduced variables into a basic function of time alone and a basic function of temperature alone. The former allowed the reduction of isothermal runs into a master curve covering 17 orders of magnitude in the time domain. The latter follows the passage from the rubbery plateau through the glass transition region to the glassy state seen in the variation of shift factor, a(T) , as a function of temperature. The mechanical glass transition temperature (T(g) ) is pinpointed at the operational threshold of the free volume theory and the predictions of the reaction rate theory. Additional insights into molecular dynamics are obtained via the coupling model of cooperativity, which introduces the concept of coupling constant or interaction strength of local segmental motions that govern structural relaxation at the vicinity of T(g) . The molecular weight of the four gelatin fractions appears to have a profound effect on the transition temperature or coupling constant of vitrified matrices, as does the protein chemistry in relation to that of amorphous synthetic polymers or gelling polysaccharides. © 2011 Wiley Periodicals, Inc.

  1. Comparison of molecular imprinted particles prepared using precipitation polymerization in water and chloroform for fluorescent detection of nitroaromatics

    Energy Technology Data Exchange (ETDEWEB)

    Stringer, R. Cody, E-mail: rcsm84@mail.mizzou.edu [Department of Biological Engineering, University of Missouri, Columbia, MO (United States); Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu [Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO (United States); Grant, Sheila A., E-mail: grantsa@missouri.edu [Department of Biological Engineering, University of Missouri, Columbia, MO (United States)

    2011-10-10

    Highlights: {yields} Imprinted polymers prepared using precipitation polymerization. {yields} Comparison of chloroform and water as polymerization solvent. {yields} Imprinted polymer doped with quantum dots for fluorescent sensor. {yields} Fluorescent imprinted polymer used to detect nitroaromatic explosives. {yields} Chloroform is ideal solvent for molecular imprinting of nitroaromatics. - Abstract: A comparative study was conducted to study the effects that two different polymerization solvents would have on the properties of imprinted polymer microparticles prepared using precipitation polymerization. Microparticles prepared in chloroform, which previous results indicated was the optimal solvent for molecular imprinting of nitroaromatic explosive compounds, were compared to water, which was hypothesized to decrease water swelling of the polymer and allow enhanced rebinding of aqueous template. The microparticles were characterized and were integrated into a fluorescence sensing mechanism for detection of nitroaromatic explosive compounds. The performance of the sensing mechanisms was compared to illustrate which polymerization solvent produced optimal imprinted polymer microparticles for detection of nitroaromatic molecules. Results indicated that the structures of microparticles synthesized in chloroform versus water varied greatly. Sensor performance studies showed that the microparticles prepared in chloroform had greater imprinting efficiency and higher template rebinding than those prepared in water. For detection of 2,4,6-trinitrotoluene, the chloroform-based fluorescent microparticles achieved a lower limit of detection of 0.1 {mu}M, as compared to 100 {mu}M for the water-based fluorescent microparticles. Detection limits for 2,4-dinitrotoluene, as well as time response studies, also demonstrated that the chloroform-based particles are more effective for detection of nitroaromatic compounds than water-based particles. These results illustrate that the

  2. Comparison of molecular imprinted particles prepared using precipitation polymerization in water and chloroform for fluorescent detection of nitroaromatics

    International Nuclear Information System (INIS)

    Stringer, R. Cody; Gangopadhyay, Shubhra; Grant, Sheila A.

    2011-01-01

    Highlights: → Imprinted polymers prepared using precipitation polymerization. → Comparison of chloroform and water as polymerization solvent. → Imprinted polymer doped with quantum dots for fluorescent sensor. → Fluorescent imprinted polymer used to detect nitroaromatic explosives. → Chloroform is ideal solvent for molecular imprinting of nitroaromatics. - Abstract: A comparative study was conducted to study the effects that two different polymerization solvents would have on the properties of imprinted polymer microparticles prepared using precipitation polymerization. Microparticles prepared in chloroform, which previous results indicated was the optimal solvent for molecular imprinting of nitroaromatic explosive compounds, were compared to water, which was hypothesized to decrease water swelling of the polymer and allow enhanced rebinding of aqueous template. The microparticles were characterized and were integrated into a fluorescence sensing mechanism for detection of nitroaromatic explosive compounds. The performance of the sensing mechanisms was compared to illustrate which polymerization solvent produced optimal imprinted polymer microparticles for detection of nitroaromatic molecules. Results indicated that the structures of microparticles synthesized in chloroform versus water varied greatly. Sensor performance studies showed that the microparticles prepared in chloroform had greater imprinting efficiency and higher template rebinding than those prepared in water. For detection of 2,4,6-trinitrotoluene, the chloroform-based fluorescent microparticles achieved a lower limit of detection of 0.1 μM, as compared to 100 μM for the water-based fluorescent microparticles. Detection limits for 2,4-dinitrotoluene, as well as time response studies, also demonstrated that the chloroform-based particles are more effective for detection of nitroaromatic compounds than water-based particles. These results illustrate that the enhanced chemical properties of

  3. Polymerization and Structure of Bio-Based Plastics: A Computer Simulation

    Science.gov (United States)

    Khot, Shrikant N.; Wool, Richard P.

    2001-03-01

    We recently examined several hundred chemical pathways to convert chemically functionalized plant oil triglycerides, monoglycerides and reactive diluents into high performance plastics with a broad range of properties (US Patent No. 6,121,398). The resulting polymers had linear, branched, light- and highly-crosslinked chain architectures and could be used as pressure sensitive adhesives, elastomers and high performance rigid thermoset composite resins. To optimize the molecular design and minimize the number of chemical trials in this system with excess degrees of freedom, we developed a computer simulation of the free radical polymerization process. The triglyceride structure, degree of chemical substitution, mole fractions, fatty acid distribution function, and reaction kinetic parameters were used as initial inputs on a 3d lattice simulation. The evolution of the network fractal structure was computed and used to measure crosslink density, dangling ends, degree of reaction and defects in the lattice. The molecular connectivity was used to determine strength via a vector percolation model of fracture. The simulation permitted the optimal design of new bio-based materials with respect to monomer selection, cure reaction conditions and desired properties. Supported by the National Science Foundation

  4. Well-defined polyethylene molecular brushes by polyhomologation and ring opening metathesis polymerization

    KAUST Repository

    Zhang, Hefeng; Gnanou, Yves; Hadjichristidis, Nikolaos

    2014-01-01

    A novel strategy using polyhomologation and ring opening metathesis polymerization (ROMP) has been developed for the synthesis of well-defined polyethylene (PE) molecular brushes. Polyhomologation was used to afford an OH-terminated PE, which after transformation to the norbornyl PE macromonomer was subjected to ROMP. Kinetics of ROMP of the PE macromonomer was studied by in situ1H NMR monitoring. The brush structure was proved from HT-GPC, 1H NMR and DSC results.

  5. Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo simulations.

    Science.gov (United States)

    Cozmuta, Ioana; Blanco, Mario; Goddard, William A

    2007-03-29

    It is important for many industrial processes to design new materials with improved selective permeability properties. Besides diffusion, the molecule's solubility contributes largely to the overall permeation process. This study presents a method to calculate solubility coefficients of gases such as O2, H2O (vapor), N2, and CO2 in polymeric matrices from simulation methods (Molecular Dynamics and Monte Carlo) using first principle predictions. The generation and equilibration (annealing) of five polymer models (polypropylene, polyvinyl alcohol, polyvinyl dichloride, polyvinyl chloride-trifluoroethylene, and polyethylene terephtalate) are extensively described. For each polymer, the average density and Hansen solubilities over a set of ten samples compare well with experimental data. For polyethylene terephtalate, the average properties between a small (n = 10) and a large (n = 100) set are compared. Boltzmann averages and probability density distributions of binding and strain energies indicate that the smaller set is biased in sampling configurations with higher energies. However, the sample with the lowest cohesive energy density from the smaller set is representative of the average of the larger set. Density-wise, low molecular weight polymers tend to have on average lower densities. Infinite molecular weight samples do however provide a very good representation of the experimental density. Solubility constants calculated with two ensembles (grand canonical and Henry's constant) are equivalent within 20%. For each polymer sample, the solubility constant is then calculated using the faster (10x) Henry's constant ensemble (HCE) from 150 ps of NPT dynamics of the polymer matrix. The influence of various factors (bad contact fraction, number of iterations) on the accuracy of Henry's constant is discussed. To validate the calculations against experimental results, the solubilities of nitrogen and carbon dioxide in polypropylene are examined over a range of

  6. Estrogen Regulates Protein Synthesis and Actin Polymerization in Hippocampal Neurons through Different Molecular Mechanisms

    Science.gov (United States)

