WorldWideScience

Sample records for high-modulus fiber reinforcements

  1. TENSILE DEFORMATION OF HIGH-STRENGTH AND HIGH MODULUS POLYETHYLENE FIBERS

    NARCIS (Netherlands)

    VANDERWERFF, H; PENNINGS, AJ

    The influence of tensile deformation on gel-spun and hot-drawn ultrahigh molecular weight polyethylene fibers has been investigated. In high modulus polyethylene fibers no deformation energy is used to break chemical bonds during deformation, and flow is predominantly present next to elastic

  2. The thermal conductivity of high modulus Zylon fibers between 400 mK and 4 K

    Science.gov (United States)

    Wikus, Patrick; Figueroa-Feliciano, Enectalí; Hertel, Scott A.; Leman, Steven W.; McCarthy, Kevin A.; Rutherford, John M.

    2008-11-01

    Zylon is a synthetic polyurethane polymer fiber featuring very high mechanical strength. Measurements of the thermal conductivity λZ(T) of high modulus Zylon fibers at temperatures between 400 mK and 4 K were performed to assess if they can be successfully employed in the design of high performance suspension systems for cold stages of adiabatic demagnetization refrigerators. The linear mass density of the yarn used in these measurements amounts to 3270 dtex, which is also a measure for the yarn's cross section. The experimental data for the thermal conductivity was fitted to a function of the form λZ=(1010±30)·TpWmmdtexK. This result was normalized to the breaking strength of the fibers and compared with Kevlar. It shows that Kevlar outperforms Zylon in the investigated temperature range. At 1.5 K, the thermal conductivity integral of Zylon yarn is twice as high as the thermal conductivity integral of Kevlar yarn with the same breaking strength. A linear mass density of 1 tex is equivalent to a yarn mass of 1 g/km. High modulus Zylon has a density of 1.56 g/cm 3.

  3. Fiber reinforced engineering plastics

    Science.gov (United States)

    Daniel F. Caulfield; Rodney E. Jacobson; Karl D. Sears; John H. Underwood

    2001-01-01

    Although natural fiber reinforced commodity thermoplastics have a wide range of nonstructural applications in the automotive and decking industries, there have been few reports of cellulosic fiber-reinforced engineering thermoplastics. The commonly held belief has been that the only thermoplastics amenable to natural-fibre reinforcement are limited to low-melting (...

  4. Reinforcement of tire tread and radiator hose rubbers with short aramid fibers

    NARCIS (Netherlands)

    Shirazi, Morteza; Noordermeer, Jacobus W.M.

    2010-01-01

    Short fiber reinforced rubber composites have gained great importance due to their advantages in processing and low cost, coupled with high strength. Reinforcement with short fibers offers attractive features such as design flexibility, high modulus, tear strength, etc. The degree of reinforcement

  5. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  6. Short fiber reinforced thermoplastic blends

    NARCIS (Netherlands)

    Malchev, P.G.

    2008-01-01

    The present thesis investigates the potential of short fiber reinforced thermoplastic blends, a combination of an immiscible polymer blend and a short fiber reinforced composite, to integrate the easy processing solutions available for short fiber reinforced composites with the high mechanical

  7. Fiber-reinforced syntactic foams

    Science.gov (United States)

    Huang, Yi-Jen

    Long fibers are generally preferred for reinforcing foams for performance reasons. However, uniform dispersion is difficult to achieve because they must be mixed with liquid resin prior to foam expansion. New approaches aiming to overcome such problem have been developed at USC's Composites Center. Fiber-reinforced syntactic foams with long fibers (over 6 mm in length) manufactured at USC's Composites Center have achieved promising mechanical properties and demonstrated lower density relative to conventional composite foams. Fiber-reinforced syntactic foams were synthesized from thermosetting polymeric microspheres (amino and phenolic microspheres), as well as thermoplastic PVC heat expandable microspheres (HEMs). Carbon and/or aramid fibers were used to reinforce the syntactic foams. Basic mechanical properties, including shear, tensile, and compression, were measured in syntactic foams and fiber-reinforced syntactic foams. Microstructure and crack propagation behavior were investigated by scanning electron microscope and light microscopy. Failure mechanisms and reinforcing mechanisms of fiber-reinforced syntactic foams were also analyzed. As expected, additions of fiber reinforcements to foams enhanced both tensile and shear properties. However, only limited enhancement in compression properties was observed, and fiber reinforcement was of limited benefit in this regard. Therefore, a hybrid foam design was explored and evaluated in an attempt to enhance compression properties. HEMs were blended with glass microspheres to produce hybrid foams, and hybrid foams were subsequently reinforced with continuous aramid fibers to produce fiber-reinforced hybrid foams. Mechanical properties of these foams were evaluated. Findings indicated that the production of hybrid foams was an effective way to enhance the compressive properties of syntactic foams, while the addition of fiber reinforcements enhanced the shear and tensile performance of syntactic foams. Another approach

  8. High Strength and High Modulus Electrospun Nanofibers

    OpenAIRE

    Jian Yao; Cees W. M. Bastiaansen; Ton Peijs

    2014-01-01

    Electrospinning is a rapidly growing polymer processing technology as it provides a viable and simple method to create ultra-fine continuous fibers. This paper presents an in-depth review of the mechanical properties of electrospun fibers and particularly focuses on methodologies to generate high strength and high modulus nanofibers. As such, it aims to provide some guidance to future research activities in the area of high performance electrospun fibers.

  9. Fiber-Reinforced Slip Castings

    Science.gov (United States)

    Blome, J. C.; Drennan, D. N.; Keeser, H. M.

    1982-01-01

    Addition of silica fibers greatly reduces shrinkage and cracking during casting of ceramics. Fiber-reinforced slip-cast silica ceramics are also tougher and have lower dielectric loss. Silica fibers are hyperpure material containing only 1 part per million total metal-ion impurities. Hyperpure fibers ensure high reflectance and allow casting to be fired at temperature greater than 2,200 degrees F without loss of strength from devitrification.

  10. Theory of fiber reinforced materials

    Science.gov (United States)

    Hashin, Z.

    1972-01-01

    A unified and rational treatment of the theory of fiber reinforced composite materials is presented. Fundamental geometric and elasticity considerations are throughly covered, and detailed derivations of the effective elastic moduli for these materials are presented. Biaxially reinforced materials which take the form of laminates are then discussed. Based on the fundamentals presented in the first portion of this volume, the theory of fiber-reinforced composite materials is extended to include viscoelastic and thermoelastic properties. Thermal and electrical conduction, electrostatics and magnetostatics behavior of these materials are discussed. Finally, a brief statement of the very difficult subject of physical strength is included.

  11. Sensored fiber reinforced polymer grate

    Science.gov (United States)

    Ross, Michael P.; Mack, Thomas Kimball

    2017-08-01

    Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based on a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.

  12. Fiber reinforced hybrid phenolic foam

    Science.gov (United States)

    Desai, Amit

    Hybrid composites in recent times have been developed by using more than one type of fiber reinforcement to bestow synergistic properties of the chosen filler and matrix and also facilitating the design of materials with specific properties matched to end use. However, the studies for hybrid foams have been very limited because of problems related to fiber dispersion in matrix, non uniform mixing due to presence of more than one filler and partially cured foams. An effective approach to synthesize hybrid phenolic foam has been proposed and investigated here. Hybrid composite phenolic foams were reinforced with chopped glass and aramid fibers in varied proportions. On assessing mechanical properties in compression and shear several interesting facts surfaced but overall hybrid phenolic foams exhibited a more graceful failure, greater resistance to cracking and were significantly stiffer and stronger than foams with only glass and aramid fibers. The optimum fiber ratio for the reinforced hybrid phenolic foam system was found to be 1:1 ratio of glass to aramid fibers. Also, the properties of hybrid foam were found to deviate from rule of mixture (ROM) and thus the existing theories of fiber reinforcement fell short in explaining their complex behavior. In an attempt to describe and predict mechanical behavior of hybrid foams a statistical design tool using analysis of variance technique was employed. The utilization of a statistical model for predicting foam properties was found to be an appropriate tool that affords a global perspective of the influence of process variables such as fiber weight fraction, fiber length etc. on foam properties (elastic modulus and strength). Similar approach could be extended to study other fiber composite foam systems such as polyurethane, epoxy etc. and doing so will reduce the number of experimental iterations needed to optimize foam properties and identify critical process variables. Diffusivity, accelerated aging and flammability

  13. Experimental study on the thermostable property of aramid fiber reinforced PE-RT pipes

    OpenAIRE

    Qi, Guoquan; Wu, Yin; Qi, Dongtao; Wei, Bin; Li, Houbu; Ding, Nan; Cai, Xuehua

    2015-01-01

    Flexible composite pipes are advantageous in ultra high strength, high modulus, pH and corrosion resistance and light weight, but there are still some hidden safety troubles because they are poorer in thermostable capacity. Therefore, test samples of flexible composite pipes were prepared with high-temperature polythene (PE-RT) as the neck bush and aramid fiber as the reinforcement layer. Experimental study was conducted by using HPHT vessel and differential thermal scanner for different work...

  14. Saccaharum Cilliare Fiber Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    A. S. Singha

    2008-01-01

    Full Text Available Renewable resources such as natural fibers in the field of fiber reinforced materials with their new range of applications represent an important basis in order to fulfill the ecological objective of creating eco-friendly materials. In views of enormous advantages a study on green composites using Saccaharum cilliare fiber as a reinforcing material and urea-formaldehyde (UF as a novel matrix has been made. First of all urea-formaldehyde resin synthesized was reinforced withSaccaharum cilliare fiber. Reinforcement of the fiber was accomplished in three different forms particle (200 micron reinforcement, short fiber (3 mm. reinforcement and long fiber (6 mm reinforcement. Present work reveals that mechanical properties such as: tensile strength, compressive strength and wear resistance of urea -formaldehyde resin (UF increases to a significant extent when reinforced with Saccaharum cilliare fiber which is found in outsized amount in the Himalayan Region. These mechanical properties mainly depend upon the dimensions of the fiber used. Analysis of results shows that particle reinforcement is more effective as compared to short and long fiber reinforcement. Morphological and thermal studies of these composites have also been carried out.

  15. Mechanical characterization of fiber reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    João Marciano Laredo dos Reis

    2005-09-01

    Full Text Available A comparative study between epoxy Polymer Concrete plain, reinforced with carbon and glass fibers and commercial concrete mixes was made. The fibers are 6 mm long and the fiber content was 2% and 1%, respectively, in mass. Compressive tests were performed at room temperature and load vs. displacement curves were plotted up to failure. The carbon and glass fibers reinforcement were randomly dispersed into the matrix of polymer concrete. An increase in compressive properties was observed as function of reinforcement. The comparison also showed that Polymer Concrete, plain and reinforced, has a better performance than regular market concrete, suggesting that PC is a reliable alternative for construction industry.

  16. Mechanical characterization of fiber reinforced Polymer Concrete

    OpenAIRE

    Reis,João Marciano Laredo dos

    2005-01-01

    A comparative study between epoxy Polymer Concrete plain, reinforced with carbon and glass fibers and commercial concrete mixes was made. The fibers are 6 mm long and the fiber content was 2% and 1%, respectively, in mass. Compressive tests were performed at room temperature and load vs. displacement curves were plotted up to failure. The carbon and glass fibers reinforcement were randomly dispersed into the matrix of polymer concrete. An increase in compressive properties was observed as fun...

  17. The kinetics of crystallization of molten binary and ternary oxide systems and their application to the origination of high modulus glass fibers

    Science.gov (United States)

    Bacon, J. F.

    1971-01-01

    Emphasis on the consideration of glass formation on a kinetic process made it possible to think of glass compositions different from those normally employed in the manufacture of glass fibers. Approximately 450 new glass compositions were prepared and three dozen of these compositions have values for Young's modulus measured on bulk specimens greater than nineteen million pounds per square inch. Of the new glasses about a hundred could be drawn into fibers by mechanical methods at high speeds. The fiber which has a Young's modulus measured on the fiber of 18.6 million pounds per square inch and has been prepared in quantity as a monofilament (to date more than 150 million lineal feet of 0.2 to 0.4 mil fiber have been produced). This fiber has also been successfully incorporated both in epoxy and polyimide matrices. The epoxy resin composite has shown a modulus forty percent better than that achievable using the most common grade of competitive glass fiber, and twenty percent better than that obtainable with the best available grade of competitive glass fiber. Other glass fibers of even higher modulus have been developed.

  18. Standard Test Method for Tensile Properties of Fiber Reinforced Metal Matrix Composites

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This test method covers the determination of the tensile properties of metal matrix composites reinforced by continuous and discontinuous high-modulus fibers. Nontraditional metal matrix composites as stated in also are covered in this test method. This test method applies to specimens loaded in a uniaxial manner tested in laboratory air at either room temperature or elevated temperatures. The types of metal matrix composites covered are: 1.1.1 Unidirectional - Any fiber-reinforced composite with all fibers aligned in a single direction. Continuous or discontinuous reinforcing fibers, longitudinal and transverse properties. 1.1.2 0/90 Balanced Crossply - A laminate composed of only 0 and 90 plies. This is not necessarily symmetric, continuous, or discontinuous reinforcing fibers. 1.1.3 Angleply Laminate - Any balanced laminate consisting of theta plies where theta is an acute angle with respect to a reference direction. Continuous reinforcing fibers without 0 reinforcing fibers (that is, (±45)ns, (±3...

  19. [Fiber-reinforced adhesive partial dentures].

    Science.gov (United States)

    Kreulen, C M

    2003-06-01

    Dental applications of fiber-reinforced polymers include adhesive partial dentures. Dental resin composite materials can be reinforced by several types of fibres. Fiber orientation, proper wetting of the fibers by the resin and fiber volume are important. An application of fiber reinforced composites is the composite inlay bridge. This paper deals with some aspects of this type of adhesive partial denture. Advantages include the satisfactory esthetics and the minimally invasive character. Not clear yet is the long-term survival. The adhesive properties of fiber-reinforced adhesive partial dentures require an adaptation of the current dental philosophy, in which direct and indirect restorative techniques can be combined. An increase in knowledge and experience is needed to determine the dental applications.

  20. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...... mechanism of the interface between fiber and matrix was proposed and a rational model given. Finally, the response of a steel fiber reinforced concrete beam under fatigue loading was predicted based on this model and compared with experimental results....

  1. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  2. Thin fiber and textile reinforced cementitious systems

    National Research Council Canada - National Science Library

    Aldea, Corina-Maria

    2007-01-01

    This Special Publication (SP) contains ten papers which provide insight on the topics of state of the art of thin fiber and textile-reinforced cementitious systems both in academia and the industry...

  3. Application of Fiber Reinforcement Concrete Technique in Civil ...

    African Journals Online (AJOL)

    Reinforcing the concrete structures with fibers such as polyester is one of the possible ways to provide all the criteria of the durable repair material. This type of reinforcement is called Fiber Reinforcement of Concrete Structures. There is an increasing worldwide interest in utilizing fiber. reinforced concrete structures for civil ...

  4. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  5. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  6. Tension stiffening of steel-fiber-reinforced concrete

    Directory of Open Access Journals (Sweden)

    Luiz Álvaro Oliveira Júnior

    2016-08-01

    Full Text Available In this paper, the mechanical behavior of steel-fiber-reinforced concrete was investigated to analyze the influence of steel fibers on tension stiffening. Using tension tests, the tension stiffening coefficient was evaluated through the load versus strain responses obtained from strain gages fixed to reinforcement steels. Moreover, an empirical model is proposed to estimate the tension stiffening coefficient of steel-fiber-reinforced concrete from reinforcement strains. From the test results, it was verified that the addition of steel fibers to concrete reduced the reinforcement steel strains and the crack width and increased the stiffness of cracked concrete, mainly in concretes reinforced with highvolumesof fibers.

  7. Nano polypeptide particles reinforced polymer composite fibers.

    Science.gov (United States)

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  8. Glass Fiber Reinforced Polymer Dowel Bar Evaluation

    Science.gov (United States)

    2012-09-01

    Glass Fiber Reinforced Polymer (GFRP) dowel bars were installed on one new construction project and two dowel bar : retrofit projects to evaluate the performance of this type of dowel bar in comparison to steel dowel bars installed on the same : cont...

  9. Nonwoven glass fiber mat reinforces polyurethane adhesive

    Science.gov (United States)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  10. Reinforcement of timber beams with carbon fibers reinforced plastics

    Science.gov (United States)

    Gugutsidze, G.; Draškovič, F.

    2010-06-01

    Wood is a polymeric material with many valuable features and which also lacks some negative features. In order to keep up with high construction rates and the minimization of negative effects, wood has become one of the most valuable materials in modern engineering. But the use of timber material economically is also an actual problem in order to protect the environment and improve natural surroundings. A panel of scientists is interested in solving these problems and in creating rational structures, where timber can be used efficiently. These constructions are as follows: glue-laminated (gluelam), composed and reinforced wooden constructions. Composed and reinforced wooden constructions are examined less, but according to researches already carried out, it is clear that significant work can be accomplished in creating rational, highly effective and economic timber constructions. The paper deals with research on the formation of composed fiber-reinforced beams (CFRP) made of timber and provide evidence of their effectiveness. The aim of the paper is to investigate cross-bending of CFRP-reinforced gluelaminated timber beams. According to the results we were able to determine the additional effectiveness of reinforcement with CFRP (which depends on the CFRP material's quality, quantity and module of elasticity) on the mechanical features of timber and a whole beam.

  11. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  12. FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Fehmi ÇİVİCİ

    2006-02-01

    Full Text Available Fiber concrete is a composite material which has mechanical and physical characteristics unlike plain concrete. One of the important mechanical characteristics of fiber concrete is its energy absorbing capability. This characteristics which is also called toughness, is defined as the total area under the load-deflection curve. A number of composite characteristics such as crack resistance, ductility and impact resistance are related to the energy absorbtion capacity. According to ASTM C 1018 and JSCE SF-4 the calculation of toughness is determined by uniaxial flexural testing. Fiber concrete is often used in plates such as bridge decks, airport pavements, parking areas, subjected to cavitation and erosion. In this paper, toughness has been determined according to ASTM C 1018 and JSCE SF-4 methods by testing beam specimens. Energy absorbing capacities of plain and steel fiber reinforced concrete has been compared by evaluating the results of two methods. Also plain and steel fiber reinforced plate specimens behaviors subjected to biaxial flexure are compared by the loaddeflection curves of each specimen.

  13. [Fiber-reinforced composite in fixed prosthodontics].

    Science.gov (United States)

    Pilo, R; Abu Rass, Z; Shmidt, A

    2010-07-01

    Fiber reinforced composite (FRC) is composed of resin matrix and fibers filler. Common types of fibers: polyethylene, carbon and glass. Fibers can be continuous and aligned, discontinuous and aligned, discontinuous and randomly oriented. The architecture of the fibers is unidirectional, woven or braided. The two main types are: dry fibers or impregnated. Inclusion of fibers to resin composite increased its average flexural strength in 100-200 MPa. FRC can be utilized by the dentist in direct approach (splinting, temporary winged bridge) or indirect approach (laboratory made fixed partial denture). Laboratory fixed partial denture (FPD) is made from FRC substructure and Hybrid/Microfill particulate composite veneer. Main indications: interim temporary FPD or FPD in cases of questionable abutment teeth, in aesthetic cases where All Ceram FPD is not feasible. Retention is attained by adhesive cementation to minimally prepared teeth or to conventionally prepared teeth; other options are inlay-onlay bridges or hybrid bridges. Contraindications are: poor hygiene, inability to control humidity, parafunction habits, and more than two pontics. Survival rate of FRC FPD over 5 years is 75%, lower compared to porcelain fused to metal FPD which is 95%. Main reasons for failure are: fracture of framework and delamination of the veneer. Part of the failures is repairable.

  14. Design and analysis of reinforced fiber composites

    CERN Document Server

    Yamagata, Nobuki

    2016-01-01

    The papers in this volume present a broad range of applications for reinforced fiber composites - from thin shell structures to tires. Linear and nonlinear structural behavior (from linear buckling to nonlinear yelding and fracture) are discussed as well as different materials are presented. Latest developments in computational methods for constructíons are presented which will help to save money and time. This is an edited collection of papers presented at a symposium at the WCCM, Barcelona, 2014.

  15. Performance of steel-making slag concrete reinforced with fibers

    OpenAIRE

    Ortega-López Vanesa; Fuente-Alonso José Antonio; Skaf Marta; Santamaría Amaia; Aragón Ángel; Manso Juan Manuel

    2017-01-01

    In this research, the possibility of making concrete reinforced with fibers and manufactured with recycled aggregates from carbon steel production was explored. Electric arc furnace slag (EAFS) was used as coarse and medium aggregate, and part of the sand sizes. Metallic and synthetic fibers were added in different amounts. Initially, the properties of EAFS and their suitability to be used in the manufacture fiber reinforced concrete were analysed. Then, a series of fiber reinforced concrete ...

  16. Fiber reinforced polymer composites for bridge structures

    Directory of Open Access Journals (Sweden)

    Alexandra CANTORIU

    2013-12-01

    Full Text Available Rapid advances in construction materials technology have led to the emergence of new materials with special properties, aiming at safety, economy and functionality of bridges structures. A class of structural materials which was originally developed many years ago, but recently caught the attention of engineers involved in the construction of bridges is fiber reinforced polymer composites. This paper provides an overview of fiber reinforced polymer composites used in bridge structures including types, properties, applications and future trends. The results of this study have revealed that this class of materials presents outstanding properties such as high specific strength, high fatigue and environmental resistance, lightweight, stiffness, magnetic transparency, highly cost-effective, and quick assembly, but in the same time high initial costs, lack of data on long-term field performance, low fire resistance. Fiber reinforced polymer composites were widely used in construction of different bridge structures such as: deck and tower, I-beams, tendons, cable stands and proved to be materials for future in this field.

  17. Fiber-reinforced sand strength and dilation characteristics

    Directory of Open Access Journals (Sweden)

    Hesham M. Eldesouky

    2016-06-01

    Full Text Available Randomly distributed fiber reinforcement is used to provide an isotropic increase in the sand shear strength. The previous studies were not consistent regarding the fibers effect on the volumetric change behavior of fiber-reinforced sand. In this paper, direct shear tests are conducted on 108 specimens to investigate the effects of the fibers content, relative density, normal stress and moisture content on the shear strength and volumetric change behaviors of fiber-reinforced sand. The study investigates also the possibility of using dry fiber-reinforced sand as an alternative to heavily compacted unreinforced moist sand. The results indicate that the fibers inclusion increases the shear strength and dilation of sand. Moisture suppresses the fibers effect on the peak and post-peak shear strengths, and dilation. Dry loose fiber-reinforced sand achieves the same shear strength of heavily compacted unreinforced moist sand, yet at more than double the horizontal displacement.

  18. Asphalt mix reinforced with vegetable fibers

    Science.gov (United States)

    Gallo, Peter

    2017-09-01

    The use of a larger share of renewable materials in road construction is a trend that in the long term cannot be avoided. In some cases, due to this pressure, new innovative opportunities are generated. This article attempts to outline and bring one of such opportunity. The article describes selection and the use of special natural fibers from renewable natural resources adapted for use in various types of asphalt mixtures to improve the range of properties. Experimental results showed an improvement in stiffness modulus, indirect tensile strength (ITS) and good resistance to permanent deformation of blends containing vegetable fibers. This is a new topic in the road construction. But the results have so far proven that the used type of fibers can be a perspective way, as simple and in line with the policy of sustainable development, to improve the properties (reinforce) of the asphalt mixtures.

  19. On the Simulation of Kink Bands in Fiber Reinforced Composites

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Mikkelsen, Lars P.; Jensen, Henrik Myhre

    2007-01-01

    Simulations of kink band formation in fiber reinforced composites are carried out using the commercial finite element program ABAQUS. A smeared-out, plane constitutive model for fiber reinforced materials is implemented as a user subroutine, and effects of fiber misalignment on elastic and plastic...

  20. [Fiber reinforced composite posts: literature review].

    Science.gov (United States)

    Frydman, G; Levatovsky, S; Pilo, R

    2013-07-01

    FRC (Fiber-reinforced composite) posts have been used since the beginning of the 90s with the introduction of carbon fiber posts. Fiber posts are widely used to restore endodontically treated teeth that have insufficient coronal tooth structure. Many in vitro and in vivo studies have shown the advantage of using FRC over prefabricated and cast metal post especially indicated in narrow root canals which are prone to vertically root fracture. The most frequent failure of FRC is debonding of a post at the resin cement/dentin interface. Bonding to dentin may be achieved by using etch-and-rinse and self-etch adhesives. The bond strength formed by self-adhesive cements is noticeably lower in comparison to the bond strength formed with resin cements applied in combination with etch-and-rinse adhesives. In an attempt to maximize resin bonding to fiber posts, several surface treatments have been suggested. Sandblasting with alumina particles results in an increased surface roughness and surface area without affecting the integrity of the post as long as it is applied by 50 microm alumina particles at 2.5 bars for maximally 5 seconds at a distance of 30 mm. The efficiency of post salinization is controversial and its contribution to the retention is of minor importance. Hydrofluoric acid has recently been proposed for etching glass fiber posts but this technique produced substantial damage to the glass fibers and affected the integrity of the post. Delayed cementation of fiber post (at least 24h post endodontic treatment) resulted in higher retentive strengths in comparison to immediate cementation and the best results were obtained when the luting agent was brought into the post space with lentulo spirals or specific syringes. The resin cement film thickness also influences the pullout strengths of fiber-reinforced posts .The highest bond strength values were obtained when the cement layer oversized the post spaces but not larger than 0.3 mm. The use of core build

  1. Performance Assessment of Discontinuous Fibers in Fiber Reinforced Concrete: Current State-of-the-Art

    Science.gov (United States)

    2017-07-01

    ER D C/ G SL T R- 17 -1 9 Performance Assessment of Discontinuous Fibers in Fiber-Reinforced Concrete: Current State-of-the- Art G eo te...Discontinuous Fibers in Ultra-High Performance Fiber-Reinforced Concrete: Current State-of-the- Art Charles A. Burchfield Geotechnical and...Finally, a summary of the current state-of-the- art and future research recommendations will be discussed in Chapter 4. 1.1 Fiber-reinforced concrete

  2. Micromechanical failure in fiber-reinforced composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial

    Micromechanical failure mechanisms occurring in unidirectional fiber-reinforced composites are studied by means of the finite element method as well as experimental testing. This study highlights the effect of micro-scale features such as fiber/matrix interfacial debonding, matrix cracking...... and microvoids on the microscopic and macroscopic mechanical response of composite materials. To this end, first a numerical study is carried out to explore ways to stabilize interfacial crack growth under dominant Mode-I fracture using the cohesive zone model. Consequently, this study suggests a method...... composites. In the first approach, the J2 plasticity model is implemented to model the elasto-plastic behavior of the matrix while in the second strategy the modified Drucker-Prager plasticity model is utilized to account for brittle-like and pressure dependent behavior of an epoxy matrix. In addition...

  3. Applications of Fiber-Reinforced Polymers in Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    understanding of fiber-reinforcement in additive manufacturing in terms of production and application. Vat polymerization and material extrusion techniques for composite additive manufacturing were investigated with respect of increasing adhesion between the matrix material and the fibers. Process optimization...

  4. Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete

    Science.gov (United States)

    He, Dongqing; Wu, Min; Jie, Pengyu

    2017-12-01

    Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.

  5. Retrofit of existing reinforced concrete bridges with fiber reinforced polymer composites

    Science.gov (United States)

    2001-12-01

    A two-part research was focused on examining various issues related to the use of fiber reinforced polymer (FRP) composites for strengthening of existing reinforced concrete bridges. A summary of each phase is presented separately.

  6. New Polylactic Acid Composites Reinforced with Artichoke Fibers

    OpenAIRE

    Luigi Botta; Vincenzo Fiore; Tommaso Scalici; Antonino Valenza; Roberto Scaffaro

    2015-01-01

    In this work, artichoke fibers were used for the first time to prepare poly(lactic acid) (PLA)-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w) were prepared by the film-stacking method: the first one (UNID) reinforced with unidirectional long artichoke fibers, the second one (RANDOM) reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanica...

  7. Nano-Aramid Fiber Reinforced Polyurethane Foam

    Science.gov (United States)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  8. Intracanal reinforcement fiber in pediatric dentistry: a case report.

    Science.gov (United States)

    Rocha, Rachel de Oliveira; das Neves, Lucimara Teixeira; Marotti, Noely Regina; Wanderley, Marcia Turolla; Corrêa, Maria Salete Nahás Pires

    2004-04-01

    A technique for the restoration of carious primary maxillary incisors using indirect resin composite crowns and intracanal reinforcement fiber is described. Endodontic treatment was previously performed on each tooth. The advantages of using an intracanal reinforcement fiber include resin composite crown reinforcement, translucency, and relative manipulation facility. In addition, the use of indirect resin composite crowns provides good shape and esthetics, as well as reduced chair time for the child. The technique is illustrated in a case report in which indirect resin composite crowns and an intracanal reinforcement fiber are placed in a 3-year-old girl.

  9. Seismic Behavior of Substandard RC Columns Retrofitted with Embedded Aramid Fiber Reinforced Polymer (AFRP Reinforcement

    Directory of Open Access Journals (Sweden)

    Engin C. Seyhan

    2015-12-01

    Full Text Available Many existing reinforced concrete structures were constructed with substandard characteristics. Low quality concrete, poor transverse reinforcement details and insufficient flexural strength are among the most common deficiencies. While substandard structures are in need of retrofitting, particularly in seismic areas, problems such as high costs and disturbance to occupants are major obstacles for retrofit interventions. Fiber reinforced polymers can provide feasible retrofit solutions with minimum disturbance to occupants. In this study, the basic aim is to investigate the flexural seismic performance of substandard reinforced concrete columns retrofitted with embedded longitudinal fiber reinforced polymer reinforcement without increasing the original dimensions of the columns. In the experimental study, the reference and retrofitted columns were tested under constant vertical and reversed cyclic lateral loads. Three different connection methods of aramid fiber reinforced polymer reinforcement to the footing were investigated experimentally. A significant enhancement was obtained in lateral flexural strength through the proposed retrofitting method. Furthermore, it was observed that the cyclic lateral drift capacities of the retrofitted columns were as high as 3%, which can be deemed as quite satisfactory against seismic actions. The comparison of the experimental data with analytical calculations revealed that a conventional design approach assuming composite action between concrete and fiber reinforced polymer reinforcement can be used for flexural retrofit design. Experimental results also demonstrated that strain limit for longitudinal fiber reinforced polymer (FRP reinforcement should be remarkably lower in case of reversed cyclic loading conditions.

  10. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  11. Mechanical properties of woven glass fiber-reinforced composites.

    Science.gov (United States)

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2006-06-01

    The aim of this investigation was to measure the flexural and compressive strengths and the corresponding moduli of cylindrical composite specimens reinforced with woven glass fiber. Test specimens were made by light-curing urethane dimethacrylate oligomer with woven glass fiber of 0.18-mm standard thickness. Tests were conducted using four reinforcement methods and two specimen diameters. Flexural strength and modulus of woven glass fiber-reinforced specimens were significantly greater than those without woven glass fiber (p 0.05). In terms of comparison between the two specimen diameters, no statistically significant differences in flexural strength and compressive strength (p > 0.05) were observed.

  12. Recycling and Utilization of Waste Glass Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Feng Yan-chao

    2016-01-01

    Full Text Available This paper mainly introduced the recovery method, classification and comprehensive utilization process of waste glass fiber reinforced plastics (GFRP. Among the current methods of utilization, the physical method is most promising. After pre-processing of waste GFRP, the short glass fiber can be used in gypsum block to improve the anti-cracking and operation performance of the material; waste GFRP powder can be used in plastic fiber reinforced manhole covers to increase the mechanical strength, and the products conformed to JC 1009-2006. Based on these studies, we also point out some problems concerning the utilization of waste glass fiber reinforced plastics.

  13. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  14. Effects of Fiber Reinforcement on Clay Aerogel Composites

    Directory of Open Access Journals (Sweden)

    Katherine A. Finlay

    2015-08-01

    Full Text Available Novel, low density structures which combine biologically-based fibers with clay aerogels are produced in an environmentally benign manner using water as solvent, and no additional processing chemicals. Three different reinforcing fibers, silk, soy silk, and hemp, are evaluated in combination with poly(vinyl alcohol matrix polymer combined with montmorillonite clay. The mechanical properties of the aerogels are demonstrated to increase with reinforcing fiber length, in each case limited by a critical fiber length, beyond which mechanical properties decline due to maldistribution of filler, and disruption of the aerogel structure. Rather than the classical model for reinforced composite properties, the chemical compatibility of reinforcing fibers with the polymer/clay matrix dominated mechanical performance, along with the tendencies of the fibers to kink under compression.

  15. Effects of Fiber Reinforcement on Clay Aerogel Composites

    Science.gov (United States)

    Finlay, Katherine A.; Gawryla, Matthew D.; Schiraldi, David A.

    2015-01-01

    Novel, low density structures which combine biologically-based fibers with clay aerogels are produced in an environmentally benign manner using water as solvent, and no additional processing chemicals. Three different reinforcing fibers, silk, soy silk, and hemp, are evaluated in combination with poly(vinyl alcohol) matrix polymer combined with montmorillonite clay. The mechanical properties of the aerogels are demonstrated to increase with reinforcing fiber length, in each case limited by a critical fiber length, beyond which mechanical properties decline due to maldistribution of filler, and disruption of the aerogel structure. Rather than the classical model for reinforced composite properties, the chemical compatibility of reinforcing fibers with the polymer/clay matrix dominated mechanical performance, along with the tendencies of the fibers to kink under compression. PMID:28793515

  16. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    Science.gov (United States)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  17. Machining of fiber-reinforced composite laminates

    Science.gov (United States)

    Won, Myong-Shik

    As fiber-reinforced composite laminates are becoming considerably popular in a wide range of applications, the necessity for machining such materials is increasing rapidly. Due to their microscopical inhomogeneity, anisotropy, and highly abrasive nature, composite laminates exhibit some peculiar types of machining damage. Consequently, the machining of composite laminates requires a different approach from that used for metals and offers a challenge from both an academic and application point of view. In the present work, the drilling of composite laminated plates and the edge trimming of tubular composite laminates were investigated through theoretical analyses and their experimental verification. First, a drilling process model using linear elastic fracture mechanics and classical plate bending theory was developed to predict the critical thrust value responsible for the onset of delamination during the drilling of composite laminates with pre-drilled pilot holes. Experiments using stepped drills, which can utilize the effectiveness of such pilot holes, were conducted on composite laminates. Reasonably good agreement was found between the results of the process model and the tests. Second, the development of a model-based intelligent control strategy for the efficient drilling of composite laminates was explored by experiments and analyses. In this investigation, mathematical models were created to relate the drilling forces to cutting parameters and to identify the different process stages. These models predicted the degree of thrust force regulation to prevent delamination. Third, the edge trimming of thin-walled tubular composite laminates was modeled and analyzed for estimating the critical cutting force at the initiation of longitudinal cracking. A series of full-scale edge trimming tests were conducted on tubular composite specimens to assess the current approach and to obtain basic machining data for various composite laminates. The present study provides

  18. Interface study of fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Pacios, A.

    1997-12-01

    Full Text Available In a composite material that uses fibers as reinforcement, the breakage of the matrix is produced jointly with the separation of the fiber from the matrix. The mechanical behavior of the interface describes how fibers can work stabilizing the cracking process. The interface is the medium that puts the fiber on load, being the mechanical behavior of the interface and the strength of the fiber two important parameters to consider to characterize the general behavior of the composite. The present work studies the effect of several parameters on the behavior of the interface. Those parameters are the type of fiber, its geometry and dimension and the modified matrix and loading rate. An experimental technique was designed to allow testing the same set-up for pull-out tests in a quasistatic machine and Charpy pendulum. Modifications of the matrix by adding a mineral admixture improve the behavior of the interface as much as a 100%. It has been observed that combining the two actions, an improved matrix with crimped fibers, the type of failure can be modified. In this new type of failure, the fiber breaks consequently toughness decreases. Other parameters, as the loading rate and inclination of the fiber also affect the behavior of the interface.

    En un material compuesto que utiliza fibras como refuerzo, la rotura de la matriz se produce conjuntamente con la separación de la fibra de la matriz, por lo que el comportamiento mecánico de la interfase describe hasta que punto las fibras pueden trabajar como estabilizadores en el proceso defisuración. La interfase es el medio que pone en carga a la fibra y, por ello, la resistencia mecánica de la interfase y de la fibra son dos parámetros importantes a considerar para caracterizar el comportamiento general del composite. Este trabajo investiga el efecto de la variación del tipo de fibra, geometría y dimensión de las mismas y las modificaciones de la matriz y la velocidad de desplazamiento

  19. Friction energy absorption in fiber reinforced composites

    Science.gov (United States)

    Brimhall, Thomas Jay

    Energy absorption of fiber reinforced composite structures is of interest to the automotive industry as their specific energy absorption (SEA), i.e. the energy absorption capability per unit mass, is higher than many metallic counterparts. However, the SEA of composite structures has been observed to decrease under dynamic crush loading when compared with quasi-static compression. This is different from metallic structures. For example, carbon fiber/vinyl ester composite crush tubes crushed at 2.0 m/sec were observed to have SEA of 23.8 J/gm, a decrease in SEA of 6.6 J/gm or 21.7% compared with quasi-statically loaded SEA of 30.4 J/gm. Glass fiber/vinyl ester composite crush tubes were investigated with quasi-static compression and energy-absorbing modes were identified. The observed energy absorbing modes included tube corner splitting, composite delamination, matrix damage due to bending, and sliding friction of the composite with the plug type crush trigger. These same energy absorbing modes were observed in quasi-statically compressed and dynamically crashed carbon/vinyl ester composite crush tubes. Energy absorption attributable to corner splitting at quasi-static compression was estimated using standard tensile test results. Corner splitting was estimated to absorb less that 1% of the total energy absorbed by both the glass fiber composite and the carbon fiber composite crush tubes. Energy absorption attributable to delamination was estimated using the mode II (shear mode) strain energy release rate obtained using the end notch flexure (ENF) test. Under quasi-static compression, the glass fiber composite delamination SEA was found to be 1.31 J/gm or 6.4% of the total tube SEA. For carbon fiber composite crush tubes, the delamination SEA was found to be 0.84 J/gm or 2.8%f the total tube SEA. Experiments seemed to suggest that sliding friction played an important role in the energy absorption of composite crush tubes. In an attempt to separate the sliding

  20. CREATION OF MUSIC WITH FIBER REINFORCED CONCRETE

    Science.gov (United States)

    Kato, Hayato; Takeuchi, Masaki; Ogura, Naoyuki; Kitahara, Yukiko; Okamoto, Takahisa

    This research focuses on the Fiber Reinforcement Concrete(FRC) and its performance on musical tones. Thepossibility of future musical instruments made of this concrete is discussed. Recently, the technical properties of FRC had been improved and the different production styles, such as unit weight of binding material and volume of fiber in the structure, hardly affects the results of the acoustics. However, the board thickness in the FRC instruments is directly related with the variety of musical tone. The FRC musical effects were compared with those produced with wood on wind instruments. The sounds were compared with those produced with woodwind instruments. The sound pressure level was affected by the material and it becomes remarkably notorious in the high frequency levels. These differences had great influence on the spectrum analysis of the tone in the wind instruments and the sensory test. The results from the sensory test show dominant performances of brightness, beauty and power in the FRC instruments compared with those made of wood.

  1. Anisotropic contraction of hydrogel reinforced by aligned fibers

    Science.gov (United States)

    Olvera de La Cruz, Monica; Liu, Shuangping

    Hydrogel reinforced by aligned fibers can have strong anisotropic contraction or swelling behavior triggered by external stimuli, which has been largely employed in realizing soft actuators for artificial muscles as well as many biological systems. In this work, we investigate how this anisotropic behavior is controlled by the dimension of the embedded fibers and their reinforcement to the surrounding hydrogel. We describe the anisotropic contraction of hydrogels with rigid fibers using the Flory-Rehner thermodynamic model under periodic boundary conditions. It is found that a hydrogel reinforced by aligned fibers exhibits larger anisotropy when it is pre-stretched before contraction. Using finite element method, we further observe that the anisotropic contraction is dampened by reducing the fiber-fiber distance due to the finite size of the fibers.

  2. Conifer fibers as reinforcing materials for polypropylene-based composites

    DEFF Research Database (Denmark)

    Plackett, David; Chengzhi, Chuai; Almdal, Kristoffer

    2001-01-01

    Conifer fibers were used to reinforce polypropylene (PP). To improve the compatibility between the conifer fibers and the PP matrix, the fibers were either grafted with maleated PP (MAPP), treated by adding MAPP, or mixed with ethylene/propylene/diene terpolymer (EPDM). The treatments resulted in...

  3. Methodology of modeling fiber reinforcement in concrete elements

    NARCIS (Netherlands)

    Stroeven, P.

    2010-01-01

    This paper’s focus is on the modeling methodology of (steel) fiber reinforcement in concrete. The orthogonal values of fiber efficiency are presented. Bulk as well as boundary situations are covered. Fiber structure is assumed due to external compaction by vibration to display a partially linear

  4. Rotation capacity of self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.

    2006-01-01

    Steel fiber reinforced concrete (SFRC) has been used in segmental tunnel linings in the past years. In order to investigate the effect of steel fibers on the rotation capacity of plastic hinges in self-compacting concrete (SCC) the effect of the addition of fibers to SCC in compression, tension and

  5. Mechanical Properties of Steel Fiber Reinforced Silica Fume Concrete

    African Journals Online (AJOL)

    This paper presents the investigations towards developing a better understanding on the contribution of steel fibers on the compressive, flexural, and splitting tensile strengths of steel fiber reinforced silica fume concrete. An extensive experimentation was carried out with w/cm ratio ranging from 0.25 to 0.40, and fiber ...

  6. Single Fibre Pullout from Hybrid Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  7. Shear strength of steel fiber-reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    Daniel de Lima Araújo

    2014-02-01

    Full Text Available This study analyzed the mechanical behavior of shear strength of steel fiber-reinforced concrete beams. Six beams subjected to shear loading were tested until failure. Additionally, prisms were tested to evaluate fiber contribution to the concrete shear strength. Steel fibers were straight, hook-ended,35 mmlong and aspect ratio equal to 65. Volumetric fractions used were 1.0 and 2.0%. The results demonstrated a great contribution from steel fibers to shear strength of reinforced concrete beams and to reduce crack width, which can reduce the amount of stirrups in reinforced concrete structures. Beam capacity was also evaluated by empirical equations, and it was found that these equations provided a high variability, while some of them have not properly predicted the ultimate shear strength of the steel fiber-reinforced concrete beams.

  8. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    The use of different types of fibers simultaneously for reinforcing cementitious matrices is motivated by the concept of a multi-scale nature of the crack propagation process. Fibers with different geometrical and mechanical properties are used to bridge cracks of different sizes from the micro......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...... reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid...

  9. Modelling of the fracture toughness anisotropy in fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    S. Tarasovs

    2016-01-01

    Full Text Available Steel fiber reinforced concrete is potentially very promising material with unique properties, which currently is widely used in some applications, such as floors and concrete pavements. However, lack of robust and reliable models of fiber reinforced concrete fracture limits its application as structural material. In this work a numerical model is proposed for predicting the crack growth in fiber reinforced concrete. The mixing of the steel fibers with the concrete usually creates nonuniform fibers distribution with more fibers oriented in horizontal direction, than in vertical. Simple numerical models of fiber reinforced concrete require a priori knowledge of the crack growth direction in order to take into account bridging action of the fibers, which depends on the fibers orientation. In proposed model user defined elements are used to calculate the bridging force during the course of the analysis when the crack starts to grow. Cohesive elements were used to model the crack propagation in the concrete matrix. In cohesive zone model the cohesive elements are embedded between all solid elements to simulate the arbitrary crack path. The bridging effect of the fibers are modeled as nonlinear springs, where the stiffness of the springs is defined from experimentally measured pull-out force and the angle between the fiber and crack opening direction.

  10. Carbon fiber reinforced thermoplastic composites for future automotive applications

    Science.gov (United States)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  11. Effect of Fiber Reinforcement on the Response of Structural Members

    DEFF Research Database (Denmark)

    Fischer, Gregor; Li, Victor

    2007-01-01

    This paper describes a series of investigations on the effect of fiber reinforcement on the response of structural members in direct tension and flexure under reversed cyclic loading conditions. The design approach of the fiber reinforced cementitious composite is based on fracture mechanics...... and an ultimate tensile strain capacity on the order of several percent. Subsequently, the synergistic effects of composite deformation mechanisms in the ECC and structural members subjected to large shear reversals are identified. Beneficial effects observed in the reinforced ECC structural members as compared...... to conventional reinforced concrete include improved composite integrity, energy dissipation, ductility, and damage tolerance....

  12. Experimental study on the thermostable property of aramid fiber reinforced PE-RT pipes

    Directory of Open Access Journals (Sweden)

    Guoquan Qi

    2015-11-01

    Full Text Available Flexible composite pipes are advantageous in ultra high strength, high modulus, pH and corrosion resistance and light weight, but there are still some hidden safety troubles because they are poorer in thermostable capacity. Therefore, test samples of flexible composite pipes were prepared with high-temperature polythene (PE-RT as the neck bush and aramid fiber as the reinforcement layer. Experimental study was conducted by using HPHT vessel and differential thermal scanner for different working conditions, different temperatures, whole-pipe pressure-bearing capacity and 1000 h viability. It is shown by the environmental compatibility test that high temperature has little effect on the weight, Vicat softening temperature, mechanical properties and structures of neck bush PE-RT, but exerts an obvious effect on the tensility and whole-pipe water pressure blasting of the reinforcement aramid fiber. Besides, the drop of whole-pipe pressure-bearing capacity is caused by deformation and breaking of aramid fibers when the reinforcement layer is under the force of internal pressure. Finally, disorientation and crystallization of molecular thermal motion occur with the rise of temperature, so amorphous orientation reduces, crystallinity factor and crystalline orientation factor increase gradually, thus, disorientation of macromolecular chains increases and tensile strength decreases. It is concluded that this type of flexible composite pipe can smoothly pass 1000 h viability test. And it is recommended that it be used in the situations with temperature not higher than 95 °C and internal pressure not higher than 4 MPa.

  13. A Load-Deflection Study of Fiber-Reinforced Plastics as Reinforcement in Concrete Bridge Decks

    OpenAIRE

    Boyd, Curtis Barton

    1997-01-01

    Approximately fifty percent of the bridges in the United States are considered deficient. The deterioration of the concrete components is a leading cause of the problem. The deterioration of concrete bridge decks is due primarily to corrosion of the reinforcing steel in the concrete. A promising solution to the problem is the use of fiber reinforced plastics (FRP) as a replacement for reinforcing steel. The use of FRP as reinforcement has the following advantages of lightweight, high tensile ...

  14. Tensile Strength of Epoxy Composites Reinforced with Fique Fibers

    Science.gov (United States)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Teles, Maria Carolina Andrade; Borges, Luiz Gustavo Xavier; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    Environmentally friendly composites, made from natural fibers, are among the most investigated and applied today. Natural fibers have showed advantages, such as, flexibility and toughness, if compared with synthetic fibers. This work investigates the tensile strength of epoxy composites reinforced with Fique fibers. The Fique fiber was extracted from Fique leaf presents some significant characteristic, but until now only few studies on Fique fiber were performed. Composites reinforced with up to 30% in volume of long, continuous and aligned Fique fibers were tested in an Instron machine at room temperature. The incorporation of Fique fibers increases the tensile strength of the composite. After fracture the specimens were analyzed by a SEM (scanning electron microscope).

  15. Bond of reinforcing bars in self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.; Bigaj-van Vliet, A.J.; Braam, C.R.; Uijl, J.A. den; Walraven, J.C.

    2002-01-01

    Pull-out tests were performed on 10 mm diameter ribbed bars embedded along three times the bar diameter in 200 mm cubes made of plain and steel fiber reinforced concrete (SFRC) of normal strength (B45). The fiber content was 60 and 120 kg/m3, respectively, the aspect ratio of the fibers was 45 and

  16. Environmentally influenced degradation of fiber-reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, P.; Khanna, A.S. [Indian Inst. of Tech., Bombay (India); Ganti, S.S. [NMRL, Bombay (India)

    1997-05-01

    Two fiber-reinforced polymer composites were examined for susceptibility to degradation due to exposure to aggressive environments. Composites and fibers were exposed to a mixed inoculum of aerobic bacteria and also to an anaerobic sulfate reducing bacteria. Fiberglass-reinforced vinyl ester and isophthalic ester composites, as well as the individual glass fibers, were extensively degraded due to the bacterial attack. Degradation from exposure to water at elevated temperatures as well as exposure to 1N sulfuric acid were studied. In both cases, the composite samples underwent degradation in the form of fiber pullout, as well as matrix cracking, leading to subsequent reduction in the mechanical properties.

  17. Hybrid fiber reinforced self-compacting concrete: fiber synergy at low ...

    African Journals Online (AJOL)

    In most cases, fiber reinforced self-compacting concrete (FRSCC) contains only one type of fiber. The use of two or more types of fibers in a suitable combination may potentially not only improve the overal properties of self-compacting concrete, but may also result in performance synergie. The combining of fibers, often ...

  18. Machining of glass fiber reinforced polyamide

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The machinability of a 30 wt% glass fiber reinforced polyamide (PA was investigated by means of drilling tests. A disk was cut from an extruded rod and drilled on the flat surface: thrust was acquired during drilling at different drilling speed, feed rate and drill diameter. Differential scanning calorimetry (DSC and indentation were used to characterize PA so as to evaluate the intrinsic lack of homogeneity of the extruded material. In conclusion, it was observed that the chip formation mechanism affects the thrust dependence on the machining parameters. A traditional modeling approach is able to predict thrust only in presence of a continuous chip. In some conditions, thrust increases as drilling speed increases and feed rate decreases; this evidence suggests not to consider the general scientific approach which deals the machining of plastics in analogy with metals. Moreover, the thrust can be significantly affected by the workpiece fabrication effect, as well as by the machining parameters; therefore, the fabrication effect is not negligible in the definition of an optimum for the machining process.

  19. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  20. Development and performance evaluation of fiber reinforced polymer bridge.

    Science.gov (United States)

    2014-03-01

    Fiber reinforced polymers (FRP) have become more popular construction materials in the last decade due to the reduction of : material costs. The installation and performance evaluation of the first FRP-wrapped balsa wood bridge in Louisiana is descri...

  1. Biodegradation of flax fiber reinforced poly lactic acid

    CSIR Research Space (South Africa)

    Kumar, R

    2010-07-01

    Full Text Available gives us the idea of biodegradation of materials from natural fiber reinforced PLA composites when discarded carelessly in the environment instead of proper waste disposal site....

  2. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  3. Fiber-reinforced Composite for Chairside Replacement of Anterior ...

    African Journals Online (AJOL)

    FRC) prosthesis could be a good alternative to conventional prosthetic techniques, chiefly as ... Fiber-reinforced composite in combination with adhesive technology appears to be a promising treatment option for replacing missing teeth. However ...

  4. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the composite/adhesive interfaces of existing fiber reinforced polymer (FRP) composite material joints and...

  5. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the adhesive and composite/adhesive interfaces of existing fiber reinforced composite material joints and...

  6. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  7. Crack Width Analysis of Steel Fiber Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Darius Ulbinas

    2011-04-01

    Full Text Available The article investigates the effectiveness of steel fiber reinforcement in RC concrete members in regard to ordinary reinforcement. The advantages and disadvantages of different shapes of steel fibers are discussed. The algorithm for calculating crack width based on EC2 and Rilem methodologies is presented. A comparison of theoretical and experimental crack widths has been performed. The relative errors of crack width predictions at different load levels were defined.Article in Lithuanian

  8. Micromechanical modeling of strength and damage of fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  9. Fiber-reinforced technology in multidisciplinary chairside approaches

    OpenAIRE

    Arhun Neslihan; Arman Ayca

    2008-01-01

    There is an increasing demand to improve dentofacial esthetics in the adult population. This demand usually requires a close collaboration within the various disciplines of dentistry and the patient at every stage of the therapy. The materials and techniques used by these interdisciplinary clinicians must be conservative and minimally invasive. Fiber-reinforced composite technology offers such solutions for chairside applications. This case report presents two cases where fiber-reinforced rib...

  10. Performance of a bridge deck with glass fiber reinforced polymer bars as the top mat of reinforcement.

    Science.gov (United States)

    2005-01-01

    The purpose of this research was to investigate the performance of glass fiber reinforced polymer (GFRP) bars as reinforcement for concrete decks. Today's rapid bridge deck deterioration is calling for a replacement for steel reinforcement. The advan...

  11. Fiber-reinforced composites in fixed partial dentures

    Science.gov (United States)

    Vallittu, Pekka

    2006-01-01

    Fiber-reinforced composite resin (FRC) prostheses offer the advantages of good aesthetics, minimal invasive treatment, and an ability to bond to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: fiber composites to build the framework and hybrid or microfill particulate composites to create the external veneer surface. This review concentrates on the use of fiber reinforcement in the fabrication of laboratory or chairsidemade composite-fixed partial dentures of conventional preparation. Other applications of FRC in dentistry are briefly mentioned. The possibilities fiber reinforcement technology offers must be emphasized to the dental community. Rather than limiting discussion to whether FRC prostheses will replace metal-ceramic or full-ceramic prostheses, attention should be focused on the additional treatment options brought by the use of fibers. However, more clinical experience is needed. PMID:21526023

  12. Fiber-reinforced composites in fixed partial dentures

    Directory of Open Access Journals (Sweden)

    Vallittu P

    2006-08-01

    Full Text Available Fiber-reinforced composite resin (FRC prostheses offer the advantages of good esthetics, minimal invasive treatment, and an ability to bond to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: fiber composites to build the framework and hybrid or microfill particulate composites to create the external veneer surface. This review concentrates on the use of fiber reinforcement in the fabrication of laboratory or chairside-made composite-fixed partial dentures of conventional preparation. Other applications of FRC in dentistry are briefly mentioned. The possibilities fiber reinforcement technology offers must be emphasized to the dental community. Rather than limiting discussion to whether FRC prostheses will replace metal-ceramic or full-ceramic prostheses, attention should be focused on the additional treatment options brought by the use of fibers. However, more clinical experience is needed.

  13. Fiber-reinforced scaffolds in soft tissue engineering

    Science.gov (United States)

    Wang, Wei; Fan, Yubo; Wang, Xiumei; Watari, Fumio

    2017-01-01

    Abstract Soft tissue engineering has been developed as a new strategy for repairing damaged or diseased soft tissues and organs to overcome the limitations of current therapies. Since most of soft tissues in the human body are usually supported by collagen fibers to form a three-dimensional microstructure, fiber-reinforced scaffolds have the advantage to mimic the structure, mechanical and biological environment of natural soft tissues, which benefits for their regeneration and remodeling. This article reviews and discusses the latest research advances on design and manufacture of novel fiber-reinforced scaffolds for soft tissue repair and how fiber addition affects their structural characteristics, mechanical strength and biological activities in vitro and in vivo. In general, the concept of fiber-reinforced scaffolds with adjustable microstructures, mechanical properties and degradation rates can provide an effective platform and promising method for developing satisfactory biomechanically functional implantations for soft tissue engineering or regenerative medicine. PMID:28798872

  14. KEVLARTM FIBER-REINFORCED POLYBENZOXAZINE ALLOYS FOR BALLISTIC IMPACT APPLICATION

    OpenAIRE

    Chanchira Jubsilp; Pornnapa Kasemsiri; Somsiri Pathomsap; Sarawut Rimdusit; Sunan Tiptipakorn

    2011-01-01

    A light weight ballistic composites from KevlarTM-reinforcing fiber having polybenzoxazine (BA)/urethane prepolymer (PU) alloys as a matrix were investigated in this work. The effect of alloy compositions on the ballistic composite properties was determined. The results revealed that the enhancement in the glass transition temperature (Tg) of the KevlarTM-reinforced BA/PU composites compared to that of the KevlarTM-reinforced polybenzoxazine composite was observed. The increase of the elastom...

  15. Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers

    Science.gov (United States)

    Jain, Rahul

    The graphitic nature, continuous structure, and high mechanical properties of carbon nanotubes (CNTs) make them good candidate for reinforcing polymer fiber. The different types of CNTs including single-wall carbon nanotubes (SWNTs), few-wall carbon nanotubes (FWNTs), and multi-wall carbon nanotubes (MWNTs), and carbon nanofibers (CNFs) differ in terms of their diameter and number of graphitic walls. The desire has been to increase the concentration of CNTs as much as possible to make next generation multi-functional materials. The work in this thesis is mainly focused on MWNT and CNF reinforced polyacrylonitrile (PAN) composite fibers, and SWNT, FWNT, and MWNT reinforced poly(etherketone) (PEK) composite fibers. To the best of our knowledge, this is the first study to report the spinning of 20% MWNT or 30% CNF reinforced polymer fiber spun using conventional fiber spinning. Also, this is the first study to report the PEK/CNT composite fibers. The fibers were characterized for their thermal, tensile, mechanical, and dynamic mechanical properties. The fiber structure and morphology was studied using WAXD and SEM. The effect of two-stage heat drawing, sonication time for CNF dispersion, fiber drying temperature, and molecular weight of PAN was also studied. Other challenges associated with processing high concentrations of solutions for making composite fibers have been identified and reported. The effect of CNT diameter and concentration on fiber spinnability and electrical conductivity of composite fiber have also been studied. This work suggests that CNT diameter controls the maximum possible concentration of CNTs in a composite fiber. The results show that by properly choosing the type of CNT, length of CNTs, dispersion of CNTs, fiber spinning method, fiber draw ratio, and type of polymer, one can get electrically conducting fibers with wide range of conductivities for different applications. The PEK based control and composite fibers possess high thermal

  16. Fiber-reinforced composites in fixed partial dentures | Garoushi ...

    African Journals Online (AJOL)

    These prostheses are composed of two types of composite materials: fiber composites to build the framework and hybrid or microfill particulate composites to create the external veneer surface. This review concentrates on the use of fiber reinforcement in the fabrication of laboratory or chairside-made compositefixed partial ...

  17. Fiber-reinforced Composite Resin Prosthesis to Restore Missing ...

    African Journals Online (AJOL)

    A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland) embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland).

  18. Coir fiber reinforced polypropylene composite panel for automotive interior applications

    Science.gov (United States)

    Nadir Ayrilmis; Songklod Jarusombuti; Vallayuth Fueangvivat; Piyawade Bauchongkol; Robert H. White

    2011-01-01

    In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the...

  19. Short cellulose nanofribrils as reinforcement in polyvinyl alcohol fiber

    Science.gov (United States)

    Jun Peng; Thomas Ellingham; Ron Sabo; Lih-Sheng Turng; Craig M. Clemons

    2014-01-01

    Short cellulose nanofibrils (SCNF) were investigated as reinforcement for polyvinyl alcohol (PVA) fibers. SCNF were mechanically isolated from hard wood pulp after enzymatic pretreatment. Various levels of SCNF were added to an aqueous PVA solution, which was gel-spun into continuous fibers. The molecular orientation of PVA was affected by a combination of wet drawing...

  20. Micro-Mechanical Modeling of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1999-01-01

    of Fiber Reinforced Concrete (FRC) on the micro- the meso- as well as the macro-level, i.e. modeling aspects of fiber-matrix interaction, overall constitutive modeling and structural modeling. Emphasis is placed on the micro- and meso-aspects, however, some basic results on the macro-level are also...

  1. Hollow glass fibers in reinforcing glass ionomer cements.

    Science.gov (United States)

    Garoushi, Sufyan; Vallittu, Pekka; Lassila, Lippo

    2017-02-01

    This study investigated the reinforcing effect of hollow and solid discontinuous glass fiber fillers with two different loading fractions on select mechanical properties of conventional and resin modified glass ionomer cements (GICs). Experimental fiber reinforced GIC was prepared by adding discontinuous glass fiber (hollow/solid) of 0.5mm in length to the powder of commercial GICs (GC Fuji IX and II LC) with two different weight ratios (5 and 10wt%) using a high speed mixing machine. Fracture toughness, work of fracture, flexural strength, flexural modulus, compressive strength and diametral tensile strength were determined for each experimental and control material. The specimens (n=7) were wet stored (37°C for one day) before testing. Scanning electron microscopy was used to evaluate the microstructure of the experimental fiber reinforced GICs. Fiber length analysis was carried out to investigate the fiber length distribution of experimental GICs. The results were analyzed statistically using ANOVA followed by Tukey's post hoc test. Level of significance was set at 0.05. An increase in fracture toughness (280 and 200%) and flexural strength (170 and 140%) of hollow discontinuous glass fiber reinforced (10wt%) conventional and resin modified GICs respectively, were achieved compared to unreinforced materials (p0.05) between the fiber reinforced and unreinforced GICs. The use of hollow discontinuous glass fiber fillers with conventional and resin modified GIC matrix is a novel reinforcement. It yielded superior toughening and flexural performance compared to the particulate GICs used. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-01-01

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored. PMID:28773824

  3. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  4. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic

    Science.gov (United States)

    Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca

    2017-02-01

    A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.

  5. Fiber-reinforced composites in fixed partial dentures

    OpenAIRE

    Garoushi, Sufyan; Vallittu, Pekka

    2006-01-01

    Fiber-reinforced composite resin (FRC) prostheses offer the advantages of good esthetics, minimal invasive treatment, and an ability to bond to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: fiber composites to build the framework and hybrid or microfill particulate composites to create the external veneer surface. This review concentrates on the use of fiber reinfo...

  6. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    OpenAIRE

    Gerald Artner; Gentner, Philipp K.; Johann Nicolics; Mecklenbräuker, Christoph F.

    2017-01-01

    A carbon fiber reinforced polymer (CFRP) laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the...

  7. Properties of Fiber Reinforced Polymer Concrete

    National Research Council Canada - National Science Library

    Marinela Bărbuţă; Maria Harja

    2008-01-01

    .... In the composition were introduced near the fly ash, used as filler, the cellulose fibers. The mechanical characteristics such as compressive strength, flexural strength and split tensile strength of polymer concrete with fibers were investigated...

  8. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  9. Processing and Mechanical Properties of Macro Polyamide Fiber Reinforced Concrete.

    Science.gov (United States)

    Jeon, Joong Kyu; Kim, WooSeok; Jeon, Chan Ki; Kim, Jin Cheol

    2014-11-26

    This study developed a macro-sized polyamide (PA) fiber for concrete reinforcement and investigated the influence of the PA fiber on flexural responses in accordance with ASTM standards. PA fibers are advantageous compared to steel fibers that are corrosive and gravitated. The macro-sized PA fiber significantly improved concrete ductility and toughness. Unlike steel fibers, the PA fibers produced two peak bending strengths. The first-peaks occurred near 0.005 mm of deflection and decreased up to 0.5 mm of deflection. Then the bending strength increased up to second-peaks until the deflections reached between 1.0 and 1.5 mm. The averaged flexural responses revealed that PA fiber content did not significantly influence flexural responses before L/600, but had significant influence thereafter. Toughness performance levels were also determined, and the results indicated more than Level II at L/600 and Level IV at others.

  10. Kenaf fiber-reinforced copolyester biocomposites

    CSIR Research Space (South Africa)

    Mokhothu, Thabang H

    2011-12-01

    Full Text Available In this study the morphology and properties of a biodegradable aliphatic–aromatic copolyester mixed with kenaf fiber were investigated. Untreated kenaf fiber, as well as kenaf fiber treated with NaOH, and with NaOH followed by silane coupling agent...

  11. Performance of steel-making slag concrete reinforced with fibers

    Directory of Open Access Journals (Sweden)

    Ortega-López Vanesa

    2017-01-01

    Full Text Available In this research, the possibility of making concrete reinforced with fibers and manufactured with recycled aggregates from carbon steel production was explored. Electric arc furnace slag (EAFS was used as coarse and medium aggregate, and part of the sand sizes. Metallic and synthetic fibers were added in different amounts. Initially, the properties of EAFS and their suitability to be used in the manufacture fiber reinforced concrete were analysed. Then, a series of fiber reinforced concrete mixtures were developed incorporating EAFS, and they were compared with the reference mixtures, made with conventional components plus fibers and made with EAFS without fibers. A series of tests were performed, including concepts such as consistency, compressive strength, flexural strength, splitting tensile strength, resistance to water penetration or toughness. The results show that it is possible to make a suitable steel-slag concrete reinforced with fibers, complying with the standard requirements for it use in pavements and slab, and improving their proprieties respect to the control mixtures.

  12. Effect of Sisal Fiber Surface Treatment on Properties of Sisal Fiber Reinforced Polylactide Composites

    Directory of Open Access Journals (Sweden)

    Zhaoqian Li

    2011-01-01

    Full Text Available Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA. The results from mechanical testing revealed that surface-treated sisal fiber reinforced composite offered superior mechanical properties compared to untreated fiber reinforced polylactide composite, which indicated that better adhesion between sisal fiber and PLA matrix was achieved. Scanning electron microscopy (SEM investigations also showed that surface modifications improved the adhesion of the sisal fiber/polylactide matrix.

  13. Properties of Fiber Reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Marinela Bărbuţă

    2008-01-01

    Full Text Available Polymer concrete is a composite material realized with resin and aggregates. In the present study the epoxy resin was used for binding the aggregates. In the composition were introduced near the fly ash, used as filler, the cellulose fibers. The mechanical characteristics such as compressive strength, flexural strength and split tensile strength of polymer concrete with fibers were investigated. The fiber percentage was constant, the epoxy resin and the filler dosages were varied. The cellulose fiber had not improved the mechanical characteristics of the polymer concrete in comparison to that of polymer concrete without cellulose fibers.

  14. Flexural Cracking Behavior Of Steel Fiber Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ashraf Abdalkader

    2017-08-01

    Full Text Available Steel fibers are added to concrete due to its ability to improve the tensile strength and control propagation of cracks in reinforced concrete members. Steel fiber reinforced concrete is made of cement fine water and coarse aggregate in addition to steel fibers. In this experimental work flexural cracking behavior of reinforced concrete beams contains different percentage of hooked-end steel fibers with length of 50 mm and equivalent diameter of 0.5 mm was studied. The beams were tested under third-point loading test at 28 days. First cracking load maximum crack width cracks number and load-deflection relations were investigated to evaluate the flexural cracking behavior of concrete beams with 34 MPa target mean strength. Workability wet density compressive and splitting tensile strength were also investigated. The results showed that the flexural crack width is significantly reduced with the addition of steel fibers. Fiber contents of 1.0 resulted in 81 reduction in maximum crack width compared to control concrete without fiber. The results also showed that the first cracking load and maximum load are increased with the addition of steel fibers.

  15. Shear transfer in concrete reinforced with carbon fibers

    Science.gov (United States)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  16. Experimental study on mix proportion of fiber reinforced cementitious composites

    Science.gov (United States)

    Jia, Yi; Zhao, Renda; Liao, Ping; Li, Fuhai; Yuan, Yuan; Zhou, Shuang

    2017-10-01

    To study the mechanical property of fiber reinforced cementations composites influenced by the fiber length, quartz sand diameter, matrix of water cement ratio, volume fraction of fiber and magnesium acrylate solution. Several 40×40×160 mm standard test specimens, "8" specimens and long "8" specimens and 21 groups of fiber concrete specimens were fabricated. The flexural, compressive and uniaxial tensile strength were tested by using the bending resistance, compression resistance and electronic universal testing machine. The results show that flexural and compressive strength of fiber reinforced cementations composites increases along with the increase of quartz sand diameter, with the growth of the PVA fiber length increases; When the water-binder ratio is 0.25 and powder-binder ratio is 0.3, the PVA fiber content is 1.5% of the mass of cementations materials, there is a phenomenon of strain hardening; The addition of magnesium acrylate solution reduces the tensile strength of PVA fiber reinforced cementations composites, the tensile strength of the specimens in the curing age of 7d is decreased by about 21% and the specimens in curing age of 28d is decreased by more than 50%.

  17. Buckling of Fiber Reinforced Composite Plates with Nanofiber Reinforced Matrices

    Science.gov (United States)

    Chamis, Christos C.; Murthy, Pappu L. N.

    2010-01-01

    Anisotropic composite plates were evaluated with nanofiber reinforced matrices (NFRM). The nanofiber reinforcement volumes ratio in the matrix was 0.01. The plate dimensions were 20 by 10 by 1.0 in. (508 by 254 by 25.4 mm). Seven different loading condition cases were evaluated: three for uniaxial loading, three for pairs of combined loading, and one with three combined loadings. The anisotropy arose from the unidirectional plates having been at 30 from the structural axis. The anisotropy had a full 6 by 6 rigidities matrix which were satisfied and solved by a Galerkin buckling algorithm. The buckling results showed that the NFRM plates buckled at about twice those with conventional matrix.

  18. Electromechanical behavior of fiber-reinforced dielectric elastomer membrane

    Directory of Open Access Journals (Sweden)

    Chi Li

    2015-04-01

    Full Text Available Based on its large deformation, light weight, and high energy density, dielectric elastomer (DE has been used as driven muscle in many areas. We design the fiber-reinforced DE membrane by adding fibers in the membrane. The deformation and driven force direction of the membrane can be tuned by changing the fiber arrangements. The actuation in the perpendicular direction of the DE membrane with long fibers first increases and then decreases by the increasing of the fiber spacing in the perpendicular direction. The horizontal actuation of the membrane decreases by decreasing the spacing of short fibers. In the membrane-inflating structure, the radially arranged fibers will break the axisymmetric behavior of the structure. The top area of the inflated balloon without fiber will buckle up when the voltage reaches a certain level. Finite element simulations based on nonlinear field theory are conducted to investigate the effects of fiber arrangement and verify the experimental results. This work can guide the design of fiber-reinforced DE.

  19. Suitability of locally manufactured galvanized iron (GI wire fiber as reinforcing fiber in brick chip concrete

    Directory of Open Access Journals (Sweden)

    Md. Abul Bashar Emon

    2017-12-01

    Full Text Available A case study has been conducted in order to improve concrete quality in Bangladesh, using fiber reinforcing techniques with locally available low-cost Galvanized Iron (GI wire fibers. GI wire is in fact mild steel wire with a thin coating of zinc. In order to assess the suitability of GI wire fibers as an alternative to steel fibers, various properties of GI wire fibers i.e. tensile strength, bending capacity etc. have been investigated and compared with the properties of steel fibers in light of relevant ACI and ASTM guidelines. Various tests were conducted on GI wire fibers as well as plain concrete reinforced with GI wire fibers. The experimental results show that GI wire fiber has compatible properties with steel fibers. Moreover, compressive strength, flexural strength, toughness indices and residual strength factors of GI wire fiber reinforced concrete (GFRC have shown significant improvement compared to normal concrete. A comparison with Steel Fiber Reinforced Concrete (SFRC revealed that performance of GFRC is quite similar to that of SFRC. It was observed that fiber content of 2.5-3.5% by weight produces relatively better results for the particular mix design used in the study. Furthermore, a cost analysis reveals that SFRC is about 19% more expensive than GFRC in Bangladesh; for 1 cubic meter of concrete work when fiber dosage is 2.5% by weight. Therefore, the study finds that GFRC has shown some promising results to be a low-cost alternative to steel fiber reinforced concrete from Bangladesh’s perspective.

  20. Micromechanisms of damage in unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    Numerical micromechanical investigations of the mechanical behavior and damage evolution of glass fiber reinforced composites are presented. A program code for the automatic generation of 3D micromechanical unit cell models of composites with damageable elements is developed, and used...... in the numerical experiments. The effect of the statistical variability of fiber strengths, viscosity of the polymer matrix as well as the interaction between the damage processes in matrix, fibers and interface are investigated numerically. It is demonstrated that fibers with constant strength ensure higher...... strength of a composite at the pre-critical load, while the fibers with randomly distributed strengths lead to the higher strength of the composite at post-critical loads. In the case of randomly distributed fiber strengths, the damage growth in fibers seems to be almost independent from the crack length...

  1. Formable woven preforms based on in situ reinforced thermoplastic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C.G.; Souza, J.P. de; Baird, D.G. [Virginia Polytechnic Institute & State Univ., Blacksburg, VA (United States)

    1995-12-01

    Blends of Vectra B950 (VB) and polypropylene (PP) were spun into fibers utilizing a dual extrusion process for use in formable fabric prepregs. Fibers of 50/50 weight composition were processed up to fiber draw ratios of 106. The tensile modulus of these fibers showed positive deviation from the rule of mixtures for draw ratios greater than 40, and the tensile modulus and strength properties did not level off within the range of draw ratios investigated. The fibers, pre-wetted with polypropylene, were woven into fabrics that were subsequently impregnated with polypropylene sheet to form composites. The tensile mechanical properties of these composites were nearly equivalent to those of long glass fiber reinforced polypropylene. At temperatures between 240 and 280{degrees}C, composites of 6.3 wt.% VB proved formable with elongation to break values in excess of 20%. Impregnated fabric composites were successfully thermoformed without noticeable fiber damage, and a combined fabric impregnation / thermoforming process was developed.

  2. Tensile Strength of Polyester Composites Reinforced with Fique Fibers

    Science.gov (United States)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Teles, Maria Carolina Andrade; Daniel, Glenio; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    The environmental concern is creating pressure for the substitution of high energy consumption materials for natural and sustainable ones. Compared to synthetic fibers, natural fibers have shown advantages in technical aspects such as flexibility and toughness. So there is a growing worldwide interest in the use of these fibers. Fique fiber extracted from fique plant, presents some significant characteristic, but until now only few studies on fique fiber were performed. This work aims to make the analysis of the tensile strength of polyester composites reinforced with fique fibers. The fibers were incorporated into the polyester matrix with volume fraction from 0 to 30%. After fracture the specimens were analyzed by a SEM (scanning electron microscope).

  3. Carbon Fiber Reinforced, Zero CME Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technical Abstract: This project proposes to develop moisture insensitive, high performance, carbon fiber laminates for future missions. Current space-qualified...

  4. Bending Mechanical Behavior of Polyester Matrix Reinforced with Fique Fiber

    Science.gov (United States)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Barcelos, Mariana; Gomes, André; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    Environmentally correct composites, made from natural fibers, are among the most investigated and applied today. In this paper, we investigate the mechanical behavior of polyester matrix composites reinforced with continuous fique fibers, through bending tensile tests. Specimens containing 0, 10, 20 and 30% in volume of fique fiber were aligned along the entire length of a mold to create plates of these composites, those plates were cut following the ASTM standard to obtained bending tests specimens. The test was conducted in a Instron Machine and the fractured specimens were analyzed by SEM, the results showed the increase in the materials tensile properties with the increase of fiber amount.

  5. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Directory of Open Access Journals (Sweden)

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  6. The Fracture Resistance of Composite Core Materials Reinforced by Varying Fiber Orientations.

    Science.gov (United States)

    Sungur, Derya Deniz; Ersu, Bahadir; Tezvergil-Mutluy, Arzu; Canay, Senay

    This study aimed to compare the fracture resistance of composite core materials reinforced with varying fiber orientations. Composite cores of endodontically treated roots were prepared by reinforcing with woven fiber discs, fiber strips, or fiber chips, and their fracture resistance was compared to those with no reinforcement using a universal test machine (Instron, Lloyd Instruments). Reinforcement with fiber chips showed the highest fracture resistance and 50% retrievability, while no reinforcement showed the lowest fracture resistance with 62.5% retrievability. It can be concluded that the use of fiber chips may be an effective and practical method for reinforcement of the core material.

  7. Durability of Waste Glass Flax Fiber Reinforced Mortar

    Science.gov (United States)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.

    2011-01-01

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  8. Crack widths in concrete with fibers and main reinforcement

    DEFF Research Database (Denmark)

    Christensen, Frede; Ulfkjær, Jens Peder; Brincker, Rune

    The main object of the research work presented in this paper is to establish design tools for concrete structures where main reinforcement is combined with addition of short discrete steel fibers. The work is concerned with calculating and measuring crack widths in structural elements subjected...... to bending load. Thus, the aim of the work is to enable engineers to calculate crack widths for flexural concrete members and analyze how different combinations of amounts of fibers and amounts of main reinforcement can meet a given maximum crack width requirement. A mathematical model including...... the ductility of the fiber reinforced concrete (FRC) is set up and experimental work is conducted in order to verify the crack width model. The ductility of the FRC is taken into account by using the stress crack width relation. The constitutive model for the FRC is based on the idea that the initial part...

  9. Micromechanical modeling of strength and damage of fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, P.

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromecha......The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D...... micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenoligical analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials....

  10. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    Science.gov (United States)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  11. Statistical failure properties of fiber-reinforced composites

    OpenAIRE

    Cruz Hidalgo, Raul

    2003-01-01

    A composite material or composite is a complex solid material composed of two or more constituents. On macroscopic scale, they have structural or functional properties not present in any individual component and generally they are designed to exhibit the best properties or qualities of its constituents. Nature has provided composite materials in biomatter such as seaweed, wood, and human bone and there are several artificial structures as reinforced concrete, fiber-reinforced composites a...

  12. Reusing recycled fibers in high-value fiber-reinforced polymer composites: Improving bending strength by surface cleaning

    OpenAIRE

    Shi, Jian; Bao, Limin; Kobayashi, Ryouhei; Kato, Jun; Kemmochi, Kiyoshi

    2012-01-01

    Glass fiber-reinforced polymer (GFRP) composites and carbon fiber-reinforced polymer (CFRP) composites were recycled using superheated steam. Recycled glass fibers (R-GFs) and recycled carbon fibers (R-CFs) were surface treated for reuse as fiber-reinforced polymer (FRP) composites. Treated R-GFs (TR-GFs) and treated R-CFs (TR-CFs) were characterized by scanning electron microscopy (SEM) and remanufactured by vacuum-assisted resin transfer molding (VARTM). Most residual resin impurities were ...

  13. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  14. Fiber-reinforced technology in multidisciplinary chairside approaches.

    Science.gov (United States)

    Arhun, Neslihan; Arman, Ayca

    2008-01-01

    There is an increasing demand to improve dentofacial esthetics in the adult population. This demand usually requires a close collaboration within the various disciplines of dentistry and the patient at every stage of the therapy. The materials and techniques used by these interdisciplinary clinicians must be conservative and minimally invasive. Fiber-reinforced composite technology offers such solutions for chairside applications. This case report presents two cases where fiber-reinforced ribbon and composite complex was used in a multidisciplinary approach to improve esthetics.

  15. Fiber-reinforced technology in multidisciplinary chairside approaches

    Directory of Open Access Journals (Sweden)

    Arhun Neslihan

    2008-01-01

    Full Text Available There is an increasing demand to improve dentofacial esthetics in the adult population. This demand usually requires a close collaboration within the various disciplines of dentistry and the patient at every stage of the therapy. The materials and techniques used by these interdisciplinary clinicians must be conservative and minimally invasive. Fiber-reinforced composite technology offers such solutions for chairside applications. This case report presents two cases where fiber-reinforced ribbon and composite complex was used in a multidisciplinary approach to improve esthetics.

  16. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; McLaughlin, J.C. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Probst, K.J.; Anderson, T.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  17. Electromagnetic configurable architectures for assessment of Carbon Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Steigmann Rozina

    2017-01-01

    Full Text Available Carbon Fiber Reinforced Plastics are used in most wide domains due their low density, lack of mechanical fatigue phenomena and high strength–to weight ratio. From electromagnetic point of view, Carbon Fiber Reinforced Plastics structure represents an inhomogeneous structure of electric conductive fibers embedded into a dielectric material, thus an electromagnetic configurable architecture can be used to evaluate above mentioned defects. The paper proposes a special sensor, send receiver type and the obtaining of electromagnetic image by post-processing each coil signals in each point of scanning, using a sub-encoding image reconstruction algorithm and super-resolution procedures. The layout of fibers can be detected interrogating only diagonal reception coils.

  18. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  19. Recycling an ultra high performance fiber-reinforced concrete

    OpenAIRE

    SEDRAN, T; Durand, C.

    2006-01-01

    A new generation of concrete has appeared few years ago : Ultra Hight Performance Fiber-Reinforced Concrete (UHPFRC). They are characterized by a compressive strength higher than 150 MPa and a high volume of steel fibers providing them a noteworthy ductility. Their use is still marginal but the applications start to multiply. One thus attends the emergence of a new material whose recycling raises, at the first approach, two difficulties : its high resistance versus its demolition on one hand,...

  20. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  1. Micromechanical modeling of short-fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Viktor

    2016-07-01

    The mechanical behavior of a short-fiber reinforce composite is significantly governed by its microstructure. The microstructure of short-fiber reinforced composites shows heterogeneities on different length scales concerning micro-structural properties like the fiber volume fraction and the fiber orientation distribution. This work is focused on the prediction of the elastic behavior of short-fiber reinforced composites. For this purpose, a self-consistent homogenization method, the interaction direct derivative estimate, and a two-step bounding method are considered. These mean-field approaches account for detailed microstructure data experimentally determined by micro-computed tomography and, additionally, virtually generated microstructure data. Firstly, the predictions of the elastic behavior of the homogenization methods are compared with experimental measurements. Secondly, these mean-field methods are contrasted with a full-field voxel-based homogenization approach. Thirdly, based on the class of materials with transversally isotropic fiber orientation distributions, it is investigated, whether the second-order orientation tensor delivers a sufficient microstructure description for the prediction of the elastic properties of the composite.