    Briz, Victor; Baudry, Michel

    2014-01-01

    Estrogen rapidly modulates hippocampal synaptic plasticity by activating selective membrane-associated receptors. Reorganization of the actin cytoskeleton and stimulation of mammalian target of rapamycin (mTOR)-mediated protein synthesis are two major events required for the consolidation of hippocampal long-term potentiation and memory. Estradiol regulates synaptic plasticity by interacting with both processes, but the underlying molecular mechanisms are not yet fully understood. Here, we used acute rat hippocampal slices to analyze the mechanisms underlying rapid changes in mTOR activity and actin polymerization elicited by estradiol. Estradiol-induced mTOR phosphorylation was preceded by rapid and transient activation of both extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) and by phosphatase and tensin homolog (PTEN) degradation. These effects were prevented by calpain and ERK inhibitors. Estradiol-induced mTOR stimulation did not require activation of classical estrogen receptors (ER), as specific ERα and ERβ agonists (PPT and DPN, respectively) failed to mimic this effect, and ER antagonists could not block it. Estradiol rapidly activated both RhoA and p21-activated kinase (PAK). Furthermore, a specific inhibitor of RhoA kinase (ROCK), H1152, and a potent and specific PAK inhibitor, PF-3758309, blocked estradiol-induced cofilin phosphorylation and actin polymerization. ER antagonists also blocked these effects of estrogen. Consistently, both PPT and DPN stimulated PAK and cofilin phosphorylation as well as actin polymerization. Finally, the effects of estradiol on actin polymerization were insensitive to protein synthesis inhibitors, but its stimulation of mTOR activity was impaired by latrunculin A, a drug that disrupts actin filaments. Taken together, our results indicate that estradiol regulates local protein synthesis and cytoskeletal reorganization via different molecular mechanisms and signaling pathways. PMID:24611062

  7. Anticoagulant effect of low molecular weight heparin on central ...

    African Journals Online (AJOL)

    Purpose: To analyse the effect of low molecular weight heparin on venous catheters in haemodialysis patients. Methods: This study included 140 eligible patients who were randomly and evenly divided into two groups, viz, a study group that received low molecular weight heparin and a control group that received ...

  8. Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils

    Energy Technology Data Exchange (ETDEWEB)

    Stankovikj, Filip; McDonald, Armando G.; Helms, Gregory L.; Olarte, Mariefel V.; Garcia-Perez, Manuel

    2017-01-31

    This paper reports a study of the chemical composition of the water soluble (WS) fraction obtained by cold water precipitation of two commercial wood pyrolysis oils (BTG and Amaron). The fraction studied accounts for between 50.3 and 51.3 wt. % of the oils. With the most common analytical techniques used today for the characterization of this fraction (KF titration, GC/MS, hydrolysable sugars and total carbohydrates), it is possible to quantify only between 45 and 50 wt. % of it. Our results confirm that most of the total carbohydrates (hydrolysable sugars and non-hydrolysable) are soluble in water. The ion chromatography hydrolysis method showed that between 11.6 and 17.3 wt. % of these oils were hydrolysable sugars. A small quantity of phenols detectable by GC/MS (between 2.5 and 3.9 wt. %) were identified. It is postulated that the unknown high molecular weight fraction (30-55 wt. %) is formed by highly dehydrated sugars rich in carbonyl groups and WS phenols. The overall content of carbonyl, carboxyl, hydroxyl and phenolic compounds in the WS fraction were quantified by titration, Folin-Ciocalteu, 31P-NMR and 1H-NMR. The WS fraction contains between 5.5 and 6.2 mmol/g of carbonyl groups, between 0.4 and 1.0 mmol/g of carboxylic acid groups, between 1.2 and 1.8 mmol/g phenolic -OH, and between 6.0 and 7.9 mmol/g of aliphatic alcohol groups. Translation into weight fractions of the WS was done by supposing surrogate structures for the water soluble phenols, carbonyl and carboxyl groups and we estimated the content of WS phenols (21-27 wt. %), carbonyl (5-14 wt.%), and carboxyl (0-4 wt.%). Together with the total carbohydrates (23-27 wt.%), this approach leads to > 90 wt. % of the WS material in the bio-oils being quantified. We speculate the larger portion of the difference between the total carbohydrates and hydrolysable sugars is the missing furanic fraction. Further refinement of the suggested methods and development of separation schemes to obtain and

  9. Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique

    Directory of Open Access Journals (Sweden)

    Ioannis S. Tsagkalias

    2017-09-01

    Full Text Available The synthesis of nanocomposite materials based on poly(methyl methacrylate and graphene oxide (GO is presented using the in situ polymerization technique, starting from methyl methacrylate, graphite oxide, and an initiator, and carried out either with (solution or without (bulk in the presence of a suitable solvent. Reaction kinetics was followed gravimetrically and the appropriate characterization of the products took place using several experimental techniques. X-ray diffraction (XRD data showed that graphite oxide had been transformed to graphene oxide during polymerization, whereas FTIR spectra revealed no significant interactions between the polymer matrix and GO. It appears that during polymerization, the initiator efficiency was reduced by the presence of GO, resulting in a reduction of the reaction rate and a slight increase in the average molecular weight of the polymer formed, measured by gel permeation chromatography (GPC, along with an increase in the glass transition temperature obtained from differential scanning calorimetry (DSC. The presence of the solvent results in the suppression of the gel-effect in the reaction rate curves, the synthesis of polymers with lower average molecular weights and polydispersities of the Molecular Weight Distribution, and lower glass transition temperatures. Finally, from thermogravimetric analysis (TG, it was verified that the presence of GO slightly enhances the thermal stability of the nano-hybrids formed.

  10. The effect of low molecular weight multifunctional additives on heavy oil viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, T.B.P.; Yarranton, H.W.; Larter, S.R. [Calgary Univ., AB (Canada)

    2010-07-01

    Crude oils contain many small multifunctional low molecular weight components that act as linking molecules between larger functionalized species. The linkage molecules have a significant impact on the flow properties of hydrocarbon systems. This study investigated the use of a low molecular weight multiheteroatom species (LMWMH) as a molecular Velcro linking high molecular weight components together. LMWMH species were added to Albertan bitumens and heavy oil, and their impact on viscosity was investigated. Results of the experimental studies were then compared with the effects of hydrocarbon solvents on similar samples. The LMWMH species included bifunctional species and analogous alkyl and aryl monoamines that acted as blocking molecules to hinder the association of larger petroleum species. Density and viscosity measurements were conducted. A correlation method was used to predict the viscosity of the solvent-diluted heavy oil and bitumen samples. The study showed that of the tested additives, only aniline demonstrated an additional viscosity-reducing effect. The aniline inhibited asphaltene association and is a promising candidate for enhanced in-situ bitumen viscosity reduction. 23 refs., 4 tabs.

  11. Design of water-soluble, thiol-reactive polymers of controlled molecular weight: a novel multivalent scaffold

    Science.gov (United States)

    Carrillo, Alvaro; Gujraty, Kunal V.; Rai, Prakash R.; Kane, Ravi S.

    2005-07-01

    Multivalent molecules, i.e. scaffolds presenting multiple copies of a suitable ligand, constitute an emerging class of nanoscale therapeutics. We present a novel approach for the design of multivalent ligands, which allows the biofunctionalization of polymers with proteins or peptides in a controlled orientation. It consists of the synthesis of water-soluble, activated polymer scaffolds of controlled molecular weight, which can be biofunctionalized with various thiolated ligands in aqueous media under mild conditions. These polymers were synthesized by ring-opening metathesis polymerization (ROMP) and further modified to make them water-soluble. The incorporation of chloride groups activated the polymers to react with thiol-containing peptides or proteins, and the formation of multivalent ligands in aqueous media was demonstrated. This strategy represents a convenient route for synthesizing multivalent ligands of controlled dimensions and valency.

  12. Modelagem da polimerização simultânea de estireno em suspensão e emulsão Modeling styrene simultaneous suspension and emulsion polymerization systems

    Directory of Open Access Journals (Sweden)

    Marcelo K. Lenzi

    2004-06-01

    Full Text Available Apesar dos processos de polimerização em suspensão e emulsão serem processos heterogêneos, cada um origina características peculiares para a distribuição de tamanho de partículas, distribuição de pesos moleculares, taxa de nucleação das partículas de polímero, taxa de polimerização, entre outras. Neste trabalho, são realizadas polimerizações de estireno simultaneamente em suspensão e emulsão. A carga inicial do reator equivale à receita de uma polimerização em suspensão tradicional, enquanto os constituintes da emulsão são adicionados ao longo da batelada. Analisa-se como as propriedades finais do polímero e o curso da polimerização dependem do momento em que a carga característica da emulsão é adicionada à polimerização em suspensão. Apresenta-se, também, um modelo matemático para a descrição do sistema, sendo que o modelo proposto possui boa concordância com dados experimentais de conversão, pesos moleculares médios e curva de distribuição de pesos moleculares. A morfologia da partícula de polímero e os pesos moleculares médios mudam significativamente, dependendo do momento da adição da emulsão, podendo até mesmo ser obtidas curvas de distribuição de pesos moleculares bimodais. Verificou-se que as partículas apresentam características do tipo núcleo/casca, sendo o núcleo formado pelas partículas obtidas pela polimerização em suspensão e a casca formada pelas partículas do processo em emulsão.Although both emulsion and suspension polymerization processes are performed in heterogeneous media, each process presents its own typical characteristics, such as the particle size distribution, molecular weight distribution, polymer particle nucleation rates, rates of polymerization, and so on. In this work styrene polymerizations are carried out in suspension and emulsion processes simultaneously. The initial reactor charge resembles the recipe of standard styrene suspension

  13. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    OpenAIRE

    Schweiger, Bianca; Kim, Jungtae; Kim, Young; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueo...