  2. Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers

    Directory of Open Access Journals (Sweden)

    Marcos Vinícius Fonseca Ferreira

    2017-10-01

    Full Text Available The substitution of natural fibers for synthetic ones as reinforcement of polymer matrix composites is today not only the subject of investigation but also engineering applications. Natural fibers display environmental advantages in association with economic benefits related to comparatively lower cost as well as less energy consumption. Several natural lignocellulosic fibers (LCF's extracted from worldwide cultivated plants, such as sisal, coir, cotton, flax, among others, are successfully being used in composites. A great number of other LCF's, especially from wood species, has a reinforcement potential waiting to be explored. Thus, the objective of this short communication is to evaluate the thermogravimetric (TG/DTG behavior of polyester matrix composites reinforced with relatively higher volume fractions, 30, 40 and 50 vol%, of eucalyptus fibers. The incorporation of eucalyptus fibers slightly reduces the thermal stability of the polyester matrix by a small decrease in the onset of thermal degradation and the DTG peak temperature as compared to neat polyester. The limit for practical application of these composites could be set as 300 °C, before the onset of major weight loss. Keywords: Eucalyptus fiber, Polyester composites, Thermogravimetry, TG/DTG tests

  3. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  4. Investigation on Reinforced Mechanism of Fiber Reinforced Asphalt Concrete Based on Micromechanical Modeling

    Directory of Open Access Journals (Sweden)

    Ying Gao

    2017-01-01

    Full Text Available Short fibers have been widely used to prepare the fiber reinforced asphalt concrete (FRAC. However, internal interactions between fiber and other phases of asphalt concrete are unclear although experimental methods have been used to design the FRAC successfully. In this paper, numerical method was used to investigate the reinforced mechanism of FRAC from microperspective. 2D micromechanical model of FRAC was established based on Monte Carlo theory. Effects of fiber length and content on stress state of asphalt mortar, effective modulus, and viscoelastic deformation of asphalt concrete were investigated. Indirect tensile stiffness modulus (ITSM test and uniaxial creep test were carried out to verify the numerical results. Results show that maximum stress of asphalt mortar is lower compared to the control concrete when the fiber length is longer than 12 mm. Fiber reduces the stress level of asphalt mortar significantly. Fiber length has no significant influence on the effective modulus of asphalt concrete. Fiber length and content both have notable impacts on the viscoelastic performance of FRAC. Fiber length should be given more attention in the future design of FRAC except the content.

  5. Effect of Steel Fibers on the Behavior of Over-Reinforced Beams Subjected to Pure Torsion

    National Research Council Canada - National Science Library

    Warnitchai P; Rama Seshu D; Gunneswara Rao T.D

    2010-01-01

    .... Torsion tests on the 15 reinforced steel fiber reinforced concrete beams revealed that, fiber has noticeable effect on the cracking torque and very little effect on the ultimate torsional strength of the member...

  6. Evaluation of long carbon fiber reinforced concrete to mitigate earthquake damage of infrastructure components.

    Science.gov (United States)

    2013-06-01

    The proposed study involves investigating long carbon fiber reinforced concrete as a method of mitigating earthquake damage to : bridges and other infrastructure components. Long carbon fiber reinforced concrete has demonstrated significant resistanc...

  7. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer

    Science.gov (United States)

    2009-05-01

    "This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...

  8. Environmental durability of reinforced concrete deck girders strengthened for shear with surface bonded carbon fiber-reinforced polymer : final report.

    Science.gov (United States)

    2009-05-01

    This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced : concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effor...

  9. Environmental Degradation of Fiber-Reinforced Polymer Fasteners in Wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2013-01-01

    This paper examines the durability of fiber-reinforced polymer (FRP) nails in treated wood. The FRP nails were exposed to four conditions: (1) accelerated weathering, consisting of exposure to ultraviolet light and condensation; (2) 100% relative humidity (RH); (3) being driven into untreated wood and exposed to 100% RH; and (4) being driven into wood treated with...

  10. Anisotropy abrasive wear behavior of bagasse fiber reinforced ...

    African Journals Online (AJOL)

    Anisotropy abrasive wear behavior of bagasse fiber reinforced polymer composite. ... International Journal of Engineering, Science and Technology ... Three different types of abrasives wear behaviour have been observed in the composite in three orientations and follow the following trends: WNO < WAPO < WPO, where ...

  11. Fatigue life prediction of fiber reinforced concrete under flexural load

    DEFF Research Database (Denmark)

    Zhang, Jun; Stang, Henrik; Li, Victor

    1999-01-01

    This paper presents a semi-analytical method to predict fatigue behavior in flexure of fiber reinforced concrete (FRC) based on the equilibrium of force in the critical cracked section. The model relies on the cyclic bridging law, the so-called stress-crack width relationship under cyclic tensile...... load as the fundamental consitutive relationship in tension....

  12. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall...

  13. Recent development in blast performance of fiber-reinforced concrete

    Science.gov (United States)

    Hajek, R.; Foglar, M.; Kohoutkova, A.

    2017-09-01

    The paper presents an overview of the recent development in blast performance of fiber reinforced concrete. The paper builds on more than ten years’ history of the research in this field by the team of the Department of Concrete and Masonry Structures of the Faculty of Civil Engineering of the Czech Technical University in Prague.

  14. Stress-Strain Curves for High-Performance Fiber Reinforced ...

    African Journals Online (AJOL)

    Steel fiber reinforced concrete (SFRC) is increasingly being used day by day as a structural material for various applications. The complete stress-strain curve of this material in compression is needed for the analysis and design of structural elements. An experimental investigation was carried out to generate the complete ...

  15. Production of Banana Fiber Yarns for Technical Textile Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Zaida Ortega

    2016-05-01

    Full Text Available Natural fibers have been used as an alternative to synthetic ones for their greener character; banana fibers have the advantage of coming from an agricultural residue. Fibers have been extracted by mechanical means from banana tree pseudostems, as a strategy to valorize banana crops residues. To increase the mechanical properties of the composite, technical textiles can be used as reinforcement, instead of short fibers. To do so, fibers must be spun and woven. The aim of this paper is to show the viability of using banana fibers to obtain a yarn suitable to be woven, after an enzymatic treatment, which is more environmentally friendly. Extracted long fibers are cut to 50 mm length and then immersed into an enzymatic bath for their refining. Conditions of enzymatic treatment have been optimized to produce a textile grade of banana fibers, which have then been characterized. The optimum treating conditions were found with the use of Biopectinase K (100% related to fiber weight at 45 °C, pH 4.5 for 6 h, with bath renewal after three hours. The first spinning trials show that these fibers are suitable to be used for the production of yarns. The next step is the weaving process to obtain a technical fabric for composites production.

  16. Thermoforming continuous fiber-reinforced thermoplastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiang.

    1990-01-01

    In this research the forming process was first decomposed into basic deformation elements with simple geometries, and models were then developed for these elements. A series-parallel model was developed for predicting the upper and lower bounds of composite shear modulus at forming temperature based on the fiber content, fiber distribution, and matrix shear modulus. A shear-flexure model was proposed to describe the initial load-deflection behavior of thermoplastic composites in bending. A ply buckling model was developed which included the contributions from both a surface tension term and a ply buckling term.

  17. Carbon fiber reinforcements for sheet molding composites

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Soydan; Paulauskas, Felix L.

    2017-11-14

    A method of processing a carbon fiber tow includes the steps of providing a carbon fiber tow made of a plurality of carbon filaments, depositing a sizing composition at spaced-apart sizing sites along a length of the tow, leaving unsized interstitial regions of the tow, and cross-cutting the tow into a plurality of segments. Each segment includes at least a portion of one of the sizing sites and at least a portion of at least one of the unsized regions of the tow, the unsized region including and end portion of the segment.

  18. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement

    Directory of Open Access Journals (Sweden)

    Mariana Etcheverry

    2012-06-01

    Full Text Available Glass fibers (GF are the reinforcement agent most used in polypropylene (PP based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers.

  19. Modeling of short fiber reinforced injection moulded composite

    Science.gov (United States)

    Kulkarni, A.; Aswini, N.; Dandekar, C. R.; Makhe, S.

    2012-09-01

    A micromechanics based finite element model (FEM) is developed to facilitate the design of a new production quality fiber reinforced plastic injection molded part. The composite part under study is composed of a polyetheretherketone (PEEK) matrix reinforced with 30% by volume fraction of short carbon fibers. The constitutive material models are obtained by using micromechanics based homogenization theories. The analysis is carried out by successfully coupling two commercial codes, Moldflow and ANSYS. Moldflow software is used to predict the fiber orientation by considering the flow kinetics and molding parameters. Material models are inputted into the commercial software ANSYS as per the predicted fiber orientation and the structural analysis is carried out. Thus in the present approach a coupling between two commercial codes namely Moldflow and ANSYS has been established to enable the analysis of the short fiber reinforced injection moulded composite parts. The load-deflection curve is obtained based on three constitutive material model namely an isotropy, transversely isotropy and orthotropy. Average values of the predicted quantities are compared to experimental results, obtaining a good correlation. In this manner, the coupled Moldflow-ANSYS model successfully predicts the load deflection curve of a composite injection molded part.

  20. Process for the fabrication of ceramic fiber reinforced titanium aluminide

    Science.gov (United States)

    Horsfall, I.; Cundy, S. J.

    1992-10-01

    This paper describes initial work on a novel process for the production of titanium aluminide matrix composites reinforced with short alumina fibers. The processing route involves an adaption of existing metal matrix composite (MMC) fabrication technology used to produce hybrid particulate/short fiber composites. A preform is produced which contains alumina fibers and titanium metal powder with a fiber content of around 10 percent by volume and approximately 50 percent porosity. This preform is then infiltrated with pure aluminum by a squeeze casting process to produce a fully dense composite of titanium powder and alumina fibers in a metallic aluminum matrix. The composite is then heat treated in a hot isostatic press to react the aluminum and titanium to produce a titanium aluminide matrix.

  1. Nondestructive testing of externally reinforced structures for seismic retrofitting using flax fiber reinforced polymer (FFRP) composites

    Science.gov (United States)

    Ibarra-Castanedo, C.; Sfarra, S.; Paoletti, D.; Bendada, A.; Maldague, X.

    2013-05-01

    Natural fibers constitute an interesting alternative to synthetic fibers, e.g. glass and carbon, for the production of composites due to their environmental and economic advantages. The strength of natural fiber composites is on average lower compared to their synthetic counterparts. Nevertheless, natural fibers such as flax, among other bast fibers (jute, kenaf, ramie and hemp), are serious candidates for seismic retrofitting applications given that their mechanical properties are more suitable for dynamic loads. Strengthening of structures is performed by impregnating flax fiber reinforced polymers (FFRP) fabrics with epoxy resin and applying them to the component of interest, increasing in this way the load and deformation capacities of the building, while preserving its stiffness and dynamic properties. The reinforced areas are however prompt to debonding if the fabrics are not mounted properly. Nondestructive testing is therefore required to verify that the fabric is uniformly installed and that there are no air gaps or foreign materials that could instigate debonding. In this work, the use of active infrared thermography was investigated for the assessment of (1) a laboratory specimen reinforced with FFRP and containing several artificial defects; and (2) an actual FFRP retrofitted masonry wall in the Faculty of Engineering of the University of L'Aquila (Italy) that was seriously affected by the 2009 earthquake. Thermographic data was processed by advanced signal processing techniques, and post-processed by computing the watershed lines to locate suspected areas. Results coming from the academic specimen were compared to digital speckle photography and holographic interferometry images.

  2. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  3. Flow-fiber coupled viscosity in injection molding simulations of short fiber reinforced thermoplastics

    OpenAIRE

    LI, Tianyi; Luyé, Jean-François

    2018-01-01

    The main objective of this communication is to numerically investigate the use of fiber-dependent viscosity models in injection molding simulations of short fiber reinforced thermoplastics with a latest commercial software (Moldflow Insight 2018). We propose to use the homogenization-based Lipscomb's model to take into account possible flow-fiber coupling effects. The original model is adapted and then implemented in the Moldflow Insight API framework. Numerical simulations are performed in a...

  4. Microbial Degradation of Fiber Reinforced Polymer Composites

    Science.gov (United States)

    1993-07-16

    trilizedandaddedto thesalt solution. Psued&ordna fluoruictr, a cA1areous-depoiti bacwlur was obtained form ihe America Type Culture Collection (ATCC...an amniontum-producing bactarimwn.wa mainta ned in brain heart infusion media.12 Clonridiwur acewbutylcum. ATCC #824, a bacterium previously shown...108, National Asociation of Csio•n Engineers, Houston TX. 1991 9. Pendrys, J.P., Mkcroblologically lnd.td Degradation ,70 P - I GrUphite Fibers. J

  5. STUDY THE CREEP OF TUBULAR SHAPED FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Najat J. Saleh

    2013-05-01

    Full Text Available Inpresent work tubular –shaped fiber reinforced composites were manufactured byusing two types of resins ( Epoxy and unsaturated polyester and separatelyreinforced with glass, carbon and kevlar-49 fibers (filament and woven roving,hybrid reinforcement composites of these fibers were also prepared. The fiberswere wet wound on a mandrel using a purposely designed winding machine,developed by modifying an ordinary lathe, in winding angle of 55° for filament. A creep test was made of either the fulltube or specimens taken from it. Creep was found to increase upon reinforcementin accordance to the rule of mixture and mainly decided by the type of singleor hybridized fibers. The creep behavior, showed that the observed strain tendsto appear much faster at higher temperature as compared with that exhibited atroom temperate. The creep rate also found to be depending on fiber type, matrixtype, and the fiber /matrix bonding. The creep energy calculated fromexperimental observations was found to exhibit highest value for hybridizedreinforcement.

  6. A micromorphic model for steel fiber reinforced concrete.

    Science.gov (United States)

    Oliver, J; Mora, D F; Huespe, A E; Weyler, R

    2012-10-15

    A new formulation to model the mechanical behavior of high performance fiber reinforced cement composites with arbitrarily oriented short fibers is presented. The formulation can be considered as a two scale approach, in which the macroscopic model, at the structural level, takes into account the mesostructural phenomenon associated with the fiber-matrix interface bond/slip process. This phenomenon is contemplated by including, in the macroscopic description, a micromorphic field representing the relative fiber-cement displacement. Then, the theoretical framework, from which the governing equations of the problem are derived, can be assimilated to a specific case of the material multifield theory. The balance equation derived for this model, connecting the micro stresses with the micromorphic forces, has a physical meaning related with the fiber-matrix bond slip mechanism. Differently to previous procedures in the literature, addressed to model fiber reinforced composites, where this equation has been added as an additional independent ingredient of the methodology, in the present approach it arises as a natural result derived from the multifield theory. Every component of the composite is defined with a specific free energy and constitutive relation. The mixture theory is adopted to define the overall free energy of the composite, which is assumed to be homogeneously constituted, in the sense that every infinitesimal volume is occupied by all the components in a proportion given by the corresponding volume fraction. The numerical model is assessed by means of a selected set of experiments that prove the viability of the present approach.

  7. Performance of steel wool fiber reinforced geopolymer concrete

    Science.gov (United States)

    Faris, Meor Ahmad; Abdullah, Mohd Mustafa Al Bakri; Ismail, Khairul Nizar; Muniandy, Ratnasamy; Ariffin, Nurliayana

    2017-09-01

    In this paper, performance of geopolymer concrete was studied by mixing of Class F fly ash from Manjung power station, Lumut, Perak, Malaysia with alkaline activator which are combination of sodium hydroxide and sodium silicate. Steel wool fiber were added into the geopolymer concrete as reinforcement with different weight percentage vary from 0 % - 5 %. Chemical compositions of Malaysian fly ash was first analyzed by using X-ray fluorescence. All geopolymer concrete reinforced with steel wool fiber with different weight percentage were tested in terms of density, workability, and compression. Result shows Malaysian fly ash identified by using XRF was class F. Density of geopolymer concrete close to density of OPC which is approximately 2400 kg/m3 and the density was increase gradually with the additions of steel fiber. However, the inclusions of steel fibers also shows some reduction to the workability of geopolymer concrete. Besides, the compressive strength was increased with the increasing of fibers addition until maximum of 18.6 % improvement at 3 % of steel fibers.

  8. Direct Shear Behavior of Fiber Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Hussein Al-Quraishi

    2018-01-01

    Full Text Available Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks. This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC and reactive powder concrete (RPC. The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressive strength, volume fraction of steel fiber, and shear reinforcement ratio on shear transfer capacity were considered in this study. Furthermore, failure modes, shear stress-slip behavior, and shear stress-crack width behavior were also presented in this study. Tests’ results showed that volume fraction of steel fiber and compressive strength of concrete in NSC and RPC play a major role in improving the shear strength of concrete. As expectedly, due to dowel action, the shear reinforcement is the predominant factor in resisting the shear stress. The shear failure of NSC and RPC has the sudden mode of failure (brittle failure with the approximately linear behavior of shear stress-slip relationship till failure. Using RPC instead of NSC with the same amount of steel fibers in constructing the push-off specimen result in high shear strength. In NSC, shear strength influenced by the three major factors; crack surface friction, aggregate interlock and steel fiber content if present. Whereas, RPC has only steel fiber and cracks surface friction influencing the shear strength. Due to cementitious nature of RPC in comparisons with NSC, the RPC specimen shows greater cracks width. It is observed that the Mattock model gives very satisfactory

  9. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    Directory of Open Access Journals (Sweden)

    Young-Sun Choun

    2015-12-01

    Conclusion: The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level.

  10. Correlations Between Mechanical Properties of Steel Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Carrillo Julián

    2013-06-01

    Full Text Available Tension strength and post-cracking deformation capacities that exhibits steel fiber reinforced concrete (SFRC stimulate its use in elements governed by shear deformations. Aimed at developing design aids that promote the use of SFRC as web shear reinforcement of concrete walls for low-rise economic housing (LEH, an experimental study for describing the mechanical properties of SFRC was carried out. The experimental program included testing of 128 cylinder- and beam-type specimens. According to requirements specified by ACI-318, to thickness of walls used in LEH, and to results of previous studies, three Dramix fibers with length-diameter ratios of 55, 64 and 80 were selected. Fiber dosage was expressed in terms of the minimum fiber dosage specified by ACI-318 for replacing the minimum area of conventional shear reinforcement in beams (60 kg/m3. Therefore, five dosages were used: 0, 40, 45, 60 and 75 kg/m3. Mechanical properties of SFRC under compressive, tensile and flexural stresses were evaluated in this study. Based on trends of experimental results, numerical correlations for estimating both basic mechanical properties and properties that describe flexural performance of SFRC are proposed.

  11. Reinforcement of Recycled Foamed Asphalt Using Short Polypropylene Fibers

    Directory of Open Access Journals (Sweden)

    Yongjoo Kim

    2013-01-01

    Full Text Available This paper presents the reinforcing effects of the inclusion of short polypropylene fibers on recycled foamed asphalt (RFA mixture. Short polypropylene fibers of 10 mm length with a 0.15% by weight mixing ratio of the fiber to the asphalt binder were used. The Marshall stability test, the indirect tensile strength test, the resilient modulus test, and wheel tracking test of the RFA mixtures were conducted. The test results were compared to find out the reinforcing effects of the inclusion of the fiber and the other mixtures, which included the conventional recycled foamed asphalt (RFA mixtures; the cement reinforced recycled foamed asphalt (CRFA mixtures; the semihot recycled foamed asphalt (SRFA mixtures; and recycled hot-mix asphalt (RHMA mixtures. It is found that the FRFA mixture shows higher Marshall stability than the RFA and SRFA mixtures, higher indirect tensile strength than the RFA mixture, and higher rut resistance than the RFA, SRFA, and RHMA mixtures as seen from the wheel tracking test.

  12. Evaluation of opacity in polyethylene fiber reinforced composites

    Directory of Open Access Journals (Sweden)

    Hasani Tabatabaie M

    2010-06-01

    Full Text Available "nBackground and Aims: The main objective of this study was to determine the effect of polyethylene fibers and veneering composites in fiber-reinforced resin systems on the opacity (contrast ratio. "nMaterials and Methods: The specimens were divided into four groups. Two groups were used as the control groups, with no reinforcement. The fibers of polyethylene (Fibre-Braid with special basement composites were used as the reinforced framework materials. Filtek Z250 and GRADIA (shade A2 were used as veneering materials. The total thickness of samples was 3 mm with 13 mm diameter. Specimens were prepared in disk shaped metal mold. The composite materials were light-cured according to their manufacturers' instructions. The contrast ratio (CR of each specimen was determined on black and white backgrounds using reflection spectrophotometer. Reflectance was measured at intervals of 10 nm between 400 nm and 750 nm. Data were analyzed by two-way ANOVA and Tukey HSD test. "nResults: When contrast ratio were compared among the different types of materials statistically significant differences were observed in both veneering composites (P<0.05. The Z250 resin composite had the lowest CR. It was shown that CR tended to decrease as the wavelength of incident light increased from 400 nm to 750 nm. On the other hand, the most differences in CR between groups were found in longer wavelengths. "nConclusion: It was found that polyethylene fibers reduced the amount of the translucency in FRC samples. The results of this study indicate that light reflectance characteristics, including the wavelength dependence, play an important role for the CR of a fiber-reinforced composite.

  13. Axial shear modulus of a fiber-reinforced composite with random fiber cross-sections

    Directory of Open Access Journals (Sweden)

    S. K. Bose

    1982-01-01

    Full Text Available A study is made of the effective axial shear modulus of a fiber reinforced material with random fiber cross-sections so that the micromechanics is governed by stochastic differential equations. A coarse-graining procedure is adopted to investigate the macroscopic behavior of the material. This analysis leads to the formula for the effective axial shear modulus μ∗=μ1/{1−2c(μ2−μ1/(μ2+μ1},where μ1 and μ2 are the shear modulus of the matrix and fibers respectively and c is the concentration of the fibers less that 0.5. For c>0.5, the fiber and matrix moduli are to be interchanged and c is to be replaced by 1−c. The results of this study are compared with those of the theory of fibre reinforced materials. Finally, a numerical example is presented with graphical representation.

  14. Strength and Deformability of Fiber Reinforced Cement Paste on the Basis of Basalt Fiber

    Directory of Open Access Journals (Sweden)

    Yury Barabanshchikov

    2016-01-01

    Full Text Available The research object of the paper is cement paste with the particulate reinforcement of basalt fiber. Regardless of fibers’ length at the same fiber cement mix workability and cement consumption equality compressive solidity of the specimens is reduced with increasing fiber content. This is due to the necessity to increase the water-cement ratio to obtain a given workability. The flexural stability of the specimens with increasing fiber content increments in the same conditions. There is an optimum value of the fibers’ dosage. That is why stability has a maximum when crooking. The basaltic fiber particulate reinforcement usage can abruptly increase the cement paste level limiting extensibility, which is extremely important in terms of crack resistance.

  15. Effects of moisture on glass fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Alzamora Guzman, Vladimir Joel; Brøndsted, Povl

    2015-01-01

    Glass fiber polymer composites are used in wind turbine blades because of their high-specific strength and stiffness, good fatigue properties, and low cost. The wind industry is moving offshore to satisfy economies of scale with larger turbines. High humidity in this environment degrades mechanical...... performance of wind turbine blades over their lifetime. Here, environmental moisture conditions were simulated by immersing glass fiber-reinforced polymer specimens in salt water for a period of up to 8 years. The mechanical properties of specimens were analyzed before and after immersion to evaluate...... the degradation mechanisms. Single-fiber tensile testing was also performed at different moisture conditions. The water-diffusion mechanism was studied to quantify the diffusion coefficients as a function of salt concentration, sample geometry, and fiber direction. Three degradation mechanisms were observed...

  16. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...

  17. FT-IR investigation of starch based composite reinforced with Miscanthus fibers

    Science.gov (United States)

    Nagy, E. M.; Coţa, C.; Cioica, N.; Gyorgy, Z.; Todica, M.; Cozar, O.

    2017-12-01

    The properties and structure of starch based materials can be improved by reinforcement with natural fibers due to the chemical similarity of vegetal fiber and starch. In this study, natural fiber reinforced starch based composites have been developed by extrusion procedure. The reinforcement materials used are Miscanthus fibers in minced form. A set of 4 formulas of composite material with various fiber ratios (up to 20%) were prepared and investigated. FT-IR spectroscopy supported the molecular interactions due to the reinforcement with Miscanthus fiber of starch-based composite.

  18. New Fiber Reinforced Waterless Concrete for Extraterrestrial Structural Applications

    Science.gov (United States)

    Toutanji, H.; Tucker, D.; Ethridge, E.

    2005-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction mate: iii an attractive alternative to conventional concrete as it does not require water For the purpose of this paper it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, brick and beam elements. Glass fibers produced from regolith were used as a reinforcement to improve the mechanical properties of the sulfur concrete. Glass fibers and glass rebar were produced by melting the lunar regolith simulant. Lunar regolith stimulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline 46100 high temperature MoSi2 furnace at melting temperatures of 1450 to 1600G. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The viability of sulfur concrete as a construction material for extraterrestrial application is presented. The mechanical properties of the glass fiber reinforced sulfur concrete were investigated.

  19. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  20. SERIAL SECTIONS THROUGH A CONTINUOUS FIBER-REINFORCED POLYMER COMPOSITE

    Directory of Open Access Journals (Sweden)

    Laurent Bizet

    2011-05-01

    Full Text Available The microstructure of a unidirectional glass-fiber composite material is described seeking especially for the influence of the stitching perpendicular to the reinforcement. Serial cuts are performed through the composite and the microstructure is quantified using global parameters and linear morphological analysis. A key result is that the stitching induces variations in fibers spacing within the yarns and in the matrix volume between the yarns. This can affect noticeably the flow of the resin during the manufacturing process and also the mechanical properties of the composite.

  1. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    Science.gov (United States)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities, advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today, the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  2. Fiber reinforced composites in prosthodontics - A systematic review

    Directory of Open Access Journals (Sweden)

    Sanjna Nayar

    2015-01-01

    Full Text Available Fiber-reinforced composite (FRC, prostheses offer the potential advantages of optimized esthetics, low wear of the opposing dentition and the ability to bond the prosthesis to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: Fiber-composites to build the substructure and hybrid or micro fill particulate composites to create the external veneer surface. This article reviews the various types of FRCs and its mechanical properties.

  3. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    Science.gov (United States)

    Shivakumar, Kunigal; Argade, Shyam

    2003-01-01

    This report presents a critical review of the processing techniques for fabricating continuous fiber-reinforced CMCs for possible applications at elevated temperatures. Some of the issues affecting durability of the composite materials such as fiber coatings and cracking of the matrix because of shrinkage in PIP-process are also examined. An assessment of the potential inexpensive processes is also provided. Finally three potential routes of manufacturing C/SiC composites using a technology that NC A&T developed for carbon/carbon composites are outlined. Challenges that will be encountered are also listed.

  4. KEVLARTM FIBER-REINFORCED POLYBENZOXAZINE ALLOYS FOR BALLISTIC IMPACT APPLICATION

    Directory of Open Access Journals (Sweden)

    Chanchira Jubsilp

    2011-10-01

    Full Text Available A light weight ballistic composites from KevlarTM-reinforcing fiber having polybenzoxazine (BA/urethane prepolymer (PU alloys as a matrix were investigated in this work. The effect of alloy compositions on the ballistic composite properties was determined. The results revealed that the enhancement in the glass transition temperature (Tg of the KevlarTM-reinforced BA/PU composites compared to that of the KevlarTM-reinforced polybenzoxazine composite was observed. The increase of the elastomeric PU content in the BA/PU alloy resulted in samples with tougher characteristics. The storage modulus of the KevlarTM-reinforced BA/PU composites increased with increasing the mass fraction of polybenzoxazine. A ballistic impact test was also performed on the KevlarTM-reinforced BA/PU composites using a 9 mm handgun. It was found that the optimal contents of PU in the BA/PU alloys should be approximately 20wt%. The extent of the delaminated area and interfacial fracture were observed to change with the varied compositions of the matrix alloys. The appropriate thickness of KevlarTM-reinforced 80/20 BA/PU composite panel was 30 plies and 50 plies to resist the penetration from the ballistic impact equivalent to levels II-A and III-A of NIJ standard. The arrangement of composite panels with the higher stiffness panel at the front side also showed the best efficiency of ballistic penetration resistance.

  5. Steel fiber reinforced concrete behavior, modelling and design

    CERN Document Server

    Singh, Harvinder

    2017-01-01

    This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to d...

  6. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors

    Science.gov (United States)

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-01-01

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data. PMID:27669251

  7. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-09-22

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.

  8. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  9. Reinforced by Kenaf and Caroà Fibers

    Directory of Open Access Journals (Sweden)

    P. Persico

    2011-01-01

    Full Text Available Two kinds of environmental friendly composites were prepared based on sustainable matrices, respectively, defatted cross-linked soy flour and thermoplastic polyhydroxybutyrate cohydroxyvalerate, reinforced by natural fibers from Caroà and Kenaf plants. The obtained composites were compared in terms of moisture tolerance, thermal and mechanical properties, and thermoregulation ability. It was found that this ecofriendly systems have suitable properties for indoor applications in housing and transportation.

  10. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Matlin, W.M.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  11. Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement

    Science.gov (United States)

    Knoell, A. C.; Maxwell, H. G. (Inventor)

    1977-01-01

    A method is described for adhering bone to the surface of a rigid substrate such as a metal or resin prosthesis using an improved surgical bone cement. The bone cement has mechanical properties more nearly matched to those of animal bone and thermal curing characteristics which result in less traumatization of body tissues and comprises a dispersion of short high modulus graphite fibers within a bonder composition including polymer dissolved in reactive monomer such as polymethylmethacrylate dissolved in methylmethacrylate monomer.

  12. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    Science.gov (United States)

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  13. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2015-03-01

    Full Text Available In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter. In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  14. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amir, N., E-mail: norlailiamir@petronas.com.my; Othman, W. M. S. W., E-mail: wamosa@gmail.com; Ahmad, F., E-mail: faizahmad@petronas.com.my [Mechanical Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  15. New Polylactic Acid Composites Reinforced with Artichoke Fibers

    Directory of Open Access Journals (Sweden)

    Luigi Botta

    2015-11-01

    Full Text Available In this work, artichoke fibers were used for the first time to prepare poly(lactic acid (PLA-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w were prepared by the film-stacking method: the first one (UNID reinforced with unidirectional long artichoke fibers, the second one (RANDOM reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. The morphology of the fracture surfaces was analyzed through scanning electron microscopy (SEM. Moreover, a theoretical model, i.e., Hill’s method, was used to fit the experimental Young’s modulus of the biocomposites. The quasi-static tensile tests revealed that the modulus of UNID composites is significantly higher than that of the neat PLA (i.e., ~40%. Moreover, the tensile strength is slightly higher than that of the neat matrix. The other way around, the stiffness of RANDOM composites is not significantly improved, and the tensile strength decreases in comparison to the neat PLA.

  16. Probabilistic Flexural Fatigue in Plain and Fiber-Reinforced Concrete.

    Science.gov (United States)

    Ríos, José D; Cifuentes, Héctor; Yu, Rena C; Ruiz, Gonzalo

    2017-07-07

    The objective of this work is two-fold. First, we attempt to fit the experimental data on the flexural fatigue of plain and fiber-reinforced concrete with a probabilistic model (Saucedo, Yu, Medeiros, Zhang and Ruiz, Int. J. Fatigue, 2013, 48, 308-318). This model was validated for compressive fatigue at various loading frequencies, but not for flexural fatigue. Since the model is probabilistic, it is not necessarily related to the specific mechanism of fatigue damage, but rather generically explains the fatigue distribution in concrete (plain or reinforced with fibers) for damage under compression, tension or flexion. In this work, more than 100 series of flexural fatigue tests in the literature are fit with excellent results. Since the distribution of monotonic tests was not available in the majority of cases, a two-step procedure is established to estimate the model parameters based solely on fatigue tests. The coefficient of regression was more than 0.90 except for particular cases where not all tests were strictly performed under the same loading conditions, which confirms the applicability of the model to flexural fatigue data analysis. Moreover, the model parameters are closely related to fatigue performance, which demonstrates the predictive capacity of the model. For instance, the scale parameter is related to flexural strength, which improves with the addition of fibers. Similarly, fiber increases the scattering of fatigue life, which is reflected by the decreasing shape parameter.

  17. Mechanical Properties of Fiber Reinforced Lightweight Concrete Containing Surfactant

    Directory of Open Access Journals (Sweden)

    Yoo-Jae Kim

    2010-01-01

    Full Text Available Fiber reinforced aerated lightweight concrete (FALC was developed to reduce concrete's density and to improve its fire resistance, thermal conductivity, and energy absorption. Compression tests were performed to determine basic properties of FALC. The primary independent variables were the types and volume fraction of fibers, and the amount of air in the concrete. Polypropylene and carbon fibers were investigated at 0, 1, 2, 3, and 4% volume ratios. The lightweight aggregate used was made of expanded clay. A self-compaction agent was used to reduce the water-cement ratio and keep good workability. A surfactant was also added to introduce air into the concrete. This study provides basic information regarding the mechanical properties of FALC and compares FALC with fiber reinforced lightweight concrete. The properties investigated include the unit weight, uniaxial compressive strength, modulus of elasticity, and toughness index. Based on the properties, a stress-strain prediction model was proposed. It was demonstrated that the proposed model accurately predicts the stress-strain behavior of FALC.

  18. Properties of Fiber-Reinforced Mortars Incorporating Nano-Silica

    Directory of Open Access Journals (Sweden)

    Ahmed Ghazy

    2016-02-01

    Full Text Available Repair and rehabilitation of deteriorating concrete elements are of significant concern in many infrastructural facilities and remain a challenging task. Concerted research efforts are needed to develop repair materials that are sustainable, durable, and cost-effective. Research data show that fiber-reinforced mortars/concretes have superior performance in terms of volume stability and toughness. In addition, it has been recently reported that nano-silica particles can generally improve the mechanical and durability properties of cement-based systems. Thus, there has been a growing interest in the use of nano-modified fiber-reinforced cementitious composites/mortars (NFRM in repair and rehabilitation applications of concrete structures. The current study investigates various mechanical and durability properties of nano-modified mortar containing different types of fibers (steel, basalt, and hybrid (basalt and polypropylene, in terms of compressive and flexural strengths, toughness, drying shrinkage, penetrability, and resistance to salt-frost scaling. The results highlight the overall effectiveness of the NFRM owing to the synergistic effects of nano-silica and fibers.

  19. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    Science.gov (United States)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  20. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  1. Puncture-Healing Thermoplastic Resin Carbon-Fiber Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2017-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  2. Shear Performance of Fiber-Reinforced Cementitious Composites Beam-Column Joint Using Various Fibers

    Directory of Open Access Journals (Sweden)

    Faizal Hanif

    2017-09-01

    Full Text Available Increasing demands of reinforcement in the joint panel are now requiring more effective system to reduce the complicated fabrication by widely used precast system. The joint panel is responsible to keep the load transfer through beam and column as a crucial part in a structural frame that ensures the main feature of the whole structure during earthquake. Since precast system might reduce the joint panel monolithic integrity and stiffness, an innovation by adding fiber into the grouting system will give a breakthrough. The loading test of precast concrete beam-column joints using FRCC (Fiber-Reinforced Cementitious Composites in joint panel was conducted to evaluate the influences of fiber towards shear performance. The experimental factor is fiber types with same volume fraction in mortar matrix of joint panel. Two specimens with Aramid-fiber and PP-fiber by two percent of volume fraction are designed to fail by shear failure in joint panel by reversed cyclic testing method. The comparison amongst those experiment results by various parameters for the shear performance of FRCC beam-column joints using various fibers are discussed. Preceding specimens was using no fiber, PVA fiber, and steel fiber has been carried out. Through the current experimental results and the comparison with previous experiment results, it can be recognized that by using fibers in joint panel was observed qualitatively could prevent crack widening with equitable and smaller crack width, improved the shear capacity by widening the hysteretic area, increased maximum load in positive loading and negative loading, and decreased the deformation rate. Elastic modulus properties of fiber are observed to give the most impact towards shear performance.

  3. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  4. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    OpenAIRE

    Pankaj Pandey; Dilpreet Bajwa; Chad Ulven; Sreekala Bajwa

    2016-01-01

    In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expans...

  5. Review of Japanese recommendations on design and construction of different classes of fiber reinforced concrete and application examples

    DEFF Research Database (Denmark)

    Uchida, Yuichi; Fischer, Gregor; Hishiki, Yoshihiro

    2008-01-01

    The development of concrete and cementitious composites with fiber reinforcement to improve the tensile load-deformation behavior has resulted in three distinct classes of materials. These include conventional Fiber Reinforced Concrete (FRC) with tension softening response, High Performance Fiber...

  6. Flexural strengthening of Reinforced Concrete (RC Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP Laminates

    Directory of Open Access Journals (Sweden)

    Aravind N.

    2015-01-01

    Full Text Available Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP sheets for strengthening Reinforced Concrete (RC beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  7. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  8. MICROWAVE INDUCED DEGRADATION OF GLASS FIBER REINFORCED POLYESTER FOR FIBER AND RESIN RECOVERY

    DEFF Research Database (Denmark)

    Ucar, Hülya; Nielsen, Rudi Pankratz; Søgaard, Erik Gydesen

    A solvolysis process to depolymerize the resin in glass fiber reinforced composites and recover the glass fibers has been investigated using microwave induced irradiation. The depolymerization was carried out in HNO3 with concentrations in the range of 1M-7M and in KOH with concentrations ranging...... from 1M-3.5M. With HNO3 concentrations of 3.5 M, 100 % resin removal was achieved at 208°C and recovery of pristine glass fibers without damage on the surface. Furthermore, it was possible to recover the monomer phthalic acid most efficiently at HNO3 concentrations ≤ 3.5M. Decreased level...

  9. Lateral Response Comparison of Unbonded Elastomeric Bearings Reinforced with Carbon Fiber Mesh and Steel

    Directory of Open Access Journals (Sweden)

    Ali Karimzadeh Naghshineh

    2015-01-01

    Full Text Available The vertical and horizontal stiffness used in design of bearings have been established in the last few decades. At the meantime, applicability of the theoretical approach developed to estimate vertical stiffness of the fiber-reinforced bearings has been verified in different academic studies. The suitability of conventional horizontal stiffness equation developed for elastomeric material, mainly for steel-reinforced elastomeric bearings, has not been tested in detail for use of fiber-reinforced elastomeric bearings. In this research, lateral response of fiber mesh-reinforced elastomeric bearings has been determined through experimental tests and the results have been compared by corresponding values pertaining to the steel-reinforced bearings. Within the test program, eight pairs of fiber mesh-reinforced bearings and eight pairs of steel-reinforced bearings are subjected to different levels of compressive stress and cyclic shear strains. Fiber-reinforced elastomeric bearings may be more favorable to be used in seismic regions due to lower horizontal stiffness that can result in mitigation of seismic forces for levels of 100% shear strain. Damping properties of these types of fiber mesh-reinforced bearings depend mostly on the selection of elastomeric material compounds. Suggestions have been made for the lateral response of fiber-reinforced elastomeric bearings. It has also been determined that the classical equation for lateral stiffness based on linear elastic behavior assumptions developed for elastomeric bearings does not always apply to the fiber-reinforced ones.

  10. Natural Curaua Fiber-Reinforced Composites in Multilayered Ballistic Armor

    Science.gov (United States)

    Monteiro, Sergio Neves; Louro, Luis Henrique Leme; Trindade, Willian; Elias, Carlos Nelson; Ferreira, Carlos Luiz; de Sousa Lima, Eduardo; Weber, Ricardo Pondé; Miguez Suarez, João Carlos; da Silva Figueiredo, André Ben-Hur; Pinheiro, Wagner Anacleto; da Silva, Luis Carlos; Lima, Édio Pereira

    2015-10-01

    The performance of a novel multilayered armor in which the commonly used plies of aramid fabric layer were replaced by an equal thickness layer of distinct curaua fiber-reinforced composites with epoxy or polyester matrices was assessed. The investigated armor, in addition to its polymeric layer (aramid fabric or curaua composite), was also composed of a front Al2O3 ceramic tile and backed by an aluminum alloy sheet. Ballistic impact tests were performed with actual 7.62 caliber ammunitions. Indentation in a clay witness, simulating human body behind the back layer, attested the efficacy of the curaua-reinforced composite as an armor component. The conventional aramid fabric display a similar indentation as the curaua/polyester composite but was less efficient (deeper indentation) than the curaua/epoxy composite. This advantage is shown to be significant, especially in favor of the lighter and cheaper epoxy composite reinforced with 30 vol pct of curaua fiber, as possible substitute for aramid fabric in multilayered ballistic armor for individual protection. Scanning electron microscopy revealed the mechanism associated with the curaua composite ballistic performance.

  11. Cylindrical dielectric elastomer actuators reinforced with inextensible fibers

    Science.gov (United States)

    Goulbourne, Nakhiah C. S.