  14. Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by Pickering emulsion polymerization.

    Science.gov (United States)

    Hang, Hui; Li, Chunxiang; Pan, Jianming; Li, Linzi; Dai, Jiangdong; Dai, Xiaohui; Yu, Ping; Feng, Yonghai

    2013-10-01

    Porous/magnetic molecularly imprinted polymers (PM-MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross-linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as-made PM-MIPs. The characterization demonstrated that the PM-MIPs were porous and magnetic inorganic-polymer composite microparticles with magnetic sensitivity (M(s) = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0-8.0). The PM-MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM-MIPs was well described by pseudo-second-order kinetics, indicating that the chemical process could be the rate-limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM-MIPs for target LC. Moreover, the PM-MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of α-Bromine- Terminated Polystyrene Macroinitiator and Its Initiation of MMA Polymerization by ATRP

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. Α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93.8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate(MMA) in the presence of copper(Ⅰ) halogen and 2,2-bipyridine(bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1.2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by 1H NMR spectra.

  16. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rajeev Kumar [Biomaterials Processing and Characterization Laboratory, Indian Institute of Technology Kanpur, Kanpur -208016 (India); Agarwal, Meenakshi [Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh - 201303 (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Biomaterials Processing and Characterization Laboratory, Indian Institute of Technology Kanpur, Kanpur -208016 (India)

    2016-05-01

    Bacterial infection of implants can be controlled by selective trapping of bacteria, followed with consequent killing by targeted antibacterial agents. Herein, the role of various ZnO morphologies, viz. micro-rods (R), nanoparticles (NP), and micro-disks (D) on antibacterial efficacy of ZnO via release of Zn{sup 2+} and H{sub 2}O{sub 2} is assessed, both as isolated powders and via incorporating them in cytocompatible ultra high molecular weight polyethylene (UHMWPE). Though ZnO is antibacterial, interestingly, all ZnO morphologies elicited a supportive growth of gram-negative bacteria (Escherichia coli) in culture medium (until 28–35 μg/ml). But, all ZnO morphologies did elicit bactericidal effect on gram positive bacteria (Staphylococcus aureus or Staphylococcus epidermidis) both in culture medium (for 0–2.5 μg/ml) or when incorporated (5–20 wt.%) into UHMWPE. The bactericidal mechanisms were quantified for various ZnO morphologies via: (i) H{sub 2}O{sub 2} production, (ii) Zn{sup 2+} release, and (iii) the presence of surface oxygen vacancies. On one hand, where only ZnO(NP) elicited release of H{sub 2}O{sub 2} in the absence of light, maximum Zn{sup 2+} release was elicited by ZnO(D). Interestingly, when ZnO is incorporated as reinforcement (5–20 wt.%), its antibacterial action against E. coli was vividly observed due to selective proliferation of bacteria only on friendly UHMWPE matrix. Hence, luring bacteria on affable UHMWPE surface can be complemented with their targeted killing by ZnO present in composite. - Highlights: • The role of ZnO morphology in affecting bactericidal mechanisms • Quantification of Zn{sup 2+} release, H{sub 2}O{sub 2} production and surface oxygen vacancy defects • Inherent resistance by gram negative bacteria at lower ZnO concentrations • Containment of bacteria on polymeric surface and consequent targeted killing by ZnO.

  17. Characterization of the mechanical properties of a new grade of ultra high molecular weight polyethylene and modeling with the viscoplasticity based on overstress.

    Science.gov (United States)

    Khan, Fazeel; Yeakle, Colin; Gomaa, Said

    2012-02-01

    Enhancements to the service life and performance of orthopedic implants used in total knee and hip replacement procedures can be achieved through optimization of design and the development of superior biocompatible polymeric materials. The introduction of a new or modified polymer must, naturally, be preceded by a rigorous testing program. This paper presents the assessment of the mechanical properties of a new filled grade of ultra high molecular weight polyethylene (UHMWPE) designated AOX(TM) and developed by DePuy Orthopaedics Inc. The deformation behavior was investigated through a series of tensile and compressive tests including strain rate sensitivity, creep, relaxation, and recovery. The polymer was found to exhibit rate-reversal behavior for certain loading histories: strain rate during creep with a compressive stress can be negative, positive, or change between the two during a test. Analogous behavior occurs during relaxation as well. This behavior lies beyond the realm of most numerical models used to computationally investigate and improve part geometry through finite element analysis of components. To address this shortcoming, the viscoplasticity theory based on overstress (VBO) has been suitably modified to capture these trends. VBO is a state variable based model in a differential formulation. Numerical simulation and prediction of all of the aforementioned tests, including good reproduction of the rate reversal behavior, is presented in this study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity.

    Science.gov (United States)

    Es-Safi, Nour-Eddine; Guyot, Sylvain; Ducrot, Paul-Henri

    2006-09-20

    The structure of a polymeric proanthocyanidin fraction isolated from pear juice was characterized by NMR, ESI/MS, and MALDI-TOF/MS analyses, and its antioxidant activity was investigated using the DPPH free radical scavenging method. The results obtained from 13C NMR analysis showed the predominance of signals representative of procyanidins. Typical signals in the chemical shift region between 70 and 90 ppm demonstrated the exclusive presence of epicatechin units. The results obtained through negative ESI/MS analysis showed singly and doubly charged ions corresponding to the molecular mass of procyanidins with a degree of polymerization up to 22. The spectra obtained through MALDI-TOF/MS analysis revealed the presence of two series of tannin oligomers. Supporting the observations from NMR spectroscopy, the first series consists of well-resolved tannin identified as procyanidin polymers units with chain lengths of up to 25. A second series of monogalloyl flavan-3-ols polymers with polymerization degree up to 25 were also detected. This is the first mass spectrometric evidence confirming the existence of galloylated procyanidin oligomers in pear fruits. Within each of these oligomers, various signals exist suggesting the presence of several oligomeric tannins. The antioxidant properties of the polymeric fraction were investigated through reduction of the DPPH free radical, and the results obtained showed that the polymeric fraction exhibited a higher antioxidant power compared to those of (+)-catechin and B3 procyanidin dimer.

  19. Application of living radical polymerization to the synthesis of resist polymers for radiation lithography

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi [Nitto Denko Co. LTD., Shimohozumi 1-1-2, Ibaraki, Osaka 567-8680 (Japan); Ichikawa, Tsuneki [Division of Materials Chemistry, Graduate school of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: ichikawa@eng.hokudai.ac.jp

    2005-07-01

    Poly(styrene) and poly(methyl acrylate) with benzyl ester of carboxylic acid at the center of the polymer skeletons were synthesized by living radical polymerization for developing a new type of radiation resist with high resistivity to plasma etching and high sensitivity and spatial resolution to ionizing radiations. The initiators were benzyl esters with two functional groups for living radical polymerization on the benzyl and the carboxylic sides. Introduction of benzyl ester to the polymer skeletons changed the polymers from cross-link type to scission type upon {gamma}-irradiation. Irradiation of the polymers resulted in the binary change of the molecular weight, due to dissociative capture of secondary electrons by the benzyl ester, as M{sub n}R{sub 1}COOCH(C{sub 6}H{sub 5})R{sub 2}M{sub n}+e{sup -}->M{sub n}R{sub 1}COO{sup -}+{sup {center_dot}}CH(C{sub 6}H{sub 5})R{sub 2}M{sub n}. The generated polymer fragments were not decomposed by further irradiation, which suggests that the synthesized polymers have high resistivity to plasma etching.

  20. The Polymerization of MMA and ST to Prepare Material with Gradient Refractive Index in Electric Field

    Directory of Open Access Journals (Sweden)

    Yao Huang

    2015-01-01

    Full Text Available Light scattering material with gradient refractive index was prepared under the electrical field by taking methyl methacrylate (MMA monomer as the matrix with the addition of a little preheated styrene (ST and peroxidation benzoin formyl (BPO. The material obtained under electrical field presented different transmittance and molecular weight at different parts of the cylindrical sample along the axis of the direction of electric field which led to the layering phenomenon and gradient refractive index. The disparity of molecular weight between different layers can be as much as 230 thousand. There were several peaks in the figure of GPC test of the sample under electric field. This proved that there were polymers with different molecular weights in the sample. Therefore, it can be concluded that electrical field has a significant effect on polymerization.

  1. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    OpenAIRE

    Shahabuddin, Syed; Hamime Ismail, Fatem; Mohamad, Sharifah; Muhamad Sarih, Norazilawati

    2015-01-01

    Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydro...

  2. In vitro anticoagulation monitoring of low-molecular-weight heparin

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-qi; SHI Xu-bo; YANG Jin-gang; HU Da-yi

    2009-01-01

    Background Although low-molecular-weight heparin has replaced unfractionated heparin to become the primary anticoagulation drug for treatment of acute coronary syndrome, there is no convenient bedside monitoring method. We explored the best laboratory monitoring method of low-molecular-weight heparins (enoxapadn, dalteparin, and nadroparin) by use of the Sonoclot coagulation analyzer to monitor the activated clotting time.Methods Atotal of 20 healthy volunteers were selected and 15 ml of fasting venous blood samples were collected and incubated. Four coagulants, kaolin, diatomite, glass bead, and magnetic stick, were used to determine the activated clotting time of the low-molecular-weight heparins at different in vitro anti-Xa factor concentrations. A correlation analysis was made to obtain the regression equation. The activated clotting time of the different low-molecular-weight heparins with the same anti-Xa factor concentration was monitored when the coagulant glass beads were applied. Results The activated clotting time measured using the glass beads, diatomite, kaolin, and magnetic stick showed a linear correlation with the concentration of nadroparin (r= 0.964, 0.966, 0.970, and 0.947, respectively). The regression equation showed that the linear slopes of different coagulants were significantly different (glass beads 230.03 s/IU,diatomite 89.91 s/IU, kaolin 50.87 s/IU, magnetic stick could not be calculated). When the concentration of the anti-Xa factor was the same for different low-molecular-weight heparins, the measured activated clotting time was different after the application of the glass bead coagulant.Conclusions The glass bead coagulant is most feasible for monitoring the in vitro anticoagulation activity of nadroparin.The different effects of different low-molecular-weight heparins on the activated clotting time may be related to the different anti-Ila activities.

  3. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.

    Science.gov (United States)

    Favre, Guzmán; Peña-Neira, Álvaro; Baldi, Cecilia; Hernández, Natalia; Traverso, Sofía; Gil, Graciela; González-Neves, Gustavo

    2014-09-01

    Low molecular weight phenols of Tannat red wines produced by Traditional Maceration (TM), Prefermentative Cold Maceration (PCM), Maceration Enzyme (ENZ) and grape-Seed Tannins additions (ST), were performed and discussed. Alternatives to TM increased wine phenolic contents but unequally, ST increased mainly smaller flavans-3-ol, PCM anthocyanins and ENZ proanthocyanidins (up to 2250 mg/L). However low molecular weight flavan-3-ols remained below 9 mg/L in all wines, showing that there is not necessarily a correspondence between wine richness in total tannins and flavan-3-ols contents at low molecular weight. PCM wines had particularly high concentrations of tyrosol and tryptophol, yeast metabolism derived compounds. The use of grape-seed enological tannins did not increase grape seed derived phenolic compounds such as gallic acid. Caftaric acid was found in concentrations much higher than those reported in other grape varieties. Wine phenolic content and composition was considerably affected by the winemaking procedures tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem

    Science.gov (United States)

    Kris Morreel; John Ralph; Hoon Kim; Fachuang Lu; Geert Goeminne; Sally Ralph; Eric Messens; Wout Boerjan

    2004-01-01

    Lignin is an aromatic heteropolymer, abundantly present in the walls of secondary thickened cells. Although much research has been devoted to the structure and composition of the polymer to obtain insight into lignin polymerization, the low-molecular weight oligolignol fraction has escaped a detailed characterization. This fraction, in contrast to the rather...

  5. PREPARATION OF POLY(METHYL METHACRYLATE)/LAYERED DOUBLE HYDROXIDES NANOCOMPOSITES via in situ SOLUTION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An exfoliated layered double hydroxides/poly(methyl methacrylate) (LDHs/PMMA) nanocomposite was prepared by in situ solution polymerization of methyl methacrylate (MMA) in the presence of 4-vinylbenzenesulfonate intercalated LDHs(MgAl-VBS LDHs). MgAl-VBS LDHs was prepared by the ion exchange method, and the structure and composition of the MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy and elemental analysis. XRD and transmission electron microscopy (TEM) were employed to examine the structure of LDHs/PMMA nanocomposite. It was indicated that the LDHs layers were well exfoliated and dispersed in the PMMA matrix. The grafting of PMMA onto LDHs was confirmed by the extraction result and the weight fraction of grafted PMMA increased as the weight fraction of LDHs in the nanocomposites increased.

  6. Biodegradable Polyelectrolyte Obtained by Radiation Polymerization

    International Nuclear Information System (INIS)

    Craciun, G.; Martin, D.; Manaila, E.; Nemtanu, M.; Brasoveanu, M.; Ighigeanu, D.

    2009-01-01

    Poly electrolytes are water-soluble polymers carrying ionic charge along the polymer chain. Depending upon the charge, these polymers are anionic or cationic. The inherent solid - liquid separating efficiency makes these poly electrolytes a unique class of polymers which find extensive application in potable water, industrial raw and process water, municipal sewage treatment, mineral processing and metallurgy, oil drilling and recovery, etc. Also, due to their ability to produce advanced induced coagulation, a considerable amount of bacteria and viruses are precipitated together with the suspended solids. Especially the acrylamide polymers are very efficacious for water treatment but acrylamide is a toxic monomer and therefore their use are governed by international standards that provide the residual acrylamide monomer content (RAMC) in them be less than 0.05%. Under these circumstances our attention was focused on the following research steps that are presented in this paper: 1) Preparation of a special class of poly electrolytes, named Pn, with very low RAMC values, based on electron beam (EB), microwave (MW) and EB + MW induced co-polymerization of aqueous solutions containing appropriate mixtures of acrylamide (AMD) and acrylic acid (AA) monomers (AMD - AA co-polymers). The Pn were obtained by radiation technology with very small RAMC (under 0.01%) as well as in a wide range of molecular weights and charge densities. Very low AMD monomer content of Pn is due to the major advantages of radiation induced polymerization in aqueous solution containing monomers. Due to water presence in the EB irradiated system, irradiated water radicals facilitate the polymerization process and increase rate and level of monomers conversion in co-polymers. Also, once again, by the presence of water, which absorbs MW energy very strongly, the MW polymerization reaction rate is much enhanced resulting in a reaction time about 50-100 times lowers than by conventional heating. Also

  7. SDS-PAGE analysis of high molecular weight glutenin subunits in SP3 from spaceflight carried wheat

    International Nuclear Information System (INIS)

    Zhang Su'na; Lv Jinyin

    2009-01-01

    The compositions of high molecular weight glutenin subunits (HMW-GS) of the third generation (SP 3 ) of two wheat varieties spaceflight carried were analyzed by SDS-PAGE. The quality score of Glu-1 of each site was calculated according to the quality rating system. The results showed that the space flight carried could result in a higher frequency of HMW-GS gene mutation. The variance frequency of HMW-GS in SP 3 of Shaan253 and Xinong1043 were 27.08% and 27.45%, and the quality score in SP 3 of Shaan253 and Xinong1043 were 7 and 6, respectively. Shaan253 SP 3 generation mutants were considered as high-quality wheat. (authors)

  8. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    Science.gov (United States)

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium.

    Science.gov (United States)

    Pugazhendi, Arulazhagan; Abbad Wazin, Hadeel; Qari, Huda; Basahi, Jalal Mohammad Al-Badry; Godon, Jean Jacques; Dhavamani, Jeyakumar

    2017-10-01

    Clean-up of contaminated wastewater remains to be a major challenge in petroleum refinery. Here, we describe the capacity of a bacterial consortium enriched from crude oil drilling site in Al-Khobar, Saudi Arabia, to utilize polycyclic aromatic hydrocarbons (PAHs) as sole carbon source at 60°C. The consortium reduced low molecular weight (LMW; naphthalene, phenanthrene, fluorene and anthracene) and high molecular weight (HMW; pyrene, benzo(e)pyrene and benzo(k)fluoranthene) PAH loads of up to 1.5 g/L with removal efficiencies of 90% and 80% within 10 days. PAH biodegradation was verified by the presence of PAH metabolites and evolution of carbon dioxide (90 ± 3%). Biodegradation led to a reduction of the surface tension to 34 ± 1 mN/m thus suggesting biosurfactant production by the consortium. Phylogenetic analysis of the consortium revealed the presence of the thermophilic PAH degrader Pseudomonas aeruginosa strain CEES1 (KU664514) and Bacillus thermosaudia (KU664515) strain CEES2. The consortium was further found to treat petroleum wastewater in continuous stirred tank reactor with 96 ± 2% chemical oxygen demand removal and complete PAH degradation in 24 days.