    2006-03-01

    Novel actuator configurations for various applications can be obtained using cylindrical dielectric elastomer actuators. A new configuration for a contractile electro-elastomer is presented here for the first time. A cylindrical or tubular configuration is used to realize simultaneous axial shortening and radial expansion when a voltage is applied across the thickness of the hollow cylinder. In this configuration, the inner and outer surfaces of a cylindrical dielectric elastomer are coated with compliant electrodes. The outer cylindrical surface is then enclosed by a network of helical fibers that are very thin, very flexible and inextensible. Fiber networks or cord families are commonly used in many different materials and for a variety of applications. The primary purpose of these networks is structural, that is to say, for reinforcement. The composite active structure proposed here is reminiscent of the McKibben actuator, a pneumatically actuated cylindrical construct consisting of a flexible rubber bladder sheathed in a fiber network, which garners its impressive contracting force from the inextensible fibers that prevent axial extension when an inflation pressure is applied to the internal bladder [1]. The system is modeled using an electro- elastic formulation derived from the large deformation theory of reinforced cylinders [2]. The model combines Maxwell-Faraday electrostatics and nonlinear elasticity theory [3]. Illustratively, solutions are obtained assuming a Mooney-Rivlin material model for a silicone actuator. The results indicate that the relationship between the axial contraction force and the axial shortening is linear for the voltage range considered. The importance of other system parameters such as the fiber angle and the applied constant pressure is also reported.

  12. Effect of fiber volume fraction and length on the wear characteristics of glass fiber-reinforced dental composites.

    Science.gov (United States)

    Callaghan, David J; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2006-01-01

    The main objective of this study was to evaluate the wear characteristics of fiber-reinforced dental composites. Variables under investigation include the fiber weight percent added to the matrix as well as fiber length. Dental specimens with glass fiber content of 2, 5.1, 5.7, and 7.6 wt% with fiber length of either 1.5 or 3 mm, were prepared by mixing an activated dental resin with commercial glass fibers. The specimens were then tested on a pin on disc setup, where the antagonist disc was manufactured of a similar fiber-reinforced composite with 5.1 wt% fiber and fiber length of 3 mm. The volume loss and coefficient of friction of the specimens was monitored periodically throughout testing. In addition, the wear surfaces of all specimens were evaluated using a scanning electron microscope. The specimens with 5.7 wt% fibers and fiber length of 3 mm performed better in this study compared to all other fiber-reinforced specimens under all load conditions. In fact, this specimen had a comparable wear rate to a particle-filled dental composite. For the fiber lengths considered, increasing the length of the fibers increased the wear resistance of the specimen. The coefficient of friction showed a good correlation with the wear resistance of specimens. Fiber-reinforced composites demonstrated a high resistance to wear and may therefore be advantageous for dental applications, where high wear resistance is essential to functionality.

  13. EFFECTIVE REINFORCING COMPONENT OF IRON-CONCRETE CONSTRUCTIONS IS A STEEL FIBER

    Directory of Open Access Journals (Sweden)

    I. N. Radjkova

    2012-01-01

    Full Text Available It is shown that use of fiber of the modern material, capable to replace metal reinforcing rod in ferroconcrete, provides decrease of expenses for reinforcing works, increase of degree of production mechanization.

  14. Highly accelerated lifetime for externally applied bond critical fiber-reinforced polymer (FRP) infrastructure materials.

    Science.gov (United States)

    2014-03-01

    This report describes a research project to investigate accelerated aging protocols for fiber-reinforced : polymer (FRP) reinforcement of concrete. This research was conducted in three stages. In the first : stage, various spectroscopic techniques we...

  15. Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution

    Directory of Open Access Journals (Sweden)

    Wenzhi Wang

    2016-07-01

    Full Text Available Modeling the random fiber distribution of a fiber-reinforced composite is of great importance for studying the progressive failure behavior of the material on the micro scale. In this paper, we develop a new algorithm for generating random representative volume elements (RVEs with statistical equivalent fiber distribution against the actual material microstructure. The realistic statistical data is utilized as inputs of the new method, which is archived through implementation of the probability equations. Extensive statistical analysis is conducted to examine the capability of the proposed method and to compare it with existing methods. It is found that the proposed method presents a good match with experimental results in all aspects including the nearest neighbor distance, nearest neighbor orientation, Ripley’s K function, and the radial distribution function. Finite element analysis is presented to predict the effective elastic properties of a carbon/epoxy composite, to validate the generated random representative volume elements, and to provide insights of the effect of fiber distribution on the elastic properties. The present algorithm is shown to be highly accurate and can be used to generate statistically equivalent RVEs for not only fiber-reinforced composites but also other materials such as foam materials and particle-reinforced composites.

  16. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  17. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    Science.gov (United States)

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  18. The Mechanical Strength of Acrylic Palatal Plates Reinforced with Net or Bundle Glass Fibers

    OpenAIRE

    Hedzelek, W.; Gajdus, P.; Joniak, S.

    2002-01-01

    The aim of the study was to evaluate the resistant forces of acrylic palatal plates reinforced with glass net and unidirectional glass fibers. The form and models of the edentulous jaw (Frasaco) were used in the study. Palatal plates were made from hot polymerised acrylic SR Triplex Hot (Ivoclar). In the total reinforced method the studied palatal plates used were reinforced with one or three layers of fiber glass net (Stick Net). In the partial reinforced method acrylic palatal plates wer...

  19. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Hyung Kui [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level.

  20. Pengaruh komposisi beberapa glass fiber non dental terhadap kelarutan komponen fiber reinforced composites

    Directory of Open Access Journals (Sweden)

    Ariyani Faizah

    2017-01-01

    Full Text Available The effect of composition glass fiber non dental on water solubility of fiber reinforced composites. E glass fiber dental is one of the most used dental fibers in several applications in the dental  field. However, the available of E glass fiber dental in Indonesia is very limited. A variety of types of non-dental glass fiber material is easily found as the materials engineering. The purpose of the study was to evaluate the effect of composition non dental glass fiber on the component solubility of FRC. The materials used in the research was E glass fiber dental (Fiber splint, Polydentia SA, Switzerland, composition A non-dental glass fiber (LT, China, composition B (CMAX, China, composition C (HJ, China, flowable composite (Charmfill Flow, Denkist, Korea and silane coupling agent (Monobond S, Ivoclair Vivadent, Liechtenstein. The subject was divided into 4 groups. Component solubility test was based on the ISO 4049. The result was then analyzed with one way ANOVA (α=0,05. The result of the research showed that on the average percentage of the solubility (%, the lowest was on the group of E glass fiber dental (0.476±0.03 and the highest was on the non dental glass fiber C (0.600±0.01. The result of the one way ANOVA test showed a significant difference between the compositiom fiber on the component solubility. The conclusion the research was that low content of Na2O K2O, CaO and MgO decreased the component solubility of FRC.

  1. Arrangement for connecting a fiber-reinforced plastic pipe to a stainless steel flange

    Science.gov (United States)

    Allais, Arnaud [D-30625 Hannover, DE; Hoffmann, Ernst [D-30855 Langenhagen, DE

    2008-02-05

    Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).

  2. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete

    National Research Council Canada - National Science Library

    Jeongsoo Nam; Gyuyong Kim; Jaechul Yoo; Gyeongcheol Choe; Hongseop Kim; Hyeonggil Choi; Youngduck Kim

    2016-01-01

      This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC...

  3. The Application of Fiber-Reinforced Materials in Disc Repair

    Directory of Open Access Journals (Sweden)

    Bao-Qing Pei

    2013-01-01

    Full Text Available The intervertebral disc degeneration and injury are the most common spinal diseases with tremendous financial and social implications. Regenerative therapies for disc repair are promising treatments. Fiber-reinforced materials (FRMs are a kind of composites by embedding the fibers into the matrix materials. FRMs can maintain the original properties of the matrix and enhance the mechanical properties. By now, there are still some problems for disc repair such as the unsatisfied static strength and dynamic properties for disc implants. The application of FRMs may resolve these problems to some extent. In this review, six parts such as background of FRMs in tissue repair, the comparison of mechanical properties between natural disc and some typical FRMs, the repair standard and FRMs applications in disc repair, and the possible research directions for FRMs' in the future are stated.

  4. Three-dimensional printing fiber reinforced hydrogel composites.

    Science.gov (United States)

    Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M

    2014-09-24

    An additive manufacturing process that combines digital modeling and 3D printing was used to prepare fiber reinforced hydrogels in a single-step process. The composite materials were fabricated by selectively pattering a combination of alginate/acrylamide gel precursor solution and an epoxy based UV-curable adhesive (Emax 904 Gel-SC) with an extrusion printer. UV irradiation was used to cure the two inks into a single composite material. Spatial control of fiber distribution within the digital models allowed for the fabrication of a series of materials with a spectrum of swelling behavior and mechanical properties with physical characteristics ranging from soft and wet to hard and dry. A comparison with the "rule of mixtures" was used to show that the swollen composite materials adhere to standard composite theory. A prototype meniscus cartilage was prepared to illustrate the potential application in bioengineering.

  5. Fiber-reinforced framework and Ceromer restorations: a technical review.

    Science.gov (United States)

    Zanghellini, G

    1997-01-01

    The utilization of synthetic resins and ceramics in combination with metal frameworks continues to be the mainstay of crown and bridge prosthetics. Although most of these systems have resulted in years of clinical success, each material when used in combination has inherent properties that induce stresses to the system. The combination of ceramic technology and polymer research, in addition to fiber integration, has resulted in the development and introduction of a new category of crown and bridge materials--a ceromer and fiber-reinforced restorative system. This article examines the history of polymer and ceramic technology, and reports the clinical and research data currently available on one indirect ceromer system (Targis System, Ivoclar Williams, Amherst, NY).

  6. Cracking and debonding of a thin fiber reinforced concrete overlay : research brief.

    Science.gov (United States)

    2017-03-01

    Experimental tests found that the tensile interfacial energy : increased with fiber-reinforcement. Also bond tests indicated : that interfacial fracture occurred through the overlay mixture and : was proportional to the number of fibers which interse...

  7. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    Directory of Open Access Journals (Sweden)

    G. Suresh

    2015-02-01

    Full Text Available A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester and PU (Polyurethane and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength, Impact & Head Deflection Test (HDT. The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.

  8. Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets.

    Science.gov (United States)

    Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva

    2017-06-17

    This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.

  9. Stabilized fiber-reinforced pavement base course with recycled aggregate

    Science.gov (United States)

    Sobhan, Khaled

    This study evaluates the benefits to be gained by using a composite highway base course material consisting of recycled crushed concrete aggregate, portland cement, fly ash, and a modest amount of reinforcing fibers. The primary objectives of this research were to (a) quantify the improvement that is obtained by adding fibers to a lean concrete composite (made from recycled aggregate and low quantities of Portland cement and/or fly ash), (b) evaluate the mechanical behavior of such a composite base course material under both static and repeated loads, and (c) utilize the laboratory-determined properties with a mechanistic design method to assess the potential advantages. The split tensile strength of a stabilized recycled aggregate base course material was found to be exponentially related to the compacted dry density of the mix. A lean mix containing 4% cement and 4% fly ash (by weight) develops sufficient unconfined compressive, split tensile, and flexural strengths to be used as a high quality stabilized base course. The addition of 4% (by weight) of hooked-end steel fibers significantly enhances the post-peak load-deformation response of the composite in both indirect tension and static flexure. The flexural fatigue behavior of the 4% cement-4% fly ash mix is comparable to all commonly used stabilized materials, including regular concrete; the inclusion of 4% hooked-end fibers to this mix significantly improves its resistance to fatigue failure. The resilient moduli of stabilized recycled aggregate in flexure are comparable to the values obtained for traditional soil-cement mixes. In general, the fibers are effective in retarding the rate of fatigue damage accumulation, which is quantified in terms of a damage index defined by an energy-based approach. The thickness design curves for a stabilized recycled aggregate base course, as developed by using an elastic layer approach, is shown to be in close agreement with a theoretical model (based on Westergaard

  10. Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks.

    Science.gov (United States)

    Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshihara, Kumiko; Minagi, Shogo

    2015-01-01

    High flexural properties are needed for fixed partial denture or implant prosthesis to resist susceptibility to failures caused by occlusal overload. The aim of this investigation was to clarify the effects of four different kinds of fibers on the flexural properties of fiber-reinforced composites. Polyethylene fiber, glass fiber and two types of carbon fibers were used for reinforcement. Seven groups of specimens, 2 × 2 × 25 mm, were prepared (n = 10 per group). Four groups of resin composite specimens were reinforced with polyethylene, glass or one type of carbon fiber. The remaining three groups served as controls, with each group comprising one brand of resin composite without any fiber. After 24-h water storage in 37°C distilled water, the flexural properties of each specimen were examined with static three-point flexural test at a crosshead speed of 0.5 mm/min. Compared to the control without any fiber, glass and carbon fibers significantly increased the flexural strength (p fiber decreased the flexural strength (p fibers, carbon fiber exhibited higher flexural strength than glass fiber (p carbon and glass fibers (p > 0.05). Fibers could, therefore, improve the flexural properties of resin composite and carbon fibers in longitudinal form yielded the better effects for reinforcement.

  11. Measurement of defects in carbon fiber reinforced polymer drilled

    Directory of Open Access Journals (Sweden)

    Pascual Víctor

    2017-01-01

    Full Text Available Increasingly, fiber-reinforced materials are more widely used because of their good mechanical properties. It is usual to join pieces of these materials through screws and rivets, for which it is necessary to make a hole in the piece, usually by drilling. One of the problems of use CFRP resides in the appearance of defects due to the machining. The main defect to be taken into account is the delamination. Delamination implies poor tolerance when assembling parts, reducing the structural integrity of the part, and areas with high wear, as a series of stresses arise when mounting the screws. Much has been published about delamination and the factors that influence its appearance, so we are not going to focus on it. The present study aims to quantify and measure the defects associated with the drilling of compounds reinforced with carbon fibers, in relation to the cutting parameters used in each case. For this purpose, an optical measurement system and a posterior digital image processing will be used through Deltec Vision software.

  12. Biodegradation of flax fiber reinforced poly lactic acid

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available Woven and nonwoven flax fiber reinforced poly lactic acid (PLA biocomposites were prepared with amphiphilic additives as accelerator for biodegradation. The prepared composites were buried in farmland soil for biodegradability studies. Loss in weight of the biodegraded composite samples was determined at different time intervals. The surface morphology of the biodegraded composites was studied with scanning electron microscope (SEM. Results indicated that in presence of mandelic acid, the composites showed accelerated biodegradation with 20–25% loss in weight after 50–60 days. On the other hand, in presence of dicumyl peroxide (as additive, biodegradation of the composites was relatively slow as confirmed by only 5–10% loss in weight even after 80–90 days. This was further confirmed by surface morphology of the biodegraded composites. We have attempted to show that depending on the end uses, we can add different amphiphilic additives for delayed or accelerated biodegradability. This work gives us the idea of biodegradation of materials from natural fiber reinforced PLA composites when discarded carelessly in the environment instead of proper waste disposal site.

  13. Fiber Reinforced Concrete (FRC) for High Rise Construction: Case Studies

    Science.gov (United States)

    Gharehbaghi, Koorosh; Chenery, Rhea

    2017-12-01

    Due to its material element, Fiber Reinforced Concrete (FRC) could be stronger than traditional Concrete. This is due to FRC internal material compounds and elements. Furthermore, FRC can also significantly improve flexural strength when compared to traditional Concrete. This improvement in flexural strength can be varied depending on the actual fibers used. Although not new, FRC is gradually gaining popularity in the construction industry, in particular for high rise structures. This is due to its flexural strength, especially for high seismic zones, as it will provide a better solution then reinforced Concrete. The main aim of this paper is to investigate the structural importance of FRC for the high rise construction. Although there has been numerous studies and literature in justifying the FRC for general construction; this paper will consider its use specifically for high rise construction. Moreover, this paper will closely investigate eight case studies from Australian and United States as a part of the FRC validation for high rise construction. In doing so, this paper will examine their Structural Health Monitoring (SHM) to determine their overall structural performance.

  14. Evaluation of Mechanical Performance of a New Glass Fiber Reinforced Mineral Matrix Composite

    OpenAIRE

    Ţăranu, George; Toma, Ionuţ-Ovidiu; Pleşu, Raluca; Budescu, Mihai

    2012-01-01

    The use of fibers in different combinations with mineral matrices has started since Biblical times. Clay with different natural fibers like straw or horse hair where combined and obtained strengthened building materials. In the past decades synthetic fibers e.g. glass fibers, carbon fibers, were used with polymeric resins and cement matrices also. Finding an appropriate material and structural system made of fiber reinforced mineral matrix which has adequate mechanical performance, possibilit...

  15. Transient Thermal Tensile Behaviour of Novel Pitch-Based Ultra-High Modulus CFRP Tendons

    Directory of Open Access Journals (Sweden)

    Giovanni Pietro Terrasi

    2016-12-01

    Full Text Available A novel ultra-high modulus carbon fibre reinforced polymer (CFRP prestressing tendon made from coal tar pitch-based carbon fibres was characterized in terms of high temperature tensile strength (up to 570 °C with a series of transient thermal and steady state temperature tensile tests. Digital image correlation was used to capture the high temperature strain development during thermal and mechanical loading. Complementary thermogravimetric (TGA and dynamic mechanical thermal (DMTA experiments were performed on the tendons to elucidate their high temperature thermal and mechanical behaviour. The novel CFRP tendons investigated in the present study showed an ambient temperature design tensile strength of 1400 MPa. Their failure temperature at a sustained prestress level of 50% of the design tensile strength was 409 °C, which is higher than the failure temperature of most fibre reinforced polymer rebars used in civil engineering applications at similar utilisation levels. This high-temperature tensile strength shows that there is potential to use the novel high modulus CFRP tendons in CFRP pretensioned concrete elements for building applications that fulfill the fire resistance criteria typically applied within the construction industry.

  16. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    Science.gov (United States)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  17. Mechanical Properties of Coir Rope-Glass Fibers Reinforced Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Bakri Bakri

    2017-03-01

    Full Text Available Natural fiber composites have been developed and taken more attention in the last decades. Coir fiber is the natural fiber which has been used as reinforcement of composites. This fiber is hybridized with glass fiber for reinforcement composite. In this paper, coir rope and glass fibers were combined as reinforcement into hybrid composites with unsaturated polyester resin as matrix. The composition of fibers and matrix into hybrid composites are used 30:70 (volume fraction with unsaturated polyester. Volume fractions of coir rope mat and glass fiber mat in hybrid composites are 10:20, 15:15 and 20:10 respectively. The mechanical properties of the coir rope-glass fiber composite hybrid were described in this paper. Their properties include tensile strength, tensile modulus, flexural strength, flexural modulus, impact energy and impact strength. Fractography of tensile composite hybrid is also analyzed using Scanning Electron Microscope

  18. Mechanical Properties of Coir Rope-Glass Fibers Reinforced Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    B.Bakri

    2015-10-01

    Full Text Available Natural fiber composites have been developed and taken more attention in the last decades. Coir fiber is the natural fiber which has been used as reinforcement of composites. This fiber is hybridized with glass fiber for reinforcement composite. In this paper, coir rope and glass fibers were combined as reinforcement into hybrid composites with unsaturated polyester resin as matrix. The composition of fibers and matrix into hybrid composites are used 30:70 (volume fraction with unsaturated polyester. Volume fractions of coir rope mat and glass fiber mat in hybrid composites are 10:20, 15:15 and 20:10 respectively. The mechanical properties of the coir rope-glass fiber composite hybrid were described in this paper. Their properties include tensile strength, tensile modulus, flexural strength, flexural modulus, impact energy and impact strength. Fractography of tensile composite hybrid is also analyzed using Scanning Electron Microscope.

  19. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  20. Izod Impact Test in Epoxi Matrix Composites Reinforced with Hemp Fiber

    Science.gov (United States)

    Rohen, Lázaro A.; Margem, Frederico M.; Neves, Anna C. C.; Monteiro, Sérgio N.; Gomes, Maycon A.; de Castro, Rafael G.; Maurício, F. V. Carlos; de Paula, Fernanda

    Synthetic fiber has been gradually replaced by natural fiber, such as lignocellulosic fiber. In comparison with synthetic fiber, natural fiber has shown economic and environmental advantages. The natural fiber presents interfacial characteristics with polymeric matrices that favor a high impact energy absorption by the composite structure. However, until now little has been evaluated about the hemp fiber incorporated in polymeric matrices. This study has the purpose of evaluate the impact resistance of this kind of epoxy matrix composite reinforced with different percentages of hemp fibers. The impact resistance has substantially increased the relative amount of hemp fiber incorporated as reinforcement in the composite. This performance was associated with the difficulty of rupture imposed by the fibers resulting from the interaction of hemp fiber / epoxy matrix that helps absorb the impact energy.

  1. Relationship between fiber degradation and residence time distribution in the processing of long fiber reinforced thermoplastics

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Long fiber reinforced thermoplastics (LFT were processed by in-line compounding equipment with a modified single screw extruder. A pulse stimulus response technique using PET spheres as the tracer was adopted to obtain residence time distribution (RTD of extrusion compounding. RTD curves were fitted by the model based on the supposition that extrusion compounding was the combination of plug flow and mixed flow. Characteristic parameters of RTD model including P the fraction of plug flow reactor (PFR and d the fraction of dead volume of continuous stirred tank reactor (CSTR were used to associate with fiber degradation presented by fiber length and dispersion. The effects of screw speed, mixing length and channel depth on RTD curves, and characteristic parameters of RTD models as well as their effects on the fiber degradation were investigated. The influence of shear force with different screw speeds and variable channel depth on fiber degradation was studied and the main impetus of fiber degradation was also presented. The optimal process for obtaining the balance of fiber length and dispersion was presented.

  2. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  3. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    Science.gov (United States)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  4. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various continuous fibers

    Science.gov (United States)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermooxidative stability of PMR-15 composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers studied include graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight-loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  5. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    Science.gov (United States)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  6. Factors Influencing Reinforcement of NR and EPDM Rubbers with Short Aramid Fibers

    NARCIS (Netherlands)

    Shirazi, M.; Noordermeer, Jacobus W.M.

    2010-01-01

    Among short fiber reinforced composites, those with rubbery matrices have gained great importance due to the advantages they have in processing and low cost, coupled with high strength. These composites combine the elastic behavior of rubbers with strength and stiffness of fibers. Reinforcement with

  7. Investigations of sewn preform characteristics and quality aspects for the manufacturing of fiber reinforced polymer composites

    OpenAIRE

    Ogale, Amol

    2017-01-01

    Sewn net-shape preform based composite manufacturing technology is widely accepted in combination with liquid composite molding technologies for the manufacturing of fiber reinforced polymer composites. The development of threedimensional dry fibrous reinforcement structures containing desired fiber orientation and volume fraction before the resin infusion is based on the predefined preforming processes. Various preform manufacturing aspects influence the overall composite m...

  8. Flax fiber reinforced PLA composites: studies on types of PLA and different methods of fabrication

    CSIR Research Space (South Africa)

    Kumar, R

    2011-05-01

    Full Text Available in the last decade. It is well known that natural fiber reinforced PLA composites can be prepared by solution casting cum compression molding and injection molding methods. The authors have prepared flax fiber reinforced PLA (procured from Cereplast Ltd...

  9. ABA and ABC type thermoplastic elastomer toughening of epoxy matrices and its effect on carbon fiber reinforced composites

    Science.gov (United States)

    Pitchiaya, Gomatheeshwar

    Epoxy-matrices have high modulus, strength, excellent creep resistance, but lacks ductility. One approach to improve the mechanical toughness is the addition of thermoplastic elastomers (TPEs). The TPEs investigated here are triblock copolymers of styrene-butadiene-methyl methacrylate (SBM) and methylmethacrylate-butylacrylate-methylmethacrylate (MAM) of the ABC and ABA type, respectively. The effect of concentration (1-12.5 wt %) of these TPEs on a diglycidyl ether of bisphenol-A (DGEBA) epoxy cured with metaphenylenediamine (mPDA), has been investigated. The TPE-DGEBA epoxies were characterized by TGA, DMA, SEM and impact. The flexural modulus, flexural strength and thermal resistance remained unaffected up to 5 wt% loading of TPEs, and exhibited less than 10% decrease at higher weight percent. T g was unaffected for all concentrations. Fracture toughness was improved 250% and up to 375% (when non- stoichiometric amount of curing agent was used) with TPE addition to epoxy/mPDA matrix. A SBM(1phr)EPON system was chosen to be the matrix of choice for a fiber reinforced composite system with a 4wt% aromatic epoxy sizing on a AS4 (UV-treated) carbon fiber. The 0° and 90° flexural modulus and strength of a SBM modified system was compared with the neat and their fracture surfaces were analyzed. A 89% increase in flexural strength was observed in a 90° flexural test for the modified system when compared with the neat. Novel sizing agents were also developed to enhance interfacial shear strength (IFSS) and the fiber-matrix adhesion and their birefringence pattern were analyzed.

  10. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  11. Development of natural fiber reinforced polylactide-based biocomposites

    Science.gov (United States)

    Arias Herrera, Andrea Marcela

    Polylactide or PLA is a biodegradable polymer that can be produced from renewable resources. This aliphatic polyester exhibits good mechanical properties similar to those of polyethylene terephthalate (PET). Since 2003, bio-based high molecular weight PLA is produced on an industrial scale and commercialized under amorphous and semicrystalline grades for various applications. Enhancement of PLA crystallization kinetics is crucial for the competitiveness of this biopolymer as a commodity material able to replace petroleum-based plastics. On the other hand, the combination of natural fibers with polymer matrices made from renewable resources, to produce fully biobased and biodegradable polymer composite materials, has been a strong trend in research activities during the last decade. Nevertheless, the differences related to the chemical structure, clearly observed in the marked hydrophilic/hydrophobic character of the fibers and the thermoplastic matrix, respectively, represent a major drawback for promoting strong fiber/matrix interactions. The aim of the present study was to investigate the intrinsic fiber/matrix interactions of PLAbased natural fiber composites prepared by melt-compounding. Short flax fibers presenting a nominal length of ˜1 mm were selected as reinforcement and biocomposites containing low to moderate fiber loading were processed by melt-mixing. Fiber bundle breakage during processing led to important reductions in length and diameter. The mean aspect ratio was decreased by about 50%. Quiescent crystallization kinetics of PLA and biocomposite systems was examined under isothermal and non-isothermal conditions. The nucleating nature of the flax fibers was demonstrated and PLA crystallization was effectively accelerated as the natural reinforcement content increased. Such improvement was controlled by the temperature at which crystallization took place, the liquid-to-solid transition being thermodynamically promoted by the degree of supercooling

  12. Nonlinear Finite Elements Analysis of Reinforced Concrete Columns Strengthened With Carbon Fiber Reinforced Polymer (CFRP

    Directory of Open Access Journals (Sweden)

    Mazen Dewan Abdulla

    2018-02-01

    Full Text Available This paper presents the results of a study to have better understanding of structural behavior of the reinforced concrete (RC column wrapped by carbon fiber reinforced polymer (CFRP sheets. In this study, 3D F.E model has been presented using ANSYS computer program (Release 16.0 to analyze reinforced concrete columns strengthened with CFRP composites , to evaluate the gain in performance (strength and ductility due to strengthening, and to study the effect of the most important parameters such as: compressive strength of concrete, modulus of elasticity of CFRP and corner radius of square columns. Three dimensional eight-node brick element (SOLID65 was used to represent the concrete, three dimensional spar element (LINK180 represented the steel and using a three dimensional shell element (SHELL41 to represent the CFRP composites. The present study has a comparison between the analytical results from the ANSYS finite element analysis with experimental data. The results of the study show that, external bonded CFRP sheets are very effective in enhancing the axial strength and ductility of the concrete columns. Inspection of

  13. Numerical Simulation of the Curing Process of Fiber Reinforced Polymer Composites

    OpenAIRE

    Hosseini, Amir Haji

    2013-01-01

    The curing process of Fiber reinforced polymer rebars using a two phase curing process is investigated in this work. These rebars are developed as an alternative reinforcing material in reinforced concrete. The chemical resistance and high specific strength and stiffness of these rebars make them an important subject for research

  14. Influence of the Initial Fiber Orientation on the Weld Strength in Welding of Glass Fiber Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Isabel Fiebig

    2016-01-01

    Full Text Available The welding factors are significantly lower in welding of fiber reinforced thermoplastics than in welding of unreinforced thermoplastics due to the fiber orientation in the weld. This paper presents results from investigations on the influence of the initial fiber orientation on the weld strength in hot plate and vibration welding for glass fiber reinforced polypropylene and polyamide 6. Injection molded specimens are compared to specimens with main initial fiber orientation being longitudinal and transverse to the joining direction. The results of CT analysis of the fiber orientation in the weld show the opportunity to achieve a higher weld strength by using specimens with fibers being initially oriented longitudinally to the joining direction. The influence of the initial fiber orientation in the parts to be welded on the weld strength in hot plate welding is more distinct than in vibration welding.

  15. Characterization of Nylon 6 Nano Fiber/E-Glass Fiber Reinforced Epoxy Composites

    Science.gov (United States)

    Vinod Kumar, T.; Chandrasekaran, M.; Santhanam, V.; Udayakumar, N.

    2017-03-01

    In the paper thermoplastic polymer Nylon-6 is generated in the form of Nanofibers by using an electro spinning method, and concentration of a solution is 4% as a constant then, by varying the process parameters such as flow rate (0.8 ml/hr, 1ml/hr and 1.2 ml/hr) of the solution. The results indicated Nanofibers with 4% concentration and 1 ml/hr produced optimum fibers due to continuous fiber formation. Composites Plates are fabricated by using a Hand lay-up method with different volume fraction (0.5, 1, 2 % v/v) of Nanofibers ratio. Then, the optimum Nanofibers volume ratio (2 % v/v) is reinforced with E-glass fibers and epoxy resin as a matrix. In order to find Nanofibers effect, Mechanical properties like (Tensile, Flexural and Impact) is performed and evaluated.

  16. Micromechanics Solution for the Elastic Moduli of Fiber-Reinforced Concrete

    Science.gov (United States)

    Huan, Yu Jia; Yang, Liu; Jin, Yu; Guang, Jia Lian; Ming, Liu

    2014-09-01

    The overall elastic moduli of fiber-reinforced concrete composite materials are investigated by employing the theory of micromechanics. A method based on the Mori-Tanaka theory and triple inhomogeneities is found to provide a sufficiently accurate evaluation of the average elastic properties of fiber-reinforced concrete composite materials. The inhomogeneities of the materials are divided into three groups: a fine aggregate, a coarse aggregate, and fibers (steel or polymer). The elastic moduli of fiber-reinforced concrete composite materials are determined as functions of the physical properties and volume fraction of sand, gravel, fibers (steel or polymer), and cement paste as a matrix. The theoretical results obtained are compared with published experimental data. The parameters affecting the elastic moduli of fiber-reinforced concrete are discussed in detail.

  17. Interlaminar crack growth in fiber reinforced composites during fatigue

    Science.gov (United States)

    Wang, S. S.; Wang, H. T.

    1979-01-01

    This paper presents an investigation of interlaminar crack growth behavior in fiber-reinforced composites subjected to fatigue loading. In the experimental phase of the study, interlaminar crack propagation rates and mechanisms were determined for the cases of various geometries, laminate parameters and cyclic stress levels. An advanced singular hybrid-stress finite element method was used in conjunction with the experimental results to examine the local crack-tip behavior and to characterize the crack propagation during fatigue. Results elucidate the basic nature of the cyclic delamination damage and relate the interlaminar crack growth rate to the range of mixed-mode crack-tip stress intensity factors. The study provides fundamental insight into the problem, reveals several important features of the interlaminar fatigue failure, and should be of practical importance in selection, testing and design of composite materials.

  18. Neutron stress measurement of W-fiber reinforced Cu composite

    CERN Document Server

    Nishida, M; Ikeuchi, Y; Minakawa, N

    2003-01-01

    Stress measurement methods using neutron and X-ray diffraction were examined by comparing the surface stresses with internal stresses in the continuous tungsten-fiber reinforced copper-matrix composite. Surface stresses were measured by X-ray stress measurement with the sin sup 2 psi method. Furthermore, the sin sup 2 psi method and the most common triaxal measurement method using Hooke's equation were employed for internal stress measurement by neutron diffraction. On the other hand, microstress distributions developed by the difference in the thermal expansion coefficients between these two phases were calculated by FEM. The weighted average strains and stresses were compared with the experimental results. The FEM results agreed with the experimental results qualitatively and confirmed the importance of the triaxial stress analysis in the neutron stress measurement. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  19. Performance of Sprayed Fiber Reinforced Polymer Strengthened Timber Beams

    Directory of Open Access Journals (Sweden)

    S. Talukdar

    2010-01-01

    Full Text Available A study was carried out to investigate the use of Sprayed Fiber Reinforced Polymer (SFRP for retrofit of timber beams. A total of 10-full scale specimens were tested. Two different timber preservatives and two different bonding agents were investigated. Strengthening was characterized using load deflection diagrams. Results indicate that it is possible to enhance load-carrying capacity and energy absorption characteristics using the technique of SFRP. Of the two types of preservatives investigated, the technique appears to be more effective for the case of creosote-treated specimens, where up to a 51% improvement in load-carrying capacity and a 460% increase in the energy absorption capacity were noted. Effectiveness of the bonding agent used was dependent on the type of preservative the specimen had been treated with.

  20. Composite structural materials. [fiber reinforced composites for aircraft structures

    Science.gov (United States)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  1. Fracture morphology of carbon fiber reinforced plastic composite laminates

    Directory of Open Access Journals (Sweden)

    Vinod Srinivasa

    2010-09-01

    Full Text Available Carbon fiber reinforced plastic (CFRP composites have been extensively used in fabrication of primary structures for aerospace, automobile and other engineering applications. With continuous and widespread use of these composites in several advanced technology, the frequency of failures is likely to increase. Therefore, to establish the reasons for failures, the fracture modes should be understood thoroughly and unambiguously. In this paper, CFRP composite have been tested in tension, compression and flexural loadings; and microscopic study with the aid of Scanning Electron Microscope (SEM has been performed on failed (fractured composite surfaces to identify the principle features of failure. Efforts have been made in correlating the fracture surface characteristics to the failure mode. The micro-mechanics analysis of failure serves as a useful guide in selecting constituent materials and designing composites from the failure behavior point of view. Also, the local failure initiation results obtained here has been reliably extended to global failure prediction.

  2. Flax Fibers as Reinforcement in Poly (Lactic Acid) Biodegradable Composites

    Science.gov (United States)

    Yuan, Yuan; Guo, Minghui; Wang, Yong

    In our research, poly (lactic acid) (PLA) film was used in combination with flax fibers as reinforcement to generate biodegradable composites by a film stacking technique and hot-press. The research of the relationship between the main process parameters and the performance of the board are done by the orthogonal experiments, then the various factors to influence the performance were analyzed and the optimal parameters were determined. The results showed that with the increasing of flax addition (30%~50%) and silane addition (1%~5%), the tensile strength and modulus increased, but the flexural strength and modulus increased then decreased with the increasing of flax addition (30%~50%). During the hot-press temperature (190°C~210°C) increasing, the tensile strength, flexural strength and modulus all increased. And the optimal parameters are determined by the flax addition 40%, silane addition 5%, hotpressing temperature 190°C, and hot-pressing time 3 min.

  3. Placement protocol for an anterior fiber-reinforced composite restoration.

    Science.gov (United States)

    Hornbrook, D S

    1997-01-01

    The new classification of metal-free restorative materials provides the clinician with a durable, flexible, and aesthetic laboratory-fabricated alternative to conventional porcelain-fused-to-metal (PFM) full-coverage crowns, inlay and onlay restorations, and single pontic bridges. With exceptional physical and optical characteristics, restorations fabricated utilizing the new ceramic optimized polymer (Ceromer) (Targis, Ivoclar Williams, Amherst, NY) and fiber-reinforced composite (FRC) framework (Vectris, Ivoclar Williams, Amherst, NY) materials can also be utilized predictably in the anterior segment. The success of metal-free restorations can be achieved by following conventional prosthodontic principles for preparation, cementation, and finishing. This article demonstrates the appropriate treatment protocol in order to achieve aesthetically acceptable and durable anterior results utilizing a metal-free restorative system for "Maryland-like" bridge restorations.

  4. Health monitoring technology for alumina-fiber-reinforced plastic

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Hiroshi [Hitachi Ltd., Tsuchiura (Japan); Watanabe, Hiroyuki; Terai, Motoaki

    1998-12-01

    Formally, we developed new load-support systems that consists of a biconical, alumina-fiber-reinforced plastic (ERP) structure for the superconducting magnet. Safe operation of the superconducting magnet will be jeopardized if the mechanical condition of the load-support system begins to degrade. One of the factors that evaluate the soundness of the superconducting magnet is the stiffness of the load-support system. Here, it is important to know the relation between the degradation of the stiffness and the growth of defects. For this purpose, firstly, a fatigue test of the load-support system was carried out, and the various defects (matrix cracking and delamination of FRP laminates) were observed during this fatigue testing. Finally, we proposed the application of two non-destructive-evaluation (NDE) methods for the health monitoring of alumina/epoxy load-support systems. (author)

  5. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.

    Science.gov (United States)

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-12-16

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.

  6. Durability Studies on Confined Concrete using Fiber Reinforced Polymer

    Science.gov (United States)

    Ponmalar, V.; Gettu, R.

    2014-06-01

    In this study, 24 concrete cylinders with a notch at the centre were prepared. Among them six cylinders were wrapped using single and double layers of fiber reinforced polymer; six cylinders were coated with epoxy resin; the remaining cylinders were used as a control. The cylinders were exposed to wet and dry cycling and acid (3 % H2SO4) solution for the period of 120 days. Two different concrete strengths M30 and M50 were considered for the study. It is found that the strength, ductility and failure mode of wrapped cylinders depend on number of layers and the nature of exposure conditions. It was noticed that the damage due to wet and dry cycling and acid attack was severe in control specimen than the epoxy coated and wrapped cylinders.

  7. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection

    Directory of Open Access Journals (Sweden)

    Dong Luo

    2016-12-01

    Full Text Available In this study, tapered polymer fiber sensors (TPFSs have been employed to detect the vibration of a reinforced concrete beam (RC beam. The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM system in civil engineering.

  8. Chairside fabricated fiber-reinforced composite fixed partial denture

    Directory of Open Access Journals (Sweden)

    Sufyan Garoushi

    2007-01-01

    Full Text Available The advances in the materials and techniques for adhesive dentistry have allowed the development of non-invasive or minimally invasive approaches for replacing a missing tooth in those clinical situations when conservation of adjacent teeth is needed. Good mechanical and cosmetic/aesthetic properties of fiber-reinforced composite (FRC, with good bonding properties with composite resin cement and veneering composite are needed in FRC devices. Some recent studies have shown that adhesives of composite resins and luting cements allow diffusion of the adhesives to the FRC framework of the bridges. By this so-called interdiffusion bonding is formed [1]. FRC bridges can be made in dental laboratories or chairside. This article describes a clinical case of chairside (directly made FRC Bridge, which was used according to the principles of minimal invasive approach. Treatment was performed by Professor Vallittu from the University of Turku, Finland.

  9. Review of Carbon Fiber Reinforced Polymer Reinforced Material in Concrete Structure

    Directory of Open Access Journals (Sweden)

    Ayuddin Ayuddin

    2016-05-01

    Full Text Available Carbon Fiber Reinforced Polymer (FRP is a material that is lightweight, strong, anti-magnetic and corrosion resistant. This material can be used as an option to replace the steel material in concrete construction or as material to improve the strength of existing construction. CFRP is quite easy to be attached to the concrete structure and proved economically used as a material for repairing damaged structures and increase the resilience of structural beams, columns, bridges and other parts of the structure against earthquakes. CFRP materials can be shaped sheet to be attached to the concrete surface. Another reason is due to the use of CFRP has a higher ultimate strength and lower weight compared to steel reinforcement so that the handling is significantly easier. Through this paper suggests that CFRP materials can be applied to concrete structures, especially on concrete columns. Through the results of experiments conducted proved that the concrete columns externally wrapped with CFRP materials can increase the strength. This treatment is obtained after testing experiments on 130 mm diameter column with a height of 700 mm with concentric loading method to collapse. The experimental results indicate that a column is wrapped externally with CFRP materials can achieve a load capacity of 250 kN compared to the concrete columns externally without CFRP material which only reached 150 kN. If the column is given internally reinforcing steel and given externally CFRP materials can reach 270 kN. It shows that CFRP materials can be used for concrete structures can even replace reinforcing steel that has been widely used in building construction in Indonesia.

  10. Multi Scale Modeling of Continuous Aramid Fiber Reinforced Polymer Matrix Composites Used in Ballistic Protection Applications

    Science.gov (United States)

    2014-11-16

    Pandurangan, B., Yen, C-.F., Cheeseman, B. A., Wang, Y., Miao, Y. & Zheng, J. Q. “ Fiber -level Modeling of Dynamic Strength of Kevlar ® KM2 Ballistic...A. “Multi-Length Scale Enriched Continuum-Level Material Model for Kevlar ®- Fiber Reinforced Polymer- Matrix Composites” Journal of Materials Engineering and Performance 22 (2013): 681-695. ... Fiber Reinforced Polymer Matrix Composites Used in Ballistic Protection Applications Clemson University Clemson SC 242 Army Research Laboratory

  11. Epoxy/carbon composite resins in dentistry: mechanical properties related to fiber reinforcements.

    Science.gov (United States)

    Viguie, G; Malquarti, G; Vincent, B; Bourgeois, D

    1994-09-01

    Composite carbon/epoxy resin techniques for restorative dentistry have improved with the development of various composite resins classified according to fiber reinforcement, such as short fibers, woven materials, or long unidirectional fibers. This study of the mechanical properties with three-point flexion enabled comparison of the flexural strengths. The modulus of elasticity of different composite resin materials was determined so that the appropriate reinforced composite resin could be selected for specific clinical conditions.

  12. Mechanical properties of ramie fiber reinforced epoxy lamina composite for socket prosthesis

    OpenAIRE

    Tresna Soemardi; Widjajalaksmi Kusumaningsih; Agustinus Irawan

    2010-01-01

    This paper presents an investigation into the application of natural fiber composite especially ramie fiber reinforced epoxy lamina composite for socket prosthesis. The research focuses on the tensile and shear strength from ramie fiber reinforced epoxy lamina composite which will be applied as alternative material for socket prosthesis. The research based on American Society for Testing Material (ASTM) standard D 3039/D 3039M for tensile strength and ASTM D 4255/D 42...

  13. Impact toughness of cellulose-fiber reinforced polypropylene : influence of microstructure in laminates and injection molded composites

    Science.gov (United States)

    Craig Clemons; Daniel Caulfield; A. Jeffrey Giacomin

    2003-01-01

    Unlike their glass reinforced counterparts, microstructure and dynamic fracture behavior of natural fiber-reinforced thermoplastics have hardly been investigated. Here, we characterize the microstructure of cellulose fiber-reinforced polypropylene and determined its effect on impact toughness. Fiber lengths were reduced by one-half when compounded in a high-intensity...

  14. Anisotropy of conductivity in carbon fiber-reinforced plastics with continuous fibers

    Science.gov (United States)

    Ponomarenko, Anatoliy T.; Shevchenko, Vitaliy G.; Letyagin, Sergey V.; Klason, Carl

    1995-05-01

    Carbon fiber-reinforced plastics (CFRP), as high strength advanced materials are often used as media for embedding sensors and actuators. Due to the properties of components and processing conditions they are electrically anisotropic, with coefficient of anisotropy sometimes exceeding several thousands. This may prevent elimination of static electricity and cause erosion of material due to micro discharges at contacts with fastenings and embedded sensors and actuators, causing their malfunction. For this reason, the investigation of electrical properties of CFRP may provide the solution to this problem. Distribution of electric current field in CFRP and related with it possible errors in measurements of longitudinal conductivity and anisotropy are analyzed. CFRP have been prepared from PAN or cellulose fibers with different heat treatment temperatures and conductivity anisotropy was measured as a function of filler volume fraction and processing conditions. With increasing loading coefficient of anisotropy (alpha) decreases. Lower values of (alpha) were observed when curing agents containing ionic complexes of metals were used. Modifications of fiber surface with hydrophobic agents results in increased anisotropy. Composites prepared with carbon fabrics are isotropic in the fabric plane. Coefficient of anisotropy decreases with increasing molding pressure and depends on the type of weaving of fabric. In hybrid composites with alternating layers of carbon fabric and complex fiber fabric anisotropy is higher due to partial decomposition of conducting layer on top of complex fibers. A method for reducing anisotropy by introducing conducting `jumpers', shorting individual fibers or layers of fabric is proposed. The change of anisotropy in the process of fabrication of carbon-carbon composite by passing electric current through fibers has been investigated. In conclusion, alternative uses of CFRP with reduced anisotropy for contact elements of electric current through

  15. Determination of tensile forces to enhance the supply stability of reinforced fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Woo; Lee, Jae Wook; Jang, Jin Seok; Jeong, Myeong Sik; Oh, Joo Young; Kang, Hoon; Kang, Ji Heon [Daegyeong Regional Division, Korea Institute of Industrial Technology, Daegu (Korea, Republic of); Kim, Hyung Ryul [Agency for Defense Development, Changwon (Korea, Republic of); Yoo, Wan Suk [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    The manufacturing process of long fiber thermoplastic is initiated by supplying reinforced fiber wound in a spool dispenser. If problems such as tangling or kinking occur in the apparatus used for supplying the reinforced fiber in the long-fiber thermoplastic direct process, the productivity of the long-fiber thermoplastic decreases. Therefore, it is important to enhance the supply stability of reinforced fiber. In general, the increase in supply stability can be achieved by maintaining a steady balloon shape that is controlled by the unwinding velocity or tensile force of the reinforced fiber. In this research, the range of suitable tensile force was determined under the assumption that the unwinding velocity remained constant. The reinforced fiber was assumed to be inextensible, homogeneous, and isotropic and to have uniform density. The transient-state unwinding equation of motion to analyze the unwinding motion of reinforced fiber can be derived by using Hamilton’s principle for an open system in which mass can change within a control volume. In the process of solving the transient-state unwinding equation of motion, the exact two-point boundary conditions are adopted for each time step.

  16. EXPERIENTIAL INVESTIGATION OF TWO-WAY CONCRETE SLABS WITH OPENINGS REINFORCED WITH GLASS FIBER REINFORCED POLYMER BARS

    Directory of Open Access Journals (Sweden)

    MOHANAD T. ABDULJALEEL

    2017-04-01

    Full Text Available This research had focused on glass fiber reinforced polymer (GFRP reinforced concrete flat plate slabs with symmetrical openings. The results of ten interior slab-column connections were presented and discussed. The test parameters are reinforcement ratio, reinforcement type, and openings location. The specimens had been tested under monotonic concentric loading up to failure. The result showed that increasing the reinforcement ratio resulted in higher punching shear-shear capacity, lower deflection, and lower reinforcement ratio. Existing of openings reduced the punching shear capacity, and increased of the deflection, for instance, when spaced of opening's location form column face up to three times of effective depth, it will be issued to increase 25% of punching strength in slab.

  17. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J. W., Jr.; Effinger, M.; Cooper, K. C.

    2003-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP) processes.

  18. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    Science.gov (United States)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  19. Visual classification of braided and woven fiber bundles in X-ray computed tomography scanned carbon fiber reinforced polymer specimens

    OpenAIRE

    Weissenböck, Johannes; Bhattacharya, Arindam; Plank, Bernhard; Heinzl, Christoph; Kastner, Johann

    2016-01-01

    In recent years, advanced composite materials such as carbon fiber reinforced polymers (CFRP) are used in many fields of application (e.g., automotive, aeronautic and leisure industry). These materials are characterized by their high stiffness and strength, while having low weight. Especially, woven carbon fiber reinforced materials have outstanding mechanical properties due to their fabric structure. To analyze and develop the fabrics, it is important to understand the course of the individu...

  20. Factors influencing reinforcement and NR and EPDM rubbers with short aramid fibers

    NARCIS (Netherlands)

    Sadatshirazi, S.; Noordermeer, Jacobus W.M.

    2011-01-01

    Among short fiber reinforced composites, those with rubbery matrices have gained great importance due to the advantages they have in processing and low cost, coupled with high strength. These composites combine the elastic behavior of rubbers with strength and stiffness of fibers. Aramid fibers have

  1. Micro-mechanical Analysis of Fiber Reinforced Cementitious Composites using Cohesive Crack Modeling

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2006-01-01

    are implemented. It is shown that the cohesive law for a unidirectional fiber reinforced cementitious composite can be found through superposition of the cohesive law for mortar and the fiber bridging curve. A comparison between the numerical and an analytical model for fiber pull-out is performed....

  2. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete.

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-02-26

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber-polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance.

  3. [Study of an optical fiber grating sensor for monitoring corrosion of reinforcing steel].

    Science.gov (United States)

    Li, Jun; Wu, Jin; Gao, Jun-qi

    2010-01-01

    Based on the principle of the fiber Bragg grating strain sensor as well as the volume expansion of the reinforcing steel due to corrosion, an optical fiber grating sensor for monitoring corrosion of reinforcing steel and the method of temperature compensation were studied in the present paper. The sensor construction is that one Bragg grating is stuck on the inner center of two bars against each other, and the reinforcement volume as well as the diameter will expand due to corrosion. Based upon sensing mechanism, monitoring will be carried out by transforming the diameter increase to the fiber strain, and as a result the degree and rate of reinforcement corrosion can be obtained. The principle of corrosion monitoring is that the strain induced by corrosion and temperature fluctuation is measured by a reinforcing steel fiber grating sensor. At the same time, the strain induced by temperature fluctuation is also measured by an individual stainless fiber grating sensor. Therefore by two independent fiber grating sensors, the volume changed by corrosion can be separated. By the concrete encapsulating and embedding method of FBG corrosion sensor, the degree of corrosion of reinforcing reinforcement will be measured directly, which is not affected by corrosion factors and can be used in the early corrosion monitoring of reinforcement in concrete structures. Finally the relationship between corrosion rate and shift in center wavelength was calibrated by experiment.

  4. R&D on glass fiber reinforced epoxy resin composites for superconducting Tokamak.

    Science.gov (United States)

    Hu, Nannan; Wang, Ke; Ma, Hongming; Pan, Wanjiang; Chen, Qingqing

    2016-01-01

    The glass fiber reinforced epoxy resin composites play an important role in superconducting Tokamak, which are used to insulate the metal components, such as superconducting winding, cooling pipes, metal electrodes and so on. For the components made of metal and glass fiber reinforced epoxy resin composites, thermal shrinkage leads to non-ignorable thermal stress, therefore, much attention should be paid on the thermal shrinkage rate of glass fiber reinforced epoxy resin composites. The structural design of glass fiber reinforced epoxy resin composites should aim at reducing thermal stress. In this paper, the density, glass fiber content and thermal shrinkage rate of five insulation tubes were tested. The testing results will be applied in structural design and mechanical analysis of isolators for superconducting Tokamak.

  5. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    Directory of Open Access Journals (Sweden)

    Yankai Wu

    2014-01-01

    Full Text Available Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil’s strength and improves the soil’s mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  6. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ece Erdogmus

    2015-02-01

    Full Text Available The use of fiber reinforcement in traditional concrete mixes has been extensively studied and has been slowly finding its regular use in practice. In contrast, opportunities for the use of fibers in masonry applications and structural rehabilitation projects (masonry and concrete structures have not been as deeply investigated, where the base matrix may be a weaker cementitious mixture. This paper will summarize the findings of the author’s research over the past 10 years in these particular applications of fiber reinforced cements (FRC. For masonry, considering both mortar and mortar-unit bond characteristics, a 0.5% volume fraction of micro fibers in type N Portland cement lime mortar appear to be a viable recipe for most masonry joint applications both for clay and concrete units. In general, clay units perform better with high water content fiber reinforced mortar (FRM while concrete masonry units (CMUs perform better with drier mixtures, so 130% and 110% flow rates should be targeted, respectively. For earth block masonry applications, fibers’ benefits are observed in improving local damage and water pressure resistance. The FRC retrofit technique proposed for the rehabilitation of reinforced concrete two-way slabs has exceeded expectations in terms of capacity increase for a relatively low cost in comparison to the common but expensive fiber reinforced polymer applications. For all of these applications of fiber-reinforced cements, further research with larger data pools would lead to further optimization of fiber type, size, and amount.

  7. Performance Analysis of a Fiber Reinforced Plastic Oil Cooler Cover Considering the Anisotropic Behavior of the Fiber Reinforced PA66

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-09-01

    Full Text Available In this paper, a simulation method based on an orthogonal anisotropic material is proposed. A numerical example using a simple plate is presented to show the difference in the static performance between the orthogonal anisotropic and the isotropic models. Comparing with the tested modal data of a diesel engine oil cooler cover made by glass fiber reinforced polyamide 66 (PA66, the proposed simulation method was confirmed to be much closer to reality than the general isotropic model. After that, a comprehensive performance comparison between the plastic oil cooler covers with the orthogonal anisotropic and the isotropic fiber orientations was carried out including a static deformation and stress analysis under a pressure-temperature coupled load, a forced response analysis, and an acoustic analysis under real operating conditions. The results show that the stress, the deformation, the peak vibration velocity, and the overall sound power level of the orthogonal anisotropic model are different from that obtained with the isotropic model. More importantly, the proposed method can provide a much more detailed frequency content compared to the isotropic model.

  8. Environmental durability of reinforced concrete deck girders strengthened for shear with surface-bonded carbon fiber-reinforced polymer : final report.

    Science.gov (United States)

    2009-05-01

    This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort ...

  9. Microstructure of a cement matrix composite reinforced with polypropylene fibers

    Directory of Open Access Journals (Sweden)

    Rincón, J. M.

    2004-06-01

    Full Text Available The present investigation deals with the microstructural characterization of a composite material, which is comprised of polypropylene fibers in an cement matrix, by means of environmental scanning electron microscopy (ESEM and field emission scanning electron microscopy (FESEM. The microstructure of the different phases that compose the matrix is very heterogeneous, though there is a uniform distribution of the fibers inside it. The surface of this composite is different after setting, cured and hardening depending if the zone is or not in touch with the walls of the mould. The interface between the different crystalline regions of the cement matrix and the dispersed fibers shows compatibility between the matrix and the polymeric fibers. The mechanical properties (compression and bending strength have also been evaluated. The use of melamine formaldehyde as additive leads to a reinforcement of the cement matrix and to the improvement of the mechanical properties.

    Se ha llevado a cabo una observacíón microestructural detallada de un material compuesto de fibras de polipropileno embebidas en una matriz de cemento usando los nuevos tipos de microscopía electrónica de barrido, tales como: un microscopio electrónico medioambiental (acrónimo en inglés: ESEM y uno de emisión de campo (acrónimo en inglés: FESEM. La microestructura de las diferentes fases que componen la matriz es muy heterogénea, aunque hay una distribución uniforme de las fibras dentro de ellas. La superficie de este material compuesto es diferente después del fraguado, curado y endurecimiento según qué zonas estén o no en contacto con las paredes del molde. La interfase entre las diferentes fases cristalinas de la matriz de cemento y las fibras dispersadas se ha observado a diferentes aumentos, comprobándose compatibilidad entre la matriz y las fibras poliméricas. Las propiedades de resistencia mecánica (tanto a flexión como a compresión han sido tambi

  10. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Science.gov (United States)

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  11. Mechanical Properties Optimization of Fiber Reinforced Foam Concrete

    Directory of Open Access Journals (Sweden)

    Yu Lei

    2016-01-01

    Full Text Available 3 factors including fiber kind, fiber content and fiber mix-ability are selected to optimizing mechanical properties of foam concrete. By orthogonal experiment design, compression and flexural stress and strain of specimens from different fiber added ways were test. Range analysis and factor levels analysis show the best fiber added way. Test shows that fiber content is the most important factor to flexural stress. Next one is fiber kind and the third is fiber mix-ability. Fiber kind is the most important factor to stress curves. Fiber is not good for compression strength but good for flexural strength.

  12. The Effect of Externally Retrofitted Carbon Fiber Reinforced Polymer Composites on the Ductility of Reinforced Concrete Beams

    Science.gov (United States)

    1999-05-04

    conducted in accordance with the specifications on steel tensile tests in ASTM A370 11.4.1 and 11.4.3. 5.4 Carbon Fiber Reinforced Plastics The laminates...provided by manufacturer Tensile tests on samples of both the S512 and the S812 in accordance with ASTM D3039 . The S512 test coupon was 20 in (500mm...A TRIDENT SCHOLAR PROJECT REPORT NO. 268 The Effect of Externally Retrofitted Carbon Fiber Reinforced Polymer Composites on the Ductility of

  13. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-01-01

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber—polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance. PMID:28773256

  14. Al2O3/GdAlO3 fiber for dental porcelain reinforcement.

    Science.gov (United States)

    Medeiros, Igor S; Luz, Luciana A; Yoshimura, Humberto N; Cesar, Paulo F; Hernandes, Antonio C

    2009-10-01

    The aim of this study was to test the hypothesis that the addition of continuous or milled GdAlO3/Al2O3 fibers to a dental porcelain increases its mechanical properties. Porcelain bars without reinforcement (control) were compared to those reinforced with long fibers (30 vol%). Also, disk specimens reinforced with milled fibers were produced by adding 0 (control), 5 or 10 vol% of particles. The reinforcement with continuous fibers resulted in significant increase in the uniaxial flexural strength from 91.5 to 217.4 MPa. The addition of varied amounts of milled fibers to the porcelain did not significantly affect its biaxial flexural strength compared to the control group. SEM analysis showed that the interface between the continuous fiber and the porcelain was free of defects. On the other hand, it was possible to note the presence of cracks surrounding the milled fiber/porcelain interface. In conclusion, the reinforcement of the porcelain with continuous fibers resulted in an efficient mechanism to increase its mechanical properties; however the addition of milled fibers had no significant effect on the material because the porcelain was not able to wet the ceramic particles during the firing cycle.

  15. Reinforcing and Toughening Effects of Bamboo Pulp Fiber on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Fiber Composites.

    Science.gov (United States)

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites were melt-compounded and injection-molded. Tensile, impact and dynamic mechanical properties of the composites were studied. In contrast to many other short natural fiber reinforced biocomposites which demonstrate decre...

  16. Load-bearing capacity of human incisor restored with various fiber-reinforced composite posts.

    Science.gov (United States)

    Le Bell-Rönnlöf, Anna-Maria; Lassila, Lippo V J; Kangasniemi, Ilkka; Vallittu, Pekka K

    2011-06-01

    The aim of this study was to evaluate the load-bearing capacity and microstrain of incisors restored with posts of various kinds. Both prefabricated titanium posts and different fiber-reinforced composite posts were tested. The crowns of human incisors were cut and post preparation was carried out. The roots were divided into groups: (1) prefabricated serrated titanium posts, (2) prefabricated carbon fiber-reinforced composite posts, (3) individually formed glass fiber-reinforced composite posts with the canal full of fibers, and (4) individually formed "split" glass fiber-reinforced composite posts. The posts were cemented and composite crowns were made. Intact human incisors were used as reference. All roots were embedded in acrylic resin cylinders and stored at room temperature in water. Static load was applied under a loading angle of 45° using a universal testing machine. On half of the specimens microstrain was measured with strain gages and an acoustic emission analysis was carried out. Failure mode assessment was also made. The group with titanium posts showed highest number of unfavorable failures compared to the groups with fiber-reinforced composite posts. With fiber-reinforced composite posts the failures may more often be favorable compared to titanium posts, which clinically means repairable failures. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Effect of fiber reinforcement on thermo-oxidative stability and mechanical properties of polymer matrix composites

    Science.gov (United States)

    Bowles, K. J.

    1992-01-01

    A number of studies have investigated the thermooxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. The polyimide PMR-15 was the matrix material used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-4OR graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  18. Effect of Fiber Waviness on Tensile Strength of a Flax-Sliver-Reinforced Composite Material

    Directory of Open Access Journals (Sweden)

    Taweesak Piyatuchsananon

    2015-01-01

    Full Text Available Recently, a composite material made from natural fibers and biodegradable resin, “green composite,” is attracting attention as an alternative composite material for the replacement of glass fiber-reinforced plastics. Plant-based natural fibers such as kenaf and flax have already been used as composite reinforcement materials because they are more environmentally friendly and costless fibers than artificial fibers. A problem of using natural fibers is the fiber waviness, which affects the tensile properties. Fiber waviness is fluctuation in the fiber orientation that is inherent in the sliver morphology of plant-based natural fibers. This study was conducted to clarify the relation between quantified parameters of fiber waviness and a composite’s tensile strength. First, the fiber orientation angles on a flax-sliver-reinforced composite were measured. Then the angle distribution was quantified through spatial autocorrelation analysis methods: Local Moran’s I and Local Geary’s c. Finally, the relation between the resultant tensile strength and quantified parameters was discussed.

  19. Effect of surface treatments on tensile properties of hemp fiber reinforced polypropylene composites

    Science.gov (United States)

    Ma, Li; He, Lujv; Zhang, Libin

    2017-04-01

    Three forms of hemp fiber (untreated, treated with sodium hydroxide solution and treated with sodium hydroxide solution followed by three-aminopropyltriethoxysilane) reinforced polypropylene composites were prepared. The effects of chemical treatments on tensile properties of the composites were studied. The results show that alkali treatment followed by three-aminopropyltriethoxysilane treatment significantly improves the tensile properties. In particular, the specific tensile strengths of alkali-silane treated composites with 30% fiber content are only 4% lower than those of composites reinforced with glass fiber. Scanning electron microscopy examination shows that the improvements in tensile properties can be attributed to better bonding between the fiber and matrix.

  20. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  1. Tensile Capacity of U-bar Loop Connections with Precast Fiber Reinforced Dowels

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes

    2016-01-01

    This paper describes an investigation of the tensile capacity of in-situ cast U-bar loop connections between precast concrete elements. The basic idea is to introduce a small precast cylindrical dowel of fiber reinforced mortar that fits into the bend diameter of the overlapping U...... to ideal ductile behavior than that of the specimens grouted with regular mortar. The experimental results of the tensile tests are compared with calculations based on an upper bound plasticity model and satisfactory agreement has been obtained....... that use of a precast fiber reinforced dowel performs at a slightly lower load level, as compared to a connection grouted solely with regular mortar and reinforced with the same amount of transverse reinforcement. However, the load-displacement response of specimens with a fiber reinforced dowel is closer...

  2. Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure.

    Science.gov (United States)

    Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook

    2017-01-28

    In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers (lf of 13 mm) with longer fibers (lf of 19.5 mm and 30 mm).

  3. Guided wave propagation in porous unidirectional carbon fiber reinforced plastic

    Science.gov (United States)

    Dobmann, Nicolas; Bach, Martin

    2017-02-01

    Networks of piezoelectric transducers mounted on aircraft structures for Acousto Ultrasonics (AU) purposes are designed to be applied during the service life of the aircraft. The approach to integrate these sensor networks already during the manufacture of carbon fiber reinforced plastic (CFRP) host structures prompts ideas to achieve an additional benefit by their application for cure monitoring, thus extending their use to the manufacturing chain. This benefit could be extended even further if guided waves generated by AU sensor networks could be used for porosity testing extensively applied for CFRP aircraft structures. In light of this, an experimental study was conducted to investigate effects of porosity on the propagation of guided waves in a basic configuration of unidirectional CFRP. Several samples were manufactured at different porosity levels by variation of the processing pressure. Wave fields were acquired using an ultrasonic scanning device. In the present work, phase velocities are chosen as best measurable and quantifiable propagation feature and the approach for the analysis of phase velocities in porosity samples is outlined. First results are presented and discussed regarding the influence of porosity on guided wave phase velocity and basic applicability for porosity testing of aircraft structures.

  4. Mechanical Properties of Fiber-Reinforced Concrete Using Composite Binders

    Directory of Open Access Journals (Sweden)

    Roman Fediuk

    2017-01-01

    Full Text Available This paper investigates the creation of high-density impermeable concrete. The effect of the “cement, fly ash, and limestone” composite binders obtained by joint grinding with superplasticizer in the varioplanetary mill on the process of structure formation was studied. Compaction of structure on micro- and nanoscale levels was characterized by different techniques: X-ray diffraction, DTA-TGA, and electron microscopy. Results showed that the grinding of active mineral supplements allows crystallization centers to be created by ash particles as a result of the binding of Ca(OH2 during hardening alite, which intensifies the clinker minerals hydration process; the presence of fine grains limestone also leads to the hydrocarboaluminates calcium formation. The relation between cement stone neoplasms composition as well as fibrous concrete porosity and permeability of composite at nanoscale level for use of composite binders with polydispersed mineral supplements was revealed. The results are of potential importance in developing the wide range of fine-grained fiber-reinforced concrete with a compressive strength more than 100 MPa, with low permeability under actual operating conditions.

  5. Fiber-reinforced onlay composite resin restoration: a case report.

    Science.gov (United States)

    Garoushi, Sufyan K; Shinya, Akikazu; Shinya, Akiyoshi; Vallittu, Pekka K

    2009-07-01

    The purpose of this case report is to describe the clinical procedure for fabricating fiber-reinforced composite (FRC) onlay composite resin restorations using a FRC as the substructure. A variety of therapeutic modalities are available to restore teeth with moderate coronal defects in the posterior region of the mouth. For patients who refuse complete crown restorations or when minimal tooth reduction is preferred, a FRC restoration can be a good alternative to conventional restorative techniques. A 42-year-old female patient presented with an endodontically treated mandibular right first molar with extensive destruction of the coronal tooth structure. To conserve the remaining tooth structure a FRC resin core substructure was fabricated and veneered with Ceramage dentin and enamel hybrid composite to create the final restoration. FRC restorations using adhesive technology appears to be a promising restorative option. However, further clinical investigation will be required to provide additional information on this technique. Based on the clinical and radiographic findings in the present case, the fabrication of a conventional crown was avoided in order to conserve the remaining tooth structure. The restoration of badly damaged teeth is a challenge for clinicians when cast crown restorations are not an option for the patient. The use of FRC restorations along with adhesive technology may be a rational restorative alternative in the near future.

  6. Thermal diffusivity measurements on porous carbon fiber reinforced polymer tubes

    Science.gov (United States)

    Gruber, Jürgen; Gresslehner, Karl Heinz; Mayr, Günther; Hendorfer, Günther

    2017-02-01

    This work presents the application of methods for the determination of the thermal diffusivity well suited for flat bodies adapted to cylindrical bodies. Green's functions were used to get the temperature time history for small and large times, for the approach of intersecting these two straight lines. To verify the theoretical considerations noise free data are generated by finite element simulations. Furthermore effects of inhomogeneous excitation and the anisotropic heat conduction of carbon fiber reinforced polymers were taken into account in these numerical simulations. It could be shown that the intersection of the two straight lines is suitable for the determination of the thermal diffusivity, although the results have to be corrected depending on the ratio of the cylinders inner and outer radii. Inhomogeneous excitation affects the results of this approach as it lead to multidimensional heat flux. However, based on the numerical simulations a range of the azimuthal angle exists, where the thermal diffusivity is nearly independent of the angle. The method to determine the thermal diffusivity for curved geometries by the well suited Thermographic Signal Reconstruction method and taking into account deviations from the slab by a single correction factor has great advantages from an industrial point of view, just like an easy implementation into evaluation software and the Thermographic Signal Reconstruction methods rather short processing time.

  7. Use of fiber reinforced polymer composite cable for post-tensioning application.

    Science.gov (United States)

    2015-08-01

    The primary objective of this research project was to assess the feasibility of the use of innovative carbon fiber reinforced : polymer (CFRP) tendons and to develop guidelines for CFRP in post-tensioned bridge applications, including segmental : bri...

  8. Monitoring long-term in-situs behavior of installed fiber reinforced polymer.

    Science.gov (United States)

    2009-06-01

    The objective of this report is to provide information on state of the art in structural health : monitoring (SHM) and its application to bridges. The most recent trends in SHM with regard to : fiber reinforced polymer (FRP) composites are discussed....

  9. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    Science.gov (United States)

    2014-05-01

    The objective of the proposed research is to develop, test, and evaluate fiber-reinforced, polyurethane foams to replace the costly : honeycomb construction currently used to manufacture FRP bridge deck panels. The effort will focus on developing an ...

  10. Effect of polyester fiber reinforcement on the mechanical properties of interim fixed partial dentures

    Directory of Open Access Journals (Sweden)

    N. Gopichander

    2015-10-01

    Conclusion: Within the limitations of this study, polyester fiber reinforcements improved the mechanical properties of heat-polymerized PMMA, cold-polymerized PMMA, and bis-acrylic provisional FPD materials.

  11. Repair of impact damaged utility poles with fiber reinforced polymers (FRP), phase II.

    Science.gov (United States)

    2015-06-01

    Vehicle collisions with steel or aluminum utility poles are common occurrences that yield substantial but often repairable : damage. This project investigates the use of a fiber-reinforced polymer (FRP) composite system for in situ repair that : mini...

  12. Closed-loop performance of an actuated deformable carbon fiber reinforced polymer mirror

    Science.gov (United States)

    Wilcox, Christopher C.; Jungwirth, Matthew E. L.; Wick, David V.; Baker, Michael S.; Hobart, Clinton G.; Romeo, Robert C.; Martin, Robert N.

    2012-06-01

    The Naval Research Laboratory and Sandia National Laboratories have been actively researching the use of carbon fiber reinforced polymer material as optical elements in many optical systems. Active optical elements can be used to build an optical system capable of changing is optical zoom. We have developed a two-element optical system that uses a large diameter, thin-shelled carbon fiber reinforced polymer mirror, actuated with micro-positioning motors, and a high actuator density micro-electro-mechanical deformable mirror. Combined with a Shack-Hartmann wavefront sensor, we have optimized this actuated carbon fiber reinforced polymer deformable mirror's surface for use with a forthcoming reflective adaptive optical zoom system. In this paper, we present the preliminary results of the carbon fiber reinforced polymer deformable mirror's surface quality and the development of the actuation of it.

  13. Carbon Nanotube (CNT) and Carbon Fiber Reinforced SiC Optical Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M Cubed has developed and patented technology to make carbon fiber reinforced SiC composites and components. In addition, the feasibility of doubling the toughness...

  14. Guidelines for using fiber-reinforced polymer composite materials to extend bridge life : research spotlight.

    Science.gov (United States)

    2014-09-01

    With a high strength-to-weight ratio, fiber-reinforced polymer : (FRP) composite fabrics have become a promising technology for : strengthening concrete bridge elements that are starting to deteriorate. : To take full advantage of the benefits of the...

  15. Development of advanced grid stiffened (AGS) fiber reinforced polymer (FRP) tube-encased concrete columns.

    Science.gov (United States)

    2013-03-01

    In this project, a new type of confining device, a latticework of interlacing fiber reinforced polymer (FRP) ribs that are jacketed by a FRP skin, is proposed, manufactured, tested, and modeled to encase concrete cylinders. This systematic study incl...

  16. The development of crashworthy rails for fiber reinforced polymer honeycomb bridge deck system.

    Science.gov (United States)

    2015-07-01

    Fiber reinforced polymer (FRP) honeycomb panels offer an efficient and rapid replacement to : concrete decks. The system consists of FRP honeycomb sandwich panels with adequate guardrails. Although : FRP bridge deck panels have already been designed ...

  17. Assessment of mechanically fastened fiber reinforced polymer (MF-FRP) strips for extending bridge service life.

    Science.gov (United States)

    2015-03-01

    The enhancement of load rating concrete structures by the installation of Fiber reinforced : polymer strips (FRP) is becoming a preferred short-term action. The addition of supplemental : tensile capacity to concrete beams by applying high tensile st...

  18. The development of crashworthy rails for fiber reinforced polymer honeycomb bridge deck system : [summary].

    Science.gov (United States)

    2015-07-01

    Fiber reinforced polymer (FRP) honeycomb panels offer an efficient and rapid : replacement to concrete decks. The system consists of FRP honeycomb sandwich panels : with adequate guardrails. Although FRP bridge deck panels have already been designed ...

  19. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    Science.gov (United States)

    2014-05-01

    Although still in their infancy, fiber-reinforced polymer (FRP) bridges have shown great promise in eliminating corrosion : concerns and meeting (or exceeding) FHWAs goal of 100-year life spans for bridges. While FRP bridges are cost-effective in ...

  20. Behavior of Low Grade Steel Fiber Reinforced Concrete Made with Fresh and Recycled Brick Aggregates

    National Research Council Canada - National Science Library

    Md. Shariful Islam; Mohammad Al Amin Siddique

    2017-01-01

    .... In this paper, an experimental investigation is carried out to observe the influence of low grade steel fiber reinforcements on the stress-strain behavior of concrete made with recycled and fresh brick aggregates...

  1. Mechanical properties of unidirectional oil palm empty fruit bunch (OPEFB) fiber reinforced epoxy composite

    Science.gov (United States)

    Hassan, C. S.; Yeo, C. W.; Sahari, B.; Salit, M. S.; Aziz, N. Abdul

    2017-06-01

    Natural fibers have proven to be an excellent reinforcement material for various polymers. In this study, OPEFB fiber with unidirectional alignment was incorporated in epoxy and an investigation on tensile and flexural characteristics of the composite has been carried out. A fiber surface modification utilizing alkaline treatment with 1 sodium hydroxide solution was used in order to increase the fiber matrix bond in the composite. The investigation was carried out for 0°, 45° and 90° fiber orientation. Result showed that the higher the angle of the fiber orientation, the higher the tensile strength and flexural strength the composite will yield.

  2. Mechanical Reinforcement of Wool Fiber through Polyelectrolyte Complexation with Chitosan and Gellan Gum

    Directory of Open Access Journals (Sweden)

    Khairul Anuar Mat Amin

    2013-10-01

    Full Text Available The formation of polyelectrolyte complex (PEC wool fibers formed by dipping chitosan or gellan gum-treated wool fibers into biopolymer solutions of opposite charge is reported. Treating wool fibers with chitosan (CH and gellan gum (GG solutions containing food dyes resulted in improved mechanical characteristics compared to wool fibers. In contrast, pH modification of the solutions resulted in the opposite effect. The mechanical characteristics of PEC-treated fibers were affected by the order of addition, i.e., dipping GG-treated fibers into chitosan resulted in mechanical reinforcement, whereas the reverse-order process did not.

  3. Glass fiber and silica reinforced rigid polyurethane foams

    National Research Council Canada - National Science Library

    M W Kim; S H Kwon; H Park; B K Kim

    2017-01-01

    Ternary composites of rigid polyurethane foam (RPUF)/glass fiber/silica as well as RPUF/glass fiber have been fabricated from glass fiber, silica, polymeric 4,4'-di-phenylmethane diisocyanate (PMDI...

  4. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    OpenAIRE

    Petersen, Richard C.

    2011-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats reve...

  5. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    Science.gov (United States)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  6. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive...... manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology....

  7. Proposed Methodology for Design of Carbon Fiber Reinforced Polymer Spike Anchors into Reinforced Concrete

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, Eric Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-26

    The included methodology, calculations, and drawings support design of Carbon Fiber Reinforced Polymer (CFRP) spike anchors for securing U-wrap CFRP onto reinforced concrete Tbeams. This content pertains to an installation in one of Los Alamos National Laboratory’s facilities. The anchors are part of a seismic rehabilitation to the subject facility. The information contained here is for information purposes only. The reader is encouraged to verify all equations, details, and methodology prior to usage in future projects. However, development of the content contained here complied with Los Alamos National Laboratory’s NQA-1 quality assurance program for nuclear structures. Furthermore, the formulations and details came from the referenced published literature. This literature represents the current state of the art for FRP anchor design. Construction personnel tested the subject anchor design to the required demand level demonstrated in the calculation. The testing demonstrated the ability of the anchors noted to carry loads in excess of 15 kips in direct tension. The anchors were not tested to failure in part because of the hazards associated with testing large-capacity tensile systems to failure. The calculation, methodology, and drawing originator was Eric MacFarlane of Los Alamos National Laboratory’s (LANL) Office of Seismic Hazards and Risk Mitigation (OSHRM). The checker for all components was Mike Salmon of the LANL OSHRM. The independent reviewers of all components were Insung Kim and Loring Wyllie of Degenkolb Engineers. Note that Insung Kim contributed to the initial formulations in the calculations that pertained directly to his Doctoral research.

  8. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    Science.gov (United States)

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  9. Effect of hot-dry environment on fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo

    2016-07-01

    Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.

  10. Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements.

    Science.gov (United States)

    Feng, Junzong; Zhang, Changrui; Feng, Jian; Jiang, Yonggang; Zhao, Nan

    2011-12-01

    Carbon fiber-reinforced carbon aerogel composites (C/CAs) for thermal insulators were prepared by copyrolysis of resorcinol-formaldehyde (RF) aerogels reinforced by oxidized polyacrylonitrile (PAN) fiber felts. The RF aerogel composites were obtained by impregnating PAN fiber felts with RF sols, then aging, ethanol exchanging, and drying at ambient pressure. Upon carbonization, the PAN fibers shrink with the RF aerogels, thus reducing the difference of shrinkage rates between the fiber reinforcements and the aerogel matrices, and resulting in C/CAs without any obvious cracks. The three point bend strength of the C/CAs is 7.1 ± 1.7 MPa, and the thermal conductivity is 0.328 W m(-1) K(-1) at 300 °C in air. These composites can be used as high-temperature thermal insulators (in inert atmospheres or vacuum) or supports for phase change materials in thermal protection system. © 2011 American Chemical Society

  11. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    Directory of Open Access Journals (Sweden)

    Pankaj Pandey

    2016-05-01

    Full Text Available In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA, specific gravity (SG, coefficient of linear thermal expansion (CLTE, flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively.

  12. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite.

    Science.gov (United States)

    Pandey, Pankaj; Bajwa, Dilpreet; Ulven, Chad; Bajwa, Sreekala

    2016-05-19

    In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expansion (CLTE), flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively.

  13. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    Science.gov (United States)

    Pandey, Pankaj; Bajwa, Dilpreet; Ulven, Chad; Bajwa, Sreekala

    2016-01-01

    In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expansion (CLTE), flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively. PMID:28773512

  14. KevlarTM Fiber-Reinforced Polybenzoxazine Alloys for Ballistic Impact Application

    OpenAIRE

    Chanchira Jubsilp; Pornnapa Kasemsiri; Somsiri Pathomsap; Sarawut Rimdusit; Sunan Tiptipakorn

    2011-01-01

    A light weight ballistic composites from KevlarTM-reinforcing fiber having polybenzoxazine (BA)/urethane prepolymer (PU) alloys as a matrix were investigated in this work. The effect of alloy compositions on the ballistic composite properties was determined. The results revealed that the enhancement in the glass transition temperature (Tg) of the KevlarTM-reinforced BA/PU composites compared to that of the KevlarTM-reinforce...

  15. A fiber-reinforced composite prosthesis restoring a lateral midfacial defect: a clinical report.

    Science.gov (United States)

    Kurunmäki, Hemmo; Kantola, Rosita; Hatamleh, Muhanad M; Watts, David C; Vallittu, Pekka K

    2008-11-01

    This clinical report describes the use of a glass fiber-reinforced composite (FRC) substructure to reinforce the silicone elastomer of a large facial prosthesis. The FRC substructure was shaped into a framework and embedded into the silicone elastomer to form a reinforced facial prosthesis. The prosthesis is designed to overcome the disadvantages associated with traditionally fabricated prostheses; namely, delamination of the silicone of the acrylic base, poor marginal adaptation over time, and poor simulation of facial expressions.

  16. Mechanical Behavior of Stainless Steel Fiber-Reinforced Composites Exposed to Accelerated Corrosion.

    Science.gov (United States)

    O'Brien, Caitlin; McBride, Amanda; E Zaghi, Arash; Burke, Kelly A; Hill, Alex

    2017-07-08

    Recent advancements in metal fibers have introduced a promising new type of stainless steel fiber with high stiffness, high failure strain, and a thickness steel fiber-reinforced polymer. However, stainless steel is known to be susceptible to pitting corrosion. The main goal of this study is to compare the impact of corrosion on the mechanical properties of steel fiber-reinforced composites with those of conventional types of stainless steel. By providing experimental evidences, this study may promote the application of steel fiber-reinforced composite as a viable alternative to conventional metals. Samples of steel fiber-reinforced polymer and four different types of stainless steel were subjected to 144 and 288 h of corrosion in ferric chloride solution to simulate accelerated corrosion conditions. The weight losses due to corrosion were recorded. The corroded and control samples were tested under monotonic tensile loading to measure the ultimate stresses and strains. The effect of corrosion on the mechanical properties of the different materials was evaluated. The digital image correlation (DIC) technique was used to investigate the failure mechanism of the corrosion-damaged specimens. Overall, steel fiber-reinforced composites had the greatest corrosion resistance.

  17. Experimental Investigation and Analysis of Mercerized and Citric Acid Surface Treated Bamboo Fiber Reinforced Composite

    Science.gov (United States)

    De, Jyotiraman; Baxi, R. N., Dr.

    2017-08-01

    Mercerization or NaOH fiber surface treatment is one of the most popular surface treatment processes to make the natural fibers such as bamboo fibers compatible for use as reinforcing material in composites. But NaOH being a chemical is hazardous and polluting to the nature. This paper explores the possibility of use of naturally derived citric acid for bamboo fiber surface treatment and its comparison with NaOH treated Bamboo Fiber Composites. Untreated, 2.5 wt% NaOH treated and 5 wt% citric acid treated Bamboo Fiber Composites with 5 wt% fiber content were developed by Hand Lay process. Bamboo mats made of bamboo slivers were used as reinforcing material. Mechanical and physical characterization was done to compare the effects of NaOH and citric acid bamboo fiber surface treatment on mechanical and physical properties of Bamboo Fiber Composite. The experiment data reveals that the tensile and flexural strength was found to be highest for citric acid and NaOH treated Bamboo Fiber Composite respectively. Water absorption tendency was found more than the NaOH treated Bamboo Fiber Composites. SEM micrographs used to analyze the morphology of fracture surface of tensile test specimens confirm improvement in fiber-matrix interface bonding due to surface treatment of bamboo fibers.