  10. Light-harvesting organic photoinitiators of polymerization.

    Science.gov (United States)

    Lalevée, Jacques; Tehfe, Mohamad-Ali; Dumur, Frédéric; Gigmes, Didier; Graff, Bernadette; Morlet-Savary, Fabrice; Fouassier, Jean-Pierre

    2013-02-12

    Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red-shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20-1000 fold factor) are found. These compounds are highly efficient light-harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An evaluation of the effects of PEO/PEG molecular weights on extruded alumina rods

    Science.gov (United States)

    Bolger, Nancy Beth

    1998-12-01

    Alumina rods were piston extruded from bodies containing polyethylene glycols (PEGs) and polyethylene oxides (PEOs) with molecular weights ranging from 1,300 to 3,800,000 g/mol. A blend of aluminas possessing different particle size distributions was evaluated with regard to its extrusion pressure by varying the amount of PEG/PEO addition. Behavior exhibited by the alumina blend was dependent upon the additive that was used. The higher molecular weight binders with average molecular weight of 200,000 g/mol and 3,350,000 g/mol displayed the most severe behaviors of near dilatant and dilatant respectively. Physical properties of the green and fired states, as well as the binder burnout, were investigated with the changing additions. Correlation between the green and fired strengths and the changing molecular weights were examined. The additive present influenced the surface properties of the rods, which affected the green strengths. The highest average molecular weight polyethylene glycols showed higher green strengths, while the lowest green strengths were observed for the high molecular weight polyethylene oxides. Fired strengths generally ranged from approximately 12,000 psi to 16,000 psi for additive batches. Alumina pellets containing twelve separate combinations of polyethylene glycol with polyethylene oxide were dry pressed. Physical properties of the green and fired states were examined. Statistical analysis was performed upon the data and seven combinations of polyethylene glycol with polyethylene oxide were deemed significant. These combinations in conjunction with the same alumina blend were then piston extruded. The addition of polyethylene glycol reduced the near dilatant behavior exhibited by the 200,000 g/mol average molecular weight polyethylene oxide. Dilatant behavior was completely eliminated from the 3,350,000 g/mol average molecular weight polyethylene oxide batches. Physical properties of the green and fired states were again investigated with

  12. The influence of molecular weight in radiotracers of inflamators processes

    International Nuclear Information System (INIS)

    Mesa Duennas, N.; Zayas Crespo, F.; Piedra Mazorra, J.; Diaz Barreto, M; Rodriguez Alfonso, M.E.; Perez Fuentes, A.

    2004-01-01

    Four 99mTc-radiopharmaceuticals (RPs) were compared as a radiotracers of inflammatory process. The RPs were divided in two groups according to their molecular weights and nature. One group included the human IgG and the ior t3 MoAb (anti-CD3), another included the Ciprofloxacine and the DMSA. The RPs were studied by different quality controls, and a biodistribution study in an aseptic inflammatory model made by steril Carragenin. The results obtained in the reduction of the immunoglobulins with 2-mercaptoethanol and sodium metabisulphite demonstrated that both reducing agents were equivalent, because the radiochemical purity obtained were similar and independent of the immunoglobulins. The biodistribution demonstrated a higher incorporation for the radiopharmaceuticals of high molecular weight, and the highest values were obtained with the 2-mercaptoethanol

  13. Molecular and polymeric organic semiconductors for applications in photovoltaic devices

    International Nuclear Information System (INIS)

    Meinhardt, G.

    2000-01-01

    Photovoltaic devices based on molecular as well as polymeric semiconductors were investigated and characterized. The organic materials presented here exhibit the advantages of low price, low processing costs and the possibility of tuning their optical properties. The photovoltaic properties were investigated by photocurrent action spectroscopy and I/V-characterization and the electric field distribution in each layer by electroabsorption spectroscopy. Single layer devices of molecular semiconductors and semiconducting polymers like methyl-substituted polyparaphenylene, CN-Ether-PPV, copper-phthalocyanine, the terryleneimide DOTer, the perylene derivatives BBP-perylene and polyBBP-perylene show low photocurrents as well as a small photovoltaic effect in their pristine form. One way to enhance the performance is to blend the active layer with molecular dopands like a soluble form of titaniumoxophthalocyanine or the aromatic macromolecule RS19 or to combine two organic semiconductors in heterostructure devices. The motivation for these experiments was the optimization of either charge transfer or energy transfer from one molecule to its neighbor molecule. A model based on the internal filter effect was used for fitting the photoresponse of single layer devices. For optimising heterostructure solar cells a more sophisticated theoretical model taking into account interference effects was used. (author)

  14. Wettability, optical properties and molecular structure of plasma polymerized diethylene glycol dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, T C A M; Algatti, M A; Mota, R P; Honda, R Y; Kayama, M E; Kostov, K G; Fernandes, R S [FEG-DFQ-UNESP, Av. Ariberto Pereira da Cunha 333, 12516-410 - Guaratingueta, SP (Brazil); Cruz, N C; Rangel, E C, E-mail: algatti@feg.unesp.b [UNESP, Avenida Tres de Marco, 511, 18087-180 Sorocaba, SP (Brazil)

    2009-05-01

    Modern industry has frequently employed ethylene glycol ethers as monomers in plasma polymerization process to produce different types of coatings. In this work we used a stainless steel plasma reactor to grow thin polymeric films from low pressure RF excited plasma of diethylene glycol dimethyl ether. Plasmas were generated at 5W RF power in the range of 16 Pa to 60 Pa. The molecular structure of plasma polymerized films and their optical properties were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-Visible Spectroscopy, respectively. The IR spectra show C-H stretching at 3000-2900 cm{sup -1}, C=O stretching at 1730-1650 cm{sup -1}, C-H bending at 1440-1380 cm{sup -1}, C-O and C-O-C stretching at 1200-1000 cm{sup -1}. The refraction index was around 1.5 and the optical gap calculated from absorption coefficient presented value near 3.8 eV. Water contact angle of the films ranged from 40 deg. to 35 deg. with corresponding surface energy from 66 to 73x10{sup -7} J. Because of its favorable optical and hydrophilic characteristics these films can be used in ophthalmic industries as glass lenses coatings.

  15. Structure characterization of the central repetitive domain of high molecular weight gluten proteins .1. Model studies using cyclic and linear peptides

    NARCIS (Netherlands)

    VanDijk, AA; VanWijk, LL; VanVliet, A; Haris, P; VanSwieten, E; Tesser, GI; Robillard, GT

    The high molecular weight (HMW) proteins from wheat contain a repetitive domain that forms 60-80% of their sequence. The consensus peptides PGQGQQ and GYYPTSPQQ form more than 90% of the domain; both are predicted to adopt beta-turn structure. This paper describes the structural characterization of

  16. Influence of molecular weight on the fracture properties of aliphatic polyketone terpolymers

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Homminga, D.S.; Homminga, D.S.; Huetink, Han; Gaymans, R.J.

    2003-01-01

    The influence of polymer molecular weight on the mechanical properties of aliphatic polyketones was investigated. The molecular weight varied from 100,000 to 300,000 g mol21. The crystallinity was found to be independent of polymer molecular weight, as was the glass transition temperature. The yield

  17. Serum protein fractionation using supported molecular matrix electrophoresis.

    Science.gov (United States)

    Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko

    2013-08-01

    Supported molecular matrix electrophoresis (SMME), in which a hydrophilic polymer such as PVA serves as a support within a porous PVDF membrane, was recently developed. This method is similar to cellulose acetate membrane electrophoresis but differs in the compatibility to glycan analysis of the separated bands. In this report, we describe the first instance of the application of SMME to human serum fractionation, and demonstrate the differences with serum fractionation by cellulose acetate membrane electrophoresis. The SMME membrane exhibited almost no EOF during electrophoresis, unlike the cellulose acetate membrane, but afforded comparative results for serum fractionation. The visualization of each fraction was achieved by conventional staining with dye such as Direct Blue-71, and objective quantification was obtained by densitometry after inducing membrane transparency with 1-nonene. Immunostaining was also achieved. Moreover, mass spectrometric analysis of both N-linked and O-linked glycans from the separated bands was demonstrated. Serum fractionation and glycan profiling of each fraction using SMME will enable novel insights into the relationships between various glycosylation profiles and disease states. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Taste and chemical characteristics of low molecular weight fractions from tofuyo - Japanese fermented soybean curd.