  18. Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites

    OpenAIRE

    Jalili, Mohammad Mehdi; Mousavi, Seyyed Yahya; Pirayeshfar, Amir Soheil

    2015-01-01

    Wood is one of the main materials used for making musical instruments due to its outstanding acoustical properties. Despite such unique properties, its inferior mechanical properties, moisture sensitivity, and time- and cost-consuming procedure for making instruments in comparison with other materials (e.g., composites) are always considered as its disadvantages in making musical instruments. In this study, the acoustic parameters of three different polyester composites separately reinforced ...

  19. Hysteretic Behavior of Tubular Steel Braces Having Carbon Fiber Reinforced Polymer Reinforcement Around End Net Sections

    Directory of Open Access Journals (Sweden)

    Cem Haydaroğlu

    2015-12-01

    Full Text Available This study presents an experimental investigation into the seismic retrofit of tubular steel braces using carbon fiber reinforced polymer (CFRP members. CFRP retrofitting of net sections for compact tubes are proposed for delaying potential local net section failure. A total of almost full-scale three (TB-1, TB-2, and TB-3 compact steel tubular specimens were designed per AISC specifications, constructed, and cyclically tested to fracture. Retrofitted braces, when compared to the reference specimen, developed fuller hysteretic curves. Increase in cumulative hysteretic energy dissipation and the elongation in fracture life in the specimen retrofitted with CFRP plates and CFRP sheet wraps at net sections are observed during testing. This resulted in a maximum of 82.5% more dissipated energy for compact tube specimens. Also, this retrofit provided a longer experimental fracture life (maximum 59% more. Due to fracture initiation during the last cycles, significant reductions in strength and stiffness have been obtained. No significant change (maximum 10% in the brace stiffness was observed, which could be desirable in seismic retrofit applications. Pushover analysis per FEMA 356 for the bare specimen shows that FEMA does not represent actual brace behavior in the compression side although pushover and experimental results are in good agreement in the tension side.

  20. A Retrofit Theory to Prevent Fatigue Crack Initiation in Aging Riveted Bridges Using Carbon Fiber-Reinforced Polymer Materials

    Directory of Open Access Journals (Sweden)

    Elyas Ghafoori

    2016-08-01

    Full Text Available Most research on fatigue strengthening of steel has focused on carbon fiber-reinforced polymer (CFRP strengthening of steel members with existing cracks. However, in many practical cases, aging steel members do not yet have existing cracks but rather are nearing the end of their designed fatigue life. Therefore, there is a need to develop a “proactive” retrofit solution that can prevent fatigue crack initiation in aging bridge members. Such a proactive retrofit approach can be applied to bridge members that have been identified to be deficient, based on structural standards, to enhance their safety margins by extending the design service life. This paper explains a proactive retrofit design approach based on constant life diagram (CLD methodology. The CLD approach is a method that can take into account the combined effect of alternating and mean stress magnitudes to predict the high-cycle fatigue life of a material. To validate the retrofit model, a series of new fatigue tests on steel I-beams retrofitted by the non-prestressed un-bonded CFRP plates have been conducted. Furthermore, this paper attempts to provide a better understanding of the behavior of un-bonded retrofit (UR and bonded retrofit (BR systems. Retrofitting the steel beams using the UR system took less than half of the time that was needed for strengthening with the BR system. The results show that the non-prestressed un-bonded ultra-high modulus (UHM CFRP plates can be effective in preventing fatigue crack initiation in steel members.

  1. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  2. How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks

    Science.gov (United States)

    Millogo, Younoussa; Aubert, Jean-Emmanuel; Hamard, Erwan; Morel, Jean-Claude

    2015-01-01

    Physicochemical characteristics of Hibiscus cannabinus (kenaf) fibers from Burkina Faso were studied using X-ray diffraction (XRD), infrared spectroscopy, thermal gravimetric analysis (TGA), chemical analysis and video microscopy. Kenaf fibers (3 cm long) were used to reinforce earth blocks, and the mechanical properties of reinforced blocks, with fiber contents ranging from 0.2 to 0.8 wt%, were investigated. The fibers were mainly composed of cellulose type I (70.4 wt%), hemicelluloses (18.9 wt%) and lignin (3 wt%) and were characterized by high tensile strength (1 ± 0.25 GPa) and Young’s modulus (136 ± 25 GPa), linked to their high cellulose content. The incorporation of short fibers of kenaf reduced the propagation of cracks in the blocks, through the good adherence of fibers to the clay matrix, and therefore improved their mechanical properties. Fiber incorporation was particularly beneficial for the bending strength of earth blocks because it reinforces these blocks after the failure of soil matrix observed for unreinforced blocks. Blocks reinforced with such fibers had a ductile tensile behavior that made them better building materials for masonry structures than unreinforced blocks.

  3. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...

  4. Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    An overview of methods of the mathematical modeling of deformation, damage and fracture in fiber reinforced composites is presented. The models are classified into five main groups: shear lag-based, analytical models, fiber bundle model and its generalizations, fracture mechanics based and contin...

  5. Residual stress measurements in an SiC continuous fiber reinforced Ti matrix composite

    NARCIS (Netherlands)

    Willemse, P.F.; Mulder, F.M.; Wei, W.; Rekveldt, M.Th.; Knight, K.S.

    2000-01-01

    During the fabrication of ceramic fiber reinforced metal matrix composites mismatch stresses will be introduced due to differences in thermal expansion coefficients between the matrix and the fibers. Calculations, based on a coaxial cylinder model, [1 and 2] predict that, for a Ti matrix SiC

  6. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  7. Fiber-Reinforced Phthalonitrile Composite Cured with Low-Reactivity Aromatic Amine Curing Agent

    Science.gov (United States)

    1997-10-02

    nonvolatile at temperatures up to about 375 aC as described above. 2 In preparing the fiber-reinforced composite according to the present invention, the 3...any form including woven fabrics, nonwoven mats, 15 or tow. 16 The steps of impregnating or coating the fibrous material to create a fiber-containing

  8. Investigation of physical-mechanical and performance properties of glass fiber reinforced polyurethane materials used in the machine building industry

    Science.gov (United States)

    Shafigullin, L. N.; Astashchenko, V. I.; Romanova, N. V.; Ibragimov, A. R.; Shafigullina, G. R.; Shafigullina, A. N.

    2017-09-01

    The paper presents the investigation of physical-mechanical and performance properties of the glass fiber reinforced polyurethane (PUR) materials made using the long fiber injection process. It was found that glass fiber reinforced polyurethane could be used to manufacture interior parts with different surface textures (instrument panels, door trim, armrests).

  9. A strategy for prediction of the elastic properties of epoxy-cellulose nanocrystal-reinforced fiber networks

    Science.gov (United States)

    Johnathan E. Goodsell; Robert J. Moon; Alionso Huizar; R. Byron Pipes

    2014-01-01

    The reinforcement potential of cellulose nanocrystal (CNC) additions on an idealized 2-dirmensional (2-D) fiber network structure consisting of micron sized fiber elements was investigated. The reinforcement mechanism considered in this study was through the stiffening of the micron sized fiber elements via a CNC-epoxy coating. A hierarchical analytical modeling...

  10. Flexural Test in Epoxy Matrix Composites Reinforced with Hemp Fiber

    Science.gov (United States)

    Neves, Anna Carolina C.; Rohen, Lázaro A.; Margem, Frederico M.; Vieira, Carlos Maurício F.; Monteiro, Sergio N.

    Synthetic fiber has been gradually replaced by natural fiber, such as lignocellulosic fiber. In comparison with synthetic fiber, natural fiber has shown economic and environmental advantages. The natural fiber presents interfacial characteristics with polymeric matrices that favor a high impact energy absorption by the composite structure. However, until now, little information has been released about the hemp fiber incorporated in polymeric matrices. Specimens containing 0, 10, 20 and 30% in volume of hemp fibers were aligned along the entire length of a mold to create plates of these composites. Those plates were cut following the ASTM standard to obtain specimens for bending tests and the results showed the increase in the flexural strength with the increase of fiber amount.

  11. Effect of fiber content on flexural properties of glass fiber-reinforced polyamide-6 prepared by injection molding.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-07-26

    The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injection-molded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.

  12. A note on the effect of the fiber curvature on the micromechanical behavior of natural fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    M. A. Escalante-Solis

    2015-12-01

    Full Text Available To better understand the role of the fiber curvature on the tensile properties of short-natural-fiber reinforced composites, a photoelastic model and a finite element analysis were performed in a well characterized henequen fiber-high density polyethylene composite material. It was hypothesized that the angle of orientation of the inclusion and the principal material orientation with respect to the applied load was very important in the reinforcement mechanics. From the photoelastic and finite element analysis it was found that the stress distribution around the fiber inclusion was different on the concave side from that observed on the convex side and an efficient length of stress transfer was estimated to be approximately equal to one third the average fiber length. This approach was used to predict the short-natural-fiber reinforced composite mechanical properties using probabilistic functions modifications of the rule of mixtures models developed by Fukuda-Chow and the Fukuda-Kawata. Recognizing the inherent flexibility that curves the natural fibers during processing, the consideration of a length of one third of the average length l should improve the accuracy of the calculations of the mechanical properties using theoretical models.

  13. Research on Sliding Wear Behavior of TiO2 Filled Glass Fiber Reinforced Polymer Composite

    OpenAIRE

    S. Srinivasa Moorthy; K. Manonmani

    2014-01-01

    In this study, Titanium Oxide (TiO2) particulate filled e-glass fiber reinforced composites in the unsaturated polyester resin matrix were prepared and its dry sliding wear behavior was optimized. Composites of varying fiber lengths of 1, 2 and 3 cm, respectively with different fiber content of 30, 40 and 50 wt. %, respectively were made. The particulate was varied with 2, 5 and 9 wt. %, respectively. The hybrid reinforced composites were prepared by hand layup method and the wear was measure...

  14. Monitoring ageing of alkali resistant glass fiber reinforced cement (GRC) using guided ultrasonic waves

    Science.gov (United States)

    Eiras, J. N.; Amjad, U.; Mahmoudabadi, E.; Payá, J.; Bonilla, M.; Kundu, T.

    2013-04-01

    Glass fiber reinforced cement (GRC) is a Portland cement based composite with alkali resistant (AR) glass fibers. The main drawback of this material is the ageing of the reinforcing fibers with time and especially in presence of humidity in the environment. Until now only destructive methods have been used to evaluate the durability of GRC. In this study ultrasonic guided wave inspection of plate shaped specimens has been carried out. The results obtained here show that acoustic signatures are capable of discerning ageing in GRC. Therefore, the ultrasonic guided wave based inspection technique is a promising method for the nondestructive evaluation of the durability of the GRC.

  15. Research on the melt impregnation of continuous carbon fiber reinforced nylon 66 composites

    Science.gov (United States)

    Jia, M. Y.; Li, C. X.; Xue, P.; Chen, K.; Chen, T. H.

    2016-07-01

    Impregnation mold of continuous carbon fiber reinforced thermoplastic composites was designed and built in the article. Based on the theory of fluid mechanics and Darcy's law, a model of the melt impregnation was also established. The influences of fiber bundle width and impregnation pins’ diameter on the impregnation degree were studied by numerical simulation. Continuous carbon fiber reinforced nylon 66 composites were prepared. The effects of coated angle and impregnation mold temperature on the mechanical properties of the composites were also described.The agreement between the experimental data and prediction by the model was found to be satisfactory.

  16. Crack control in concrete members reinforced by conventional rebars and steel fibers

    Science.gov (United States)

    Tiberti, G.; Trabucchi, I.; AlHamaydeh, M.; Minelli, F.; Plizzari, G.

    2017-09-01

    Tension stiffening is still a matter of discussion within the scientific community. The ability of resisting tensile stresses by un-damaged concrete portions that spans in between cracks is significant and could be improved with adoption of tougher material as Fiber Reinforced Concrete (FRC). In addition, FRC may provide noticeable residual stresses at a crack location, linking the two adjacent faces due to the bridging effect provided by the fibers. Within this framework, this paper aims at further investigating the ability of Steel Fiber Reinforced Concrete (SFRC) in reducing the crack spacing and width by utilizing SFRCs with high post-cracking residual strengths.

  17. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    DEFF Research Database (Denmark)

    Hüther, Jonas; Brøndsted, Povl

    2016-01-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal...... stresses are built up and frozen, as residual stresses occur. In the present work, a glass fiber reinforced epoxy composite laminate with an unidirectional architecture based on non-crimp fabrics with backing fibers is investigated. Three different curing cycles (time-temperature cycles) are used, leading...

  18. Charpy Impact Tests of Epoxy Composites Reinforced with Giant Bamboo Fibers

    OpenAIRE

    Glória,Gabriel Oliveira; Margem,Frederico Muylaert; Ribeiro,Carolina Gomes Dias; Moraes,Ygor Macabu de; Cruz,Renato Batista da; Silva,Flavio de Andrade; Monteiro,Sergio Neves

    2015-01-01

    The giant bamboo fiber is among the strongest in the Bambusa species with a potential for application as engineering material. Its properties have been evaluated but there is limited information on the impact resistance of epoxy composites incorporated with giant bamboo fibers. Therefore, this study evaluated the Charpy impact energy of epoxy matrix composites reinforced with up to 30 vol% of giant bamboo fibers. Specimens with Charpy configuration were press-molded with continuous and aligne...

  19. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  20. Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min-Woo; Kim, Hyung-Il; Song, Sung-Hyuk; Ahn, Sung-Hoon [Seoul Nat’l Univ., Seoul (Korea, Republic of)

    2017-02-15

    Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

  1. Characterization of Thermal Behavior of Epoxy Composites Reinforced with Curaua Fibers by Differential Scanning Calorimetry

    Science.gov (United States)

    Barcelos, Mariana A.; Ribeiro, Carolina Gomes D.; Ferreira, Jordana; Vieira, Janaina da S.; Margem, Frederico M.; Monteiro, Sergio N.

    Epoxy composites reinforced with natural lignocellulosic fibers have, in recent times, been gaining attention in engineering areas as lighter and cheaper alternatives for traditional composites such as the "fiberglass". The curaua fiber is the one strongest today being considered as reinforcement of composites for automobile interior parts. In fact, several studies are currently being dedicated to curaua fiber composites since physical and mechanical properties are required for practical uses. In this work, the thermal behavior of epoxy composites reinforced with up to 30 % in volume of curaua fibers was investigated by differential scanning calorimetry, DSC. The results showed endothermic and exothermic events associated with water release and possible molecular chain amorphous transformation. Comparison with similar composites permitted to propose mechanism that explains this DSC thermal behavior.

  2. Mechanical characteristics of low-cost hybrid fiber reinforced polymer.

    Science.gov (United States)

    2014-07-01

    This report deals with the experimental investigation of using large deformable FRP, 45 oriented fibers, in concrete-filled fiber : tubes (CFFT) under axial cyclic compressive loading. In addition, this report presents finite element modeling (F...

  3. Perawatan Satu Kunjungan Restorasi Pasak Fiber Reinforced Composite Pada Gigi Insisivus Atas

    Directory of Open Access Journals (Sweden)

    Ria Ariani

    2013-06-01

    Full Text Available Perawatan saluran akar satu kali kunjungan memberikan keuntungan antara lain memperkecil resiko kontaminasi mikroorganisme dan menghemat waktu perawatan. Pasak fiber reinforced composite memiliki ikatan yang baik dengan dentin menggunakan semen resin dan inti dari resin. Penggunaan pasak bisa mengurangi risiko fraktur. Tujuan penulisan laporan kasus ini adalah untuk mengevaluasi hasil restorasi gigi 11 nekrosis pulpa pasca perawatan saluran akar disertai restorasi dengan pasak fiber reinforced composite. Pasien wanita, 22 tahun datang ke Klinik Konservasi RSGM FKG UGM untuk merawat gigi depan atas kanan yang berlubang. Berdasarkan pemeriksaan subjektif, objektif dan radiografis diperoleh diagnosis gigi 11 nekrosis pulpa. pasca perawatan saluran akar gigi Gigi direstorasi dengan resin komposit dan pasak fiber reinforced composite. Kesimpula dari hasil evaluasi klinis saat kontrol tidak ada keluhan rasa sakit dan pasien merasa puas. One Visit Treatment of Fiber Reinforced Compositerestoration in Maxillary Right First Incisivus. One visit root canal treatment is advantageous to minimize the risk of microorganism contamination. It saves time and more tolerable for the patients. Fiber reinforced composite post is fabricated, and it has been known to have a good bond with dentinal wall of root space, resin cement and composite resin core. The use of this post could decrease the risk of fracture. The purpose of this paper is to report the results of dental restoration 11 pulp necrosis after root canal treatment with resin composite restorations and post fiber reinforced composite. A 22 year-old female patient who came to Faculty of Dentistry UGM complained about her maxillary right incisor teeth which decayed and needed a treatment. Based on the subjective, objective and radiograph examinations, it was diagnosed that the pulp was necrotic. After one visit root canal treatment and based on clinical evaluation, it is concluded that the right upper

  4. Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)

    2016-01-01

    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.

  5. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    Science.gov (United States)

    Guevara Arreola, Francisco Javier

    The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline

  6. Biodegradable green composites reinforced by the fiber recycling from disposable chopsticks

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yeng-Fong, E-mail: syf@cyut.edu.tw [Department of Applied Chemistry, Chaoyang University of Technology, Wufong Township, Taichung County 41349, Taiwan (China); Huang, Chien-Chung; Chen, Po-Wei [Department of Applied Chemistry, Chaoyang University of Technology, Wufong Township, Taichung County 41349, Taiwan (China)

    2010-03-15

    The use of disposable chopsticks is very popular in chopsticks-using countries, such as Taiwan, China and Japan, and is one of the major sources of waste in these countries. In this study, the fiber recycling from disposable chopsticks was chemically modified by coupling agents. Furthermore, the modified fiber was added to the biodegradable polymer (polylactic acid, PLA), to form novel fiber-reinforced green composites. These composites prepared by melt-mixing method, were examined by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and mechanical tests. The results indicated that the T{sub g} of PLA was increased by the addition of fiber, which may improve the heat resistance of PLA. The thermogravimetric analysis of the composites showed that the degradation process of fiber-filled systems started earlier than that of plain PLA, but possessed a higher char yield. Mechanical tests showed that the tensile strength of the composites markedly increased with the fiber content, reaching 115 MPa in the case of being reinforced with 40 phr fiber, which is about 3 times higher as compared to the pristine PLA. Furthermore, this type of reinforced PLA would be more environmental friendly than the artificial additive-reinforced one, and could effectively reduce and reuse the waste of disposable chopsticks.

  7. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Science.gov (United States)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2017-08-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  8. [Clinical evaluation of "All-on-Four" provisional prostheses reinforced with carbon fibers].

    Science.gov (United States)

    Li, Bei-bei; Lin, Ye; Cui, Hong-yan; Hao, Qiang; Xu, Jia-bin; Di, Ping

    2016-02-18

    To assess the clinical effects of carbon fiber reinforcement on the "All-on-Four" provisional prostheses. Provisional prostheses were divided into control group and carbon fiber reinforcing group according to whether carbon fiber reinforcement was used in the provisional prostheses base resin. In our study, a total of 60 patients (32 males and 28 females) with 71 provisional prostheses(28 maxilla and 43 mandible)were enrolled between April 2008 and December 2012 for control group; a total of 23 patients (13 males and 10 females) with 28 provisional prostheses (9 maxillas and 19 mandibles) were enrolled between January 2013 and March 2014 for carbon fiber reinforcing group. The information of provisional prostheses in the patients was recorded according to preoperative examination. We used the date of definitive prosthesis restoration as the cut-off point, observing whether fracture occurred on the provisional prostheses in the two groups. Additionally we observed whether fiber exposure occurred on the tissue surface of the provisional prostheses and caused mucosal irritation. The interface between the denture base resin and the fibers was examined using scanning electron microscopy (SEM). The age [(57.3 ± 10.1) years vs.(55.1 ± 11.4) years], gender (32 males and 28 females vs. 13 males and 10 females), maxilla and mandible distributions (28 maxillas and 43 mandibles vs. 9 maxillas and 19 mandibles), the number of extraction jaws (46 vs. 23), the average using time [(7.8 ± 1.3) months vs. (7.5 ± 1.1) months], and the opposing dentition distributions of provisional prostheses of the patients showed no significant differences between the control and reinforcing groups. There were 21(29.6%) fractures that occurred on the 71 provisional prostheses in the control group; there was no fracture that occurred on the 28 provisional prosthesesin the carbon fiber reinforcing group. The fracture rate of the carbon fiber reinforcing group was significantly lower than that of

  9. Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading

    Science.gov (United States)

    Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah

    2018-01-01

    An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.

  10. Properties and mesostructural characteristics of linen fiber reinforced self-compacting concrete in slender columns

    Directory of Open Access Journals (Sweden)

    Sabry A. Ahmed

    2013-06-01

    Full Text Available In this study the linen fibers were used to reinforce self-compacting concrete (SCC with 2 and 4 kg/m3 contents; then their effects on the fresh and hardened properties of SCC were investigated. Furthermore, three circular slender columns were cast using both plain and linen fiber reinforced (LFR SCC in order to study the variations of hardened properties and mesostructural characteristics along the columns height. The addition of linen fibers to SCC reduced its workability and affected its self-compacting characteristics in a manner depending on the fiber content. Also, noticeable improvement in mechanical properties and slight reduction in unit weight and UPV were recorded. The hardened properties did not vary significantly along the height of columns, however, lower values were observed at the upper end of columns. The aggregate distribution was slightly more homogenous in case of LFRSCC, and the variation of fiber density along the height of columns was relatively high.

  11. Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint

    Science.gov (United States)

    Auricchio, Ferdinando; Scalet, Giulia; Wriggers, Peter

    2017-12-01

    The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.

  12. Prediction of Tensile Strength of Nano-short-fiber-reinforced Rubber Composites

    Directory of Open Access Journals (Sweden)

    Zhu Da Sheng

    2016-01-01

    Full Text Available The tensile strength of nano-short-fiber-reinforced rubber composites (NFRC was studied. A new model for predicting the tensile strength of NFRC was put forward based on the mixture law. The influences of the volume content and mechanical performances of main components, short fiber critical aspect ratio, short fiber length and orientation distributions on the tensile strength of composites were investigated. The tensile strengths predicted by the model in this paper are in good agreement with experimental data. Furthermore, the mechanism of tensile fracture of SFRE was discussed. It is found that the tensile fracture of the composites depends largely on the bonding strength of fiber-matrix interface and the length of reinforcing short fibers.

  13. Numerical simulation of progressive debonding in fiber reinforced composite under transverse loading

    DEFF Research Database (Denmark)

    Kushch, V.; Shmegera, S.V.; Brøndsted, Povl

    2011-01-01

    The finite element model of progressive debonding in fiber reinforced composite is developed based on the cohesive-zone model of interface. An interface crack nucleation, onset and growth have been studied in detail for a single fiber and comparison is made with the linear fracture mechanics model....... Then, the effect on debonding progress of local stress redistribution due to interaction between the fibers was studied in the framework of two-inclusion model. Simulation of progressive debonding in fiber reinforced composite using the many-fiber models of composite has been performed. It has been...... shown that the developed model provides detailed analysis of the progressive debonding phenomenon including the interface crack cluster formation, overall stiffness reduction and induced anisotropy of the effective elastic moduli of composite....

  14. Mechanical Behavior of Hybrid Glass/Steel Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Amanda K. McBride

    2017-04-01

    Full Text Available While conventional fiber-reinforced polymer composites offer high strength and stiffness, they lack ductility and the ability to absorb energy before failure. This work investigates hybrid fiber composites for structural applications comprised of polymer, steel fiber, and glass fibers to address this shortcoming. Varying volume fractions of thin, ductile steel fibers were introduced into glass fiber reinforced epoxy composites. Non-hybrid and hybrid composite specimens were prepared and subjected to monolithic and half-cyclic tensile testing to obtain stress-strain relationships, hysteresis behavior, and insight into failure mechanisms. Open-hole testing was used to assess the vulnerability of the composites to stress concentration. Incorporating steel fibers into glass/epoxy composites offered a significant improvement in energy absorption prior to failure and material re-centering capabilities. It was found that a lower percentage of steel fibers (8.2% in the hybrid composite outperformed those with higher percentages (15.7% and 22.8% in terms of energy absorption and re-centering, as the glass reinforcement distributed the plasticity over a larger area. A bilinear hysteresis model was developed to predict cyclic behavior of the hybrid composite.

  15. In vitro evaluation of veneering composites and fibers on the color of fiber-reinforced composite restorations.

    Directory of Open Access Journals (Sweden)

    Masoomeh Hasani Tabatabaei

    2014-08-01

    Full Text Available Color match between fiber-reinforced composite (FRC restorations and teeth is an imperative factor in esthetic dentistry. The purpose of this study is to evaluate the influence of veneering composites and fibers on the color change of FRC restorations.Glass and polyethylene fibers were used to reinforce a direct microhybrid composite (Z250, 3M ESPE and a microfilled composite (Gradia Indirect, GC. There were eight experimental groups (n=5 disks per group. Four groups were used as the controls (non-FRC control and the others were used as experimental groups. CIELAB parameters (L*, a* and b* of specimens were evaluated against a white background using a spectrophotometer to assess the color change. The color difference (ΔE* and color coordinates were (L*, a* and b* analyzed by two-way ANOVA and Tukey's test.Both types of composite and fiber influenced the color parameters (ΔL*, Δa*. The incorporation of fibers into the composite in the experimental groups made them darker than the control groups, except in the Gradia Indirect+ glass fibers group. Δb* is affected by types of fibers only in direct fiber reinforced composite. No statistically significant differences were recognized in ΔE* among the groups (p>0.05.The findings of the present study suggest that the tested FRC restorations exhibited no difference in color in comparison with non-FRC restoration. Hence, the types of veneering composites and fibers did not influence the color change (ΔE* of FRC restorations.

  16. In Vitro Evaluation of Veneering Composites and Fibers on the Color of Fiber-Reinforced Composite Restorations

    Science.gov (United States)

    Hasani Tabatabaei, Masoomeh; Hasani, Zahra; Ahmadi, Elham

    2014-01-01

    Objective: Color match between fiber-reinforced composite (FRC) restorations and teeth is an imperative factor in esthetic dentistry. The purpose of this study is to evaluate the influence of veneering composites and fibers on the color change of FRC restorations. Materials and Methods: Glass and polyethylene fibers were used to reinforce a direct microhybrid composite (Z250, 3M ESPE) and a microfilled composite (Gradia Indirect, GC). There were eight experimental groups (n=5 disks per group). Four groups were used as the controls (non-FRC control) and the others were used as experimental groups. CIELAB parameters (L*, a* and b*) of specimens were evaluated against a white background using a spectrophotometer to assess the color change. The color difference (ΔE*) and color coordinates were (L*, a* and b*) analyzed by two-way ANOVA and Tukey’s test. Results: Both types of composite and fiber influenced the color parameters (ΔL*, Δa*). The incorporation of fibers into the composite in the experimental groups made them darker than the control groups, except in the Gradia Indirect+ glass fibers group. Δb* is affected by types of fibers only in direct fiber reinforced composite. No statistically significant differences were recognized in ΔE* among the groups (p>0.05). Conclusion: The findings of the present study suggest that the tested FRC restorations exhibited no difference in color in comparison with non-FRC restoration. Hence, the types of veneering composites and fibers did not influence the color change (ΔE*) of FRC restorations. PMID:25584060

  17. Experimental Study of Concrete-filled Carbon Fiber Reinforced Polymer Tube with Internal Reinforcement under Axially Loading

    OpenAIRE

    SUN Wenbin; Qiangqiang ZHU; Weizhong HE

    2014-01-01

    Comparing with the circular concrete columns confined with fiber reinforced polymer (FRP) wrap or tube, the rectilinear confined columns were reported much less. Due to the non-uniform distribution of confining pressure in the rectilinear confined columns, the FRP confinement effectiveness was significant reduced. This paper presents findings of an experimental program where nine prefabricated rectangular cross-section CFRP tubes with CFRP integrated crossties filled concrete to form concrete...

  18. Impact damage prediction in carbon fiber-reinforced laminated composite using the matrix-reinforced mixing theory

    OpenAIRE

    Pérez Martínez, Marco Antonio; Martínez García, Javier; Oller Martínez, Sergio Horacio; Gil Espert, Lluís; Rastellini, Fernando G.; Flores, Fernando

    2013-01-01

    The impact damage tolerance of fiber-reinforced laminated composite materials is a source of concern, mainly due to internal induced damage which causes large reductions on the strength and stability of the structure. This paper presents a procedure based on a finite element formulation that can be used to perform numerical predictions of the impact induced internal damage in composite laminates. The procedure is based on simulating the composite performance using a micro-mechanical approach ...

  19. Evaluation of post-fire strength of concrete flexural members reinforced with glass fiber reinforced polymer (GFRP) bars

    Science.gov (United States)

    Ellis, Devon S.

    Owing to their corrosion resistance and superior strength to weight ratio, there has been, over the past two decades, increased interest in the use of fiber-reinforced polymer (FRP) reinforcing bars in reinforced concrete structural members. The mechanical behavior of FRP reinforcement differs from that of steel reinforcement. For example, FRP reinforcement exhibit a linear stress-strain behavior until the bar ruptures and the strength, stiffness and bond properties of FRP reinforcement are affected more adversely by elevated temperatures. All structures are subject to the risk of damage by fire and fires continue to be a significant cause of damage to structures. Many structures do not collapse after being exposed to fire. The safety of the structure for any future use is dependent on the ability to accurately estimate the post-fire load capacity of the structure. Assuming that the changes, due to fire exposure, in the mechanical behavior of the GFRP reinforcing bar and concrete, and the bond between the reinforcing bar and the concrete are understood, an analytical procedure for estimating the post-fire strength of GFRP reinforced concrete flexural elements can be developed. This thesis investigates the changes in: a) tensile properties and bond of GFRP bars; and b) the flexural behavior of GFRP reinforced concrete beams flexural after being exposed to elevated temperatures up to 400°C and cooled to ambient temperature. To this end, twelve tensile tests, twelve pullout bond tests and ten four-point beam tests were performed. The data from the tests were used to formulate analytical procedures for evaluating the post-fire strength of GFRP reinforced concrete beams. The procedure produced conservative results when compared with the experimental data. In general, the residual tensile strength and modulus of elasticity of GFRP bars decrease as the exposure temperature increases. The loss in properties is however, smaller than that observed by other researchers when

  20. Characterization of carbon-fiber reinforced polyetherimide thermoplastic composites using mechanical and ultrasonic methods

    Science.gov (United States)

    ALHaidri, Mohannad

    Continuous fiber-reinforced thermoplastics (CFRT) have the potential for being a mass-produced material for high-performance applications. The primary challenge of using CFRT is achieving fiber wet-out due to the high viscosity of thermoplastics. This results in higher temperatures and pressures required for processing the composites. Co-mingling thermoplastic fibers with a reinforcing fiber, potentially, can enable better wetting by reducing the distance the matrix needs to flow. This could result in shorter cycle times and better consolidation at lower temperatures and pressures. In this study, a polyetherimide (PEI) fiber was comingled with carbon fibers (CF). The resultant fibers were woven into fabrics and processed through a compression-molding technique to form laminates. Control specimens were also fabricated using films of PEI layered between plies of woven carbon-fiber materials. The manufactured CFRT panels were evaluated using ultrasonic C-scans (scans in two spatial dimensions) and then characterized for mechanical properties. The specimens produced using the co-mingled fibers had the cycle time reduced significantly compared to the film CFRT, although the results from the mechanical property evaluations were mixed. The behaviors in the co-mingled laminates can be attributed to the resin- and void-content distribution and the fiber-bundle orientations in the cured composite.

  1. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide

    Directory of Open Access Journals (Sweden)

    Tae-Il Seo

    2013-05-01

    Full Text Available Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %. The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  2. Fabrication and evaluation of mechanical properties of alkaline treated sisal/hemp fiber reinforced hybrid composite

    Science.gov (United States)

    Venkatesha Gupta, N. S.; Akash; Sreenivasa Rao, K. V.; kumar, D. S. Arun

    2016-09-01

    Fiber reinforced polymer composite have acquired a dominant place in variety of applications because of higher specific strength and modulus, the plant based natural fiber are partially replacing currently used synthetic fiber as reinforcement for polymer composites. In this research work going to develop a new material which posses a strength to weight ratio that for exceed any of the present material. The hybrid composite sisal/hemp reinforced with epoxy matrix has been developed by compression moulding technique according to ASTM standards. Sodium hydroxide (NAOH) was used as alkali for treating the fibers. The amount of reinforcement was varied from 10% to 50% in steps of 10%. Prepared specimens were examined for mechanical properties such as tensile strength, flexural strength, and hardness. Hybrid composite with 40wt% sisal/hemp fiber were found to posses higher strength (tensile strength = 53.13Mpa and flexural strength = 82.07Mpa) among the fabricated hybrid composite specimens. Hardness value increases with increasing the fiber volume. Morphological examinations are carried out to analyze the interfacial characteristics, internal structure and fractured surfaces by using scanning electron microscope.

  3. Feasibility study of prestressed natural fiber-reinforced polylactic acid (pla) composite materials

    Science.gov (United States)

    Hinchcliffe, Sean A.

    The feasibility of manufacturing prestressed natural-fiber reinforced biopolymer composites is demonstrated in this work. The objective of this study was to illustrate that the specific mechanical properties of biopolymers can be enhanced by leveraging a combination of additive manufacturing (3D printing) and post-tensioning of continuous natural fiber reinforcement. Tensile and flexural PLA specimens were 3D-printed with and without post-tensioning ducts. The mechanical properties of reinforcing fibers jute and flax were characterized prior to post-tensioning. The effect of matrix cross-sectional geometry and post-tensioning on the specific mechanical properties of PLA were investigated using mechanical testing. Numerical and analytical models were developed to predict the experimental results, which confirm that 3D-printed matrices improve the specific mechanical properties of PLA composites and are further improved via initial fiber prestressing. The results suggest that both additive manufacturing and fiber prestressing represent viable new methods for improving the mechanical performance of natural fiber-reinforced polymeric composites.

  4. Effects of glass fiber modified with calcium silicate hydrate (C-S-H(I)) reinforced cement

    Science.gov (United States)

    Xin, M.; Zhang, L.; Ge, S.; Cheng, X.

    2017-03-01

    In this paper, calcium silicate hydrate (C-S-H(I)) and glass fiber modified with C-S-H(I) (SiF) at ambient temperature were synthesized. SiF and untreated fiber (OF) were incorporated into cement paste. Phase composition of C-S-H(I), SiF and OF was characterized by XRD. The surface morphologies were characterized by SEM. Flexural performance of fiber reinforced cement (FRC) at different curing ages was investigated. Results indicated that both SiF and OF could reinforce cement paste. SiF had a more positive effect on improving the flexural performance of FRC than OF. The strength of SiF reinforced cement was 11.48MPa after 28 days curing when fiber volume was 1.0%, 12.55% higher than that of OF reinforced cement. The flexural strength increased with the addition of fiber volume. However, the large dosage of fiber might cause a decrease in flexural strength of FRC.

  5. Histopathological evaluation of the effects of fiber reinforced acrylic resins on living tissues.

    Science.gov (United States)

    Özdemir, Ali Kemal; Polat, Nilüfer Tülin; Turgut, Mehmet; Özdemir Dogan, Derya; Göze, Fahrettin

    2013-01-01

    The aim of this study was the histopathological evaluation of the effects of the fiber reinforced acrylic resins on living tissues. The study was performed on 21 rabbits. Three groups, each including seven subjects, were formed. There was no applied plate in the control group. For the second group, heat-polymerized acrylic resin plates were inserted. For the third group, heat-polymerized acrylic resin plates containing proportionally 5% chopped silanated E type glass fiber were inserted. Plates were fixed to the palatine bone of the rabbits with titanium screws. Before the implementation of the plates and 1 month after the plates were applied, soft tissue samples were taken from the buccal mucosa of the rabbits. Also, tissue samples were taken from the control group. All samples were evaluated histopathologically. In the control group, only a focal atrophy was observed. In the acrylic group, large decomposition containing erythrocytes under the parahyperkeratotic region and micro-vesicle like spongiotic tissue reactions were observed. In the fiber reinforced acrylic group, widespread focal atrophy, bulgy look of the epithelium cells similar to apoptosis, over-distension and sub-corneal decomposition had been observed. In terms of atrophy and hyperkeratosis there were no statistically significant differences among groups. However, in respect to sub-corneal decomposition, there was a statistically significant difference in the fiber reinforced group (p decomposition of the fiber reinforced group had made us think that fiber edges had a traumatic effect on the reaction.

  6. Influence of fiber type and coating on the composite properties of EPDM compounds reinforced with short aramid fibers

    NARCIS (Netherlands)

    Hintze, C.; Sadatshirazi, S.; Wiessner, S.; Talma, Auke; Heinrich, G.; Noordermeer, Jacobus W.M.

    2013-01-01

    There is a renewed interest in the application of short aramid fibers in elastomers because of the considerable improvement in mechanical and dynamic properties of the corresponding rubber composites. Possible applications of short aramid fiber–reinforced elastomers are tires, dynamically loaded

  7. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Okikiola Ganiu AGBABIAKA

    2014-11-01

    Full Text Available Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment on the mechanical and water absorption properties of selected natural fibers (coconut and sponge fibers reinforced polypropylene composites. In this study, coconut and sponge fiber were extracted from its husk by soaking them in water and was dried before it was cut into 10mm length. Those fibers were chemically treated with sodium hydroxide (NaOH in a shaking water bath before it was used as reinforcement in polypropylene composite. The reinforced polypropylene composite was produced by dispersing the coconut fibers randomly in the polypropylene before it was fabricated in a compression molding machine where the composite was produced. The fiber content used were; 2%wt, 4%wt, 6%wt, 8%wt and 10%wt. Tensile and flexural properties was observed from universal testing machine while water absorption test was carried out on the samples for seven (7 days. It was observed that the influence of NaOH treatment highly enhanced the Flexural and water absorption properties of sponge fiber reinforced polypropylene composites than coconut fiber reinforced composite samples.

  8. Flexural properties of three kinds of experimental fiber-reinforced composite posts.

    Science.gov (United States)

    Kim, Mi-Joo; Jung, Won-Chang; Oh, Seunghan; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka; Bae, Ji-Myung

    2011-01-01

    The aim of this study was to estimate the flexural properties of three kinds of experimental fiber-reinforced composite (FRC) posts and to evaluate their potential use as posts. Experimental FRC posts were fabricated with glass, aramid, and UHMWP fibers. Commercial FRC posts were used for comparison. A three-point bending test was performed at a crosshead speed of 1 mm/min. Experimental glass fiber posts showed significantly higher flexural strengths and moduli than aramid and UHMWP posts. Experimental UHMWP posts demonstrated superior toughness to the commercial posts. The glass fiber posts displayed stiff, strong and brittle features, while the UHMWP posts were flexible, weak and ductile. The flexural properties of the aramid posts fell between those of the glass and UHMWP posts. In conclusion, the glass fiber posts proved excellent in flexural strengths and moduli. However, the superior toughness of UHMWP fibers suggests the possibility of their use as posts in combination with glass fibers.

  9. Visual classification of braided and woven fiber bundles in X-ray computed tomography scanned carbon fiber reinforced polymer specimens

    Directory of Open Access Journals (Sweden)

    Johannes Weissenböck

    2016-11-01

    Full Text Available In recent years, advanced composite materials such as carbon fiber reinforced polymers (CFRP are used in many fields of application (e.g., automotive, aeronautic and leisure industry. These materials are characterized by their high stiffness and strength, while having low weight. Especially, woven carbon fiber reinforced materials have outstanding mechanical properties due to their fabric structure. To analyze and develop the fabrics, it is important to understand the course of the individual fiber bundles. Industrial 3D X-ray computed tomography (XCT as a nondestructive testing method allows resolving these individual fiber bundles. In this paper, we show our findings when applying the method of Bhattacharya et al. [6] for extracting fiber bundles on two new types of CFRP specimens. One specimen contains triaxial braided plies in an RTM6 resin and another specimen woven bi-diagonal layers. Furthermore, we show the required steps to separate the individual bundles and the calculation of the individual fiber bundles characteristics which are essential for the posterior visual analysis and exploration. We further demonstrate the classification of the individual fiber bundles within the fabrics to support the domain experts in perceiving the weaving structure of XCT scanned specimens.

  10. Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Adham El-Newihy

    2018-02-01

    Full Text Available This study aims to evaluate self-healing properties and recovered dynamic moduli of engineered polypropylene fiber reinforced concrete using non-destructive resonant frequency testing. Two types of polypropylene fibers (0.3% micro and 0.6% macro and two curing conditions have been investigated: Water curing (at ~25 Celsius and air curing. The Impact Resonance Method (IRM has been conducted in both transverse and longitudinal modes on concrete cylinders prior/post crack induction and post healing of cracks. Specimens were pre-cracked at 14 days, obtaining values of crack width in the range of 0.10–0.50 mm. Addition of polypropylene fibers improved the dynamic response of concrete post-cracking by maintaining a fraction of the original resonant frequency and elastic properties. Macro fibers showed better improvement in crack bridging while micro fiber showed a significant recovery of the elastic properties. The results also indicated that air-cured Polypropylene Fiber Reinforced Concrete (PFRC cylinders produced ~300 Hz lower resonant frequencies when compared to water-cured cylinders. The analyses showed that those specimens with micro fibers exhibited a higher recovery of dynamic elastic moduli.

  11. GLASS FIBERS – MODERN METHOD IN THE WOOD BEAMS REINFORCEMENT

    National Research Council Canada - National Science Library

    Cătălina IANĂŞI

    2017-01-01

    .... Specifically, the use of GFRP composite materials as reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite...

  12. Laboratory fatigue evaluation of continuously fiber-reinforced concrete pavement.

    Science.gov (United States)

    2013-09-01

    Portland cement concrete (PCC) is the worlds most versatile construction material. PCC has : been in use in the United States for over 100 years. PCC pavement is generally constructed as : either continually reinforced concrete pavement (CRCP) or ...

  13. Clinical evaluation of carbon fiber reinforced carbon endodontic post, glass fiber reinforced post with cast post and core: A one year comparative clinical study.

    Science.gov (United States)

    Preethi, Ga; Kala, M

    2008-10-01

    Restoring endodontically treated teeth is one of the major treatments provided by the dental practitioner. Selection and proper use of restorative materials continues to be a source of frustration for many clinicians. There is controversy surrounding the most suitable choice of restorative material and the placement method that will result in the highest probability of successful treatment. This clinical study compares two different varieties of fiber posts and one cast post and core in terms of mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and periodontal pathology requiring crown removal over the period of 12months as evaluated by clinical and radiographical examination. 30 root canal treated, single rooted maxillary anterior teeth of 25 patients in the age range of 18-60 years where a post retained crown was indicated were selected for the study between January 2007 and August 2007; and prepared in a standard clinical manner. It was divided into 3 groups of 10 teeth in each group. After post space preparation, the Carbon fiber and Glass fiber reinforced posts were cemented with Scotch bond multipurpose plus bonding agent and RelyX adhesive resin cement in the first and second groups respectively. The Cast post and cores were cemented with Zinc Phosphate cement in the third group. Following post- cementation, the preparation was further refined and a rubber base impression was taken for metal-ceramic crowns which was cemented with Zinc Phosphate cement. A baseline periapical radiograph was taken once each crown was cemented. All patients were evaluated after one week (baseline), 3 months, 6 months and one year for following characteristics mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and periodontal pathology. Results after 12 months

  14. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    Science.gov (United States)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  15. Effect of SiC Nano powder on Multiaxial Woven and Chopped Randomly Oriented Flax/Sisal Fiber Reinforced composites

    Directory of Open Access Journals (Sweden)

    Kalagi Ganesh R.

    2018-01-01

    Full Text Available A study has been carried out to investigate effect of SiC Nano powder on tensile and impact properties of Multiaxial layers of Flax and Sisal fiber reinforced composites and randomly oriented chopped Flax and Sisal fiber reinforced composites. It has been observed that tensile strength and impact strength were improved using 6% of SiC Nanopowder into Multiaxial layer (+45º/-45º, 0º/90º of Flax and Sisal where as randomly oriented chopped Flax and Sisal fiber reinforced composites are improved in its stiffnes for the same composition of fiber, epoxy and SiC Nano powder. SEM Analysis are done to analyse the distribution of SiC in both Multiaxial layers of Flax and Sisal fiber reinforced composites and randomly oriented chopped Flax and Sisal fiber reinforced composites.

  16. The Effect of Two Different E Glass Fiber Reinforcements on Mechanical Properties of Polymethyl Metacrylate Denture Base Resins

    OpenAIRE

    Sinmazisik, G.; Ozyegin, LS.; Akesi, S.

    2002-01-01

    Denture base polymers were reinforced with various types of fibers, such as glass, carbon/graphite and ultrahigh-modulus polyethylene fibers. These procedures were performed to take advantage of the good esthetic qualities of glass fibers and good bonding of glass fibers to polymers via silane coupling agents. The most common type of glass used in fiber production is the so-called E glass (electrical glass). This study investigated the effect of chopped fibers with two different silane coupli...

  17. Efficiency of fiber reinforced concrete application in structures subjected to dynamic effects

    Directory of Open Access Journals (Sweden)

    Morozov Valeriy Ivanovich

    2014-03-01

    Full Text Available Fiber reinforced concretes possess high strength under dynamic loadings, which include impact loads, thanks to their high structural viscosity. This is the reason for using them in difficult operating conditions, where increasing the performance characteristics and the structure durability is of prime importance, and the issues of the cost become less significant. Applying methods of disperse reinforcement is most challenging in case of subtle high-porous materials on mineral binders, for example foamed concrete. At the same time, the experiments conducted in Russia and abroad show, that also in other cases the concrete strength resistance several times increases as a result of disperse reinforcement. This doesn't depend on average density of the concrete and type of fiber used. In the article the fibre reinforced concrete impact resistance is analysed. Recommendations are given in regard to fibre concrete application in manufacture of monolithic floor units for industrial buildings and precast piles.

  18. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-11-01

    Full Text Available The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced areas, low reject rate and good technical tolerance. As a new kind of piston material, it has been used for mass production of about 400,000 pieces of automobile engines piston. China has become one of a few countries in which aluminum alloy matrix composite materials have been used in automobile industry and attained industrialization.

  19. Mechanical analysis of three dimensional woven carbon fiber-reinforced composites using fiber-based continuum model

    Science.gov (United States)

    Ahn, Hyunchul; An, Yongsan; Yu, Woong-Ryeol

    2016-10-01

    A new numerical method for analyzing the mechanical behavior of three-dimensional (3D) woven carbon fiber-reinforced composites was developed by considering changes in the fiber orientation and calculating the stress increments due to incremental deformations. The model consisted of four steps, starting update of the yarn orientation based on incremental deformation gradient. The stiffness matrix was then computed using the updated yarn orientation. Next, partial damage and propagation were incorporated into the stress calculation using modified ply discount method. The failure conditions were obtained by testing the unidirectional composites and formulated using Puck's criterion. This numerical model was finally implemented into commercial finite element software, ABAQUS, as a user material subroutine. As for experiment, 3D woven composite samples was manufactured using laboratory built-in system and characterized, the results of which were compared with simulated results, demonstrating that the current numerical model can properly predict the mechanical behavior of 3D fiber-reinforced composites.

  20. Long fiber reinforcement of polypropene/polystyrene blends

    NARCIS (Netherlands)

    Inberg, J.P.F.; Hunse, P.H.; Hunse, P.H.; Gaymans, R.J.

    1999-01-01

    The recycling of inseparable polymer mixtures usually results in blends with poor mechanical properties. A mixture of PP and PS was taken as a model compound for a recyclate. The effect of adding glass fibers to a mixture of PP/PS (70/30) was studied, with special attention to long glass fiber

  1. Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection

    Science.gov (United States)

    Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos

    2017-10-01

    Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.

  2. The use of bamboo fiber in reinforced concrete beam to reduce crack

    Science.gov (United States)

    Dewi, Sri Murni; Wijaya, Ming Narto; Christin Remayanti, N.

    2017-09-01

    This study presents the evaluation of the use of bamboo fiber to improve the performance of bamboo reinforced concrete at the tension crack area. To achieve this objective, a series of tests were conducted. The size object of concrete beam is 15 cm × 20 cm × 160 cm with reinforcement of bamboo and pumice stone aggregate. Bamboo reinforcement was coated with sand to become rough of the surface. The type of bamboo obtained from skewer producers in the Cemoro Kandang Malang is called Ori bamboo. The fiber were used vary in length. The fiber coated with paint and covered with sand to prevent the hygroscopic properties and increased the weight to prevent the float of bamboo fibers when mixed in the concrete mixer. The results were showed that bamboo fiber can reduce crack-width and deflection of concrete and increase beam post-cracking load-carrying capacity. The amount of fiber has effect on workability and quality of concrete. However, bamboo fiber can prevent the growth and propagation of cracks.

  3. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    Directory of Open Access Journals (Sweden)

    Faris M. A.

    2016-01-01

    Full Text Available In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3 and sodium hydroxide (NaOH. Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF. All hardened alkali activated material samples were tested for density, workability, and compression after 28 days. Results show a slight increase of density with the addition of steel fibers. However, the workability was reduced with the addition of steel fibers content. Meanwhile, the addition of steel fibers shows the improvement of compressive strength which is about 19 % obtained at 3 % of steel fibers addition.

  4. Reinforcement of conventional glass-ionomer restorative material with short glass fibers.

    Science.gov (United States)

    Hammouda, Ibrahim M

    2009-01-01

    This study investigated the strengthening effect of glass fibers when added to conventional glass-ionomer restorative material. Glass fibers were incorporated into glass-ionomer powder in 3 wt% and 5 wt%. The fibers used had 1 mm length and 10 microm thickness. These criteria of fiber length, diameter, and concentration represent a new approach for reinforcing conventional glass-ionomer [Medifill, conventional restorative glass-ionomer]. The mechanical properties tested were diametral tensile strength, hardness, flexural strength, flexural modulus and fracture toughness after 24-h and 7-days of storage in deionized water. Glass short fibers were mixed thoroughly into the glass-ionomer powder before mixing with the cement liquid. Samples of specific dimensions were prepared for each time interval and fiber loading according to the manufacturer's instructions and international standards. Hardness was measured using a micro-hardness tester at 100 gram applied load for 15 s. The other mechanical properties were measured using a Lloyd universal testing machine. The results showed increased diametral tensile strength, flexural strength, flexural modulus, and fracture toughness by the addition of glass fibers. There was an appreciable increase of the tested mechanical properties of glass-ionomer restorative material as a result of increasing fiber loading and water storage for 1 week. It was concluded that conventional glass-ionomer can be reinforced by the addition of short glass fibers.

  5. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications

    Directory of Open Access Journals (Sweden)

    Layth Mohammed

    2015-01-01

    Full Text Available Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

  6. Mussel-inspired catecholamine polymers as new sizing agents for fiber-reinforced composites

    Science.gov (United States)

    Lee, Wonoh; Lee, Jea Uk; Byun, Joon-Hyung

    2015-04-01

    Mussel-inspired catecholamine polymers (polydopamine and polynorepinephrine) were coated on the surface of carbon and glass fibers in order to increase the interfacial shear strength between fibers and polymer matrix, and consequently the interlaminar shear strength of fiber-reinforced composites. By utilizing adhesive characteristic of the catecholamine polymer, fiber-reinforced composites can become mechanically stronger than conventional composites. Since the catecholamine polymer is easily constructed on the surface by the simultaneous polymerization of its monomer under a weak basic circumstance, it can be readily coated on micro-fibers by a simple dipping process without any complex chemical treatments. Also, catecholamines can increase the surface free energy of micro-fibers and therefore, can give better wettability to epoxy resin. Therefore, catecholamine polymers can be used as versatile and effective surface modifiers for both carbon and glass fibers. Here, catecholamine-coated carbon and glass fibers exhibited higher interfacial shear strength (37 and 27% increases, respectively) and their plain woven composites showed improved interlaminar shear strength (13 and 9% increases, respectively) compared to non-coated fibers and composites.

  7. Influence of the stacking sequence on the mechanical proprieties of glass fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    Bere Paul

    2017-01-01

    Full Text Available The reinforced composite materials are in a very impressive development in the last decades. In this paper the influence of the plystacking sequence of glass fiber reinforced polymer on mechanical properties is investigated. Composite material structures consist of layers from glass mat and fabrics with different disposal sequence. The mechanical properties of the manufactured composite materials have been determined by tensile and bending tests. The obtained results are used to design the optimal materials architecture.

  8. Serviceability behavior of Reinforcement Concrete beams with polypropylene and steel fibers

    OpenAIRE

    NaserKabashi; Cenë Krasniqi

    2015-01-01

    Serviceability Limit States (SLS) may lead to the design of concrete elements internally reinforced with Fiber Reinforced Polymer (FRP).In many types of concrete structure loss the serviceability due to wide cracks, number of cracks or large deflection is not uncommon behaviour in concrete structures or concrete beams.The flexural ductility affects the serviceability deflection of RC beams once flexural cracking take place.Imprvement will be focused on the use of polypropilene fib...

  9. Ultra-High-Modulus Graphite/Epoxy Conical Shell Development

    Science.gov (United States)

    1978-08-01

    34,350 lb. The failure mode was localized buckling at the potted end of the specimen with localized delamination occurring within the laminate in...contain any evidence of foreign matter, fiber deterioration, discontinuity, loops, entrapped ends, fuzz balls , or excessive sizing which could cause... wrinkles , and an excessive number of splices and gaps. If, within a given roll of material, there arc areas not conforming to this specification

  10. Preparation and characterization of ramie-glass fiber reinforced polymer matrix hybrid composites

    Directory of Open Access Journals (Sweden)

    Daiane Romanzini

    2012-06-01

    Full Text Available The use of ramie fibers as reinforcement in hybrid composites is justified considering their satisfactory mechanical properties if compared with other natural fibers. This study aims to verify changes in chemical composition and thermal stability of the ramie fibers after washing with distilled water. One additional goal is to study glass fiber and washed ramie fiber composites focusing on the effect of varying both the fiber length (25, 35, 45 and 55 mm and the fiber composition. The overall fiber loading was maintained constant (21 vol.%. Based on the results obtained, the washed ramie fiber may be considered as an alternative for the production of these composites. The higher flexural strength presented being observed for 45 mm fiber length composite, although this difference is not significant for lower glass fiber volume fractions: (0:100 and (25:75. Also, by increasing the relative volume fraction of glass fiber until an upper limit of 75%, higher flexural and impact properties were obtained.

  11. Study of the Effect of Reinforced Glass Fibers on Fatigue Properties for Composite Materials

    Directory of Open Access Journals (Sweden)

    Mohamed G. Hamad

    2013-05-01

    Full Text Available This  research  included  the  study of  the effect  of  reinforced  glass fibers  on  fatigue  properties  for composite materials. Polyester  resin  is used  as  connective  material(matrix in two types  of  glass  fibers  for reinforced. The  first  type  is regular  glass fibers  (woven  roving with the  directional(0-90, the second  is  glass  fibers  with  the  random  direction. The first type is the panels with regular reinforced (0-90, and with number of layer (1,2.The  second  type  is  the  panels with random  reinforced  and  with  number  of  layers (1,2. The  results  and  the  laboratory  examinations  for  the samples  reinforce  with  fibers  have  manifested (0-90  that there  is  a decrease  in the number  of  cycles  to the  fatigue  limit  when  the  number  of  reinforce  layers  have  increased . And  an elasticity of this  type  of  samples  are decreased  by  increasing  the number  of  reinforced  layers  with  fiber  .We  find  the  random  reinforced  number  of  fatigue  cycles  for the samples  with  two  layers  of  random  reinforced  are  decreased  more  than the samples  with  one  layer of random  reinforced .

  12. Round Robin Tests to Determine Fiber Content of Carbon Fiber-Reinforced Thermoplastic Composites by Combustion and Thermogravimetry

    Directory of Open Access Journals (Sweden)

    Masahiro Funabashi

    2017-01-01

    Full Text Available To propose methods to determine the fiber content of carbon fiber-reinforced plastics (CFRP for the International Organization for Standardization, the fiber contents of CFRP with polyamide-6 were measured using a combustion method based on ISO 14127 and a thermogravimetry method based on the modified ISO 9924-3 under a round robin test managed by the Polymer Subcommittee of the Industrial Technology Cooperative Promotion Committee in Japan. In the combustion method, the fiber contents of the CFRTP (~0.3 g were determined by the mass of carbon fiber remaining after burning (ISO 14127. The fiber contents in weight of the CFRTP with 8, 9, or 10 plies were determined to be 55.720%, 61.088%, or 65.326%, respectively, by 17 research institutes. In the thermogravimetry method, the fiber contents of the CFRTP (~10 mg were determined by the mass of carbon fiber remaining after heating it to 600°C in nitrogen gas using thermogravimetry apparatus (modified ISO 9924-3. The fiber contents of the CFRTP with 8, 9, or 10 plies were determined to be 56.908%, 61.579%, or 64.819%, respectively, by 8 research institutes. It was confirmed that thermogravimetry method was as accurate as the combustion method based on ISO 14127.

  13. NDE of Fiber Reinforced Foam Composite Structures for Future Aerospace Vehicles

    Science.gov (United States)

    Walker, james; Roth, Don; Hopkins, Dale

    2010-01-01

    This slide presentation reviews the complexities of non-destructive evaluation (NDE) of fiber reinforced foam composite structures to be used for aerospace vehicles in the future.Various views of fiber reinforced foam materials are shown and described. Conventional methods of NDE for composites are reviewed such as Micro-computed X-Ray Tomography, Thermography, Shearography, and Phased Array Ultrasonics (PAUT). These meth0ods appear to work well on the face sheet and face sheet ot core bond, they do not provide adequate coverage for the webs. There is a need for additional methods that will examine the webs and web to foam core bond.

  14. Numerical investigation of friction joint between Basalt Fiber Reinforced Composites and aluminum

    DEFF Research Database (Denmark)

    Costache, Andrei; Berggreen, Christian; Sivebæk, Ion Marius

    2016-01-01

    Flexible risers are used in the offshore oil industry for exporting hydrocarbons from subsea equipment to floatingproduction and storage vessels. The latest research in unbonded flexible pipes aims to reduce weight by replacing metal components with composite materials. This would result in lighter...... and stiffer flexible risers, which would be well suited for ultra deep water applications. This paper develops a new finite element model used for evaluating the efficiency of anchoring flat unidirectional fiber reinforced tendons in a mechanical grip. It consists two flat grips with the fiber reinforced...

  15. Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts

    Energy Technology Data Exchange (ETDEWEB)

    C. P. Pantelides; T. T. Garfield; W. D. Richins; T. K. Larson; J. E. Blakeley

    2012-03-01

    The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.

  16. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    Science.gov (United States)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  17. Fiber-Reinforced Reactive Nano-Epoxy Composites

    Science.gov (United States)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  18. SYLRAMIC™ SiC fibers for CMC reinforcement

    Science.gov (United States)

    Jones, Richard E.; Petrak, Dan; Rabe, Jim; Szweda, Andy

    2000-12-01

    Dow Corning researchers developed SYLRAMIC SiC fiber specifically for use in ceramic-matrix composite (CMC) components for use in turbine engine hot sections where excellent thermal stability, high strength and high thermal conductivity are required. This is a stoichiometric SiC fiber with a high degree of crystallinity, high tensile strength, high tensile modulus and good thermal conductivity. Owing to the small diameter, this textile-grade fiber can be woven into 2-D and 3-D structures for CMC fabrication. These properties are also of high interest to the nuclear community. Some initial studies have shown that SYLRAMIC fiber shows very good dimensional stability in a neutron flux environment, which offers further encouragement. This paper will review the properties of SYLRAMIC SiC fiber and then present the properties of polymer impregnation and pyrolysis (PIP) processed CMC made with this fiber at Dow Corning. While these composites may not be directly applicable to applications of interest to this audience, we believe that the properties shown will give good evidence that the fiber should be suitable for high temperature structural applications in the nuclear arena.

  19. A REVIEW ON SISAL FIBER REINFORCED POLYMER COMPOSITES

    Directory of Open Access Journals (Sweden)

    Kuruvilla Joseph

    1999-12-01

    Full Text Available ABSTRACT The global demand for wood as a building material is steadily growing, while the availability of this natural resource is diminishing. This situation has led to the development of alternative materials. Of the various synthetic materials that have been explored and advocated, polymer composites claim a major participation as building materials. There has been a growing interest in utilizing natural fibres as reinforcement in polymer composite for making low cost construction materials in recent years. Natural fibres are prospective reinforcing materials and their use until now has been more traditional than technical. They have long served many useful purposes but the application of the material technology for the utilization of natural fibres as reinforcement in polymer matrix took place in comparatively recent years. Economic and other related factors in many developing countries where natural fibres are abundant, demand that scientists and engineers apply appropriate technology to utilize these natural fibres as effectively and economically as possible to produce good quality fibre reinforced polymer composites for housing and other needs. Among the various natural fibres, sisal is of particular interest in that its composites have high impact strength besides having moderate tensile and flexural properties compared to other lignocellulosic fibres. The present paper surveys the research work published in the field of sisal fibre reinforced polymer composites with special reference to the structure and properties of sisal fibre, processing techniques, and the physical and mechanical properties of the composites.

  20. Analysis of the Behaviour of Composite Steel and Steel Fiber Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Mindaugas Petkevičius

    2011-04-01

    Full Text Available There was a pending influence of steel fiber on the strength and stiffness of composite steel–concrete slabs under statical short–time load. Steel profiled sheeting and steel fiber reinforced concrete were used for specimens. Four composite slabs were made. Experimental investigations into the behaviour and influence of steel fiber reinforced concrete in composite slabs were conducted. Transverse, longitudinal, shear deformation and deflection of the slab were measured. The results indicated that the use of steel fiber in composite slabs was effective: strength was 20–24 % higher and the meanings of deflections under the action of the bending moment were 0,6MR (where MR is the bending moment at failure of the slabs and were 16–18 % lower for slabs with usual concrete. Article in Lithuanian

  1. Fiber-Reinforced Concrete For Hardened Shelter Construction

    Science.gov (United States)

    1993-02-01

    oh d i d~ti|orn iic 05 . i•te~ ti’) ,div I i. i. r 0.1* Wodi . itiud~d. l the timp for idp- lngg In$tructurin. waedchinq od.$tii•g data sources, qttf, h...beams are prefabricated in a batch mixing plant before assembly into a modular structure, their oveiall 31 quality might not equal that obtained in the... plant . Jute fibers are mainly used to make rope and grain-carrying bags. The fiber is relatively strong compared to other natural fibers, and is fairly

  2. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    G. AGARWAL

    2014-10-01

    Full Text Available This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to represent the behaviour of composite structures with that of fiber loading. Thermo-mechanical properties of the material are measured with the help of Dynamic Mechanical Analyser to measure the damping capacity of the material that is used to reduce the vibrations. The effect of storage modulus, loss modulus and tan delta with temperature are determined. Finally, Cole–Cole analysis is performed on both bidirectional and short carbon fiber reinforced epoxy composites to distinguish the material properties of either homogeneous or heterogeneous materials. The results show that with the increase in fiber loading the mechanical properties of bidirectional carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, as far as Loss modulus, storage modulus is concerned bidirectional carbon fiber shows better damping behaviour than short carbon fiber reinforced composites.

  3. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength

    DEFF Research Database (Denmark)

    Zhou, H. W.; Mishnaevsky, Leon; Yi, H. Y.

    2016-01-01

    The strength and fracture behavior of carbon fiber reinforced polymer composites with carbon nanotube (CNT) secondary reinforcement are investigated experimentally and numerically. Short Beam Shearing tests have been carried out, with SEM observations of the damage evolution in the composites. 3D...... multiscale computational (FE) models of the carbon/polymer composite with varied CNT distributions have been developed and employed to study the effect of the secondary CNT reinforcement, its distribution and content on the strength and fracture behavior of the composites. It is shown that adding secondary...

  4. GLASS FIBERS – MODERN METHOD IN THE WOOD BEAMS REINFORCEMENT

    Directory of Open Access Journals (Sweden)

    Cătălina IANĂŞI

    2017-05-01

    Full Text Available : One of the defining goals of this paper is getting new resistant material which combine the qualities of basic materials that get into its composition but not to borrow from them their negative properties. Specifically, the use of GFRP composite materials as reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. The results obtained in this paper indicate that the behavior of reinforced beams is totally different from that of un-reinforced one. The main conclusion of the tests is that the tensioning forces allow beam taking a maximum load for a while, something that is particularly useful when we consider a real construction, The experiments have shown that the method of increasing resistance of wood constructions with composite materials is good for it and easy to implement.

  5. Research on mechanical properties of carbon fiber /polyamide reinforced PP composites

    Science.gov (United States)

    Chen, Xinghui; Yu, Qiang; Liu, Lixia; Ji, Wenhua; Yang, Li; Fan, Dongli

    2017-10-01

    The polyamide composites reinforced by carbon fiber/polypropylene are produced by injection molding processing. The flow abilities and mechanical properties of the CF/PA/PP composite materials are studied by the fusion index instrument and the universal testing machine. The results show that with the content of carbon fiber/polyamide increase, the impact breaking strength and the tensile property of the composite materials increase, which is instructive to the actual injection production of polypropylene products.

  6. Evaluation of mechanical properties of natural hybrid fibers, reinforced polyester composite materials

    OpenAIRE

    S. Kasiviswanathan; K. Santhanam; Kumaravel, A.

    2015-01-01

    The composite materials are replacing the traditional materials, because of its superior properties such as high tensile strength, low thermal expansion, high strength to weight ratio. The developments of new materials are on the anvil and are growing day by day. In this work the effect of glass fibre hybridization with the randomly oriented natural fibers has been evaluated. The sisal (S), banana (B), E-glass synthetic fibers were chopped and reinforced with polyester matrix. Six layers were...

  7. Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber

    Directory of Open Access Journals (Sweden)

    I. I. Soto

    Full Text Available Structural masonry using concrete blocks promotes the rationalization of construction projects, lowering the final cost of a building through the elimination of forms and the reduction of the consumption of reinforcement bars. Moreover, production of a block containing a combination of concrete and vegetable fiber sisal results in a unit with properties such as mechanical strength, stiffness, flexibility, ability to absorb energy, and post-cracking behavior that are comparable to those of a block produced with plain concrete. Herein are reported the results of a study on the post-cracking behavior of blocks, prisms, and small walls reinforced with sisal fibers (lengths of 20 mm and 40 mm added at volume fractions of 0.5% and 1%. Tests were performed to characterize the fibers and blocks and to determine the compressive strength of the units, prisms, and small walls. The deformation modulus of the elements was calculated and the stress-strain curves were plotted to gain a better understanding of the values obtained. The compression test results for the small walls reinforced with fibers were similar to those of the reference walls and better than the blocks and prisms with added fibers, which had resistances lower than those of the corresponding conventional materials. All elements prepared with the addition of sisal exhibited an increase in the deformation capacity (conferred by the fibers, which was observed in the stress-strain curves. The failure mode of the reference elements was characterized by an abrupt fracture, whereas the reinforced elements underwent ductile breakage. This result was because of the presence of the fibers, which remained attached to the faces of the cracks via adhesion to the cement matrix, thus preventing loss of continuity in the material. Therefore, the cement/plant fiber composites are advantageous in terms of their ductility and ability to resist further damage after cracking.

  8. FINE-GRAINED THE FIBER CONCRETE WITH APPLICATION VOLCANIC ASH, REINFORCED BY THE BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    I. A. Dzugulov

    2015-01-01

    Full Text Available The compositions of fine-grained concrete with the application of volcanic ash are developed. Are investigated compositions and properties of fine-grained fiber concrete with the volcanic ash with the application of methods of the mathematical planning of experiment. It is revealed, that the reinforcement of finegrained concrete by basaltic fibers substantially increases their strength with the bend. 

  9. Topology Optimization of Bonnet-like Plate Using Carbon Fiber Reinforced Thermoplastics Subjected to Different Criteria

    OpenAIRE

    Lim, Sang-Won

    2016-01-01

    The evolution of fiber composites has resulted in a new paradigm of material selection for automotive industries. In specific, Carbon Fiber Reinforced Thermoplastics (CFRTP) has shown its advantages in the feasibility of mass production as well as its high strength to weight ratio; allowing significant weight reduction compared to conventional steel largely in dominance today. In automotive sectors where weight saving is a major factor in operation, material shift from steel to CFRTP could be...

  10. Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures

    OpenAIRE

    Chen, G M.; He, Y. H.; Yang, H.; Chen, J F; Guo, Y. C.

    2014-01-01

    For sustainability considerations, the use of recycled aggregate in concrete has attracted many interests in the research community. One of the main concerns for using such concrete in buildings is its spalling in fire. This may be alleviated by adding steel fibers to form steel fiber reinforced recycled aggregate concrete (SFRAC). This paper presents an experimental investigation into the compressive properties of SFRAC cylinders after exposure to elevated temperatures, including the compres...

  11. Behavior of Low Grade Steel Fiber Reinforced Concrete Made with Fresh and Recycled Brick Aggregates

    Directory of Open Access Journals (Sweden)

    Md. Shariful Islam

    2017-01-01

    Full Text Available In recent years, recycled aggregates from construction and demolition waste (CDW have been widely accepted in construction sectors as the replacement of coarse aggregate in order to minimize the excessive use of natural resources. In this paper, an experimental investigation is carried out to observe the influence of low grade steel fiber reinforcements on the stress-strain behavior of concrete made with recycled and fresh brick aggregates. In addition, compressive strength by destructive and nondestructive tests, splitting tensile strength, and Young’s modulus are determined. Hooked end steel wires with 50 mm of length and an aspect ratio of 55.6 are used as fiber reinforcements in a volume fraction of 0% (control case, 0.50%, and 1.00% in concrete mixes. The same gradation of aggregates and water-cement ratio (w/c=0.44 were used to assess the effect of steel fiber in all these concrete mixes. All tests were conducted at 7, 14, and 28 days to perceive the effect of age on different mechanical properties. The experimental results show that around 10%~15% and 40%~60% increase in 28 days compressive strength and tensile strength of steel fiber reinforced concrete, respectively, compared to those of the control case. It is observed that the effect of addition of 1% fiber on the concrete compressive strength is little compared to that of 0.5% steel fiber addition. On the other hand, strain of concrete at failure of steel fiber reinforced concrete has increased almost twice compared to the control case. A simple analytical model is also proposed to generate the ascending portions of the stress-strain curve of concrete. There exists a good correlation between the experimental results and the analytical model. A relatively ductile failure is observed for the concrete made with low grade steel fibers.

  12. Cracking and debonding of a thin fiber reinforced concrete overlay.

    Science.gov (United States)

    2017-04-01

    Previous field studies suggested that macro-fibers incorporated in thin overlay pavements will result in reduced crack opening widths, vertical deflections, and debonding rates compared to that of unreinforced overlays. A simple finite element (FE) m...

  13. Glass fiber and silica reinforced rigid polyurethane foams

    Directory of Open Access Journals (Sweden)

    M. W. Kim

    2017-05-01

    Full Text Available Ternary composites of rigid polyurethane foam (RPUF/glass fiber/silica as well as RPUF/glass fiber have been fabricated from glass fiber, silica, polymeric 4,4′-di-phenylmethane diisocyanate (PMDI and polyol using HFC 365mfc as blowing agent. Foam formation kinetics, morphology, thermal conductivity, glass transition temperature, decomposition temperatures as well as the mechanical strengths of the foam have been studied. With the addition an increasing amount of glass fiber cream time, rise time, gel time, tack free time, density, compression strength, thermal conductivity (k monotonically increased while the glass transition temperature showed a maximum at 2%. At constant glass fiber content (2%, addition of silica further increased the process times, density and compression strength while the Tg and thermal decomposition temperature showed a maximum at 3% silica. The k value of RFUF/glass fiber composite decreased with the addition of silica up to 3%, where it was even lower than the virgin RPUF. However, beyond the content k value increased. Overall, the variation of k value with silica content showed identical tendency with cells size and closed cells content.

  14. Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite

    Science.gov (United States)

    Malenab, Roy Alvin J.; Ngo, Janne Pauline S.; Promentilla, Michael Angelo B.

    2017-01-01

    The use of natural fibers in reinforced composites to produce eco-friendly materials is gaining more attention due to their attractive features such as low cost, low density and good mechanical properties, among others. This work thus investigates the potential of waste abaca (Manila hemp) fiber as reinforcing agent in an inorganic aluminosilicate material known as geopolymer. In this study, the waste fibers were subjected to different chemical treatments to modify the surface characteristics and to improve the adhesion with the fly ash-based geopolymer matrix. Definitive screening design of experiment was used to investigate the effect of successive chemical treatment of the fiber on its tensile strength considering the following factors: (1) NaOH pretreatment; (2) soaking time in aluminum salt solution; and (3) final pH of the slurry. The results show that the abaca fiber without alkali pretreatment, soaked for 12 h in Al2(SO4)3 solution and adjusted to pH 6 exhibited the highest tensile strength among the treated fibers. Test results confirmed that the chemical treatment removes the lignin, pectin and hemicellulose, as well as makes the surface rougher with the deposition of aluminum compounds. This improves the interfacial bonding between geopolymer matrix and the abaca fiber, while the geopolymer protects the treated fiber from thermal degradation. PMID:28772936

  15. Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite.

    Science.gov (United States)

    Malenab, Roy Alvin J; Ngo, Janne Pauline S; Promentilla, Michael Angelo B

    2017-05-25

    The use of natural fibers in reinforced composites to produce eco-friendly materials is gaining more attention due to their attractive features such as low cost, low density and good mechanical properties, among others. This work thus investigates the potential of waste abaca (Manila hemp) fiber as reinforcing agent in an inorganic aluminosilicate material known as geopolymer. In this study, the waste fibers were subjected to different chemical treatments to modify the surface characteristics and to improve the adhesion with the fly ash-based geopolymer matrix. Definitive screening design of experiment was used to investigate the effect of successive chemical treatment of the fiber on its tensile strength considering the following factors: (1) NaOH pretreatment; (2) soaking time in aluminum salt solution; and (3) final pH of the slurry. The results show that the abaca fiber without alkali pretreatment, soaked for 12 h in Al₂(SO₄)₃ solution and adjusted to pH 6 exhibited the highest tensile strength among the treated fibers. Test results confirmed that the chemical treatment removes the lignin, pectin and hemicellulose, as well as makes the surface rougher with the deposition of aluminum compounds. This improves the interfacial bonding between geopolymer matrix and the abaca fiber, while the geopolymer protects the treated fiber from thermal degradation.

  16. Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite

    Directory of Open Access Journals (Sweden)

    Roy Alvin J. Malenab

    2017-05-01

    Full Text Available The use of natural fibers in reinforced composites to produce eco-friendly materials is gaining more attention due to their attractive features such as low cost, low density and good mechanical properties, among others. This work thus investigates the potential of waste abaca (Manila hemp fiber as reinforcing agent in an inorganic aluminosilicate material known as geopolymer. In this study, the waste fibers were subjected to different chemical treatments to modify the surface characteristics and to improve the adhesion with the fly ash-based geopolymer matrix. Definitive screening design of experiment was used to investigate the effect of successive chemical treatment of the fiber on its tensile strength considering the following factors: (1 NaOH pretreatment; (2 soaking time in aluminum salt solution; and (3 final pH of the slurry. The results show that the abaca fiber without alkali pretreatment, soaked for 12 h in Al2(SO43 solution and adjusted to pH 6 exhibited the highest tensile strength among the treated fibers. Test results confirmed that the chemical treatment removes the lignin, pectin and hemicellulose, as well as makes the surface rougher with the deposition of aluminum compounds. This improves the interfacial bonding between geopolymer matrix and the abaca fiber, while the geopolymer protects the treated fiber from thermal degradation.

  17. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches.

    Science.gov (United States)

    Hwang, Jin-Ha; Lee, Deuck Hang; Ju, Hyunjin; Kim, Kang Su; Seo, Soo-Yeon; Kang, Joo-Won

    2013-10-23

    Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%-1.5%, in terms of shear performance.

  18. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches

    Directory of Open Access Journals (Sweden)

    Joo-Won Kang

    2013-10-01

    Full Text Available Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%–1.5%, in terms of shear performance.

  19. Chemical, morphological and mechanical analysis of sisal fiber-reinforced recycled high-density polyethylene composites

    Directory of Open Access Journals (Sweden)

    2010-08-01

    Full Text Available Natural fibers are widely used as plastic composite material reinforcements. In this work, composites of postconsumer high-density polyethylene (HDPE reinforced with sisal fibers were prepared. PE and sisal fibers were chemically modified to improve their compatibilities, try to increase the hydrophobic character of the sisal fiber and hydrophilic character HDPE. Sisal was mercerized with a NaOH solution and acetylated and the PE was oxidized with KMnO4 solution. The chemically modified fibers were characterized by Fourier Transformed Infrared Spectroscopy (FTIR and 13C Nuclear Magnetic Resonance Spectroscopy (13C NMR. The composites were prepared by extrusion of modified and unmodified materials containing either 5 or 10 wt% fibers. The morphology of the obtained materials was evaluated by SEM. The fiber chemical modification improves it adhesion with matrix, but not benefit were obtained with HDPE oxidation. Flexural and impact tests demonstrated that the composites prepared with modified sisal fibers and unmodified PE present improved mechanical performance compared to pure PE.

  20. The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite.

    Science.gov (United States)

    Abdulmajeed, Aous A; Närhi, Timo O; Vallittu, Pekka K; Lassila, Lippo V

    2011-04-01

    This study was designed to evaluate the effect of an increase of fiber-density on some mechanical properties of higher volume fiber-reinforced composite (FRC). Five groups of FRC with increased fiber-density were fabricated and two additional groups were prepared by adding silanated barium-silicate glass fillers (0.7 μm) to the FRC. The unidirectional E-glass fiber rovings were impregnated with light-polymerizable bisGMA-TEGDMA (50-50%) resin. The fibers were pulled through a cylindrical mold with an opening diameter of 4.2mm, light cured for 40s and post-cured at elevated temperature. The cylindrical specimens (n=12) were conditioned at room temperature for 2 days before testing with the three-point bending test (Lloyd Instruments Ltd.) adapted to ISO 10477. Fiber-density was analyzed by combustion and gravimetric analyzes. ANOVA analysis revealed that by increasing the vol.% fraction of E-glass fibers from 51.7% to 61.7% there was a change of 27% (pfibers and volume of the polymer matrix more precisely than flexural strength when high fiber-density is used. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Optimising of Steel Fiber Reinforced Concrete Mix Design | Beddar ...

    African Journals Online (AJOL)

    However, the incorporation of fibres into plain concrete disrupts the granular skeleton and very quickly causes problems of mixing as a result of the loss of mixture workability that will be translated into a difficult concrete casting in site. This study was concerned on the one hand with optimising the fibres in reinforced ...

  2. Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation

    Science.gov (United States)

    Doru, Zdrenghea

    2017-10-01

    The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater

  3. Sensitivity analysis of stress state and bond strength of fiber-reinforced polymer/concrete interface to boundary conditions in single shear pull-out test

    National Research Council Canada - National Science Library

    Mohammadi, Tayyebeh; Wan, Baolin

    2015-01-01

    The bond between fiber-reinforced polymer and concrete substrate plays a key role in the performance of concrete structures after strengthened by externally bonded fiber-reinforced polymer composite materials...

  4. Reactive processing of textile-natural fiber reinforced anionic polyamide-6 composites

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Ze; Chen, Peng; Liu, Zhengying; Feng, Jianmin; Yang, Mingbo [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan (China)

    2015-05-22

    Nowadays natural fiber, used in reinforced composites, is widely concerned. However, no natural fiber reinforced reactive thermoplastic polymer grades had been prepared so far. Through our studies, it was demonstrated that there was a severe retardation and discoloration occurred in the reactive processing between anionic polyamide-6 (APA-6) and natural fiber, which result in incomplete polymerization when put together. In order to solve the problem, two methods were adopted in this paper, which are fiber pretreatment and usage of a new-style initiator called caprolactam magnesium bromide. The former is to remove sizing agent and impurities on the surface of fiber, and the latter is to weaken the side reactions between APA-6 and natural fiber by the nature of its lower reactivity and weaker alkaline. In cooperation with both methods, the severe retardation and discoloration had been improved significantly, so that the polymerization of APA-6 in natural fiber was occurred smoothly. Following textile-natural fiber reinforced APA-6 composites with an average thickness of 2.5 mm and a fiber volume content of 50% was prepared by vacuum assisted resin transfer molding (VARTM). The soxhlet extraction, dilute solution viscometry and differential scanning calorimeter (DSC) measurements respectively suggested the degree of conversion, viscosity-average molar mass and crystallization of composites was up to 94%, 11.3×104 and 50%. Remarkable improvement of mechanical properties were achieved through dynamic mechanical analysis (DMA), tensile and three-point bending test. Favorable interfacial adhesion and wettability were revealed by scanning electron microscopy (SEM) observation. Therefore, all of the above good performance make this new-style and environmentally friendly composites have broad application prospects.