    Science.gov (United States)

    Lioe, Hanifah Nuryani; Kinjo, Ayano; Yasuda, Shin; Kuba-Miyara, Megumi; Tachibana, Shinjiro; Yasuda, Masaaki

    2018-06-30

    Tofuyo, a Japanese traditional food, is a fermented soybean curd manufactured in Okinawa region. Due to its original cheese-like flavor, the current study was designed to evaluate the sensory and chemical characteristics of three stepwise ultrafiltration fractions, using 10,000, 3000 and 500 Da membranes and further chromatographic fractions from tofuyo. The results showed that umami, sweet and salty were the characteristic tastes of all fractions, with umami intensity evaluated for the fraction with MW less than 500 Da (F-500) as the most prominent among the three fractions. Subsequent Sephadex G-25 SF fractions and RP-HPLC fractions were subjected to sensory and chemical analyses. The tastiest fraction contained sodium chloride, sugars, organic acids, umami and sweet free amino acids, at concentrations above their thresholds. The abundant presence of umami and sweet free amino acids with certain concentrations of sodium chloride and glucose might provide the typical savory taste of tofuyo. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Molecular weight characterisation of synthetic polymers

    CERN Document Server

    Holding, Steve R

    1995-01-01

    The report comprises a state-of-the-art overview of the subject of molecular weight characterisation, supported by an extensive, indexed bibliography. The bibliography contains over 400 references and abstracts, compiled from the Polymer Library.

  20. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties.

    Science.gov (United States)

    Di Lorenzo, Flaviana; Silipo, Alba; Molinaro, Antonio; Parrilli, Michelangelo; Schiraldi, Chiara; D'Agostino, Antonella; Izzo, Elisabetta; Rizza, Luisa; Bonina, Andrea; Bonina, Francesco; Lanzetta, Rosa

    2017-02-10

    The Opuntia ficus-indica multiple properties are reflected in the increasing interest of chemists in the identification of its natural components having pharmaceutical and/or cosmetical applications. Here we report the structural elucidation of Opuntia ficus-indica mucilage that highlighted the presence of components differing for their chemical nature and the molecular weight distribution. The high molecular weight components were identified as a linear galactan polymer and a highly branched xyloarabinan. The low molecular weight components were identified as lactic acid, D-mannitol, piscidic, eucomic and 2-hydroxy-4-(4'-hydroxyphenyl)-butanoic acids. A wound healing assay was performed in order to test the cicatrizing properties of the various components, highlighting the ability of these latter to fasten dermal regeneration using a simplified in vitro cellular model based on a scratched keratinocytes monolayer. The results showed that the whole Opuntia mucilage and the low molecular weight components are active in the wound repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of HMW-GS Ax1 or Dx2 absence on the glutenin polymerization and gluten micro structure of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Gao, Xin; Liu, Tianhong; Ding, Mengyun; Wang, Jun; Li, Chunlian; Wang, Zhonghua; Li, Xuejun

    2018-02-01

    Wheat (Triticum aestivum L.) dough strength and extensibility are mainly determined by the polymerization of glutenin. The number of high-molecular-weight glutenin subunits (HMW-GS) differs in various wheat varieties due to the silencing of some genes. The effects of Ax1 or Dx2 subunit absence on glutenin polymerization, dough mixing properties and gluten micro structure were investigated with two groups of near-isogenic lines. The results showed that Ax1 or Dx2 absence decreased the accumulation rate of glutenin polymers and thus delayed the rapid increase period for glutenin polymerization by at least ten days, which led to lower percentage of polymeric protein in mature grain. Ax1 or Dx2 absence significantly decreased the dough development time and dough stability, but increased the uniformity of micro structure. Lacunarity, derived from quantitative analysis of gluten network, is suggested as a new indicator for wheat quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evidence of low molecular weight components in the organic matrix of the reef building coral, Stylophora pistillata.

    Science.gov (United States)

    Puverel, S; Houlbrèque, F; Tambutté, E; Zoccola, D; Payan, P; Caminiti, N; Tambutté, S; Allemand, D

    2007-08-01

    Biominerals contain both inorganic and organic components. Organic components are collectively termed the organic matrix, and this matrix has been reported to play a crucial role in mineralization. Several matrix proteins have been characterized in vertebrates, but only a few in invertebrates, primarily in Molluscs and Echinoderms. Methods classically used to extract organic matrix proteins eliminate potential low molecular weight matrix components, since cut-offs ranging from 3.5 to 10 kDa are used to desalt matrix extracts. Consequently, the presence of such components remains unknown and these are never subjected to further analyses. In the present study, we have used microcolonies from the Scleractinian coral Stylophora pistillata to study newly synthesized matrix components by labelling them with 14C-labelled amino acids. Radioactive matrix components were investigated by a method in which both total organic matrix and fractions of matrix below and above 5 kDa were analyzed. Using this method and SDS-PAGE analyses, we were able to detect the presence of low molecular mass matrix components (weight molecules, these probably form the bulk of newly synthesized organic matrix components. Our results suggest that these low molecular weight components may be peptides, which can be involved in the regulation of coral skeleton mineralization.

  3. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    Science.gov (United States)

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. Copyright © 2014. Published by Elsevier Ltd.

  4. Asymptotic behaviour of optimal fraction-rational series of the perturbation theory at description of molecular rotational spectra

    International Nuclear Information System (INIS)

    Burenin, A.V.

    1994-01-01

    A possibility is shown of substantial expansion of the choice of asymptotic behaviour of optimal fraction-rational series of the perturbation theory on description of molecular rotational spectra. The expansion permits to hope for substantial improvement of results of using the conception of effective rotational hamiltonian in a fraction-rational form on the description of highly perturbed vibrational states

  5. Influence of chemical compositions and molecular weights of humic acids on Cr(VI) photo-reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.Y.; Huang, S.W. [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan, ROC (China); Chiang, P.N. [The Experimental Forest, National Taiwan University, Nantou, 55743 Taiwan, ROC (China); Liu, J.C. [Agricultural Research Institute No. 189, Jhongjheng Rd., Wufong, Taichung County, 41301 Taiwan, ROC (China); Kuan, W.H. [Department of Safety, Health, and Environmental Engineering, Ming Chi University of Technology, Taishan, Taipei, 24301 Taiwan, ROC (China); Huang, J.H. [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan, ROC (China); Hung, J.T. [Department of Horticulture, National Taitung Junior College, Taitung, 95045 Taiwan, ROC (China); Tzou, Y.M., E-mail: ymtzou@dragon.nchu.edu.tw [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan, ROC (China); Chen, C.C. [Department of Life Science, National Taiwan Normal University, Taipei, 116 Taiwan, ROC (China); Wang, M.K. [Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Low molecular weights (M{sub w}) of HA bear more polar and aromatic C in its structure. Black-Right-Pointing-Pointer The polar sites of HA dominate the photo-reduction of Cr(VI). Black-Right-Pointing-Pointer Low M{sub w} of HA exhibits greater photochemical efficiency for Cr(VI) reduction. Black-Right-Pointing-Pointer Cr(VI) adsorption on HA is indiscernible, particularly on the small M{sub w} of HA. Black-Right-Pointing-Pointer Upon Cr(VI) reduction by HA, most of Cr(III) are released into the solution. - Abstract: Humic acids (HA) strongly affect the fate of trace metals in soils and aquatic environments. One of the remarkable properties of HA is its ability to reduce Cr(VI), an extremely toxic anion. However, it is unclear which HA components are involved in Cr(VI) reduction and possess the photo-induced properties. In this study, an ultrafiltration technique was used to fractionate HAs into four fractions of different nominal molecular weights (M{sub w}): >100, 50-100, 10-50 and <10 kDa. Each HA fraction was characterized by spectroscopic analyses followed by examining Cr(VI) removal on each fraction of HA at pH 1-5. Spectroscopic results indicated that low-M{sub w} HA was enriched with polar and aromatic domains. These polar, including polar C in aliphatic region, and aromatic groups were the major sites for Cr(VI) reduction because they disappeared rapidly upon interaction with Cr(VI). As a result, low M{sub w} of HA exhibited greater efficiency of Cr(VI) reduction. Light induced the rapid transfer of electrons between chromate-phenol/carboxyl ester, or the formation of peroxide radicals or H{sub 2}O{sub 2} through the ready decay of peroxy radicals associated with polar substituents, explained the rapid scavenging of Cr(VI) on polar and aromatic groups of HAs under illumination.

  6. Extraction Kinetics and Molecular Size Fractionation of Humic Substances From Two Brazilian Soils

    Directory of Open Access Journals (Sweden)

    Dick Deborah Pinheiro

    1999-01-01

    Full Text Available In the present study, the extraction behaviour of humic substances (HS from an Oxisol and a Mollisol from South Brazil, by using 0.1 and 0.5 mol L-1 NaOH and 0.15 mol L-1 neutral pyrophosphate solutions, respectively, was systematically studied. The kinetics and efficiency of HS extraction were evaluated by means of UV/Vis spectroscopy. The isolated humic acids (HA and fulvic acids (FA were size-classified by multistage ultrafiltration (six fractions in the molecular weight range of 1 to 100 kDa. The obtained data show that the HS extraction yield depended not only on the extractant, but also on the soil type. Within 3 h approximately 90% of the soluble HS could be extracted following complex extraction kinetics by both methods and none or little structural modification was verified as observed from their stable extinction ratio E350/E550. In the Mollisol the pyrophosphate extraction was more effective, suggesting that a great part of HS occurred as macromolecules bonded to clay minerals and aggregated between themselves through cationic bridges. In the Oxisol a higher HS yield was verified with the alkaline method, presumably due to HS fixation onto the oxide surface by H-bonds and/or surface complexation reactions. In general, HS extracted by the pyrophosphate procedure showed higher molecular weights than those extracted by NaOH.

  7. The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions

    Science.gov (United States)

    Nigmatullin, R. R.; Arbuzov, A. A.; Salehli, F.; Giz, A.; Bayrak, I.; Catalgil-Giz, H.

    2007-01-01

    For the first time we achieved incontestable evidence that the real process of dielectric relaxation during the polymerization reaction of polyvinylpyrrolidone (PVP) is described in terms of the fractional kinetic equations containing complex-power-law exponents. The possibility of the existence of the fractional kinetics containing non-integer complex-power-law exponents follows from the general theory of dielectric relaxation that has been suggested recently by one of the authors (R.R.N). Based on the physical/geometrical meaning of the fractional integral with complex exponents there is a possibility to develop a general theory of dielectric relaxation based on the self-similar (fractal) character of the reduced (averaged) microprocesses that take place in the mesoscale region. This theory contains some essential predictions related to existence of the non-integer power-law kinetics and the results of this paper can be considered as the first confirmation of existence of the kinetic phenomena that are described by fractional derivatives with complex-power-law exponents. We want to stress here that with the help of a new complex fitting function for the complex permittivity it becomes possible to describe the whole process for real and imaginary parts simultaneously throughout the admissible frequency range (30 Hz-13 MHz). The fitting parameters obtained for the complex permittivity function for three temperatures (70, 90 and 110 °C) confirm in general the picture of reaction that was known qualitatively before. They also reveal some new features, which improve the interpretation of the whole polymerization process. We hope that these first results obtained in the paper will serve as a good stimulus for other researches to find the traces of the existence of new fractional kinetics in other relaxation processes unrelated to the dielectric relaxation. These results should lead to the reconsideration and generalization of irreversibility and kinetic phenomena that

  8. Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla

    Science.gov (United States)

    2013-01-01

    Abstracts Background The aims of this study were to evaluate the antidiabetic activity and to detect molecular size of Pseudostellaria heterophylla polysaccharide (PHP). Pseudostellaria heterophylla is a medicine extensively used in traditional Chinese medicine formulas to treat diabetes and its complications. Methods Molecular weight of PHP was determined by gel permeation chromatography combined with phenol-sulphuric acid method and the monosaccharides composition was determined by HPLC with a precolumn derivatization. Four polysaccharides with different molecular weight were compared for hypoglycemic active on two animal models both high does alloxan induced type1 diabetic mellitus (T1DM) and high-fat/lower does streptozotocin induced type2 diabetic mellitus (T2DM). Blood sugar, glucose tolerance, and insulin tolerance were detected. Rat serum IL-1β, IL-2, IL-10, Leptin, TNF-α, Acrp30 and CRP were also analyzed by sandwich-ELISA approaches to preliminary probe the hypoglycemic mechanism of PHP. Results The hypoglycemic effects related to molecular size of polysaccharide were more effective against T2DM than T1DM. PHP comprise four monosaccharides of galacturonic acid, glucose, galactose and arabinos. T2DM rats daily receiving oral dose of polysaccharide(100 ~ 400 mg/kg) with 50 ~ 210 kDa molecular weight (PF40) could not only significantly lower blood sugar but also reduce total triglyceride level in serum. PF40 improves in insulin tolerance inhibited the expression of some biomarkers including inflammatory cytokine TNF-α and elevated anti-inflammatory cytokine IL-10, regulated adiponectin Acrp30 and leptin. Conclusions PF40 prevent the cascade of inflammatory events in the treatment of T2DM to block overweight progresses to obesity. PMID:24131482

  9. Molecularly imprinted polymeric stir bar: Preparation and application for the determination of naftopidil in plasma and urine samples.

    Science.gov (United States)

    Peng, Jun; Xiao, Deli; He, Hua; Zhao, Hongyan; Wang, Cuixia; Shi, Tian; Shi, Kexin

    2016-01-01

    In this study, molecularly imprinting technology and stir bar absorption technology were combined to develop a microextraction approach based on a molecularly imprinted polymeric stir bar. The molecularly imprinted polymer stir bar has a high performance, is specific, economical, and simple to prepare. The obtained naftopidil-imprinted polymer-coated bars could simultaneously agitate and adsorb naftopidil in the sample solution. The ratio of template/monomer/cross-linker and conditions of template removal were optimized to prepare a stir bar with highly efficient adsorption. Fourier transform infrared spectroscopy, scanning electron microscopy, selectivity, and extraction capacity experiments showed that the molecularly imprinted polymer stir bar was prepared successfully. To utilize the molecularly imprinted polymer stir bar for the determination of naftopidil in complex body fluid matrices, the extraction time, stirring speed, eluent, and elution time were optimized. The limits of detection of naftopidil in plasma and urine sample were 7.5 and 4.0 ng/mL, respectively, and the recoveries were in the range of 90-112%. The within-run precision and between-run precision were acceptable (relative standard deviation bar based microextraction with high-performance liquid chromatography was a convenient, rapid, efficient, and specific method for the precise determination of trace naftopidil in clinical analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Investigation of Plasma Eects in Ultra High Molecular Weight Polyethylene (UHMWPE) Cords

    DEFF Research Database (Denmark)

    Teodoru, Steluta; Kusano, Yukihiro; Rozlosnik, Noemi

    modication for improved wetting and/or adhesion with other polymeric materials. Atmospheric pressure plasma treatment is promising for this purpose due to its environmental compatibility, high treatment eects without aecting the textural characteristics of the bulk material, its applicability to a variety...... of shapes, and easy up-scaling and construction of in-line production processes. An atmospheric pressure dielectric barrier discharge (DBD) plasma is used to study surface modication eect on UHMWPE cords, operated at a frequency of ca. 40 kHz in He, He/O2, O2 and N2 gases. The cords were continuously...

  11. Purification of High Molecular Weight Genomic DNA from Powdery Mildew for Long-Read Sequencing.

    Science.gov (United States)

    Feehan, Joanna M; Scheibel, Katherine E; Bourras, Salim; Underwood, William; Keller, Beat; Somerville, Shauna C

    2017-03-31

    The powdery mildew fungi are a group of economically important fungal plant pathogens. Relatively little is known about the molecular biology and genetics of these pathogens, in part due to a lack of well-developed genetic and genomic resources. These organisms have large, repetitive genomes, which have made genome sequencing and assembly prohibitively difficult. Here, we describe methods for the collection, extraction, purification and quality control assessment of high molecular weight genomic DNA from one powdery mildew species, Golovinomyces cichoracearum. The protocol described includes mechanical disruption of spores followed by an optimized phenol/chloroform genomic DNA extraction. A typical yield was 7 µg DNA per 150 mg conidia. The genomic DNA that is isolated using this procedure is suitable for long-read sequencing (i.e., > 48.5 kbp). Quality control measures to ensure the size, yield, and purity of the genomic DNA are also described in this method. Sequencing of the genomic DNA of the quality described here will allow for the assembly and comparison of multiple powdery mildew genomes, which in turn will lead to a better understanding and improved control of this agricultural pathogen.

  12. Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2013-07-01

    Full Text Available This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether, and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran (PTHF in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactides, also appeared in the vine-twining polymerization.

  13. Equilibrium polymerization of cyclic carbonate oligomers. III. Chain branching and the gel transition

    Science.gov (United States)

    Ballone, P.; Jones, R. O.

    2002-10-01

    Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c3 reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c3 as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c3 required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c3. The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and—for sufficiently high values of c3—there is a reversible polymer-gel transformation at a density-dependent floor temperature.