  5. Development and Evaluation of Novel Coupling Agents for Kenaf-Fiber-Reinforced Unsaturated Polyester Composites

    Science.gov (United States)

    Ren, Xiaofeng

    Natural fibers are gaining popularity as reinforcement materials for thermoset resins over the last two decades. Natural fibers are inexpensive, abundant, renewable and environmentally friendly. Kenaf fibers are one of the natural fibers that can potentially be used for reinforcing unsaturated polyester (UPE). As a polymer matrix, UPE enjoys a 40% market share of all the thermoset composites. This widespread application is due to many favorable characteristics including low cost, ease of cure at room temperature, ease of molding, a good balance of mechanical, electrical and chemical properties. One of the barriers for the full utilization of the kenaf fiber reinforced UPE composites, however, is the poor interfacial adhesion between the natural fibers and the UPE resins. The good interfacial adhesion between kenaf fibers and UPE matrix is essential for generating the desired properties of kenaf-UPE composites for most of the end applications. Use of a coupling agent is one of the most effective ways of improving the interfacial adhesion. In this study, six novel effective coupling agents were developed and investigated for kenaf-UPE composites: DIH-HEA, MFA, NMA, AESO-DIH, AESO-MDI, and AESO-PMDI. All the coupling agents were able to improve the interfacial adhesion between kanaf and UPE resins. The coupling agents were found to significantly enhance the flexural properties and water resistance of the kenaf-UPE composites. Fourier transform infrared spectroscopy (FTIR) confirmed all the coupling agents were covalently bonded onto kenaf fibers. Scanning electron microscopy (SEM) images of the composites revealed the improved interfacial adhesion between kanaf fibers and UPE resins.

  6. Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    2011-01-01

    is necessary. Computational fluid dynamics (CFD) comes to play at this stage. Formulation of a possible CFD model that is able to solve multi-phase and multi component non-Newtonian flow with complex boundary conditions and fiber suspension and preferably in reasonable time brings a very challenging task....... A relatively new group of models - Lattice Boltzmann Modeling (LBM) - is presented in this paper. The conventional LBM is modified to include fiber and particle suspensions and non-Newtonian rheology and is used to model the fiber reinforced self compacting concrete flow....

  7. Complementary methods for nondestructive testing of composite materials reinforced with carbon woven fibers

    Science.gov (United States)

    Steigmann, R.; Iftimie, N.; Sturm, R.; Vizureanu, P.; Savin, A.

    2015-11-01

    This paper presents complementary methods used in nondestructive evaluation (NDE) of composite materials reinforced with carbon woven fibers as two electromagnetic methods using sensor with orthogonal coils and sensor with metamaterials lens as well as ultrasound phased array method and Fiber Bragg gratings embedded instead of a carbon fiber for better health monitoring. The samples were impacted with low energy in order to study delamination influence. The electromagnetic behavior of composite was simulated by finite- difference time-domain (FDTD) software, showing a very good concordance with electromagnetic nondestructive evaluation tests.

  8. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    Science.gov (United States)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  9. Statistics of Microstructure, Peak Stress and Interface Damage in Fiber Reinforced Composites

    DEFF Research Database (Denmark)

    Kushch, Volodymyr I.; Shmegera, Sergii V.; Mishnaevsky, Leon

    2009-01-01

    This paper addresses an effect of the fiber arrangement and interactions on the peak interface stress statistics in a fiber reinforced composite material (FRC). The method we apply combines the multipole expansion technique with the representative unit cell model of composite bulk, which is able...... sensitive to the fiber arrangement, particularly cluster formation. An explicit correspondence between them has been established and an analytical formula linking the microstructure and peak stress statistics in FRCs has been suggested. Application of the statistical theory of extreme values to the local...

  10. Effects of oxygen plasma treatment on domestic aramid fiber III reinforced bismaleimide composite interfacial properties

    Science.gov (United States)

    Shi, Chen; Wang, Jing; Chen, Ping; Feng, Jiayue; Cui, Jinyuan; Yang, Faze

    2017-12-01

    Domestic Aramid Fiber III (DAF III) was modified by oxygen plasma treatment. The fiber surface characteristics was observed by Scanning Electron Microscopy. The results showed that oxygen plasma treatment changed surface morphologies. The effects of oxygen plasma treatment on DAF III reinforced bismaleimides (BMI) composite bending and interfacial properties were investigated, respectively. The ILSS value increased from 49.3 MPa to 56.0 MPa (by 13.5%) after oxygen plasma treatment. The bending strength changed a little. Furthermore, the composite rupture mode changed from interfacial rupture to fiber or resin bulk rupture.

  11. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  12. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    Science.gov (United States)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  13. Method of making carbon fiber-carbon matrix reinforced ceramic composites

    Science.gov (United States)

    Williams, Brian (Inventor); Benander, Robert (Inventor)

    2007-01-01

    A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.

  14. An in vitro comparative evaluation of fracture resistance of custom made, metal, glass fiber reinforced and carbon reinforced posts in endodontically treated teeth.

    Science.gov (United States)

    Sonkesriya, Subhash; Olekar, Santosh T; Saravanan, V; Somasunderam, P; Chauhan, Rashmi Singh; Chaurasia, Vishwajit Rampratap

    2015-05-01

    Posts are used to enhance crown buildup in pulpless teeth with destructed crown portion. Different types of post are used in endodontically treated teeth. The aim of the present in vitro study was to evaluate fracture resistance of custom made, metal, glass fiber reinforced and carbon reinforced posts in endodontically treated teeth. An in vitro study was carried out on extracted 40 human maxillary central incisor teeth, which was divided into four groups with 10 samples in each group with custom made, metal post, glass fiber reinforced, and carbon reinforced posts. The samples were decoronated at cemento-enamel junction and endodontically treated. Post space was prepared and selected posts were cemented. The composite cores were prepared at the height of 5 mm and samples mounted on acrylic blocks. Later fracture resistance to the compressive force of samples was measured using Universal Testing Machine. The maximum resistance to the compressive force was observed in carbon reinforced and glass fiber reinforced posts compared others which is statistically significant (P > 0.001) and least was seen in custom fabricated post. It is concluded that carbon reinforced fiber post and glass fiber posts showed good fracture resistance compared to custom made and metal posts.

  15. Polypropylene Fibers as Reinforcements of Polyester-Based Composites

    Directory of Open Access Journals (Sweden)

    Gonzalo Martínez-Barrera

    2013-01-01

    Full Text Available Effects of gamma radiation and the polypropylene fibers on compressive properties of polymer concrete composites (PC were studied. The PCs had a composition of 30 wt% of unsaturated polyester resin and 70 wt% of marble particles which have three different sizes (small, medium, and large. The PCs were submitted to 200, 250, and 300 kGy of radiation doses. The results show that the compressive properties depend on the combination of the polypropylene fiber concentration and the applied radiation dose. The compressive strength value is highest when using medium particle size, 0.1 vol% of polypropylene fibers and 250 kGy of dose; moreover, the compressive modulus decreases when increasing the particle size.

  16. Investigation of the Reliability of Bridge Elements Reinforced with Basalt Plastic Fibers

    Science.gov (United States)

    Koval', T. I.

    2017-09-01

    The poorly studied problem on the reliability and durability of basalt-fiber-reinforced concrete bridge elements is considered. A method of laboratory research into the work of specimens of the concrete under a manyfold cyclic dynamic load is proposed. The first results of such experiments are presented.

  17. In vitro fracture resistance of fiber reinforced cusp-replacing composite restorations.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Tezvergil, A.; Kuijs, R.H.; Lassila, L.V.; Kreulen, C.M.; Creugers, N.H.J.; Vallittu, P.K.

    2005-01-01

    OBJECTIVES: To assess the fracture resistance and failure mode of fiber reinforced composite (FRC) cusp-replacing restorations in premolars. METHODS: Forty-five extracted sound upper premolars were randomly divided into three groups. Identical MOD cavities with simulated buccal cusp fracture and

  18. Adhesive Properties of Bonded Orthodontic Retainers to Enamel : Stainless Steel Wire vs Fiber-reinforced Composites

    NARCIS (Netherlands)

    Foek, Dave Lie Sam; Krebs, Eliza; Sandham, John; Ozcan, Mutlu

    2009-01-01

    Purpose: The objectives of this study were to compare the bond strength of a stainless steel orthodontic wire vs various fiber-reinforced composites (FRC) used as orthodontic retainers on enamel, analyze the failure types after debonding, and investigate the influence of different application

  19. Natural tooth pontic with splinting of periodontally weakened teeth using fiber-reinforced composite resin

    Directory of Open Access Journals (Sweden)

    Gauri Srinidhi

    2014-01-01

    Full Text Available Replacement of missing anterior teeth due to periodontal reasons is challenging due to the poor support of abutment teeth. This prevents the use of fixed partial dentures (FPDs. Fiber-reinforced splinting provides a viable alternative to the dentist while choosing a treatment plan in replacing missing anterior teeth in periodontally compromised patients as opposed to conventional modalities like FPDs or removable partial dentures. Replacing missing teeth using either patient′s own tooth or a denture tooth as pontic can be done by splinting adjacent teeth with fiber reinforced composite. The splinting has an additional advantage of stabilizing adjacent mobile teeth. This case report details the case selection, procedure with follow-up of a case where the natural extracted tooth of the patient was used as pontic to replace a missing anterior tooth. The splinting was done with fiber reinforced composite resin. Fiber-reinforced composite resin splinting of patient′s extracted natural tooth is economical, fast, and easy to use chairside technique with the added benefit of periodontal stabilization.

  20. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  1. Modeling root-reinforcement with a Fiber-Bundle Model and Monte Carlo simulation

    Science.gov (United States)

    This paper uses sensitivity analysis and a Fiber-Bundle Model (FBM) to examine assumptions underpinning root-reinforcement models. First, different methods for apportioning load between intact roots were investigated. Second, a Monte Carlo approach was used to simulate plants with heartroot, platero...

  2. High performance fiber reinforced concrete : Progress in knowledge and design codes

    NARCIS (Netherlands)

    Walraven, J.C.

    2009-01-01

    High performance fiber reinforced concrete is developing quickly to a modern structural material with a high potential. As for instance testified by the recent symposium on HPFRC in Kassel, Germany (April 2008) the number of structural applications increases. At this moment studies are carried out

  3. Effect of Different Bar Embedment Length on Bond-Slip in Plain and Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Jankovic, D.; Chopra, M.B.; Kunnath, S.K.

    2001-01-01

    This research aims to study the behaviour of the concrete-steel bond using numerical models, taking into account the effect of the different bar embedment length. Both plain and fiber reinforced concrete (FRC) are modeled. The interface bond stress as well as load-displacement response of the

  4. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone.

    Science.gov (United States)

    Neumann, Eduardo Aloisio Fleck; Villar, Cristina Cunha; França, Fabiana Mantovani Gomes

    2014-01-01

    Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK) and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1), polyetheretherketone (PEEK) screws (Group 2), and 30% carbon fiber-reinforced PEEK screws (Group 3). The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load) was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey's range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p carbon fiber-reinforced PEEK screws (p> 0.05). Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  5. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement

    NARCIS (Netherlands)

    Bergshoef, M.M.; Vancso, Gyula J.

    1999-01-01

    Transparent sheets of epoxy resin reinforced with nylon-4,6 nanofibers are described. The 30-200 nm diameter fibers, obtained by electrospinning from formic acid solutions, are reported to provide significant improvement in strength and stiffness to the epoxy film. The Figure is a scanning electron

  6. Clinical studies of fiber-reinforced resin-bonded fixed partial dentures: a systematic review.

    NARCIS (Netherlands)

    Heumen, C.C.M. van; Kreulen, C.M.; Creugers, N.H.J.

    2009-01-01

    In the past decade, follow-up studies on fiber-reinforced composite fixed partial dentures (FRC FPDs) have been described. Combining the results of these studies to draw conclusions about the effectiveness of FRC FPDs is challenging. The objective of this systematic review was to obtain survival

  7. Study of sound-absorbing properties of glass-fiber reinforced materials used in engineering

    Science.gov (United States)

    Egorova, V. E.; Habibova, R. R.; Shafigullin, L. N.

    2017-09-01

    Modern engineering makes high demands to the noise level in the passenger compartment or cabin of KAMAZ. An effective means of dealing with noise is to use sound absorbing materials produced by the automotive industry. To increase sound-absorbing capacity of materials and structures using glass fibre reinforced polyurethane foams (PUF) obtained by the technology Fiber Composite Spraying.

  8. A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer

    DEFF Research Database (Denmark)

    Ranjbar, Navid; Mehrali, Mehdi; Behnia, Arash

    2016-01-01

    and long term impacts of different volume percentages of polypropylene fiber (PPF) reinforcement on fly ash based geopolymer composites. Different characteristics of the composite were compared at fresh state by flow measurement and hardened state by variation of shrinkage over time to assess the response...

  9. Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2013-01-01

    Glass-fiber-reinforced polyester (GFRP) plates are treated using a 50Hz dielectric barrier discharge at a peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency of aro...

  10. The Study of Pearsons Hard Soft Interactions for Nanoparticle Reinforced Fiber Composite Interfaces

    Science.gov (United States)

    Patterson, Brendan A.

    With advances in technology and processing capability, the design of composite materials with hierarchal structures and tailorable properties has been significantly improved. Previous work has shown that vertically aligned ZnO nanowires have been a viable interfacial reinforcement agent between high strength fibers and epoxy matrices for a number of applications, such as structural composites, ballistic protective gear, and embedded energy harvesters. While enhanced interfacial strength improvements were thoroughly demonstrated, the fundamental understanding of why still remained. Through a better understanding of the bonding between ZnO nanostructured interphases and structural fibers, more advanced continuous fiber reinforced polymer (CFRP) composites may be developed and designed with other additional functionalities. Initially, this research will serve as a fundamental study on the mechanisms of adhesion at the nanowire-carbon fiber interface with the end goal of predicting and tailoring these adhesive forces. First, a modified testing method is developed to directly measure the bonding of nanoparticles to oxidized highly oriented pyrolytic graphite to mimic the interface created between carbon fiber and the ZnO nanowire reinforcement. Then, the Pearson hard-soft acid-base principle is used to predict and control both interfacial adhesive energy and the correlating composite interfacial strength by coordinating surface functional groups and nanoparticles with different chemical hardness. These interfaces are validated by adhesion force measurements, surface characterization techniques, and micromechanical tests to elucidate the bonding interactions of ZnO, ZnS, and CdS nanoparticles. To apply the bonding interactions observed, ZnO nanoparticles then are employed as an interphase reinforcement to aramid fiber composites through a low temperature deposition to alleviate two major disadvantages of aramid fibers: low surface energy and UV-susceptibility. First

  11. Flexural modulus, flexural strength, and stiffness of fiber-reinforced posts

    Directory of Open Access Journals (Sweden)

    Novais Veridiana

    2009-01-01

    Full Text Available Background: The radiopacity degree of posts is not enough for adequate visualization during radiographic analyses. Glass fiber post with stainless steel reinforcement has been fabricated in an attempt to overcome this limitation. Aim: This study was designed to determine the influence of this metal reinforcement on the post mechanical properties. Materials and Methods: This study evaluated flexural modulus (E, flexural strength (σ, and stiffness (S of five different fiber post systems (n = 5: RfX (Reforpost Glass Fiber RX; Ângelus, Londrina, PR, Brazil; RG (Reforpost Glass Fiber, Ângelus; RC (Reforpost Carbon Fiber, Ângelus; FP (Fibrekor Post; Jeneric Pentron Inc., Wallingford, CT, USA; and CP (C-Post; Bisco Dental Products, Schaumburg, IL, USA, testing the hypothesis that the insertion of a metal reinforcement (RfX jeopardizes the mechanical properties of a glass fiber post. Posts were loaded in three-point bending using a testing machine with a crosshead speed of 0.5 mm/min. Results : The results were statistically analyzed using one-way ANOVA and Tukey′s multiple range tests (a = 0.05. Mean and standard deviation values of E (GPa, s (MPa, and S (N/mm were as follows: RfX: 10.8 ± 1.6, 598.0 ± 52.0, 132.0 ± 21.9; RG: 10.6 ± 1.0, 562.0 ± 24.9, 137.8 ± 5.5; RC: 15.9 ± 2.4, 680.5 ± 34.8, 190.9 ± 12.9; FP: 10.9 ± 1.4, 586.8 ± 21.9, 122.4 ± 17.3; CP: 6.3 ± 1.7, 678.1 ± 54.2, 246.0 ± 41.7. Carbon fiber posts showed the highest mean s values (P < 0.05. In addition, RC showed the highest mean E value and CP showed the highest mean S value (P < 0.05. Conclusion : The hypothesis was rejected since the metal reinforcement in the glass fiber post (RfX does not decrease the mechanical property values. Posts reinforced with carbon fibers have a higher flexural strength than glass fiber posts, although all posts showed similar mechanical property values with dentin.

  12. Fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro

    NARCIS (Netherlands)

    Foek, Dave Lie Sam; Yetkiner, Enver; Ozcan, Mutlu

    Objective: To analyze the fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro. Methods: Roots of human mandibular central incisors were covered with silicone, mimicking the

  13. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Matlin, W.M. [Univ. of Tennessee, Knoxville, TN (United States); Stinton, D.P.; Besmann, T.M. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    A two-step forced chemical vapor infiltration process was developed that reduced infiltration times for 4.45 cm dia. by 1.27 cm thick Nicalon{sup +} fiber preforms by two thirds while maintaining final densities near 90 %. In the first stage of the process, micro-voids within fiber bundles in the cloth were uniformly infiltrated throughout the preform. In the second stage, the deposition rate was increased to more rapidly fill the macro-voids between bundles within the cloth and between layers of cloth. By varying the thermal gradient across the preform uniform infiltration rates were maintained and high final densities achieved.

  14. The effect of silanated and impregnated fiber on the tensile strength of E-glass fiber reinforced composite retainer

    Directory of Open Access Journals (Sweden)

    Niswati Fathmah Rosyida

    2015-12-01

    Full Text Available Background: Fiber reinforced composite (FRC is can be used in dentistry as an orthodontic retainer. FRC  still has a limitations because of to  a weak bonding between fibers and matrix. Purpose: This research was aimed to evaluate the effect of silane as coupling agent and fiber impregnation on the tensile strength of E-glass FRC. Methods: The samples of this research were classified into two groups each of which consisted of three subgroups, namely the impregnated fiber group (original, 1x addition of silane, 2x addition of silane and the non-impregnated fiber group (original, 1x addition of silane, 2x addition of silane. The tensile strength was measured by a universal testing machine. The averages of the tensile strength in all groups then were compared by using Kruskal Wallis and Mann Whitney post hoc tests. Results: The averages of the tensile strength (MPa in the impregnated fiber group can be known as follow; original impregnated fiber (26.60±0.51, 1x addition of silane (43.38±4.42, and 2x addition of silane (36.22±7.23. The averages of tensile strength (MPa in the non-impregnated fiber group can also be known as follow; original non-impregnated fiber (29.38±1.08, 1x addition of silane (29.38±1.08, 2x addition of silane (12.48±2.37. Kruskal Wallis test showed that there was a significant difference between the impregnated fiber group and the non-impregnated fiber group (p<0.05. Based on the results of post hoc test, it is also known that the addition of silane in the impregnated fiber group had a significant effect on the increasing of the tensile strength of E-glass FRC (p<0.05, while the addition of silane in the non-impregnated fiber group had a significant effect on the decreasing of the tensile strength of E-glass FRC. Conclusion: It can be concluded that the addition of silane in the non-silanated fiber group can increase the tensile strength of E-glass FRC, but the addition of silane in the silanated fiber group can

  15. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Directory of Open Access Journals (Sweden)

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  16. Preparation and characterization of glass fibers - polymers (epoxy) bars (GFRP) reinforced concrete for structural applications

    Science.gov (United States)

    Alkjk, Saeed; Jabra, Rafee; Alkhater, Salem

    2016-06-01

    The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP) and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm) tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long) reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  17. Processing of thermo-structural carbon-fiber reinforced carbon composites

    Directory of Open Access Journals (Sweden)

    Luiz Cláudio Pardini

    2009-06-01

    Full Text Available The present work describes the processes used to obtain thermostructural Carbon/Carbon composites. The processing of these materials begins with the definition of the architecture of the carbon fiber reinforcement, in the form of stacked plies or in the form of fabrics or multidirectional reinforcement. Incorporating fiber reinforcement into the carbon matrix, by filling the voids and interstices, leads to the densification of the material and a continuous increase in density. There are two principal processing routes for obtaining these materials: liquid phase processing and gas phase processing. In both cases, thermal processes lead to the formation of a carbon matrix with specific properties related to their precursor. These processes also differ in terms of yield. With liquid phase impregnation the yield is around 45 per cent, while gas phase processing yields around 15 per cent.

  18. Fabrication of novel fiber reinforced aluminum composites by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Arab, Seyyed Mohammad; Karimi, Saeed; Jahromi, Seyyed Ahmad Jenabali, E-mail: jahromi@shirazu.ac.ir; Javadpour, Sirus; Zebarjad, Seyyed Mojtaba

    2015-04-24

    In this study, chopped and attrition milled high strength carbon, E-glass, and S-glass fibers have been used as the reinforcing agents in an aluminum alloy (Al1100) considered as the matrix. The Surface Metal Matrix Composites (SMMCs) then are produced by Friction Stir Processing (FSP). Tensile and micro-hardness examinations represent a magnificent improvement in the hardness, strength, ductility and toughness for all of the processed samples. Scanning Electron Micrographs reveal a proper distribution of the reinforcements in the matrix and a change in the fracture behavior of the FSPed specimens. The synergetic effects of reinforcing by fibers and Severe Plastic Deformation (SPD) lead to an extra ordinary improvement in the mechanical properties.

  19. Effects of Interface Modification on Mechanical Behavior of Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1997-01-01

    Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.

  20. Model to predict shrinkage and ejection forces of injection moulded tubular parts of short glass fiber reinforced thermoplastics

    OpenAIRE

    Garcia, M. C. R.; Netto, A. C. S.; Pontes, A. J.

    2011-01-01

    This work presents a model to predict shrinkage and ejection forces for glass fiber reinforced thermoplastics of tubular geometry. This mathematical model was based in Jansen’s Model to predict shrinkage and residual stresses in fiber reinforced injection molded products and Pontes’s Model to predict ejection forces for tubular parts of pure PP. The model used the modified classical laminate theory applied to injection moulding and it uses the fiber orientation state, temperatu...

  1. Exposure Assessment of a High-energy Tensile Test With Large Carbon Fiber Reinforced Polymer Cables.

    Science.gov (United States)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Michel, Silvain; Terrasi, Giovanni; Wang, Jing

    2015-01-01

    This study investigated the particle and fiber release from two carbon fiber reinforced polymer cables that underwent high-energy tensile tests until rupture. The failing event was the source of a large amount of dust whereof a part was suspected to be containing possibly respirable fibers that could cause adverse health effects. The released fibers were suspected to migrate through small openings to the experiment control room and also to an adjacent machine hall where workers were active. To investigate the fiber release and exposure risk of the affected workers, the generated particles were measured with aerosol devices to obtain the particle size and particle concentrations. Furthermore, particles were collected on filter samples to investigate the particle shape and the fiber concentration. Three situations were monitored for the control room and the machine hall: the background concentrations, the impact of the cable failure, and the venting of the exposed rooms afterward. The results showed four important findings: The cable failure caused the release of respirable fibers with diameters below 3 μm and an average length of 13.9 μm; the released particles did migrate to the control room and to the machine hall; the measured peak fiber concentration of 0.76 fibers/cm(3) and the overall fiber concentration of 0.07 fibers/cm(3) in the control room were below the Permissible Exposure Limit (PEL) for fibers without indication of carcinogenicity; and the venting of the rooms was fast and effective. Even though respirable fibers were released, the low fiber concentration and effective venting indicated that the suspected health risks from the experiment on the affected workers was low. However, the effect of long-term exposure is not known therefore additional control measures are recommended.

  2. Ground Hemp Fibers as Filler/Reinforcement for Thermoplastic Biocomposites

    OpenAIRE

    Amir Etaati; Selvan Pather; Moloud Rahman; Hao Wang

    2015-01-01

    Mechanical properties (tensile, flexural, and impact) of ground hemp fibre polypropylene composites were investigated. Ground alkali-treated hemp fibre and noil hemp fibres with various initial fibre lengths were utilized to reinforce polypropylene matrix. Firstly, the microstructural and tensile characterizations of the two types of fibres were characterized using scanning electron microscope (SEM), Fourier transform infrared analysis (FTIR), and Dynamic Mechanical Analyser (DMA). Then, the ...

  3. Fatigue Hysteresis of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures

    Science.gov (United States)

    Li, Longbiao

    2016-02-01

    When the fiber-reinforced ceramic-matrix composites (CMCs) are first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. Under fatigue loading, the stress-strain hysteresis loops appear as fiber slipping relative to matrix in the interface debonded region upon unloading/reloading. Due to interface wear at room temperature or interface oxidation at elevated temperature, the interface shear stress degredes with increase of the number of applied cycles, leading to the evolution of the shape, location and area of stress-strain hysteresis loops. The evolution characteristics of fatigue hysteresis loss energy in different types of fiber-reinforced CMCs, i.e., unidirectional, cross-ply, 2D and 2.5D woven, have been investigated. The relationships between the fatigue hysteresis loss energy, stress-strain hysteresis loops, interface frictional slip, interface shear stress and interface radial thermal residual stress, matrix stochastic cracking and fatigue peak stress of fiber-reinforced CMCs have been established.

  4. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites

    Science.gov (United States)

    Shishevan, Farzin Azimpour; Akbulut, Hamid; Mohtadi-Bonab, M. A.

    2017-06-01

    In this research, we studied low velocity impact response of homogenous basalt fiber-reinforced polymer (BFRP) composites and then compared the impact key parameters with carbon fiber-reinforced polymer (CFRP) homogenous composites. BFRPs and CFRPs were fabricated by vacuum-assisted resin transfer molding (VARTM) method. Fabricated composites included 60% fiber and 40% epoxy matrix. Basalt and carbon fibers used as reinforcement materials were weaved in 2/2 twill textile tip in the structures of BFRP and CFRP composites. We also utilized the energy profile method to determine penetration and perforation threshold energies. The low velocity impact tests were carried out in 30, 60, 80, 100, 120 and 160 J energy magnitudes, and impact response of BFRPs was investigated by related force-deflection, force-time, deflection-time and absorbed energy-time graphics. The related impact key parameters such as maximum contact force, absorbed energy, deflection and duration time were compared with CFRPs for various impact energy levels. As a result, due to the higher toughness of basalt fibers, a better low velocity impact performance of BFRP than that of CFRP was observed. The effects of fabrication parameters, such as curing process, were studied on the low velocity impact behavior of BFRP. The results of tested new fabricated materials show that the change of fabrication process and curing conditions improves the impact behavior of BFRPs up to 13%.

  5. Considerations regarding the volume fraction influence on the wear behavior of the fiber reinforced composite systems

    Science.gov (United States)

    Caliman, R.

    2017-08-01

    This paper contains an analysis of the factors that have an influence on the tribological characteristics of the composite material sintered with metal matrix reinforced with carbon fibers. These composites are used generally if it’s needed the wear resistant materials, whereas these composites have high specific strength in conjunction with a good corrosion resistance at low densities and some self-lubricating properties. Through the knowledge of the better tribological properties of the materials and their behavior to wear, can be generated by dry and the wet friction. Thus, where necessary the use of high temperature resistant material with low friction between the elements, carbon fiber composite materials are very suitable because they have: mechanical strength and good ductility, melting temperature on the higher values, higher electrical and thermal conductivity, lower wear speed and lower friction forces. For this purpose, this paper also contains an experimental program based on the evidence of formaldehyde resin made from fiber reinforced Cu-carbon with the aim to specifically determine the volume of fibers fraction for the consolidation of the composite material. In order to determine the friction coefficient and the wear rates of the various fiber reinforced polymer mixtures of carbon have been used special devices with needle-type with steel disc. These tests were conducted in the atmosphere at the room temperature without external lubrication study taking into consideration the sliding different speeds with constant loading task.

  6. Compressive Strength of Post Fire Exposed Concrete Column Wrapped with Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Dwi Agus Setiawan Wardaya

    2017-09-01

    Full Text Available In this study, behaviour of reinforced concrete columns strengthened using fiber reinforced polymer (FRP; glass fiber and carbon fiber after fire exposure are discussed. After being exposed to fire as high as 720oC for 180 minutes, the specimens showed concrete and  reinforcement strength degradation, even though there was no carbonation. It was found that specimens wrapped by carbon fiber showed better compressive strength but less ductility compared to specimens wrapped by glass fiber. It was also found that the low initial compressive strength did not decrease FRP confinement effectiveness. Increase of wrapped concrete com­pressive strength was evident despite the low initial strength (<17 MPa. Strength esti­mation using ACI 440.2R-08 formula, which is originally for wrapped plain concrete without fire heat exposure, underestimated the compressive strength. In the proposed formula, the initial compressive strength (f’co should be adjusted by considering the modulus elasticity and strain limitation to have more precise estimation.

  7. From dilute to entangled fiber suspensions involved in reinforced polymers and composites

    Science.gov (United States)

    Perez-Miguel, M.; Abisset-Chavanne, E.; Chinesta, F.; Keunings, R.

    2017-10-01

    In SMC processes, a charge of a composite material - which typically consists of a matrix reinforced with chopped glass fibres or carbon fibre bundles and fillers - is placed on the bottom half of a preheated mould. The upper half of the mould is then closed rapidly at a high speed, causing the charge to flow inside the cavity, the reinforcing fibres are carried by the resin and experience a change of configuration, which strongly influences the mechanical properties of the final part. Then, the process simulation must track the entire fluid flow history in order to be able to predict the final reinforcement structure, and predict the defects that compression moulding can generate. All along the process, the fiber concentration increases leading to a change in the flow regimes: (i) at very low concentrations, the fiber and the fluid are moving with the same velocity, (ii) when the concentration is extremely high, fibers cannot move anymore and the fluid flows throughout the quasi-rigid entangled fibers skeleton, (iii) in between these two cases, fibers move with a velocity lower than the one of the suspending fluid. The process simulations must then be able to take into account all these regimes and go from one to the other. Even if the two first regimes (dilute and highly concentrated) are well known and described using Jeffery's [4] and Darcy's equations, the transition between the two is still badly modeled. In this work a general model able to adapt continuously to all these scenarios is elaborated.

  8. Effect of Steel Fiber and Different Environments on Flexural Behavior of Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Barkhordari Bafghi

    2017-09-01

    Full Text Available The main kind of deterioration in marine Reinforced Concrete (RC structures and other infrastructures is steel bar corrosion due to cracks in concrete surfaces, which leads to the reduction of the load carrying capacity, ductility, and structural safety. It seems that steel fibers can reduce and delay the cracking, and increase the flexural strength and ductility of marine RC structures. To do so, in marine atmosphere and the tidal zone of the Oman Sea and fresh water, the flexural behavior of beams containing Plain Concrete (PC, Concrete with Steel fiber Reinforcement (SFRC, RC, Concrete with Steel fiber, and bar Reinforcement ((R+SC at 28, 90 and 180 days were determined. Beams were 99 un-cracked and pre-cracked beams, with dimensions of 200 × 200 × 750 mm. Based on results and at 180 days, the flexural strength and toughness of pre-cracked (R+SC beams were 22%–43% higher than the pre-cracked RC beams. The effect of steel fiber on the increment of load capacity and the toughness of pre-cracked RC beams were approximately the same. By addition of steel fiber to un-cracked RC beams, load capacity and toughness were increased up to 20%. The load capacity and toughness in marine atmosphere and tidal zone were approximately 15% lower than the fresh water condition.

  9. Machinability of glass fiber reinforced plastic (GFRP) composite ...

    African Journals Online (AJOL)

    This paper deals with the study of machinability of GFRP composite tubes of different fiber orientation angle vary from 300 to 900. Machining studies were carried out on an all geared lathe using three different cutting tools: namely Carbide (K-20), Cubic Boron Nitride (CBN) and Poly-Crystalline Diamond (PCD). Experiments ...

  10. Fiber reinforced sandy slopes under groundwater return flow

    Science.gov (United States)

    The instability of natural hillslopes, riverbanks and engineered embankments due to seepage has been a major concern. In an effort to prevent failures, tension resisting synthetic fibers may be an effective additive to increase the mechanical properties of engineered soils. In this study, triaxial c...

  11. Mycelium reinforced agricultural fiber bio-composites: Summary of research

    Science.gov (United States)

    Industry and the public sector have a growing interest in utilizing natural fibers, such as agricultural substrates, in the manufacture of components and products currently manufactured from fossil fuels. A patented process, developed by Ecovative Design, LLC (Ecovative), for growing fungal species ...

  12. In Vitro Engineering of High Modulus Cartilage-Like Constructs.

    Science.gov (United States)

    Finlay, Scott; Seedhom, Bahaa B; Carey, Duane O; Bulpitt, Andy J; Treanor, Darren E; Kirkham, Jennifer

    2016-04-01

    To date, the outcomes of cartilage repair have been inconsistent and have frequently yielded mechanically inferior fibrocartilage, thereby increasing the chances of damage recurrence. Implantation of constructs with biochemical composition and mechanical properties comparable to natural cartilage could be advantageous for long-term repair. This study attempted to create such constructs, in vitro, using tissue engineering principles. Bovine synoviocytes were seeded on nonwoven polyethylene terephthalate fiber scaffolds and cultured in chondrogenic medium for 4 weeks, after which uniaxial compressive loading was applied using an in-house bioreactor for 1 h per day, at a frequency of 1 Hz, for a further 84 days. The initial loading conditions, determined from the mechanical properties of the immature constructs after 4 weeks in chondrogenic culture, were strains ranging between 13% and 23%. After 56 days (sustained at 84 days) of loading, the constructs were stained homogenously with Alcian blue and for type-II collagen. Dynamic compressive moduli were comparable to the high end values for native cartilage and proportional to Alcian blue staining intensity. We suggest that these high moduli values were attributable to the bioreactor setup, which caused the loading regime to change as the constructs developed, that is, the applied stress and strain increased with construct thickness and stiffness, providing continued sufficient cell stimulation as further matrix was deposited. Constructs containing cartilage-like matrix with response to load similar to that of native cartilage could produce long-term effective cartilage repair when implanted.

  13. A study on biocomposite from local balinese areca catechu l. husk fibers as reinforced material

    Science.gov (United States)

    Kencanawati, C. I. P. K.; Suardana, N. P. G.; Sugita, I. K. G.; Suyasa, I. W. B.

    2017-05-01

    Untapped areca catechu l. husk fibers optimally can cause pollution to the environment. Therefore it is necessary to learn the characteristics of local balinese areca catechu l. husk fibers, such as physical, chemical, morphological, and mechanical. AHF testing the tensile strength with a single pull fiber test in accordance with ASTM D 3379 in the amount of 146-152 MPa. While the observation of the physical properties, of local balinese areca catechu l. husk fibers have a diameter and length variations of each 250-540 μm and 9.24 to 55.20 mm, with an aspect ratio of between 31.43 to 102.22, density ranges between 0:48 - 0.74 kg / cm3, absorption lower water (90-150%) when compared to AHF grows in other areas. From this study it appears that local Bali AHF can be used as reinforcement in composite replacement for synthetic fibers.

  14. Modeling of the mechanical behavior of fiber-reinforced ceramic composites using finite element method (FEM

    Directory of Open Access Journals (Sweden)

    Dimitrijević M.M.

    2014-01-01

    Full Text Available Modeling of the mechanical behavior of fiber-reinforced ceramic matrix composites (CMC is presented by the example of Al2O3 fibers in an alumina based matrix. The starting point of the modeling is a substructure (elementary cell which includes on a micromechanical scale the statistical properties of the fiber, matrix and fiber-matrix interface and their interactions. The numerical evaluation of the model is accomplished by means of the finite element method. The numerical results of calculating the elastic modulus of the composite dependance on the quantity of the fibers added and porosity was compared to experimental values of specimens having the same composition. [Projekat Ministarstva nauke Republike Srbije, br. ON174004 i TVH to project III45012

  15. Mechanical properties of long carbon fiber reinforced thermoplastic (LFT) at elevated temperature

    Science.gov (United States)

    Wang, Qiushi

    Long fiber reinforced thermoplastics (LFT) possess high specific modulus and strength, superior damage tolerance and fracture toughness and have found increasing use in transportation, military, and aerospace applications. However, one of the impediments to utilizing these materials is the lack of performance data in harsh conditions, especially at elevated temperature. In order to quantify the effect of temperature on the mechanical properties of carbon fiber reinforced thermoplastic composites, carbon fiber PAA composite plates containing 20% and 30% carbon fiber were produced using extrusion/compression molding process and tested at three representative temperatures, room temperature (RT 26°C), middle temperature (MID 60°C) and glass transition temperature (Tg 80°C). A heating chamber was designed and fabricated for the testing at elevated temperature. As temperature increases, flexural modulus, flexural strength, tensile modulus and tensile strength decrease. The highest reduction observed in stiffness (modulus) values of 30% CF/PAA at Tg in the 00 orientation is 75%. The reduction values were larger for the transverse (perpendicular to flow direction) samples than the longitudinal (flow direction) samples. The property reduction in 30% CF/PAA is larger than 20% CF/PAA. Furthermore, an innovative method was developed to calculate the fiber content in carbon fiber reinforced composites by burning off the neat resin and sample in a tube furnace. This method was proved to be accurate (within 1.5 wt. % deviation) by using burning off data obtained from CF/Epoxy and CF/Vinyl Ester samples. 20% and 30% carbon/PAA samples were burned off and carbon fiber content was obtained using this method. The results of the present study will be helpful in determining the end-user applications of these composite materials. Keywords: Long Carbon Fibers, Elevated Temperature, Mechanical Properties, Burn off Test.

  16. Identification of Damage Types in Carbon Fiber Reinforced Plastic Laminates by a Novel Optical Fiber Acoustic Emission Sensor

    OpenAIRE

    Yu, Fengming; Wu, Qi; Okabe, Yoji; Kobayashi, Satoshi; Saito, Kazuya

    2014-01-01

    International audience; In this research, phase-shifted FBG (PS-FBG) sensor was employed to practical AE detection for carbon fiber reinforced plastic (CFRP) composite laminate. Firstly, we evaluated the characteristics of AE signals detected by this kind of sensor. Secondly, through the experiment and simulation concerning AE source orientation, quantitative information about the standard for discriminating the AE signals due to transverse cracks and delaminations was obtained. Finally, acco...

  17. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.

    Science.gov (United States)

    Bekyarova, E; Thostenson, E T; Yu, A; Kim, H; Gao, J; Tang, J; Hahn, H T; Chou, T-W; Itkis, M E; Haddon, R C

    2007-03-27

    We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity.

  18. Fracture mechanics in fiber reinforced composite materials, taking as examples B/A1 and CRFP

    Science.gov (United States)

    Peters, P. W. M.

    1982-01-01

    The validity of linear elastic fracture mechanics and other fracture criteria was investigated with laminates of boron fiber reinforced aluminum (R/A1) and of carbon fiber reinforced epoxide (CFRP). Cracks are assessed by fracture strength Kc or Kmax (critical or maximum value of the stress intensity factor). The Whitney and Nuismer point stress criterion and average stress criterion often show that Kmax of fiber composite materials increases with increasing crack length; however, for R/A1 and CFRP the curve showing fracture strength as a function of crack length is only applicable in a small domain. For R/A1, the reason is clearly the extension of the plastic zone (or the damage zone n the case of CFRP) which cannot be described with a stress intensity factor.

  19. Fiber-reinforced Composite for Chairside Replacement of Anterior Teeth: A Case Report

    Directory of Open Access Journals (Sweden)

    Garoushi S

    2008-01-01

    Full Text Available the replacement of a missing anterior tooth. Whenever a minimal tooth reduction is preferred, a fiber reinforced composite (FRC prosthesis could be a good alternative to conventional prosthetic techniques, chiefly as temporary restoration before making a final decision on the treatment. The purpose of this case report is to describe the clinical procedure of fabricating anterior chairside FRC prosthesis with pre-impregnated unidirectional E-glass fibers and veneered particulate filler composite. Fiber-reinforced composite in combination with adhesive technology appears to be a promising treatment option for replacing missing teeth. However, further and long-term clinical investigation will be required to provide additional information on the survival of directly-bonded anterior fixed prosthesis made with FRC systems.

  20. TPS/LDPE blends reinforced with lignocellulose fibers; Compositos TPS/LDPE reforcados com fibras lignocelulosicas

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, G.K.; Andrade, C.T., E-mail: kloc@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano

    2010-07-01

    Because of their abundance, availability, low abrasiveness and mechanical properties, cellulose fibers have been frequently chosen as reinforcing fillers in composites. Castor bean cake, the residue from biodiesel production, is rich in lignocellulose fibers and proteins. One of these proteins is ricin, a toxin protein. In this work, ricin was denatured by heat treatment in water at 90 deg C for 4 h. Thermoplastic starch (TPS), low density polyethylene (LDPE), maleated polyethylene (used as the compatibilizing agent), and an organophilic clay were processed in the presence of different contents of heat treated castor bean cake. Processing was carried out in a single-screw extruder, at 400 rpm, with heat zones at 130 deg C, 135 deg C, 135 deg C and 130 deg C (from feed zone to die end). The structural and mechanical properties of the resulting polymeric composites were investigated, and revealed the reinforcing effect of the partially purified cellulose fibers. (author)