  14. The Use of Radiation-Induced Degradation in Controlling Molecular Weights of Polysaccharides : The Effect of Humidity

    International Nuclear Information System (INIS)

    Sen, M.

    2006-01-01

    Better understanding of chemistry of radiation-induced degradation is becoming of increasing importance on account of the utilization of polymeric materials in a variety of radiation environments as well as beneficial uses of degraded polymers. It is very well known that polysaccharides in dry form or in solution degrade when exposed to ionizing radiation. In this study degrading effect of radiation has been considered from the point of view of controlling the molecular weights of kappa- and iota-carrageenans and sodium alginate irradiated under varying environmental conditions. The humidity equilibrated polymer samples kept over saturated aqueous salt solutions of NaCl, NaNO 3 and MgCl 2 were irradiated in a Gammacell 220 at room temperature. The degradation was investigated in detail by a careful Gel Permeation Chromatographic analysis of their respective molecular weights before and after irradiation Alexander-Charlesby-Ross equation was used in determining their radiation-chemical yields. Degradation yield is the highest for dry irradiated kappa- (G(S) = 0.73) and iota-carrageenans (G(S) = 2.43) and with small amount of water taken up from surrounding humidity degradation becomes less pronounced and G(S) values show a decrease down to G(S) = 0.16 and 0.87 at 75 % relative humidity, respectively. At very high water contents degradation effect again becomes more effective. Sodium alginate has fount to be less sensitive to the effect of humidity. When there is small amount of water in the polysaccharide structure, it is unlikely to expect an indirect effect of radiation. The water located in between the polymer chains however can give enough mobility to kappa and iota karrageenans chains, plastifying effect, which may enhance the radical-radical combinations thus lowering the rate of degradation hence reducing G(S) values

  15. Identification of unprecedented anticancer properties of high molecular weight biomacromolecular complex containing bovine lactoferrin (HMW-bLf.

    Directory of Open Access Journals (Sweden)

    Fawzi Ebrahim

    Full Text Available With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we report the purification and physicochemical characterization of high molecular weight biomacromolecular complex containing bovine lactoferrin (≥250 kDa, from bovine colostrum, a naturally enriched source of lactoferrin. It showed structural similarities to native monomeric iron free (Apo lactoferrin (∼78-80 kDa, retained anti-bovine lactoferrin antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p<0.01 of human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis and cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be investigated further.

  16. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Nikola; Mráček, Tomáš; Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Klučková, Katarína; Rohlena, Jakub; Neužil, Jiří; Houštěk, Josef

    2013-01-01

    Roč. 8, č. 8 (2013), e71869 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GPP303/10/P227; GA MŠk(CZ) LL1204; GA MZd(CZ) NT12370; GA ČR(CZ) GAP301/10/1937 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:67985823 Keywords : supercomplexes * high molecular weihgt forms of complex II * native electrophoretic systems Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  17. Lewis pair polymerization by classical and frustrated Lewis pairs: Acid, base and monomer scope and polymerization mechanism

    KAUST Repository

    Zhang, Yuetao

    2012-01-01

    Classical and frustrated Lewis pairs (LPs) of the strong Lewis acid (LA) Al(C 6F 5) 3 with several Lewis base (LB) classes have been found to exhibit exceptional activity in the Lewis pair polymerization (LPP) of conjugated polar alkenes such as methyl methacrylate (MMA) as well as renewable α-methylene-γ-butyrolactone (MBL) and γ-methyl- α-methylene-γ-butyrolactone (γ-MMBL), leading to high molecular weight polymers, often with narrow molecular weight distributions. This study has investigated a large number of LPs, consisting of 11 LAs as well as 10 achiral and 4 chiral LBs, for LPP of 12 monomers of several different types. Although some more common LAs can also be utilized for LPP, Al(C 6F 5) 3-based LPs are far more active and effective than other LA-based LPs. On the other hand, several classes of LBs, when paired with Al(C 6F 5) 3, can render highly active and effective LPP of MMA and γ-MMBL; such LBs include phosphines (e.g., P tBu 3), chiral chelating diphosphines, N-heterocyclic carbenes (NHCs), and phosphazene superbases (e.g., P 4- tBu). The P 4- tBu/Al(C 6F 5) 3 pair exhibits the highest activity of the LP series, with a remarkably high turn-over frequency of 9.6 × 10 4 h -1 (0.125 mol% catalyst, 100% MMA conversion in 30 s, M n = 2.12 × 10 5 g mol -1, PDI = 1.34). The polymers produced by LPs at RT are typically atactic (P γMMBL with ∼47% mr) or syndio-rich (PMMA with ∼70-75% rr), but highly syndiotactic PMMA with rr ∼91% can be produced by chiral or achiral LPs at -78 °C. Mechanistic studies have identified and structurally characterized zwitterionic phosphonium and imidazolium enolaluminates as the active species of the current LPP system, which are formed by the reaction of the monomer·Al(C 6F 5) 3 adduct with P tBu 3 and NHC bases, respectively. Kinetic studies have revealed that the MMA polymerization by the tBu 3P/ Al(C 6F 5) 3 pair is zero-order in monomer concentration after an initial induction period, and the polymerization

  18. New insight into the unresolved HPLC broad peak of Cabernet Sauvignon grape seed polymeric tannins by combining CPC and Q-ToF approaches.

    Science.gov (United States)

    Ma, Wen; Waffo-Téguo, Pierre; Alessandra Paissoni, Maria; Jourdes, Michäel; Teissedre, Pierre-Louis

    2018-05-30

    Polymeric tannins from grapes have always been reported as an unresolved broad peak in HPLC chromatograms, and this has severely limited their identification to date. This study aimed to disassemble this broad peak and explore the polymeric tannin molecules inside. By applying centrifugal partition chromatography (CPC), an efficient separation approach was developed to split the broad peak of grape seed tannins into fractions. Then, the fractions were analyzed by Q-ToF (quadrupole time-of-flight mass spectrometry) to determine the corresponding structures of the tannins. The results suggest that grape seed polymeric tannins were eluted consecutively according to their degree of polymerization (DP). Condensed tannins identified in wine grape seed have a range of DP and degree of galloylation (DG) up to 20 and 11, respectively. The molecular mass of the largest molecule detected was 6067. To our knowledge, this is the first report to offer an insight into the broad peak of polymeric tannins found with HPLC and to characterize the tannins with a DP up to 20 as shown by HRMS and MS/MS data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Radiation-induced cationic polymerization of isobutylene-isopene systems: advantages and disadvantages compared to catalytic initiation

    International Nuclear Information System (INIS)

    Williams, F.; Shinkawa, A.; Kennedy, J.P.

    1976-01-01

    The cationic copolymerization of isobutylene (1) with isoprene (2) has been induced by γ-irradiation of dry comonomer systems in bulk. Although the polymer conversion per unit dose is reduced about a thousand-fold by the addition of 3 mole % isoprene to isobutylene, the molecular weight of the copolymer is comparable to that of the homopolymer of isobutylene prepared at the same polymerization temperature. The copolymer composition corresponds closely to that of the monomer feed up to 7.1 mole % isoprene. The results are consistently accounted for by postulating that the slow step in the kinetic chain is the cross-propagation reaction described by the rate constant k/sub p21/ with an estimated value of 3 x 10 8 M -1 sec -1 at 0 0 C, this constant being much less than k/sub p12/ similarly ordered k/sub p11/ = 1.5 x 10 8 M -1 sec -1 . The viscosity-average molecular weights of the radiation-induced copolymers are about a factor of ten higher than those produced by BF 3 , AlEtCl 2 , and AlCl 3 at the same polymerization temperature. This effect is similar to that observed previously for the homopolymers of isobutylene and is attributed to the free-ion character of the radiation-induced polymerization. Despite this advantage enjoyed by the γ-irradiation method, it is subject to various practical limitations, of which the foremost is the inability to tolerate suitable solvents such as methyl chloride without sacrificing a large reduction in polymerization rate

  20. Angioplastic necrolytic migratory erythema. Unique association of necrolytic migratory erythema, extensive angioplasia, and high molecular weight glucagon-like polypeptide

    International Nuclear Information System (INIS)

    Franchimont, C.; Pierard, G.E.; Luyckx, A.S.; Gerard, J.; Lapiere, C.M.

    1982-01-01

    A diabetic patient developed necrolytic migratory erythema with extensive angioplasia and high molecular weight glucagon-like polypeptide. There was no associated neoplasm such as glucagonoma. Lesions in the skin were studied by standard optical microscopy and by radioautography after incorporation of tritiated thymidine. Alterations in the skin begin as focal necrosis in the epidermis and in epithelial structures of adnexa, followed by marked angioplasia and a superficial and deep perivascular dermatitis